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Motivation 

• The load of user-facing applications is unpredictable and bursty
• with microsecond-scale idleness – as known as the “Killer microseconds” idleness 

• This load behavior prevents CPU cores from entering deep idle states 
during idle periods, limiting power savings when the CPU core is idle 
• A CPU core running Memcached never enters Deep idle state when running at ≥20% load  

• Idle states transition times can increase tail latency significantly
• The tail latency of Memcached increases by up to 37% when enabling Medium and Deep 

idle states  
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Our Goal

• To eliminate the killer microseconds effect that prevent servers running latency critical 
application from entering deep energy saving states, we propose AgileWatts:
• A Deep & Agile low power state with 
• Nanosecond-scale transition latency

• We design AgileWatts with two design goals in mind:

1. Drastically reducing the transition latency of deep core idle power states, making 
deep C-states usable 

2. Retaining most of the power savings of deep idle states
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Core Idle Power State – Core C-states
• Core C-states are power saving states enable the core to 

reduce its power consumption during idle periods

• Intel’s Skylake architecture offers four main Core C-state: 
• C0 - Active
• C1 – Shallow  
• C1E – Medium 
• C6 - Deep
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C0 (Active) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C0 Running On Coherent Nominal Maintained

Clock 
Generator

Voltage Regulator Voltage Level
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C1 (Shallow) Core C-states
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C1 Most Stopped On Coherent Nominal Maintained
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C1E (Medium) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C1E Most Stopped On Coherent Min V/F Maintained

Transition to 
Minimum 
Voltage/

Frequency
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C6 (Deep) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6 Running On Flushed Nominal Maintained

Flush L1/L2
Caches
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C6 (Deep) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6 Running On Flushed Nominal S/R SRAM

Save/
Restore 
SRAM

Save Core’s 
Context to 
S/R SRAM
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C6 (Deep) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6 Stopped off Flushed Nominal S/R SRAM

Save/
Restore 
SRAM

Turn-off the 
clocks and

PLL
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C6 (Deep) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6 Stopped off Flushed Shut-off S/R SRAM

Save/
Restore 
SRAM

Turn-off the 
voltage
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C-states Power/Latency Tradeoff

• C-states provide power and performance tradeoff
• The higher the C-state number 
• The lower its power consumption 
• But the longer the transition latency

• During a C-state transition a core cannot be utilized
• Degrading the performance of latency-sensitive applications

• AgileWatts tackles this problem with C6A (C6 Agile) C-state
• Deep idle C-state with a nanosecond-scale transition latency
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AgileWatts
• We achieve AgileWatts goals with three key components:

1. Units Fast Power-Gating

2. Cache Coherence and Sleep Mode

3. C6A Power Management Flow
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C6A (Deep & Agile) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6A Running On Coherent Nominal Maintained
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C6A (Deep & Agile) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6A Most Stopped On Coherent Nominal Maintained

• Clock-gate
most of the 
clock and keep 
the PLL On
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C6A (Deep & Agile) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6A Most Stopped On Coherent Most PG Maintained

• Power-gates 
most of the 
core units

• Retaining the 
context in 
place 



17

C6A (Deep & Agile) Core C-state
Voltage

C-State Clocks ADPLL L1/L2 Cache Voltage Context
C6A Most Stopped On Coherent PG/Ret/Nom Maintained

• Reduce the 
caches supply 
voltage using 
sleep 
transistors 

• Retain a logic 
active to  wake-
up the caches 
to respond to 
snoop requests
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Evaluation Methodology
• Power and Performance Model: to evaluate AgileWatts, we use an accurate 

analytical power model, calibrated against an Intel Skylake server and considering the 
performance penalty

• Power and C-state Residency Measurements: We measure C-state residency and 
number of transitions using processor’s residency reporting counters
- We use the RAPL interface to measure power consumption

• Workloads: We evaluate AgileWatts using three latency-critical workloads: 
Memcached, Apache Kafka, and MySQL
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Power Savings and Overhead at Varying Load Levels

• AgileWatts reduces the average power consumption by up to 38% at 
low load 
- At high load, AgileWatts still provides 10% power savings

• AgileWatts has less than 1.3% impact on tail latency (server side)
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Commonly used Configurations

• Server vendors provide recommended system configurations, such as disabling
certain C-states to increase system performance or disabling Turbo Boost to reduce 
power consumption

• We analyze three common configurations that successively disable Turbo, C6, and
C1E in the baseline configuration (P-states disabled and Turbo and C-states enabled)

1. Turbo disabled (NT_Baseline),
2. Turbo and C6 disabled (NT_No_C6), and
3. Turbo, C6 and C1E disabled (NT_No_C6,No_C1E)
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Commonly used Configurations

• AgileWatts reduces average power consumption (AvgP) up to 71% against all three 
tuned configurations

• The reason is that, in these workloads AgileWatts replaces the time that other 
configurations spend in C1 with C6A C-state, which has much lower power
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Commonly used Configurations

• AgileWatts improves the performance by up to 26.3% compared to NT_Baseline and 
NT_No_C6 configurations

• AgileWatts only degrading the performance by up to 1% compared to 
NT_No_C6,No_C1E configuration
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Commonly used Configurations

• AgileWatts improves the performance by up to 26.3% compared to NT_Baseline and 
NT_No_C6

• AgileWatts only degrading the performance by less than 1% compared to 
NT_No_C6,No_C1E
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AgileWatts provides average and tail latencies comparable
to the tuned configurations that disable some power

management features, while reducing power significantly
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Other Details in the Paper

• Implementation and hardware cost 

• Idle power analysis

• C6A and C6AE latency

• Performance penalty

• Staggered unit wake-up

• Design complexity and effort

• Power savings and overhead at varying load levels

• Analysis of turbo boost performance improvement
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Conclusion
• We introduced AgileWatts, a new deep C-state architecture that drastically 

reduces the transition latency, making deep C-states usable

• We showed that AgileWatts architecture can be achieved by leveraging agile 
power management techniques while retaining most of the power savings of 
existing deep idle states

• AgileWatts reduces the energy consumption of Memcached by up to 71% with 
up to 1% performance degradation

• AgileWatts is an effective approach to improving energy consumption of 
servers running latency-critical applications by enabling the server’s processor 
to enter deep energy-saving states during short idle periods with negligible 
performance impact

• We hope our work paves the way for improving the energy proportional of 
datacenter servers
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Power-gating 

• Power-gating is a technique that is used to eliminate leakage of idle circuits 

• Typically, the wake-up latency from a power-gated state requires a few to tens of cycles

• To reduce the worst-case peak in-rush current when waking up a power-gate: 
- A power-gate controller uses a staggered wake-up technique (shown in the figure)
- It turns on different power-gate switch cells in stages to limit the current spike
- To do so, the slpin and slpout of the switch cells are daisy-chained
- The controller issues a signal to the first slpin, and it receives an acknowledgement (ready) from the last 

slpout , indicating that the power-gate is fully conducting
• Modern processors implement the staggering technique

- The Intel Skylake core staggers the wake up of the AVX power-gates over 15ns
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3. C6A Power Management Flow
• AgileWatts flow orchestrates the transitioning between the C0 and C6A C-states and 

handles coherence traffic while in C6A state

• The entry flow: 
• Clock-gates the gated-domain (UFPG) and keeps the core phase-locked loop (PLL) powered-on 
• When entering C6AE (C6A Enhanced), it initiates a non-blocking transition to Pn – the P-state with lowest 

frequency and voltage
• Saves (in place) the gated-domain’s context and shuts down its power 
• Sets the private caches into sleep mode and shuts down their clock

• When a snoop request arrives, the flow:
• Clock-ungates the private cache domain and contextually adjusts its supply voltage to exit sleep mode
• When all outstanding snoop requests are serviced, the flow rolls back the changes in reverse order and brings 

the core back into full C6A (or C6AE) state
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Retain the Context in Place

• AgileWatts leverages three techniques to efficiently retain the context during C6A

a) Placing Unit Context in the Ungated Domain

b) Place SRAM Context in Ungated Power Supply

c) State Retention Power Gates (SRPGs)
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Power Savings and Overhead at Varying Load Levels

• Further analyzes of AgileWatts impact  on average response time is shown 
• We consider end-to-end (including network latency measured at 117us) and server-side

response time for two cases: 
- The worst case, where we assume a C-state transition for each query and 
- the expected case, with the actual C-state transitions observed in the baseline 

• As expected, the gap between the worst and the expected case is larger at high load, 
- since multiple queries are serviced within the same active period. 

• We observe that the degradation of the end-to-end response time (i.e., by client) is 
negligible because the (non-changing) network latency dominates the overall response 
time
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Analysis of Turbo Boost Performance Improvement
• Average and tail latency at different request rates 

(QPS) for four configurations that show the effect 
of idle power state on Turbo performance:

- Turbo/No-Turbo & C6 disabled 
(T_No_C6/NT_No_C6),

- Turbo/No-Turbo & C6 & C1E disabled 
(T_No_C6,No_C1E/NT_No_C6,No_C1E), compared 

• With AgileWatts: Turbo/No-Turbo & C6A enabled 
& C6 & C1E disabled 
(T_C6A_No_C6_No_C1E/NT_C6A_No_C6_No_C1E)

• Figures (a,c) show that the configuration with 
Turbo and C6 disabled (i.e., NT_No_C6) increases 
the average/tail latency performance by up to 
4%/31% over the same configuration with C1E 
disabled (i.e., NT_No_C6,No_C1E)

• Figures (c,d) show that enabling Turbo while 
disabling C1E (i.e., T_No_C6,No_C1E) does not 
improve performance over the same configuration 
with Turbo disabled (i.e., NT_No_C6,No_C1E)

• Figures (b,d) show that with Turbo enabled, only 
disabling C6 (i.e., T_No_C6) has the same 
performance as additionally disabling C1E (i.e., 
T_No_C6,No_C1E) 

- The reason is that in the T_No_C6 configuration, the 
transition overhead of C1E on average/tail latency offsets any 
thermal capacitance gains and ensuing performance gains 
from Turbo.
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Analysis of Turbo Boost Performance Improvement
• Average and tail latency at different request rates 

(QPS) for four configurations that show the effect 
of idle power state on Turbo performance:

- Turbo/No-Turbo & C6 disabled 
(T_No_C6/NT_No_C6),

- Turbo/No-Turbo & C6 & C1E disabled 
(T_No_C6,No_C1E/NT_No_C6,No_C1E), compared 

• With AgileWatts: Turbo/No-Turbo & C6A enabled 
& C6 & C1E disabled 
(T_C6A_No_C6_No_C1E/NT_C6A_No_C6_No_C1E)

• Figures (a,c) show that the configuration with 
Turbo and C6 disabled (i.e., NT_No_C6) increases 
the average/tail latency performance by up to 
4%/31% over the same configuration with C1E 
disabled (i.e., NT_No_C6,No_C1E)

• Figures (c,d) show that enabling Turbo while 
disabling C1E (i.e., T_No_C6,No_C1E) does not 
improve performance over the same configuration 
with Turbo disabled (i.e., NT_No_C6,No_C1E)

• Figures (b,d) show that with Turbo enabled, only 
disabling C6 (i.e., T_No_C6) has the same 
performance as additionally disabling C1E (i.e., 
T_No_C6,No_C1E) 

- The reason is that in the T_No_C6 configuration, the 
transition overhead of C1E on average/tail latency offsets any 
thermal capacitance gains and ensuing performance gains 
from Turbo.

In a configuration where both C6 and C1E are disabled 
while Turbo is enabled, AgileWatts can provide large 
performance benefits by enabling C6A instead of C1 

Doing so provides larger thermal capacitance to Turbo 
compared to enabling C1E and reduces the long transition 

latency overhead of C6 and C1E C-states 
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Core C6 C-state Entry and Exit Flow

• C6 entry flushes privates caches, saves context, and 
turns off the PLL and voltage
- Entry latency is dominated by the L1/L2 cache flush

• C6 exit is simply the reverse process of the entry flow
- Exit latency is dominated by the hardware wake-up and

state restoration
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Conclusion
Problem: the irregular request patterns and tight latency requirements of user-facing 
applications render ineffective existing energy-conserving techniques when the server 
processor is idle due to the long transition time from a deep idle power state
Goal: directly address the root cause of the inefficiency, namely the high transition 
latency, to mitigate the energy inefficiency of modern datacenter server processors
Mechanism: AgileWatts, a new deep C-state architecture that drastically reduces the 
transition latency by leveraging three key power management techniques
- Uses medium-grained power-gates distributed across the core and maintains context in place
- Keeps private caches (i.e., L1/L2) and minimal control logic for cache coherence power-ungated
- Clock-gates the core components and clock distribution while keeping the clock generator on
Evaluation: we evaluate AgileWatts on the Intel Skylake server processor using variety 
of workloads, AgileWatts:
- Reduces the energy consumption of Memcached by up to 71% with up to 1% performance degradation
- Shows similar trends for other evaluated services such as MySQL and Kafka
- The new C-states, C6A is up to 900× faster than the deepest existing idle state C6 
Conclusion: AgileWatts is an effective approach to improving energy consumption of 
servers running latency critical applications by enabling server’s processor to enter deep 
energy saving states during short idle periods with negligible performance impact 
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Core Idle Power State – Core C-states

• Core C-states are power saving states enable cores to reduce their power 
consumption during idle periods

• Modern processors support various C-states, for example, Intel’s Skylake 
architecture offers the following four: C0, C1, C1E, C6
• The higher the C-state number the lower its power consumption but the longer 

the transition time  
• Table 2 describes the microarchitectural state for each core C-state and 

our new proposed idle states 
• C6A and C6AE (which replace C1 and C1E)

• While C-states reduce power consumption, during the entry-to and exit-
from a C-state a core cannot be utilized 
• For example, it is estimated that C6 requires 133μs transition time 
• As a result, entry-exit latencies can degrade the performance of services that 

have microseconds processing latency, such as in user-facing applications

Table 2Table 1
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Motivation (II) 
• Since the deepest C-state is C6 (Table 1), we 

estimate an upper bound of the average power 
(AvgP) savings for the ideal case of a deep idle 
state using equation 1 with: 
• The latency of C1 (2μs) and 
• The power of C6 (0.1W) per core

• RCi denotes the residency at power state Ci
• i.e., the fraction of time a core spends in state Ci 

• PCi denotes the average core power in state Ci

• Referring to our workload examples and using 
C-states power from Table 1:
• Memcached at 20% load (i.e., RC0 = 20%, RC1 = 80%, 

RC6 = 0%) the potential power savings is 55%

Table 1

Equation 1
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Core C1 C-state Entry and Exit Flow
• C1 entry mainly clock-gates all core domains and keeps 

PLLs ON
• C1E further reduces the voltage and frequency
• C1 exit Clock-ungates all domains 
• During C1/C1E the core responses to snoop requests 
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Core C6 C-state Entry and Exit Flow
• C6 entry flushes privates caches, saves context, and turns off the PLL and voltage
• C6 exit is simply the reverse process of the entry flow
• C6 entry latency is dominated by the L1/L2 cache flush

• This flush time varies depending on 1) the number of dirty lines and 2) the core frequency 
when entering C6

• Flushing a 50% dirty cache at 800MHz can take ∼75μs
• C6 exit latency is significantly faster (∼30μs)

• ∼10μs for hardware wake-up (power-ungating, PLL relock, reset, and fuse propagation)
• State and microcode restoration take 20μs
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1. Units Fast Power-Gating 

• Units Fast Power-Gating is a low-latency power-gating (PG) architecture that 

• Shuts off most of the core units while retaining the context in place 
• thus, enabling a transition latency of tens of nanoseconds

• Conventional context retention techniques sequentially save/restore the context 
to/from an external SRAM before/after power-gating/un-gating
• This process adds several microseconds to the entry/exit latency

• AgileWatts retains the context in place, completely removing save/restore latency overhead at a 
very small additional idle power cost



40

1. Units Fast Power-Gating 

• Units Fast Power-Gating is a low-latency power-gating (PG) architecture that 

• Shuts off most of the core units while retaining the context in place 
• thus, enabling a transition latency of tens of nanoseconds

• AgileWatts retains the CPU context in place, completely removing save/restore 
latency overhead at a very small additional idle power cost
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2. Caches Coherency and Sleep Mode (I)

• To avoid the high latency to flush private caches to power-gate them, AgileWatts
keeps them power-ungated when transitioning to C6A

• This has two design implications: 
• AgileWatts needs to employ other power-saving techniques to reduce the power of the caches
• A core in C6A state still needs to serve coherence requests (i.e., snoops)
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2. Cache Coherence and Sleep Mode (II)

• AgileWatts employs two key techniques to reduce the power consumption of the 
power-ungated private cache domain:

1. Unless a coherency request is being served, AgileWatts keeps this domain clock-gated 
to save its dynamic power

2. AgileWatts leverages the cache sleep-mode technique, which adds sleep transistors to 
the SRAM array of private caches. 
• These sleep transistors reduce the SRAM array’s supply voltage to the lowest level that can 

safely retain the SRAM content while significantly reducing leakage power
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2. Caches Coherency and Sleep Mode (III)

• Since private caches are not flushed when a core enters C6A, AgileWatts must 
allow the core to respond to snoop requests 

• AgileWatts keeps the logic required to handle cache snoops in the power-ungated
(but clock-gated) domain together with the private caches

• As soon as this logic detects incoming snoop traffic 
• it temporarily increases the SRAM array voltage through the sleep transistors and reactivates the 

clock of the private caches for the time required to respond to snoop requests
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Power Savings and Overhead at Varying Load Levels

• AgileWatts reduces the average power consumption by up to 38% at low 
load, with less than 1% impact on both average and tail latency

• At high load, AgileWatts still provides 10% power savings, with less than 
1.3% impact on tail latency
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Other Details in the Paper
• Implementation and hardware cost 

• Idle Power Analysis

• C6A and C6AE Latency

• Performance Penalty

• Staggered Unit Wake-up

• Design Complexity and Effort

• Power Savings and Overhead at Varying Load Levels

• Analysis of Turbo Boost Performance Improvement
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Power Savings and Overhead at Varying Load Levels

• Further analyzes of AgileWatts impact  on average response time is shown 
• We consider end-to-end (including network latency measured at 117us) and server-side

response time for two cases: 
- The worst case, where we assume a C-state transition for each query and 
- the expected case, with the actual C-state transitions observed in the baseline 

• As expected, the gap between the worst and the expected case is larger at high load, 
- since multiple queries are serviced within the same active period. 

• We observe that the degradation of the end-to-end response time (i.e., by client) is 
negligible because the (non-changing) network latency dominates the overall response 
time

AgileWatts significantly improves core average power 
consumption of the Memcached service across load levels with 

minimal performance overhead over the baseline


