
How to Write Fast Numerical Code 
Spring 2011 
Lecture 4 

Instructor: Markus Püschel 

TA: Georg Ofenbeck 



Organizational 

 Class Monday 14.3. → Friday 18.3 

 Office hours: 

 Markus: Tues 14–15:00 

 Georg: Wed 14–15:00 

 Research projects 



Core 1 

Abstracted Microarchitecture: Example Core (2008) 
Throughput is measured in doubles/cycle 
Latency in cycles for one double 
1 double = 8 bytes 
Rectangles not to scale 
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Core 2 Duo: 
on die 

RAM 

Memory hierarchy: 
• Registers 
• L1 cache 
• L2 cache 
• Main memory 
• Hard disk 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition, 
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010 

 



Core 2: 
Instruction Decoding and Execution Units 

Latency/throughput (double) 
FP Add: 3, 1 
FP Mult: 5, 1 



Superscalar Processor 

 Definition: A superscalar processor can issue and execute multiple 
instructions in one cycle. The instructions are retrieved from a 
sequential instruction stream and are usually scheduled dynamically. 

 

 Benefit: without programming effort, superscalar processor can take 
advantage of the instruction level parallelism that most programs 
have 

 

 Most CPUs since about 1998 are superscalar 

 Intel: since Pentium Pro 



Hard Bounds: Pentium 4 vs. Core 2 

 Pentium 4 (Nocona) 

Instruction Latency Cycles/Issue 

Load / Store 5 1 

Integer Multiply 10 1 

Integer/Long Divide 36/106 36/106 

Single/Double FP Multiply 7 2 

Single/Double FP Add 5 2 

Single/Double FP Divide 32/46 32/46 

 Core 2 
Instruction Latency Cycles/Issue  

Load / Store 5 1 

Integer Multiply 3 1 

Integer/Long Divide 18/50 18/50 

Single/Double FP Multiply 4/5 1 

Single/Double FP Add 3 1 

Single/Double FP Divide 18/32 18/32 



Hard Bounds (cont’d) 

 How many cycles at least if 

 Function requires n float adds? 

 Function requires n float ops (adds and mults)? 

 Function requires n int mults? 



Performance in Numerical Computing 

 Numerical computing =  
computing dominated by floating point operations 

 Example: Matrix multiplication 

 Performance measure (in most cases) for a numerical function:  

 

 
 

 Theoretical peak performance on 3 GHz Core 2 (1 core)? 

 Scalar (no SSE): 6 Gflop/s 

 SSE double precision: 12 Gflop/s 

 SSE single precision: 24 Gflop/s 

#floating point operations 

runtime [s] 



Example Computation (on Pentium 4) 

 Data Types 

 Use different declarations for 
data_t 

 int 

 float 

 double 

void combine4(vec_ptr v, data_t *dest) 

{ 

  int i; 

  int length = vec_length(v); 

  data_t *d = get_vec_start(v); 

  data_t t = IDENT; 

  for (i = 0; i < length; i++) 

    t = t OP d[i]; 

  *dest = t; 

} 

 Operations 

 Use different definitions of OP 
and IDENT 

  + / 0 

  * / 1 

d[0] OP d[1] OP d[2] OP … OP d[length-1] 



Runtime of Combine4 (Pentium 4) 

 Use cycles/OP 

 

 

 

 

 

 

 

 Questions: 

 Explain red row 

 Explain gray row 

void combine4(vec_ptr v,  

  data_t *dest) 

{ 

  int i; 

  int length = vec_length(v); 

  data_t *d = get_vec_start(v); 

  data_t t = IDENT; 

  for (i = 0; i < length; i++) 

    t = t OP d[i]; 

  *dest = t; 

} 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 

Cycles per OP 



Combine4 = Serial Computation (OP = *) 

 Computation (length=8) 
 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])  

* d[4]) * d[5]) * d[6]) * d[7]) 

 Sequential dependence = no ILP! Hence, 

 Performance: determined by latency of OP! 

* 

* 

1 d0 

d1 

* 

d2 

* 

d3 

* 

d4 

* 

d5 

* 

d6 

* 

d7 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 

Cycles per element (or per OP) 



Loop Unrolling 

 Perform 2x more useful work per iteration 

void unroll2(vec_ptr v, data_t *dest) 

{ 

    int length = vec_length(v); 

    int limit = length-1; 

    data_t *d = get_vec_start(v); 

    data_t x = IDENT; 

    int i; 

    /* Combine 2 elements at a time */ 

    for (i = 0; i < limit; i+=2) { 

 x = (x OP d[i]) OP d[i+1]; 

    } 

    /* Finish any remaining elements */ 

    for (; i < length; i++) { 

 x = x OP d[i]; 

    } 

    *dest = x; 

} 



Effect of Loop Unrolling 

 Helps integer sum 

 Others don’t improve. Why? 

 Still sequential dependency 

x = (x OP d[i]) OP d[i+1]; 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 



Loop Unrolling with Reassociation 

 Can this change the result of the computation? 

 Yes, for FP. Why? 

void unroll2_ra(vec_ptr v, data_t *dest) 

{ 

    int length = vec_length(v); 

    int limit = length-1; 

    data_t *d = get_vec_start(v); 

    data_t x = IDENT; 

    int i; 

    /* Combine 2 elements at a time */ 

    for (i = 0; i < limit; i+=2) { 

 x = x OP (d[i] OP d[i+1]); 

    } 

    /* Finish any remaining elements */ 

    for (; i < length; i++) { 

 x = x OP d[i]; 

    } 

    *dest = x; 

} 



Effect of Reassociation 

 Nearly 2x speedup for Int *, FP +, FP * 

 Reason: Breaks sequential dependency 

 

 

 Why is that? (next slide) 

x = x OP (d[i] OP d[i+1]); 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

unroll2-ra 1.56 5.0 2.75 3.62 

bound 1.0 1.0 2.0 2.0 



Reassociated Computation 

 What changed: 
 Ops in the next iteration can be 

started early (no dependency) 

 

 Overall Performance 
 N elements, D cycles latency/op 

 Should be (N/2+1)*D cycles: 
cycle per OP ≈ D/2 

 Measured is slightly worse for FP 

* 
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* 

d3 d2 

* 

d5 d4 

* 

d7 d6 

x = x OP (d[i] OP d[i+1]); 



Loop Unrolling with Separate Accumulators 

 Different form of reassociation 

void unroll2_sa(vec_ptr v, data_t *dest) 

{ 

    int length = vec_length(v); 

    int limit = length-1; 

    data_t *d = get_vec_start(v); 

    data_t x0 = IDENT; 

    data_t x1 = IDENT; 

    int i; 

    /* Combine 2 elements at a time */ 

    for (i = 0; i < limit; i+=2) { 

       x0 = x0 OP d[i]; 

       x1 = x1 OP d[i+1]; 

    } 

    /* Finish any remaining elements */ 

    for (; i < length; i++) { 

 x0 = x0 OP d[i]; 

    } 

    *dest = x0 OP x1; 

} 



Effect of Separate Accumulators 

 Almost exact 2x speedup (over unroll2) for Int *, FP +, FP * 

 Breaks sequential dependency in a “cleaner,” more obvious way 

 

 
 x0 = x0 OP d[i]; 

 x1 = x1 OP d[i+1]; 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

unroll2-ra 1.56 5.0 2.75 3.62 

unroll2-sa 1.50 5.0 2.5 3.5 

bound 1.0 1.0 2.0 2.0 



Separate Accumulators 

* 
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1 d1 
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d7 
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 x0 = x0 OP d[i]; 

 x1 = x1 OP d[i+1]; 

 What changed: 
 Two independent “streams” of 

operations 

 

 Overall Performance 
 N elements, D cycles latency/op 

 Should be (N/2+1)*D cycles: 
cycles per OP ≈ D/2 

What Now? 



Unrolling & Accumulating 

 Idea 

 Use K accumulators 

 Increase K until best performance reached 

 Need to unroll by L, K divides L 

 

 Limitations 

 Diminishing returns: 
Cannot go beyond throughput limitations of execution units 

 Large overhead for short lengths: Finish off iterations sequentially 



Unrolling & Accumulating: Intel FP * 
 Case 

 Pentium 4 

 FP Multiplication 

 Theoretical Limit: 2.00  

FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 7.00 7.00 7.01 7.00 

2 3.50 3.50 3.50 

3 2.34 

4 2.01 2.00 

6 2.00 2.01 

8 2.01 

10 2.00 

12 2.00 
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Why 4? 



Why 4? 

cycles 

Those have to be  
independent 

Latency: 7 cycles 

Based on this insight:  K = #accumulators = ceil(latency/cycles per issue) 



Unrolling & Accumulating: Intel FP + 
 Case 

 Pentium 4 

 FP Addition 

 Theoretical Limit: 2.00  

FP + Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 5.00 5.00 5.02 5.00 

2 2.50 2.51 2.51 

3 2.00 

4 2.01 2.00 

6 2.00 1.99 

8 2.01 

10 2.00 

12 2.00 



Unrolling & Accumulating: Intel Int * 
 Case 

 Pentium 4 

 Integer Multiplication 

 Theoretical Limit: 1.00  

Int * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 10.00 10.00 10.00 10.01 

2 5.00 5.01 5.00 

3 3.33 

4 2.50 2.51 

6 1.67 1.67 

8 1.25 

10 1.09 

12 1.14 



Unrolling & Accumulating: Intel Int + 
 Case 

 Pentium 4 

 Integer addition 

 Theoretical Limit: 1.00 

Int + Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 2.20 1.50 1.10 1.03 

2 1.50 1.10 1.03 

3 1.34 

4 1.09 1.03 

6 1.01 1.01 

8 1.03 

10 1.04 

12 1.11 



FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 4.00 4.00 4.00 4.01 

2 2.00 2.00 2.00 

3 1.34 

4 1.00 1.00 

6 1.00 1.00 

8 1.00 

10 1.00 

12 1.00 

FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 7.00 7.00 7.01 7.00 

2 3.50 3.50 3.50 

3 2.34 

4 2.01 2.00 

6 2.00 2.01 

8 2.01 

10 2.00 

12 2.00 

Pentium 4 

Core 2 
FP * is fully pipelined 



Summary  (ILP) 

 Instruction level parallelism may have to be made explicit in program 

 Potential blockers for compilers 

 Reassociation changes result (FP) 

 Too many choices, no good way of deciding 

 Unrolling 

 By itself does often nothing (branch prediction works usually well) 

 But may be needed to enable additional transformations (here: 
reassociation) 

 

 How to program this example? 

 Solution 1: program generator generates alternatives and picks best 

 Solution 2: use model based on latency and throughput 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



Optimizing Compilers 

 Use optimization flags, default is no optimization (-O0)! 

 Good choices for gcc: -O2, -O3, -march=xxx, -m64 

 Try different flags and maybe different compilers 



Example 

 Compiled without flags:  
~1300 cycles 

 Compiled with -O3 -m64 -march=… -fno-tree-vectorize 
~150 cycles 

 Core 2 Duo 

double a[4][4]; 

double b[4][4]; 

double c[4][4]; # set to zero 

 

/* Multiply 4 x 4 matrices a and b  */ 

void mmm(double *a, double *b, double *c, int n) { 

    int i, j, k; 

    for (i = 0; i < 4; i++) 

 for (j = 0; j < 4; j++) 

             for (k = 0; k < 4; k++) 

          c[i*4+j] += a[i*4 + k]*b[k*4 + j]; 

} 

Prevents use of SSE 



Optimizing Compilers 

 Compilers are good at: mapping program to machine 

 register allocation 

 code selection and ordering (instruction scheduling) 

 dead code elimination 

 eliminating minor inefficiencies 

 Compilers are not good at: algorithmic restructuring 

 For example to increase ILP, locality, etc. 

 Cannot deal with choices 

 Compilers are not good at: overcoming “optimization blockers” 

 potential memory aliasing 

 potential procedure side-effects 



Limitations of Optimizing Compilers 

 If in doubt, the compiler is conservative 

 Operate under fundamental constraints 

 Must not change program behavior under any possible condition 

 Often prevents it from making optimizations when would only affect behavior 
under pathological conditions 

 Most analysis is performed only within procedures 

 Whole-program analysis is too expensive in most cases 

 Most analysis is based only on static information 

 Compiler has difficulty anticipating run-time inputs 

 Not good at evaluating or dealing with choices 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



Example: Data Type for Vectors 

/* data structure for vectors */ 

typedef struct{ 

 int len; 

 double *data; 

} vec; 

/* retrieve vector element and store at val */ 

int get_vec_element(*vec, idx, double *val) 

{ 

 if (idx < 0 || idx >= v->len) 

  return 0; 

 *val = v->data[idx]; 

 return 1; 

} 

len 

data 

0 1 len-1 



Example: Summing Vector Elements 

/* sum elements of vector */ 

double sum_elements(vec *v, double *res)  

{ 

  int i; 

  n = vec_length(v); 

  *res = 0.0; 

  double val; 

   

  for (i = 0; i < n; i++) { 

    get_vec_element(v, i, &val); 

    *res += val; 

  } 

  return res; 

} 

/* retrieve vector element and store at val */ 

int get_vec_element(*vec, idx, double *val) 

{ 

  if (idx < 0 || idx >= v->len) 

 return 0; 

  *val = v->data[idx]; 

  return 1; 

} 

Overhead for every fp +: 
• One fct call 
• One < 
• One >= 
• One || 
• One memory variable 

access 
 

Slowdown:  
probably 10x or more 



Removing Procedure Call 

/* sum elements of vector */ 

double sum_elements(vec *v, double *res)  

{ 

  int i; 

  n = vec_length(v); 

  *res = 0.0; 

  double *data = get_vec_start(v); 

   

  for (i = 0; i < n; i++) 

  *res += data[i]; 

  return res; 

} 

/* sum elements of vector */ 

double sum_elements(vec *v, double *res)  

{ 

  int i; 

  n = vec_length(v); 

  *res = 0.0; 

  double val; 

   

  for (i = 0; i < n; i++) { 

    get_vec_element(v, i, &val); 

  *res += val; 

  } 

  return res; 

} 



Removing Procedure Calls 

 Procedure calls can be very expensive 

 Bound checking can be very expensive 

 Abstract data types can easily lead to inefficiencies 

 Usually avoided for in superfast numerical library functions 

 

 Watch your innermost loop! 

 

 Get a feel for overhead versus actual computation being performed 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



void set_row(double *a, double *b, 

   long i, long n) 

{ 

    long j; 

    for (j = 0; j < n; j++) 

 a[n*i+j] = b[j]; 

} 

Code Motion 

 Reduce frequency with which computation is performed 

 If it will always produce same result 

 Especially moving code out of loop (loop-invariant code motion) 

 Sometimes also called precomputation 

    long j; 

    int ni = n*i; 

    for (j = 0; j < n; j++) 

 a[ni+j] = b[j]; 

void set_row(double *a, double *b, 

   long i, long n) 

{ 

    long j; 

    for (j = 0; j < n; j++) 

 a[n*i+j] = b[j]; 

} 

a 

b 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



Strength Reduction 

 Replace costly operation with simpler one 

 Example: Shift/add instead of multiply or divide 
 16*x → x << 4 

 Utility machine dependent 

 Example: Recognize sequence of products 

 

 

 

 

 

for (i = 0; i < n; i++) 

  for (j = 0; j < n; j++) 

    a[n*i + j] = b[j]; 

int ni = 0; 

for (i = 0; i < n; i++) { 

  for (j = 0; j < n; j++) 

    a[ni + j] = b[j]; 

  ni += n; 

} 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



Share Common Subexpressions 

 Reuse portions of expressions 

 Compilers often not very sophisticated in exploiting arithmetic properties 

/* Sum neighbors of i,j */ 

up =    val[(i-1)*n + j  ]; 

down =  val[(i+1)*n + j  ]; 

left =  val[i*n     + j-1]; 

right = val[i*n     + j+1]; 

sum = up + down + left + right; 

int inj = i*n + j; 

up =    val[inj - n]; 

down =  val[inj + n]; 

left =  val[inj - 1]; 

right = val[inj + 1]; 

sum = up + down + left + right; 

3 mults: i*n, (i–1)*n, (i+1)*n 1 mult: i*n 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 


