
How to Write Fast Numerical Code
Spring 2011
Lecture 4

Instructor: Markus Püschel

TA: Georg Ofenbeck

Organizational

 Class Monday 14.3. → Friday 18.3

 Office hours:

 Markus: Tues 14–15:00

 Georg: Wed 14–15:00

 Research projects

Core 1

Abstracted Microarchitecture: Example Core (2008)
Throughput is measured in doubles/cycle
Latency in cycles for one double
1 double = 8 bytes
Rectangles not to scale

Hard disk
~500 GB

fadd

fmul

ALU

load

store

Main
Memory
(RAM)
4 GB

L2 cache
4 MB

16-way
64B CB

L1 Icache

both
32 KB
8-way
64B CB

L1 Dcache

16 FP
register

internal
registers

instruction
decoder

(up to 5 ops/cycle) instruction pool
(up to 96 “in flight”)

execution
units

•out of order execution
•superscalar

CISC ops
RISC
μops issue

6 μops/
cycle

lat: 3
tp: 2

lat: 14
tp: 1

lat: 100
tp: 1/4

lat: millions
tp: 1/250

ISA

Core 1

Core 2 L2
 c

ac
h

e

Core 2 Duo:
on die

RAM

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• Main memory
• Hard disk

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010

Core 2:
Instruction Decoding and Execution Units

Latency/throughput (double)
FP Add: 3, 1
FP Mult: 5, 1

Superscalar Processor

 Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a
sequential instruction stream and are usually scheduled dynamically.

 Benefit: without programming effort, superscalar processor can take
advantage of the instruction level parallelism that most programs
have

 Most CPUs since about 1998 are superscalar

 Intel: since Pentium Pro

Hard Bounds: Pentium 4 vs. Core 2

 Pentium 4 (Nocona)

Instruction Latency Cycles/Issue

Load / Store 5 1

Integer Multiply 10 1

Integer/Long Divide 36/106 36/106

Single/Double FP Multiply 7 2

Single/Double FP Add 5 2

Single/Double FP Divide 32/46 32/46

 Core 2
Instruction Latency Cycles/Issue

Load / Store 5 1

Integer Multiply 3 1

Integer/Long Divide 18/50 18/50

Single/Double FP Multiply 4/5 1

Single/Double FP Add 3 1

Single/Double FP Divide 18/32 18/32

Hard Bounds (cont’d)

 How many cycles at least if

 Function requires n float adds?

 Function requires n float ops (adds and mults)?

 Function requires n int mults?

Performance in Numerical Computing

 Numerical computing =
computing dominated by floating point operations

 Example: Matrix multiplication

 Performance measure (in most cases) for a numerical function:

 Theoretical peak performance on 3 GHz Core 2 (1 core)?

 Scalar (no SSE): 6 Gflop/s

 SSE double precision: 12 Gflop/s

 SSE single precision: 24 Gflop/s

#floating point operations

runtime [s]

Example Computation (on Pentium 4)

 Data Types

 Use different declarations for
data_t

 int

 float

 double

void combine4(vec_ptr v, data_t *dest)

{

 int i;

 int length = vec_length(v);

 data_t *d = get_vec_start(v);

 data_t t = IDENT;

 for (i = 0; i < length; i++)

 t = t OP d[i];

 *dest = t;

}

 Operations

 Use different definitions of OP
and IDENT

 + / 0

 * / 1

d[0] OP d[1] OP d[2] OP … OP d[length-1]

Runtime of Combine4 (Pentium 4)

 Use cycles/OP

 Questions:

 Explain red row

 Explain gray row

void combine4(vec_ptr v,

 data_t *dest)

{

 int i;

 int length = vec_length(v);

 data_t *d = get_vec_start(v);

 data_t t = IDENT;

 for (i = 0; i < length; i++)

 t = t OP d[i];

 *dest = t;

}

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Cycles per OP

Combine4 = Serial Computation (OP = *)

 Computation (length=8)
 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])

* d[4]) * d[5]) * d[6]) * d[7])

 Sequential dependence = no ILP! Hence,

 Performance: determined by latency of OP!

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Cycles per element (or per OP)

Loop Unrolling

 Perform 2x more useful work per iteration

void unroll2(vec_ptr v, data_t *dest)

{

 int length = vec_length(v);

 int limit = length-1;

 data_t *d = get_vec_start(v);

 data_t x = IDENT;

 int i;

 /* Combine 2 elements at a time */

 for (i = 0; i < limit; i+=2) {

 x = (x OP d[i]) OP d[i+1];

 }

 /* Finish any remaining elements */

 for (; i < length; i++) {

 x = x OP d[i];

 }

 *dest = x;

}

Effect of Loop Unrolling

 Helps integer sum

 Others don’t improve. Why?

 Still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Loop Unrolling with Reassociation

 Can this change the result of the computation?

 Yes, for FP. Why?

void unroll2_ra(vec_ptr v, data_t *dest)

{

 int length = vec_length(v);

 int limit = length-1;

 data_t *d = get_vec_start(v);

 data_t x = IDENT;

 int i;

 /* Combine 2 elements at a time */

 for (i = 0; i < limit; i+=2) {

 x = x OP (d[i] OP d[i+1]);

 }

 /* Finish any remaining elements */

 for (; i < length; i++) {

 x = x OP d[i];

 }

 *dest = x;

}

Effect of Reassociation

 Nearly 2x speedup for Int *, FP +, FP *

 Reason: Breaks sequential dependency

 Why is that? (next slide)

x = x OP (d[i] OP d[i+1]);

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62

bound 1.0 1.0 2.0 2.0

Reassociated Computation

 What changed:
 Ops in the next iteration can be

started early (no dependency)

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycle per OP ≈ D/2

 Measured is slightly worse for FP

*

*

1

*

*

*

d1 d0

*

d3 d2

*

d5 d4

*

d7 d6

x = x OP (d[i] OP d[i+1]);

Loop Unrolling with Separate Accumulators

 Different form of reassociation

void unroll2_sa(vec_ptr v, data_t *dest)

{

 int length = vec_length(v);

 int limit = length-1;

 data_t *d = get_vec_start(v);

 data_t x0 = IDENT;

 data_t x1 = IDENT;

 int i;

 /* Combine 2 elements at a time */

 for (i = 0; i < limit; i+=2) {

 x0 = x0 OP d[i];

 x1 = x1 OP d[i+1];

 }

 /* Finish any remaining elements */

 for (; i < length; i++) {

 x0 = x0 OP d[i];

 }

 *dest = x0 OP x1;

}

Effect of Separate Accumulators

 Almost exact 2x speedup (over unroll2) for Int *, FP +, FP *

 Breaks sequential dependency in a “cleaner,” more obvious way

 x0 = x0 OP d[i];

 x1 = x1 OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62

unroll2-sa 1.50 5.0 2.5 3.5

bound 1.0 1.0 2.0 2.0

Separate Accumulators

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

 x0 = x0 OP d[i];

 x1 = x1 OP d[i+1];

 What changed:
 Two independent “streams” of

operations

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycles per OP ≈ D/2

What Now?

Unrolling & Accumulating

 Idea

 Use K accumulators

 Increase K until best performance reached

 Need to unroll by L, K divides L

 Limitations

 Diminishing returns:
Cannot go beyond throughput limitations of execution units

 Large overhead for short lengths: Finish off iterations sequentially

Unrolling & Accumulating: Intel FP *
 Case

 Pentium 4

 FP Multiplication

 Theoretical Limit: 2.00

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 7.00 7.00 7.01 7.00

2 3.50 3.50 3.50

3 2.34

4 2.01 2.00

6 2.00 2.01

8 2.01

10 2.00

12 2.00

A
cc

u
m

u
la

to
rs

Why 4?

Why 4?

cycles

Those have to be
independent

Latency: 7 cycles

Based on this insight: K = #accumulators = ceil(latency/cycles per issue)

Unrolling & Accumulating: Intel FP +
 Case

 Pentium 4

 FP Addition

 Theoretical Limit: 2.00

FP + Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 5.00 5.00 5.02 5.00

2 2.50 2.51 2.51

3 2.00

4 2.01 2.00

6 2.00 1.99

8 2.01

10 2.00

12 2.00

Unrolling & Accumulating: Intel Int *
 Case

 Pentium 4

 Integer Multiplication

 Theoretical Limit: 1.00

Int * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 10.00 10.00 10.00 10.01

2 5.00 5.01 5.00

3 3.33

4 2.50 2.51

6 1.67 1.67

8 1.25

10 1.09

12 1.14

Unrolling & Accumulating: Intel Int +
 Case

 Pentium 4

 Integer addition

 Theoretical Limit: 1.00

Int + Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 2.20 1.50 1.10 1.03

2 1.50 1.10 1.03

3 1.34

4 1.09 1.03

6 1.01 1.01

8 1.03

10 1.04

12 1.11

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 4.00 4.00 4.00 4.01

2 2.00 2.00 2.00

3 1.34

4 1.00 1.00

6 1.00 1.00

8 1.00

10 1.00

12 1.00

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 7.00 7.00 7.01 7.00

2 3.50 3.50 3.50

3 2.34

4 2.01 2.00

6 2.00 2.01

8 2.01

10 2.00

12 2.00

Pentium 4

Core 2
FP * is fully pipelined

Summary (ILP)

 Instruction level parallelism may have to be made explicit in program

 Potential blockers for compilers

 Reassociation changes result (FP)

 Too many choices, no good way of deciding

 Unrolling

 By itself does often nothing (branch prediction works usually well)

 But may be needed to enable additional transformations (here:
reassociation)

 How to program this example?

 Solution 1: program generator generates alternatives and picks best

 Solution 2: use model based on latency and throughput

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Optimizing Compilers

 Use optimization flags, default is no optimization (-O0)!

 Good choices for gcc: -O2, -O3, -march=xxx, -m64

 Try different flags and maybe different compilers

Example

 Compiled without flags:
~1300 cycles

 Compiled with -O3 -m64 -march=… -fno-tree-vectorize
~150 cycles

 Core 2 Duo

double a[4][4];

double b[4][4];

double c[4][4]; # set to zero

/* Multiply 4 x 4 matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < 4; i++)

 for (j = 0; j < 4; j++)

 for (k = 0; k < 4; k++)

 c[i*4+j] += a[i*4 + k]*b[k*4 + j];

}

Prevents use of SSE

Optimizing Compilers

 Compilers are good at: mapping program to machine

 register allocation

 code selection and ordering (instruction scheduling)

 dead code elimination

 eliminating minor inefficiencies

 Compilers are not good at: algorithmic restructuring

 For example to increase ILP, locality, etc.

 Cannot deal with choices

 Compilers are not good at: overcoming “optimization blockers”

 potential memory aliasing

 potential procedure side-effects

Limitations of Optimizing Compilers

 If in doubt, the compiler is conservative

 Operate under fundamental constraints

 Must not change program behavior under any possible condition

 Often prevents it from making optimizations when would only affect behavior
under pathological conditions

 Most analysis is performed only within procedures

 Whole-program analysis is too expensive in most cases

 Most analysis is based only on static information

 Compiler has difficulty anticipating run-time inputs

 Not good at evaluating or dealing with choices

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Example: Data Type for Vectors

/* data structure for vectors */

typedef struct{

 int len;

 double *data;

} vec;

/* retrieve vector element and store at val */

int get_vec_element(*vec, idx, double *val)

{

 if (idx < 0 || idx >= v->len)

 return 0;

 *val = v->data[idx];

 return 1;

}

len

data

0 1 len-1

Example: Summing Vector Elements

/* sum elements of vector */

double sum_elements(vec *v, double *res)

{

 int i;

 n = vec_length(v);

 *res = 0.0;

 double val;

 for (i = 0; i < n; i++) {

 get_vec_element(v, i, &val);

 *res += val;

 }

 return res;

}

/* retrieve vector element and store at val */

int get_vec_element(*vec, idx, double *val)

{

 if (idx < 0 || idx >= v->len)

 return 0;

 *val = v->data[idx];

 return 1;

}

Overhead for every fp +:
• One fct call
• One <
• One >=
• One ||
• One memory variable

access

Slowdown:
probably 10x or more

Removing Procedure Call

/* sum elements of vector */

double sum_elements(vec *v, double *res)

{

 int i;

 n = vec_length(v);

 *res = 0.0;

 double *data = get_vec_start(v);

 for (i = 0; i < n; i++)

 *res += data[i];

 return res;

}

/* sum elements of vector */

double sum_elements(vec *v, double *res)

{

 int i;

 n = vec_length(v);

 *res = 0.0;

 double val;

 for (i = 0; i < n; i++) {

 get_vec_element(v, i, &val);

 *res += val;

 }

 return res;

}

Removing Procedure Calls

 Procedure calls can be very expensive

 Bound checking can be very expensive

 Abstract data types can easily lead to inefficiencies

 Usually avoided for in superfast numerical library functions

 Watch your innermost loop!

 Get a feel for overhead versus actual computation being performed

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

void set_row(double *a, double *b,

 long i, long n)

{

 long j;

 for (j = 0; j < n; j++)

 a[n*i+j] = b[j];

}

Code Motion

 Reduce frequency with which computation is performed

 If it will always produce same result

 Especially moving code out of loop (loop-invariant code motion)

 Sometimes also called precomputation

 long j;

 int ni = n*i;

 for (j = 0; j < n; j++)

 a[ni+j] = b[j];

void set_row(double *a, double *b,

 long i, long n)

{

 long j;

 for (j = 0; j < n; j++)

 a[n*i+j] = b[j];

}

a

b

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Strength Reduction

 Replace costly operation with simpler one

 Example: Shift/add instead of multiply or divide
 16*x → x << 4

 Utility machine dependent

 Example: Recognize sequence of products

for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 a[n*i + j] = b[j];

int ni = 0;

for (i = 0; i < n; i++) {

 for (j = 0; j < n; j++)

 a[ni + j] = b[j];

 ni += n;

}

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Share Common Subexpressions

 Reuse portions of expressions

 Compilers often not very sophisticated in exploiting arithmetic properties

/* Sum neighbors of i,j */

up = val[(i-1)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

int inj = i*n + j;

up = val[inj - n];

down = val[inj + n];

left = val[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;

3 mults: i*n, (i–1)*n, (i+1)*n 1 mult: i*n

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

