263-2300-00: How To Write Fast Numerical Code
Assignment 1: 100 points
Due Date: Th, March 6th, 17:00
http://www.inf.ethz.ch/personal /markusp/teaching/263-2300-ETH-spring14/course.html
Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

e (Submission)

We set up a SVN Directory for everybody in the course. The Url of your SVN Directory is
https://svn.inf.ethz.ch/svn/pueschel /students/trunk/s14-fastcode/YOUR.NETZH.LOGIN/ You should see sub-
directory for each homework.

(Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours after the due
time. Late submissions have to be submitted completely electronically and emailed to fastcode@lists.inf.ethz.ch.

(Formats)

If you use programs (such as MS-Word or Latex) to create your assignment, convert them to PDF and submit
to svn in the top level of the respective homework directory. Call it homework.pdf. Handwritten parts can be
scanned and included or brought (in time) to Alen’s or Daniele’s office.

(Plots)

For plots/benchmarks, be concise, but provide necessary information (e.g., compiler and flags) and always
briefly discuss the plot and draw conclusions. Follow (at least to a reasonable extent) the small guide to
making plots (lecture 5).

(Code)

When compiling the final code, ensure that you use optimization flags. Disable SSE for this exercise when
compiling. Under Visual Studio you will find it under Config / Code Generator / Enable Enhanced Instructions
(should be off). With gcc their are several flags: use -mno-abm (check the flag), -fno-tree-vectorize should also
do the job. Submit all the code you write into the according folders in your SVN directory.

(Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. (25 pts) Cost analysis

Consider the following code that computes the Cholesky decomposition of a given N x N symmetric
positive definite matrix A.

void chol(float A[N]I[N]) {
int i,j,k;
double c;
for (j = 0; j < N-1; j++) {
AL31[3]1 = sqrt(A[j1[j1);

for (i = j+1; i < N; i++)

ACil[j] = ALi1[j1/7AC03103];

for (k = j+1; k < N; k++)
for (i = k; i < N; i++)
Afil[k] = A[il[k] - A[iJ[jI1*A[k1ICj1;

(a) Define a suitable cost measure C'(IN) assuming that different floating point operations have dif-
ferent costs.

(b) Compute the cost C(N) of the function chol.

263-2300-00 SS14 / Assignment 1 Pg 1 of4 Computer Science
Instructor: Markus Piischel ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html
https://svn.inf.ethz.ch/svn/pueschel/students/trunk/s14-fastcode/YOUR.NETZH.LOGIN/

(¢) How would you change the definition and value of C(N) assuming that all operations have the
same cost?

Note: Integer operations are ignored. Lower-order terms (and only those) may be expressed using
big-O notation (this means: a result like 3n + O(log(n)) is ok but O(n) is not).

Solution:
See handwritten notes.

2. (15 pts) Get to know your machine
Determine and create a table for the following microarchitectural parameters of your computer.

(a) Processor manufacturer, name, and number
(b) Number of CPU cores
(¢) CPU-core frequency

For one core and without considering SSE/AVX:

(d) Cycles/issue for floating point additions
(e) Cycles/issue for floating point multiplications

(f) Maximum theoretical floating point peak performance in both flop/cycle and Gflop/s.

Tips: On Unix/Linux systems, typing ’'cat /proc/cpuinfo’ in a shell will give you enough information
about your CPU for you to be able to find an appropriate manual for it on the manufacturer’s website
(typically AMD or Intel). The manufacturer’s website will contain information about the on-chip
details. (e.g. Intel). For Windows 7 ” Control Panel /System and Security/System” will show you your
CPU, for more info "CPU-Z" will give a very detailed report on the machine configuration.

3. (15 pts) MMM
The standard matrix multiplication kernel performs the following operation : C' = AB + C, where
A, B, C are matrices of compatible size. We provide a C source file and a C header file that times
this kernel using different methods under Windows and Linux (for x86 compatibles).

(a) Inspect and understand the code.

(b) Determine the exact number of (floating point) additions and multiplications performed by the
compute() function in mmm.c of the code.

(¢) Using your computer, compile and run the code (Remember to turn off vectorization as explained
on page 1!). Ensure you get consistent timings between timers and for at least two consecutive
executions.

(d) Then, for all square matrices of sizes n between 100 and 1500, in increments of 100, create a plot
for the following quantities (one plot per quantity, so 3 plots total). n is on the x-axis and on the
y-axis is, respectively,

i. Runtime (in cycles).
ii. Performance (in flops/cycle).
iii. Using the data from exercise 2, percentage of the peak performance (without vector instruc-
tions) reached.

(e) Briefly describe your plots, and submit your modified code to the SVN and call it also mmm.c.

4. (20 pts) MVM
We consider matrix-vector multiplication of the form y = A xx + y, where A is an n X n square matrix
and y and x are vectors of length n.

(a) Create a new file mvm.c. The code should contain a compute() function that implements matrix-
vector multiplication in the form given above using a double loop, and an rdtsc() function for
timing it (you can use the one in mmm.c from exercise 3).

263-2300-00 SS14 / Assignment 1 Pg 2 of 4 Computer Science
Instructor: Markus Piischel ETH Zurich

http://www.cpuid.com/softwares/cpu-z.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring13/homeworks/hw01files/mmm.c
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring13/homeworks/hw01files/rdtsc.h

(b) Determine the exact number of (floating point) additions and multiplications performed by your
compute() function.

(¢) Then, for all square matrices of sizes n between 100 and 1500, in increments of 100, create a plot
for the following quantities (one plot per quantity, so 3 plots total). n is on the x-axis and on the
y-axis is, respectively,

i. Runtime (in cycles).
ii. Performance (in flops/cycle).
iii. Using the data from exercise 2, percentage of the peak performance (without vector instruc-
tions) reached.

(d) Compare the performance obtained with MVM and MMM and briefly discuss.

5. (20 pts) Bounds
We consider a double loop implementation of a so-called stencil computation using a nine-point stencil
h over an N x N grid G as shown below.

for (i = 1; i < N-1; i++) {
for (j = 1; j < N-1; j++) {
G[il[j]l =
h[0]1[01*G[i-11[j-1]1 + nh[0]J[11*G[i-1]1[j]l + h([0][21*G[i-1]1[j+1]
+ h[1]1[01*G[il[j-1] h[1]1[11*xG[i]1[j] + h[1]1[21*G[il[j+1]
+ h[2]1[01*G[i+1]1[j-1]1 + h[2][11*G[i+11[j] + h[2]1[21*G[i+1]1[j+1]1;

+

(a) Determine the exact cost measured in flops (floating point operations).

(b) Determine an asymptotic upper bound on the operational intensity (assuming empty caches and
considering both reads and writes).

(¢) On a Core i7 Sandy Bridge, consider only one core and determine hard lower bounds (not asymp-
totic) on the runtime (measured in cycles) based on

i. The op count (floating point ops only, no vectorization).

ii. Loads, for each of the following cases: All floating point data is Ll-resident, L2-resident,
RAM-resident.

Solution:
(a) C=17-(N —2)?

. _ 2
(b) I(N) < % flops/B. Therefore I(N) € O(1)

. .. 17(N—2)?
(¢) 1. The CPU can compute 2 scalar ops/cycle, obtaining r,ps = % = 8.5(N — 2)?
ii. Assuming tpr1 = tpra = 4 doubles/cycle, and tprarr = 3/4 double/cycle, we obtain .
Tl =TL2 = % cycles and rray = % + 12 cycles.

6. (0 pts: for the enthusiast) MMM perf
Another way to perform cost analysis of a given algorithm is by using CPU performance counters.
Hardware counters are a set of special-purpose registers that store counts of hardware-related events
within a CPU. Accessing these registers requires OS support and is different on each CPU type, as
each CPU model might monitor different set of events. perf is a convenient Linux tool that abstracts
away CPU hardware differences and is part of the Linux Kernel 2.6+. If your machine is not running
Linux, use the student lab machines stud{1..27}-h{56,57}.inf.ethz.ch to complete this exercise.

(a) Determine the number of cycles of the MMM program in exercise 3, invoking perf command line
tool to gather performance statistics (extended perf tutorial is available here).

263-2300-00 SS14 / Assignment 1 Pg 3 of 4 Computer Science
Instructor: Markus Piischel ETH Zurich

https://perf.wiki.kernel.org/index.php/Tutorial
markusp
Sticky Note
Note: this solution is not 100% correct as the non-perfcet balance between number of adds and mults should also be taken into account.

(b) Determine the performance monitoring events available on your CPU that monitor double preci-
sion floating point operations. Provide a list of mnemonic names of the events, usually available
in the CPU vendor architecture manual (For example Sandy Bridge: FP_COMP_OPS_EXE:X87,
FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE and FP_COMP_0OPS_EXE: SSE_SCALAR_DDUBLE).

(c) Convert the obtained events into raw PMU events, in the form of rNNN where NNN is a hexadecimal
event descriptor. Use libpfm’s tool examples/check_events to perform the conversion.

(d) Determine the number of flops of the MMM program by feeding the raw PMU events to perf.

(e) Determine the performance of the MMM loop by invoking perf tool inside your MMM pro-
gram. To achieve this level of granularity, perf must be invoked as a system call, with proper
instantiation of the PMU events. Modify the skeleton available here to obtain precise results.

263-2300-00 SS14 / Assignment 1 Pg 4 of 4 Computer Science
Instructor: Markus Piischel ETH Zurich

http://perfmon2.sourceforge.net/
http://www.inf.ethz.ch/personal/salen/mmmperf.zip

m.\ﬁzv will h a 4. Kgxnaavs.-\\ CosT w it w.\o_ﬂ %?&suq&a MMMOQWNPL &w 5 nhmﬁg*

A(2)
Jnh_ﬂp‘}o..s
c(N) = Muamﬂ sz , div(w), MULT(N), mcmm\@w
\;@ D Mﬂm.ﬂ?@n N-1
: -1 2_ N-t] N-L -l)) .
. VZQC = zM. S 4= Z qu-o =S N-Z= Q ~ N+ uz?-o. N nﬂz-_ ‘ztu.mioﬁz\
- L...no Q.ue

g.n o = g.._. }

N-2 -t N Tc _.v
o MULT (W)= M:Ml 2.1 = M.Nmaxv M,ﬁznadcc ! -,

J:o u._.... (zh

1}

Z ‘N -N - \.. H+.w|
MIIA \..; l||l ya 2 A

Qﬁ\w:,,_.ﬁm_%..m\,m% 5 e 0l A o

3]

MULT(N) = \u. + 0 (N?)

L}

. SUB(N)

1

ﬁaﬁ o), \w+0?@ b\lqﬁo?\%

Z

= Omzv

e

_nn\u”ﬁZuu N) + N+ MULT (v VB (N ’ 2
(1) = SQET() + 84(o) - mr(m) v () - 7, 0 (%)

