18-799F Algebraic Signal Processing Theory
Spring 2007
Solutions: Assignment 2

1. (80 pts)

(a) GL,(R) is not closed under matrix addition: for any A € GL,(R): A+ (—A4) =0 ¢ GL,(R). On
the other hand, GL,,(R) is closed under matrix multiplication, since for A, B € GL,(R): det AB =
det Adet B = AB € GL,(R); although this operation is not commutative. Thus, the most
structure GL, (R) has is (GL,,(R), ) is a multiplicative group.
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because the set of zeros of g(x)s(x) is just the union of the sets of zeros of ¢(z) and s(z). In

addition, 0,1 € S, and for any % € S, its additive inverse is —% € S. Additionally, S is
obviously commutative. Since multiplicative inverse does not always exist (e.g. & — 2 does not
have an inverse in S), S is a commutative ring. Moreover, notice that S does not have any zero

divisors, so S is actually an integral domain.

(c¢) Notice that S is not closed under addition: i—ﬂ + ﬁ = m” ¢ S. However, it is easy to verify
that (S,-) is a commutative group.

(d) S is not closed under addition: z¥ — 2% = 0 ¢ S. However, S is closed under multiplication:
mk b= glak = 2# € S. Also there is a neutral element 1 € S, as well as any z* € S has an inverse

k€ S. Thus, S is a commutative group. In fact, S = (Z)group-

(b) Suppose

2. (21 pts) Let’s define i = /—1.

(a) - R[z] and C are rings;
- o(p(z) +q(2)) = (p+ q)(i) = p(i) + q(i) = d(p(x)) + d(q(x));
- o(p(x)g(x)) = (pg)(i) = p(i)q(i) = é(p(x))e(q(x)).

Thus, ¢ is a ring homomorphism.
(b) For any z € C, define p,(x) = Rez + xImz € R[z]. Then p(i) = z. Thus, ¢ is surjective.

(c) ker¢ = {t(z) | t(x) € R[z],t(i) = 0}. Since i ¢ R, —i must also be a root of t(x) € ker ¢. Thus,
(x —i)(x + i) = 22 + 1|t(x) for each t(z) € ker ¢. It implies that ker ¢ = (22 + 1)R[x].
The homomorphism theorem yields R[z]/(2? + 1)R[z] ~ im¢ = C

3. (14 pts) Consider the following mapping:

Observe that

(GL,(R),-) and (R \ {0}, ) are groups;
- $(AB) = det AB = det Adet B = ¢(A)¢(B);
ker ¢ = {A € GL,(R) | det A = 1} = SL,(R).

- For any » € R\ {0} there exists A € GL,(R) such that det A = 7, namely A = diag(r,1,...,1).
Thus, im¢ = R\ {0}.

Thus, ¢ is a group homomorphism with ker ¢ = SL,,(R). It follows that
(a) (SL,(R),-) = (ker ¢,-) < (GL,(R),-); and using the homomorphism theorem,
(b) GLn(R)/SLy(R) =~ (R\ {0}, ).

4. (35 pts)
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(a) Assume, p(z) € C[z]*. Then there exists ¢(x) € C[z]*, such that p(x)q(x) = 1. However,
0 = degl = degp(z)q(z) = degp(x) + deggq(x). This implies degp(x) = degq(z) = 0. Thus,
C[z]* C C. On the other hand, for any z € C\ {0} there is 1 € C\ {0}, such that z1 = 1. Thus,
C\ {0} C C[z]*. Since 0 does not have an inverse, we conclude that C\ {0} = C[z]*.

(b) Euclidean algorithm yields ged (23 — 2% + 22 — 2,22 — 1) = 3z — 3:
2?42 -2 = (@*-1Dx—-1)+32-3
1
-1 = (3x73)§(z+1)+0

It follows that (23 — 22 + 2z — 2)C[z] + (22 — 1)C[z] = (3z — 3)C[z] = (z — 1)C[z].

(c) Since p(z)Cl[z] is a (two-sided) ideal in C[z], C[z]/p(z)C[z] is a ring (with respect to addition and
multiplication modulo p(x)).

(d) (i) Foranyk >0, let k = 4m+r, where m = |%| and r = k mod 4. Then, using the assumption
zt —1=0,

2 mod (z* —1) = 2" mod (z* —1) = ()™ - 2" mod (z* - 1)

(z*=1)+1)™ 2" mod (2% —1) =a" =gk mod4

(ii) For any p(z) € (C[z]/(z* — 1)C[z])* we have:

p(@) € (Clz]/(a* = DC))* = Jg(2) € (Cl2]/ (2" — DCla])*: p(z)g(z) =1 mod (2" —1)
& pla)gle) =1+ s(@)(a" - 1)
& pla)g(e)

< ged(p(x),z® —1)=1.
s, (€l (o'~ DTl = (9(2) | () € ol ('~ DTl e (o) 2* — 1) = 1) Thi

5. Extra credit problem (20 pts)

(a) (R,+) is a commutative group under component-wise addition because each (R;,+),i=1,...,n
is a commutative group: for any a,b,c € R
-a+beR,

- (a+b)+c=(a1+b1,...,an+by)+(c1,...,cn) = (a1 +b1+c1,...,an+byt+cy) = (a1,...,an)+
(b1 +c1,. . by +cn)=a+ (b+c);

-a+b=(a1+b1,...;an+by) = (b1 +a1,....,b,+a,) =b+gq;

- Neutral element in R is (0,...,0).

Multiplication is associative in R: (ab)e = (aiby,...,anbn)(c1,-..,¢n) = (a1bicy, ..., anbpcy) =

(a1,...,ap)(bict, ..., bpey) = a(be).

Distributivity law holds: (a+b)c = ((a1+b1)c1, ..., (an+bn)cn) = (a1c1+bicry ..o aney, +bpcy) =

(ar€1, ... ancy) + (bre1, ..., bpcy) = ac + be.

Multiplicative identity in R is (1,...,1).

Thus, (R, +,-) is a ring.

(b) Recall that Clz]/p(x)Clz] = {¢(z) | ¢(z) € Clz], degq(x) < degp(x)}. As we discussed in the
class, it is a ring under addition and multiplication mod p(z). Also, in the previous problem we
proved that @"_; Clz]/(x — a;)C[z] is a ring. Thus, ¢ is a ring-to-ring mapping.

Next, we prove that ¢ is a ring homomorphism:

¢(t(z) +s(x)) = (Har) +s(ar),... tlan) + s(an))

= (tar),.. t(an)) + (s(ar), .., s(an)) = o(t(z)) + o(s(2));
P(t(z)s(x)) = (Har)s(a), ..., tan)s(an)) = (Har), ..., tlan))(s(@),. ., s(an)) = d(t(2))¢(s(x)).

18-799F ASP 2007 / Assignment 1 Pg 2 of 77 Electrical & Computer Engineering
Instructor: Markus Piischel Carnegie Mellon University



Recall that any polynomial s(z), such that deg s(z) < n = deg p(x) is uniquely defined by its values
in n points. This fact is known as the Unisolvence Theorem and is used in polynomial interpolation.
The only such s(z) that maps n points to 0 is a zero polynomial. Thus, ¢ is injective because
ker ¢ = {0}.

¢ is also surjective for the above reason: for any (f31,...,8,) € @, Clz]/(z — a;)C[z], there is a
polynomial s(x) € (C[z]/p(x)C[z]) that maps a; to G; (i =1,...,n).

So, ¢ is a bijective ring homomorphism, i.e. ¢ is an isomorphism. Thus,

Clz]/p(x)Cla] = @ Clz]/(x — :)C[z].
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