
A DESCRIPTIVE TITLE, NOT TOO GENERAL, NOT TOO LONG

Markus Püschel

Department of Computer Science
ETH Zürich

Zürich, Switzerland

The hard page limit is 6 pages in this style. Do not re-
duce font size or use other tricks to squeeze. This pdf is
formatted in the American letter format, so may look a bit
strange when printed out.

ABSTRACT

Describe in concise words what you do, why you do it (not
necessarily in this order), and the main result. The abstract
has to be self-contained and readable for a person in the
general area. You should write the abstract last.

1. INTRODUCTION

Do not start the introduction with the abstract or a slightly
modified version. It follows a possible structure of the in-
troduction. Note that the structure can be modified, but
the content should be the same. Introduction and abstract
should fill at most the first page, better less.

Motivation. The first task is to motivate what you do.
You can start general and zoom in one the specific problem
you consider. In the process you should have explained to
the reader: what you are doing, why you are doing, why it
is important (order is usually reversed).

For example, if my result is the fastest DFT implemen-
tation ever, one could roughly go as follows. First explain
why the DFT is important (used everywhere with a few ex-
amples) and why performance matters (large datasets, real-
time). Then explain that fast implementations are very hard
and expensive to get (memory hierarchy, vector, parallel).

Now you state what you do in this paper. In our ex-
ample: presenting a DFT implementation that is faster for
some sizes than all the other ones.

Related work. Next, you have to give a brief overview
of related work. For a paper like this, anywhere between 2
and 8 references. Briefly explain what they do. In the end
contrast to what you do to make now precisely clear what
your contribution is.

The author thanks Jelena Kovacevic. This paper is a modified version
of the template she used in her class.

2. BACKGROUND: WHATEVER THE
BACKGROUND IS

Give a short, self-contained summary of necessary back-
ground information. For example, assume you present an
implementation of FFT algorithms. You could organize into
DFT definition, FFTs considered, and cost analysis. The
goal of the background section is to make the paper self-
contained for an audience as large as possible. As in every
section you start with a very brief overview of the section.
Here it could be as follows: In this section we formally de-
fine the discrete Fourier transform, introduce the algorithms
we use and perform a cost analysis.

Discrete Fourier Transform. Precisely define the trans-
form so I understand it even if I have never seen it before.

Fast Fourier Transforms. Explain the algorithm you
use.

Cost Analysis. First define you cost measure (what you
count) and then compute the cost. Ideally precisely, at least
asymptotically. In the latter case you will need to instru-
ment your code to count the operations so you can create a
performance plot.

Also state what is known about the complexity (asymp-
totic usually) about your problem (including citations).

Don’t talk about ”the complexity of the algorithm.” It’s
incorrect, remember (Lecture 2)?

3. YOUR PROPOSED METHOD

Now comes the “beef” of the paper, where you explain what
you did. Again, organize it in paragraphs with titles. As in
every section you start with a very brief overview of the
section.

For this class, explain all the optimizations you per-
formed. This mean, you first very briefly explain the base-
line implementation, then go through locality and other op-
timizations, and finally SSE (every project will be slightly
different of course). Show or mention relevant analysis or
assumptions. A few examples: 1) Profiling may lead you
to optimize one part first; 2) bandwidth plus data transfer
analysis may show that it is memory bound; 3) it may be too

hard to implement the algorithm in full generality: make as-
sumptions and state them (e.g., we assume n is divisible by
4; or, we consider only one type of input image); 4) explain
how certain data accesses have poor locality. Generally, any
type of analysis adds value to your work.

As important as the final results is to show that you took
a structured, organized approach to the optimization and
that you explain why you did what you did.

Mention and cite any external resources including li-
brary or other code.

Good visuals or even brief code snippets to illustrate
what you did are good. Pasting large amounts of code to
fill the space is not good.

4. EXPERIMENTAL RESULTS

Here you evaluate your work using experiments. You start
again with a very short summary of the section. The typical
structure follows.

Experimental setup. Specify the platform (processor,
frequency, cache sizes) as well as the compiler, version, and
flags used. I strongly recommend that you play with opti-
mization flags and consider also icc for additional potential
speedup.

Then explain what input you used and what range of
sizes. The idea is to give enough information so the ex-
periments are reproducible by somebody else on his or her
code.

Results. Next divide the experiments into classes, one
paragraph for each. In the simplest case you have one plot
that has the size on the x-axis and the performance on the
y-axis. The plot will contain several lines, one for each rel-
evant code version. Discuss the plot and extract the overall
performance gain from baseline to best code. Also state the
percentage of peak performance for the best code. Note that
the peak may change depending on the situation. For ex-
ample, if you only do additions it would be 12 Gflop/s on
one core with 3 Ghz and SSE and single precision floating
point.

Do not put two performance lines into the same plot if
the operations count changed significantly (that’s apples and
oranges). In that case first perform the optimizations that
reduce op count and report the runtime gain in a plot. Then
continue to optimize the best version and show performance
plots.

You should

• Follow the guide to benchmarking presented in class,
in particular

• very readable, attractive plots (do 1 column, not 2 col-
umn plots for this class), proper readable font size.
An example is below (of course you can have a dif-
ferent style),

• every plot answers a question, which you pose and
extract the answer from the plot in its discussion

Every plot should be discussed (what does it show, which
statements do you extract).

5. CONCLUSIONS

Here you need to briefly summarize what you did and why
this is important. Do not take the abstract and put it in the
past tense. Remember, now the reader has (hopefully) read
the paper, so it is a very different situation from the ab-
stract. Try to highlight important results and say the things
you really want to get across (e.g., the results show that we
are within 2x of the optimal performance ... Even though
we only considered the DFT, our optimization techniques
should be also applicable) You can also formulate next
steps if you want. Be brief.

6. FURTHER COMMENTS

Here we provide some further tips.
Further general guidelines.

• For short papers, to save space, I use paragraph titles
instead of subsections, as shown in the introduction.

• It is generally a good idea to break sections into such
smaller units for readability and since it helps you to
(visually) structure the story.

• The above section titles should be adapted to more
precisely reflect what you do.

• Each section should be started with a very short sum-
mary of what the reader can expect in this section.
Nothing more awkward as when the story starts and
one does not know what the direction is or the goal.

• Make sure you define every acronym you use, no mat-
ter how convinced you are the reader knows it.

• Always spell-check before you submit (to me in this
case).

• Be picky. When writing a paper you should always
strive for very high quality. Many people may read it
and the quality makes a big difference. In this class,
the quality is part of the grade.

• Books helping you to write better: [1] and [2].

• Conversion to pdf (latex users only):

dvips -o conference.ps -t letter -Ppdf -G0 conference.dvi

and then

ps2pdf conference.ps

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores)

Performance [Gflop/s] vs. input size

Best vector and parallel code

Best vector code

Best scalar code

Numerical recipes

Mul�ple threads: 3x

Vector instruc�ons: 3x

Memory hierarchy: 5x

Fig. 1. Performance of four single precision implementa-
tions of the discrete Fourier transform. The operations count
is roughly the same. The labels in this plot are too small.

Graphics. For plots that are not images never gener-
ate (even as intermediate step) jpeg, gif, bmp, tif. Use eps,
which means encapsulate postscript, os pdf. This way it
is scalable since it is a vector graphic description of your
graph. E.g., from Matlab, you can export to eps or pdf.

Here is an example of how to get a plot into latex (Fig. 1).
Note that the text should not be any smaller than shown.

7. REFERENCES

[1] N.J. Higham, Handbook of Writing for Mathematical
Sciences, SIAM, 1998.

[2] W. Strunk Jr. and E.B. White, Elements of Style, Long-
man, 4th edition, 2000.

