Reducing DRAM Latency via Charge-Level-Aware Look-Ahead Partial Restoration

Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad Sadrosadati, Onur Mutlu

Problem

- DRAM access latency is a major bottleneck for system performance
- Fundamental operations when accessing DRAM

Restoration Refresh

Motivation

SAFARI

 Prior work applies partial restoration to soon-to-be-refreshed DRAM rows

Observation: a recently-accessed row is likely to be accessed again soon

 Partial restoration can be applied to soon-to-be-reactivated DRAM rows

- We propose <u>charge-level-aware look-ahead partial</u> restoration (CAL)
 - 1. CAL predicts the next access time at high accuracy (i.e., 98%)
 - 2. CAL applies partial restoration
 - a) based on the predicted next access time
 - b) ensuring high enough restoration level
 - c) maintaining the benefits of latency reduction mechanisms for highly-charged rows

We comprehensively evaluate CAL using a wide variety of workloads and across many system and mechanism parameters

14.7% performance improvement11.3% energy reduction

■ CAL is implemented fully within the memory controller without any changes to the DRAM module

Reducing DRAM Latency via Charge-Level-Aware Look-Ahead Partial Restoration

Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad Sadrosadati, Onur Mutlu

Session 3-A, Oct 22