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Preliminaries

m Algebra (as used in this talk) is the theory of groups, rings, and fields
m The scope of the algebraic theory is linear signal processing (SP)
m In this talk we focus on the discrete case (infinite and finite signals)

m Background papers:
= Basic theory (main paper):
Puschel and Moura, “Algebraic Theory of Signal Processing,” submitted
= Fast algorithms:
Puschel and Moura, “Algebraic Theory of Signal Processing: 1-D Cooley-Tukey
Type Algorithms,” submitted
Puschel and Moura (SIAM J. Comp 03) and earlier work (Egner and Piischel)

= New lattice transforms:

Puschel and Rotteler (ICASSP ‘04, DSP ‘04, ICASSP ‘05, ICIP ‘05)
= Sampling:

Kovacevic and Pischel (ICASSP '06)



Organization

Overview

The algebraic structure underlying linear signal processing

From shift to signal model: Time and space

From infinite to finite signal models

Fast algorithms

Conclusions




The Basic Idea

m SPis built around the key concepts:
signals, filters (convolution), z-transform, spectrum, Fourier transform

infinite finite infinite finite other generic
time time space space models  case
finite finite @
- ? - O
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Algebraic theory: All are instantiations of the same theory jat'ﬁ 4



The Basic Idea (cont’d)

m Key concept in the algebraic theory:
Signal model: (A, J/\/l, <I>\)
/ N

algebra of filters  signal module  associated “z-transform”

m Infinite and finite time and infinite and finite space
are signal models

m But many others are possible
m Once the signal model is defined, all other concepts follow

Signal

Filter

—» ‘“z-transform”

—  Spectrum

Fourier transform
Frequency response

Signal model




Why Algebraic Theory?

m |dentifies the filtering (convolution), “z-transform,” spectrum, etc.,
that goes with the DCTs/DSTs and other existing transforms

m Explains boundary conditions for finite signal models
= E.g., why periodic for DFT and symmetric for the DCTSs.

m New signal models beyond time
= Space
= Space in higher dimension (nonseparable hexagonal lattice, quincunx lattice)

m A comprehensive theory of fast transform algorithms
= Current state: Hundreds of publications, but ...

= Algebraic theory: Concise derivation, classification, reason for existence, many
new fast algorithms found for DCTs/DSTs and new lattice transforms



What we are Not Trying to do

m Restate existing knowledge in a more complicated way

m Do math for the math’s sake

m Provide a theory that is purely “descriptive,”
l.e., cannot be applied

m The algebraic theory is “operational.”
= Enables the derivation of new signal models

= Enables the derivation of new fast algorithms for existing and
new transforms
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The Algebraic Structure of Signal and Filter Space

m Signal space, available operations:
= gignal + signal = signal
= ¢ ¢ signal = signal

> vector space

m Filter space, available operations:

= filter + filter = filter -

_ _ > vectorsW
= q ¢ filter = filter —[—a filter :l.
= filter o filter = filter — ring  — e —

m Filters operate on signals:
= filter « signal = signal

signal —| filter [—— signal

Set of filters = an algebra .A
Set of signals = an .4-module M




(Algebraic) Signal Model

m Signals arise as sequences of numbers

(5n)nef ECXC x-.o=Cl

= To obtain a notion of filtering, Fourier transform, etc.,
one needs to assign module and algebra

m Example: infinite discrete time: (sn)necz
z-transform: ® : (sp)pez— D _sSnz” TEM

signal model
M={Yspz""}, A={Thz""} )/

m Signal model (definition): (A, M, ®)

A algebra of filters
M an A-module of signals
& linear mapping CI — M
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Algebras Occurring in SP: Shift-Invariance

m What is the shift?

= A special filter x (=z%) = an element of .A
= Filters expressible as polynomials/series in x

shift(s) = generator(s) of .A

m Shift-invariance =z-h=h-xx forallhe A

signal model (A, M, ®) is shift-invariant
< A is commutative

m Shift-invariant + finite-dimensional (+ one shift only):

A = C|x]/p(x) polynomial algebra

11



Example: Finite Time Model and DFT

m Finite signals: (so,...,sp—1) dim(M),dim(A) < oo

m Signal model: A =M =C[z]/(z™ — 1)

n—1 n—1

h(xz) = Z hae® € A, s(z) = Z szt € M
k=0 1=0

h(x) - s(x) mod (x™ — 1) Filtering = cyclic convolution

D: (8gy...38p-1)+— s(x)=> si:ci € M Finite z-transform

m Spectrum and Fourier transform from Chinese remainder theorem
F: Clz]/(z" —=1) — Clz]/(x —wd)®...®Clx]/(x — "1

s(x) +— (S(wg),...,s(wg_l))

F = DFT, b



Summary so far

m Signal model (A, M, ®)

m Shift-invariance: .A is commutative
= |n addition finite makes .A a polynomial algebra

m Infinite and finite time are special cases of signal models

m How to go beyond time?

m Answer: Derivation of signal model from shift

shift

signal model (A, M, @)

13




Organization

Overview

The algebraic structure underlying linear signal processing
From shift to signal model: Time and space

From infinite to finite signal models

Fast algorithms

Conclusions

14




Time Space

Tlp = %{tn—l + tnt1)

xTilp = tﬂ-l'l

1 1
. ax- - 2 . 2
EE o o (] LR 'y o [ o (N
(time) marks th—1 ta  tpn th—1 tn  tpp
ke 1 1
™ 2 Ty 2
. /—\ /'\ /-\
k'fOIdShlft [ ) EEEEEN [ ) Q@ s @ smEEEm @
tn tn+k ton—k tn tn+k
re.allzatlon to=1= t, = a" to=1= t, = Cy
of (time) marks
signals s =) spx" 5= 8pCn
filters h =3 hpxF h =5 hT}

Chebyshev polynomials

Operation of filters on signals is automatically defined
(the linear extension of the shift operation) 15



Time and Space (cont’d) Chebyshev polynomials

A = {3 hyz*}
m Time: we are done M = {3 spa™}

®: (Sp)pez— Y snx™  z-transform

nci
A = h.T;
m Space: {2 Py T}
M = {Z 3?1011}
bUt: il o [ o o naw
each a linear combination C1 . Co C1 C> _ _
ofC,n=0 * | > linearly independent

Signal model only for right-sided sequences:

®: (sn)p>0+— »_ snCn  C-transform
n=0
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Left Slgnal Extension Chebyshev polynomials

A={> hTy}
] n kzo
m Infinite space model:  ,, _ {3 snCn}
n=0
®: (sp)p>0+— Z snCh
n=0
(W] o o o o nen

C_ C
left signal extension _ b0 1

depends on choice of C ! > linearly independent

m Simplest signal extension: monomial C_,, = aC;

m Monomialifandonly if C € {T,U,Vv,W}

17



Visualization

m Infinite discrete time (z-transform)

Co ° ° ° ° °
-1 Co [ [ [ [ [

left boundary

T ., =T,
U_p,=-Upp_o
Von = Va1
W_pn=—-—Wnhr_
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Derivation: Finite Time Model

n—1
- {» s;z'}
o Y losed under shift
ntime marks =z 2! 22 zn—1 not closed under shi
* no module
m Solution: Right boundary condition
" — ﬂ.ﬂ_lmn_l e a.D;I:U
- & plx)=z2" — a1z — oo —apz? =0

K

M = A = Clz|/p(x)

m Monomial signal extension: »(z) =z" —a, a#0 periodic
(a = 1: finite z-transform)

a

m Visualization: —

> >
L o J >0 LR o——— 0
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Derivation: Finite Space Model

—1
N~ {2 siCi}
CO L [ nes o ’) 1=0
nspacemarks Cp; C; Cs C_1 * not closed under shift
* no module

C e {T,U,V,W}

m Monomial signal extension: For each C € {T,U,Vv,W}

four cases
Cn = Ch—2
C, = 0
Cn = Cn—
Cﬂ - —un-—1

m 16 finite space models < 16 DCTs/DSTs as Fourier transforms

21



16 Finite Space Models

Sn — Sp—2 Sn Sn + 8n—1 f C
§5_1 =51 DCT-1 DCT-3 ) -5 DCT-7 1 T

222 = NUn—2  Th (- D)Wn1 (2 +DVaoy

§-1=0 DST-3 DST-1 DST-7 DST-5 sinf U
i U, Va, W,
DCT-6  DCT+ DCT-4 costo v
2z — 1)Wy_1 Vi 2y
S§_1= —80 DST-8 DST-6 DST -4 DST-2 sing W
2z + 1)Vp_1 Wi 2T, 2z + DUp_1

m Example: Signal model for DCT, type 2:

A = Clz]/2(x — 1)Up— 1={z”-1hkfk} D ﬂf .
© (Si)o<i<n Si Vi
M = Cla]/2(x — )Up—1 = {¥] siVi} i=0
m Visualization: Co—eo—o vve —o)
Cn C1 Cg Cﬂ—l
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CarnegieMellon

Time (complex): complex finite z-transform Section VI-B
g M A F=Ppa other JF - -
Tt Cele 9 m— DT, D 1D Triconometric
Clx] /(=™ — 1) regular DFT,, = DFT-1, DFT-2,
Cla]/(z" +1) regular DFT-3, DFT-4,,
Time (real): real finite z-transform Section VI-G T ra n Sfo rm s
g M A F =Ppa other F
s Y sk Rlx]/(2™ = 1) regular na. RDFT,, = RDFT-1,
Rlz]/(z™ = 1) regular n.a. RDFT-2,, H
Rlx]/(2™ = 1) regular na. DHT, = DHT-1,, (DWT-1,,) . Slgnal mOdeIs for a"
Rlz]/(z™ = 1) regular n.a. DHT-2,, (DWT-2,,) . .
R[el/(" +1) ol RDET3, existing (and some newly
Rx] /(=™ + 1) regular n.a. RDFT-4, . . .
R[] /(" + 1) regular na. DHT=3,, (DWT-3,) mtroduced) t”gonometnc
Rlx] /(2™ 4+ 1) regular n.a. DHT4,, (DWT-4,,) t f 30
ransforms (~30)
Space (complex/real): finite C-transform (C = T,U,V,W) Sections VIII-B, IX-B, XI-B
D M A F=Ph.a other F
s— 5 s T Clx]/ regular DCT-1,, = DCT-1, . . .
[ regular DCT-3, = DOT-3,, [ | Explalns all 9X|St|ng
[ regular DCT-5,, = DCT-5, . .
[ DCT7, =DCTT, trigonometric transforms
[ regular DCT-3,,(r) = DCT-3,,(r)
s— 3 sl []/ regular DST-3, DST-3,
[x]/ regular DST-1, DST-1,
MENY regular DCT-T,, DCT-7,, .
e/ resular DSTSS, DT, m Gives for each transform
[], regular DST-3(r)n DST-3(r)n
H 1] tH
oS = - DoT, DCT, associated “z-transform
Cla regular DCT-8, DCT-8, .
(=], regular DCT-2, peT-2, fllters, etc-
Clx regular DCT -4, DCT-4,,
[x regular DCT-4(r)n DCT-4(r)n
§— S s Wi Clx]/ regular DST-8, DST-8,
Clz)/ regular DST-6,, DST-6,,
Cl: regular DCT-4,, DCT-4,,
Clz]/(: regular DST-2,, DST-2,,
“[x] /(7 regular DST-4(r)n DST-4(r),
s 3 st Clz] /(2™ — 1) {(z=1 +4 n.a. RDFT,, = RDFT-1,,
Cla]/(z"™ — 1) (=t na. RDFT-2,
Clz] /(2™ — 1) {(x=1 + 4 n.a. DHT,, = DHT-1,,
Cla]/(z" — 1) (a1 +: na. DHT-2,, BT : :
Clal/(am +1) Pl ADFT3, source: “Algebraic Theory of Signal
Cla]/(z" +1) (242 na. RDIT-4,, e :
Clz] /(2™ + 1) {(x= + 4 n.a. DHT-3, ProceSSIngl Smeltted 23
Cle] /(=™ + 1) {(z=! +: na. DHT-4,,




More Exotic 1-D Model

Generic next neighbor shift

m Space variant but shift invariant
m Same procedure yields infinite and finite models
m Connects to orthogonal polynomials

m Applications?

24



Top-Down: 1-D Time (Directed) Models

e finite or compact
infinite > (periodic)

making compact

continuous T >
sampling
. .\
[ ]
discrete i @——> 0 ——>@——> @ i l

hxs= [s(t)h(t — T)dT ’s



Top-Down: 1-D Space (Undirected) Models

e finite or compact
infinite > xx-symmetric)

making compact

2 choices 4 choices

continuous O e O @)

sampling

4 choices 16 choices

discrete Cc ° ° ® Co—o o—oj

hxs= [s(T)g(h(t+7)+h(t —7))dr 26



Finite Signal Models in Two Dimensions

Visualization
(without b.c.)

Signal Model
A=M

Fourier Transform

Cle,y]/{x"—1,y™—1)

time shifts: x, y

DFT,, ® DFT,,

space, separable

for example
Clz, y]/(Tn(x), Tn(y))

space shifts: x, y

DCT,, ® DCT,,
(16 types)

27



NSNS
NN
NSNSNS
INNN,
NSNS\
NN

time, nonseparable

Clu, v]/{u™ — 1,u% — v%)

time shifts: u, v

DDQT,,, »

ICASSP ’05

(see also Mersereau)

NN\
VA VAVAN
DS | Clu e wl/ (T, Tp@), | DQT,,
/ / nX -
NANZAYA 4w’ —(u+1)(v+1)) ’
S; ce\rgn;p/ara\ble space shifts: u, v, w ICIP ‘05
/<><><><>/ space shifts: u, v DTT,, «xn
/\/\/\/\/ u-Cjj=3(Cij+1+ Ci—1j + Ciy1,-1)
space, nonseparable v-C; ;= %(Ct'_‘hj_l,_] + C; -1+ Cit1,5) ICASSP ‘04
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DCT, type lli

II. THE ODD-FACTOR ALGORITHM
The length-N IDCT of mput sequence X (k) 15 defined by
N-1 (2 Ve
x(n) = *Z_ﬂ X (k) cos ""’;;]' D<w<N-1 (1)

where sequence length [V 1s an arbitrarily composite integer expressed

by

Jei+vys @

Algorithm
derivation

mutually priino]. The IDCT can be dcco:ilpowdr into

-1

V-1

. m(2n + 1)k

= X(k) cos - — (3)
JZ: 2(N/q)

algn 4 m)

\ZI X (k) co wlq(2n+ 1) = (g—1—2m)]k

k=0

2\ (4]

rlgn+qg—m—1)
= (2 1+ (g—1=2m)k
=3 X(k) -cos [a(2n +1) '_)'\_’ =)l (3)

k

where for (3)(5), n = 010 N/g =1 and m = 0 1o (g = 3)/2.
Equation (3) can be rewnitten into

)
= L rz‘ ’ \("'I\ + ;.-)

m2n+ 12N g+ k)
(q=1)/2

- cos SN0
- 2N
+ .\-(- — - J.-)
z
(2n 4+ 12N /g = k)
2AN/q)

- e0s

= Z U(k) cos -

k=0

It is noted that input +[(2i + 1)N/q] is excluded from (6). By

Cos

7(2n+ 1)k
AN/

L’J'_\') T(2n 4 1)(2iN/q)
Cos

2(N/fq)

T(2n + 1)k
2N/

(6)

defining S;(k) = X(2iN/g + k) + X(2iNfq = k) and T (k) -
X(2iN[g+ k)= X(2iNfqg— k). where i = 1.---, (g = 1)/2, we
have
(g—1)/2
X4+ D0 (-17Sik) k=1 Njg—1
i=1

Ulk)=

(y=1)/2

2N
Z (=1) .\( .

N

) k=10

Therefore, (6) can be computed by a length-N /g IDCT, By combin-

ing (4) and (3), we form two new sequences defined by

algn+m) 4+ xign+q—m=1})

F(n.m)= !
N=1
7 -_1=2 &
= Z X(k) .\,,!TI””
k=0
a(2n + 1)k
s 2(N/q) (8)
(s y— 1
(-'l_u.m]:."”'"'”’- thra+r; m )
(L))

If we define n = w(q — 1 — 2m) for simplicity, (8) can be further

decomposed mto

Nfg=1

Fin,m) = Z

al2iN/g+ k)
= COs
2N

(q—1)/2

= 2N
+ 3 .\( i

RREE IV

Nfg=1

+ 3 X(k) cos 2%

cos
2N 2AN/q)

k=1

al2iNfg = k)
s co

T 2n + 1IN g+ k)
s -

2(N/q)

)

(2 + 1)(2iNfg— k)
) 2(N/q)

(2n + 1)k

|—I5'{.‘b‘.u-,\ o6 o cos ﬂ

q 2N
- . i I
— Ti(k) sin r;' sin ;\_} cos

Nig—1 (q
k=1 =]
7(2n + 1)k
2(N/q)
Nig—=1 ; \
- ak w2+ 1)k
+ Z“ X(k) cos oy o8 2(N/q)
(g—1)/2 . .
- 2N o
(-1)X{— d
+ L ( . ) cos

m(2n 4+ 1)k
2(N/q)

= L Vik.m) cos

Typical derivation
More than hundred such papers

= Reason for existence?
= Underlying principle? “
= All algorithms found?

sequence length that is a power of odd integers. Therefore, the odd-
factor algorithm is general and particularly suited to sequence length
containing any possible combmation of odd factors. Fig. 1 shows an
example for N' = 27, In principle. the proposed odd-factor algorithm
is the reverse process of the FDCT algorithm presented in [12].

For a composite sequence length containing both odd and even
factors, the radix-2 and the odd-factor algonthms can be jomtly
1ed out m

used. In principle, the decomposiion process can be

many ways. However, a lower count of operations is obtained if the

decomposition process starts with the ascending order of the factors

of N. To minimize the required number of arithmetic operations. we
generally prefer a computational complexity whose growth rate with
the sequence length is as small as possible. In [12], it was proved
that the growth rate of the computational complexity 1s proportional
to the values of the odd factors. From Fig. 2, which shows the
computational complexity i terms of the number of anthmetic
zan be observed that the growih
ty with the sequence lengths for
. and the smallest growth rate
. This observation indicates that the smallest

operations per transform point, it
rate of the computational comple

that for N =

N =35"1slar

is achieved for ¥V

e

ak ok ke
. X (k) cos ,_,'_\, + z (-1 ;'{s.u-] :'u-.% cos 2'_\, = Ti(k) sin % sin '_J'_\} E=1, Nfg—1
Vikom) =4 =1 (1)
24N ;
t—l]',\'(i) cos 2 =0
=0 a 7
L] . .'l
- f oo .ok
Xik)y+ %I‘ (=1)'5:(k) cos p sin v
fg=1)/2 X
Wik, m)= + (=1 T (k) sin 20 % cos 28 k=1, Nfg—1 (13)
2 N

(g=1) 2

i=1

[2i -
Z (=1 X B

1] . a(2i-1)
sin

k= N/q.

),

30
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Fast Algorithms: Cooley-Tukey FFT

Signal model: Finite z-transform A = M = Clz]/(z"™ — 1)
d: (sgy...38p—1) — s(x) = Zsi:r:": e M

Fourier transform
DFT, : Clz]/(z" —1) — Clz]/(x — wg_) D...0Clx]/(x — w::_l)
DFT
n—1 = DFT, -s
B ” Yy n
yk - Z w'n, Sﬁ
ner — [.k6y
£=0 UL Ln = [Wy [0<kl<n
Cooley-Tukey FFT
Ynoji+io = nlz_jl (W%Zklj [/nzz_jl Lnq k‘2+k1w1]".:,20k2\] w'lj;,11k1 DFTTL — LZQ (Inl ® DFT?‘Q)""I’?:[(DFTTH ®In2)
T2 =0 f\kg=0 1TETTLOmZ M



Cooley-Tukey FFT Type Algorithms

assume p decomposes

x) = q(r(z
Clx]/p(x) p(z) = q(r(x))
wse decomposition (F’' ® I)B
F Clal/(r(z) — B1) @ - . ® Cla]/(r(x) — Bn)

complete decomposition P (P F;)

Cle]/(x —a1) B ... Clx]/(x — an)

" —1=(2™)" —1  yields Cooley-Tukey FFT
DFT,, = L (I;, ® DFT,,)T" (DF T, ®Im)
32




Application to DCTs/DSTs

m Decomposition properties of Chebyshev polynomials

Tem = Tk(TM}

m Induced Cooley-Tukey type algorithms (most not known before)

DTTyn(r) = Ky (@ DTTm(r;))(DST-3%(r) ® I'm) By

T

DTTy(r) = K (6D DTTm(r;))(DCT-3k(r) ® Im) By, DCT/DST 3/4

DCT/DST 1/2

DCT/DST 5-8
33



Algebraic Theory of Algorithms (Beyond DFT)

m General Cooley-Tukey type algorithms
= many new algorithms for DCTs/DSTs, RDFT, DHT, DQT, DTT, ...

m General prime-factor type algorithms
m General Rader type algorithms

m Explains and easily derives practically all existing algorithms
and relationships between transforms

m Formulates general principle that accounts for all algorithms

34
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Related Work on Algebraic Methods in SP

Algebraic systems theory
(Kalman, Basile/Marro, Wonham/Morse, Willems/Mitter, Fuhrmann, Fliess, ...)

= Focuses on infinite discrete time; different type of questions

m Fourier analysis/Fourier transforms on groups G
(Beth, Rockmore, Clausen, Maslen, Healy, Terras, ...)

= |n the algebraic theory the special case A = M = C[G]
= |f G non-commutative, necessarily non-shift-invariant
= Algebraic theory provides associated filters etc., ties to SP concepts

m Algebraic methods to derive DFT algorithms
(Nicholson, Winograd, Nussbaumer, Auslander, Feig, Burrus, ...)

= Recognizes algebra/module for DFT, but only used for deriving algorithms
m Origin of this work

= Beth (84), Minkwitz (93), Egner/Plschel (97/98)

= Helpful hints: Steidl (93), Moura/Bruno (98), Strang (99)

36



Future Work

Fast
Algorithms
Multiresolution
Analysis

Core Theory of
Signal Processing

Filterbanks
Higherdimensional

Signal Processing

Algebraic Theory of Signal Processing

B large parts done Collaborators: José Moura,

I current research Jelena Kovacevic, Martin Rétteler
37




Algebraic Theory of Signal Processing: Conclusions

m Signal model: One concept instantiating different SP methods

Signal

Filter

—> “z-transform”

— Spectrum

Fourier transform
Frequency response

: derivation [ Signal model
Shlft i ("4"}‘1\/"’I (I))

m General (axiomatic) approach to linear SP
m Finite SP, understanding existing transforms

m First new applications:
= New SP methods (non-separable 2-D)
= Comprehensive theory of fast algorithms

SMART project: www.ece.cmu.edu/~smart 33



Chebyshev Polynomials

m Defining three-term recurrence: Cy =1, Ci =ax + b

Cnt1=22Cp—Cp-1 & aCp=35(Cny1+ Cn_1)

m Special cases:

—1ln=0 1 2

T : x 1 x 2x4 — 1

U : 0 1 2 422 — 1 .
Vo 1 1 |22—1 4z2 —22—1 ...
W : —11 1 |2x+1 4z +2x—1

n20

m Closed forms: cos@ = x

ix +3)60
T, = cos _ sin(n+1)6 Vo — cos(n+3
" nd Un sin @ n COS %9

back1
back2
back3
choice
symmetry
T =Ty
U_n=-Up—2
Von=Vaa
W_p=— n—1
W, = sin(n+%)8

s 1
smgé‘ 39



The General Fourier Transform F

m Infinite discrete time:

F: Y spz Y spe I%n e [—m,w)
l projection onto
M, = (3 eI¥nz—n) eigenspace for all filters

m Given any signal model (A, M, ®)

A (filters) A (filters)

operates on

(filtering) | .’F
M (signals) =

\/

spectrum = set of smallest invariant subspaces M,, w € W 40



Finite Shift-Invariant Signal Models

m Finite signals: (sg,...,sp—1) dim(M),dim(A) < oo
m Which finite-dimensional algebras are commutative?
Answer: Polynomial algebras (focus on one variable)
Clz]/p(z) = {h(z) = X" hpa® | deg(h) < deg(p)}
Signal model:
A=M =Clz]/p(z), P: (505--.38n—1) — > s;p;i(z)

Filtering (convolution): multiplication modulo p(x)
h(z) - s(z) mod p(x), h(z) € A, s(z) € M
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