E'H Ziirich SA F A R '

Bit-Exact ECC Recovery (BEER):

Determining DRAM On-Die ECC Functions
by Exploiting DRAM Data Retention Characteristics

Minesh Patel, Jeremie S. Kim
Taha Shahroodi, Hasan Hassan, Onur Mutlu

MICRO 2020 (Session 2C - Memory)

Executive Summary

Problem: DRAM on-die ECC complicates third-party reliability studies
* Proprietary design obfuscates raw bit errors in an unpredictable way
* Interferes with (1) design, (2) test & validation, and (3) characterization

Goal: understand exactly how on-die ECC obfuscates errors

Contributions:

1. BEER: new testing methodology that determines a DRAM chip’s unique
on-die ECC function (i.e., its parity-check matrix)

 Exploits ECC-function-specific uncorrectable error patterns
» Requires no hardware support, inside knowledge, or metadata access

2. BEEP: new error profiling methodology that infers the raw bit error
locations of error-prone cells from the observable uncorrectable errors

BEER Evaluations:
« Apply BEER to 80 real LPDDR4 chips from 3 major DRAM manufacturers
* Show correctness in simulation for 115,300 codes (4-247b ECC words)
We hope BEER and BEEP enable valuable studies in the future

SAFARI 2

Talk Outline

Challenges Caused by Unknown On-Die ECCs
BEER: Determining the On-Die ECC Function
Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

SAFARI 3

A Typical DRAM On-Die ECC Design

«128-bit single-error correcting (SEC) Hamming code

DRAM Chip

4 128 .)
—_— : ECC Encoder
External Chip Data
DRAM B 128
<—USC 170 ECC Decoder >tore
_/
Invisible outside Fully contained
the DRAM chip within the chip

SAFARI 4

A Typical DRAM On-Die ECC Design

DRAM Chip

4 128 128+8)
— . | FCC Encoder e
External Chip Data

DRAM Bus 128 128+8
<—UC e +—F— FCC Decoder et store
),

* Many ways to implement a 128-bit Hamming code

* Different ECC functions
* Known as parity-check matrices (i.e., H-matrices)
 All correct 1 error, but act differently on 2+ errors

* Manufacturers are free to choose any design
e Circuit optimization goals (e.g., area, power)
* Details are highly proprietary (even under NDA)
SAFARI 5

Effect of Different On-Die ECC Designs

 Simulating uniform-random errors in a 32b ECC word
OxFF test pattern @ RBER=10

] .

C 0.04 - Nonuniform errors
2> o =
W = ZE;-‘.__'_.‘*. — :ﬁa{‘f':':—
o2 M '
2 2 0.02 A
0 =
(a™ —f— Pre-Correction —— Post-Correction (ECC Function 1)
o —F— Post-Correction (ECC Function 0) —f— Post-Correction (ECC Function 2)

0.00 ; .

0 5 10 15 20 25 30
Bit Index in 32-Bit ECC Word

« 32-bit single-error correction Hamming codes
* Three different parity-check matrices

SAFARI 6

Effect of Different On-Die ECC Designs

The same error characteristics
can appear very different
with different ECC functions

SAFARI 7

Challenges for Third Parties

[System Architects: Designing Error Mitigations]_

* On-die ECC forces system architects to support unpredictable,
chip-dependent memory reliability characteristics

[Test/Validation Engineers: Post-Manufacturing Testing]_

 On-die ECC hides the root-causes of uncorrectable errors
and defeats test patterns designed to target physical cells

[Research Scientists: Error-Characterization Studies]_

* On-die ECC conflates raw bit errors with ECC artifacts,
effectively obfuscating the true physical cell characteristics

SAFARI 8

Challenges for Third Parties

These challenges all arise
from the inability to predict
how ECC transforms error patterns

SAFARI 9

Overcoming Challenges of On-Die ECC

Our goal: Determine the on-die ECC function without:
(1) hardware support or tools
(2) prior knowledge about on-die ECC
(3) access to ECC metadata (e.g., syndromes)

4)
DRAM F encode D
. ata
Chip
170 F Store
decode
_ J

*Reveals how on-die ECC scrambles errors (BEER)
* Allows inferring raw bit error locations (BEEP)

SAFARI 10

Talk Outline

Challenges Caused by Unknown On-Die ECCs
BEER: Determining the On-Die ECC Function
Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

SAFARI 11

Determining the ECC Function (1/2)

- Key idea: identify the ECC function by how it
responds to uncorrectable data-retention errors

CIZZ%?D REF REF Data-Retention
= Error
CPU Pause E v
or DRAM Refresh = §
FPGA | > 53 .
Initially

DISCHARGED

Time

 Difference between CHARGED and DISCHARGED cells
allows us to restrict errors to specific bit positions

Test Pattern

Encoded Data

1,0,0/|0

Fencoder ‘ 0

| ——
CHARGED

SAFARI

v

12

Assume data is stored unmodified
(systematic encoding)

Possible errors
are limited
to certain bits

Determining the ECC Function (2/2)

Test Pattern Encoded Data
Encode
C|D|D|D :CDDD'DDC'
Induce data-retention errors | Parity-check bits

Possible Error Patterns Different H, cause different

No error uncorrectable errors
c|-|-]- |— - c| ¥
Correctable Post-Correction Data
pl|-|-1- |_ _
cl-1]-1- |_ _
Uncorrectable
o[-1-1--]-

SAFARI 13

Determining the ECC Function (2/2)

We can differentiate ECC functions
from their uncorrectable error patterns

SAFARI 14

Choosing a Set of Test Patterns

* We consider the “n-CHARGED” test patterns:

1'C_ARGED={CDDD,DCDD,...,DDDC}
2'C‘ARGED={CCDD,CDCD,...,DDCC}
3'C_ARGED={CCCD,CDCC,...,DDCC}

* Our paper explains that the combined {1,2}-CHARGED

patterns are sufficient to identify the ECC function

* For each test pattern, we find all possible
uncorrectable errors that can occur
 Exploit uniform-randomness of data-retention errors

* Even one DRAM chip provides millions of samples
« E.g., 2 GiB DRAM module yields 224 128-bit words

SAFARI 15

BEER: Bit-Exact ECC Recovery

@ Experimentally induce data-retention
errors using {1,2}-CHARGED test patterns

@ For each test pattern, identify
all possible uncorrectable errors

@ Solve for the ECC function with the
observed behavior using a SAT solver

SAFARI 16

Talk Outline

Challenges Caused by Unknown On-Die ECCs
BEER: Determining the On-Die ECC Function
Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

SAFARI 17

Experimental Methodology

*80 LPDDR4 chips from 3 DRAM manufacturers

« Manufacturers anonymized as ‘A’, ‘B’, and ‘C’
« Temperature-controlled testing infrastructure
 Control over DRAM timings (including refresh)

« Refresh windows between 1-30 minutes at 30-80°C
* Leads to bit error rates (BERs) between 107 and 10-3
* BERs far larger than other soft error rates

SAFARI 18

Applying BEER to LPDDR4 Chips

* Study the uncorrectable errors in the 1-CHARGED patterns

_ _ Variation between manufacturers
Miscorrections indicates different ECC functions

Rarely-Observed Error Frequently-Observed Error
BER =0 |t b L BER = 1073

96

64 §
32

1-CHARGED Pattern ID
(CHARGED Bit Index)

Data retention errorsBit Index Within ECClIDataword
. : Repeating patterns indicate
within CHARGED bits structure in the H-matrix

SAFARI 19

Applying BEER to LPDDR4 Chips

1. Different manufacturers appear to use
different on-die ECC functions

2. Chips of the same model number
appear to use identical ECC functions

(shown in our paper)

SAFARI 20

Solving for the ECC Function

*We use the Z37 SAT solver to identify the H-matrix

* We demonstrate BEER for SEC Hamming codes, but it
should readily extend to all linear block codes (e.g., BCH)

*We open-source our BEER implementation on GitHub
* https://github.com/CMU-SAFARI/BEER

- Unfortunately, we face two limitations to validation:

1. No way to check the final results since we cannot see
into the on-die ECC implementation

2. We cannot share our final matrices due to
confidentiality reasons

L. De Moura and N. Bjgrner, “Z3: An Effient SMT Solver,” TACAS, 2008.
SAFARI 21

Solving for the ECC Function

We validate BEER in simulation to:
1. Evaluate correctness

2. Overcome confidentiality issues
3. Test a larger set of ECC codes

SAFARI

Simulation Methodology

 We use the EINSim'™ DRAM error-correction simulator

* We simulate 115,300 different SEC Hamming codes
« ECC dataword lengths from 4 to 247 bits
*1-, 2-, 3-, and {1,2}-CHARGED test patterns

* For each test pattern:
« Simulate 10° ECC words (=14.9 GiB for 128-bit words)
 Simulate data-retention errors with BER between 10> and 102

tPatel et al., “Understanding and Modeling On-Die Error Correction in Modern DRAM:
An Experimental Study Using Real Devices,” DSN, 2019.

SAFARI 23

BEER Correctness Evaluation

 Evaluate the number of SAT solutions found by BEER
* Shows whether the ‘unique’ solution is identified

Q
32 X 1-CHARGED
£.8 102 ; i 2-CHARGED
q_ic'i A 3-CHARGED
@)

5 F {1,2}-CHARGED
g 10%
v
Q0
£ O \ f oo T
2" 100 {5 R N_h ki unhi

.

16 32 64 128 256

Dataword Length (k) f
1-, 2-, 3-CHARGED
patterns individually do {1,2} -CHARGED patterns

not always succeed succeed for all test cases

SAFARI 24

BEER Correctness Evaluation

BEER successfully identifies
the ECC function using
the {1,2}-CHARGED test patterns

SAFARI 25

Talk Outline

Challenges Caused by Unknown On-Die ECCs
BEER: Determining the On-Die ECC Function
Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

SAFARI 26

Practical Use Cases for BEER

* We provide 5 use cases in our paper to show how
knowing the ECC function is useful in practice

o BEEP: identifying raw bit error locations
Error Pmﬁlmg { corresponding to observed post-correction errors

Architecting DRAM controller error mitigations

SyStem Design that are informed about on-die ECC

to enable efficient testing and validation

Testing

Root-cause analysis for uncorrectable errors

Error
Characterization

Studying the statistical properties

[Crafting worst-case test patterns
{ of raw bit errors (e.g., spatial distributions)

SAFARI 27

Other Information in the Paper

* Formalism for BEER and the n-CHARGED test patterns

* BEER evaluations using experiment and simulation

* Sensitivity to experimental noise
 Analysis of experimental runtime
* Practicality of the SAT problem (i.e., runtime, memory)

* BEEP evaluations in simulation

» Accuracy at different error rates
* Sensitivity to different ECC codes and word sizes

* Detailed discussion of use-cases for BEER

* Discussion on BEER’s requirements and limitations

SAFARI 28

Executive Summary
Problem: DRAM on-die ECC complicates third-party reliability studies

* Proprietary design obfuscates raw bit errors in an unpredictable way
* Interferes with (1) design, (2) test & validation, and (3) characterization

Goal: understand exactly how on-die ECC obfuscates errors

Contributions:

1. BEER: new testing methodology that determines a DRAM chip’s unique
on-die ECC function (i.e., its parity-check matrix)

2. BEEP: new error profiling methodology that infers the raw bit error
locations of error-prone cells from the observable uncorrectable errors

BEER Evaluations:
« Apply BEER to 80 real LPDDR4 chips from 3 major DRAM manufacturers
* Show correctness in simulation for 115,300 codes (4-247b ECC words)

https://github.com/CMU-SAFARI/BEER

We hope that both BEER and BEEP
enable many valuable studies going forward

SAFARI 29

E'H Ziirich SA F A R '

Bit-Exact ECC Recovery (BEER):

Determining DRAM On-Die ECC Functions
by Exploiting DRAM Data Retention Characteristics

Minesh Patel, Jeremie S. Kim
Taha Shahroodi, Hasan Hassan, Onur Mutlu

MICRO 2020 (Session 2C - Memory)

