Benchmarking Numerical Code

Markus Puschel

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

© Markus Piischel ETH
Eidgensssische Technische Hochsehule Zurich
s Federalstifuts of

Computer Science

Benchmarking

m First: Verify your code!

m Measure runtime (in [s] or [cycles]) for a set of relevant input sizes
® seconds: actual runtime

= cycles: abstracts from CPU frequency
m Usually: Compute and show performance (in [flop/s] or [flop/cycle])

m Careful: Better performance # better runtime (why?)
= Op count could differ

= Never show in one plot performance of two algorithms with substantially
different op count

© Markus Piischel ETH

Computer SCieNnce suis redentinstitute of echnology 2urch

How to measure runtime?

m Cclock()
= process specific, low resolution, very portable

m gettimeofday

= measures wall clock time, higher resolution, somewhat portable

m Performance counter (e.g., TSC on Intel)

" measures cycles (i.e., also wall clock time), highest resolution, not portable

m Careful:
" measure only what you want to measure

= ensure proper machine state
(e.g., cold or warm cache = input data is or is not in cache)

" measure enough repetitions
= check how reproducible; if not reproducible: fix it

m Getting proper measurements is not easy at all!

Example: Timing MMM

m Assume MMM (A,B,C,n) computes

C

= C + AB, A,B,C are nxn matrices

double time_MMM(int n)
{ // allocate

double *A=(double*)malloc(n*n*sizeof(double));
double *B=(double*)malloc(n*n*sizeof(double));
double *C=(double*)malloc(n*n*sizeof(double));

// initialize

for (int i = 0; i < n*n; i++){
A[i] = B[i] = C[i] = 0.0;

}

init_MMM(A,B,C,n); // if needed

// warm up cache (for warm cache timing)
MMM(A,B,C,n);

// time

ReadTime(t9);

for (int i = @; i < TIMING_REPETITIONS; i++)
MMM(A,B,C,n);

ReadTime(tl);

// compute runtime
return (double) ((t1-t@)/TIMING_REPETITIONS);

© Markus Piischel ETH

; eidgonsesche Tachnsche Hachschle Ziich
COMPULET SCIENCE sum reserstmssuts ot tecnmsiops Teh

© Markus Piischel ETH

; eidgonsesche Tachnsche Hachschle Ziich
COMPULET SCIENCE sum reserstmssuts ot tecnmsiops Teh

Problems with Timing

m Too few iterations: inaccurate non-reproducible timing
m Too many iterations: system events interfere

m Machine is under load: produces side effects

m Multiple timings performed on the same machine

m Bad data alignment of input/output vectors: align to multiples of cache line
(on Core: address is divisible by 64)

m Time stamp counter (if used) overflows

m Machine was not rebooted for a long time: state of operating system causes
problems

m Computation is input data dependent: choose representative input data

m Computation is inplace and data grows until an exception is triggered
(computation is done with NaNs)

m You work on a laptop that has dynamic frequency scaling

m Always check whether timings make sense, are reproducible

© Markus Piischel ETH

‘‘‘

Computer SCieNnce suis redentinstitute of echnology 2urch

Benchmarks in Writing

m Specify experimental setup
= platform
= compiler and version

= compiler flags used

m Plot: Very readable
= Title, x-label, y-label should be there
= Fonts large enough

" Enough contrast (no yellow on white please)
" Proper number format
= No: 13.254687; yes: 13.25
= No: 2.0345e-05 s; yes: 20.3 us
= No: 100000 B; maybe: 100,000 B; yes: 100 KB

m How to make a decent plot?

Left alignment

© Markus Piischel ETH

Computer SCieNnce suis redentinstitute of echnology 2urch

Attractive font (sans serif, avoid Arial)

Calibri, Helvetica, Gill Sans MT, ...

DFT 2" (single precision) on Pentium 4, 2.53 GHz

> [Gflop/s]

Horizontal v

y-label
Spiral SSE
6
5
Intel MKL
4
> . .
No y-axis 3 Spiral vectorized

(superfluous)

+
+. N -
Spiral scalar

No legend; makes decoding easier

Main line
possibly
emphasized
(red, thicker)

Background/grid
inverted for
better layering

