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Benchmarking

m First: Verify your code!

m Measure runtime (in [s] or [cycles]) for a set of relevant input sizes
® seconds: actual runtime

= cycles: abstracts from CPU frequency
m Usually: Compute and show performance (in [flop/s] or [flop/cycle])

m Careful: Better performance # better runtime (why?)
= Op count could differ

= Never show in one plot performance of two algorithms with substantially
different op count
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How to measure runtime?

m Cclock()
= process specific, low resolution, very portable

m gettimeofday

= measures wall clock time, higher resolution, somewhat portable

m Performance counter (e.g., TSC on Intel)

" measures cycles (i.e., also wall clock time), highest resolution, not portable

m Careful:
" measure only what you want to measure

= ensure proper machine state
(e.g., cold or warm cache = input data is or is not in cache)

" measure enough repetitions
= check how reproducible; if not reproducible: fix it

m Getting proper measurements is not easy at all!



Example: Timing MMM

m Assume MMM (A,B,C,n) computes

C

= C + AB, A,B,C are nxn matrices

double time_MMM(int n)
{ // allocate

double *A=(double*)malloc(n*n*sizeof(double));
double *B=(double*)malloc(n*n*sizeof(double));
double *C=(double*)malloc(n*n*sizeof(double));

// initialize

for (int i = 0; i < n*n; i++){
A[i] = B[i] = C[i] = 0.0;

}

init_MMM(A,B,C,n); // if needed

// warm up cache (for warm cache timing)
MMM(A,B,C,n);

// time

ReadTime(t9);

for (int i = @; i < TIMING_REPETITIONS; i++)
MMM(A,B,C,n);

ReadTime(tl);

// compute runtime
return (double) ((t1-t@)/TIMING_REPETITIONS);
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Problems with Timing

m Too few iterations: inaccurate non-reproducible timing
m Too many iterations: system events interfere

m Machine is under load: produces side effects

m Multiple timings performed on the same machine

m Bad data alignment of input/output vectors: align to multiples of cache line
(on Core: address is divisible by 64)

m Time stamp counter (if used) overflows

m Machine was not rebooted for a long time: state of operating system causes
problems

m Computation is input data dependent: choose representative input data

m Computation is inplace and data grows until an exception is triggered
(computation is done with NaNs)

m  You work on a laptop that has dynamic frequency scaling

m Always check whether timings make sense, are reproducible
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Benchmarks in Writing

m Specify experimental setup
= platform
= compiler and version

= compiler flags used

m Plot: Very readable
= Title, x-label, y-label should be there
= Fonts large enough

" Enough contrast (no yellow on white please)
" Proper number format
= No: 13.254687; yes: 13.25
= No: 2.0345e-05 s; yes: 20.3 us
= No: 100000 B; maybe: 100,000 B; yes: 100 KB

m How to make a decent plot?
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Attractive font (sans serif, avoid Arial)
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