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Executive Summary

Problem:

 DRAM continues to become more vulnerable to RowHammer

e Operations that prevent RowHammer (i.e., RowHammer-preventive actions)
are time consuming and block access to memory

Key Exploit: Mount a memory performance attack by triggering
RowHammer-preventive actions to block memory access for long time periods

Goal: Reduce the performance overhead of RowHammer mitigation mechanisms
by reducing the number of performed RowHammer-preventive actions
without compromising system robustness

Key Idea: Throttle threads that frequently trigger RowHammer solutions

Key Mechanism: BreakHammer

* Observes triggered RowHammer-preventive actions

* Identifies threads that trigger many preventive actions (i.e., suspect threads)
* Reduces the memory bandwidth usage of the suspect threads

Key Results: BreakHammer significantly reduces the negative effects of
RowHammer mitigation mechanisms on performance, energy, and fairness

SAFARI https://github.com/CMU-SAFARI/BreakHammer
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DRAM Organization
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RowHammer:
A Prime Example of Read Disturbance

4 DRAM Subarray )
x Row 0 Victim Row
¥ row1i R viciim row
Row 2
Row 3 x Victim Row
x Row 4 Victim Row
\- /

Repeatedly opening (activating) and closing (precharging)

a DRAM row causes read disturbance bitflips in nearby cells

S A FA R l [Kim+ ISCA’20]
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Read Disturbance Vulnerabilities (I)

4 DRAM Subarray )
x Row 0 Victim Row
¥ row1i R viciim row
Row 2
x Row 3 x Victim Row
x Row 4 Victim Row
\- /

The minimum number of activations that causes a bitflip
is called the RowHammer threshold (Ny4)
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Read Disturbance Vulnerabilities (II)

900 sssss
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It is critical to prevent read disturbance bitflips
effectively and efficiently for highly vulnerable systems

2023 2020 2013

Manufactured Year

0K 20K 40K 60K 80K 100K 120K
The minimum activation count needed to induce the first bitflip

~100X reduction



Existing RowHammer Mitigations:
RowHammer-Preventive Actions

Many ways to prevent RowHammer via

RowHammer-preventive actions:

* Preventive refresh State-of-the-art RowHammer
mitigation mechanisms
 Row migration adopt these two approaches

* Proactive throttling
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Preventive Refresh
as a RowHammer-Preventive Actions

4 DRAM

Row 0O Victim Row

Row 1 Victim Row

Row 2  Aggressor Row
Row 3 Victim Row

Row 4 Victim Row

\_

Refreshing potential victim rows
mitigates RowHammer bitflips

S A FA R l [Kim+ ISCA’20]
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Row Migration
as a RowHammer-Preventive Action

4 DRAM )

Row O Victim Row

Row 1  Aggressor Row

Row 2 Victim Row

—I Distant Row Aggressor Row

\_ J

Migrating potential aggressor rows

to a distant row mitigates RowHammer bitflips
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Root Cause of Performance Overhead

RowHammer-preventive actions are
blocking and time consuming operations
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Memory controller cannot access a memory bank
undergoing a RowHammer-preventive action

Refreshing KBs of data can block access to GBs of data
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RowHammer Mitigation Performance Overhead

Preventive Refresh Row Migration
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RowHammer Mitigation Performance Overhead

Preventive Refresh Row Migration
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RowHammer mitigation mechanisms incur
increasingly large performance overhead
as the RowHammer threshold decreases
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Memory Performance Attack

Attacker can trigger many preventive actions
to block access to main memory

Attacker

Memory
@@ Controller

%

Preventive actions can be exploited
to reduce DRAM bandwidth availability
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Problem & Goal

]

{ Problem |
Operations that prevent RowHammer lead to
DRAM bandwidth availability issues
as they can frequently block access to memory

{ Goal }
Reduce the performance overhead
of RowHammer mitigation mechanisms
by reducing the number of RowHammer-preventive actions
without compromising system robustness
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Key Idea

Detect and slow down the memory accesses of threads
that trigger many RowHammer-preventive actions

.
Attacker

Suspect Thread

~

Memory
Controller

User

& -
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BreakHammer: Overview

Execution Timeline
| Throttling Window | Throttling Window | Throttling Window |

RowHammer-Preventive Action Thread 1’s Row Activations
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Observing RowHammer-  Identifying Suspect Threads Throttling Memory
Preventive Actions Bandwidth Usage
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BreakHammer: Overview

Execution Timeline
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Observing RowHammer-Preventive Actions

BreakHammer tracks the number
of RowHammer-preventive actions each thread triggers

/ RowHammer-preventive score counter

Thread 1 Thread 2 Thread 3 Thread 4 | e°°
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Observing RowHammer-Preventive Actions:
Score Attribution Method

A RowHammer-preventive action is generally caused by
a stream of memory requests from many hardware threads

RH- Preventlve Score

& &1

Thread 1 Thread 2 Thread 3 Thread 4 |[°°°
—{t1H{Ta H 12 ]-[T4]-[T4]-[T1]-[T3]-[T4]-m> Time
Thread 1’s Rotw Activations RowHammer-Preventive Action
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Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)

2) Per Row Activation Counting (PRAC)
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Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)
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Observing RowHammer-Preventive Actions:
Integration Showcase with PARA (I)

BreakHammer cooperates with existing RowHammer solutions

Probabilistic Row Activation (PARA) [Kim+, ISCA 2024 ]:

* Generates a random number

 Compares the number with a threshold

e If the random number exceeds the threshold
performs a preventive refresh

m@>?
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Observing RowHammer-Preventive Actions:
Integration Showcase with PARA (II)

Probabilistic Row Activation + BreakHammer (PARA+BH):
* Track row activation count of each thread
between preventive refreshes

* Increment each thread’s score proportionally to its activations
RH-Preventive Score

&1 &1 T

Thread 1 Thread 2 Thread 3

-[T1]-[T3]-[T2]-[T3]-[T3]-[T1]-[T3m> Time
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Observing RowHammer-Preventive Actions:
Integration Showcase

2) Per Row Activation Counting (PRAC)
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Observing RowHammer-Preventive Actions:
Integration Showcase with PRAC (I)

BreakHammer cooperates with existing RowHammer solutions

Per Row Activation Counting (PRAC) [JEDEC, 2024]:

 DRAM maintains an activation counter for each DRAM row
 DRAM requests time by triggering a back-off

 Memory controller provides time for

in-DRAM preventive refreshes . —_
High Activation

Count Detected

Counter 0

Counter 1

Counter 3

Per Row
Activation Counters
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Observing RowHammer-Preventive Actions:
Integration Showcase with PRAC (II)

Per Row Activation Counting + BreakHammer (PRAC+BH):
* Track row activation count of each thread between back-offs
* Increment each thread’s score proportionally to its activations

RH-Preventive Score

& &1 T

Thread 1 Thread 2 Thread 3

< T1 H T3
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Observing RowHammer-Preventive Actions:
Integration with Other Mechanisms

We integrate BreakHammer with eight RowHammer solutions:

* PARA [Kim+, ISCA 2014] * AQUA [Saxena+, MICRO 2022]
e Graphene [Park+, MICRO 2020] * REGA [Marazzi+, S&P 2023]

« Hydra [Qureshi+, ISCA 2022] « RFM [JEDEC 2020]

« TWiCe [Lee+, ISCA 2019] * PRAC [JEDEC 2024]

BreakHammer: Enhancing RowHammer Mititions
by Carefully Throttling Suspect Threads

Oguzhan Canpolat®f A. Giray Yaglikci® Ataberk Olgun® Ismail Emir Yuksel®
Yahya Can Tugrul®’  Konstantinos Kanellopoulos’ ~ Oguz Ergin''  Onur Mutlu®
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RowHammer is a major read disturbance mechanism in DRAM  can experience bitflips when a nearby DRAM row (i.e., aggres-

where repeatedly accessing (hammering) a row of DRAM cells ~ sor row) is repeatedly opened (i.e., hammered) [2-70].
(DRAM row) induces bitflips in other physically nearby DRAM

Many prior works demonstrate attacks on a wide range
rows. RowHammer solutions perform preventive actions (e.g.,

of systems where they exploit read disturbance to escalate

https://arxiv.org/abs/2404.13477
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BreakHammer: Overview

Execution Timeline
| Throttling Window | Throttling Window | Throttling Window |

RowHammer-Preventive Action Thread 1’s Row Activations
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Identifying Suspect Threads:
An Example

BreakHammer detects threads that trigger too many

RowHammer-preventive actions

0o

Qo . . .
Maximum Deviation
from the Average Score

&
&

[ Thread || Score |
[ 11 [ 10 ]
I V: " 2 I : Minimum Score
I T3 II 3 I to Consider
[ T4 | 50 ]
Threads
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BreakHammer: Overview

Execution Timeline
| Throttling Window | Throttling Window | Throttling Window |

RowHammer-Preventive Action Thread 1’s Row Activations
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Throttling Memory Bandwidth Usage of Suspect Threads

BreakHammer reduces the memory bandwidth usage
of each suspect thread

SAFARI

Cache-Miss Buffers*

Allocated Maximum
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Restoring Memory Bandwidth of Suspect Threads

BreakHammer
restores the memory bandwidth usage of a suspect thread
if the thread stays benign for the full duration of a throttling window

Memory Bandwidth
Usage Restored
Identified Not
This Window Identified
\ \ still
Suspect Throttled Benign Throttled Benign

& Y OY| O

( Throttling Window Throttling Window | Throttling Window

| I | |
Execution Timeline
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Evaluation Methodology

* Performance and energy consumption evaluation:
cycle-level simulations using Ramulator 2.0 [Luo+, CAL 2023]
and DRAMPower [Chandrasekar+, DATE 2013]

* System Configuration:

Processor 4 cores, 4.2GHz clock frequency,
4-wide issue, 128-entry instruction window
DRAM DDRS5, 1 channel, 2 rank/channel, 8 bank groups,
4 banks/bank group, 64K rows/bank
Memory Ctrl. 64-entry read and write requests queues,

Scheduling policy: FR-FCFS with a column cap of 4
Last-Level Cache 8 MiB (4-core)
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Evaluation Methodology

 Comparison Points: Integrated with 8 state-of-the-art
RowHammer mitigation mechanisms:

PARA [Kim+, ISCA 2014]
Graphene [Park+, MICRO 2020]
Hydra [Qureshi+, ISCA 2022]
TWiCe [Lee+, SCA 2019]

AQUA [Saxena+, MICRO 2022]
REGA [Marazzi+, S&P 2023]
RFM [JEDEC 2020]

PRAC [JEDEC 2024]

 Workloads: 4-core workload mixes from SPEC CPU2006,
SPEC CPU2017, TPC, MediaBench, YCSB

* 90 mixes with one attacker
* 90 mixes all benign
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1) Under Attack

2) No Attack
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Evaluation Results

1) Under Attack
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Preventive Action Count and Its Scaling
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Preventive Action Count and Its Scaling

4K

Higher is worse No BreakHammer
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Preventive Action Count and Its Scaling

60 ———————— 100 ——————— 100 —————————— 100 T—————
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1 -
g

Preventive Actions Normalized
to No BreakHammer at Ngy=4K

RowHammer Threshold (NRH)

BreakHammer significantly reduces (72% on average) the
number of preventive actions performed across all mechanisms
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Memory Latency Impact at N,,=64

SAFARI
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Memory Latency Impact at N,,=64
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BreakHammer reduces memory latency across all mechanisms
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Performance Impact and Its Scaling
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> %g — —— = = — i
§ S 9 = 1.5y '4 ““““ IrT ' f ' f ““““ t‘ “““ fo I
- IR = S0 37 O i A i O A o
75)] © '
P EET
Q = -
=f 255 0.5
o D C 7
T =2 0.0

= 4096 2048 1024 512 256 128 64

RowHammer Threshold (Ngy)

Lower is worse

BreakHammer significantly increases (81% on average)
the performance of PRAC
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Performance Impact and Its Scaling
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As RowHammer threshold decreases, RowHammer mitigation
mechanisms incur increasing performance overhead

BreakHammer significantly increases system performance
(90% on average)
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DRAM Energy Impact and Its Scaling
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BreakHammer significantly reduces (by 55% on average)
the energy consumption of PRAC
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DRAM Energy Impact and Its Scaling

3.5 ;
2.8 1

2.5

1= Graphene 3 Graphene+BH

2.5

N | Hydra 3 Hydra+BH I

2.5

1 =3 TwiCe 0 TWiCe+BH

> S—

2 2.01 2.0 2.0 7

e — 1.5 151 1.5

; L S s W A 50 TG o et o o et s s i e SLCJ o s st S g [ L e I il s e
SR [ g et e 05 0.5 0.5

: o PR = [HHR 1Hk

na: 0.0 T T T 0.0 T -.] T T T T 0.0 _..T -.-.] T -—|: _.—l -‘-I 0.0 _.T T -..]: -.1 T T T

o 25'0_ + 254 4'0_ — 254

Y 20.0 4 3 AQUA 0 AQUA+BH | 5 o] E= REGA O REGA+BH | 32 { ] RFM T RFM+BH | 501 1 PRAC LI PRACHBH

T 15.0 {151 244 1151

R — | || 101 — ] 1.6 f e Lo F-F o o I
sof =L 0.5 |_-[ | h """ o8 FL T H"I o= X

= 0.0 'r—,=-l=ll-.-;l=:- L—-—l-—.l:_-!— E=H- 0 7] -F] ~-I 0 ] ——l 0 ] _’-I

T T == 0.
4K 2K 1K 512 256 128 64

T T T T 0
4K 2K 1K 512 256 128 64

T T T T T 0.
4K 2K 1K 512 256 128 64

RowHammer Threshold (Nry)

4K 2K 1K 512 256 128 64

As RowHammer threshold decreases, RowHammer mitigation
mechanisms consume significantly increasing DRAM energy

BreakHammer significantly decreases energy consumption
(by 55% on average)
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Under Attack Summary

BreakHammer significantly reduces
the negative performance and energy overheads

of existing RowHammer mitigation mechanisms
when a memory performance attack is present

1) BreakHammer accurately detects suspect threads

BreakHammer effectively reduces
2) |
the memory interference caused by suspect threads
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Evaluation Results

2) No Attack
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No Attack Summary

Across 90 four-core benign workload mixes:

BreakHammer slightly (<1%) improves

* memory access latency
* system performance

* DRAM energy efficiency

SAFARI
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More in the Paper

 More implementation details
- Resetting BreakHammer counters
- Tracking software threads
- Throttling DMA and systems without caches
- Configuration parameters

* Security analysis
- Upper bound on the overhead an attacker can cause
- Security against multi-threaded attackers

* Performance evaluation

Unfairness results

Sensitivity to memory intensity of workloads
Comparison to BlockHammer

Sensitivity analysis of BreakHammer parameters

SAFARI https://arxiv.org/abs/2404.13477
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RowHammer is a major read disturbance mechanism in DRAM  can experience bitflips when a nearby DRAM row (i.e., aggres-
where repeatedly accessing (hammering) a row of DRAM cells ~ sor row) is repeatedly opened (i.e., hammered) [2-70].

(DRAM row) induces bitflips in other physically nearby DRAM Many prior works demonstrate attacks on a wide range
rows. RowHammer solutions perform preventive actions (e.g.,  of systems where they exploit read disturbance to escalate

OO

https://arxiv.org/abs/2404.13477
SAFARI

55


https://arxiv.org/abs/2404.13477

Outline

Conclusion

SAFARI 56



Conclusion

Key Exploit: Mount a memory performance attack by
triggering RowHammer-preventive actions to
block memory accesses for long periods of time

Key Mechanism: BreakHammer
* Observes triggered RowHammer-preventive actions
* Identifies threads that
trigger many preventive actions (i.e., suspect threads)
* Reduces the memory bandwidth usage of the suspect threads

Key Results:

* Under attack:
* Significantly improves system performance (by 90% on average)
» Significantly reduces energy consumption (by 55% on average)

* No attack:
» Slightly (<1%) improves performance and energy consumption

SAFARI https://github.com/CMU-SAFARI/BreakHammer 57



https://github.com/CMU-SAFARI/BreakHammer

o CMU-SAFAR! / BreakHammer Q Type[/]to search 8 + - ORERYRRE=

<> Code () Issues 19 Pullrequests () Actions [ Projects @ Security |~ Insights 3 Settings

SAFAR! BreakHammer Public 9 Edit Pins ~ @ Watch 3 ~ ? Fork O hd ﬁ Star 4 -

¥ master ~ ¥ 2 Branches © Tags Q Go to file t + About £

No description, website, or topics provided.

6; kirbyydoge Update README.md 2ea4b97 - last month 1) 32 Commits
00 Readme
M ae_results Update existing csvs and plots with full artifact evaluat... 2 months ago - Activity
0 mixes Initial commit 2 months ago & Custom properties
7 4stars
0 plotting_scripts Update figure13 plotter to work when some mitigatio... 2 months ago ® 3 watching
0 scripts Remove unreleased empty scripts last month % Oforks
Report repository
B src Initial commit 2 months ago
[Y gitattributes Update Dockerfile 2 months ago Releases pos)

SAFARI nttps://github.com/CMU-SAFARI/BreakHammer 58


https://github.com/CMU-SAFARI/BreakHammer

BreakHammer
Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads

L O H210,
) ‘..‘3!: Oguzhan Canpolat A. Giray Yaglkel 'Tr:ﬁOﬂ,iL
: v _ S L
o) l'ﬂ: Ataberk Olgun Ismail E. Yiiksel %1"?@3

Yahya C. Tugrul Konstantinos Kanellopoulos
Oguz Ergin Onur Mutlu
https://github.com/CMU-SAFARI/BreakHammer
SAFARI ETH:zurich kasirga



https://github.com/CMU-SAFARI/BreakHammer

BreakHammer
Enhancing RowHammer Mitigations
by Carefully Throttling Suspect Threads

BACKUP SLIDES

Oguzhan Canpolat A. Giray Yaglikci
Ataberk Olgun Ismail E. Yiiksel
Yahya C. Tugrul Konstantinos Kanellopoulos

Oguz Ergin Onur Mutlu

https://github.com/CMU-SAFARI/BreakHammer

SAFARI ETH:zurich kasirga



https://github.com/CMU-SAFARI/BreakHammer

BreakHammer and RowPress

RowHammer °Pe" -
Aggressor Row close

36ns, 47K activations to induce bitflips

RowPress  open 'J( ‘ - \ [ -
Aggressor Row close — - ________
7.8us, only 5K activations to induce bitflips

BreakHammer cooperates with a read disturbance solution

BreakHammer can become RowPress aware by:

1) changing the score attribution to consider
row active time (e.g., Impress [Qureshi+, MICRO’24])
2) conveying the type of action taken by the read

disturbance solution and tracking them differently
(i.e., RowHammer or Rowpress-preventive action)
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Throttling DMA and Systems without Caches

Processor Chip (BreakHammer

A

Bandwidth|_| <« Thread 2
G Usage Suspect :
Core j L ThrOttlerJ leentificationf-( Thread N
Observing Actions |
. Memory Controller
) RowHammer
) g Mitigation Mechanism
l Core I;: Memory Request Scheduler

A A 4 A 4

Direct Memory Access (DMA)

Extend DMA and load-store units of cores
to track and limit the number of unresolved memory requests
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BreakHammer vs BLISS

: BLISS
BLISS only tracks consecutive requests served L
_ _ _ Is Oblivious
Thereby wrongly scores a benign thread with higher score To Action
One Request Served Three Requests Served One Request Served
A A A
~ N N7 ~~
—[ACT}[ RD ]{PRE}[ACT]{ RD }[ RD ]{ RD }[PRE}[ACT]{ RD ]{PREm
Time
- _J \— _/\— _J
~ ~— -~
One Activation One Activation One Activation
BreakHammer is preventive action contribution aware BreakHammer
Thereby accurately scores the suspect thread with higher score ~ Three Key
A Operations
T1 @ T2 ‘g) Take Place
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Resetting Counters

Counter

Set 1
Counter

Set 2

Reset Counter Set 1

Reset Counter Set 1

Y

O

Train & Respond Train Train & Respond Train
Train Train & Respond Train Train & Respond
Active Set Reset Coynter Set 2

—> Time

i¢— Throttling Window —»i¢—Throttling Window —»i¢— Throttling Window —»¢—Throttling Window —!
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Comparison to BlockHammer

[—1 PARA+BH —1 TWiCe+BH [—1 RFM+BH
[—1 Graphene+BH [T AQUA+BH [—1 PRAC+BH
[—1 Hydra+BH [—1 REGA+BH [—1 BlockHammer
220
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o 1 + + it + |l + 1|1| 'F " 'r|i'" el " sssmmmmmns .
§ ?g)- 1.5 _+++++ {1LHT H +¥+ |+ \-I.I: i t W”+'F1if A,,,,'f'-l-'F, | .1“.|.+.|. ,,,,, 'hl
A 1 H H - - : I A HH - I
© g 1.0 HHEEHHH A EEFHHH L EFE QLR s LEEEE  LLLLEE L
g Q Al a i i u -
> 5 0.5 1 {1 \
£ .0 JLLL . . . LU e
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RowHammer Threshold Ngy

BreakHammer outperforms BlockHammer across
all evaluated RowHammer thresholds
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Upper Bound
on the Overhead an Attacker Can Cause

Max. RowHammer
Preventive Score (RS]7¥)

0

SAFARI

10 20 30 40 50 60 70 80 90 100
Percentage of Attacker Threads

THouth’er
0.05
0.25
0.45
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0.15
0.35
0.55
0.75
0.95
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RBMPKI and Repeatedly Activated Row Count

Table 3: Workload Characteristics: RBMPKI and Average
Number of Rows with More Than 512+, 128+, and 64+

Activations per 64ms Time Window

Workload RBMPKI | ACT-512+ ACT-128+ ACT-64+
429.mcf 68.27 2564 2564 2564
470.lbm 28.09 664 6596 7089

462.libquantum 25.95 0 0 1
549.fotonik3d 25.28 0 88 10065
459.GemsFDTD 24.93 0 218 10572
519.lbm 24.37 2482 5455 5824
434.zeusmp 22.24 292 4825 11085

510.parest 17.79 94 185 803
Average 29.615 762 2491 6000
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Under Attack Memory Intensity (N ,=1K)

[—1 PARA+BH [—1 Hydra+BH [ AQUA+BH [ RFM+BH
[—1 Graphene+BH [ TWiCe+BH ] REGA+BH [—] PRAC+BH
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Under Attack Unfairness (Nyy=1K)

[—1 PARA+BH [—1 Hydra+BH [ AQUA+BH [ RFM+BH
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Under Attack Unfairness and Its Scaling
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No Attack Memory Intensity (N;,=1K)
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No Attack Unfairness (Nyy=1K)
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No Attack Performance and Its Scaling
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No Attack Unfairness and Its Scaling
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No Attack Memory Latency (Ng,=64)
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BreakHammer Sensitivity to Minimum Score
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Organization

DRAM Chips

Processor Chip BreakHammer
[ t f Private | F \ [ 3
Core | Caches <—I Memory «{ Thread1 )
- 7 | © / “T1Bandwidth|_| «{ Thread 2 )
— | — - Usage Suspect -
Corells] Private | | | Throttler | |[dentification/«{ Thread N )
____J+ |_Caches | Shared _
Observing Actions
Caches
: : Memory Controller
’ ’ RowHammer
T Mitigation Mechanism
Private

Core
[ ]:*[ Caches ]‘—'[ Memory Request Scheduler

Direct Memory Access (DMA)

A
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Identifying Suspect Threads:
An Example

BreakHammer detects threads that trigger too many
RowHammer-preventive actions

SAFARI

0o
Qo

T6: 90 T6: 90 | &
T4: 30 T4: 30
T1: 25 T1: 25
T5: 20 T5: 20
T3:11 T3:11
T7:5 T7:5
T2:3 T2:3
T8: 0 T8: O
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Identifying Suspect Threads:

High Level Algorithm

BreakHammer detects threads that trigger too many
RowHammer-preventive actions

o
. "o

Minimum score to
consider a thread
as suspect

Maximum deviation
from the average [

0o
. “Q

Thread 1

Thread 2

Thread 3

Thread 4

O Y @

Benign
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