
Oğuzhan Canpolat A. Giray Yağlıkçı

Ataberk Olgun İsmail E. Yüksel

Yahya C. Tuğrul Konstantinos Kanellopoulos

Oğuz Ergin Onur Mutlu

BreakHammer
Enhancing RowHammer Mitigations

by Carefully Throttling Suspect Threads

https://github.com/CMU-SAFARI/BreakHammer

https://github.com/CMU-SAFARI/BreakHammer

Goal: Reduce the performance overhead of RowHammer mitigation mechanisms
by reducing the number of performed RowHammer-preventive actions
without compromising system robustness

Problem:
• DRAM continues to become more vulnerable to RowHammer
• Operations that prevent RowHammer (i.e., RowHammer-preventive actions)

are time consuming and block access to memory

Executive Summary

2

Key Results: BreakHammer significantly reduces the negative effects of
RowHammer mitigation mechanisms on performance, energy, and fairness

Key Idea: Throttle threads that frequently trigger RowHammer solutions

Key Mechanism: BreakHammer
• Observes triggered RowHammer-preventive actions
• Identifies threads that trigger many preventive actions (i.e., suspect threads)
• Reduces the memory bandwidth usage of the suspect threads

https://github.com/CMU-SAFARI/BreakHammer

Key Exploit: Mount a memory performance attack by triggering
RowHammer-preventive actions to block memory access for long time periods

https://github.com/CMU-SAFARI/BreakHammer

Outline

3

Background

Conclusion

BreakHammer

Evaluation

Motivation

DRAM Organization

4

DRAM
Channel

DRAM Module

DRAM Chips

DRAM Organization

Bitline

S S S S

Sense Amplifiers
(Row Buffer)

Wordline

DRAM Cell

Bank

DRAM
Array

Off-Chip Channel

5

RowHammer:
A Prime Example of Read Disturbance

[Kim+ ISCA’20] 6

Row 0

Row 1

Row 2

Row 3

Row 4

Row 2open

Row 1

Row 3

Row 2closed Row 2open

Row 1

Row 3

Row 0

Row 4

Victim Row

Victim Row

Victim Row

Victim Row

Aggressor RowRow 2open Row 2closed

DRAM Subarray

Repeatedly opening (activating) and closing (precharging)

a DRAM row causes read disturbance bitflips in nearby cells

Read Disturbance Vulnerabilities (I)

[Kim+ ISCA’20] 7

Row 0

Row 1

Row 2

Row 3

Row 4

Row 2open

Row 1

Row 3

Row 2closed Row 2open

Row 1

Row 3

Row 0

Row 4

Victim Row

Victim Row

Victim Row

Victim Row

Aggressor RowRow 2open

DRAM Subarray

The minimum number of activations that causes a bitflip
is called the RowHammer threshold (NRH)

Read Disturbance Vulnerabilities (II)

8

Technology Scaling

It is critical to prevent read disturbance bitflips
effectively and efficiently for highly vulnerable systems

0K 20K 40K 60K 80K 100K 120K 140K

~100X reduction

2
0

1
3

2
0

2
0

M
an

u
fa

ct
u

re
d

 Y
ea

r

The minimum activation count needed to induce the first bitflip

2
0

2
3

Existing RowHammer Mitigations:
RowHammer-Preventive Actions

Many ways to prevent RowHammer via

RowHammer-preventive actions:

• Preventive refresh

• Row migration

• Proactive throttling

• …

9

State-of-the-art RowHammer
mitigation mechanisms

adopt these two approaches

Preventive Refresh
as a RowHammer-Preventive Actions

[Kim+ ISCA’20] 10

Row 0

Row 1

Row 2

Row 3

Row 4

Row 2open

Row 1

Row 3

Row 2closed Row 2open

Row 1

Row 3

Row 0

Row 4

Row 0

Row 1

Row 3

Row 4

Victim Row

Victim Row

Victim Row

Victim Row

Aggressor RowRow 2open Row 2

DRAM

Refreshing potential victim rows
mitigates RowHammer bitflips

Aggressor Row

Row Migration
as a RowHammer-Preventive Action

11

Row 0

Row 1

Row 2

Row 4

Row 2open

Row 1

Row 2closed Row 2open

Row 1

Row 0

Distant Row

Victim Row

Aggressor Row

Aggressor RowRow 2open Row 2

DRAM

Migrating potential aggressor rows

to a distant row mitigates RowHammer bitflips

Victim Row

Aggressor Row
…

Outline

12

Background

Conclusion

BreakHammer

Evaluation

Motivation

REF

Root Cause of Performance Overhead

13

DRAM
Channel

DRAM Module

RowHammer-preventive actions are
blocking and time consuming operations

ACT

Memory controller cannot access a memory bank
undergoing a RowHammer-preventive action

Refreshing KBs of data can block access to GBs of data

RowHammer Mitigation Performance Overhead

14

Lower is worse

L
o

w
e

r
is

 w
o

rs
e

Preventive Refresh Row Migration

RowHammer Mitigation Performance Overhead

15

RowHammer mitigation mechanisms incur
increasingly large performance overhead

as the RowHammer threshold decreases

19%

66%

Preventive Refresh Row Migration

16

Attacker can trigger many preventive actions
to block access to main memory

Preventive actions can be exploited
to reduce DRAM bandwidth availability

Memory Performance Attack

Memory
Controller

Core

Core

Attacker

User

17

Problem & Goal

Operations that prevent RowHammer lead to
DRAM bandwidth availability issues

as they can frequently block access to memory

Problem

Reduce the performance overhead
of RowHammer mitigation mechanisms

by reducing the number of RowHammer-preventive actions
without compromising system robustness

Goal

Outline

18

Background

Conclusion

BreakHammer

Evaluation

Motivation

19

Key Idea

Memory
Controller

Core

Core

Attacker

User

Detect and slow down the memory accesses of threads
that trigger many RowHammer-preventive actions

Suspect Thread

20

BreakHammer: Overview

Execution Timeline
Throttling Window Throttling Window Throttling Window

TimeT3T4 T4T2 T4T1

Thread 1’s Row Activations

REFP

RowHammer-Preventive Action

T1 REFP

Thread Score

T1
T2
T3
T4

10 ↑↑
2 ↑
3 ↑

50 ↑↑↑

Observing RowHammer-
Preventive Actions

T1 T2 T3 T4

Suspect

Identifying Suspect Threads

LD LD LD LD

Throttling Memory
Bandwidth Usage

1 2 3

21

BreakHammer: Overview

Execution Timeline
Throttling Window Throttling Window Throttling Window

TimeT3T4 T4T2 T4T1

Thread 1’s Row Activations

REFP

RowHammer-Preventive Action

T1 REFP

Thread Score

T1
T2
T3
T4

10 ↑↑
2 ↑
3 ↑

50 ↑↑↑

Observing RowHammer-
Preventive Actions

T1 T2 T3 T4

Suspect

Identifying Suspect Threads

LD LD LD LD

Throttling Memory
Bandwidth Usage

1 2 3

Observing RowHammer-Preventive Actions

22

BreakHammer tracks the number
of RowHammer-preventive actions each thread triggers

Thread 1 Thread 2 Thread 3 Thread 4

RowHammer-preventive score counter

Time

Observing RowHammer-Preventive Actions:
Score Attribution Method

23

A RowHammer-preventive action is generally caused by
a stream of memory requests from many hardware threads

Thread 1 Thread 2 Thread 3 Thread 4

T2 T3T4 T4 T1T4 T4T1

Thread 1’s Row Activations

REFP

RowHammer-Preventive Action

RH-Preventive Score

Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)

2) Per Row Activation Counting (PRAC)

24

Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)

2) Per Row Activation Counting (PRAC)

25

Observing RowHammer-Preventive Actions:
Integration Showcase with PARA (I)

26

BreakHammer cooperates with existing RowHammer solutions

Probabilistic Row Activation (PARA) [Kim+, ISCA 2024]:
• Generates a random number
• Compares the number with a threshold
• If the random number exceeds the threshold

performs a preventive refresh

access

refreshP

>?

Observing RowHammer-Preventive Actions:
Integration Showcase with PARA (II)

27

Probabilistic Row Activation + BreakHammer (PARA+BH):
• Track row activation count of each thread

between preventive refreshes
• Increment each thread’s score proportionally to its activations

access

T2 T3T3T1 T3 T1T3 refreshP Time

Thread 1 Thread 2 Thread 3

refreshP

RH-Preventive Score

Observing RowHammer-Preventive Actions:
Integration Showcase

1) Probabilistic Row Activation (PARA)

2) Per Row Activation Counting (PRAC)

28

Observing RowHammer-Preventive Actions:
Integration Showcase with PRAC (I)

29

BreakHammer cooperates with existing RowHammer solutions

Per Row Activation Counting (PRAC) [JEDEC, 2024]:
• DRAM maintains an activation counter for each DRAM row
• DRAM requests time by triggering a back-off
• Memory controller provides time for

in-DRAM preventive refreshes

Counter 0

Counter 1

...

Counter 3

Per Row
Activation Counters

back-off

RFM

High Activation
Count Detected

Observing RowHammer-Preventive Actions:
Integration Showcase with PRAC (II)

30

Per Row Activation Counting + BreakHammer (PRAC+BH):
• Track row activation count of each thread between back-offs
• Increment each thread’s score proportionally to its activations

back-off

access

T2 T3T3T1 T3 T1T3 back-off Time

Thread 1 Thread 2 Thread 3

RH-Preventive Score

Observing RowHammer-Preventive Actions:
Integration with Other Mechanisms

31https://github.com/CMU-SAFARI/BreakHammer

https://arxiv.org/abs/2404.13477

We integrate BreakHammer with eight RowHammer solutions:

• PARA [Kim+, ISCA 2014]

• Graphene [Park+, MICRO 2020]

• Hydra [Qureshi+, ISCA 2022]

• TWiCe [Lee+, ISCA 2019]

• AQUA [Saxena+, MICRO 2022]

• REGA [Marazzi+, S&P 2023]

• RFM [JEDEC 2020]

• PRAC [JEDEC 2024]

https://github.com/CMU-SAFARI/BreakHammer
https://arxiv.org/abs/2404.13477

32

BreakHammer: Overview

Execution Timeline
Throttling Window Throttling Window Throttling Window

TimeT3T4 T4T2 T4T1

Thread 1’s Row Activations

REFP

RowHammer-Preventive Action

T1 REFP

Thread Score

T1
T2
T3
T4

10 ↑↑
2 ↑
3 ↑

50 ↑↑↑

Observing RowHammer-
Preventive Actions

T1 T2 T3 T4

Suspect

Identifying Suspect Threads

LD LD LD LD

Throttling Memory
Bandwidth Usage

1 2 3

Identifying Suspect Threads:
An Example

33

BreakHammer detects threads that trigger too many
RowHammer-preventive actions

> Minimum Score
to Consider

Maximum Deviation
from the Average Score

Threads

S
co

re

Thread Score

T1 10

T2 2

T3 3

T4 50

… …

34

BreakHammer: Overview

Execution Timeline
Throttling Window Throttling Window Throttling Window

TimeT3T4 T4T2 T4T1

Thread 1’s Row Activations

REFP

RowHammer-Preventive Action

T1 REFP

Thread Score

T1
T2
T3
T4

10 ↑↑
2 ↑
3 ↑

50 ↑↑↑

Observing RowHammer-
Preventive Actions

T1 T2 T3 T4

Suspect

Identifying Suspect Threads

LD LD LD LD

Throttling Memory
Bandwidth Usage

1 2 3

Throttling Memory Bandwidth Usage of Suspect Threads

[*] also known as miss status holding registers (MSHRs) 35

BreakHammer reduces the memory bandwidth usage
of each suspect thread

Throttle BreakHammer

Last-Level Cache

Cache-Miss Buffers*
Allocated Maximum

0 ∞

0 ∞

0 ∞

0 ∞

3 ∞

1 ∞

2 ∞

4 ∞55 5

User

User

User

Suspect

Restoring Memory Bandwidth of Suspect Threads

36

BreakHammer
restores the memory bandwidth usage of a suspect thread

if the thread stays benign for the full duration of a throttling window

Execution Timeline

Throttling Window

Benign

Throttling Window

ThrottledSuspect

Identified
This Window

Memory Bandwidth
Usage Restored

Still
Throttled

Throttling Window

Benign

Not
Identified

Outline

37

Background

Conclusion

BreakHammer

Evaluation

Motivation

Evaluation Methodology

• Performance and energy consumption evaluation:
cycle-level simulations using Ramulator 2.0 [Luo+, CAL 2023]
and DRAMPower [Chandrasekar+, DATE 2013]

• System Configuration:
Processor 4 cores, 4.2GHz clock frequency,

 4-wide issue, 128-entry instruction window

DRAM DDR5, 1 channel, 2 rank/channel, 8 bank groups,

 4 banks/bank group, 64K rows/bank

Memory Ctrl. 64-entry read and write requests queues,

 Scheduling policy: FR-FCFS with a column cap of 4

Last-Level Cache 8 MiB (4-core)

38

Evaluation Methodology

• Comparison Points: Integrated with 8 state-of-the-art
RowHammer mitigation mechanisms:

39

• Workloads: 4-core workload mixes from SPEC CPU2006,
SPEC CPU2017, TPC, MediaBench, YCSB
• 90 mixes with one attacker
• 90 mixes all benign

• PARA [Kim+, ISCA 2014]

• Graphene [Park+, MICRO 2020]

• Hydra [Qureshi+, ISCA 2022]

• TWiCe [Lee+, ISCA 2019]

• AQUA [Saxena+, MICRO 2022]

• REGA [Marazzi+, S&P 2023]

• RFM [JEDEC 2020]

• PRAC [JEDEC 2024]

Evaluation Results

40

1) Under Attack

2) No Attack

Evaluation Results

41

1) Under Attack

2) No Attack

Preventive Action Count and Its Scaling

42

Lower is worse

Higher is worse No BreakHammer

With
BreakHammer

~34x

Preventive Action Count and Its Scaling

43

Lower is worse

Higher is worse No BreakHammer

With
BreakHammer

~80% reduction
with BreakHammer

Preventive Action Count and Its Scaling

44

BreakHammer significantly reduces (72% on average) the
number of preventive actions performed across all mechanisms

Memory Latency Impact at NRH=64

45

Higher is worse
No BreakHammer

With
BreakHammer

No Defense

50% of requests are
served within 200ns

BreakHammer reduces memory latency across all mechanisms

Memory Latency Impact at NRH=64

46

BreakHammer significantly increases (81% on average)
the performance of PRAC

Performance Impact and Its Scaling

47

Lower is worse

H
ig

h
e

r
is

 b
e

tt
e

r

76%61%
43%

87% 93% 98% 105%

Performance Impact and Its Scaling

48

BreakHammer significantly increases system performance
(90% on average)

As RowHammer threshold decreases, RowHammer mitigation
mechanisms incur increasing performance overhead

DRAM Energy Impact and Its Scaling

49

BreakHammer significantly reduces (by 55% on average)
the energy consumption of PRAC

Lower is worse

L
o

w
e

r
is

 b
e

tt
e

r

43% 51% 55% 57% 58% 59% 60%

DRAM Energy Impact and Its Scaling

50

BreakHammer significantly decreases energy consumption
(by 55% on average)

As RowHammer threshold decreases, RowHammer mitigation
mechanisms consume significantly increasing DRAM energy

51

Under Attack Summary

BreakHammer significantly reduces
the negative performance and energy overheads

of existing RowHammer mitigation mechanisms
when a memory performance attack is present

BreakHammer accurately detects suspect threads1)

BreakHammer effectively reduces
the memory interference caused by suspect threads

2)

Evaluation Results

52

1) Under Attack

2) No Attack

No Attack Summary

53

Across 90 four-core benign workload mixes:

BreakHammer slightly (<1%) improves

• memory access latency

• system performance

• DRAM energy efficiency

More in the Paper

54

• More implementation details
‐ Resetting BreakHammer counters
‐ Tracking software threads
‐ Throttling DMA and systems without caches
‐ Configuration parameters

• Security analysis
‐ Upper bound on the overhead an attacker can cause
‐ Security against multi-threaded attackers

• Performance evaluation
‐ Unfairness results
‐ Sensitivity to memory intensity of workloads
‐ Comparison to BlockHammer
‐ Sensitivity analysis of BreakHammer parameters

https://arxiv.org/abs/2404.13477

https://arxiv.org/abs/2404.13477

The Paper

55

https://arxiv.org/abs/2404.13477

https://arxiv.org/abs/2404.13477

Outline

56

Background

Conclusion

BreakHammer

Evaluation

Motivation

Conclusion

57

Key Results:
• Under attack:

• Significantly improves system performance (by 90% on average)
• Significantly reduces energy consumption (by 55% on average)

• No attack:
• Slightly (<1%) improves performance and energy consumption

Key Mechanism: BreakHammer
• Observes triggered RowHammer-preventive actions
• Identifies threads that

trigger many preventive actions (i.e., suspect threads)
• Reduces the memory bandwidth usage of the suspect threads

https://github.com/CMU-SAFARI/BreakHammer

Key Exploit: Mount a memory performance attack by
triggering RowHammer-preventive actions to
block memory accesses for long periods of time

https://github.com/CMU-SAFARI/BreakHammer

Open Source and Artifact Evaluated

58https://github.com/CMU-SAFARI/BreakHammer

https://github.com/CMU-SAFARI/BreakHammer

Oğuzhan Canpolat A. Giray Yağlıkçı

Ataberk Olgun İsmail E. Yüksel

Yahya C. Tuğrul Konstantinos Kanellopoulos

Oğuz Ergin Onur Mutlu

BreakHammer
Enhancing RowHammer Mitigations

by Carefully Throttling Suspect Threads

https://github.com/CMU-SAFARI/BreakHammer

https://github.com/CMU-SAFARI/BreakHammer

Oğuzhan Canpolat A. Giray Yağlıkçı

Ataberk Olgun İsmail E. Yüksel

Yahya C. Tuğrul Konstantinos Kanellopoulos

Oğuz Ergin Onur Mutlu

BreakHammer
Enhancing RowHammer Mitigations

by Carefully Throttling Suspect Threads

https://github.com/CMU-SAFARI/BreakHammer

BACKUP SLIDES

https://github.com/CMU-SAFARI/BreakHammer

BreakHammer and RowPress

61

changing the score attribution to consider
row active time (e.g., Impress [Qureshi+, MICRO’24])

1)

conveying the type of action taken by the read
disturbance solution and tracking them differently
(i.e., RowHammer or Rowpress-preventive action)

2)

BreakHammer cooperates with a read disturbance solution

BreakHammer can become RowPress aware by:

RowHammer
Aggressor Row

Open

Close

RowPress
Aggressor Row

Open

Close

36ns, 47K activations to induce bitflips

7.8µs, only 5K activations to induce bitflips

Throttling DMA and Systems without Caches

62

Direct Memory Access (DMA)

BreakHammer

Suspect
Identification

Memory
Bandwidth

Usage
Throttler

Core

Core

Core

Processor Chip

Memory Controller

RowHammer
Mitigation Mechanism

Memory Request Scheduler

Thread 1

Thread 2

Thread N

Observing Actions

Extend DMA and load-store units of cores
to track and limit the number of unresolved memory requests

BreakHammer vs BLISS

63

Time

REFPACT RD PRE ACT RD PREACT RD RD PRERD

Three Requests Served

BLISS
Is Oblivious

To Action

BreakHammer
Three Key

Operations
Take Place

One Request Served One Request Served

One Activation One Activation One Activation

BreakHammer is preventive action contribution aware
Thereby accurately scores the suspect thread with higher score

BLISS only tracks consecutive requests served
Thereby wrongly scores a benign thread with higher score

T1 T2

Resetting Counters

64

Comparison to BlockHammer

65

BreakHammer outperforms BlockHammer across
all evaluated RowHammer thresholds

66

Upper Bound
on the Overhead an Attacker Can Cause

67

RBMPKI and Repeatedly Activated Row Count

68

Under Attack Memory Intensity (NRH=1K)

69

Under Attack Unfairness (NRH=1K)

70

Under Attack Unfairness and Its Scaling

71

No Attack Memory Intensity (NRH=1K)

72

No Attack Unfairness (NRH=1K)

73

No Attack Performance and Its Scaling

74

No Attack Unfairness and Its Scaling

75

No Attack Memory Latency (NRH=64)

76

BreakHammer Sensitivity to Minimum Score

Organization

77

D
R

A
M

 C
h

ip
s

BreakHammer

Memory Controller

RowHammer
Mitigation Mechanism

Memory Request Scheduler

Shared
Caches

Direct Memory Access (DMA)

Suspect
Identification

Memory
Bandwidth

Usage
Throttler

Core

Core

Core

Private
Caches

Private
Caches

Private
Caches

Processor Chip

Thread 1

Thread 2

Thread N

Observing Actions

Identifying Suspect Threads:
An Example

78

BreakHammer detects threads that trigger too many
RowHammer-preventive actions

T2: 3T1: 25

T3: 11

T4: 30

T5: 20

T6: 90

T7: 5 T8: 0

T6: 90

T4: 30

T1: 25

T5: 20

T3: 11

T7: 5

T2: 3

T8: 0

T6: 90

T4: 30

T1: 25

T5: 20

T3: 11

T7: 5

T2: 3

T8: 0

>

Identifying Suspect Threads:
High Level Algorithm

79

BreakHammer detects threads that trigger too many
RowHammer-preventive actions

Thread 1 Thread 2 Thread 3 Thread 4

>
Minimum score to
consider a thread

as suspect

Maximum deviation
from the average score

> >

Benign Benign Benign Suspect

	Slide 1: BreakHammer Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads
	Slide 2: Executive Summary
	Slide 3: Outline
	Slide 4: DRAM Organization
	Slide 5: DRAM Organization
	Slide 6: RowHammer: A Prime Example of Read Disturbance
	Slide 7: Read Disturbance Vulnerabilities (I)
	Slide 8: Read Disturbance Vulnerabilities (II)
	Slide 9: Existing RowHammer Mitigations: RowHammer-Preventive Actions
	Slide 10: Preventive Refresh as a RowHammer-Preventive Actions
	Slide 11: Row Migration as a RowHammer-Preventive Action
	Slide 12: Outline
	Slide 13: Root Cause of Performance Overhead
	Slide 14: RowHammer Mitigation Performance Overhead
	Slide 15: RowHammer Mitigation Performance Overhead
	Slide 16: Memory Performance Attack
	Slide 17: Problem & Goal
	Slide 18: Outline
	Slide 19: Key Idea
	Slide 20: BreakHammer: Overview
	Slide 21: BreakHammer: Overview
	Slide 22: Observing RowHammer-Preventive Actions
	Slide 23: Observing RowHammer-Preventive Actions: Score Attribution Method
	Slide 24: Observing RowHammer-Preventive Actions: Integration Showcase
	Slide 25: Observing RowHammer-Preventive Actions: Integration Showcase
	Slide 26: Observing RowHammer-Preventive Actions: Integration Showcase with PARA (I)
	Slide 27: Observing RowHammer-Preventive Actions: Integration Showcase with PARA (II)
	Slide 28: Observing RowHammer-Preventive Actions: Integration Showcase
	Slide 29: Observing RowHammer-Preventive Actions: Integration Showcase with PRAC (I)
	Slide 30: Observing RowHammer-Preventive Actions: Integration Showcase with PRAC (II)
	Slide 31: Observing RowHammer-Preventive Actions: Integration with Other Mechanisms
	Slide 32: BreakHammer: Overview
	Slide 33: Identifying Suspect Threads: An Example
	Slide 34: BreakHammer: Overview
	Slide 35: Throttling Memory Bandwidth Usage of Suspect Threads
	Slide 36: Restoring Memory Bandwidth of Suspect Threads
	Slide 37: Outline
	Slide 38: Evaluation Methodology
	Slide 39: Evaluation Methodology
	Slide 40: Evaluation Results
	Slide 41: Evaluation Results
	Slide 42: Preventive Action Count and Its Scaling
	Slide 43: Preventive Action Count and Its Scaling
	Slide 44: Preventive Action Count and Its Scaling
	Slide 45: Memory Latency Impact at NRH=64
	Slide 46: Memory Latency Impact at NRH=64
	Slide 47: Performance Impact and Its Scaling
	Slide 48: Performance Impact and Its Scaling
	Slide 49: DRAM Energy Impact and Its Scaling
	Slide 50: DRAM Energy Impact and Its Scaling
	Slide 51: Under Attack Summary
	Slide 52: Evaluation Results
	Slide 53: No Attack Summary
	Slide 54: More in the Paper
	Slide 55: The Paper
	Slide 56: Outline
	Slide 57: Conclusion
	Slide 58: Open Source and Artifact Evaluated
	Slide 59: BreakHammer Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads
	Slide 60: BreakHammer Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads
	Slide 61: BreakHammer and RowPress
	Slide 62: Throttling DMA and Systems without Caches
	Slide 63: BreakHammer vs BLISS
	Slide 64: Resetting Counters
	Slide 65: Comparison to BlockHammer
	Slide 66: Upper Bound on the Overhead an Attacker Can Cause
	Slide 67: RBMPKI and Repeatedly Activated Row Count
	Slide 68: Under Attack Memory Intensity (NRH=1K)
	Slide 69: Under Attack Unfairness (NRH=1K)
	Slide 70: Under Attack Unfairness and Its Scaling
	Slide 71: No Attack Memory Intensity (NRH=1K)
	Slide 72: No Attack Unfairness (NRH=1K)
	Slide 73: No Attack Performance and Its Scaling
	Slide 74: No Attack Unfairness and Its Scaling
	Slide 75: No Attack Memory Latency (NRH=64)
	Slide 76: BreakHammer Sensitivity to Minimum Score
	Slide 77: Organization
	Slide 78: Identifying Suspect Threads: An Example
	Slide 79: Identifying Suspect Threads: High Level Algorithm

