
Benchmarking Numerical Code
Markus Püschel

© Markus Püschel
Computer Science

Benchmarking

 First: Verify your code!

 Measure runtime (in [s] or [cycles]) for a set of relevant input sizes

 seconds: actual runtime

 cycles: abstracts from CPU frequency

 Usually: Compute and show performance (in [flop/s] or [flop/cycle])

 Careful: Better performance ≠ better runtime (why?)

 Op count could differ

 Never show in one plot performance of two algorithms with substantially
different op count

© Markus Püschel
Computer Science

How to measure runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Intel)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure

 ensure proper machine state
(e.g., cold or warm cache = input data is or is not in cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it

 Getting proper measurements is not easy at all!

© Markus Püschel
Computer Science

Example: Timing MMM
 Assume MMM(A,B,C,n) computes

 C = C + AB, A,B,C are nxn matrices

double time_MMM(int n)
{ // allocate
 double *A=(double*)malloc(n*n*sizeof(double));
 double *B=(double*)malloc(n*n*sizeof(double));
 double *C=(double*)malloc(n*n*sizeof(double));

 // initialize
 for (int i = 0; i < n*n; i++){
 A[i] = B[i] = C[i] = 0.0;
 }

 init_MMM(A,B,C,n); // if needed

 // warm up cache (for warm cache timing)
 MMM(A,B,C,n);

 // time
 ReadTime(t0);
 for (int i = 0; i < TIMING_REPETITIONS; i++)
 MMM(A,B,C,n);
 ReadTime(t1);

 // compute runtime
 return (double)((t1-t0)/TIMING_REPETITIONS);
}

© Markus Püschel
Computer Science

Problems with Timing
 Too few iterations: inaccurate non-reproducible timing

 Too many iterations: system events interfere

 Machine is under load: produces side effects

 Multiple timings performed on the same machine

 Bad data alignment of input/output vectors: align to multiples of cache line
(on Core: address is divisible by 64)

 Time stamp counter (if used) overflows

 Machine was not rebooted for a long time: state of operating system causes
problems

 Computation is input data dependent: choose representative input data

 Computation is inplace and data grows until an exception is triggered
(computation is done with NaNs)

 You work on a laptop that has dynamic frequency scaling

 Always check whether timings make sense, are reproducible

© Markus Püschel
Computer Science

Benchmarks in Writing

 Specify experimental setup

 platform

 compiler and version

 compiler flags used

 Plot: Very readable

 Title, x-label, y-label should be there

 Fonts large enough

 Enough contrast (no yellow on white please)

 Proper number format

 No: 13.254687; yes: 13.25

 No: 2.0345e-05 s; yes: 20.3 μs

 No: 100000 B; maybe: 100,000 B; yes: 100 KB

 How to make a decent plot?

© Markus Püschel
Computer Science

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

DFT 2n (single precision) on Pentium 4, 2.53 GHz
[Gflop/s]

n

Spiral SSE

Intel MKL

Spiral scalar

Spiral vectorized

Horizontal
y-label

Left alignment
Attractive font (sans serif, avoid Arial)
Calibri, Helvetica, Gill Sans MT, …

Main line
possibly

emphasized
(red, thicker) No y-axis

(superfluous)

Background/grid
inverted for

better layering

No legend; makes decoding easier

