
FAST FINGERPRINT RECOGNITION USING SPIRAL

Woon Ho Jung

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

Identification based on fingerprints is an active area of
research in biometrics. In this work we present a fast imple-
mentation of a recently developed fingerprint identification
algorithm based on wavelet packets. We applied various
general and domain-specific code optimization techniques
to efficiently implement the registration phase, which takes
as input a set of fingerprint images and produces an adapted
packet tree and an associated wavelet domain template. The
code for the actual identification is then generated automati-
cally from a mathematical description of this packet tree us-
ing SPIRAL. We discuss the optimization techniques used
and present various benchmarks that demonstrate the effi-
ciency of our implementation.

1. INTRODUCTION

The fingerprint identification algorithm that we are going to
discuss in this paper requires several mathematical compu-
tations. The algorithm makes heavy use of matrix opera-
tions such as multiplications and inversions, DFTs of dif-
ferent sizes. Throughout the paper we will discuss not only
the hot-spots of the implementations but also the techniques
and tools used to improve the hot-spots. We used gprof in
order to detect hot-spots of the implementation.

1.1. Motivation

As stated above the fingerprint identification algorithm re-
quires heavy mathematical computations, thus a single al-
gorithm could have different runtimes depending on the im-
plementation of the algorithm. The algorithm consists of
2 stages, the training stage and the verification stage. The
training stage is performed off-line thus it is not very sen-
sitive in terms of runtime because the end users will not
suffer from it. However it is important to have an efficient
implementation of the training stage in order to allow the
algorithm developers to quickly run and test different test
cases. The verification stage is performed on-line therefore
it needs to be as fast as possible. The quality of a fingerprint
identification system not only depends on the accuracy of

the system but also in the time that it takes to compute the
answer. It is clear that an end user will not be satisfied with
the system if he or she needs to wait 30 minutes to obtain
access to a building.

1.2. Previous Work

We start out with a Matlab implementation of the algorithm
[1]. This implementation was developed in order to verify
the correctness and the accuracy of the algorithm. However
it has sub-optimal runtime performance.

1.3. Our Contribution

In this paper we will introduce a C-version of the algorithm
that was developed with the efficiency problem in mind. In
addition we explore the possibilities of using SPIRAL to
generate code for mathematical expressions slightly differ-
ent from the ordinary DSP transforms such as the DFT or
the DCT.

1.4. Organization of the Paper

In section 2 we are going to describe the architecture of
the system and the fingerprint detection algorithm in ques-
tion. This description is rather simplistic however it is suffi-
cient to understand the algorithm and understand the tuning
strategies used. In section 3 we discuss about the theoretical
arithmetic cost. In section 4 we introduce different hot-spots
of the algorithm and the techniques applied to tune the hot-
spots. In section 5 we present SPIRAL, which is a tool used
to implement the verification stage of the system. In section
6 we provide benchmarks of the system and the impact of
each of the tuning techniques presented in section 4.

2. DESCRIPTION OF THE SYSTEM AND THE
ALGORITHM

The system is divided into 2 stages, verification and train-
ing. First we will describe the algorithm and describe the
system architecture that implements the described algorithm.

2.1. Fingerprint identification algorithm

2.1.1. Training Stage

� Full decomposition of an image: Given
�������� 	 �
���� 	 �
����������� 	 �������

, where
	 �����

is a training im-
age. The full decomposition routine will construct a
full tree for each image in the

�����
list. Given an

image
	 �����

we apply wavelet packet decompositions
in order to obtain 4 subspaces of the original image.
This will give us 4 direct child nodes of the initial im-
age

	 �
� �
. Recursively apply the same routine to the

child nodes until we construct a full tree with height
equal to 4 (Figure 1.a). We apply the full decomposi-
tion to all the images in the

���
�
list and obtain a list

of trees.

� Score Tree: Given the list of trees generated in the
full decomposition step we combine the data (sub-
spaces generated by the wavelet packet decomposi-
tion) stored in the nodes of the trees to generate a sin-
gle score tree. For instance to generate the root of the
score tree we will need the root of all the trees in the
tree list generated in the full decomposition step. The
score tree contains the Fitness score of each subspace
in the nodes of the tree. The fitness score is used to
determine whether a node or a subspace contains a
enough information or not (Figure 1.b). The fitness
score can be computed by the following formula:

Fitness Score = ������� �!�#"%$'&)(
�
"+*,(

�
�-* .

" � � &/.102� 	 �
� � *435&/.102� 	 �
� � *,3 ����� &/.102� 	 �
� � * �
each column of matrix X holds the spectrum of one of
the training images after projecting it onto the wavelet
subspace. D is a diagonal matrix with the average
power spectrum of the training images along its di-
agonal, for simplicity we consider U to be a column
matrix with all ones.

� Pruning: Given a score tree generated in the previ-
ous step the pruning routine will prune the score tree
based on the fitness score stored in each node of the
score tree. After the score tree pruning we will be
left with only the nodes or subspaces that have better
score than the parent node (Figure 1.c).

� Correlation Filter: Given a pruned score tree this step
will compute the correlation filter for the nodes or
subspaces that are located at the leaves of the score
tree. The correlation filter can be computed by the

following formula: 6 � & (
�
"7�8"%$ & (

�
"+*,(

�
� .

& �:9 &<;>= � . Where
9

and = are constants pa-
rameters between 1 and 0. Finally we save both the
correlation filter and the score tree in each node of the
pruned score tree.

2.1.2. Verification Stage

� Decompose Input Image: The decomposition in the
verification is similar to the one in the training stage.
However since we know the structure of the pruned
tree we decompose the image into subspaces that match
the pruned tree (Figure 2.c).

� Apply DFT: Apply Discrete Fourier Transform to
each of the subspaces obtained in the previous step.
(Figure 2.d)

� Pointwise multiplication: Pointwise multiply the cor-
relation filter obtained in the training stage with the
matrix produced in the previous step (Figure 2.d).

� Apply IFFT: Apply the inverse Discrete Fourier Trans-
form to each of the subspaces obtained to the new
matrix produced in the previous step (Figure 2.e).

� Verification: Search for a peak in the generated ma-
trix. If the image is authentic a sharp peak should be
present in the matrix (Figure 2.f).

2.2. System Architecture

2.2.1. Training Stage

The training stage takes a set of authentic images and a set
of impostor images for each user. The system generates a
correlation filter together with a set of functions to be ap-
plied to the filter and the input image to determine whether
an image is authentic. The correlation filter is generated
following the steps explained in the previous section. The
functions are generated by SPIRAL. In the training stage
once that we have the pruned tree it is possible to parse the
tree and generate a formula that SPIRAL can understand.
With this formula we can make SPIRAL to generate a fast
code for each user that can be compiled into dynamic li-
braries (Figure 3).

2.2.2. Verification Stage

The verification stage reads the correlation filter generated
in the training stage and the image to test. It loads the cor-
responding dynamic library and it applies the function to
the correlation filter and the test image. Finally search for
a peak in the matrix generated by applying the functions to
the test image (Figure 3).

3. ARITHMETIC COST

In this paper we are not going to analyze the theoretical
arithmetic cost of the system.

HH

LL

LH

HL

Image

D.S 2

D.S 2

D.S 2

D.S 2

HH

LL

LH

HL

D.S 2

D.S 2

D.S 2

D.S 2

.

...

.

.

Tree generated by
decomposing input

images

Generate

Score Tree

Score Tree

0.8

0.90.50.60.5

0.8

Fig. 1. (a) Recursively decompose the input image to form a tree of subspaces. (b) Take all the trees that has the subspaces
of the input images and compute a single score tree. (c) Prune the full score tree.

(a) (b) (c) (d)

HH HL

LH LL

DFT DFT

DFT DFT

Input
Image

DFT

(e)

-1
DFT

-1

DFT
-1

DFT
-1

Peak?

(f)

Corr.
Filter

Fig. 2. (a) Pruned score tree, generated in the training stage. (b) Input image, image to identify. (c) Given the pruned
score tree divide the input image into subspaces. (d) Apply DFT to each of the subspace and then pointwise multiply with
the correlation filter generated in the training stage. (e) After the pointwise multiplication apply the inverse DFT to each
subspace. (f) Search for peak, if the input image(b) belongs to the set the final matrix will have a sharp peak.

Full Decomposition

Gen Score Tree

Score Tree Pruning

N full trees

score tree

Compute Filter

pruned
score tree

SPIRAL

D
atab

ase

Nfingerprints user name

verification
function

verification
function

correlation
filter

correlation
filter

mathematical
expression

Forward
Verification

Function

Pointwise
Multiplication

Backward
Verification

Function

fingerprint

Peak?

True or False

Registration Verification

Fig. 3. The training stage generates the correlation filter (user.filt) and the verification functions (user.so). The verification
routine receives a fingerprint and applies the function in the dynamic library (user.so) together with the correlation filter
(user.filt) to verify the input fingerprint

� The training stage performs a large number of floating
operations however the bottleneck of the routine is
the call to SPIRAL. In addition all users will have
the same arithmetic cost in computing the score tree
however they will differ in the total arithmetic cost
because we only compute the correlation filters at the
leaves of the pruned score tree. Therefore we cannot
compute a single generic formula that gives the exact
number of floating point operations.

� It is important to compute the arithmetic cost of the
verification stage however SPIRAL generates differ-
ent identification routine for different users. There-
fore it is not possible to compute a single generic for-
mula that gives the number of floating point opera-
tions.

4. HOT-SPOT TUNING

The bottleneck of the training stage is the call to SPIRAL
to generate the code for the verification stage. With this
approach we made a tradeoff between the runtime in the
training stage and the runtime in the verification stage. Al-
though the training stage becomes substantially slow, SPI-
RAL guarantees a fast implementation for the verification

stage. SPIRAL will automatically optimize the verifica-
tion stage code for each user. Having a generic verification
routine will prevent us from calling SPIRAL every time in
order to generate the verification stage code however this
generic routine will be much slower than the user specific
code generated by SPIRAL. Therefore this can be thought
as a trade-off between the training stage runtime and the ver-
ification stage runtime. Although the runtime performance
of the training stage is not very relevant, we put some effort
in optimizing it. The runtime of the training stage is not go-
ing to affect the end users because the training is performed
“off-line” however it is important for the developers to be
able to run experiments in a reasonable time length. Next
we will describe some of the hot-spots of the system and
techniques used to fix the bottlenecks of the training stage
(besides the call to SPIRAL).

� Avoid Multiple Copies of Matrix X

In computing the fitness score and the correlation fil-
ter we need to perform several matrix-matrix multi-
plications. However we should pay close attention to
the term �8"%$ &)(

�
"+* . The matrix " is being multi-

plied by "+$. The math kernel libraries only provide
generic routines that perform generic matrix-matrix
multiplications. Therfore if we decide to use a math

library we need to have both the matrix " and the
matrix "+$ in memory and perform an explicit ma-
trix conjugation. Having two copies of the matrix "
in memory is not desirable because it causes a large
memory footprint and degrades performance. We de-
cided to implement our own matrix-matrix-matrix mul-
tiplication that computes the �8"+$'&)(

�
"+* term in a

single routine having a single copy of the matrix " .

� Compute and Store X transposed instead of X

Our FFT routines (generated by SPIRAL) compute
the DFT of the input matrix and it stores the answer
in a stride-1. However in order to construct the matrix
" we need to have the DFT of the subspaces in the
columns of the matrix " . This forces us to use a tem-
porary storage to compute the DFT’s and then move
the data to the corresponding column in a column ma-
jor order. This method is not desirable because it re-
quires to have a temporary storage, to copy redundant
data and to access the " matrix in a column major
order. We decided to compute and store the matrix
"+� instead of the matrix " , with this approach we
can pass the pointers of the matrix X directly to the
FFT routines.

� Trade Divisions for Multiplications

The matrix & is a diagonal matrix therefore a multi-
plication by & (

�
implies division by the elements in

the diagonal. Floating point divisions are very expen-
sive compared to floating point multiplications. We
decided to pre-compute and to store the matrix & (

�
in order to replace all the divisions by multiplications.

� Opportunistic computation

We can observe that the computation involved in com-
puting the fitness score and the correlation filter is

somewhat similar, �#"+$'&)(
�
"+* � �#"%$ & (

�
"+* . Thus

with a very small overhead in the fitness score com-

putation we can pre-compute the �8"+$ & (
�
" * term

of the correlation filter. Therefore our implementa-
tion pre-computes part of the correlation filter in the
fitness score computation in an optimistic matter.

5. USING SPIRAL TO GENERATE VERIFICATION
CODE

As stated before the runtime of the verification stage is very
important. Therefore we decided to let SPIRAL automat-
ically generate and optimize code for each distinct users.
SPIRAL can take an mathematical expression and automat-
ically generate code that implements the given expression.
For each user the training routine will generate an mathe-
matical expression that describes the users score tree and

Input
Image

HH HL

LLLH

MDH

DFT DFT

DFT

HH HL

LLLH DFT

MDDFT

Fig. 4. MDH(n) Splits an image of size nxn into 4 subspaces
of size n/2xn/2. MDDFT(n) Applies multi-dimensional
DFT of size n/2 to each subspace.

call SPIRAL with the derived expression in order generate
the code for the verification stage. It is hard to implement
a single generic routine that could satisfy all the users and
system platforms. However using SPIRAL we are able to
automatically generate a verification routine that is specifi-
cally implemented and optimized for each user and the plat-
form that the system is running on.

5.1. Generate expressions for SPIRAL

The verification algorithm consists of 2 building blocks :
MDH(n) and MDDFT(n). Given a score tree all the leaves
represents a MDDFT(n) and all other intermediate nodes
represent a MDH(n). We can recursively apply this simple
rule to generate the full expression (Figure 4).� &/6 ��� * � �������

�� � � �	� ��
 &/.10 � *� &/. .10 ��� * � � �4�
 �
��	� �
 � �	� � *4�8&
.10 ���5��
 &/.10 �	� � *�� �4�

�
��
 � �	� � *

Our mathematical description of the algorithm has the
following syntax:

Exp(n) ::= MDFFT(n)
DirectSum(Exp(n/2),Exp(n/2),Exp(n/2),Exp(n/2))*MDH(n)

6. BENCHMARK

In this section, We present experimental results that com-
pare the performance of the different optimizations presented
in section 4. Furthermore, we present comparative perfor-
mance results for our implementation and the Matlab im-
plementation. The experiments were performed with a Pen-
tium 4 3.0 GHz system with 1024KB of cache and 1GB of
RAM. Compilation : gcc -O3 -I. -march=pentium3 -mtune=
pentium3 -funroll-loops -msse3.

6.1. Training Routine

We trained different users using 3, 5, 10, 15, 20 authentic
training images and measured the runtime of the training

stage. In these measurements we removed the call to SPI-
RAL. The call to SPIRAL is definitely the bottleneck of the
training routine however we decide to remove it because
we are trying to show the performance improvements of the
training routine due to the changes presented in section 4.
The effect on the runtime for each optimization is shown in
Figure 5 and discussed next:

� Base: Is the base code for the training routine. It im-
plements the training routine using our own matrix-
matrix-matrix multiplication described in section 4.
However it does not have any other optimization men-
tioned in section 4.

� Optimization 1: This is the code fixes the problem
discussed in “Compute X Transposed instead of X”.
This optimization made our system up to 3 times faster
than the base-line implementation. The training al-
gorithm constructs several " matrices. Therefore an
improvement in the routine that constructs the matrix
" gave us a huge improvement in the runtime.

� Optimization 2: This code applies the technique dis-
cussed in “Trade Divisions for Multiplications”. This
optimization made our system up to 2 times faster
than the optimization 1. This is because in a Pentium
4 a double precision floating point division requires at
least 38 cycles however a floating point multiplication
only needs 6 cycles.

� Best: This code is the best code that we currently
have. It applies all the techniques mentioned in sec-
tion 4.

6.2. Verification Routine

We measured 3 different users verification stage runtime.
We used 3 different filters from different users. We used
fingerprints that are 128x128 in size. Our experiment shows
that the code generated by SPIRAL performs between 2X
slower and 5X faster than the Matlab implementation. SPI-
RAL is a code generator/optimizer for DSP transforms such
as DFT or DCT and was not specifically designed to gener-
ate some arbitrary mathematical expression like in our case.
We believe that future versions of SPIRAL will generate
even better code for the mathematical descriptions that we
are using in this project.

7. CONCLUSIONS

We spent a considerable amount of work in optimizing our
system and in some cases we achieved performance im-
provements up to 8 times faster than the baseline. This
research shows that for a numerical computation software
not only the algorithm is important but also the efficiency of

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

Number of Training Image

R
un

tim
e

(s
ec

)

Base

Optimization 1

Optimization 2

Best

Fig. 5. Runtime plot for different implementations of the
training routine.

1 2 3
0

2

4

6

8

10

12
x 10

4

User #

R
un

tim
e

(s
ec

)

Matlab
C−Code

Fig. 6. Verification stage benchmark (3 different users with
3 different score tree).

the actual implementation. Our research also addresses the
importance of using an automatic code generators such as
SPIRAL. By letting SPIRAL generate the verification code
we saved a huge amount time that could be spent in opti-
mizing the training stage, which is not possible to generate
using code generators.

8. REFERENCE

[1] Wavelet Packet Correlation Methods in Biometrics (Ja-
son Thornton, Pablo Hennings, Jelena Kovacevic, B.V.K.
Vijaya Kumar)

