
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

How to Write Fast Numerical Code
Spring 2013
Lecture: Performance Counters and applying the Roofline Model

Instructor: Markus Püschel

TA: Georg Ofenbeck & Daniele Spampinato

Slides and lecture by Georg Ofenbeck

#define RDTSC(cpu_c) \
ASM VOLATILE ("rdtsc" : "=a" ((cpu_c).int32.lo),"=d"((cpu_c).int32.hi))

Read Time Step Counter

 “Read time step counter” instruction to read Invariant TSC

 Monotonically increasing counter, wrap around > 10y

 Stored in a “Machine Specific Register” (MSR)

 Easily access able counter (dedicated instruction, user mode)

2

CPUID();
RDTSC(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

RDTSC(end);
CPUID();

#cycles = end - start

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Performance Counters

 All modern processors include performance counters

 Intel Pentium Pro – Intel i3/5/7

 AMD K7 and AMD AMD64

 IBM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)

 MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, …..

 ARM Cortex

 ….

3

ReadCounter(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

ReadCounter(end);

#counted Events = end - start

Performance Counters

 All modern processors include performance counters

 Intel Pentium Pro – Intel i3/5/7

 AMD K7 and AMD AMD64

 IBM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)

 MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, …..

 ARM Cortex

 ….

4

ReadCounter(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

ReadCounter(end);

#counted Events = end - start

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Types of Counters (Intel)

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retired, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

5 Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Types of Counters (Intel)

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retried, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

6 http://images.ht4u.net/reviews/2009/intel_lynnfield_core_i5_core_i7/core_uncore_nehalem.png

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Types of Counters (Intel)

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retried, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

 Precise-event based sampling

 Trigger interrupt coupled to counter

 Allows to e.g. trace memory access

7

Evolution of Performance Counters

8

• 2 programmable Counters per Core
• 3 fixed Counters per Core
• 40 bit width

• System Wide Counting

• 8 programmable Counters per Core
• 3 fixed Counters per Core
• 2 programmable Counters for LLC Communication per Core
• 2 programmable Counters Uncore
• 1 fixed Counter Uncore
• 48 bit width

• per HW Thread Counting
• “Precise Event Based Sampling”

perfmon version 1 perfmon version 3

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Accessing the Counters

 Perfmon(1-3) defines how to program the counters

 Counters differ between microarchitectures (and in-between)

 To access directly

 Acquire root somehow (MSR access)

 Disable counter in control MSR

 Program events and behaviour you like in config MSR

 Enable counters in control and config MSR

 Check overflow MSR / read value from counter MSR

9

10

Accessing the Counters

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Tool for Counters

 Intel VTune

 Sampling based

 Perf, papi, libpfm4

 Linux only, uncore poorly supported

 Intel PCM

 Intel only, Cross OS, direct access to MSRs

11

Caveats

 Generally many, many, many things that can go wrong

 Example flop counter with perf

12

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

13

Caveats

 General

 Dead code elimination, “smart” compiler, Initialization

 Asynchronous calls

 Alignment

 HW prefetcher

 Timing

 Frequency scaling

 per thread counters don’t capture total runtime

 Flops

 Distinguishing single / double precision not necessary possible

 Memory

 On desktop Intel machines not straightforward

 WB cache, prefetcher, …

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Perfplot

 Tool to ease the effort of creating performance / roofline plots

 Modified Intel PCM to allow start / stop measurements

 Instrument your code as depicted and link with the modified PCM

15

measurement_init(counters); //Array with Mask/Eventnr

for(r = 0; r < nr_repeats; r++){
 measurement_start();
 /* Sum two arrays */
 for(i = 0; i < n; i++)
 z[i] = x[i] + y[i];
 measurement_stop();
}

measurement_end(); //Dump results to files

Perfplot

 In collaboration with

 Ruedi Steinman

 Victoria Caparros Cabezas

 Daniele Spampinato

 Available at https://github.com/GeorgOfenbeck/perfplot

 Scala scripts to automate

 Compilation and execution in temporary directories

 Retrieving the results and collecting them for plots

 Python plot scripts for

 Performance plots

 Roofline plots

16

https://github.com/GeorgOfenbeck/perfplot
https://github.com/GeorgOfenbeck/perfplot

