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Executive Summary

Problem: Secure exact string matching using homomorphic encryption (HE) lacks scalability
due to performance bottlenecks in two key areas:

a) Use of complex homomorphic multiplication resulting in high computation cost

b) Data movement bottleneck from large encrypted database stored in solid-state drive (SSD)

Goal: Develop an algorithm-hardware co-design to provide scalable, parallelizable
and efficient HE-based secure exact string-matching

Key Idea: Use (a) only homomorphic addition and (b) perform in-flash processing by exploiting
the operational principles of NAND-flash memory to accelerate secure exact string matching

CIPHERMATCH: A new algorithm-hardware co-design

that significantly improves the performance of HE-based secure exact string matching by
a) using only homomorphic addition to reduce the high computation cost

b) optimizing the data packing scheme to reduce memory footprint

c) designing a new in-flash-processing (IFP) architecture to reduce data movement

Key Results:
a) CIPHERMATCH algorithm: 42.9x speedup & 39.4x energy savings than best software

b) CIPHERMATCH with IFP: 136.9x speedup & 256.4x energy savings over CM-SW
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Exact String Matching

Exact string matching is used
In many security critical applications, such as

\

Databases Bioinformatics
e.g., searching a query in e.g., identifying similarities
sensitive databases in DNA sequences
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Exact String Matching
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Exact String Matching
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Homomorphic encryption (HE) can be leveraged
to perform secure exact string matching
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Secure Exact String Matching
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Approaches to HE-based String Matching

Secure string matching using HE can be performed using two key approaches

[ Boolean Approach ] [ Arithmetic Approach ]

Encrypt multiple packed bits and use
homomorphic MUL and ADD operations

Encrypt individual bits and use
homomorphic XOR and AND operations

More detailed analysis in the paper

SAFARI 11



Prior Works on HE-based String Matching

Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020 ]
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Approaches to HE-based String Matching

Secure string matching using HE can be performed using two key approaches

|

[ Boolean Approach ]

[ Arithmetic Approach ]

Encrypt multiple packed bits and use
homomorphic MUL and ADD operations

Encrypt individual bits and use
homomorphic XOR and AND operations

1) High memory footprint 1) Low memory footprint

2) Low computation cost

2) High computation cost

3) Supports flexible query size 3) Supports limited query size
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Arithmetic Approach
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Arithmetic Approach

[ Arithmetic Approach ]

1. Encrypt multiple packed bits
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1 32 |1 21 | ---f 67 44 197 ... 68 ] °+-- | 41152 [---] 94
[ 128 bytes ] Conventional database size
8 Kilobytes Encrypted database size
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Arithmetic Approach

[ Arithmetic Approach ]

1. Encrypt multiple packed bits

2.  Perform homomorphic MUL and ADD operations

DW%. | .%‘

1 [ 1|0 1] 0 [eee] 1| e | 1] 1
Encrypted Database
1 32 [ 21 [.--] 67 44 197 [...1 68 | ==+ | 41| 52
Encrypted Query
21 | 23 [.--] 57 21 [ 23 [.«.[ 57 | ==+ | 21 ] 23
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Arithmetic Approach

[ Arithmetic Approach ]

1. Encrypt multiple packed bits

2.  Perform homomorphic MUL and ADD operations

| 32 1 21 |---]| 67 44 | 97 [eee] 68 | *** |41 | 52 [+«<] 94
! v v
Hom. Op. Hom. Op. eee — Hom. Op.
1 i f
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Execution Time of Arithmetic Approach

Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020 ]

Total execution time of [Yasuda+, CCSW 2013]
to perform secure string matching

A
v

Homomorphic multiplication is 100x slower than homomorphic addition
on a CPU-system
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Key Problem (I): Homomorphic multiplication

Homomorphic multiplication limits scalability
of HE-based string matching algorithm

SAFARI 19



Databases are Stored in Storage (SSD)

Databases are large and stored in SSDs

Homomorphic encryption
further increases the database size
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Key Problem (II): Data Movement Bottleneck

External I/O bandwidth of SSD
is the main bottleneck for reading large encrypted database
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Prior Works on Reducing Data Movement
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Prior Works on Reducing Data Movement
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Prior Works on Reducing Data Movement

In-Flash Processing (IFP) (park:, MICRO 2022 ; Gao+, MICRO 2021]
enables computation inside SSD by exploiting
the operational principles of NAND-flash memory
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Our Goal

Develop an
IFP-based algorithm-hardware co-designed system
that can perform scalable, parallelizable and efficient
secure exact string matching

SAFARI

25



Talk Outline

SAFARI

Key Idea

26



Key Observation

In a conventional database,
we perform only addition to get a string match

A= I =B~ e —

This observation can be extended to perform
secure exact string matching
using only homomorphic addition

10010 Enc(gi(i?ﬁllOOOlOOl...101)
l~ Enc(Query) J| LEnc( )
01101— Enc(01101) Enc(01011010010100...010)
Enc(01101)
L Enc(11111) )

Perform homomorphic addition
Observe Enc(1111’s), if Enc(query) matches
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Key Idea (1/2)

Use only homomorphic addition to perform
secure exact string matching

SAFARI
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Key Observation

Homomorphic addition is highly parallelizable

|

Exploit inherent parallelism of NAND-flash memory
Improves the performance of secure string matching
Reduces data movement

SAFARI
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Key Idea (2/2)

Use only homomorphic addition to perform
secure exact string matching

Use in-flash processing (IFP) to reduce data movement
and accelerate secure exact string matching

SAFARI
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CIPHERMATCH

An algorithm-hardware co-design

Improves the performance of
HE-based secure exact string matching

Reduces memory footprint
- by optimizing the data packing scheme used before encryption

Eliminates costly homomorphic multiplication
- by designing secure string-matching algorithm using only homomorphic addition

Reduces data movement

and leverages massive bit and array-level parallelism
by designing an in-flash processing architecture
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Talk Outline

CIPHERMATCH: System Overview

SAFARI
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CIPHERMATCH: System Overview

(" ] ™ e
Client Server
Storage
Data
E
Database [ Packing & ncrypted > (SSD)
Encryption Database CPU DRAM
P Encrypted
Database
\k )) \

Efficiently pack the database
to reduce the memory footprint after encryption

SAFARI



CIPHERMATCH: System Overview
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CIPHERMATCH: System Overview
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Efficiently pack the database
to reduce the memory footprint after encryption

Efficiently pack the query
to perform parallel secure string matching on encrypted database

Perform secure exact string matching
using only homomorphic addition
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CIPHERMATCH: System Overview
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Encryption CPU || DRAM ||| Perform
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g Database
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Index s

Efficiently pack the database
to reduce the memory footprint after encryption

Efficiently pack the query
to perform parallel secure string matching on encrypted database

Perform secure exact string matching
using only homomorphic addition

Accelerate secure exact string matching by performing computations inside SSD
by exploiting operational principles of NAND-flash memory
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CIPHERMATCH: Key Steps

@ Memory-Efficient Data Packing Scheme
@ Secure Exact String-Matching Algorithm
@ In-Flash Processing
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CIPHERMATCH: Algorithm
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CIPHERMATCH: Key Steps
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to reduce the memory footprint and enable parallel string matching
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Memory-Efficient Data Packing Scheme @
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Memory-Efficient Data Packing Scheme @

Encode database
Query (10010) | by pqckmg myltlple bits
into a single plaintext vector
Increase in encrypted database
size is only 4x (2KB -> 8KB)

Database =010110010100010...01001

16lbits ', Encode
01011 00101 00010 01001
1024 élements
321bits Enc(Database)
32 21 48 67

|
SAFARI 2048 elements 41



Memory-Efficient Data Packing Scheme @

4 )

Enc(Database)

32 | 21148 | ...| 67

Query (10010)

~Query (01101)
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Memory-Efficient Data Packing Scheme @

4 )

Encode query . Enc(Database)
by negating and replicating 32 | 21 | 48 67
into a single plaintext vector —

~Query (01101)
Encode
01101 01101 01101 01101
', Encrypt
Enc(~Query)
22 17 5 11
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Memory-Efficient Data Packing Scheme @

Enc(Database)

32 21 48 cee 67
Enc(~Query)

22 17 5 cee 11
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CIPHERMATCH: Key Steps

Secure Exact String-Matching Algorithm

- Uses only homomorphic addition and identifies the match
to eliminate costly homomomorphic multiplication

SAFARI
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Secure Exact String-Matching Algorithm @

Enc(Database)

32 21 48 cee 67
+ + + +
Enc(~Query)

22 17 5 cee 11

Homomorphic addition
is inherently element-wise addition
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Secure Exact String-Matching Algorithm

Enc(Database)

32 21 48 67

+ + + +
Enc(~Query)

22 17 5 11
Enc(Result)
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Secure Exact String-Matching Algorithm @

Enc(Result)
54 38 53 o 78
" Decrypt
10110 11010 11111 coe 10100

Match Found !!

However, we want to find the match
using Enc(Result) on the server
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|ldentify the Match

Enc(Result)
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|dentify the Match (2)

Enc(Result)
54 38 l 53 b 78

35 64 , 53 L e 29

Compare and send the final index back to client
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CIPHERMATCH: Algorithm (Summary)

Negated, Replicated and
Packed Encrypted Query
with an Encrypted Match Value

SAFARI

only Homomorphic Addition

-

Client Server
[ Encrypted
QUEI’Y I Data Query CPU S(t:;?)g)e
Packing & Encrypted
E i > M
1111..1 - Encryption Match Value Pse:i(:‘r;l DRA Encrypted
o I | || Database
Result Matched Matching | [4---
Index —
. ) / ;
i 3] (" Efficiently Packed
String Matching using Iciently Packe

Encrypted Database

using our Memory-Efficient

Data Packing

J

51



Talk Outline

CIPHERMATCH: Hardware
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CIPHERMATCH: Hardware Overview
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Perform secure exact string matching
inside SSD using in-flash processing (IFP)
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Overview of a Modern Solid State Drive (SSD)

é )

Solid-State Drive (SSD)
(NAND Flash-Based SSD)
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Overview of a Modern Solid State Drive (SSD)
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Overview of a Modern Solid State Drive (SSD)

NAND Flash Memory

~
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Limitations of Prior Work

Prior work (cao-+, micro 20211US€S latching circuit
to perform only bitwise operations

-~
-~y
S

Latching
circuit

Sensing Latch

Data Latcho

Data Latch 1

Data Latch 2
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Advantages of Secure String Matching in SSD

e i ) ( b
Client Server
Encrypted | |
Query Data Query . >torage
Packing & Encrypted (55D)
1111.1 [ Encryption MatchValue| | | CPU || DRAM Perform Encrypted
String
; D
— Matched Matching atabase
] Index
\_ J \_ J

Homomorphic addition can be parallelized

i

Exploit bit-level and array-level parallelism
of NAND-flash memory
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CIPHERMATCH: Hardware Overview
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@ Perform homomorphic additions
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CIPHERMATCH: Hardware Overview

( N
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@ Perform homomorphic additions
inside NAND-flash memory

4

Perform element-wise addition inside NAND-flash memory
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CIPHERMATCH: Key Steps

®

In-Flash Processing

-Exploit the operational principles of NAND-flash memory
to perform homomorphic addition
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CIPHERMATCH: Element-Wise Addition (3)

We use bit-serial addition
to avoid carry propagation across different bitlines

< D
- . . ~ NAND Flash Memory
Solid-State Drive (SSD)
(NAND Flash-Based SSD) /| Latching
/| circuit
f 'll Sensing Latch
SSD Flash | T T ’l' Data Latch 0
Controller Chip s (Els) Data Latch 1
LatChing CirCUit Data Latch 2
\_ | K\ ,/~~-
[ Flash ] [ Flash ||~~~ ™ S
Internal DRAM] chip | | chip_] ——— >
\_ e Die#0 || Die#1
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CIPHERMATCH: Bit-Serial Addition

@ ;

NAND Flash Memory )
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CIPHERMATCH: Bit-Serial Addition

NAND Flash Memory )

\_ - \

Lay out the data vertically in NAND-flash memory
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CIPHERMATCH: Bit-Serial Addition (3)

Lay out the data vertically in NAND-flash memory
Send the query from SSD controller to the latches
Perform Steps 1-6 to perform bit-serial addition

Accumulate theusumb@m@lsendrthe acoumuEed)bit t@tbe SSD controller

SAFARI 65
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CIPHERMATCH: Hardware (Summary)

- N\
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Encrypted r 1
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@ Perform homomorphic additions V
inside NAND-flash memory

@ Generate the final index
by comparing it with match value
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CIPHERMATCH: Hardware (Summary)

( Server )

Encrypted ( N

Query T Storage (SSD)

SEnc_rypted 1 General Purpose Core NAND Flash Memory
tatic Value
Index Generation (Encrypted Data)

Matched 10 I I

Index L N -4 “

@ Generate the final index
by comparing it with match value

l

Use general purpose cores to identify the final match
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Evaluation Methodology (1/2): Real System

Our Implementation

Intel Xeon, 6 cores, 3.2 GHz 32GB DDR4 DRAM 2TB PCle 4.0 SSD

We evaluate software-based CIPHERMATCH implementation (CM-SW)
by modifying the Microsoft SEAL library

SEHA TS

* Arithmetic (using SEAL): State-of-the-art arithmetic approach [Yasuda+, CCSW 2013]
* Boolean (using TFHE-rs): State-of-the-art Boolean approach [Aziz+, Information 2024]

Workloads

* Varying query size (16-256 bits)* for encrypted database size of 128 GB
* Varying encrypted database size (8-128 GB)* for 16-bit query and 1000 queries

* including all circular shifted queries
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Speedup for Different Query Sizes

Boolean

106 4
=
5 104 4
o
o 102 4
(s

16 32 64 128 256 Avg
— Quety Size (in bits) >
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Speedup for Different Query Sizes (1/3)

Booledn Arithmetic

106 o
5 104
E: N 0 N |
8 102 . 2
n &

lo *_Fl.___Fl ___—l-__?l-_-_Fl ___c,#l___

16 32 64 128 256 Avg
— Quety Size (in bits) >

Arithmetic technique outperforms Boolean technique
by orders of magnitude
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Speedup for Different Query Sizes (2/3)

Boolean Arithmetic CM-SW
106 42.9x
sl M T I
® 5
2 102 4 2
7 %
'|0°-|——|—. = I =71 I F=-r | == ——mr'-. " —
16 32 64 128 256 Avg
— Quety Size (in bits) >

CM-SW outperforms the best prior arithmetic technique
by 42.9x
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Speedup for Different Query Sizes (3/3)

Boolean Arithmetic CM-SW
106 4 20.7x 30.7x 44,'|x_ 54.7)(_ 62.2)(_ 42.9)(_
o - N
-39 1 o I | I !
g
o 2
8 102 - 2
7z o
o
'|0°-|——|—. = =7 I rFr=-r | r——r_ ——1-"-. e
16 32 64 128 256 Avg
— Quety Size (in bits) >

CM-SW speedup increases with query size
(due to the elimination of homomorphic multiplication)
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Evaluation Methodology (2/2): Simulation

Our Implementation

We evaluate IFP-based CIPHERMATCH implementation (CM-IFP)
by modeling the characteristics of the NAND-flash memory

Baselines

 CM-SW.: CIPHERMATCH on compute-centric system [same as real system]
e CM-PuM: CIPHERMATCH on memory-centric system [*, 32GB DDR4-2400]
* CM-PuM-SSD: CIPHERMATCH on storage-centric system [*, SSD DRAM - 2GB LPDDR4-1866]

[*] - SIMDRAM framework [Hajinazar+, ASPLOS 2021]

Workloads

* Varying query size (16-256 bits)* for encrypted database size of 128 GB
* Varying encrypted database size (8-128 GB)* for 16-bit query and 1000 queries

* including all circular shifted queries
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Speedup for Different Query Sizes

I CM-SW

106
S 104
35 10
o
o 102
(7]

IIOO g il e el -I_I:I _____ |_|'_T____'|_I:I_____|_I-_T____'|_I'__I____

16 32 64 128 256 Avg
< Quety Size (in bits) >
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Speedup for Different Query Sizes (1/3)

/cM-sw CI1CM-PuM EE CM-PuM-SSD B CM-IFP

106
S 10
3 10
o
o 102
(7]

100 + - - - -

16 64 128 256
< Quety Size (in bits) >

All three near-data processing systems
improve performance by reducing data movement
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Speedup for Different Query Sizes (2/3)

/cM-sw CI1CM-PuM EE CM-PuM-SSD B CM-IFP

106
o 136.9x
35 10
o
o102
(7]

100 - - - - = ==

16 64 128 256
< Quety Size (in bits) >

CM-IFP outperforms CM-SW by 136.9x

CM-IFP outperforms other near-data processing systems
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Speedup for Different Query Sizes (3/3)

/cM-sw CI1CM-PuM EE CM-PuM-SSD B CM-IFP

106
o 216.0x  168.9x  122.7x  100.2x 76.6x  136-9x
3 104 [ f t t !
T
o
o 102
N

100 —

16 32 64 128 256 Avg
< Quety Size (in bits) >

CM-IFP speedup decreases with query sizes
due to repeated flash read operations on same data
for circularly shifted queries
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Energy Consumption for Different Query Sizes

Norm. Energy
Consumption

16 32 64 128 256 Avg
« Quety Size (in bits) —
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Energy Consumption for Different Query Sizes

= CM-SW CI1CM-PuM EE CM-PuM-SSD B CM-IFP

Norm. Energy
Consumption
© o
RS o

32 64 128 256
- Quety Size (in bits) >

All three near-data processing systems
provide large energy savings over CM-SW
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More Detalils in Our Paper

CIPHERMATCH: Accelerating Homomorphic Encryption-Based String Matching
via Memory-Efficient Data Packing and In-Flash Processing

Mayank Kabrat Rakesh Nadig{ Harshita Guptai Rahul Beraf
Vamanan Arulchelvan{ Yu LiangT Haiyu Maoi

ETH Zurich¥

Homomorphic encryption (HE) allows secure computation
on encrypted data without revealing the original data, provid-
ing significant benefits for privacy-sensitive applications. Many
cloud computing applications (e.g., DNA read mapping, bio-
metric matching, web search) use exact string matching as a
key operation. However, prior string matching algorithms that
use homomorphic encryption are limited by high computational
latency caused by the use of complex operations and data move-
ment bottlenecks due to the large encrypted data size. In this
work, we provide an efficient algorithm-hardware codesign to
accelerate HE-based secure exact string matching. We propose
CIPHERMATCH, which (i) reduces the increase in memory
footprint after encryption using an optimized software-based
data packing scheme, (ii) eliminates the use of costly homo-
morphic operations (e.g., multiplication and rotation), and (iii)
reduces data movement by designing a new in-flash processing
(IFP) architecture.

Manos Frouzakis¥
Mohammad Sadrosadatit  Onur Mutluf

King’s College Londoni

format). Since cloud servers can be shared among multiple
users, sensitive user data can become vulnerable to security
threats and leaks [24-26]. HE can significantly benefit privacy-
sensitive applications [27-31] that require exact string matching
[13-17,19,21-23] as the fundamental operation by directly op-
erating on encrypted data without requiring decryption.

Unfortunately, homomorphic operations are typically 10%x
to 10° x slower than their traditional unencrypted counterparts
in existing systems [32]. Prior works propose two main ap-
proaches to perform secure string matching: (1) the Boolean
approach (e.g., [17, 33]), and (2) the arithmetic approach
(e.g., [27,29,34]). The Boolean approach [17,33] packs individ-
ual bits into a polynomial, encrypts it, and uses homomorphic
XNOR and AND operations to perform secure string match-
ing on a search pattern of any size. In contrast, the arithmetic
approach [27,29, 34] packs multiple bits into a polynomial, en-
crypts it, and employs homomorphic multiplication and addition

SAFARI
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To Summarize ...
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Conclusion

CIPHERMATCH

A new algorithm-hardware codesign that significantly improves the
performance of secure exact string matching algorithm

Pack multiple bits of database + Reduces memory footprint
and thus eliminate the use of + Provides scalable
homomorphic multiplication secure exact string-matching
Use in-flash processing (IFP) + Reduces data movement
@ to accelerate secure exact + Leverages bit-level
string-matching and array-level parallelism

Key Results

* CIPHERMATCH-SW: 42.9x speedup & 39.4x lower energy than best software
* CIPHERMATCH-IFP: 136.9x speedup & 256.4x lower energy than CM-SW
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Summary

CM-SW provides 42.9x speedup
over the state-of-the-art approach in real systems

Due to our new memory-efficient data packing scheme
and use of only homomorphic additions

CM-IFP provides 136.9x speedup over CM-SW
and outperforms three near-data processing systems

Due to our new IFP design to perform in-flash operations
and exploiting large-scale bit-level parallelism
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Executive Summary

Problem: Secure exact string matching using homomorphic encryption (HE) operations face performance
bottlenecks in two key areas:

(a) High computation cost due to use of complex homomorphic operations (e.g., multiplication)
(b) data movement bottleneck due to large homomorphically encrypted data

Motivation: Reducing memory expansion from HE and performing computation where the database
resides can improve the performance of secure exact string matching algorithm

Opportunity: (a) Perform memory-efficient packing of the database to reduce the increase in memory
footprint after encryption and (b) perform simple computations (e.g., HE addition) inside solid state drives
(SSDs —i.e., where the database is stored) to reduce data movement

that significantly improves the performance of
HE-based secure string matching by using only homomorphic addition and leveraging the operational
principles of NAND-flash memory.

Key Idea: Key Benefits:

1) To pack multiple bits of data in the each
coefficient of ciphertext

2) Use in-flash processing (IFP) to perform
string matching inside NAND-flash memory + Reduces data movement bottleneck

+ Reduce memory expansion after encryption
+ Eliminates the use of complex HE operations

Key Results: (i) Software-based CIPHERMATCH implementation (CM-SW) achieves 42.9x speedup over
state-of-the-art software approaches

(ii) CIPHERMATCH IFP implementation futher improves upon CM-SW, achieving 136.9x better
performance and 256.4x lower energy consumption
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Executive Summary

Problem: Secure exact string matching using homomorphic encryption (HE) operations face performance
bottlenecks in two key areas:

(a) High computation cost due to use of complex homomorphic operations (e.g., multiplication)

(b) Data movement bottleneck due to large homomorphically encrypted data size

Motivation: Reducing memory expansion from HE and performing computation where the database
resides can improve the performance of secure exact string matching algorithm

Opportunity: (a) Optimize memory usage by packing encrypted data efficiently and (b) perform secure
string matching using simple HE operations (addition) inside SSDs, reducing data movement.

that significantly improves the performance of
HE-based secure exact string matching (a) by using only homomorphic addition and (b) leveraging the
operational principles of NAND-flash memory to perform secure exact string matching

Key Idea: Key Benefits:
1) Pack multiple bits of data in the each + Reduce memory expansion after encryption

coefficient of ciphertext

2) Use in-flash processing (IFP) to perform
string matching inside NAND-flash memory  + Reduces data movement bottleneck

+ Eliminates the use of complex HE operations

Key Results:
(i) Software-based CIPHERMATCH (CM-SW): 42.9 x speedup over existing state-of-the-art approaches

(ii) CIPHERMATCH with IFP: 136.9 x faster and 256.4 x lower energy consumption than CM-SW
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W NAND Flash Basics: A Flash Cell

* A flash cell stores data by adjusting the amount of
charge in the cell

Erased Cell Programmed Cell
(Low Charge Level) (High Charge Level)

@ Activation @
Operates as a resistor Operates as an open switch
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'NAND Flash Basics: A NAND String

* A set of flash cells are serially connected to form a
NAND String Bitline (BL)

{o-0e06¢

NAND String
SAFARI
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W NAND Flash Basics: A NAND Block

* NAND strings connected to different bitlines comprise a NAND
block

4

\----------------—'

N

SAFARI
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W NAND Flash Basics: A NAND Plane

* A large number of blocks share the same bitlines

[Latches to store }
flash read data

(~ Fv A A A oY
>4 X1 Al &) A g
Block, X X X X X
PN A~ A A\ s
% ¥ 9 S ¥ 9
(~ F A A AN A
>4 X1 Al &) A g
Block, X X X X X
PN A~ A A\ s
TS 9 ST ¥ 9
F~ Fy F F F
x1 X Al 4 A g
Block e ~ o b b :
{ A A A A A .
S ¥ 9 S ¥ 9
BL, BL, BL, BL, BL BL,
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Speedup for Different Database Size

[ Boolean —1 CM-SW

[ Arithmetic

1.2x103x |

8GB 16GB 32GB 64GB 128GB Avg
Encrypted Database Size (in GB)

CM-SW shows average speedup of 68.1x over prior arithmetic approach

CM-SW speedup decreases as data size exceeds DRAM capacity, primarily
due to increased data movement between storage and DRAM.
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Speedup for Different Database Size

/ cM-sw ] CM-PuM [ CM-PuM-SSD [ CM-IFP

250.1x 250.1x 250.1x 295.1x 295.1X 556 3x ,268.3x
A A A
Q_ A
S 104 = 8
©
(<))
2 102
A 102 -
100 .

8GB 16GB 32GB 64GB 128GB Avg
Encrypted Database Size (in GB)

CM-IFP shows highest average speedup of 268.3x over CM-SW

CM-SW speedup decreases when data size goes beyond DRAM size due to
frequent data movement between storage and DRAM
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Energy Consumption for Different Query Size

/] camv-sw (] CM-PuM 1 CM-PuM-SSD B CM-IFP

100

Norm. Energy
Consumption

16 32 64 128 256 Avg
Query Size (in bits)

CM-IFP shows highest average energy savings of 256.4x over CM-SW

CM-IFP energy efficiency decreases with increasing query sizes due to
expensive flash reads
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CIPHERMATCH: NAND-Flash Bitwise Operations

NAND Flash Read Circuitry

~~~~~~~~ NAND Flash Chip
e \ E D-Latch I D-Latch
S-Latch S-Latch
IIIHIIENn L0000 TII00]
Blk#2 Blk#2
< ; Blk#1 Blk#1
A /__Plane#0 Plane#1
10 Ml /' Peripheral Circuitry
1 / X _=_=-—
'/ \ [\ e —— e
(I8 /
Al pidine U ) 7 Die#0 r Die#1

L Sensing Latch (S-latch) /' -— —
(P " Storage (SSDY.. e
1 1
i i SSD Controller i Flash Controller Flash Chip | | Flash Chip [-++=== Flash Chip i
o (General Purpose Core) ; S , —>
i et I Flash Controller Flash Chip | | Flash Chip |--==="- Flash Chip i
1 1
i ; i
i Internal DRAM T I > !
: FlaSh Contr()ller Flash Chip | | Flash Chip |===="""* Flash Chip :
1 1
1 1
\ U

----------------------------------------------------------------------------------------------------------
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CIPHERMATCH: NAND-Flash Bitwise Operations

Mg |-  Data Latch (D-latch)

é E )
M

A, ]F
I

Bitline \.
Sensing Latch (S-latch)

SAFARI] Design proposed by prior work [Cho+, Patent 2022]



CIPHERMATCH: NAND-Flash Bitwise Operations

Bitwise AND of Aand B

Data (A) is read and stored in S-
latch

9 Data (A) is transferred from S-latch
to D-latch

Similarly data (B) is read and stored
in S-latch

|
M
0~ El

ﬁ
Sensing Latch (S-latch)
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CIPHERMATCH: NAND-Flash Bitwise Operations

1->0

|_EN Data Latch (D-latch)

— Bitwise AND of Aand B

-l - m D-latch (A) S-latch (B)

yA
t
I 1
.g S 0 0 0
NAND \ 0
String é )
0
1

0 1
"o I 1 0
= R 1 1
B eﬁi‘i

Precharge the bitline to

Bitline \ logical 1
-=v Sensing Latch (S- latch)
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Data Movement Bottleneck

* Compute-centric systems: Move entire data from storage to CPU/GPU

Memory bandwidth:
~40 GB/s R
MET: Storage
CPU/GPU
/ AUEIIE (NAND Flash-Based SSD)
(DRAM)
Storage I/O bandwidth:
~ 8 GB/s
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Motivation (II) - Data Movement Bottleneck®

External I/O bandwidth of storage systems
Is the main bottleneck for memory intensive application
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Motivation (II) - Data Movement Bottleneck®

* Compute-centric systems: Perform computations in CPU/GPU
* Memory-centric systems: Perform computations in main memory
* Storage-centric systems: Perform computations inside storage system

4 Storage R
(NAND Flash-Based SSD)
r N
[ ) Main [| S
e NAND NAND
CPU/GPU |€== Memory [@===j| Compute [Chip#l] "'[Chip#4]
g ) (DRAM) X Units
- / [ NAND ] [ NAND ]
Chip#31) ™ | Chip#32

- J
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Motivation (II) - Data Movement Bottleneck®

e -

SSD-internal bandwidth
becomes the new bottleneck for computations
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In-Flash Processing (IFP)

Perform computations inside NAND-flash chips
by using operational principles of NAND-flash memory

r

CPU/GPU

.

(

—

J

SAFARI

\_

Main
Memory
(DRAM)

~

Storage R
(NAND Flash-Based SSD)

J

LNAND
Chip#1

."[NAND]
Chip#4

[NAND] [NAND]
Chip#31) ™ | Chip#32

J
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In-Flash Processing (IFP)

Prior Works ([Gao+, MICRO 2021], [Park+, MICRO 2022])
perform bitwise operations using the latching circuit

SAFARI

-

NAND Flash Chip

~

Operand O,

Operand O,

Operand O,

Operand O,

Bitlines (BLs)
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Limitations of Prior Works

e Boolean ApprOaCh [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020 ]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to ' 1. Low memory footprint due to
encryption of individual bits : data packing mechanism

m?D@{lOll...l 1(? m=[‘1/10][1(1)1]1...D€]

Enc(b,) Enc(b,) Enc(b,,) Enc(P.(x)) Enc(P,(x)) ... Enc(P,(x))
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Limitations of Prior Works

e Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020 ]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to 1. Low memory footprint due to
encryption of individual bits data packing mechanism

2. High computation cost due to
large number of HE operations

2. Low computation cost due to
small number of HE operations

Enc(b,) @ Enc(b,) @ Enc(b,) ..... 1000X Enc(P,(x)) ¥ Enc(P,(x)) X ..... 10X
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Limitations of Prior Works

* Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020 ]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to 1. Low memory footprint due to
encryption of individual bits data packing mechanism

2. High computation cost due to
large number of HE operations

2. Low computation cost due to
small number of HE operations

3. Support flexible query sizes
due to unlimited computations

3. Support limited query sizes
due to limited computations
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Approaches for HE-based String Matching

Secure string matching using HE can be performed using two key approaches

|
| !

[ Boolean Approach ] [ Arithmetic Approach ]

@D Encrypt multiple padked bits

e.q., m/(D@\}Oll 11((1)) - eg, m=C__J ]1...?
; !

@D Encrypt individual bits

Enc(b,) Enc(b,) Enc(b,) P1=b,x2+b,x*+b, P,(x)= box2+b, x*+b; ... Py(x)
} } }
Enc(P,(x)) Enc(P,(x)) ... Enc(P,(x))
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Approaches for HE-based String Matching

Secure string matching using HE can be performed using two key approaches

! !

[ Boolean Approach ] [ Arithmetic Approach ]

@D Encryptindividual bits @D Encrypt multiple packed bits

@  Perform homomorphic
multiplication and addition operation

@ Perform homomorphic
XOR and AND operation

Enc(b,) Enc(b,) Enc(b,) Enc(P,(x)) Enc(P,(x)) ... Enc(P.(x))
S SV SV X X X
Enc(qo) Enc(q,) Enc(q,) Enc(Q,(x)) Enc(Q,(x)) ... Enc(Q,(x))

Enc(R,(x)) + Enc(R,(x)) +... + Enc(R,(x))
Result

Enc(r,) & Enc(r,) & ... & Enc(r,)
Result
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Prior Works on HE-based String Matching

e Boolean ApprOaCh [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic ApprOaCh [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020 ]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to ' 1. Low memory footprint due to
encryption of individual bits : data packing mechanism

m’=/®®{‘1011...1 1? m=[‘1/10][1(1)1]1...D@

Enc(b,) Enc(b,) Enc(b,,) Enc(P.(x)) Enc(P,(x)) ... Enc(P,(x))
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Prior Works on HE-based String Matching

e Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020 ]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to ' 1. Low memory footprint due to
encryption of individual bits : data packing mechanism

2. Support limited query sizes
due to limited computations

2. Support flexible query sizes
due to unlimited computations
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Arithmetic Approach Performs Better

[ Boolean Approach B Arithmetic Approach
(Aziz +, Information 2024) (Yasuda+, CCSW 2013)

Ty

[
(=]
'S

[

(=)
N
1

[

Q
o
1

[

°
N
1

16 32 64 128 Avg:i16 32 64 128 Avgi 16 32 64 128 Avg

Database Size Database Size Database Size
(64 bytes) (128 bytes) (256 bytes)

Query Size (in Bits) .

Execution Time (in s)

Arithmetic approach performs better
with larger database sizes due to fewer HE operations
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Latency Breakdown of Arithmetic Approach

[ Boolean Approach I Arithmetic Approach
(Aziz +, Information 2024) (Yasuda+, CCSW 2013)

LEALERA

[
o
B

Hom.

/A Add.

7 1 (1.8%)

] | Hom.

’ Mult.
(98.2%)

16 32 64 128 Avg |qtency

Database Size Breakdown
(256 bytes) (%)

[

o

N
1

<
S

[

(=)
o
1

[

<

N
[

16 32 64 128 Avg ;16 32 64 128 Avg

Database Size Database Size
(64 bytes) (128 bytes)

Query Size (in Bits)

Execution Time (in s)

A

v
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Key Problem (I): Complex HE Operations

Hom.
/B Add.
" K| (1.8%)

. Hom.
Mult.
(98.2%)

Latency
Breakdown

(%)

Prior arithmetic approaches
use costly homomorphic multiplication operations
which limits the scalabilty of HE-based string matching
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Key Observation

String matching can be performed using addition operation

If we negate the data, add it to the original data,
we getastringof1111’s

m= 01010010100101
+ ~m= 10 1011010110 10

Value which can be checked
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Key Observation

String matching can be performed using addition operation

m= 01010010100101
+ ~m= 10 1011010110 10

Secure string matching can be performed using HE addition operation

Enc(m) = (5x124+10x'1023+ . +19,..)
+ Enc(~m) = (6x1%2%+11x1023 + . +3,.)

(1111..1x1024+ 1111..1x1923+ . +1111...1)
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Key Observation

This output after homomorphic addition
Is an encrypted value of 1111’s
that can be used for matching
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Memory-Efficient Data Packing Scheme (1)

s “\ s - N\
Client Machine Server Machine
f ) | Encrypted | [ )
Data Query || CPU S;c;);aDg)e
Query > EPacklntg! & Perform Ceam
neryprion String Encrypted
Matching Database
Result MatChed M |
. ] Index O ’ \ J |
Y y \ y

Assume, Database(d) = 1010111100101111..10101

Encode database into multiple plaintext polynomials (P(x))
by packing multiple bits into a single polynomial coefficient

eg,Px)=10101..1x%024+10010..1x1923+ .. +11.10101

U

Encrypted
Database
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CIPHERMATCH: Data Packing Scheme (1)

e “ 4 i “
Client Machine Server Machine
Data > CPU Storage
_ . (SSD)
Query » Packing & Perform
H . DRAM
Encryption Strlng Encrypted
Matching o || | Database
Result Matched
! ] Index N g > ’ )
. J \ J
Assume, Query(q) = 1110011 === 0001100

The query (q) is negated, replicated
and encoded into the plaintext polynomials (Q(x))

e.g,Qx)=00011..0x1%24+00011..0x1923+ ..+ 00011..0

l

Encrypted
Query
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CIPHERMATCH: Identify the Match (2)

This output after homomorphic addition
Is an encrypted value of 1111’s
that can be used for matching

________________________________
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CIPHERMATCH: Identify the Match (2)

String matching can be performed using addition operation

m=01010010100101
+~m=10101101011010

Secure String matching can be performed using HE addition operation

Enc(m)
+ Enc(~m)

(5 x1024+ 10 x1023+ . +19,..)
(6 x1024+ 11 x1923 + . +3,..)

(11 x1024 4+ 21 x1023 + 422, )
Lo o o e o e e e e e e e e e : _______________

[ Decrypt ]

(1010...1x1924+|1111...1|x1923+ ...+ 1001...0)
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CIPHERMATCH: Identify the Match (2)

Encrypted Database Enc(m) = (5x102%+10x1023+ .. +19,..)
Encrypted Query +Enc(~q ) = (2x19%+14x1023 + . +3,..)

|
Result = (7 x'0%*+ 24 x10%3+ ... + 22, ..)

111,11 x1024 + 111,11 x1923 + . + 111..11
v

[ Encrypt ]
v

Match value = (91 x192% + 24 x1023+ [ +32,..)

Match polynomial
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CIPHERMATCH: Identify the Match (2)

Encrypted Database Enc(m) = (5x19%*+10x1023+ ... +19,..)
Encrypted Query +Enc(~q ) = (2x19%%+14x1023 + . +3,..)

|
Result = (7 x!0%4+ 24 x10%3+ ... +22,..)

111,11 x1024 + 111,11 x1923 + . + 111..11
v

[ Encrypt ]
v

Match value = (91 x192% + 24 x1023+ [ +32,..)

Match polynomial
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CIPHERMATCH: Identify the Match (2)

Result = (7 x1024 424 |x1923+ | +22,..)

l

[ Compare ]——-' Generate Index
T

Match value = (91 x102% H24[x1923+ . +32,..)

Compare the match value
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Qualitative Analysis of Prior Work

s 2 ( ) -

Appr Client Machine Server Machine ible

( ) | Ciphertext | [ | ,
’I‘Y] Query ] Data Packin 9 ““0 --------- Storage (550 ’ry
0 & Encrypﬁotgl SSD NAND e
11..11 > CPU DRAM Controller Ml;l::;y —
[{3001 — 0 |—L_J cral|
ppr (L :
Arithi , —
fori=0.31: i 1 |
Appp latchwrite(8) \ @ SSD Controller 11+ NAND Flash Memory ;i |
transfer_S_to_D() E i b dd i — L L i
XOR(D1, D2) i s 4 @ Data Chip chip [ Chip ! P
Tabl e ] transfer_S_to_D() i ; Index Transposition 3)- > i ches
based flash_read(addr) /1 }Seneration Unit i : KT
ash_read(addr i 11| Flash lash as .

?iﬁ : wanster D105 | /118 HES | A n T ?ilig
of the | Pt Sttt | S
suppor Jatch_read(sum) i ___Internal DRAM D) SSD | ique
to supj Figure 6: System-level overview of CIPHERMATCH.
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System-Level Overview of CIPHERMATCH

2 ) 4 N\
Client Machine Server Machine
I ) | Ciphertext | [ r N
Query —=> . 9 """ 9‘ """"" "1 Storage (SSD)
1 [ |
11...11 —> CPU DRAM Controller MFlash
Internal (Eni':;opgd
Result DRAM Data)
& 9
( “““"""""“"'"“'“':::::::::::::::::I:::::\
fori=0.31: ( \ I
i latch,write(B) X @ SSD Controller i 1 NAND Flash Memory | |
transfer_S_to_D() i i bop.addD @ i nl - | i E
xoR(o1. 52 | | o - B B
transfer_S_to_D() ! Index Transposition [( 3 - : — i E
hash_read(addr) / i Gensra.l::i o onit i E Flash Flash Flash |
transfer_D_to_S() i O - 11| Chip chip || chip i
- T T e e e e e e e e e et e e e ettt ! : :
. I e ————— a |
o i Internal DRAM (12] SSD |

Figure 6: System-level overview of CIPHERMATCH.
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Evaluation Configuration

SAFARI

Microarchitecture: Intel Skylake [149]

CPU: x86-64 [150], 6 cores, out-of-order, 3.2 GHz
Intel(R) Xeon(R) LI Data + Inst. Private Cache: 32kB, 8-way, 64B line
to8d SIS L2 Private Cache: 256kB, 4-way, 64B line
L3 Shared Cache: 8MB, 16-way, 64B line
Main Memory 32GB DDR4-2400, 4 channels
Storage (SSD) Samsung 980 Pro PCle 4.0 NVMe SSD 2 TB [102]
Operating System (OS) | Ubuntu 22.04.1 LTS

Table 2: Real CPU system configuration.
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Evaluation Configuration

CM-PuM

32 GB DDR4-2400, 4 channel, 1 rank, 16 banks;
Peak throughput: 19.2 GB/s

Latency: Tphop: 49 ns; Energy: Eppop: 0.864 nJ;
where bbop is bulk bitwise operation

SSD External-Bandwidth: 7-GB/s external I/O bandwidth;
(4-lane PCIe Gen4)

CM-IFP
and
CM-PuM-SSD

48-WL-layer 3D TLC NAND flash-based SSD; 2 TB

SSD Internal DRAM: 2GB LPDDR4-1866 DRAM cache;
1 channel, 1 rank, 8 banks

NAND-Flash Channel Bandwidth: 1.2-GB/s Channel IO rate

Controller Cores: ARM Cortex-RS5 series @1.5GHz; 5 Cores [153]

NAND Config: 8 channels; 8 dies/channel; 2 planes/die;
2,048 blocks/plane; 196 (4x48) WLs/block; 4 KiB/page

Latency: Tye.q (SLC mode): 22.5 us [60]; Tanp/or: 20 ns [62];
Thatchtransfer: 20 ns [62]; Txor: 30 ns [60]; Tpma: 3.3 us;
Thit_add (CM_IFP): 29.38us

Energy: E...q (SLC mode): 20.5uJ/channel [60];
Eanp/or: 10nJ/KB [62]; Ejatchtransfer: 10nJ/KB [62];
Exor: 20nJ/KB [60]; Epma: 7.656uJ/channel;
Eindex_gen (SSD controller): 0.18J/page size;
Ebit_adda (CM_IFP): 32.22uJ/channel

Table 3: Simulated system configurations.
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