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Goal: Reduce the performance overhead of RowHammer mitigation mechanisms 
by reducing the number of performed RowHammer-preventive actions 
without compromising system robustness

Problem:
• DRAM continues to become more vulnerable to RowHammer
• Operations that prevent RowHammer (i.e., RowHammer-preventive actions) 

are time consuming and block access to memory

Executive Summary

2

Key Results: BreakHammer significantly reduces the negative effects of 
RowHammer mitigation mechanisms on performance, energy, and fairness

Key Idea: Throttle threads that frequently trigger RowHammer solutions

Key Mechanism: BreakHammer
• Observes triggered RowHammer-preventive actions
• Identifies threads that trigger many preventive actions (i.e., suspect threads)
• Reduces the memory bandwidth usage of the suspect threads

https://github.com/CMU-SAFARI/BreakHammer

Key Exploit: Mount a memory performance attack by triggering
RowHammer-preventive actions to block memory access for long time periods

https://github.com/CMU-SAFARI/BreakHammer
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DRAM Organization
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RowHammer:
A Prime Example of Read Disturbance

[Kim+ ISCA’20] 6
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Repeatedly opening (activating) and closing (precharging) 

a DRAM row causes read disturbance bitflips in nearby cells



Read Disturbance Vulnerabilities (I)  

[Kim+ ISCA’20] 7
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The minimum number of activations that causes a bitflip 
is called the RowHammer threshold (NRH)



Read Disturbance Vulnerabilities (II)
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Technology Scaling

It is critical to prevent read disturbance bitflips
effectively and efficiently for highly vulnerable systems
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Existing RowHammer Mitigations:
RowHammer-Preventive Actions

Many ways to prevent RowHammer via 

RowHammer-preventive actions:

• Preventive refresh

• Row migration

• Proactive throttling

• …

9

State-of-the-art RowHammer 
mitigation mechanisms 

adopt these two approaches



Preventive Refresh
as a RowHammer-Preventive Actions

[Kim+ ISCA’20] 10
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Row Migration
as a RowHammer-Preventive Action

11

Row 0

Row 1

Row 2

Row 4

Row 2open

Row 1

Row 2closed Row 2open

Row 1

Row 0

Distant Row

Victim Row

Aggressor Row

Aggressor RowRow 2open Row 2

DRAM

Migrating potential aggressor rows

to a distant row mitigates RowHammer bitflips

Victim Row

Aggressor Row
…



Outline

12

Background

Conclusion

BreakHammer

Evaluation

Motivation



REF

Root Cause of Performance Overhead
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DRAM 
Channel

DRAM Module

RowHammer-preventive actions are 
blocking and time consuming operations

ACT

Memory controller cannot access a memory bank
undergoing a RowHammer-preventive action

Refreshing KBs of data can block access to GBs of data



RowHammer Mitigation Performance Overhead
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RowHammer Mitigation Performance Overhead
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RowHammer mitigation mechanisms incur 
increasingly large performance overhead 

as the RowHammer threshold decreases

19%

66%

Preventive Refresh Row Migration
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Attacker can trigger many preventive actions
to block access to main memory

Preventive actions can be exploited
to reduce DRAM bandwidth availability

Memory Performance Attack

Memory
Controller

Core

Core

Attacker

User
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Problem & Goal

Operations that prevent RowHammer lead to
DRAM bandwidth availability issues

as they can frequently block access to memory

Problem

Reduce the performance overhead
of RowHammer mitigation mechanisms

by reducing the number of RowHammer-preventive actions
without compromising system robustness

Goal
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Key Idea
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Detect and slow down the memory accesses of threads
that trigger many RowHammer-preventive actions

Suspect Thread
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BreakHammer: Overview

Execution Timeline
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BreakHammer: Overview
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Observing RowHammer-Preventive Actions
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BreakHammer tracks the number
of RowHammer-preventive actions each thread triggers

Thread 1 Thread 2 Thread 3 Thread 4

RowHammer-preventive score counter



Time

Observing RowHammer-Preventive Actions:
Score Attribution Method
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A RowHammer-preventive action is generally caused by
a stream of memory requests from many hardware threads

Thread 1 Thread 2 Thread 3 Thread 4

T2 T3T4 T4 T1T4 T4T1

Thread 1’s Row Activations

REFP

RowHammer-Preventive Action

RH-Preventive Score



Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)

2) Per Row Activation Counting (PRAC)
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Observing RowHammer-Preventive Actions:
Integration Showcase with PARA (I)
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BreakHammer cooperates with existing RowHammer solutions

Probabilistic Row Activation (PARA) [Kim+, ISCA 2024]:
• Generates a random number
• Compares the number with a threshold
• If the random number exceeds the threshold                                             

performs a preventive refresh

access

refreshP

>?



Observing RowHammer-Preventive Actions:
Integration Showcase with PARA (II)
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Probabilistic Row Activation + BreakHammer (PARA+BH):
• Track row activation count of each thread         

between preventive refreshes
• Increment each thread’s score proportionally to its activations

access

T2 T3T3T1 T3 T1T3 refreshP Time

Thread 1 Thread 2 Thread 3

refreshP

RH-Preventive Score



Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)

2) Per Row Activation Counting (PRAC)
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Observing RowHammer-Preventive Actions:
Integration Showcase with PRAC (I)
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BreakHammer cooperates with existing RowHammer solutions

Per Row Activation Counting (PRAC) [JEDEC, 2024]:
• DRAM maintains an activation counter for each DRAM row
• DRAM requests time by triggering a back-off
• Memory controller provides time for 

in-DRAM preventive refreshes

Counter 0

Counter 1

...

Counter 3

Per Row
Activation Counters

back-off

RFM

High Activation
Count Detected 



Observing RowHammer-Preventive Actions:
Integration Showcase with PRAC (II)
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Per Row Activation Counting + BreakHammer (PRAC+BH):
• Track row activation count of each thread between back-offs
• Increment each thread’s score proportionally to its activations

back-off

access

T2 T3T3T1 T3 T1T3 back-off Time

Thread 1 Thread 2 Thread 3

RH-Preventive Score



Observing RowHammer-Preventive Actions:
Integration with Other Mechanisms

31https://github.com/CMU-SAFARI/BreakHammer

https://arxiv.org/abs/2404.13477

We integrate BreakHammer with eight RowHammer solutions:

• PARA [Kim+, ISCA 2014]

• Graphene [Park+, MICRO 2020]

• Hydra [Qureshi+, ISCA 2022]

• TWiCe [Lee+, ISCA 2019]

• AQUA [Saxena+, MICRO 2022]

• REGA [Marazzi+, S&P 2023]

• RFM [JEDEC 2020]

• PRAC [JEDEC 2024]

https://github.com/CMU-SAFARI/BreakHammer
https://arxiv.org/abs/2404.13477
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BreakHammer: Overview
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Identifying Suspect Threads:
An Example
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BreakHammer detects threads that trigger too many 
RowHammer-preventive actions

> Minimum Score
to Consider

Maximum Deviation
from the Average Score

Threads

S
co

re

Thread Score

T1 10

T2 2

T3 3

T4 50

… …
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BreakHammer: Overview
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Throttling Memory Bandwidth Usage of Suspect Threads

[*] also known as miss status holding registers (MSHRs) 35

BreakHammer reduces the memory bandwidth usage
of each suspect thread

Throttle BreakHammer

Last-Level Cache

Cache-Miss Buffers*
Allocated Maximum

0 ∞

0 ∞

0 ∞

0 ∞

3 ∞

1 ∞

2 ∞

4 ∞55 5

User

User

User

Suspect



Restoring Memory Bandwidth of Suspect Threads
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BreakHammer 
restores the memory bandwidth usage of a suspect thread 

if the thread stays benign for the full duration of a throttling window

Execution Timeline

Throttling Window

Benign

Throttling Window

ThrottledSuspect

Identified
This Window

Memory Bandwidth
Usage Restored

Still
Throttled

Throttling Window

Benign

Not
Identified
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Evaluation Methodology

• Performance and energy consumption evaluation: 
cycle-level simulations using Ramulator 2.0 [Luo+, CAL 2023] 
and DRAMPower [Chandrasekar+, DATE 2013]

• System Configuration:
Processor  4 cores, 4.2GHz clock frequency,

   4-wide issue, 128-entry instruction window

DRAM  DDR5, 1 channel, 2 rank/channel, 8 bank groups,

   4 banks/bank group, 64K rows/bank

Memory Ctrl. 64-entry read and write requests queues,

   Scheduling policy: FR-FCFS with a column cap of 4 

Last-Level Cache 8 MiB (4-core)

38



Evaluation Methodology

• Comparison Points: Integrated with 8 state-of-the-art 
RowHammer mitigation mechanisms:

39

• Workloads: 4-core workload mixes from SPEC CPU2006, 
SPEC CPU2017, TPC, MediaBench, YCSB
• 90 mixes with one attacker
• 90 mixes all benign

• PARA [Kim+, ISCA 2014]

• Graphene [Park+, MICRO 2020]

• Hydra [Qureshi+, ISCA 2022]

• TWiCe [Lee+, ISCA 2019]

• AQUA [Saxena+, MICRO 2022]

• REGA [Marazzi+, S&P 2023]

• RFM [JEDEC 2020]

• PRAC [JEDEC 2024]



Evaluation Results
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1) Under Attack

2) No Attack



Evaluation Results
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1) Under Attack

2) No Attack



Preventive Action Count and Its Scaling
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Lower is worse

Higher is worse No BreakHammer

With
BreakHammer

~34x



Preventive Action Count and Its Scaling

43

Lower is worse

Higher is worse No BreakHammer

With
BreakHammer

~80% reduction
with BreakHammer



Preventive Action Count and Its Scaling
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BreakHammer significantly reduces (72% on average) the 
number of preventive actions performed across all mechanisms



Memory Latency Impact at NRH=64
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Higher is worse
No BreakHammer

With
BreakHammer

No Defense

50% of requests are
served within 200ns



BreakHammer reduces memory latency across all mechanisms

Memory Latency Impact at NRH=64
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BreakHammer significantly increases (81% on average)
the performance of PRAC

Performance Impact and Its Scaling
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Lower is worse
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Performance Impact and Its Scaling
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BreakHammer significantly increases system performance
(90% on average)

As RowHammer threshold decreases, RowHammer mitigation 
mechanisms incur increasing performance overhead



DRAM Energy Impact and Its Scaling
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BreakHammer significantly reduces (by 55% on average)
the energy consumption of PRAC

Lower is worse
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DRAM Energy Impact and Its Scaling

50

BreakHammer significantly decreases energy consumption 
(by 55% on average)

As RowHammer threshold decreases, RowHammer mitigation 
mechanisms consume significantly increasing DRAM energy
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Under Attack Summary

BreakHammer significantly reduces
the negative performance and energy overheads

of existing RowHammer mitigation mechanisms
when a memory performance attack is present

BreakHammer accurately detects suspect threads1)

BreakHammer effectively reduces
the memory interference caused by suspect threads

2)



Evaluation Results
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1) Under Attack

2) No Attack



No Attack Summary
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Across 90 four-core benign workload mixes:

BreakHammer slightly (<1%) improves

• memory access latency

• system performance

• DRAM energy efficiency



More in the Paper
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• More implementation details
‐ Resetting BreakHammer counters
‐ Tracking software threads
‐ Throttling DMA and systems without caches
‐ Configuration parameters

• Security analysis
‐ Upper bound on the overhead an attacker can cause
‐ Security against multi-threaded attackers

• Performance evaluation
‐ Unfairness results
‐ Sensitivity to memory intensity of workloads
‐ Comparison to BlockHammer
‐ Sensitivity analysis of BreakHammer parameters

https://arxiv.org/abs/2404.13477

https://arxiv.org/abs/2404.13477


The Paper
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https://arxiv.org/abs/2404.13477

https://arxiv.org/abs/2404.13477
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Conclusion
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Key Results:
• Under attack:

• Significantly improves system performance (by 90% on average)
• Significantly reduces energy consumption (by 55% on average)

• No attack:
• Slightly (<1%) improves performance and energy consumption

Key Mechanism: BreakHammer
• Observes triggered RowHammer-preventive actions
• Identifies threads that 

trigger many preventive actions (i.e., suspect threads)
• Reduces the memory bandwidth usage of the suspect threads

https://github.com/CMU-SAFARI/BreakHammer

Key Exploit: Mount a memory performance attack by 
triggering RowHammer-preventive actions to 
block memory accesses for long periods of time

https://github.com/CMU-SAFARI/BreakHammer


Open Source and Artifact Evaluated

58https://github.com/CMU-SAFARI/BreakHammer

https://github.com/CMU-SAFARI/BreakHammer
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BreakHammer and RowPress

61

changing the score attribution to consider
row active time (e.g., Impress [Qureshi+, MICRO’24])

1)

conveying the type of action taken by the read 
disturbance solution and tracking them differently
(i.e., RowHammer or Rowpress-preventive action)

2)

BreakHammer cooperates with a read disturbance solution

BreakHammer can become RowPress aware by:

RowHammer
Aggressor Row

Open

Close

RowPress
Aggressor Row

Open

Close

36ns, 47K activations to induce bitflips

7.8µs, only 5K activations to induce bitflips



Throttling DMA and Systems without Caches
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Direct Memory Access (DMA)

BreakHammer

Suspect
Identification

Memory
Bandwidth

Usage
Throttler

Core

Core

Core

Processor Chip

Memory Controller

RowHammer
Mitigation Mechanism

Memory Request Scheduler

Thread 1

Thread 2

Thread N

Observing Actions

Extend DMA and load-store units of cores
to track and limit the number of unresolved memory requests



BreakHammer vs BLISS
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Time

REFPACT RD PRE ACT RD PREACT RD RD PRERD

Three Requests Served

BLISS
Is Oblivious

To Action

BreakHammer
Three Key

Operations
Take Place

One Request Served One Request Served

One Activation One Activation One Activation

BreakHammer is preventive action contribution aware
Thereby accurately scores the suspect thread with higher score

BLISS only tracks consecutive requests served
Thereby wrongly scores a benign thread with higher score

T1 T2



Resetting Counters
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Comparison to BlockHammer

65

BreakHammer outperforms BlockHammer across
all evaluated RowHammer thresholds
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Upper Bound
on the Overhead an Attacker Can Cause
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RBMPKI and Repeatedly Activated Row Count
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Under Attack Memory Intensity (NRH=1K)
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Under Attack Unfairness (NRH=1K)
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Under Attack Unfairness and Its Scaling
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No Attack Memory Intensity (NRH=1K)
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No Attack Unfairness (NRH=1K)
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No Attack Performance and Its Scaling
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No Attack Unfairness and Its Scaling
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No Attack Memory Latency (NRH=64)
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BreakHammer Sensitivity to Minimum Score



Organization

77

D
R

A
M

 C
h

ip
s

BreakHammer

Memory Controller

RowHammer
Mitigation Mechanism

Memory Request Scheduler

Shared
Caches

Direct Memory Access (DMA)
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Identifying Suspect Threads:
An Example

78

BreakHammer detects threads that trigger too many 
RowHammer-preventive actions

T2: 3T1: 25

T3: 11

T4: 30

T5: 20

T6: 90

T7: 5 T8: 0

T6: 90

T4: 30

T1: 25

T5: 20

T3: 11

T7: 5

T2: 3

T8: 0

T6: 90

T4: 30

T1: 25

T5: 20

T3: 11

T7: 5

T2: 3

T8: 0

>



Identifying Suspect Threads:
High Level Algorithm

79

BreakHammer detects threads that trigger too many 
RowHammer-preventive actions

Thread 1 Thread 2 Thread 3 Thread 4

>
Minimum score to 
consider a thread 

as suspect

Maximum deviation
from the average score

> >

Benign Benign Benign Suspect
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