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Executive Summary

Problem: Secure exact string matching using homomorphic encryption (HE) lacks scalability 
due to performance bottlenecks in two key areas: 
a)    Use of complex homomorphic multiplication resulting in high computation cost
b)    Data movement bottleneck from large encrypted database stored in solid-state drive (SSD)

CIPHERMATCH: A new algorithm-hardware co-design 
that significantly improves the performance of HE-based secure exact string matching by 
a)    using only homomorphic addition to reduce the high computation cost 
b)    optimizing the data packing scheme to reduce memory footprint
c)    designing a new in-flash-processing (IFP) architecture to reduce data movement  

Key Results: 
a) CIPHERMATCH algorithm: 42.9x	speedup & 39.4x energy savings than best software
b) CIPHERMATCH with IFP: 136.9x speedup & 256.4x	energy savings over CM-SW

Key Idea:	Use (a) only homomorphic addition and (b) perform in-flash processing by exploiting 
the operational principles of NAND-flash memory to accelerate secure exact string matching

Goal: Develop an algorithm-hardware co-design to provide scalable, parallelizable 
and efficient HE-based secure exact string-matching  
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Exact String Matching
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Exact string matching is used 
in many security critical applications, such as

Databases Bioinformatics

e.g., searching a query in   
sensitive databases

e.g., identifying similarities 
in DNA sequences 

[Koudas+, VLDB 2003] 
[Chen+, TIP 2013]

[Bhukya+, IJCA 2011] 
[Cali+, MICRO 2020]
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can lead to data leakage
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Homomorphic encryption (HE) can be leveraged 
to perform secure exact string matching 

Exact String Matching
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Approaches to HE-based String Matching 
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Secure string matching using HE can be performed using two key approaches 

Boolean Approach Arithmetic Approach

1)	 High memory footprint 1)	 Low memory footprint

2)	 High computation cost 2)	 Low computation cost

Encrypt individual bits and use 
homomorphic XOR and AND operations 

Encrypt multiple packed bits and use 
homomorphic MUL and ADD operations 

3)	 Supports flexible query size 3)	 Supports limited query size

More detailed analysis in the paper



Prior Works on HE-based String Matching
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Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ;  Bonte+, CCS 2020 ]

Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]



Approaches to HE-based String Matching 
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Secure string matching using HE can be performed using two key approaches 

Boolean Approach Arithmetic Approach

1)	 High memory footprint 1)	 Low memory footprint

2)	 High computation cost 2)	 Low computation cost

Encrypt individual bits and use 
homomorphic XOR and AND operations 

Encrypt multiple packed bits and use 
homomorphic MUL and ADD operations 

3)	 Supports flexible query size 3)	 Supports limited query size



Arithmetic Approach 

14

Arithmetic Approach

1. Encrypt multiple packed bits

Database =  1		1	…	0		1		0	…	1	.	.	.	1		1	…	0

1 …0 1 1 …1 0…

32 …21 67

1 …1 0

44 …97 68 41 …52 94…
1 bit
32 bits

1024	elements

2048	elements

Yasuda et al. “Secure Pattern Matching Using Somewhat Homomorphic Encryption,” in CCSW, 2013
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Arithmetic Approach

1. Encrypt multiple packed bits

Database =  1		1	…	0		1		0	…	1	.	.	.	1		1	…	0

1 …0 1 1 …1 0…

32 …21 67

1 …1 0

44 …97 68 41 …52 94…

128 bytes

8 Kilobytes

Conventional database size

Encrypted database size

64x
Yasuda et al. “Secure Pattern Matching Using Somewhat Homomorphic Encryption,” in CCSW, 2013
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Arithmetic Approach

1. Encrypt multiple packed bits

2. Perform homomorphic MUL and ADD operations 

1 …0 1 1 …1 0…

32 …21 67

1 …1 0

44 …97 68 41 …52 94…

Encrypted Query

21 …23 57 21 …23 57 21 …23 57…

Database =  1		1	…	0		1		0	…	1	.	.	.	1		1	…	0

Yasuda et al. “Secure Pattern Matching Using Somewhat Homomorphic Encryption,” in CCSW, 2013



Arithmetic Approach 
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Arithmetic Approach

32 …21 67 44 …97 68 41 …52 94…
…

21 …23 57 21 …23 57 21 …23 57…

Encrypted Result

49 …51 49 32 …65 28 81 …56 63...

Hom. Op. Hom. Op. Hom. Op.

1. Encrypt multiple packed bits

2. Perform homomorphic MUL and ADD operations 

Yasuda et al. “Secure Pattern Matching Using Somewhat Homomorphic Encryption,” in CCSW, 2013



Execution Time of Arithmetic Approach 
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Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ;  Bonte+, CCS 2020 ]

Total execution time of [Yasuda+, CCSW 2013] 
to perform secure string matching

0% 100%
98% of total time = homomorphic multiplication 98%

Homomorphic multiplication is 100x slower than homomorphic addition
on a CPU-system



Key Problem (I): Homomorphic multiplication

19

Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ;  Bonte+, CCS 2020 ]

Total execution time of [Yasuda+, CCSW 2013] 
to perform secure string matching

0% 100%
98% of total time = homomorphic multiplication 98%

Homomorphic multiplication is 100x slower than homomorphic addition

Homomorphic multiplication limits scalability
 of HE-based string matching algorithm
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Databases are large and stored in SSDs 

Databases are Stored in Storage (SSD)  

Solid-State Drive 
(SSD)

Database

Homomorphic encryption 
further increases the database size

Solid-State Drive 
(SSD)

Encrypted
Database
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Databases are large and stored in SSDs 

Key Problem (II): Data Movement Bottleneck

Homomorphic encryption 
further increases the database size

Solid-State Drive 
(SSD)

Encrypted
Database

External I/O bandwidth of SSD
is the main bottleneck for reading large encrypted database

Main
Memory

(DRAM)
CPU/GPU
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Prior Works on Reducing Data Movement

Encrypted
Database
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Prior Works on Reducing Data Movement

Solid-State Drive 
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Controller
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Flash
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Prior Works on Reducing Data Movement

Solid-State Drive 
(SSD)

SSD
Controller

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

…

…

In-Flash Processing (IFP) [Park+, MICRO 2022 ; Gao+, MICRO 2021] 
enables computation inside SSD by exploiting 

the operational principles of NAND-flash memory 



Our Goal 
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Develop an 
IFP-based algorithm-hardware co-designed system 

that can perform scalable, parallelizable and efficient 
secure exact string matching
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Key Observation
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Database

0100111000101010101101

0101101001010101100010
Query

10010

01101
~

01101

01101

Perform addition
Observe a string of 1111’s, if query matches 

01101
11111

Encrypted 
Database

Enc(01001110001001…101)

Enc(01011010010100…010)
Enc(Query)

10010

~
01101

Enc(01101)

Perform homomorphic addition
Observe Enc(1111’s), if Enc(query) matches 

Enc(01101)
Enc(11111)

Enc(01101)Enc(01101)

In a conventional database, 
we perform only addition to get a string match

This observation can be extended to perform 
secure exact string matching 

using only homomorphic addition



Key Idea (1/2)
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Database

0100111000101010101101

0101101001010101100010
Query

10010

01101
~

01101

01101

Perform addition
Observe a string of 1111’s 

01101
11111

Encrypted 
Database

Enc(01001110001001…101)

Enc(01011010010100…010)
Query

10010

01101
~

01101

Enc(01101)

Perform homomorphic addition
Observe a string of Enc(1111’s) 

Enc(01101)
Enc(11111)

Enc(01101)

Use only homomorphic addition to perform 
secure exact string matching
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Homomorphic addition is highly parallelizable

Exploit inherent parallelism of NAND-flash memory
- Improves the performance of secure string matching 

- Reduces data movement 

Key Observation
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Solid-State Drive (SSD)

Encrypted
Database

Main
Memory

(DRAM)
CPU/GPU

In-Flash Processing (IFP) [Park+, MICRO 2022 ; Gao+, MICRO 2021] 
enables computation inside SSD by exploiting 

the operational principles of NAND-flash memory 

Performs 
computation

Use only homomorphic addition to perform 
secure exact string matching

Use in-flash processing (IFP) to reduce data movement 
and accelerate secure exact string matching 

Key Idea (2/2)



CIPHERMATCH
An algorithm-hardware co-design

Improves the performance of 
HE-based secure exact string matching

Eliminates costly homomorphic multiplication
- by designing secure string-matching algorithm using only homomorphic addition

31

Reduces memory footprint
- by optimizing the data packing scheme used before encryption

Reduces data movement 
and leverages massive bit and array-level parallelism

- by designing an in-flash processing architecture
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Client Server

Database
Data 

Packing & 
Encryption

Storage
(SSD)

CPU DRAM

Encrypted 
Database

Storage
(SSD)

Encrypted 
Database

Efficiently pack the database 
to reduce the memory footprint after encryption 
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Client Server

Query
Data 

Packing & 
Encryption

Storage
(SSD)

CPU DRAM

Encrypted 
Query

Storage
(SSD)

Encrypted 
Database

Efficiently pack the database 
to reduce the memory footprint after encryption 

Efficiently pack the query 
to perform parallel secure string matching on encrypted database

CIPHERMATCH: System Overview 
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Client Server

Query
Data 

Packing & 
Encryption

Storage
(SSD)

CPU DRAM

Encrypted 
Query

Storage
(SSD)

Encrypted 
Database

Efficiently pack the database 
to reduce the memory footprint after encryption 

Efficiently pack the query 
to perform parallel secure string matching on encrypted database

Perform secure exact string matching
using only homomorphic addition

CPU

Performs 
String 

MatchingResult Matched 
Index

CIPHERMATCH: System Overview 
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Client Server

Query
Data 

Packing & 
Encryption

Storage
(SSD)

CPU DRAM

Encrypted 
Query

Storage
(SSD)

Encrypted 
Database

Efficiently pack the database 
to reduce the memory footprint after encryption 

Efficiently pack the query 
to perform parallel secure string matching on encrypted database

Perform secure exact string matching
using only homomorphic addition

Perform 
String 

Matching

Accelerate secure exact string matching by performing computations inside SSD
by exploiting operational principles of NAND-flash memory

Result Matched 
Index

CIPHERMATCH: System Overview 
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Secure Exact String-Matching Algorithm

In-Flash Processing

1

2

3

Memory-Efficient Data Packing Scheme
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CIPHERMATCH: Key Steps 
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Secure Exact String-Matching Algorithm

In-Flash Processing

1

2

3

Memory-Efficient Data Packing SchemeMemory-Efficient Data Packing Scheme
- Efficiently pack the query and database 

to reduce the memory footprint and enable parallel string matching



Memory-Efficient Data Packing Scheme
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1

Database = 010110010100010…01001

01001110001001…101

01011010010100…010
Query (10010)

Database

010110010100010 01001



Query (10010)

…

Memory-Efficient Data Packing Scheme
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1

Database = 010110010100010…01001

01001110001001…101

01011010010100…010

Enc(Database)

32 …21 48 67

Database

01011 00101 00010 01001
Encrypt

Encode database
by packing multiple bits 

into a single plaintext vector
Increase in encrypted database 

size is only 4x (2KB	->	8KB)

16 bits

32 bits

Encode

1024 elements

2048 elements



Query (10010)

Memory-Efficient Data Packing Scheme
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1

Enc(Database)

32 …21 48 67

~Query (01101)01101011010110101101



…

Query (10010)

Memory-Efficient Data Packing Scheme
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1

Enc(Database)

32 …21 48 67

~Query (01101)

01101011010110101101

Encode query 
by negating and replicating 
into a single plaintext vector

Enc(~Query)

22 …17 5 11

Encrypt

Encode



Memory-Efficient Data Packing Scheme
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1

Enc(Database)

32 …21 48 67

Enc(~Query)

22 …17 5 11



CIPHERMATCH: Key Steps 
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Secure Exact String-Matching Algorithm
- Uses only homomorphic addition and identifies the match

to eliminate costly homomomorphic multiplication 

In-Flash Processing

1

2

3

Memory-Efficient Data Packing Scheme
- Efficiently pack the query and database 

to reduce the memory footprint and enable parallel string matching



Secure Exact String-Matching Algorithm
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Enc(Database)

32 …21 48 67

Enc(~Query)

22 …17 5 11

2

Homomorphic addition 
is inherently element-wise addition

++ + +
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Enc(Database)

32 …21 48 67

Enc(~Query)

22 17 5 11

2

++ + +

Enc(Result)

54 …38 53 78

…

Secure Exact String-Matching Algorithm



48

2

Enc(Result)

54 …38 53 78

Decrypt

10110 …11010 11111 10100

Match Found !!

Secure Exact String-Matching Algorithm

However, we want to find the match 
using Enc(Result) on the server



Identify the Match 
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2

Enc(Result)

54 …38 53 78

Decrypt

10110 …11010 11111 10100

Match Found !!

11111 …11111 11111 11111
Match Value

Encrypt

Enc(Match value)

35 …64 53 29



Identify the Match
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2

Enc(Result)

54 …38 53 78

Enc(Match value)

35 …64 53 29

Compare Generate Index

Compare and send the final index back to client



CIPHERMATCH: Algorithm (Summary)
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Negated, Replicated and 
Packed Encrypted Query

with an Encrypted Match Value

Client Server

Query Data 
Packing & 
Encryption Storage

(SSD)
CPU DRAM

Encrypted 
Query

Storage
(SSD)

Encrypted 
Database

CPU

Perform 
String 

MatchingResult Matched 
Index

String Matching using 
only Homomorphic Addition

Efficiently Packed 
Encrypted Database

using our Memory-Efficient 
Data Packing

1111..1
Encrypted 

Match Value
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Client

Query Data 
Packing & 
Encryption

Encrypted 
Query

Result Matched 
Index

1111..1
Encrypted 

Match Value

Perform secure exact string matching 
inside SSD using in-flash processing (IFP)
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Solid-State Drive (SSD)
(NAND Flash-Based SSD)
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Solid-State Drive (SSD)
(NAND Flash-Based SSD)

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

SSD 
Controller

(General-Purpose Core)

…

…Internal DRAM

Overview of a Modern Solid State Drive (SSD)



56

Die#0 Die#1 …

NAND Flash Memory

Latching circuit

Data (A1)
Data (A2)

Data (An)
Bitlines (BLs)

…

Latching 
circuit

Data Latch 0

Data Latch	1

Data Latch 2

Sensing Latch

Solid-State Drive (SSD)
(NAND Flash-Based SSD)

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

SSD 
Controller

(General-Purpose Core)

…

…Internal DRAM

Overview of a Modern Solid State Drive (SSD)
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Solid-State Drive (SSD)
(NAND Flash-Based SSD)

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

SSD 
Controller

…

…Internal DRAM
Die#0 Die#1 …

NAND Flash Memory

Latching circuit

Data (A1)
Data (A2)

Data (An)
Bitlines (BLs)

…

Latching 
circuit

Data Latch 0

Data Latch 1

Data Latch 2

Sensing Latch

Prior work [Gao+, MICRO 2021] uses latching circuit
to perform only bitwise operations 

Limitations of Prior Work
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Storage
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Advantages of Secure String Matching in SSD
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Client

Query Data 
Packing & 
Encryption

Encrypted 
Query

Result Matched 
Index

1111..1
Encrypted 

Match Value

Homomorphic addition can be parallelized

Exploit bit-level and array-level parallelism 
of NAND-flash memory
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Matched 
Index

Encrypted 
Query

Server

Storage (SSD)

Index Generation
NAND Flash Memory

(Encrypted Data)

Perform homomorphic additions 
inside NAND-flash memory

Generate the final index 
by comparing it with match value

Encrypted 
Match Value

I

II

III
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Matched 
Index

Encrypted 
Query

Server

Storage (SSD)

Perform homomorphic additions 
inside NAND-flash memory

Encrypted 
Match Value

Perform element-wise addition inside NAND-flash memory

Index Generation
NAND Flash Memory

(Encrypted Data)

I

I



CIPHERMATCH: Key Steps 
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Secure Exact String-Matching Algorithm
- Uses only homomorphic addition and identifies the match

to eliminate costly homomomorphic multiplication 

In-Flash Processing
-Exploit the operational principles of NAND-flash memory

to perform homomorphic addition

1

2

3

Memory-Efficient Data Packing Scheme
- Efficiently pack the query and database 

to reduce the memory footprint and enable parallel string matching
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Solid-State Drive (SSD)
(NAND Flash-Based SSD)

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

SSD 
Controller

…

…Internal DRAM
Die#0 Die#1 …

Latching 
circuit

Data Latch 0

Data Latch 1

Data Latch 2

Sensing Latch

3CIPHERMATCH: Element-Wise Addition  

NAND Flash Memory

Bitlines (BLs)

…        

Latching circuit

We use bit-serial addition 
to avoid carry propagation across different bitlines 



Enc(Database)

…

CIPHERMATCH: Bit-Serial Addition  
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Lay out the data vertically in NAND-flash memory

3

A2An A0A1 X2Xn X1 Y2Yn Y0Y1A2An A0A1 X2Xn X0X1 Y2Yn Y0Y1

NAND Flash Memory

Bitlines (BLs)

…        

Latching circuit

… … …



CIPHERMATCH: Bit-Serial Addition  
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Lay out the data vertically in NAND-flash memory

3

Bi

Ci

Bi⊕Ci

Ci

Bi.Ci

Bi⊕Ci
Bi.Ci

Ai⊕Bi⊕Ci

Ai

Bi.Ci

Sum

(Bi⊕Ci).Ai

Bi.Ci

Sum

Carry

Ai Ai Ai Ai Ai Ai

Ai

Bi Bi.Ci Ai (Bi⊕Ci).Ai Carry Sum

Bi

Ci

Ai

Bi

Latching circuit

NAND Flash Memory

Bitlines (BLs)

…        

Latching circuit

A2

An

A0

A1

X2

Xn

X0

X1

Y2

Yn

Y0

Y1

…

…

…
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Ci

Bi⊕Ci

Ci

Bi.Ci

Bi⊕Ci

Bi.Ci

Ai⊕Bi⊕Ci

Ai

Bi.Ci

Sum

(Bi⊕Ci).Ai

Bi.Ci

Sum

Carry

Ai Ai Ai Ai Ai Ai

Ai

Bi Bi.Ci Ai (Bi⊕Ci).Ai Carry Sum

CIPHERMATCH: Bit-Serial Addition  
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Lay out the data vertically in NAND-flash memory

Send the query from SSD controller to the latches 

Perform Steps 1-6 to perform bit-serial addition

Accumulate the sum bit and send the accumulated bit to the SSD controller

3

SSD Controller

Step 3 Step 4 Step 6Step 1 Step 2 Step 5

Input Query Transferred 
from SSD Controller

Accumulated Bit Transferred 
to SSD Controller

Sum = Ai⊕Bi⊕Ci           and       Carry = (Bi⊕Ci).Ai  + Bi.Ci

NAND Flash Memory

Bitlines (BLs)

…        

Latching circuit

A2

An

A0

A1

X2

Xn

X0

X1

Y2

Yn

Y0

Y1

…

…

…
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Matched 
Index

Encrypted 
Query

Server

Storage (SSD)

Index Generation
NAND Flash Memory

(Encrypted Data)

Perform homomorphic additions 
inside NAND-flash memory

Generate the final index 
by comparing it with match value

Encrypted 
Static Value

I

II

III
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Matched 
Index

Encrypted 
Query

Server

Storage (SSD)

Index Generation
NAND Flash Memory

(Encrypted Data)

Encrypted 
Static Value

Use general purpose cores to identify the final match

General Purpose Core

Index Generation

Generate the final index 
by comparing it with match value

II

III
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Evaluation Methodology (1/2): Real System
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• Arithmetic (using SEAL): State-of-the-art arithmetic approach [Yasuda+, CCSW 2013]

• Boolean (using TFHE-rs): State-of-the-art Boolean approach [Aziz+, Information 2024] 

Intel Xeon, 6 cores,	3.2	GHz      32GB DDR4 DRAM         2TB PCIe 4.0 SSD

We evaluate software-based CIPHERMATCH implementation (CM-SW)
by modifying the Microsoft SEAL library 

Our Implementation

Baselines

• Varying query size (16-256 bits)* for encrypted database size of 128 GB
• Varying encrypted database size (8-128 GB)* for 16-bit query and 1000 queries

                                                                             * including all circular shifted queries

Workloads



Speedup for Different Query Sizes
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Query Size (in bits) 
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Speedup for Different Query Sizes (1/3)
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Query Size (in bits) 

106

104

102

100

16                  32                  64                 128                256              Avg

Boolean

Sp
ee

du
p

Arithmetic

9.
9x

10
3 x

Arithmetic technique outperforms Boolean technique 
by orders of magnitude



Speedup for Different Query Sizes (2/3)
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Query Size (in bits) 

106

104

102

100

16                  32                  64                 128                256              Avg

Boolean

Sp
ee

du
p

Arithmetic CM-SW

9.
9x

10
3 x

42.9x

CM-SW outperforms the best prior arithmetic technique 
by 42.9x



Speedup for Different Query Sizes (3/3)
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Query Size (in bits) 

106

104

102

100

16                  32                  64                 128                256              Avg

Boolean

Sp
ee

du
p

Arithmetic CM-SW

9.
9x

10
3 x

42.9x20.7x 30.7x 44.1x 54.7x 62.2x

CM-SW speedup increases with query size 
(due to the elimination of homomorphic multiplication)



Evaluation Methodology (2/2): Simulation
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• CM-SW:              CIPHERMATCH on compute-centric system [same as real system] 
• CM-PuM:            CIPHERMATCH on memory-centric system [*, 32GB DDR4-2400]

• CM-PuM-SSD:  CIPHERMATCH on storage-centric system [*, SSD DRAM - 2GB LPDDR4-1866]

                          [*]  - SIMDRAM framework [Hajinazar+ , ASPLOS 2021] 

Baselines

We evaluate IFP-based CIPHERMATCH implementation (CM-IFP)
by modeling the characteristics of the NAND-flash memory

Our Implementation

• Varying query size (16-256 bits)* for encrypted database size of 128 GB
• Varying encrypted database size (8-128 GB)* for 16-bit query and 1000 queries

                                                                              * including all circular shifted queries

Workloads



Speedup for Different Query Sizes
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Query Size (in bits) 
16                  32                 64                 128                256              Avg
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Speedup for Different Query Sizes (1/3)
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Query Size (in bits) 

106

104
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100

16                  32                 64                 128                256              Avg
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CM-SW CM-PuM CM-PuM-SSD CM-IFP

All three near-data processing systems 
improve performance by reducing data movement 



Speedup for Different Query Sizes (2/3)
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Query Size (in bits) 

106

104

102

100

16                  32                 64                 128                256              Avg

Sp
ee

du
p

CM-SW CM-PuM CM-PuM-SSD CM-IFP

136.9x

CM-IFP outperforms other near-data processing systems 

CM-IFP outperforms CM-SW by 136.9x



Speedup for Different Query Sizes (3/3)
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Query Size (in bits) 

106

104

102

100

16                  32                 64                 128                256              Avg

Sp
ee

du
p

CM-SW CM-PuM CM-PuM-SSD CM-IFP

136.9x216.0x 168.9x 122.7x 100.2x 76.6x

CM-IFP speedup decreases with query sizes
due to repeated flash read operations on same data 

for circularly shifted queries  



Energy Consumption for Different Query Sizes
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Energy Consumption for Different Query Sizes
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Query Size (in bits) 
16                 32                  64                 128               256             Avg

CM-SW CM-PuM CM-PuM-SSD CM-IFP

256.4x

CM-IFP provides 256.4x energy savings over CM-SW
by largely reducing data movement

All three near-data processing systems 
provide large energy savings over CM-SW



More Details in Our Paper
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• More detailed observations from our evaluation
-  Comparison between CM-PuM and CM-PuM-SSD
-  Comparison with the Boolean approach

• End-to-end system design
- Operations in vertical data layout
- Enabling CIPHERMATCH in commodity SSDs

• Overhead analysis of CIPHERMATCH hardware
-  Storage overhead (from end-to-end system design)
-  Area overhead (~0.6%	of baseline NAND-flash memory)

• Bitwise operations using NAND-flash memory
- Enabling bitwise operations using latching circuitry
- Exploiting bit-level and array-level parallelism

https://arxiv.org/pdf/2503.08968



To Summarize …
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Conclusion

83

A new algorithm-hardware codesign that significantly improves the 
performance of secure exact string matching algorithm

• CIPHERMATCH-SW: 42.9x	speedup & 39.4x lower energy than best software
• CIPHERMATCH-IFP: 136.9x speedup & 256.4x lower energy than CM-SW

Pack multiple bits of database 
and thus eliminate the use of 
homomorphic multiplication

Use in-flash processing (IFP) 
to accelerate secure exact 
string-matching

CIPHERMATCH

Key Results

+ Reduces memory footprint 
+ Provides scalable 
   secure exact string-matching

+ Reduces data movement
+ Leverages bit-level 
   and array-level parallelism

2

1
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Summary

86

CM-SW provides 42.9x	speedup
over the state-of-the-art approach in real systems

Due to our new memory-efficient data packing scheme 
and use of only homomorphic additions

CM-IFP provides 136.9x speedup over CM-SW 
and outperforms three near-data processing systems 

Due to our new IFP design to perform in-flash operations 
and exploiting large-scale bit-level parallelism



Executive Summary
Problem: Secure exact string matching using homomorphic encryption (HE) operations face performance 
bottlenecks in two key areas: 
(a) High computation cost due to use of complex homomorphic operations (e.g., multiplication)
(b) data movement bottleneck due to large homomorphically encrypted data

Motivation: Reducing memory expansion from HE and performing computation where the database 
resides can improve the performance of secure exact string matching algorithm

CIPHERMATCH: A novel algorithm-hardware co-design that significantly improves the performance of 
HE-based secure string matching by using only homomorphic addition and leveraging the operational 
principles of NAND-flash memory.  

Key Results: (i) Software-based CIPHERMATCH implementation (CM-SW) achieves 42.9x speedup over 
state-of-the-art software approaches
(ii) CIPHERMATCH IFP implementation futher improves upon CM-SW, achieving 136.9x better 
performance and 256.4x lower energy consumption

Key Idea: 
1) To pack multiple bits of data in the each 

coefficient of ciphertext 
2) Use in-flash processing (IFP) to perform 

string matching inside NAND-flash memory

Key Benefits:
+ Reduce memory expansion after encryption
+ Eliminates the use of complex HE operations

+ Reduces data movement bottleneck

 

Opportunity: (a) Perform memory-efficient packing of the database to reduce the increase in memory 
footprint after encryption and (b) perform simple computations (e.g., HE addition) inside solid state drives 
(SSDs – i.e., where the database is stored) to reduce data movement  

87



Executive Summary
Problem: Secure exact string matching using homomorphic encryption (HE) operations face performance 
bottlenecks in two key areas: 
(a) High computation cost due to use of complex homomorphic operations (e.g., multiplication)
(b) Data movement bottleneck due to large homomorphically encrypted data size

Motivation: Reducing memory expansion from HE and performing computation where the database 
resides can improve the performance of secure exact string matching algorithm

CIPHERMATCH: A novel algorithm-hardware co-design that significantly improves the performance of 
HE-based secure exact string matching (a) by using only homomorphic addition and (b) leveraging the 
operational principles of NAND-flash memory to perform secure exact string matching

Key Results: 
(i) Software-based CIPHERMATCH (CM-SW): 42.9×	speedup over existing state-of-the-art approaches
(ii) CIPHERMATCH with IFP: 136.9× faster and 256.4× lower energy consumption than CM-SW

Key Idea: 
1) Pack multiple bits of data in the each 

coefficient of ciphertext 
2) Use in-flash processing (IFP) to perform 

string matching inside NAND-flash memory

Key Benefits:
+ Reduce memory expansion after encryption
+ Eliminates the use of complex HE operations

+ Reduces data movement bottleneck

 

Opportunity: (a) Optimize memory usage by packing encrypted data efficiently and (b) perform secure 
string matching using simple HE operations (addition) inside SSDs, reducing data movement.
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NAND Flash Basics: A Flash Cell
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• A flash cell stores data by adjusting the amount of 
charge in the cell

Erased Cell
(Low Charge Level)

1
Programmed Cell

(High Charge Level)

0

Activation

Operates as a resistor Operates as an open switch



NAND Flash Basics: A NAND String
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• A set of flash cells are serially connected to form a 
NAND String

1

0

0

1

0

…

Bitline (BL)

NAND String



NAND Flash Basics: A NAND Block
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•NAND strings connected to different bitlines comprise a NAND 
block

BL1 BL2 BL3 BL4 BL5

1

0

0

1

0

BLN

…

1

0

0

1

0

…

1

0

0

1

0

…
1

0

0

1

0

…

1

0

0

1

0

…

1

0

0

1

0
…

…

…

…

…

…

WL1

WL2

WL3

WL4

WLM

Block

A single wordline (WL) controls a large number of 
flash cells: High bit-level parallelism 



NAND Flash Basics: A NAND Plane

92

• A large number of blocks share the same bitlines

BL1 BL2 BL3 BL4 BL5 BLN

…
…
……Block2 … … … … …

…
…
……BlockK … … … … …

…
…
……Block1 … … … … …

…… … … … …

Latches to store 
flash read data



Speedup for Different Database Size
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CM-SW shows average speedup of 68.1x over prior arithmetic approach

CM-SW speedup decreases as data size exceeds DRAM capacity, primarily 
due to increased data movement between storage and DRAM.

Query Size of 16 bits
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Speedup for Different Database Size
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CM-IFP shows highest average speedup of 268.3x over CM-SW

CM-SW speedup decreases when data size goes beyond DRAM size due to 
frequent data movement between storage and DRAM

Query Size of 16 bits

Encrypted Database Size (in GB)
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104
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100
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250.1x 250.1x 250.1x 295.1x 295.1x 268.3x226.3x

66
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x

8GB               16GB              32GB              64GB             128GB              Avg



Energy Consumption for Different Query Size
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CM-IFP shows highest average energy savings of 256.4x over CM-SW

CM-IFP energy efficiency decreases with increasing query sizes due to 
expensive flash reads 

Database Size of 128 GB

Query Size (in bits)
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Die#0 Die#1 …

Internal	DRAM

SSD	Controller	
(General	Purpose	Core)

Flash	Controller Flash	Chip Flash	Chip Flash	Chip

Flash	Chip Flash	Chip Flash	Chip

Flash	Chip Flash	Chip Flash	Chip

Flash	Controller

Flash	Controller

Peripheral	Circuitry
Plane#0
Blk#1

Plane#1
Blk#1

Blk#2Blk#2

.. ..
D-Latch D-Latch

S-Latch S-Latch

Storage	(SSD)

NAND	Flash	Chip
NAND	Flash	Read	Circuitry

CIPHERMATCH: NAND-Flash Bitwise Operations 

M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

Bitline



CIPHERMATCH: NAND-Flash Bitwise Operations 
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M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

Bitline

M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

M7

M8

Bitline

Design proposed by prior work [Cho+, Patent 2022]



CIPHERMATCH: NAND-Flash Bitwise Operations 
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M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

M7

M8

Bitline

Bitwise AND of A and B

          Data (A) is read and stored in S-
 latch

          Data (A) is transferred from S-latch  
to D-latch 

 Similarly data (B) is read and stored 
in S-latch

1 SO

OUT_D

OUT_SOUT_S

OUT_D

2
RST_D

SET_D

3 SET_S

1

2

3



CIPHERMATCH: NAND-Flash Bitwise Operations 
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M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

M7

M8

Bitline

Bitwise AND of A and B

SO

OUT_D

OUT_SOUT_S

OUT_D

RST_D

SET_D

SET_S

D-latch (A) S-latch (B) Z0

0

0 0

1

Retains	
Value

11->0

Precharge the bitline to 
logical 1

0
0 1 0

EN

1 0
1 1

0
1

Precharge the bitline to 
logical 1

EN

1



Data Movement Bottleneck
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• Compute-centric systems: Move entire data from storage to CPU/GPU

Main
Memory

(DRAM)
CPU/GPU Storage

(NAND Flash-Based SSD)

Memory bandwidth: 
~ 40	GB/s

Storage I/O bandwidth: 
~	8	GB/s



Motivation (II) – Data Movement Bottleneck
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• Compute-centric systems: Move entire data from storage to CPU/GPU

• Memory-centric systems: Perform computations in main memory

Main
Memory

(DRAM)
CPU/GPU Storage

(NAND Flash-Based SSD)

Memory bandwidth: 
~ 40	GB/s

Storage I/O bandwidth: 
~	8	GB/s

Main
Memory

(DRAM)
CPU/GPU Storage

(NAND Flash-Based SSD)

Storage I/O bandwidth: 
~	8	GB/s

External I/O bandwidth of storage systems 
is the main bottleneck for memory intensive application

2



Motivation (II) – Data Movement Bottleneck
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• Compute-centric systems: Perform computations in CPU/GPU

• Memory-centric systems: Perform computations in main memory

• Storage-centric systems: Perform computations inside storage system

Main
Memory

(DRAM)
CPU/GPU

Storage
(NAND Flash-Based SSD)

NAND
Chip#1

NAND
Chip#4

NAND
Chip#31

NAND
Chip#32

In-Storage
Compute

Units

…

…

2



Motivation (II) – Data Movement Bottleneck
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• Compute-centric systems: Perform computations in CPU/GPU

• Memory-centric systems: Perform computations in main memory

• Storage-centric systems: Perform computations inside storage system

Main
Memory

(DRAM)
CPU/GPU

Storage
(NAND Flash-Based SSD)

NAND
Chip#1

NAND
Chip#4

NAND
Chip#31

NAND
Chip#32

In-Storage
Compute

Units

…

…SSD-internal bandwidth 
becomes the new bottleneck for computations 

2



In-Flash Processing (IFP)
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Main
Memory

(DRAM)
CPU/GPU

Storage
(NAND Flash-Based SSD)

NAND
Chip#1

NAND
Chip#4

NAND
Chip#31

NAND
Chip#32

In-Storage
Compute

Units

…

…

Perform computations inside NAND-flash chips 
by using operational principles of NAND-flash memory



In-Flash Processing (IFP)
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NAND Flash Chip

Latching circuit

Operand O2 

Operand O3

…

Operand O32

Bitlines (BLs)

Prior Works ([Gao+, MICRO 2021] , [Park+, MICRO 2022]) 

perform bitwise operations using the latching circuit

Operand O1

O1

Operand O1

Operand O2 

O1 & O2



Limitations of Prior Works
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• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ;  Bonte+, CCS 2020 ]

1. High memory footprint due to 
encryption of individual bits

Boolean
Approach

1. Low memory footprint due to 
data packing mechanism

Arithmetic
Approach

m  =  1		1		0		1		0		1		1	.	.	.	1		1		0 m  =  1		1		0		1		0		1		1	.	.	.	1		1		0

Enc(P1(x))      Enc(P2(x))     …     Enc(Pn(x))Enc(b0)          Enc(b1)         …         Enc(bn)



Limitations of Prior Works
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• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ;  Bonte+, CCS 2020 ]

1. High memory footprint due to 
encryption of individual bits

Boolean
Approach

1. Low memory footprint due to 
data packing mechanism

Arithmetic
Approach

2. High computation cost due to 
large number of HE operations 

2. Low computation cost due to 
small number of HE operations

Enc(b0) ⊕ Enc(b1) ⊕ Enc(b2) .…. 1000x Enc(P1(x))        Enc(P2(x))       .…. 10x✖                       ✖



Limitations of Prior Works
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• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ;  Bonte+, CCS 2020 ]

1. High memory footprint due to 
encryption of individual bits

Boolean
Approach

1. Low memory footprint due to 
data packing mechanism

Arithmetic
Approach

2. High computation cost due to 
large number of HE operations 

2. Low computation cost due to 
small number of HE operations

3. Support flexible query sizes 
due to unlimited computations

3. Support limited query sizes 
due to limited computations



Approaches for HE-based String Matching 
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Secure string matching using HE can be performed using two key approaches 

Boolean Approach Arithmetic Approach

Encrypt individual bits

e.g.,  m  =  1		1		0		1		0		1		1	.	.	.	1		1		0

	

 

Encrypt multiple packed bits

e.g.,  m  =  1		1		0		1		0		1		1	.	.	.	1		1		0

P1= b2x2+b1x1+b0
   P2(x)= b5x2+b4x1+b3  …  Pn(x)

Enc(P1(x))          Enc(P2(x))     …     Enc(Pn(x))

Enc(b0)          Enc(b1)         …         Enc(bn)

Encrypt individual bits Encrypt multiple packed bits11



Approaches for HE-based String Matching 
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Secure string matching using HE can be performed using two key approaches 

Boolean Approach Arithmetic Approach

Enc(P1(x))          Enc(P2(x))     …     Enc(Pn(x))

1 Encrypt individual bits Encrypt multiple packed bits1

Perform homomorphic 
XOR and AND operation 

Perform homomorphic 
multiplication and addition operation 

2 2

Enc(b0)          Enc(b1)         …         Enc(bn)				

Enc(q0)          Enc(q1)         …         Enc(qn) Enc(Q1(x))         Enc(Q2(x))    …     Enc(Qn(x))

⊕                    ⊕             …            ⊕ ✖                        ✖              …           ✖

Enc(r0)   &     Enc(r1)  &    …   &   Enc(rn) Enc(R1(x))   +   Enc(R2(x)) +… + Enc(Rn(x))

Result Result



Prior Works on HE-based String Matching
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• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ;  Bonte+, CCS 2020 ]

1. High memory footprint due to 
encryption of individual bits

Boolean
Approach

1. Low memory footprint due to 
data packing mechanism

Arithmetic
Approach

m  =  1		1		0		1		0		1		1	.	.	.	1		1		0 m  =  1		1		0		1		0		1		1	.	.	.	1		1		0

Enc(P1(x))      Enc(P2(x))     …     Enc(Pn(x))Enc(b0)          Enc(b1)         …         Enc(bn)
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Boolean
Approach

Arithmetic
Approach

2. Support flexible query sizes 
due to unlimited computations

2. Support limited query sizes 
due to limited computations

1. High memory footprint due to 
encryption of individual bits

1. Low memory footprint due to 
data packing mechanism

Prior Works on HE-based String Matching

• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ;  Bonte+, CCS 2020 ]



Arithmetic Approach Performs Better
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s)

Query Size (in Bits)

Database Size 
(64 bytes)

Database Size 
(128 bytes)

Database Size 
(256 bytes)

(Aziz +, Information 2024)                          (Yasuda+, CCSW 2013)      

Arithmetic approach performs better
with larger database sizes due to fewer HE operations



Latency Breakdown of Arithmetic Approach
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Ex
ec

ut
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n 
Ti

m
e 

(i
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s)

Query Size (in Bits)

Database Size 
(64 bytes)

Database Size 
(128 bytes)

Database Size 
(256 bytes)

(Aziz +, Information 2024)                         (Yasuda+, CCSW 2013)      

Hom. 
Mult.       

(98.2%)

Hom. 
Add.

(1.8%)

Latency 
Breakdown 

(%)

Prior arithmetic approaches 
use costly homomorphic multiplication operations 

which limits the scalabilty of HE-based string matching 

Key Problem (I): Complex HE Operations



Key Observation
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String matching can be performed using addition operation 

m	=				0	1		0	1		0	0		1	0		1	0		0	1		0	1
+	~m	=				1	0		1	0		1	1		0	1		0	1		1	0		1	0
																			1	1		1	1		1	1		1	1		1	1		1	1		1	1	

          Value which can be checked

If we negate the data, add it to the original data,
 we get a string of 1	1	1	1’s



Key Observation
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Enc(	m	)					=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
+				Enc(~m	)		=			(6	x1024	+	11	x1023			+		….	+	3		,	…)

																																			(11	x1024	+	21	x1023	+		….	+	22	,	…)

                               (1111…1x1024	+	1111…1	x1023	+		….	+	1111…1)

Secure string matching can be performed using HE addition operation 

Decrypt

m	=				0	1		0	1		0	0		1	0		1	0		0	1		0	1
+	~m	=				1	0		1	0		1	1		0	1		0	1		1	0		1	0
																			1	1		1	1		1	1		1	1		1	1		1	1		1	1	

          Value which can be checked

String matching can be performed using addition operation 



Key Observation
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Enc(	m	)					=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
+				Enc(~m	)		=			(6	x1024	+	11	x1023			+		….	+	3		,	…)

																																			(11	x1024	+	21	x1023	+		….	+	22	,	…)

                               (1111…1x1024	+	1111…1	x1023	+		….	+	1111…1)

Secure string matching can be performed using HE addition operation 

Decrypt

m	=				0	1		0	1		0	0		1	0		1	0		0	1		0	1
+	~m	=				1	0		1	0		1	1		0	1		0	1		1	0		1	0
																			1	1		1	1		1	1		1	1		1	1		1	1		1	1	

          Value which can be checked

String matching can be performed using addition operation 

This output after homomorphic addition 
is an encrypted value of 1111’s 
that can be used for matching



Encode database into multiple plaintext polynomials (P(x)) 
by packing multiple bits into a single polynomial coefficient

Memory-Efficient Data Packing Scheme
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Assume, Database (d)  = 

 e.g., P(x) =  1	0	1	0	1…1	x1024	+	1	0	0	1	0…1	x1023	+		….		+		1	1...1	0	1	0	1	

1	0	1	0	1	1	1 1	0	0	1	0	1	1 1	1		...		1	0	1	0	11	0	1	0	1	1	1 1	0	0	1	0	1	1 1	1		...		1	0	1	0	1

1

Client Machine Server Machine

Result

Storage
(SSD)

CPU

DRAM
Perform 

String 
Matching

Matched 
Index

Encrypted 
Query

Encrypted 
Database

Encrypted 
Database

Query
Data 

Packing & 
Encryption



CIPHERMATCH: Data Packing Scheme
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1

Client Machine Server Machine

Result

Storage
(SSD)

CPU

DRAM
Perform 

String 
Matching

Matched 
Index

Encrypted 
Database

0	0	0	1	1	0	00	0	0	1	1	0	00	0	0	1	1	0	0Assume,                     Query (q)  =

The query (q) is negated, replicated 
and encoded into the plaintext polynomials (Q(x)) 

1	1	1	0	0	1	1 0	0	0	1	1	0	0

 e.g., Q(x) =  0	0	0	1	1…0	x1024	+	0	0	0	1	1…0	x1023	+		….	+		0	0	0	1	1…0	

Encrypted 
Query

Query
Data 

Packing & 
Encryption
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Secure string matching can be performed using HE addition operation 

Decrypt

Enc(	m	)					=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
+				Enc(~m	)		=			(6	x1024	+	11	x1023			+		….	+	3		,	…)

																																				(11	x1024	+	21	x1023	+		….	+	22	,	…)

                               (1111…1x1024	+	1111…1	x1023	+		….	+	1111…1)

m	=				0	1		0	1		0	0		1	0		1	0		0	1		0	1
+	~m	=				1	0		1	0		1	1		0	1		0	1		1	0		1	0
																			1	1		1	1		1	1		1	1		1	1		1	1		1	1	

          Value which can be checked

String matching can be performed using addition operation 

This output after homomorphic addition 
is an encrypted value of 1111’s 
that can be used for matching

CIPHERMATCH: Identify the Match 2
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String matching can be performed using addition operation 

m	=	0	1		0	1		0	0		1	0		1	0		0	1		0	1
+		~m	=	1	0		1	0		1		1		0	1		0	1		1	0		1	0
	 									1	1	1	1		1		1		1	1	1	1			1	1		1	1				

          Value which can be checked

Secure String matching can be performed using HE addition operation 

2

Enc(	m	)							=				(5	x1024	+	10	x1023	+		….	+	19	,	…)
																									+	Enc(~m	)				=				(6	x1024	+	11	x1023			+		….	+	3		,	…)

																																																												(11	x1024	+	21	x1023	+		….	+	22	,	…)

                                                      (1010…1x1024	+	1111…1	x1023	+		….	+	1001…0)

Decrypt
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2

 Match polynomial       =            111…11	x1024	+	111…11	x1023		+			….			+		111…11

Encrypt

                                Match value    =    (91	x1024	+	24	x1023+		….	+	32	,	…)

Enc(	m	)								=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
																										+Enc(~q		)	 =			(2	x1024	+	14	x1023			+		….	+	3		,	…)

																																																																		(1010…1x1024	+	1111…1	x1023	+		….	+	1001…0)

Result  =    (7	x1024	+	24	x1023	+		….	+	22	,	…)

Encrypted Database
Encrypted Query

Decrypt
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2

 Match polynomial       =            111…11	x1024	+	111…11	x1023		+			….			+		111…11

Encrypt

                                Match value    =    (91	x1024	+	24	x1023+		….	+	32	,	…)

Enc(	m	)								=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
																										+Enc(~q		)	 =			(2	x1024	+	14	x1023			+		….	+	3		,	…)

																																																																		(1010…1x1024	+	1111…1	x1023	+		….	+	1001…0)

Result  =    (7	x1024	+	24	x1023	+		….	+	22	,	…)

Encrypted Database
Encrypted Query

Decrypt

Result  =    (7	x1024	+	24	x1023	+		….	+	22	,	…)
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2

Compare Generate Index

Compare the match value 

Result  =    (7	x1024	+	24	x1023	+		….	+	22	,	…)

                                Match value    =    (91	x1024	+	24	x1023+		….	+	32	,	…)
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126



System-Level Overview of CIPHERMATCH
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Evaluation Configuration
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Evaluation Configuration
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