
Mayank Kabra
Rakesh Nadig, Harshita Gupta, Rahul Bera, Manos Frouzakis,

Vamanan Arulchelvan, Yu Liang, Haiyu Mao,
Mohammad Sadrosadati, and Onur Mutlu

Accelerating Homomorphic Encryption-Based
String Matching via Memory-Efficient Data Packing

and In-Flash Processing

CIPHERMATCH

Executive Summary

Problem: Secure exact string matching using homomorphic encryption (HE) lacks scalability
due to performance bottlenecks in two key areas:
a) Use of complex homomorphic multiplication resulting in high computation cost
b) Data movement bottleneck from large encrypted database stored in solid-state drive (SSD)

CIPHERMATCH: A new algorithm-hardware co-design
that significantly improves the performance of HE-based secure exact string matching by
a) using only homomorphic addition to reduce the high computation cost
b) optimizing the data packing scheme to reduce memory footprint
c) designing a new in-flash-processing (IFP) architecture to reduce data movement

Key Results:
a) CIPHERMATCH algorithm: 42.9x	speedup & 39.4x energy savings than best software
b) CIPHERMATCH with IFP: 136.9x speedup & 256.4x	energy savings over CM-SW

Key Idea:	Use (a) only homomorphic addition and (b) perform in-flash processing by exploiting
the operational principles of NAND-flash memory to accelerate secure exact string matching

Goal: Develop an algorithm-hardware co-design to provide scalable, parallelizable
and efficient HE-based secure exact string-matching

2

Talk Outline

3

Background, Problem & Goal

Key Idea

CIPHERMATCH System: Overview

CIPHERMATCH: Algorithm

CIPHERMATCH: Hardware

Evaluation Results

Talk Outline

4

Background, Problem & Goal

Key Idea

CIPHERMATCH System: Overview

CIPHERMATCH: Algorithm

CIPHERMATCH: Hardware

Evaluation Results

Exact String Matching

5

Exact string matching is used
in many security critical applications, such as

Databases Bioinformatics

e.g., searching a query in
sensitive databases

e.g., identifying similarities
in DNA sequences

[Koudas+, VLDB 2003]
[Chen+, TIP 2013]

[Bhukya+, IJCA 2011]
[Cali+, MICRO 2020]

Query

Server

Storage
(SSD)

6

Database

User

Exact String Matching

Query

Server

Storage
(SSD)

7

Database

User

Exact String Matching

010011100010101

010110100101010
10010

10010

10010

Query

Server

Storage
(SSD)

8

Database

010011100010101

010110100101010
10010

Result

User

Exact String Matching

Performing computation on plaintext
can lead to data leakage

Query

Server

Storage
(SSD)

9

Database

010011100010101

010110100101010
10010

Result

User

Homomorphic encryption (HE) can be leveraged
to perform secure exact string matching

Exact String Matching

Decrypt

Encrypt

Query

Server

Storage
(SSD)

10

Database

010011100010101

010110100101010
Result

User

Query
Enc(0100110101)

Enc(0101101001)
Homomorphic

Operations

Allows users to compute on
encrypted data without decrypting it

Result

Secure Exact String Matching

Approaches to HE-based String Matching

11

Secure string matching using HE can be performed using two key approaches

Boolean Approach Arithmetic Approach

1)	 High memory footprint 1)	 Low memory footprint

2)	 High computation cost 2)	 Low computation cost

Encrypt individual bits and use
homomorphic XOR and AND operations

Encrypt multiple packed bits and use
homomorphic MUL and ADD operations

3)	 Supports flexible query size 3)	 Supports limited query size

More detailed analysis in the paper

Prior Works on HE-based String Matching

12

Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

Approaches to HE-based String Matching

13

Secure string matching using HE can be performed using two key approaches

Boolean Approach Arithmetic Approach

1)	 High memory footprint 1)	 Low memory footprint

2)	 High computation cost 2)	 Low computation cost

Encrypt individual bits and use
homomorphic XOR and AND operations

Encrypt multiple packed bits and use
homomorphic MUL and ADD operations

3)	 Supports flexible query size 3)	 Supports limited query size

Arithmetic Approach

14

Arithmetic Approach

1. Encrypt multiple packed bits

Database = 1		1	…	0		1		0	…	1	.	.	.	1		1	…	0

1 …0 1 1 …1 0…

32 …21 67

1 …1 0

44 …97 68 41 …52 94…
1 bit
32 bits

1024	elements

2048	elements

Yasuda et al. “Secure Pattern Matching Using Somewhat Homomorphic Encryption,” in CCSW, 2013

Arithmetic Approach

15

Arithmetic Approach

1. Encrypt multiple packed bits

Database = 1		1	…	0		1		0	…	1	.	.	.	1		1	…	0

1 …0 1 1 …1 0…

32 …21 67

1 …1 0

44 …97 68 41 …52 94…

128 bytes

8 Kilobytes

Conventional database size

Encrypted database size

64x
Yasuda et al. “Secure Pattern Matching Using Somewhat Homomorphic Encryption,” in CCSW, 2013

Encrypted Database

Arithmetic Approach

16

Arithmetic Approach

1. Encrypt multiple packed bits

2. Perform homomorphic MUL and ADD operations

1 …0 1 1 …1 0…

32 …21 67

1 …1 0

44 …97 68 41 …52 94…

Encrypted Query

21 …23 57 21 …23 57 21 …23 57…

Database = 1		1	…	0		1		0	…	1	.	.	.	1		1	…	0

Yasuda et al. “Secure Pattern Matching Using Somewhat Homomorphic Encryption,” in CCSW, 2013

Arithmetic Approach

17

Arithmetic Approach

32 …21 67 44 …97 68 41 …52 94…
…

21 …23 57 21 …23 57 21 …23 57…

Encrypted Result

49 …51 49 32 …65 28 81 …56 63...

Hom. Op. Hom. Op. Hom. Op.

1. Encrypt multiple packed bits

2. Perform homomorphic MUL and ADD operations

Yasuda et al. “Secure Pattern Matching Using Somewhat Homomorphic Encryption,” in CCSW, 2013

Execution Time of Arithmetic Approach

18

Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Total execution time of [Yasuda+, CCSW 2013]
to perform secure string matching

0% 100%
98% of total time = homomorphic multiplication 98%

Homomorphic multiplication is 100x slower than homomorphic addition
on a CPU-system

Key Problem (I): Homomorphic multiplication

19

Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Total execution time of [Yasuda+, CCSW 2013]
to perform secure string matching

0% 100%
98% of total time = homomorphic multiplication 98%

Homomorphic multiplication is 100x slower than homomorphic addition

Homomorphic multiplication limits scalability
 of HE-based string matching algorithm

20

Databases are large and stored in SSDs

Databases are Stored in Storage (SSD)

Solid-State Drive
(SSD)

Database

Homomorphic encryption
further increases the database size

Solid-State Drive
(SSD)

Encrypted
Database

21

Databases are large and stored in SSDs

Key Problem (II): Data Movement Bottleneck

Homomorphic encryption
further increases the database size

Solid-State Drive
(SSD)

Encrypted
Database

External I/O bandwidth of SSD
is the main bottleneck for reading large encrypted database

Main
Memory

(DRAM)
CPU/GPU

Solid-State Drive
(SSD)

22

Prior Works on Reducing Data Movement

Encrypted
Database

23

Prior Works on Reducing Data Movement

Solid-State Drive
(SSD)

SSD
Controller

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

…

…

24

Prior Works on Reducing Data Movement

Solid-State Drive
(SSD)

SSD
Controller

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

…

…

In-Flash Processing (IFP) [Park+, MICRO 2022 ; Gao+, MICRO 2021]
enables computation inside SSD by exploiting

the operational principles of NAND-flash memory

Our Goal

25

Develop an
IFP-based algorithm-hardware co-designed system

that can perform scalable, parallelizable and efficient
secure exact string matching

Talk Outline

26

Background, Problem & Goal

Key Idea

CIPHERMATCH: System Overview

CIPHERMATCH: Algorithm

CIPHERMATCH: Hardware

Evaluation Results

Key Observation

27

Database

0100111000101010101101

0101101001010101100010
Query

10010

01101
~

01101

01101

Perform addition
Observe a string of 1111’s, if query matches

01101
11111

Encrypted
Database

Enc(01001110001001…101)

Enc(01011010010100…010)
Enc(Query)

10010

~
01101

Enc(01101)

Perform homomorphic addition
Observe Enc(1111’s), if Enc(query) matches

Enc(01101)
Enc(11111)

Enc(01101)Enc(01101)

In a conventional database,
we perform only addition to get a string match

This observation can be extended to perform
secure exact string matching

using only homomorphic addition

Key Idea (1/2)

28

Database

0100111000101010101101

0101101001010101100010
Query

10010

01101
~

01101

01101

Perform addition
Observe a string of 1111’s

01101
11111

Encrypted
Database

Enc(01001110001001…101)

Enc(01011010010100…010)
Query

10010

01101
~

01101

Enc(01101)

Perform homomorphic addition
Observe a string of Enc(1111’s)

Enc(01101)
Enc(11111)

Enc(01101)

Use only homomorphic addition to perform
secure exact string matching

29

Homomorphic addition is highly parallelizable

Exploit inherent parallelism of NAND-flash memory
- Improves the performance of secure string matching

- Reduces data movement

Key Observation

30

Solid-State Drive (SSD)

Encrypted
Database

Main
Memory

(DRAM)
CPU/GPU

In-Flash Processing (IFP) [Park+, MICRO 2022 ; Gao+, MICRO 2021]
enables computation inside SSD by exploiting

the operational principles of NAND-flash memory

Performs
computation

Use only homomorphic addition to perform
secure exact string matching

Use in-flash processing (IFP) to reduce data movement
and accelerate secure exact string matching

Key Idea (2/2)

CIPHERMATCH
An algorithm-hardware co-design

Improves the performance of
HE-based secure exact string matching

Eliminates costly homomorphic multiplication
- by designing secure string-matching algorithm using only homomorphic addition

31

Reduces memory footprint
- by optimizing the data packing scheme used before encryption

Reduces data movement
and leverages massive bit and array-level parallelism

- by designing an in-flash processing architecture

Talk Outline

32

Background, Problem & Goal

Key Idea

CIPHERMATCH: System Overview

CIPHERMATCH: Algorithm

CIPHERMATCH: Hardware

Evaluation Results

CIPHERMATCH: System Overview

33

Client Server

Database
Data

Packing &
Encryption

Storage
(SSD)

CPU DRAM

Encrypted
Database

Storage
(SSD)

Encrypted
Database

Efficiently pack the database
to reduce the memory footprint after encryption

34

Client Server

Query
Data

Packing &
Encryption

Storage
(SSD)

CPU DRAM

Encrypted
Query

Storage
(SSD)

Encrypted
Database

Efficiently pack the database
to reduce the memory footprint after encryption

Efficiently pack the query
to perform parallel secure string matching on encrypted database

CIPHERMATCH: System Overview

35

Client Server

Query
Data

Packing &
Encryption

Storage
(SSD)

CPU DRAM

Encrypted
Query

Storage
(SSD)

Encrypted
Database

Efficiently pack the database
to reduce the memory footprint after encryption

Efficiently pack the query
to perform parallel secure string matching on encrypted database

Perform secure exact string matching
using only homomorphic addition

CPU

Performs
String

MatchingResult Matched
Index

CIPHERMATCH: System Overview

36

Client Server

Query
Data

Packing &
Encryption

Storage
(SSD)

CPU DRAM

Encrypted
Query

Storage
(SSD)

Encrypted
Database

Efficiently pack the database
to reduce the memory footprint after encryption

Efficiently pack the query
to perform parallel secure string matching on encrypted database

Perform secure exact string matching
using only homomorphic addition

Perform
String

Matching

Accelerate secure exact string matching by performing computations inside SSD
by exploiting operational principles of NAND-flash memory

Result Matched
Index

CIPHERMATCH: System Overview

CIPHERMATCH: Key Steps

37

Secure Exact String-Matching Algorithm

In-Flash Processing

1

2

3

Memory-Efficient Data Packing Scheme

Talk Outline

38

Background, Problem & Goal

Key Idea

CIPHERMATCH: System Overview

CIPHERMATCH: Algorithm

CIPHERMATCH: Hardware

Evaluation Results

CIPHERMATCH: Key Steps

39

Secure Exact String-Matching Algorithm

In-Flash Processing

1

2

3

Memory-Efficient Data Packing SchemeMemory-Efficient Data Packing Scheme
- Efficiently pack the query and database

to reduce the memory footprint and enable parallel string matching

Memory-Efficient Data Packing Scheme

40

1

Database = 010110010100010…01001

01001110001001…101

01011010010100…010
Query (10010)

Database

010110010100010 01001

Query (10010)

…

Memory-Efficient Data Packing Scheme

41

1

Database = 010110010100010…01001

01001110001001…101

01011010010100…010

Enc(Database)

32 …21 48 67

Database

01011 00101 00010 01001
Encrypt

Encode database
by packing multiple bits

into a single plaintext vector
Increase in encrypted database

size is only 4x (2KB	->	8KB)

16 bits

32 bits

Encode

1024 elements

2048 elements

Query (10010)

Memory-Efficient Data Packing Scheme

42

1

Enc(Database)

32 …21 48 67

~Query (01101)01101011010110101101

…

Query (10010)

Memory-Efficient Data Packing Scheme

43

1

Enc(Database)

32 …21 48 67

~Query (01101)

01101011010110101101

Encode query
by negating and replicating
into a single plaintext vector

Enc(~Query)

22 …17 5 11

Encrypt

Encode

Memory-Efficient Data Packing Scheme

44

1

Enc(Database)

32 …21 48 67

Enc(~Query)

22 …17 5 11

CIPHERMATCH: Key Steps

45

Secure Exact String-Matching Algorithm
- Uses only homomorphic addition and identifies the match

to eliminate costly homomomorphic multiplication

In-Flash Processing

1

2

3

Memory-Efficient Data Packing Scheme
- Efficiently pack the query and database

to reduce the memory footprint and enable parallel string matching

Secure Exact String-Matching Algorithm

46

Enc(Database)

32 …21 48 67

Enc(~Query)

22 …17 5 11

2

Homomorphic addition
is inherently element-wise addition

++ + +

47

Enc(Database)

32 …21 48 67

Enc(~Query)

22 17 5 11

2

++ + +

Enc(Result)

54 …38 53 78

…

Secure Exact String-Matching Algorithm

48

2

Enc(Result)

54 …38 53 78

Decrypt

10110 …11010 11111 10100

Match Found !!

Secure Exact String-Matching Algorithm

However, we want to find the match
using Enc(Result) on the server

Identify the Match

49

2

Enc(Result)

54 …38 53 78

Decrypt

10110 …11010 11111 10100

Match Found !!

11111 …11111 11111 11111
Match Value

Encrypt

Enc(Match value)

35 …64 53 29

Identify the Match

50

2

Enc(Result)

54 …38 53 78

Enc(Match value)

35 …64 53 29

Compare Generate Index

Compare and send the final index back to client

CIPHERMATCH: Algorithm (Summary)

51

Negated, Replicated and
Packed Encrypted Query

with an Encrypted Match Value

Client Server

Query Data
Packing &
Encryption Storage

(SSD)
CPU DRAM

Encrypted
Query

Storage
(SSD)

Encrypted
Database

CPU

Perform
String

MatchingResult Matched
Index

String Matching using
only Homomorphic Addition

Efficiently Packed
Encrypted Database

using our Memory-Efficient
Data Packing

1111..1
Encrypted

Match Value

Talk Outline

52

Background, Problem & Goal

Key Idea

CIPHERMATCH: System Overview

CIPHERMATCH: Algorithm

CIPHERMATCH: Hardware

Evaluation Results

Server

Storage
(SSD)

CPU DRAM

Storage
(SSD)

Encrypted
Database

Perform
String

Matching

CIPHERMATCH: Hardware Overview

53

Client

Query Data
Packing &
Encryption

Encrypted
Query

Result Matched
Index

1111..1
Encrypted

Match Value

Perform secure exact string matching
inside SSD using in-flash processing (IFP)

Storage
(SSD)

Overview of a Modern Solid State Drive (SSD)

54

Solid-State Drive (SSD)
(NAND Flash-Based SSD)

55

Solid-State Drive (SSD)
(NAND Flash-Based SSD)

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

SSD
Controller

(General-Purpose Core)

…

…Internal DRAM

Overview of a Modern Solid State Drive (SSD)

56

Die#0 Die#1 …

NAND Flash Memory

Latching circuit

Data (A1)
Data (A2)

Data (An)
Bitlines (BLs)

…

Latching
circuit

Data Latch 0

Data Latch	1

Data Latch 2

Sensing Latch

Solid-State Drive (SSD)
(NAND Flash-Based SSD)

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

SSD
Controller

(General-Purpose Core)

…

…Internal DRAM

Overview of a Modern Solid State Drive (SSD)

57

Solid-State Drive (SSD)
(NAND Flash-Based SSD)

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

SSD
Controller

…

…Internal DRAM
Die#0 Die#1 …

NAND Flash Memory

Latching circuit

Data (A1)
Data (A2)

Data (An)
Bitlines (BLs)

…

Latching
circuit

Data Latch 0

Data Latch 1

Data Latch 2

Sensing Latch

Prior work [Gao+, MICRO 2021] uses latching circuit
to perform only bitwise operations

Limitations of Prior Work

Server

Storage
(SSD)

CPU DRAM

Storage
(SSD)

Encrypted
Database

Perform
String

Matching

Advantages of Secure String Matching in SSD

58

Client

Query Data
Packing &
Encryption

Encrypted
Query

Result Matched
Index

1111..1
Encrypted

Match Value

Homomorphic addition can be parallelized

Exploit bit-level and array-level parallelism
of NAND-flash memory

CIPHERMATCH: Hardware Overview

59

Matched
Index

Encrypted
Query

Server

Storage (SSD)

Index Generation
NAND Flash Memory

(Encrypted Data)

Perform homomorphic additions
inside NAND-flash memory

Generate the final index
by comparing it with match value

Encrypted
Match Value

I

II

III

CIPHERMATCH: Hardware Overview

60

Matched
Index

Encrypted
Query

Server

Storage (SSD)

Perform homomorphic additions
inside NAND-flash memory

Encrypted
Match Value

Perform element-wise addition inside NAND-flash memory

Index Generation
NAND Flash Memory

(Encrypted Data)

I

I

CIPHERMATCH: Key Steps

61

Secure Exact String-Matching Algorithm
- Uses only homomorphic addition and identifies the match

to eliminate costly homomomorphic multiplication

In-Flash Processing
-Exploit the operational principles of NAND-flash memory

to perform homomorphic addition

1

2

3

Memory-Efficient Data Packing Scheme
- Efficiently pack the query and database

to reduce the memory footprint and enable parallel string matching

62

Solid-State Drive (SSD)
(NAND Flash-Based SSD)

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

SSD
Controller

…

…Internal DRAM
Die#0 Die#1 …

Latching
circuit

Data Latch 0

Data Latch 1

Data Latch 2

Sensing Latch

3CIPHERMATCH: Element-Wise Addition

NAND Flash Memory

Bitlines (BLs)

…

Latching circuit

We use bit-serial addition
to avoid carry propagation across different bitlines

Enc(Database)

…

CIPHERMATCH: Bit-Serial Addition

63

Lay out the data vertically in NAND-flash memory

3

A2An A0A1 X2Xn X1 Y2Yn Y0Y1A2An A0A1 X2Xn X0X1 Y2Yn Y0Y1

NAND Flash Memory

Bitlines (BLs)

…

Latching circuit

… … …

CIPHERMATCH: Bit-Serial Addition

64

Lay out the data vertically in NAND-flash memory

3

Bi

Ci

Bi⊕Ci

Ci

Bi.Ci

Bi⊕Ci
Bi.Ci

Ai⊕Bi⊕Ci

Ai

Bi.Ci

Sum

(Bi⊕Ci).Ai

Bi.Ci

Sum

Carry

Ai Ai Ai Ai Ai Ai

Ai

Bi Bi.Ci Ai (Bi⊕Ci).Ai Carry Sum

Bi

Ci

Ai

Bi

Latching circuit

NAND Flash Memory

Bitlines (BLs)

…

Latching circuit

A2

An

A0

A1

X2

Xn

X0

X1

Y2

Yn

Y0

Y1

…

…

…

Bi

Ci

Bi⊕Ci

Ci

Bi.Ci

Bi⊕Ci

Bi.Ci

Ai⊕Bi⊕Ci

Ai

Bi.Ci

Sum

(Bi⊕Ci).Ai

Bi.Ci

Sum

Carry

Ai Ai Ai Ai Ai Ai

Ai

Bi Bi.Ci Ai (Bi⊕Ci).Ai Carry Sum

CIPHERMATCH: Bit-Serial Addition

65

Lay out the data vertically in NAND-flash memory

Send the query from SSD controller to the latches

Perform Steps 1-6 to perform bit-serial addition

Accumulate the sum bit and send the accumulated bit to the SSD controller

3

SSD Controller

Step 3 Step 4 Step 6Step 1 Step 2 Step 5

Input Query Transferred
from SSD Controller

Accumulated Bit Transferred
to SSD Controller

Sum = Ai⊕Bi⊕Ci and Carry = (Bi⊕Ci).Ai + Bi.Ci

NAND Flash Memory

Bitlines (BLs)

…

Latching circuit

A2

An

A0

A1

X2

Xn

X0

X1

Y2

Yn

Y0

Y1

…

…

…

CIPHERMATCH: Hardware (Summary)

66

Matched
Index

Encrypted
Query

Server

Storage (SSD)

Index Generation
NAND Flash Memory

(Encrypted Data)

Perform homomorphic additions
inside NAND-flash memory

Generate the final index
by comparing it with match value

Encrypted
Static Value

I

II

III

CIPHERMATCH: Hardware (Summary)

67

Matched
Index

Encrypted
Query

Server

Storage (SSD)

Index Generation
NAND Flash Memory

(Encrypted Data)

Encrypted
Static Value

Use general purpose cores to identify the final match

General Purpose Core

Index Generation

Generate the final index
by comparing it with match value

II

III

Talk Outline

68

Background, Problem & Goal

Key Idea

CIPHERMATCH: System Overview

CIPHERMATCH: Algorithm

CIPHERMATCH: Hardware

Evaluation Results

Evaluation Methodology (1/2): Real System

69

• Arithmetic (using SEAL): State-of-the-art arithmetic approach [Yasuda+, CCSW 2013]

• Boolean (using TFHE-rs): State-of-the-art Boolean approach [Aziz+, Information 2024]

Intel Xeon, 6 cores,	3.2	GHz 32GB DDR4 DRAM 2TB PCIe 4.0 SSD

We evaluate software-based CIPHERMATCH implementation (CM-SW)
by modifying the Microsoft SEAL library

Our Implementation

Baselines

• Varying query size (16-256 bits)* for encrypted database size of 128 GB
• Varying encrypted database size (8-128 GB)* for 16-bit query and 1000 queries

 * including all circular shifted queries

Workloads

Speedup for Different Query Sizes

70

Query Size (in bits)
16 32 64 128 256 Avg

Boolean

Sp
ee

du
p

106

104

102

100

Speedup for Different Query Sizes (1/3)

71

Query Size (in bits)

106

104

102

100

16 32 64 128 256 Avg

Boolean

Sp
ee

du
p

Arithmetic

9.
9x

10
3 x

Arithmetic technique outperforms Boolean technique
by orders of magnitude

Speedup for Different Query Sizes (2/3)

72

Query Size (in bits)

106

104

102

100

16 32 64 128 256 Avg

Boolean

Sp
ee

du
p

Arithmetic CM-SW

9.
9x

10
3 x

42.9x

CM-SW outperforms the best prior arithmetic technique
by 42.9x

Speedup for Different Query Sizes (3/3)

73

Query Size (in bits)

106

104

102

100

16 32 64 128 256 Avg

Boolean

Sp
ee

du
p

Arithmetic CM-SW

9.
9x

10
3 x

42.9x20.7x 30.7x 44.1x 54.7x 62.2x

CM-SW speedup increases with query size
(due to the elimination of homomorphic multiplication)

Evaluation Methodology (2/2): Simulation

74

• CM-SW: CIPHERMATCH on compute-centric system [same as real system]
• CM-PuM: CIPHERMATCH on memory-centric system [*, 32GB DDR4-2400]

• CM-PuM-SSD: CIPHERMATCH on storage-centric system [*, SSD DRAM - 2GB LPDDR4-1866]

 [*] - SIMDRAM framework [Hajinazar+ , ASPLOS 2021]

Baselines

We evaluate IFP-based CIPHERMATCH implementation (CM-IFP)
by modeling the characteristics of the NAND-flash memory

Our Implementation

• Varying query size (16-256 bits)* for encrypted database size of 128 GB
• Varying encrypted database size (8-128 GB)* for 16-bit query and 1000 queries

 * including all circular shifted queries

Workloads

Speedup for Different Query Sizes

75

Query Size (in bits)
16 32 64 128 256 Avg

Sp
ee

du
p

CM-SW
106

104

102

100

Speedup for Different Query Sizes (1/3)

76

Query Size (in bits)

106

104

102

100

16 32 64 128 256 Avg

Sp
ee

du
p

CM-SW CM-PuM CM-PuM-SSD CM-IFP

All three near-data processing systems
improve performance by reducing data movement

Speedup for Different Query Sizes (2/3)

77

Query Size (in bits)

106

104

102

100

16 32 64 128 256 Avg

Sp
ee

du
p

CM-SW CM-PuM CM-PuM-SSD CM-IFP

136.9x

CM-IFP outperforms other near-data processing systems

CM-IFP outperforms CM-SW by 136.9x

Speedup for Different Query Sizes (3/3)

78

Query Size (in bits)

106

104

102

100

16 32 64 128 256 Avg

Sp
ee

du
p

CM-SW CM-PuM CM-PuM-SSD CM-IFP

136.9x216.0x 168.9x 122.7x 100.2x 76.6x

CM-IFP speedup decreases with query sizes
due to repeated flash read operations on same data

for circularly shifted queries

Energy Consumption for Different Query Sizes

79

Query Size (in bits)
16 32 64 128 256 Avg

N
or

m
. E

ne
rg

y
C

on
su

m
pt

io
n

CM-SW

100

10-2

10-4

10-6

100

10-2

10-4

10-6N
or

m
. E

ne
rg

y
C

on
su

m
pt

io
n

Energy Consumption for Different Query Sizes

80

Query Size (in bits)
16 32 64 128 256 Avg

CM-SW CM-PuM CM-PuM-SSD CM-IFP

256.4x

CM-IFP provides 256.4x energy savings over CM-SW
by largely reducing data movement

All three near-data processing systems
provide large energy savings over CM-SW

More Details in Our Paper

81

• More detailed observations from our evaluation
- Comparison between CM-PuM and CM-PuM-SSD
- Comparison with the Boolean approach

• End-to-end system design
- Operations in vertical data layout
- Enabling CIPHERMATCH in commodity SSDs

• Overhead analysis of CIPHERMATCH hardware
- Storage overhead (from end-to-end system design)
- Area overhead (~0.6%	of baseline NAND-flash memory)

• Bitwise operations using NAND-flash memory
- Enabling bitwise operations using latching circuitry
- Exploiting bit-level and array-level parallelism

https://arxiv.org/pdf/2503.08968

To Summarize …

82

Conclusion

83

A new algorithm-hardware codesign that significantly improves the
performance of secure exact string matching algorithm

• CIPHERMATCH-SW: 42.9x	speedup & 39.4x lower energy than best software
• CIPHERMATCH-IFP: 136.9x speedup & 256.4x lower energy than CM-SW

Pack multiple bits of database
and thus eliminate the use of
homomorphic multiplication

Use in-flash processing (IFP)
to accelerate secure exact
string-matching

CIPHERMATCH

Key Results

+ Reduces memory footprint
+ Provides scalable
 secure exact string-matching

+ Reduces data movement
+ Leverages bit-level
 and array-level parallelism

2

1

Mayank Kabra
Rakesh Nadig, Harshita Gupta, Rahul Bera, Manos Frouzakis,

Vamanan Arulchelvan, Yu Liang, Haiyu Mao,
Mohammad Sadrosadati, and Onur Mutlu

Accelerating Homomorphic Encryption-Based
String Matching via Memory-Efficient Data Packing

and In-Flash Processing

CIPHERMATCH

arXiv

Backup slides

Summary

86

CM-SW provides 42.9x	speedup
over the state-of-the-art approach in real systems

Due to our new memory-efficient data packing scheme
and use of only homomorphic additions

CM-IFP provides 136.9x speedup over CM-SW
and outperforms three near-data processing systems

Due to our new IFP design to perform in-flash operations
and exploiting large-scale bit-level parallelism

Executive Summary
Problem: Secure exact string matching using homomorphic encryption (HE) operations face performance
bottlenecks in two key areas:
(a) High computation cost due to use of complex homomorphic operations (e.g., multiplication)
(b) data movement bottleneck due to large homomorphically encrypted data

Motivation: Reducing memory expansion from HE and performing computation where the database
resides can improve the performance of secure exact string matching algorithm

CIPHERMATCH: A novel algorithm-hardware co-design that significantly improves the performance of
HE-based secure string matching by using only homomorphic addition and leveraging the operational
principles of NAND-flash memory.

Key Results: (i) Software-based CIPHERMATCH implementation (CM-SW) achieves 42.9x speedup over
state-of-the-art software approaches
(ii) CIPHERMATCH IFP implementation futher improves upon CM-SW, achieving 136.9x better
performance and 256.4x lower energy consumption

Key Idea:
1) To pack multiple bits of data in the each

coefficient of ciphertext
2) Use in-flash processing (IFP) to perform

string matching inside NAND-flash memory

Key Benefits:
+ Reduce memory expansion after encryption
+ Eliminates the use of complex HE operations

+ Reduces data movement bottleneck

Opportunity: (a) Perform memory-efficient packing of the database to reduce the increase in memory
footprint after encryption and (b) perform simple computations (e.g., HE addition) inside solid state drives
(SSDs – i.e., where the database is stored) to reduce data movement

87

Executive Summary
Problem: Secure exact string matching using homomorphic encryption (HE) operations face performance
bottlenecks in two key areas:
(a) High computation cost due to use of complex homomorphic operations (e.g., multiplication)
(b) Data movement bottleneck due to large homomorphically encrypted data size

Motivation: Reducing memory expansion from HE and performing computation where the database
resides can improve the performance of secure exact string matching algorithm

CIPHERMATCH: A novel algorithm-hardware co-design that significantly improves the performance of
HE-based secure exact string matching (a) by using only homomorphic addition and (b) leveraging the
operational principles of NAND-flash memory to perform secure exact string matching

Key Results:
(i) Software-based CIPHERMATCH (CM-SW): 42.9×	speedup over existing state-of-the-art approaches
(ii) CIPHERMATCH with IFP: 136.9× faster and 256.4× lower energy consumption than CM-SW

Key Idea:
1) Pack multiple bits of data in the each

coefficient of ciphertext
2) Use in-flash processing (IFP) to perform

string matching inside NAND-flash memory

Key Benefits:
+ Reduce memory expansion after encryption
+ Eliminates the use of complex HE operations

+ Reduces data movement bottleneck

Opportunity: (a) Optimize memory usage by packing encrypted data efficiently and (b) perform secure
string matching using simple HE operations (addition) inside SSDs, reducing data movement.

88

NAND Flash Basics: A Flash Cell

89

• A flash cell stores data by adjusting the amount of
charge in the cell

Erased Cell
(Low Charge Level)

1
Programmed Cell

(High Charge Level)

0

Activation

Operates as a resistor Operates as an open switch

NAND Flash Basics: A NAND String

90

• A set of flash cells are serially connected to form a
NAND String

1

0

0

1

0

…

Bitline (BL)

NAND String

NAND Flash Basics: A NAND Block

91

•NAND strings connected to different bitlines comprise a NAND
block

BL1 BL2 BL3 BL4 BL5

1

0

0

1

0

BLN

…

1

0

0

1

0

…

1

0

0

1

0

…
1

0

0

1

0

…

1

0

0

1

0

…

1

0

0

1

0
…

…

…

…

…

…

WL1

WL2

WL3

WL4

WLM

Block

A single wordline (WL) controls a large number of
flash cells: High bit-level parallelism

NAND Flash Basics: A NAND Plane

92

• A large number of blocks share the same bitlines

BL1 BL2 BL3 BL4 BL5 BLN

…
…
……Block2 … … … … …

…
…
……BlockK … … … … …

…
…
……Block1 … … … … …

…… … … … …

Latches to store
flash read data

Speedup for Different Database Size

93

CM-SW shows average speedup of 68.1x over prior arithmetic approach

CM-SW speedup decreases as data size exceeds DRAM capacity, primarily
due to increased data movement between storage and DRAM.

Query Size of 16 bits

1.
2x

10
3 x

68
.1

x

72
.1

x

72
.1

x

72
.1

x

62
.2

x

62
.2

x

Encrypted Database Size (in GB)

106

104

102

100

Sp
ee

du
p

8GB 16GB 32GB 64GB 128GB Avg

Speedup for Different Database Size

94

CM-IFP shows highest average speedup of 268.3x over CM-SW

CM-SW speedup decreases when data size goes beyond DRAM size due to
frequent data movement between storage and DRAM

Query Size of 16 bits

Encrypted Database Size (in GB)

106

104

102

100

Sp
ee

du
p

250.1x 250.1x 250.1x 295.1x 295.1x 268.3x226.3x

66
.5
x

8GB 16GB 32GB 64GB 128GB Avg

Energy Consumption for Different Query Size

95

CM-IFP shows highest average energy savings of 256.4x over CM-SW

CM-IFP energy efficiency decreases with increasing query sizes due to
expensive flash reads

Database Size of 128 GB

Query Size (in bits)

100

10-2

10-4

10-6N
or

m
. E

ne
rg

y
Co

ns
um

pt
io

n

45
4.
5x

37
0.
3x

29
4.
1x

22
7.
2x

15
6.
2x

76
.9
x

83
.3
x

25
6.
4x

16 32 64 128 256 Avg

96

Die#0 Die#1 …

Internal	DRAM

SSD	Controller	
(General	Purpose	Core)

Flash	Controller Flash	Chip Flash	Chip Flash	Chip

Flash	Chip Flash	Chip Flash	Chip

Flash	Chip Flash	Chip Flash	Chip

Flash	Controller

Flash	Controller

Peripheral	Circuitry
Plane#0
Blk#1

Plane#1
Blk#1

Blk#2Blk#2

.. ..
D-Latch D-Latch

S-Latch S-Latch

Storage	(SSD)

NAND	Flash	Chip
NAND	Flash	Read	Circuitry

CIPHERMATCH: NAND-Flash Bitwise Operations

M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

Bitline

CIPHERMATCH: NAND-Flash Bitwise Operations

97

M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

Bitline

M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

M7

M8

Bitline

Design proposed by prior work [Cho+, Patent 2022]

CIPHERMATCH: NAND-Flash Bitwise Operations

98

M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

M7

M8

Bitline

Bitwise AND of A and B

 Data (A) is read and stored in S-
 latch

 Data (A) is transferred from S-latch
to D-latch

 Similarly data (B) is read and stored
in S-latch

1 SO

OUT_D

OUT_SOUT_S

OUT_D

2
RST_D

SET_D

3 SET_S

1

2

3

CIPHERMATCH: NAND-Flash Bitwise Operations

99

M4

M5

M6

Sensing	Latch	(S-latch)

M1 M2

M3

NAND
String

Data	Latch	(D-latch)

M7

M8

Bitline

Bitwise AND of A and B

SO

OUT_D

OUT_SOUT_S

OUT_D

RST_D

SET_D

SET_S

D-latch (A) S-latch (B) Z0

0

0 0

1

Retains	
Value

11->0

Precharge the bitline to
logical 1

0
0 1 0

EN

1 0
1 1

0
1

Precharge the bitline to
logical 1

EN

1

Data Movement Bottleneck

100

• Compute-centric systems: Move entire data from storage to CPU/GPU

Main
Memory

(DRAM)
CPU/GPU Storage

(NAND Flash-Based SSD)

Memory bandwidth:
~ 40	GB/s

Storage I/O bandwidth:
~	8	GB/s

Motivation (II) – Data Movement Bottleneck

101

• Compute-centric systems: Move entire data from storage to CPU/GPU

• Memory-centric systems: Perform computations in main memory

Main
Memory

(DRAM)
CPU/GPU Storage

(NAND Flash-Based SSD)

Memory bandwidth:
~ 40	GB/s

Storage I/O bandwidth:
~	8	GB/s

Main
Memory

(DRAM)
CPU/GPU Storage

(NAND Flash-Based SSD)

Storage I/O bandwidth:
~	8	GB/s

External I/O bandwidth of storage systems
is the main bottleneck for memory intensive application

2

Motivation (II) – Data Movement Bottleneck

102

• Compute-centric systems: Perform computations in CPU/GPU

• Memory-centric systems: Perform computations in main memory

• Storage-centric systems: Perform computations inside storage system

Main
Memory

(DRAM)
CPU/GPU

Storage
(NAND Flash-Based SSD)

NAND
Chip#1

NAND
Chip#4

NAND
Chip#31

NAND
Chip#32

In-Storage
Compute

Units

…

…

2

Motivation (II) – Data Movement Bottleneck

103

• Compute-centric systems: Perform computations in CPU/GPU

• Memory-centric systems: Perform computations in main memory

• Storage-centric systems: Perform computations inside storage system

Main
Memory

(DRAM)
CPU/GPU

Storage
(NAND Flash-Based SSD)

NAND
Chip#1

NAND
Chip#4

NAND
Chip#31

NAND
Chip#32

In-Storage
Compute

Units

…

…SSD-internal bandwidth
becomes the new bottleneck for computations

2

In-Flash Processing (IFP)

104

Main
Memory

(DRAM)
CPU/GPU

Storage
(NAND Flash-Based SSD)

NAND
Chip#1

NAND
Chip#4

NAND
Chip#31

NAND
Chip#32

In-Storage
Compute

Units

…

…

Perform computations inside NAND-flash chips
by using operational principles of NAND-flash memory

In-Flash Processing (IFP)

105

NAND Flash Chip

Latching circuit

Operand O2

Operand O3

…

Operand O32

Bitlines (BLs)

Prior Works ([Gao+, MICRO 2021] , [Park+, MICRO 2022])

perform bitwise operations using the latching circuit

Operand O1

O1

Operand O1

Operand O2

O1 & O2

Limitations of Prior Works

106

• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

1. High memory footprint due to
encryption of individual bits

Boolean
Approach

1. Low memory footprint due to
data packing mechanism

Arithmetic
Approach

m = 1		1		0		1		0		1		1	.	.	.	1		1		0 m = 1		1		0		1		0		1		1	.	.	.	1		1		0

Enc(P1(x)) Enc(P2(x)) … Enc(Pn(x))Enc(b0) Enc(b1) … Enc(bn)

Limitations of Prior Works

107

• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

1. High memory footprint due to
encryption of individual bits

Boolean
Approach

1. Low memory footprint due to
data packing mechanism

Arithmetic
Approach

2. High computation cost due to
large number of HE operations

2. Low computation cost due to
small number of HE operations

Enc(b0) ⊕ Enc(b1) ⊕ Enc(b2) .…. 1000x Enc(P1(x)) Enc(P2(x)) .…. 10x✖ ✖

Limitations of Prior Works

108

• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

1. High memory footprint due to
encryption of individual bits

Boolean
Approach

1. Low memory footprint due to
data packing mechanism

Arithmetic
Approach

2. High computation cost due to
large number of HE operations

2. Low computation cost due to
small number of HE operations

3. Support flexible query sizes
due to unlimited computations

3. Support limited query sizes
due to limited computations

Approaches for HE-based String Matching

109

Secure string matching using HE can be performed using two key approaches

Boolean Approach Arithmetic Approach

Encrypt individual bits

e.g., m = 1		1		0		1		0		1		1	.	.	.	1		1		0

	

Encrypt multiple packed bits

e.g., m = 1		1		0		1		0		1		1	.	.	.	1		1		0

P1= b2x2+b1x1+b0
 P2(x)= b5x2+b4x1+b3 … Pn(x)

Enc(P1(x)) Enc(P2(x)) … Enc(Pn(x))

Enc(b0) Enc(b1) … Enc(bn)

Encrypt individual bits Encrypt multiple packed bits11

Approaches for HE-based String Matching

110

Secure string matching using HE can be performed using two key approaches

Boolean Approach Arithmetic Approach

Enc(P1(x)) Enc(P2(x)) … Enc(Pn(x))

1 Encrypt individual bits Encrypt multiple packed bits1

Perform homomorphic
XOR and AND operation

Perform homomorphic
multiplication and addition operation

2 2

Enc(b0) Enc(b1) … Enc(bn)				

Enc(q0) Enc(q1) … Enc(qn) Enc(Q1(x)) Enc(Q2(x)) … Enc(Qn(x))

⊕ ⊕ … ⊕ ✖ ✖ … ✖

Enc(r0) & Enc(r1) & … & Enc(rn) Enc(R1(x)) + Enc(R2(x)) +… + Enc(Rn(x))

Result Result

Prior Works on HE-based String Matching

111

• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

1. High memory footprint due to
encryption of individual bits

Boolean
Approach

1. Low memory footprint due to
data packing mechanism

Arithmetic
Approach

m = 1		1		0		1		0		1		1	.	.	.	1		1		0 m = 1		1		0		1		0		1		1	.	.	.	1		1		0

Enc(P1(x)) Enc(P2(x)) … Enc(Pn(x))Enc(b0) Enc(b1) … Enc(bn)

112

Boolean
Approach

Arithmetic
Approach

2. Support flexible query sizes
due to unlimited computations

2. Support limited query sizes
due to limited computations

1. High memory footprint due to
encryption of individual bits

1. Low memory footprint due to
data packing mechanism

Prior Works on HE-based String Matching

• Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]

• Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Arithmetic Approach Performs Better

113

Ex
ec

ut
io

n
Ti

m
e

(i
n

s)

Query Size (in Bits)

Database Size
(64 bytes)

Database Size
(128 bytes)

Database Size
(256 bytes)

(Aziz +, Information 2024) (Yasuda+, CCSW 2013)

Arithmetic approach performs better
with larger database sizes due to fewer HE operations

Latency Breakdown of Arithmetic Approach

114

Ex
ec

ut
io

n
Ti

m
e

(i
n

s)

Query Size (in Bits)

Database Size
(64 bytes)

Database Size
(128 bytes)

Database Size
(256 bytes)

(Aziz +, Information 2024) (Yasuda+, CCSW 2013)

Hom.
Mult.

(98.2%)

Hom.
Add.

(1.8%)

Latency
Breakdown

(%)

115

Ex
ec

ut
io

n
Ti

m
e

(i
n

s)

Query Size (in Bits)

Database Size
(64 bytes)

Database Size
(128 bytes)

Database Size
(256 bytes)

(Aziz +, Information 2024) (Yasuda+, CCSW 2013)

Hom.
Mult.

(98.2%)

Hom.
Add.

(1.8%)

Latency
Breakdown

(%)

Prior arithmetic approaches
use costly homomorphic multiplication operations

which limits the scalabilty of HE-based string matching

Key Problem (I): Complex HE Operations

Key Observation

116

String matching can be performed using addition operation

m	=				0	1		0	1		0	0		1	0		1	0		0	1		0	1
+	~m	=				1	0		1	0		1	1		0	1		0	1		1	0		1	0
																			1	1		1	1		1	1		1	1		1	1		1	1		1	1	

 Value which can be checked

If we negate the data, add it to the original data,
 we get a string of 1	1	1	1’s

Key Observation

117

Enc(m)					=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
+				Enc(~m)		=			(6	x1024	+	11	x1023			+		….	+	3		,	…)

																																			(11	x1024	+	21	x1023	+		….	+	22	,	…)

 (1111…1x1024	+	1111…1	x1023	+		….	+	1111…1)

Secure string matching can be performed using HE addition operation

Decrypt

m	=				0	1		0	1		0	0		1	0		1	0		0	1		0	1
+	~m	=				1	0		1	0		1	1		0	1		0	1		1	0		1	0
																			1	1		1	1		1	1		1	1		1	1		1	1		1	1	

 Value which can be checked

String matching can be performed using addition operation

Key Observation

118

Enc(m)					=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
+				Enc(~m)		=			(6	x1024	+	11	x1023			+		….	+	3		,	…)

																																			(11	x1024	+	21	x1023	+		….	+	22	,	…)

 (1111…1x1024	+	1111…1	x1023	+		….	+	1111…1)

Secure string matching can be performed using HE addition operation

Decrypt

m	=				0	1		0	1		0	0		1	0		1	0		0	1		0	1
+	~m	=				1	0		1	0		1	1		0	1		0	1		1	0		1	0
																			1	1		1	1		1	1		1	1		1	1		1	1		1	1	

 Value which can be checked

String matching can be performed using addition operation

This output after homomorphic addition
is an encrypted value of 1111’s
that can be used for matching

Encode database into multiple plaintext polynomials (P(x))
by packing multiple bits into a single polynomial coefficient

Memory-Efficient Data Packing Scheme

119

Assume, Database (d) =

 e.g., P(x) = 1	0	1	0	1…1	x1024	+	1	0	0	1	0…1	x1023	+		….		+		1	1...1	0	1	0	1	

1	0	1	0	1	1	1 1	0	0	1	0	1	1 1	1		...		1	0	1	0	11	0	1	0	1	1	1 1	0	0	1	0	1	1 1	1		...		1	0	1	0	1

1

Client Machine Server Machine

Result

Storage
(SSD)

CPU

DRAM
Perform

String
Matching

Matched
Index

Encrypted
Query

Encrypted
Database

Encrypted
Database

Query
Data

Packing &
Encryption

CIPHERMATCH: Data Packing Scheme

120

1

Client Machine Server Machine

Result

Storage
(SSD)

CPU

DRAM
Perform

String
Matching

Matched
Index

Encrypted
Database

0	0	0	1	1	0	00	0	0	1	1	0	00	0	0	1	1	0	0Assume, Query (q) =

The query (q) is negated, replicated
and encoded into the plaintext polynomials (Q(x))

1	1	1	0	0	1	1 0	0	0	1	1	0	0

 e.g., Q(x) = 0	0	0	1	1…0	x1024	+	0	0	0	1	1…0	x1023	+		….	+		0	0	0	1	1…0	

Encrypted
Query

Query
Data

Packing &
Encryption

121

Secure string matching can be performed using HE addition operation

Decrypt

Enc(m)					=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
+				Enc(~m)		=			(6	x1024	+	11	x1023			+		….	+	3		,	…)

																																				(11	x1024	+	21	x1023	+		….	+	22	,	…)

 (1111…1x1024	+	1111…1	x1023	+		….	+	1111…1)

m	=				0	1		0	1		0	0		1	0		1	0		0	1		0	1
+	~m	=				1	0		1	0		1	1		0	1		0	1		1	0		1	0
																			1	1		1	1		1	1		1	1		1	1		1	1		1	1	

 Value which can be checked

String matching can be performed using addition operation

This output after homomorphic addition
is an encrypted value of 1111’s
that can be used for matching

CIPHERMATCH: Identify the Match 2

CIPHERMATCH: Identify the Match

122

String matching can be performed using addition operation

m	=	0	1		0	1		0	0		1	0		1	0		0	1		0	1
+		~m	=	1	0		1	0		1		1		0	1		0	1		1	0		1	0
	 									1	1	1	1		1		1		1	1	1	1			1	1		1	1				

 Value which can be checked

Secure String matching can be performed using HE addition operation

2

Enc(m)							=				(5	x1024	+	10	x1023	+		….	+	19	,	…)
																									+	Enc(~m)				=				(6	x1024	+	11	x1023			+		….	+	3		,	…)

																																																												(11	x1024	+	21	x1023	+		….	+	22	,	…)

 (1010…1x1024	+	1111…1	x1023	+		….	+	1001…0)

Decrypt

CIPHERMATCH: Identify the Match

123

2

 Match polynomial = 111…11	x1024	+	111…11	x1023		+			….			+		111…11

Encrypt

 Match value = (91	x1024	+	24	x1023+		….	+	32	,	…)

Enc(m)								=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
																										+Enc(~q)	 =			(2	x1024	+	14	x1023			+		….	+	3		,	…)

																																																																		(1010…1x1024	+	1111…1	x1023	+		….	+	1001…0)

Result = (7	x1024	+	24	x1023	+		….	+	22	,	…)

Encrypted Database
Encrypted Query

Decrypt

CIPHERMATCH: Identify the Match

124

2

 Match polynomial = 111…11	x1024	+	111…11	x1023		+			….			+		111…11

Encrypt

 Match value = (91	x1024	+	24	x1023+		….	+	32	,	…)

Enc(m)								=			(5	x1024	+	10	x1023	+		….	+	19	,	…)
																										+Enc(~q)	 =			(2	x1024	+	14	x1023			+		….	+	3		,	…)

																																																																		(1010…1x1024	+	1111…1	x1023	+		….	+	1001…0)

Result = (7	x1024	+	24	x1023	+		….	+	22	,	…)

Encrypted Database
Encrypted Query

Decrypt

Result = (7	x1024	+	24	x1023	+		….	+	22	,	…)

CIPHERMATCH: Identify the Match

125

2

Compare Generate Index

Compare the match value

Result = (7	x1024	+	24	x1023	+		….	+	22	,	…)

 Match value = (91	x1024	+	24	x1023+		….	+	32	,	…)

Qualitative Analysis of Prior Work

126

System-Level Overview of CIPHERMATCH

127

Evaluation Configuration

128

Evaluation Configuration

129

