BreakHammer
Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads

Oguzhan Canpolat A. Giray Yaglikci
Ataberk Olgun Ismail E. Yiiksel
Yahya C. Tugrul Konstantinos Kanellopoulos

Oguz Ergin Onur Mutlu

https://github.com/CMU-SAFARI/BreakHammer

SAFARI ETH:zurich kasirga

https://github.com/CMU-SAFARI/BreakHammer

Executive Summary

Problem:

 DRAM continues to become more vulnerable to RowHammer

e Operations that prevent RowHammer (i.e., RowHammer-preventive actions)
are time consuming and block access to memory

Key Exploit: Mount a memory performance attack by triggering
RowHammer-preventive actions to block memory access for long time periods

Goal: Reduce the performance overhead of RowHammer mitigation mechanisms
by reducing the number of performed RowHammer-preventive actions
without compromising system robustness

Key Idea: Throttle threads that frequently trigger RowHammer solutions

Key Mechanism: BreakHammer

* Observes triggered RowHammer-preventive actions

* Identifies threads that trigger many preventive actions (i.e., suspect threads)
* Reduces the memory bandwidth usage of the suspect threads

Key Results: BreakHammer significantly reduces the negative effects of
RowHammer mitigation mechanisms on performance, energy, and fairness

SAFARI https://github.com/CMU-SAFARI/BreakHammer

https://github.com/CMU-SAFARI/BreakHammer

Outline

Background

SAFARI 3

DRAM Organization

Channel

DRAM Module

SAFARI

DRAM Organization

Off-Chip Channel

SAFARI

DRAM Cell
7 J_ \‘\\\

o —

X
=
—
~
o

Wordline

HOOO-£
OOk

HOOO-

Sense Amplifiers
(Row Buffer)

RowHammer:
A Prime Example of Read Disturbance

4 DRAM Subarray)
x Row 0 Victim Row
¥ row1i R viciim row
Row 2
Row 3 x Victim Row
x Row 4 Victim Row
\- /

Repeatedly opening (activating) and closing (precharging)

a DRAM row causes read disturbance bitflips in nearby cells

S A FA R l [Kim+ ISCA’20]

6

Read Disturbance Vulnerabilities (I)

4 DRAM Subarray)
x Row 0 Victim Row
¥ row1i R viciim row
Row 2
x Row 3 x Victim Row
x Row 4 Victim Row
\- /

The minimum number of activations that causes a bitflip
is called the RowHammer threshold (Ny4)

S A FA R l [Kim+ ISCA'20] 7

Read Disturbance Vulnerabilities (II)

900 sssss
000 == i
00000

It is critical to prevent read disturbance bitflips
effectively and efficiently for highly vulnerable systems

2023 2020 2013

Manufactured Year

0K 20K 40K 60K 80K 100K 120K
The minimum activation count needed to induce the first bitflip

~100X reduction

Existing RowHammer Mitigations:
RowHammer-Preventive Actions

Many ways to prevent RowHammer via

RowHammer-preventive actions:

* Preventive refresh State-of-the-art RowHammer
mitigation mechanisms
 Row migration adopt these two approaches

* Proactive throttling

SAFARI 9

Preventive Refresh
as a RowHammer-Preventive Actions

4 DRAM

Row 0O Victim Row

Row 1 Victim Row

Row 2 Aggressor Row
Row 3 Victim Row

Row 4 Victim Row

_

Refreshing potential victim rows
mitigates RowHammer bitflips

S A FA R l [Kim+ ISCA’20]

10

Row Migration
as a RowHammer-Preventive Action

4 DRAM)

Row O Victim Row

Row 1 Aggressor Row

Row 2 Victim Row

—I Distant Row Aggressor Row

_ J

Migrating potential aggressor rows

to a distant row mitigates RowHammer bitflips
SAFARI

Outline

SAFARI 12

Root Cause of Performance Overhead

RowHammer-preventive actions are
blocking and time consuming operations

3
b 1
- - - oR
4 | 4 £ -
Baad nadd maad’ ‘Mcie masa Aaad] s Qo9 . ® pidd ‘masy’ faid 2EZENTRITI S e
S 4T e ¥ WY N e 0 - $ o HYH W WY W W o o0
/ 3 ? - osele

Channel | o
DRAM Module

Memory controller cannot access a memory bank
undergoing a RowHammer-preventive action

Refreshing KBs of data can block access to GBs of data

SAFARI 13

RowHammer Mitigation Performance Overhead

Preventive Refresh Row Migration
AN K_M
r N\
[Hydra [RFM [PARA [AQUA|
. 21.2
1 KR
=22 08-
et C o
g OE 0.4_
ol <20.2-
o)
; 00 T 1 1 T 1 | 1
4K 2K 1K 512 256 128 64
RowHammer Threshold Ngy
)

Lower is worse

SAFARI

14

RowHammer Mitigation Performance Overhead

Preventive Refresh Row Migration
A P
- N\
[Hydra [RFM [PARA [AQUA|
él 1.2
o 1L.01——- == T e [e I eyt
v 19%
e |epo
£E9 4
(@) E 0.4 N
<2 0.2
)
< 0.0 . . .

4K 2K 1K 512 256 128 64
RowHammer Threshold Ngy

RowHammer mitigation mechanisms incur
increasingly large performance overhead
as the RowHammer threshold decreases

SAFARI 15

Memory Performance Attack

Attacker can trigger many preventive actions
to block access to main memory

Attacker

Memory
@@ Controller

%

Preventive actions can be exploited
to reduce DRAM bandwidth availability

SAFARI 16

Problem & Goal

]

{ Problem |
Operations that prevent RowHammer lead to
DRAM bandwidth availability issues
as they can frequently block access to memory

{ Goal }
Reduce the performance overhead
of RowHammer mitigation mechanisms
by reducing the number of RowHammer-preventive actions
without compromising system robustness

SAFARI

Outline

SAFARI 18

Key Idea

Detect and slow down the memory accesses of threads
that trigger many RowHammer-preventive actions

.
Attacker

Suspect Thread

~

Memory
Controller

User

& -

SAFARI 19

BreakHammer: Overview

Execution Timeline
| Throttling Window | Throttling Window | Throttling Window |

RowHammer-Preventive Action Thread 1’s Row Activations

—]-[\Tl]-[T4]-[T2]-[T4]-[T$1]-[T3]-[T4]-[J]-»Time

|Thread || Score |

2T
mm
T4] 501771

Observing RowHammer- Identifying Suspect Threads Throttling Memory
Preventive Actions Bandwidth Usage

SAFARI 20

BreakHammer: Overview

Execution Timeline
| Throttling Window | Throttling Window | Throttling Window |

RowHammer-Preventive Action Thread 1’s Row Activations

L |
— REF, H{ T1 H T4 H T2 H T4 { T1 H 13 H T4 H REF, }> Time
. J

|Thread || Score |

2T
mm
T4 [501771

Observing RowHammer- Identifying Suspect Threads Throttling Memory
Preventive Actions Bandwidth Usage

SAFARI 21

Observing RowHammer-Preventive Actions

BreakHammer tracks the number
of RowHammer-preventive actions each thread triggers

/ RowHammer-preventive score counter

Thread 1 Thread 2 Thread 3 Thread 4 | e°°

SAFARI 22

Observing RowHammer-Preventive Actions:
Score Attribution Method

A RowHammer-preventive action is generally caused by
a stream of memory requests from many hardware threads

RH- Preventlve Score

& &1

Thread 1 Thread 2 Thread 3 Thread 4 |[°°°
—{t1H{Ta H 12]-[T4]-[T4]-[T1]-[T3]-[T4]-m> Time
Thread 1’s Rotw Activations RowHammer-Preventive Action

SAFARI 23

Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)

2) Per Row Activation Counting (PRAC)

SAFARI 24

Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)

SAFARI 25

Observing RowHammer-Preventive Actions:
Integration Showcase with PARA (I)

BreakHammer cooperates with existing RowHammer solutions

Probabilistic Row Activation (PARA) [Kim+, ISCA 2024]:

* Generates a random number

 Compares the number with a threshold

e If the random number exceeds the threshold
performs a preventive refresh

m@>?

SAFARI 26

Observing RowHammer-Preventive Actions:
Integration Showcase with PARA (II)

Probabilistic Row Activation + BreakHammer (PARA+BH):
* Track row activation count of each thread
between preventive refreshes

* Increment each thread’s score proportionally to its activations
RH-Preventive Score

&1 &1 T

Thread 1 Thread 2 Thread 3

-[T1]-[T3]-[T2]-[T3]-[T3]-[T1]-[T3m> Time

SAFARI 27

Observing RowHammer-Preventive Actions:
Integration Showcase

2) Per Row Activation Counting (PRAC)

SAFARI 28

Observing RowHammer-Preventive Actions:
Integration Showcase with PRAC (I)

BreakHammer cooperates with existing RowHammer solutions

Per Row Activation Counting (PRAC) [JEDEC, 2024]:

 DRAM maintains an activation counter for each DRAM row
 DRAM requests time by triggering a back-off

 Memory controller provides time for

in-DRAM preventive refreshes . —_
High Activation

Count Detected

Counter 0

Counter 1

Counter 3

Per Row
Activation Counters

SAFARI 29

Observing RowHammer-Preventive Actions:
Integration Showcase with PRAC (II)

Per Row Activation Counting + BreakHammer (PRAC+BH):
* Track row activation count of each thread between back-offs
* Increment each thread’s score proportionally to its activations

RH-Preventive Score

& &1 T

Thread 1 Thread 2 Thread 3

< T1 H T3

SAFARI 30

Observing RowHammer-Preventive Actions:
Integration with Other Mechanisms

We integrate BreakHammer with eight RowHammer solutions:

* PARA [Kim+, ISCA 2014] * AQUA [Saxena+, MICRO 2022]
e Graphene [Park+, MICRO 2020] * REGA [Marazzi+, S&P 2023]

« Hydra [Qureshi+, ISCA 2022] « RFM [JEDEC 2020]

« TWiCe [Lee+, ISCA 2019] * PRAC [JEDEC 2024]

BreakHammer: Enhancing RowHammer Mititions
by Carefully Throttling Suspect Threads

Oguzhan Canpolat®f A. Giray Yaglikci® Ataberk Olgun® Ismail Emir Yuksel®
Yahya Can Tugrul®’ Konstantinos Kanellopoulos’ ~ Oguz Ergin'' Onur Mutlu®
SETH Ziirich "TOBB University of Economics and Technology University of Sharjah

RowHammer is a major read disturbance mechanism in DRAM can experience bitflips when a nearby DRAM row (i.e., aggres-

where repeatedly accessing (hammering) a row of DRAM cells ~ sor row) is repeatedly opened (i.e., hammered) [2-70].
(DRAM row) induces bitflips in other physically nearby DRAM

Many prior works demonstrate attacks on a wide range
rows. RowHammer solutions perform preventive actions (e.g.,

of systems where they exploit read disturbance to escalate

https://arxiv.org/abs/2404.13477
SAFARI] https://github.com/CMU-SAFARI/BreakHammer 31

https://github.com/CMU-SAFARI/BreakHammer
https://arxiv.org/abs/2404.13477

BreakHammer: Overview

Execution Timeline
| Throttling Window | Throttling Window | Throttling Window |

RowHammer-Preventive Action Thread 1’s Row Activations

L |
— REF, H{ T1 H T4 H{ T2 H T4 { T1 H 13 H T4 H REF, }> Time
. J

|Thread || Score |

ZT
mm
T4] 501771

Observing RowHammer- Identifying Suspect Threads Throttling Memory
Preventive Actions Bandwidth Usage

SAFARI 32

Identifying Suspect Threads:
An Example

BreakHammer detects threads that trigger too many

RowHammer-preventive actions

0o

Qo . . .
Maximum Deviation
from the Average Score

&
&

[Thread || Score |
[11 [10]
I V: " 2 I : Minimum Score
I T3 II 3 I to Consider
[T4 | 50]
Threads
SAFARI 33

Score

BreakHammer: Overview

Execution Timeline
| Throttling Window | Throttling Window | Throttling Window |

RowHammer-Preventive Action Thread 1’s Row Activations

L |
— REF, H{ T1 H T4 H{ T2 H T4 { T1 H 13 H T4 H REF, }> Time
. J

|Thread || Score |

ZT
mm
T4] 501771

Observing RowHammer- Identifying Suspect Threads Throttling Memory
Preventive Actions Bandwidth Usage

SAFARI 34

Throttling Memory Bandwidth Usage of Suspect Threads

BreakHammer reduces the memory bandwidth usage
of each suspect thread

SAFARI

Cache-Miss Buffers*

Allocated Maximum
 P—————

—> (3][
—> (1 ([
<Throttle BreakHammer
—> (2 ([
% s [s
- y
Last-Level Cache
[*] also known as miss status holding registers (MSHRs) 35

Restoring Memory Bandwidth of Suspect Threads

BreakHammer
restores the memory bandwidth usage of a suspect thread
if the thread stays benign for the full duration of a throttling window

Memory Bandwidth
Usage Restored
Identified Not
This Window Identified
\ \ still
Suspect Throttled Benign Throttled Benign

& Y OY| O

(Throttling Window Throttling Window | Throttling Window

| I | |
Execution Timeline

SAFARI 36

>

Outline

SAFARI 37

Evaluation Methodology

* Performance and energy consumption evaluation:
cycle-level simulations using Ramulator 2.0 [Luo+, CAL 2023]
and DRAMPower [Chandrasekar+, DATE 2013]

* System Configuration:

Processor 4 cores, 4.2GHz clock frequency,
4-wide issue, 128-entry instruction window
DRAM DDRS5, 1 channel, 2 rank/channel, 8 bank groups,
4 banks/bank group, 64K rows/bank
Memory Ctrl. 64-entry read and write requests queues,

Scheduling policy: FR-FCFS with a column cap of 4
Last-Level Cache 8 MiB (4-core)

SAFARI 38

Evaluation Methodology

 Comparison Points: Integrated with 8 state-of-the-art
RowHammer mitigation mechanisms:

PARA [Kim+, ISCA 2014]
Graphene [Park+, MICRO 2020]
Hydra [Qureshi+, ISCA 2022]
TWiCe [Lee+, SCA 2019]

AQUA [Saxena+, MICRO 2022]
REGA [Marazzi+, S&P 2023]
RFM [JEDEC 2020]

PRAC [JEDEC 2024]

 Workloads: 4-core workload mixes from SPEC CPU2006,
SPEC CPU2017, TPC, MediaBench, YCSB

* 90 mixes with one attacker
* 90 mixes all benign

SAFARI 39

1) Under Attack

2) No Attack

SAFARI 40

Evaluation Results

1) Under Attack

SAFARI 41

Preventive Action Count and Its Scaling

A4

1o . .

Q5 Higheris worse No BreakHammer
= T

0 o 100 ! : | ! H /

g < | —pPrRAC |

S g —— PRAC+BH With
” & 50 _P BreakHammer
g fIU T 7 TN

v é 1 ’ ' ' ' ~34x

= N iR R A I I

8 =

a9 RowHammer Threshold (Ngy)

I

Lower is worse

SAFARI 42

Preventive Action Count and Its Scaling

4K

Higher is worse No BreakHammer

109 —— P!RACF ! /

| —— PRAC+BH

------ el ~80% reduction
| ' ' | with BreakHammer

B AF A PR S

Preventive Actions Normalized
to No BreakHammer at Ngy

RowHammer Threshold (Ngry)
R

Lower is worse

SAFARI 43

Preventive Action Count and Its Scaling

60 ———————— 100 ——————— 100 —————————— 100 T—————
e PARA ; - Graphene | — Hydra e | — TWiCe R
—— PARA+BH | | —— Graphene+BH / | —— Hydra+BH | | —— TwiCe+BH |
304 S ——— —————— N 4 ————
1 -
g

Preventive Actions Normalized
to No BreakHammer at Ngy=4K

RowHammer Threshold (NRH)

BreakHammer significantly reduces (72% on average) the
number of preventive actions performed across all mechanisms

SAFARI 44

Memory Latency Impact at N,,=64

SAFARI

No BreakHammer

—~ Higher is worse
500 /
PRAC /

/¢t No Defense
PRAC+BH /

= No Defense ¢

/
- 50% of requests are
-7 served within 200ns
0-lr

|
0 100
Memory Latency Percentile (Py)

I

N

o

o
|

Memory Latency (ns)
(Benign Applications

45

Memory Latency Impact at N,,=64

500 - 500 - 500 . -
PARA Il Graphene / Hydra I' TWiCe "
PARA+BH / Graphene+BH » Hydra+BH / TWiCe+BH /
—_— = No Defense / = No Defense = No Defense # = No Defense 4
2 e ’ ’ / ’
=05 R 7 7 -7
>0 e -~ - -
O© e P e P
cS olf 4 odle 4 ole 4 ole .
B % 0 100 0 100 0 100 0 100
—1 <
> - 3000 500 - 500 - 500 -
S O AQUA REGA I' RFM I' PRAC "
= (]EJ AQUA+BH | REGA+BH RFM+BH / PRAC+BH /,
v = No Defense = No Defense £/ = No Defense £ = No Defense 7
> @ 1500 1] 250 /| 250- /| 250+ 7}
[-7 % 7
/ ’/ ” ’/
- i i A
0 tr——= T 0 = T 0 £ T 0 r T
0 100 0 100 0 100 0 100

Memory Latency Percentile (Py)

BreakHammer reduces memory latency across all mechanisms

46

SAFARI

Performance Impact and Its Scaling

| PRAC =1 PRAC+BH|

> %g — —— = = — i
§ S 9 = 1.5y '4 ““““ IrT ' f ' f ““““ t‘ “““ fo I
- IR = S0 37 O i A i O A o
75)] © '
P EET
Q = -
=f 255 0.5
o D C 7
T =2 0.0

= 4096 2048 1024 512 256 128 64

RowHammer Threshold (Ngy)

Lower is worse

BreakHammer significantly increases (81% on average)
the performance of PRAC

SAFARI 47

Performance Impact and Its Scaling

4K 2K 1K 512 256 128 64

4K 2K 1K 512 256 128 64

4K 2K 1K 512 256 128 64

RowHammer Threshold (Ngy)

o

>

2 251 =] PARA =1 PARA+BH 3'(5}: [Graphene [Graphene+BH ;lg: [Hydra [Hydra+BH g'g: 1 TWiCe [TWiCe+BH

0y 2.0 07 01 0]

&5 B — T ::::+:::::+::::+:::::+::::"'|:::::"' 1-5:::::_'1::::+:::::+::::+:::::+::::"‘:::::'—'~= I T T T m
== -1 1.0 F—-+—+- - - 1.0 {~-f=-fe=t-1 1.0 3- - -
T P EE et il
O\E— T T 0.0 0.0 0.0 T

28

S c 257 aquaA I AQUAHBH 25] C-IREGA O REGA+BH 25) I RFM CIRFM4+BH 251) PRAC I PRACHBH
T o 204 AN S— P TR 207 e ++ 1207 Rkt W—
o= S0 e -]

TR e e — TR e B b e m e 15_'1 M M s Y S——— - -
AR e s [N WV = o = O --r--—‘: F 1.0] R I o o o == I Y o . o - =
E7 05] | M 0.5 7 |_ 0.5 " r 0.5] |— |_ |_]— |_
S oo 0.0 0.0 r [0.0

4K 2K 1K 512 256 128 64

As RowHammer threshold decreases, RowHammer mitigation
mechanisms incur increasing performance overhead

BreakHammer significantly increases system performance
(90% on average)

SAFARI

48

DRAM Energy Impact and Its Scaling

> | PRAC 1 PRAC+BH |
= cl5—m—————————————
8 L At e Rk Sl eyt il kel el I el | il S l_
g = 43% 51% 55% 57% 58% 59% 60%
2 < 1.0 f===1-1"1 St BE oS PR S e B B o e B e e Rt i
» o H ! 41 -1 H1 FP HEE O HE
= 2 0.5
Q o V.

N
3 B
— £ 0.0

S 4096 2048 1024 512 256 128 64

RowHammer Threshold (Ngy)

Lower is worse

BreakHammer significantly reduces (by 55% on average)
the energy consumption of PRAC

SAFARI 49

DRAM Energy Impact and Its Scaling

3.5 ;
2.8 1

2.5

1= Graphene 3 Graphene+BH

2.5

N | Hydra 3 Hydra+BH I

2.5

1 =3 TwiCe 0 TWiCe+BH

> S—

2 2.01 2.0 2.0 7

e — 1.5 151 1.5

; L S s W A 50 TG o et o o et s s i e SLCJ o s st S g [L e I il s e
SR [g et e 05 0.5 0.5

: o PR = [HHR 1Hk

na: 0.0 T T T 0.0 T -.] T T T T 0.0 _..T -.-.] T -—|: _.—l -‘-I 0.0 _.T T -..]: -.1 T T T

o 25'0_ + 254 4'0_ — 254

Y 20.0 4 3 AQUA 0 AQUA+BH | 5 o] E= REGA O REGA+BH | 32 {] RFM T RFM+BH | 501 1 PRAC LI PRACHBH

T 15.0 {151 244 1151

R — | || 101 —] 1.6 f e Lo F-F o o I
sof =L 0.5 |_-[| h """ o8 FL T H"I o= X

= 0.0 'r—,=-l=ll-.-;l=:- L—-—l-—.l:_-!— E=H- 0 7] -F] ~-I 0] ——l 0] _’-I

T T == 0.
4K 2K 1K 512 256 128 64

T T T T 0
4K 2K 1K 512 256 128 64

T T T T T 0.
4K 2K 1K 512 256 128 64

RowHammer Threshold (Nry)

4K 2K 1K 512 256 128 64

As RowHammer threshold decreases, RowHammer mitigation
mechanisms consume significantly increasing DRAM energy

BreakHammer significantly decreases energy consumption
(by 55% on average)

SAFARI

50

Under Attack Summary

BreakHammer significantly reduces
the negative performance and energy overheads

of existing RowHammer mitigation mechanisms
when a memory performance attack is present

1) BreakHammer accurately detects suspect threads

BreakHammer effectively reduces
2) |
the memory interference caused by suspect threads

SAFARI 51

Evaluation Results

2) No Attack

SAFARI 52

No Attack Summary

Across 90 four-core benign workload mixes:

BreakHammer slightly (<1%) improves

* memory access latency
* system performance

* DRAM energy efficiency

SAFARI

53

More in the Paper

 More implementation details
- Resetting BreakHammer counters
- Tracking software threads
- Throttling DMA and systems without caches
- Configuration parameters

* Security analysis
- Upper bound on the overhead an attacker can cause
- Security against multi-threaded attackers

* Performance evaluation

Unfairness results

Sensitivity to memory intensity of workloads
Comparison to BlockHammer

Sensitivity analysis of BreakHammer parameters

SAFARI https://arxiv.org/abs/2404.13477

54

https://arxiv.org/abs/2404.13477

The Paper

BreakHammer: Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads

Oguzhan Canpolat®! A. Giray Yaglike1® Ataberk Olgun® Ismail Emir Yuksel®
Yahya Can Tugrul’® Konstantinos Kanellopoulos' Oguz Ergin*s' Onur Mutlu$
SETH Ziirich TTOBB University of Economics and Technology YUniversity of Sharjah

RowHammer is a major read disturbance mechanism in DRAM can experience bitflips when a nearby DRAM row (i.e., aggres-
where repeatedly accessing (hammering) a row of DRAM cells ~ sor row) is repeatedly opened (i.e., hammered) [2-70].

(DRAM row) induces bitflips in other physically nearby DRAM Many prior works demonstrate attacks on a wide range
rows. RowHammer solutions perform preventive actions (e.g., of systems where they exploit read disturbance to escalate

OO

https://arxiv.org/abs/2404.13477
SAFARI

55

https://arxiv.org/abs/2404.13477

Outline

Conclusion

SAFARI 56

Conclusion

Key Exploit: Mount a memory performance attack by
triggering RowHammer-preventive actions to
block memory accesses for long periods of time

Key Mechanism: BreakHammer
* Observes triggered RowHammer-preventive actions
* Identifies threads that
trigger many preventive actions (i.e., suspect threads)
* Reduces the memory bandwidth usage of the suspect threads

Key Results:

* Under attack:
* Significantly improves system performance (by 90% on average)
» Significantly reduces energy consumption (by 55% on average)

* No attack:
» Slightly (<1%) improves performance and energy consumption

SAFARI https://github.com/CMU-SAFARI/BreakHammer 57

https://github.com/CMU-SAFARI/BreakHammer

o CMU-SAFAR! / BreakHammer Q Type[/]to search 8 + - ORERYRRE=

<> Code () Issues 19 Pullrequests () Actions [Projects @ Security |~ Insights 3 Settings

SAFAR! BreakHammer Public 9 Edit Pins ~ @ Watch 3 ~ ? Fork O hd ﬁ Star 4 -

¥ master ~ ¥ 2 Branches © Tags Q Go to file t + About £

No description, website, or topics provided.

6; kirbyydoge Update README.md 2ea4b97 - last month 1) 32 Commits
00 Readme
M ae_results Update existing csvs and plots with full artifact evaluat... 2 months ago - Activity
0 mixes Initial commit 2 months ago & Custom properties
7 4stars
0 plotting_scripts Update figure13 plotter to work when some mitigatio... 2 months ago ® 3 watching
0 scripts Remove unreleased empty scripts last month % Oforks
Report repository
B src Initial commit 2 months ago
[Y gitattributes Update Dockerfile 2 months ago Releases pos)

SAFARI nttps://github.com/CMU-SAFARI/BreakHammer 58

https://github.com/CMU-SAFARI/BreakHammer

BreakHammer
Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads

L O H210,
) ‘..‘3!: Oguzhan Canpolat A. Giray Yaglkel 'Tr:ﬁOﬂ,iL
: v _ S L
o) l'ﬂ: Ataberk Olgun Ismail E. Yiiksel %1"?@3

Yahya C. Tugrul Konstantinos Kanellopoulos
Oguz Ergin Onur Mutlu
https://github.com/CMU-SAFARI/BreakHammer
SAFARI ETH:zurich kasirga

https://github.com/CMU-SAFARI/BreakHammer

BreakHammer
Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads

BACKUP SLIDES

Oguzhan Canpolat A. Giray Yaglikci
Ataberk Olgun Ismail E. Yiiksel
Yahya C. Tugrul Konstantinos Kanellopoulos

Oguz Ergin Onur Mutlu

https://github.com/CMU-SAFARI/BreakHammer

SAFARI ETH:zurich kasirga

https://github.com/CMU-SAFARI/BreakHammer

BreakHammer and RowPress

RowHammer °Pe" -
Aggressor Row close

36ns, 47K activations to induce bitflips

RowPress open 'J(‘ - \ [-
Aggressor Row close — - ________
7.8us, only 5K activations to induce bitflips

BreakHammer cooperates with a read disturbance solution

BreakHammer can become RowPress aware by:

1) changing the score attribution to consider
row active time (e.g., Impress [Qureshi+, MICRO’24])
2) conveying the type of action taken by the read

disturbance solution and tracking them differently
(i.e., RowHammer or Rowpress-preventive action)

SAFARI 61

Throttling DMA and Systems without Caches

Processor Chip (BreakHammer

A

Bandwidth|_| <« Thread 2
G Usage Suspect :
Core j L ThrOttlerJ leentificationf-(Thread N
Observing Actions |
. Memory Controller
) RowHammer
) g Mitigation Mechanism
l Core I;: Memory Request Scheduler

A A 4 A 4

Direct Memory Access (DMA)

Extend DMA and load-store units of cores
to track and limit the number of unresolved memory requests

SAFARI 62

BreakHammer vs BLISS

: BLISS
BLISS only tracks consecutive requests served L
_ _ _ Is Oblivious
Thereby wrongly scores a benign thread with higher score To Action
One Request Served Three Requests Served One Request Served
A A A
~ N N7 ~~
—[ACT}[RD]{PRE}[ACT]{ RD }[RD]{ RD }[PRE}[ACT]{ RD]{PREm
Time
- _J \— _/\— _J
~ ~— -~
One Activation One Activation One Activation
BreakHammer is preventive action contribution aware BreakHammer
Thereby accurately scores the suspect thread with higher score ~ Three Key
A Operations
T1 @ T2 ‘g) Take Place

SAFARI 63

Resetting Counters

Counter

Set 1
Counter

Set 2

Reset Counter Set 1

Reset Counter Set 1

Y

O

Train & Respond Train Train & Respond Train
Train Train & Respond Train Train & Respond
Active Set Reset Coynter Set 2

—> Time

i¢— Throttling Window —»i¢—Throttling Window —»i¢— Throttling Window —»¢—Throttling Window —!

SAFARI

64

Comparison to BlockHammer

[—1 PARA+BH —1 TWiCe+BH [—1 RFM+BH
[—1 Graphene+BH [T AQUA+BH [—1 PRAC+BH
[—1 Hydra+BH [—1 REGA+BH [—1 BlockHammer
220
) :7"7':'7'7"+'7' 7:7--7-:-7-7--+-7- :7--7-:-:-7-+-7- R LI +7.7 o
o 1 + + it + |l + 1|1| 'F " 'r|i'" el " sssmmmmmns .
§ ?g)- 1.5 _+++++ {1LHT H +¥+ |+ \-I.I: i t W”+'F1if A,,,,'f'-l-'F, | .1“.|.+.|. ,,,,, 'hl
A 1 H H - - : I A HH - I
© g 1.0 HHEEHHH A EEFHHH L EFE QLR s LEEEE LLLLEE L
g Q Al a i i u -
> 5 0.5 1 {1 \
£ .0 JLLL . . . LU e
4096 2048 1024 512 256 128 64

RowHammer Threshold Ngy

BreakHammer outperforms BlockHammer across
all evaluated RowHammer thresholds

SAFARI

Upper Bound
on the Overhead an Attacker Can Cause

Max. RowHammer
Preventive Score (RS]7¥)

0

SAFARI

10 20 30 40 50 60 70 80 90 100
Percentage of Attacker Threads

THouth’er
0.05
0.25
0.45
0.65
0.85

0.15
0.35
0.55
0.75
0.95

66

RBMPKI and Repeatedly Activated Row Count

Table 3: Workload Characteristics: RBMPKI and Average
Number of Rows with More Than 512+, 128+, and 64+

Activations per 64ms Time Window

Workload RBMPKI | ACT-512+ ACT-128+ ACT-64+
429.mcf 68.27 2564 2564 2564
470.lbm 28.09 664 6596 7089

462.libquantum 25.95 0 0 1
549.fotonik3d 25.28 0 88 10065
459.GemsFDTD 24.93 0 218 10572
519.lbm 24.37 2482 5455 5824
434.zeusmp 22.24 292 4825 11085

510.parest 17.79 94 185 803
Average 29.615 762 2491 6000
SAFARI 67

Under Attack Memory Intensity (N ,=1K)

[—1 PARA+BH [—1 Hydra+BH [AQUA+BH [RFM+BH
[—1 Graphene+BH [TWiCe+BH] REGA+BH [—] PRAC+BH

o2
- é = 3(5) :f}t]l
o 3.0 g
§§§25:::::Z::::::
- o g Lo e
gg g 5(5) 3 i i ’rH:::ﬂ'{
S £ £ 1.0 HHitttE AT
oc 057
22 0.0
~ HHHA HHMA MMMA HLLA MMLA LLLA geomean

Workload Mixes (Total 90)

SAFARI 68

Under Attack Unfairness (Nyy=1K)

[—1 PARA+BH [—1 Hydra+BH [AQUA+BH [RFM+BH
1 Graphene+BH [TWiCe+BH] REGA+BH [PRAC+BH

|
T

©C 000 oM
ON MO ®ON

| I . |
——
- |
—h:
=
—_— |
-1 | |
—
—_— |
—_—
= |
—— |
— gl
=
—t |
—
I
—— gl
._".::
——
——
] |

Normalized Unfairness
(Benign Applications)

HHHA HHMA MMMA HLLA MMLA LLLA geomean
Workload Mixes (Total 90)

SAFARI 69

Under Attack Unfairness and Its Scaling

[—1 PARA+BH /1 Hydra+BH [AQUA+BH [RFM+BH
1 Graphene+BH [TWiCe+BH [REGA+BH [PRAC+BH

-
3
~ 1
=
—
=+
-1
=+

OO OO0 KK
O N B~AOOOOON
|
=5 |
=5
=
-l'l-:
|
=
=i
||
=
3 |
|
=
=
=
3
=
=
—
.+
=
=
-
===
=
—|—:
==
—
—_=
==

Normalized Unfairness
(Benign Applications)

4096 2048 1024 512 256 128 64
RowHammer Threshold (Ngy)

SAFARI 70

No Attack Memory Intensity (N;,=1K)

[—1 PARA+BH 1 Hydra+BH [AQUA+BH [RFM+BH
[—1 Graphene+BH [TWiCe+BH 1 REGA+BH [PRAC+BH

l
|
-I!-_I
| I
N
H= |
Fo
[
"I:

1
o

Normalized
Weighted Speedup
CoOooo0orH
ON PB~OYOWON

HHHH HHMM MMMM HHLL MMLL LLLL geomean
Workload Mixes (Total 90)

SAFARI

No Attack Unfairness (Nyy=1K)

1 PARA+BH 1 Hydra+BH [T AQUA+BH /] RFM+BH
[—1 Graphene+BH [TWiCe+BH [REGA+BH [PRAC+BH

1.2

1.0 prikripieh - DR . - ;-Lh-h.'i _______ I"". _____ S R S - Y — _
o= M T
0.6 71
0.4 11
0.2 11
0.0

Normalized Unfairness

HHHH HHMM MMMM HHLL MMLL LLLL geomean
Workload Mixes (Total 90)

SAFARI

No Attack Performance and Its Scaling

1 PARA+BH 1 Hydra+BH [—1 AQUA+BH 1 RFM+BH
1 Graphene+BH [TWiCe+BH [T REGA+BH [PRAC+BH

N

Normalized
Weighted Speedup
cooooHMH

ON B~ OO O

4096 2048 1024 512 256 128 64
RowHammer Threshold (Ngy)

SAFARI 73

No Attack Unfairness and Its Scaling

1 PARA+BH 1 Hydra+BH [AQUA+BH [—] RFM+BH
" 1 Graphene+BH [TWiCe+BH [T REGA+BH [—] PRAC+BH
n
el 2 T
& 1.0 TRyt T M - T T
5087
5 0.6
N 0.4
O 02 -
E aN
= 0.0
= 4096 2048 1024 512 256 128 64

RowHammer Threshold (Ngy)

SAFARI

No Attack Memory Latency (Ng,=64)

500 T
PARA |
PARA+BH :
,a 250 4 = No Defense),___
£
- __.f"
E F"#
'ﬂJ 0 I |
] 0 100
-
> 3000
o AQUA
& AQUA+BH
g 1500 4 " No Defense | '
I
|
.--'/
0+ —— T
0 100

SAFARI

500 T
Graphene 1
Graphene+BH !

= No Defense ,’
250 4 =
’/
.-""”
-
0 1= .
0 100

500
REGA I
REGA+BH ,'

= No Defense /
250 - ofe
”
u"""
’ﬂ
0 1= ;
0 100

Memory Latency Percentile (Py)

500 T
Hydra 1
Hydra+BH "

= No Defense
250 4 ,l
ﬂ"”
0 1e== .
0 100

500 T
RFM |
RFM+BH "

= No Defense
250 9 i
u“"
o L1 .
0 100

500 T
TWiCe (]
TWiCe+BH "

= No Def
250 A 0 Lerense __,I.._
e
ﬂ"’
0l .
0 100

500 T
PRAC I
PRAC+BH "

= No Def
250_ 0 Derense ,l
Vs
-"‘,
0 lp=="" .
0 100
75

BreakHammer Sensitivity to Minimum Score

N NRH - 4096 NRH - 512 NRH - 64
D-':'f, 1.60
% s 1 T 0 e s S e
O 1.40 4ot S
T L I | I
2 E120- :
g€el T e T oG
N U 1 0 I : = e
oI L == = ===
v = 1.00
EE&%
~
o O 1.06
52 1054 || S
¢ 5 1.04) [R e e
N E 1.03 1N T | - - .- e
o]
s 1.02- 1O
E L 1 01 SR B B —— N B S e e
oDV
gg-‘g 1.00 I B = =
cz:) 0-99 | 1 1 I 1 I 1 1 1
= 32 512 4096 32 512 4096 32 512 4096
Tchreat Tchreat Tchreat

SAFARI

76

Organization

DRAM Chips

Processor Chip BreakHammer
[t f Private | F \ [3
Core | Caches <—I Memory «{ Thread1)
- 7 | © / “T1Bandwidth|_| «{ Thread 2)
— | — - Usage Suspect -
Corells] Private | | | Throttler | |[dentification/«{ Thread N)
____J+ |_Caches | Shared _
Observing Actions
Caches
: : Memory Controller
’ ’ RowHammer
T Mitigation Mechanism
Private

Core
[]:*[Caches]‘—'[Memory Request Scheduler

Direct Memory Access (DMA)

A

SAFARI

\ 4

77

Identifying Suspect Threads:
An Example

BreakHammer detects threads that trigger too many
RowHammer-preventive actions

SAFARI

0o
Qo

T6: 90 T6: 90 | &
T4: 30 T4: 30
T1: 25 T1: 25
T5: 20 T5: 20
T3:11 T3:11
T7:5 T7:5
T2:3 T2:3
T8: 0 T8: O

78

Identifying Suspect Threads:

High Level Algorithm

BreakHammer detects threads that trigger too many
RowHammer-preventive actions

o
. "o

Minimum score to
consider a thread
as suspect

Maximum deviation
from the average [

0o
. “Q

Thread 1

Thread 2

Thread 3

Thread 4

O Y @

Benign

SAFARI

Benign

Benign

A
A
Suspect

79

	Slide 1: BreakHammer Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads
	Slide 2: Executive Summary
	Slide 3: Outline
	Slide 4: DRAM Organization
	Slide 5: DRAM Organization
	Slide 6: RowHammer: A Prime Example of Read Disturbance
	Slide 7: Read Disturbance Vulnerabilities (I)
	Slide 8: Read Disturbance Vulnerabilities (II)
	Slide 9: Existing RowHammer Mitigations: RowHammer-Preventive Actions
	Slide 10: Preventive Refresh as a RowHammer-Preventive Actions
	Slide 11: Row Migration as a RowHammer-Preventive Action
	Slide 12: Outline
	Slide 13: Root Cause of Performance Overhead
	Slide 14: RowHammer Mitigation Performance Overhead
	Slide 15: RowHammer Mitigation Performance Overhead
	Slide 16: Memory Performance Attack
	Slide 17: Problem & Goal
	Slide 18: Outline
	Slide 19: Key Idea
	Slide 20: BreakHammer: Overview
	Slide 21: BreakHammer: Overview
	Slide 22: Observing RowHammer-Preventive Actions
	Slide 23: Observing RowHammer-Preventive Actions: Score Attribution Method
	Slide 24: Observing RowHammer-Preventive Actions: Integration Showcase
	Slide 25: Observing RowHammer-Preventive Actions: Integration Showcase
	Slide 26: Observing RowHammer-Preventive Actions: Integration Showcase with PARA (I)
	Slide 27: Observing RowHammer-Preventive Actions: Integration Showcase with PARA (II)
	Slide 28: Observing RowHammer-Preventive Actions: Integration Showcase
	Slide 29: Observing RowHammer-Preventive Actions: Integration Showcase with PRAC (I)
	Slide 30: Observing RowHammer-Preventive Actions: Integration Showcase with PRAC (II)
	Slide 31: Observing RowHammer-Preventive Actions: Integration with Other Mechanisms
	Slide 32: BreakHammer: Overview
	Slide 33: Identifying Suspect Threads: An Example
	Slide 34: BreakHammer: Overview
	Slide 35: Throttling Memory Bandwidth Usage of Suspect Threads
	Slide 36: Restoring Memory Bandwidth of Suspect Threads
	Slide 37: Outline
	Slide 38: Evaluation Methodology
	Slide 39: Evaluation Methodology
	Slide 40: Evaluation Results
	Slide 41: Evaluation Results
	Slide 42: Preventive Action Count and Its Scaling
	Slide 43: Preventive Action Count and Its Scaling
	Slide 44: Preventive Action Count and Its Scaling
	Slide 45: Memory Latency Impact at NRH=64
	Slide 46: Memory Latency Impact at NRH=64
	Slide 47: Performance Impact and Its Scaling
	Slide 48: Performance Impact and Its Scaling
	Slide 49: DRAM Energy Impact and Its Scaling
	Slide 50: DRAM Energy Impact and Its Scaling
	Slide 51: Under Attack Summary
	Slide 52: Evaluation Results
	Slide 53: No Attack Summary
	Slide 54: More in the Paper
	Slide 55: The Paper
	Slide 56: Outline
	Slide 57: Conclusion
	Slide 58: Open Source and Artifact Evaluated
	Slide 59: BreakHammer Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads
	Slide 60: BreakHammer Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads
	Slide 61: BreakHammer and RowPress
	Slide 62: Throttling DMA and Systems without Caches
	Slide 63: BreakHammer vs BLISS
	Slide 64: Resetting Counters
	Slide 65: Comparison to BlockHammer
	Slide 66: Upper Bound on the Overhead an Attacker Can Cause
	Slide 67: RBMPKI and Repeatedly Activated Row Count
	Slide 68: Under Attack Memory Intensity (NRH=1K)
	Slide 69: Under Attack Unfairness (NRH=1K)
	Slide 70: Under Attack Unfairness and Its Scaling
	Slide 71: No Attack Memory Intensity (NRH=1K)
	Slide 72: No Attack Unfairness (NRH=1K)
	Slide 73: No Attack Performance and Its Scaling
	Slide 74: No Attack Unfairness and Its Scaling
	Slide 75: No Attack Memory Latency (NRH=64)
	Slide 76: BreakHammer Sensitivity to Minimum Score
	Slide 77: Organization
	Slide 78: Identifying Suspect Threads: An Example
	Slide 79: Identifying Suspect Threads: High Level Algorithm

