
Jawad	Haj-Yahya4
Haris	Volos2 Davide	B.	Bartolini1	 Georgia	Antoniou2

Jeremie	S.	Kim3 Zhe	Wang1	 Kleovoulos	Kalaitzidis1	 Tom	Rollet1
Zhirui Chen1	 Ye	Geng1	 Onur	Mutlu3	 Yiannakis Sazeides2

AgileWatts
An Energy-Efficient CPU Core Idle-

State Architecture for Latency-
Sensitive Server Applications

1 2 3 4

2

Motivation

• The load of user-facing applications is unpredictable and bursty
• with microsecond-scale idleness – as known as the “Killer microseconds” idleness

• This load behavior prevents CPU cores from entering deep idle states
during idle periods, limiting power savings when the CPU core is idle
• A CPU core running Memcached never enters Deep idle state when running at ≥20% load

• Idle states transition times can increase tail latency significantly
• The tail latency of Memcached increases by up to 37% when enabling Medium and Deep

idle states

0%
20%
40%
60%
80%

100%

10 50 100 200 300 400 500C-
st

at
e

Re
sid

en
cy

 (%
)

Request Rate (KQPS)

Active Shallow Medium Deep

0%
10%
20%
30%
40%

10 50 100 200 300 400 500Ta
il

La
te

nc
y

In
cr

ea
se

 (%
)

Request Rate (KQPS)

Baseline = only C1 is enabled

3

Our Goal

• To eliminate the killer microseconds effect that prevent servers running latency critical
application from entering deep energy saving states, we propose AgileWatts:
• A Deep & Agile low power state with
• Nanosecond-scale transition latency

• We design AgileWatts with two design goals in mind:

1. Drastically reducing the transition latency of deep core idle power states, making
deep C-states usable

2. Retaining most of the power savings of deep idle states

Po
w

er
 (W

)

Medium

~1.4W

~0.1W

HW
 T

ra
ns

iti
on

La
te

nc
y

(u
s)

~0.01us

~130us

Shallow

~0.9W
~8us

Deep
& Agile

~0.3W ~0.1us

Deep MediumShallow Deep
& Agile

Deep

4

Core Idle Power State – Core C-states
• Core C-states are power saving states enable the core to

reduce its power consumption during idle periods

• Intel’s Skylake architecture offers four main Core C-state:
• C0 - Active
• C1 – Shallow
• C1E – Medium
• C6 - Deep

5

C0 (Active) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C0 Running On Coherent Nominal Maintained

Clock
Generator

Voltage Regulator Voltage Level

6

C1 (Shallow) Core C-states
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C1 Most Stopped On Coherent Nominal Maintained

7

C1E (Medium) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C1E Most Stopped On Coherent Min V/F Maintained

Transition to
Minimum
Voltage/

Frequency

8

C6 (Deep) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6 Running On Flushed Nominal Maintained

Flush L1/L2
Caches

9

C6 (Deep) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6 Running On Flushed Nominal S/R SRAM

Save/
Restore
SRAM

Save Core’s
Context to
S/R SRAM

10

C6 (Deep) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6 Stopped off Flushed Nominal S/R SRAM

Save/
Restore
SRAM

Turn-off the
clocks and

PLL

11

C6 (Deep) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6 Stopped off Flushed Shut-off S/R SRAM

Save/
Restore
SRAM

Turn-off the
voltage

12

C-states Power/Latency Tradeoff

• C-states provide power and performance tradeoff
• The higher the C-state number
• The lower its power consumption
• But the longer the transition latency

• During a C-state transition a core cannot be utilized
• Degrading the performance of latency-sensitive applications

• AgileWatts tackles this problem with C6A (C6 Agile) C-state
• Deep idle C-state with a nanosecond-scale transition latency

Po
w

er
 (W

) ~1.4W

~0.1W ~0.01us

~0.9W
~8us

C6A

~0.3W

C6A

~0.1us

~130us

C1 C6C1E C1 C6 C1E

HW
 T

ra
ns

iti
on

La
te

nc
y

(u
s)

13

AgileWatts
• We achieve AgileWatts goals with three key components:

1. Units Fast Power-Gating

2. Cache Coherence and Sleep Mode

3. C6A Power Management Flow

14

C6A (Deep & Agile) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6A Running On Coherent Nominal Maintained

15

C6A (Deep & Agile) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6A Most Stopped On Coherent Nominal Maintained

• Clock-gate
most of the
clock and keep
the PLL On

16

C6A (Deep & Agile) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6A Most Stopped On Coherent Most PG Maintained

• Power-gates
most of the
core units

• Retaining the
context in
place

17

C6A (Deep & Agile) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6A Most Stopped On Coherent PG/Ret/Nom Maintained

• Reduce the
caches supply
voltage using
sleep
transistors

• Retain a logic
active to wake-
up the caches
to respond to
snoop requests

18

Evaluation Methodology
• Power and Performance Model: to evaluate AgileWatts, we use an accurate

analytical power model, calibrated against an Intel Skylake server and considering the
performance penalty

• Power and C-state Residency Measurements: We measure C-state residency and
number of transitions using processor’s residency reporting counters
- We use the RAPL interface to measure power consumption

• Workloads: We evaluate AgileWatts using three latency-critical workloads:
Memcached, Apache Kafka, and MySQL

19

Power Savings and Overhead at Varying Load Levels

• AgileWatts reduces the average power consumption by up to 38% at
low load
- At high load, AgileWatts still provides 10% power savings

• AgileWatts has less than 1.3% impact on tail latency (server side)

23.5%
0.8%

0.0%

0.5%

1.0%

0%
10%
20%
30%
40%

10 50 10
0

20
0

30
0

40
0

50
0

Av
g

Pe
rf.

 d
eg

ra
da

tio
n

(%
)

Av
gP

 R
ed

uc
tio

n
(%

)

Request Rate (KQPS)

Power Tail Lat.

20

Commonly used Configurations

• Server vendors provide recommended system configurations, such as disabling
certain C-states to increase system performance or disabling Turbo Boost to reduce
power consumption

• We analyze three common configurations that successively disable Turbo, C6, and
C1E in the baseline configuration (P-states disabled and Turbo and C-states enabled)

1. Turbo disabled (NT_Baseline),
2. Turbo and C6 disabled (NT_No_C6), and
3. Turbo, C6 and C1E disabled (NT_No_C6,No_C1E)

23.5%
28.6%

71%

35.3%

-5%
0%
5%
10%
15%
20%
25%
30%
35%

0%
10%
20%
30%
40%
50%
60%
70%
80%

10 50 10
0

20
0

30
0

40
0

50
0

Av
g

La
te

nc
y

Re
du

ct
io

n
(%

)

Av
er

ag
e

Po
w

er
 R

ed
uc

tio
n

(%
)

Request Rate (KQPS)

NT_Baseline AvgP. NT_No_C6 AvgP. NT_No_C1E,No_C6 AvgP.

21

Commonly used Configurations

• AgileWatts reduces average power consumption (AvgP) up to 71% against all three
tuned configurations

• The reason is that, in these workloads AgileWatts replaces the time that other
configurations spend in C1 with C6A C-state, which has much lower power

23.5%
28.6%

71%

35.3%

-5%
0%
5%
10%
15%
20%
25%
30%
35%

0%
10%
20%
30%
40%
50%
60%
70%
80%

10 50 10
0

20
0

30
0

40
0

50
0

Av
g

La
te

nc
y

Re
du

ct
io

n
(%

)

Av
er

ag
e

Po
w

er
 R

ed
uc

tio
n

(%
)

Request Rate (KQPS)

NT_Baseline AvgP. NT_No_C6 AvgP. NT_No_C1E,No_C6 AvgP.

22

Commonly used Configurations

• AgileWatts improves the performance by up to 26.3% compared to NT_Baseline and
NT_No_C6 configurations

• AgileWatts only degrading the performance by up to 1% compared to
NT_No_C6,No_C1E configuration

26.3%

-1.0%

-5%
0%
5%
10%
15%
20%
25%
30%
35%

0%
10%
20%
30%
40%
50%
60%
70%
80%

10 50 10
0

20
0

30
0

40
0

50
0

Av
g

La
te

nc
y

Re
du

ct
io

n
(%

)

Av
er

ag
e

Po
w

er
 R

ed
uc

tio
n

(%
)

Request Rate (KQPS)

NT_Baseline Tail Lat. NT_No_C6 Tail Lat. NT_No_C1E,No_C6 Tail Lat.

23

Commonly used Configurations

• AgileWatts improves the performance by up to 26.3% compared to NT_Baseline and
NT_No_C6

• AgileWatts only degrading the performance by less than 1% compared to
NT_No_C6,No_C1E

26.3%

-1.0%

-5%
0%
5%
10%
15%
20%
25%
30%
35%

0%
10%
20%
30%
40%
50%
60%
70%
80%

10 50 10
0

20
0

30
0

40
0

50
0

Av
g

La
te

nc
y

Re
du

ct
io

n
(%

)

Av
er

ag
e

Po
w

er
 R

ed
uc

tio
n

(%
)

Request Rate (KQPS)

NT_Baseline Tail Lat. NT_No_C6 Tail Lat. NT_No_C1E,No_C6 Tail Lat.

AgileWatts provides average and tail latencies comparable
to the tuned configurations that disable some power

management features, while reducing power significantly

24

Other Details in the Paper

• Implementation and hardware cost

• Idle power analysis

• C6A and C6AE latency

• Performance penalty

• Staggered unit wake-up

• Design complexity and effort

• Power savings and overhead at varying load levels

• Analysis of turbo boost performance improvement

25

Conclusion
• We introduced AgileWatts, a new deep C-state architecture that drastically

reduces the transition latency, making deep C-states usable

• We showed that AgileWatts architecture can be achieved by leveraging agile
power management techniques while retaining most of the power savings of
existing deep idle states

• AgileWatts reduces the energy consumption of Memcached by up to 71% with
up to 1% performance degradation

• AgileWatts is an effective approach to improving energy consumption of
servers running latency-critical applications by enabling the server’s processor
to enter deep energy-saving states during short idle periods with negligible
performance impact

• We hope our work paves the way for improving the energy proportional of
datacenter servers

Jawad	Haj-Yahya4
Haris	Volos2 Davide	B.	Bartolini1	 Georgia	Antoniou2

Jeremie	S.	Kim3 Zhe	Wang1	 Kleovoulos	Kalaitzidis1	 Tom	Rollet1
Zhirui Chen1	 Ye	Geng1	 Onur	Mutlu3	 Yiannakis Sazeides2

AgileWatts
An Energy-Efficient CPU Core Idle-

State Architecture for Latency-
Sensitive Server Applications

1 2 3 4

27

Power-gating

• Power-gating is a technique that is used to eliminate leakage of idle circuits

• Typically, the wake-up latency from a power-gated state requires a few to tens of cycles

• To reduce the worst-case peak in-rush current when waking up a power-gate:
- A power-gate controller uses a staggered wake-up technique (shown in the figure)
- It turns on different power-gate switch cells in stages to limit the current spike
- To do so, the slpin and slpout of the switch cells are daisy-chained
- The controller issues a signal to the first slpin, and it receives an acknowledgement (ready) from the last

slpout , indicating that the power-gate is fully conducting
• Modern processors implement the staggering technique

- The Intel Skylake core staggers the wake up of the AVX power-gates over 15ns

28

3. C6A Power Management Flow
• AgileWatts flow orchestrates the transitioning between the C0 and C6A C-states and

handles coherence traffic while in C6A state

• The entry flow:
• Clock-gates the gated-domain (UFPG) and keeps the core phase-locked loop (PLL) powered-on
• When entering C6AE (C6A Enhanced), it initiates a non-blocking transition to Pn – the P-state with lowest

frequency and voltage
• Saves (in place) the gated-domain’s context and shuts down its power
• Sets the private caches into sleep mode and shuts down their clock

• When a snoop request arrives, the flow:
• Clock-ungates the private cache domain and contextually adjusts its supply voltage to exit sleep mode
• When all outstanding snoop requests are serviced, the flow rolls back the changes in reverse order and brings

the core back into full C6A (or C6AE) state

29

Retain the Context in Place

• AgileWatts leverages three techniques to efficiently retain the context during C6A

a) Placing Unit Context in the Ungated Domain

b) Place SRAM Context in Ungated Power Supply

c) State Retention Power Gates (SRPGs)

30

Power Savings and Overhead at Varying Load Levels

• Further analyzes of AgileWatts impact on average response time is shown
• We consider end-to-end (including network latency measured at 117us) and server-side

response time for two cases:
- The worst case, where we assume a C-state transition for each query and
- the expected case, with the actual C-state transitions observed in the baseline

• As expected, the gap between the worst and the expected case is larger at high load,
- since multiple queries are serviced within the same active period.

• We observe that the degradation of the end-to-end response time (i.e., by client) is
negligible because the (non-changing) network latency dominates the overall response
time

31

Analysis of Turbo Boost Performance Improvement
• Average and tail latency at different request rates

(QPS) for four configurations that show the effect
of idle power state on Turbo performance:

- Turbo/No-Turbo & C6 disabled
(T_No_C6/NT_No_C6),

- Turbo/No-Turbo & C6 & C1E disabled
(T_No_C6,No_C1E/NT_No_C6,No_C1E), compared

• With AgileWatts: Turbo/No-Turbo & C6A enabled
& C6 & C1E disabled
(T_C6A_No_C6_No_C1E/NT_C6A_No_C6_No_C1E)

• Figures (a,c) show that the configuration with
Turbo and C6 disabled (i.e., NT_No_C6) increases
the average/tail latency performance by up to
4%/31% over the same configuration with C1E
disabled (i.e., NT_No_C6,No_C1E)

• Figures (c,d) show that enabling Turbo while
disabling C1E (i.e., T_No_C6,No_C1E) does not
improve performance over the same configuration
with Turbo disabled (i.e., NT_No_C6,No_C1E)

• Figures (b,d) show that with Turbo enabled, only
disabling C6 (i.e., T_No_C6) has the same
performance as additionally disabling C1E (i.e.,
T_No_C6,No_C1E)

- The reason is that in the T_No_C6 configuration, the
transition overhead of C1E on average/tail latency offsets any
thermal capacitance gains and ensuing performance gains
from Turbo.

32

Analysis of Turbo Boost Performance Improvement
• Average and tail latency at different request rates

(QPS) for four configurations that show the effect
of idle power state on Turbo performance:

- Turbo/No-Turbo & C6 disabled
(T_No_C6/NT_No_C6),

- Turbo/No-Turbo & C6 & C1E disabled
(T_No_C6,No_C1E/NT_No_C6,No_C1E), compared

• With AgileWatts: Turbo/No-Turbo & C6A enabled
& C6 & C1E disabled
(T_C6A_No_C6_No_C1E/NT_C6A_No_C6_No_C1E)

• Figures (a,c) show that the configuration with
Turbo and C6 disabled (i.e., NT_No_C6) increases
the average/tail latency performance by up to
4%/31% over the same configuration with C1E
disabled (i.e., NT_No_C6,No_C1E)

• Figures (c,d) show that enabling Turbo while
disabling C1E (i.e., T_No_C6,No_C1E) does not
improve performance over the same configuration
with Turbo disabled (i.e., NT_No_C6,No_C1E)

• Figures (b,d) show that with Turbo enabled, only
disabling C6 (i.e., T_No_C6) has the same
performance as additionally disabling C1E (i.e.,
T_No_C6,No_C1E)

- The reason is that in the T_No_C6 configuration, the
transition overhead of C1E on average/tail latency offsets any
thermal capacitance gains and ensuing performance gains
from Turbo.

In a configuration where both C6 and C1E are disabled
while Turbo is enabled, AgileWatts can provide large
performance benefits by enabling C6A instead of C1

Doing so provides larger thermal capacitance to Turbo
compared to enabling C1E and reduces the long transition

latency overhead of C6 and C1E C-states

33

Core C6 C-state Entry and Exit Flow

• C6 entry flushes privates caches, saves context, and
turns off the PLL and voltage
- Entry latency is dominated by the L1/L2 cache flush

• C6 exit is simply the reverse process of the entry flow
- Exit latency is dominated by the hardware wake-up and

state restoration

34

Conclusion
Problem: the irregular request patterns and tight latency requirements of user-facing
applications render ineffective existing energy-conserving techniques when the server
processor is idle due to the long transition time from a deep idle power state
Goal: directly address the root cause of the inefficiency, namely the high transition
latency, to mitigate the energy inefficiency of modern datacenter server processors
Mechanism: AgileWatts, a new deep C-state architecture that drastically reduces the
transition latency by leveraging three key power management techniques
- Uses medium-grained power-gates distributed across the core and maintains context in place
- Keeps private caches (i.e., L1/L2) and minimal control logic for cache coherence power-ungated
- Clock-gates the core components and clock distribution while keeping the clock generator on
Evaluation: we evaluate AgileWatts on the Intel Skylake server processor using variety
of workloads, AgileWatts:
- Reduces the energy consumption of Memcached by up to 71% with up to 1% performance degradation
- Shows similar trends for other evaluated services such as MySQL and Kafka
- The new C-states, C6A is up to 900× faster than the deepest existing idle state C6
Conclusion: AgileWatts is an effective approach to improving energy consumption of
servers running latency critical applications by enabling server’s processor to enter deep
energy saving states during short idle periods with negligible performance impact

35

Core Idle Power State – Core C-states

• Core C-states are power saving states enable cores to reduce their power
consumption during idle periods

• Modern processors support various C-states, for example, Intel’s Skylake
architecture offers the following four: C0, C1, C1E, C6
• The higher the C-state number the lower its power consumption but the longer

the transition time
• Table 2 describes the microarchitectural state for each core C-state and

our new proposed idle states
• C6A and C6AE (which replace C1 and C1E)

• While C-states reduce power consumption, during the entry-to and exit-
from a C-state a core cannot be utilized
• For example, it is estimated that C6 requires 133μs transition time
• As a result, entry-exit latencies can degrade the performance of services that

have microseconds processing latency, such as in user-facing applications

Table 2Table 1

36

Motivation (II)
• Since the deepest C-state is C6 (Table 1), we

estimate an upper bound of the average power
(AvgP) savings for the ideal case of a deep idle
state using equation 1 with:
• The latency of C1 (2μs) and
• The power of C6 (0.1W) per core

• RCi denotes the residency at power state Ci
• i.e., the fraction of time a core spends in state Ci

• PCi denotes the average core power in state Ci

• Referring to our workload examples and using
C-states power from Table 1:
• Memcached at 20% load (i.e., RC0 = 20%, RC1 = 80%,

RC6 = 0%) the potential power savings is 55%

Table 1

Equation 1

37

Core C1 C-state Entry and Exit Flow
• C1 entry mainly clock-gates all core domains and keeps

PLLs ON
• C1E further reduces the voltage and frequency
• C1 exit Clock-ungates all domains
• During C1/C1E the core responses to snoop requests

38

Core C6 C-state Entry and Exit Flow
• C6 entry flushes privates caches, saves context, and turns off the PLL and voltage
• C6 exit is simply the reverse process of the entry flow
• C6 entry latency is dominated by the L1/L2 cache flush

• This flush time varies depending on 1) the number of dirty lines and 2) the core frequency
when entering C6

• Flushing a 50% dirty cache at 800MHz can take ∼75μs
• C6 exit latency is significantly faster (∼30μs)

• ∼10μs for hardware wake-up (power-ungating, PLL relock, reset, and fuse propagation)
• State and microcode restoration take 20μs

39

1. Units Fast Power-Gating

• Units Fast Power-Gating is a low-latency power-gating (PG) architecture that

• Shuts off most of the core units while retaining the context in place
• thus, enabling a transition latency of tens of nanoseconds

• Conventional context retention techniques sequentially save/restore the context
to/from an external SRAM before/after power-gating/un-gating
• This process adds several microseconds to the entry/exit latency

• AgileWatts retains the context in place, completely removing save/restore latency overhead at a
very small additional idle power cost

40

1. Units Fast Power-Gating

• Units Fast Power-Gating is a low-latency power-gating (PG) architecture that

• Shuts off most of the core units while retaining the context in place
• thus, enabling a transition latency of tens of nanoseconds

• AgileWatts retains the CPU context in place, completely removing save/restore
latency overhead at a very small additional idle power cost

41

2. Caches Coherency and Sleep Mode (I)

• To avoid the high latency to flush private caches to power-gate them, AgileWatts
keeps them power-ungated when transitioning to C6A

• This has two design implications:
• AgileWatts needs to employ other power-saving techniques to reduce the power of the caches
• A core in C6A state still needs to serve coherence requests (i.e., snoops)

42

2. Cache Coherence and Sleep Mode (II)

• AgileWatts employs two key techniques to reduce the power consumption of the
power-ungated private cache domain:

1. Unless a coherency request is being served, AgileWatts keeps this domain clock-gated
to save its dynamic power

2. AgileWatts leverages the cache sleep-mode technique, which adds sleep transistors to
the SRAM array of private caches.
• These sleep transistors reduce the SRAM array’s supply voltage to the lowest level that can

safely retain the SRAM content while significantly reducing leakage power

43

2. Caches Coherency and Sleep Mode (III)

• Since private caches are not flushed when a core enters C6A, AgileWatts must
allow the core to respond to snoop requests

• AgileWatts keeps the logic required to handle cache snoops in the power-ungated
(but clock-gated) domain together with the private caches

• As soon as this logic detects incoming snoop traffic
• it temporarily increases the SRAM array voltage through the sleep transistors and reactivates the

clock of the private caches for the time required to respond to snoop requests

44

Power Savings and Overhead at Varying Load Levels

• AgileWatts reduces the average power consumption by up to 38% at low
load, with less than 1% impact on both average and tail latency

• At high load, AgileWatts still provides 10% power savings, with less than
1.3% impact on tail latency

45

Other Details in the Paper
• Implementation and hardware cost

• Idle Power Analysis

• C6A and C6AE Latency

• Performance Penalty

• Staggered Unit Wake-up

• Design Complexity and Effort

• Power Savings and Overhead at Varying Load Levels

• Analysis of Turbo Boost Performance Improvement

46

Power Savings and Overhead at Varying Load Levels

• Further analyzes of AgileWatts impact on average response time is shown
• We consider end-to-end (including network latency measured at 117us) and server-side

response time for two cases:
- The worst case, where we assume a C-state transition for each query and
- the expected case, with the actual C-state transitions observed in the baseline

• As expected, the gap between the worst and the expected case is larger at high load,
- since multiple queries are serviced within the same active period.

• We observe that the degradation of the end-to-end response time (i.e., by client) is
negligible because the (non-changing) network latency dominates the overall response
time

AgileWatts significantly improves core average power
consumption of the Memcached service across load levels with

minimal performance overhead over the baseline

