CIPHERMATCH

Accelerating Homomorphic Encryption-Based
String Matching via Memory-Efficient Data Packing
and In-Flash Processing

Mayank Kabra

Rakesh Nadig, Harshita Gupta, Rahul Bera, Manos Frouzakis,
Vamanan Arulchelvan, Yu Liang, Haiyu Mao,
Mohammad Sadrosadati, and Onur Mutlu

ING'S

ETHzurich SAFARI [5{6¢

Executive Summary

Problem: Secure exact string matching using homomorphic encryption (HE) lacks scalability
due to performance bottlenecks in two key areas:

a) Use of complex homomorphic multiplication resulting in high computation cost

b) Data movement bottleneck from large encrypted database stored in solid-state drive (SSD)

Goal: Develop an algorithm-hardware co-design to provide scalable, parallelizable
and efficient HE-based secure exact string-matching

Key Idea: Use (a) only homomorphic addition and (b) perform in-flash processing by exploiting
the operational principles of NAND-flash memory to accelerate secure exact string matching

CIPHERMATCH: A new algorithm-hardware co-design

that significantly improves the performance of HE-based secure exact string matching by
a) using only homomorphic addition to reduce the high computation cost

b) optimizing the data packing scheme to reduce memory footprint

c) designing a new in-flash-processing (IFP) architecture to reduce data movement

Key Results:
a) CIPHERMATCH algorithm: 42.9x speedup & 39.4x energy savings than best software

b) CIPHERMATCH with IFP: 136.9x speedup & 256.4x energy savings over CM-SW

SAFARI

Talk Outline

Background, Problem & Goal
Key Idea
CIPHERMATCH System: Overview
CIPHERMATCH: Algorithm

CIPHERMATCH: Hardware

Evaluation Results

SAFARI

Talk Outline

Background, Problem & Goal

SAFARI

Exact String Matching

Exact string matching is used
In many security critical applications, such as

\

Databases Bioinformatics
e.g., searching a query in e.g., identifying similarities
sensitive databases in DNA sequences

SAFARI

Exact String Matching

User

SAFARI

Server

Query

Storage
(SSD)

Database

Exact String Matching

User

SAFARI

10010

Server

Query

v

7

\

[010011100010101 ||

(10010]

010110100101010

[10010]

Storage
(SSD)

Exact String Matching

=)

\
@ Server
\) Storage
Query A 0011100010101 (55D)
Result ¢ 010710100101010
esu x
[100101

User i)
\ 4

Performing computation on plaintext
can lead to data leakage

SAFARI

Exact String Matching

Server

Storage

‘ Query . a (SSD)
- Result [*

User

_

Homomorphic encryption (HE) can be leveraged
to perform secure exact string matching

SAFARI

Secure Exact String Matching

User

SAFARI

Server

OB | | avery ol
Query

Result a
Result
Decrypt

Homomorphic
Operations

Storage
(SSD)

Allows users to compute on

encrypted data without decrypting it

10

Approaches to HE-based String Matching

Secure string matching using HE can be performed using two key approaches

[Boolean Approach] [Arithmetic Approach]

Encrypt multiple packed bits and use
homomorphic MUL and ADD operations

Encrypt individual bits and use
homomorphic XOR and AND operations

More detailed analysis in the paper

SAFARI 11

Prior Works on HE-based String Matching

Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

SAFARI

12

Approaches to HE-based String Matching

Secure string matching using HE can be performed using two key approaches

|

[Boolean Approach]

[Arithmetic Approach]

Encrypt multiple packed bits and use
homomorphic MUL and ADD operations

Encrypt individual bits and use
homomorphic XOR and AND operations

1) High memory footprint 1) Low memory footprint

2) Low computation cost

2) High computation cost

3) Supports flexible query size 3) Supports limited query size

SAFARI 13

Arithmetic Approach

1.

Database

%ﬂﬂ

1024 ellements

[Arithmetic Approach J

1 I 1 o0 o0 0
_'_I

e |
32 bits

32 | 21 67

2048 elements

SAFARI

|

Encrypt multiple packed bits

= u_Qr_U...11
1] o0 [--o] 1
44 1 97 68

e | 1] 1

-

52

94

14

Arithmetic Approach

[Arithmetic Approach]

1. Encrypt multiple packed bits

DW&&FJJ...ll
d 0 1 0 | eee

1]| «ee | 1] 1 || O

111 -
1 32 |1 21 | ---f 67 44 197 ... 68] °+-- | 41152 [---] 94
[128 bytes] Conventional database size
8 Kilobytes Encrypted database size

6‘1X
SAFARI 15

Arithmetic Approach

[Arithmetic Approach]

1. Encrypt multiple packed bits

2. Perform homomorphic MUL and ADD operations

DW%. | .%‘

1 [1|0 1] 0 [eee] 1| e | 1] 1
Encrypted Database
1 32 [21 [.--] 67 44 197 [...1 68 | ==+ | 41| 52
Encrypted Query
21 | 23 [.--] 57 21 [23 [.«.[57 | ==+ | 21] 23

SAFARI

Arithmetic Approach

[Arithmetic Approach]

1. Encrypt multiple packed bits

2. Perform homomorphic MUL and ADD operations

| 32 1 21 |---]| 67 44 | 97 [eee] 68 | *** |41 | 52 [+«<] 94
! v v
Hom. Op. Hom. Op. eee — Hom. Op.
1 i f
21 [23 [eee]| 57 21 [23 [eee| 57 | -+ 21 | 23 |+« 57

Encrypted Result

49 [51 [---] 49 (32 [65 -] 28] L4 81 | 56 | ---] 63

SAFARI

17

Execution Time of Arithmetic Approach

Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Total execution time of [Yasuda+, CCSW 2013]
to perform secure string matching

A
v

Homomorphic multiplication is 100x slower than homomorphic addition
on a CPU-system

SAFARI 18

Key Problem (I): Homomorphic multiplication

Homomorphic multiplication limits scalability
of HE-based string matching algorithm

SAFARI 19

Databases are Stored in Storage (SSD)

Databases are large and stored in SSDs

Homomorphic encryption
further increases the database size

r

_

Solid-State Drive

(SSD)

Database

~N

SAFARI

r

Solid-State Drive
(SSD)

Encrypted
Database

~N

20

Key Problem (II): Data Movement Bottleneck

External I/O bandwidth of SSD
is the main bottleneck for reading large encrypted database

4)
Solid-State Drive
SSD
. (SSD)
[Main
CPU/GPU Memory Encrypted
g (DRAM) Database
\
\. J

SAFARI 21

Prior Works on Reducing Data Movement

()
Solid-State Drive
(SSD)
Encrypted
Database
_ J

SAFARI

Prior Works on Reducing Data Movement

e \
Solid-State Drive
(SSD)
*
[Flash] Flash |
SSD __Chip __Chip |
Controller ~——y—————3
Flash] Flash
| Chip | | Chip |
\ Y,

SAFARI

Prior Works on Reducing Data Movement

In-Flash Processing (IFP) (park:, MICRO 2022 ; Gao+, MICRO 2021]
enables computation inside SSD by exploiting
the operational principles of NAND-flash memory

4)
Solid-State Drive
(SSD)
*
Flash | | Flash
SSD Chip Chip
Contro"er *
Flash " Flash |
Chip) 7| Chip
1\ J

SAFARI

Our Goal

Develop an
IFP-based algorithm-hardware co-designed system
that can perform scalable, parallelizable and efficient
secure exact string matching

SAFARI

25

Talk Outline

SAFARI

Key Idea

26

Key Observation

In a conventional database,
we perform only addition to get a string match

A= I =B~ e —

This observation can be extended to perform
secure exact string matching
using only homomorphic addition

10010 Enc(gi(i?ﬁllOOOlOOl...101)
l~ Enc(Query) J| LEnc()
01101— Enc(01101) Enc(01011010010100...010)
Enc(01101)
L Enc(11111))

Perform homomorphic addition
Observe Enc(1111’s), if Enc(query) matches

SAFARI 27

Key Idea (1/2)

Use only homomorphic addition to perform
secure exact string matching

SAFARI

28

Key Observation

Homomorphic addition is highly parallelizable

|

Exploit inherent parallelism of NAND-flash memory
Improves the performance of secure string matching
Reduces data movement

SAFARI

29

Key Idea (2/2)

Use only homomorphic addition to perform
secure exact string matching

Use in-flash processing (IFP) to reduce data movement
and accelerate secure exact string matching

SAFARI

30

CIPHERMATCH

An algorithm-hardware co-design

Improves the performance of
HE-based secure exact string matching

Reduces memory footprint
- by optimizing the data packing scheme used before encryption

Eliminates costly homomorphic multiplication
- by designing secure string-matching algorithm using only homomorphic addition

Reduces data movement

and leverages massive bit and array-level parallelism
by designing an in-flash processing architecture

31

Talk Outline

CIPHERMATCH: System Overview

SAFARI

32

CIPHERMATCH: System Overview

("] ™ e
Client Server
Storage
Data
E
Database [Packing & ncrypted > (SSD)
Encryption Database CPU DRAM
P Encrypted
Database
\k)) \

Efficiently pack the database
to reduce the memory footprint after encryption

SAFARI

CIPHERMATCH: System Overview

("] ™ e
Client Server
Storage
Data
E ted
Query [Packing & néLyeﬁye > (55D)
Encryption CPU DRAM
Encrypted
Database
_ ~) &

Efficiently pack the database
to reduce the memory footprint after encryption

Efficiently pack the query
to perform parallel secure string matching on encrypted database

SAFARI

CIPHERMATCH: System Overview

("] ™ e
Client Server
Data CPU Storage
E ted
Query [Packing & "éLye'iye - (SSD)
Encryption Performs DRAM
: Encrypted
String
. m | Database
Result Matched Matching
\ Index L - \
.) g

Efficiently pack the database
to reduce the memory footprint after encryption

Efficiently pack the query
to perform parallel secure string matching on encrypted database

Perform secure exact string matching
using only homomorphic addition

SAFARI

CIPHERMATCH: System Overview

J

_

Client Server
Storage
Data
E ted
Query [Packing & nccltl‘Jy;ye > (SSD)
Encryption CPU || DRAM ||| Perform
Strin Encrypted
g Database
Result Matched Matching
Index s

Efficiently pack the database
to reduce the memory footprint after encryption

Efficiently pack the query
to perform parallel secure string matching on encrypted database

Perform secure exact string matching
using only homomorphic addition

Accelerate secure exact string matching by performing computations inside SSD
by exploiting operational principles of NAND-flash memory

SAFARI

36

CIPHERMATCH: Key Steps

@ Memory-Efficient Data Packing Scheme
@ Secure Exact String-Matching Algorithm
@ In-Flash Processing

SAFARI

Talk Outline

CIPHERMATCH: Algorithm

SAFARI

38

CIPHERMATCH: Key Steps

@

M&

gry:EFHElent Bata Packin

- Efficiently pack the query and data

§a§EH8

8

to reduce the memory footprint and enable parallel string matching

SAFARI

39

Memory-Efficient Data Packing Scheme @

4)

01001110001001...101

Query (10010)

01011010010100...010

Database

Database =010110010100010...01001

SAFARI 40

Memory-Efficient Data Packing Scheme @

Encode database
Query (10010) | by pqckmg myltlple bits
into a single plaintext vector
Increase in encrypted database
size is only 4x (2KB -> 8KB)

Database =010110010100010...01001

16lbits ', Encode
01011 00101 00010 01001
1024 élements
321bits Enc(Database)
32 21 48 67

|
SAFARI 2048 elements 41

Memory-Efficient Data Packing Scheme @

4)

Enc(Database)

32 | 21148 | ...| 67

Query (10010)

~Query (01101)

SAFARI 42

Memory-Efficient Data Packing Scheme @

4)

Encode query . Enc(Database)
by negating and replicating 32 | 21 | 48 67
into a single plaintext vector —

~Query (01101)
Encode
01101 01101 01101 01101
', Encrypt
Enc(~Query)
22 17 5 11

SAFARI 43

Memory-Efficient Data Packing Scheme @

Enc(Database)

32 21 48 cee 67
Enc(~Query)

22 17 5 cee 11

SAFARI 44

CIPHERMATCH: Key Steps

Secure Exact String-Matching Algorithm

- Uses only homomorphic addition and identifies the match
to eliminate costly homomomorphic multiplication

SAFARI

45

Secure Exact String-Matching Algorithm @

Enc(Database)

32 21 48 cee 67
+ + + +
Enc(~Query)

22 17 5 cee 11

Homomorphic addition
is inherently element-wise addition

SAFARI 46

Secure Exact String-Matching Algorithm

Enc(Database)

32 21 48 67

+ + + +
Enc(~Query)

22 17 5 11
Enc(Result)

54 38 53 78

SAFARI 47

Secure Exact String-Matching Algorithm @

Enc(Result)
54 38 53 o 78
" Decrypt
10110 11010 11111 coe 10100

Match Found !!

However, we want to find the match
using Enc(Result) on the server

SAFARI 48

|ldentify the Match

Enc(Result)

54

38

53

78

Match Value

11111

l Encrypt

Enc(Match value)

35

64

53

29

SAFARI

49

|dentify the Match (2)

Enc(Result)
54 38 l 53 b 78

35 64 , 53 L e 29

Compare and send the final index back to client

SAFARI 50

CIPHERMATCH: Algorithm (Summary)

Negated, Replicated and
Packed Encrypted Query
with an Encrypted Match Value

SAFARI

only Homomorphic Addition

-

Client Server
[Encrypted
QUEI’Y I Data Query CPU S(t:;?)g)e
Packing & Encrypted
E i > M
1111..1 - Encryption Match Value Pse:i(:‘r;l DRA Encrypted
o I | || Database
Result Matched Matching | [4---
Index —
.) / ;
i 3] (" Efficiently Packed
String Matching using Iciently Packe

Encrypted Database

using our Memory-Efficient

Data Packing

J

51

Talk Outline

CIPHERMATCH: Hardware

SAFARI

52

CIPHERMATCH: Hardware Overview

Client

Query Data

Packing &

1111..1 P Encryption

Result

Server

Encrypted

Query Storage

(SSD)
Encrypted
DRAM
Match Value CPU Pse:i(:,r: Encrypted

Matched Matching Database

Index

SAFARI

Perform secure exact string matching
inside SSD using in-flash processing (IFP)

53

Overview of a Modern Solid State Drive (SSD)

é)

Solid-State Drive (SSD)
(NAND Flash-Based SSD)

SAFARI 54

Overview of a Modern Solid State Drive (SSD)

(")

Solid-State Drive (SSD)
(NAND Flash-Based SSD)

SSD [Flash |
Controller | Chip |

(General-Purpose Core)
_

[Flash] [Flash |
Internal DRAM] chip || chip

G J

SAFARI 55

Overview of a Modern Solid State Drive (SSD)

NAND Flash Memory

~
~~~
~
S

C Solid-State Drive (SSD) R
(NAND Flash-Based SSD)
-
SSD [ Flash |
Controller Chip
(General-Purpose Core)
- - v
( Flash Flash
‘Internal DRAM] chip | | chip ]
\_ J

SAFARI

~
~
~
~
~
\\
~

Data (A :
- (Al) /| Latching
ata (A,) /| circuit
: 1’ Sensing Latch
Data (A,) !
/ ata Latc
Bitlines (BLs) ; ': : t . :‘;
ata Latc
Latching circuit Data Latch 2
& J ==
Die#0 Die#1
56




Limitations of Prior Work

Prior work (cao-+, micro 20211US€S latching circuit
to perform only bitwise operations

-~
-~y
S

Latching
circuit

Sensing Latch

Data Latcho

Data Latch 1

Data Latch 2

SAFARI 57



Advantages of Secure String Matching in SSD

e i ) ( b
Client Server
Encrypted | |
Query Data Query . >torage
Packing & Encrypted (55D)
1111.1 [ Encryption MatchValue| | | CPU || DRAM Perform Encrypted
String
; D
— Matched Matching atabase
] Index
\_ J \_ J

Homomorphic addition can be parallelized

i

Exploit bit-level and array-level parallelism
of NAND-flash memory

SAFARI 58



CIPHERMATCH: Hardware Overview

Encrypted

Server

Query
Encrypted

>

Match Value

Matched

7

Index

Storage (SSD)

|

i I dex G o NAND Flash Memory
ndex Generation (Encrypted Data)
LI I
\_ vl I

N\
N\

—

J
J

@ Perform homomorphic additions
inside NAND-flash memory

SAFARI

Generate the final index
@ by comparing it with match value

59



CIPHERMATCH: Hardware Overview

( N
Server
Encrypted ( N |
Query T Storage (SSD)
Encrypted
Matd:l{)/alue T : NAND Flash Memory
Index Generation (Encrypted Data)
Matched 1] I
Index L\ A J |
\ y,

@ Perform homomorphic additions
inside NAND-flash memory

4

Perform element-wise addition inside NAND-flash memory

SAFARI 60



CIPHERMATCH: Key Steps

®

In-Flash Processing

-Exploit the operational principles of NAND-flash memory
to perform homomorphic addition

SAFARI

61



CIPHERMATCH: Element-Wise Addition (3)

We use bit-serial addition
to avoid carry propagation across different bitlines

< D
- . . ~ NAND Flash Memory
Solid-State Drive (SSD)
(NAND Flash-Based SSD) /| Latching
/| circuit
f 'll Sensing Latch
SSD Flash | T T ’l' Data Latch 0
Controller Chip s (Els) Data Latch 1
LatChing CirCUit Data Latch 2
\_ | K\ ,/~~-
[ Flash ] [ Flash ||~~~ ™ S
Internal DRAM] chip | | chip_] ——— >
\_ e Die#0 || Die#1

SAFARI



CIPHERMATCH: Bit-Serial Addition

@ ;

NAND Flash Memory )

I TEEETTEEr e rrreeeT
Bitlines (BLs)

Latching circuit
\ /

Lay out the data vertically in NAND-flash memory

Enc(Database)

An... AAA,

Xn .es X2X1 XO

Yo...

Y.Y. Y,

SAFARI

63



CIPHERMATCH: Bit-Serial Addition

NAND Flash Memory )

\_ - \

Lay out the data vertically in NAND-flash memory

SAFARI

Yo X, AN
Y, X, Al T
Yz Xz |A2| !
2K L: il
Y, X, FALI |

I TR erreerer I I I

Bitlines (BLs) |(ij | ¢ |

| |||||.||||||||.|||||||. I I : \

Latching circuit, ||\ Latching circuit

— e e e e e e e — — — — — — — — — — — — — — — — — — —

—_—————

—— — — —

64

D ————



CIPHERMATCH: Bit-Serial Addition (3)

Lay out the data vertically in NAND-flash memory
Send the query from SSD controller to the latches
Perform Steps 1-6 to perform bit-serial addition

Accumulate theusumb@m@lsendrthe acoumuEed)bit t@tbe SSD controller

SAFARI 65

(" )
NAND Flash Memory [ SSD Controller
I Input Query Transferred Accumulated Bit Transferred
Yo X, ! A, |\ from SSD Controller to SSD Controller
I I y_ - -----"———"—"""— "V \\
Y:L X1 l A1 I [/ A, A A A i 3
Y2 X2 | A2| | I I I I I I
Dl L: il Bil ‘_Bi.fi "Ail <Bieacli>.Ai Car:y N Sum
Y, X FA_ Il ! 1 = 5
T ] : I I G G A Ai! (B/®C).A Carry
Bitlines (BLs) |||y I : B B@C! B:®C A®BOC; Sum Sum
I NN NN RRNRN| | B.C; v B..C; B..C; B..C;
Latching CirCUit: : l\ Step1l  Step2 Step3  Step4 Step5  Step6
\_ - N .

~ e — — — — — — — — —



CIPHERMATCH: Hardware (Summary)

- N\
Server
Encrypted r 1
Query ke Storage (SSD)
Encrypted L NAND Flash Memor
. N H y
Static Val
atic Value Index Generation (Encrypted Data)
Matched 1IN @ I
Index N4 - -

@ Perform homomorphic additions V
inside NAND-flash memory

@ Generate the final index
by comparing it with match value

SAFARI



CIPHERMATCH: Hardware (Summary)

( Server )

Encrypted ( N

Query T Storage (SSD)

SEnc_rypted 1 General Purpose Core NAND Flash Memory
tatic Value
Index Generation (Encrypted Data)

Matched 10 I I

Index L N -4 “

@ Generate the final index
by comparing it with match value

l

Use general purpose cores to identify the final match

SAFARI



Talk Outline

SAFARI

Evaluation Results

68



Evaluation Methodology (1/2): Real System

Our Implementation

Intel Xeon, 6 cores, 3.2 GHz 32GB DDR4 DRAM 2TB PCle 4.0 SSD

We evaluate software-based CIPHERMATCH implementation (CM-SW)
by modifying the Microsoft SEAL library

SEHA TS

* Arithmetic (using SEAL): State-of-the-art arithmetic approach [Yasuda+, CCSW 2013]
* Boolean (using TFHE-rs): State-of-the-art Boolean approach [Aziz+, Information 2024]

Workloads

* Varying query size (16-256 bits)* for encrypted database size of 128 GB
* Varying encrypted database size (8-128 GB)* for 16-bit query and 1000 queries

* including all circular shifted queries

SAFARI 69



Speedup for Different Query Sizes

Boolean

106 4
=
5 104 4
o
o 102 4
(s

16 32 64 128 256 Avg
— Quety Size (in bits) >

SAFARI 70



Speedup for Different Query Sizes (1/3)

Booledn Arithmetic

106 o
5 104
E: N 0 N |
8 102 . 2
n &

lo *_Fl.___Fl ___—l-__?l-_-_Fl ___c,#l___

16 32 64 128 256 Avg
— Quety Size (in bits) >

Arithmetic technique outperforms Boolean technique
by orders of magnitude

SAFARI 71



Speedup for Different Query Sizes (2/3)

Boolean Arithmetic CM-SW
106 42.9x
sl M T I
® 5
2 102 4 2
7 %
'|0°-|——|—. = I =71 I F=-r | == ——mr'-. " —
16 32 64 128 256 Avg
— Quety Size (in bits) >

CM-SW outperforms the best prior arithmetic technique
by 42.9x

SAFARI 72



Speedup for Different Query Sizes (3/3)

Boolean Arithmetic CM-SW
106 4 20.7x 30.7x 44,'|x_ 54.7)(_ 62.2)(_ 42.9)(_
o - N
-39 1 o I | I !
g
o 2
8 102 - 2
7z o
o
'|0°-|——|—. = =7 I rFr=-r | r——r_ ——1-"-. e
16 32 64 128 256 Avg
— Quety Size (in bits) >

CM-SW speedup increases with query size
(due to the elimination of homomorphic multiplication)

SAFARI 73



Evaluation Methodology (2/2): Simulation

Our Implementation

We evaluate IFP-based CIPHERMATCH implementation (CM-IFP)
by modeling the characteristics of the NAND-flash memory

Baselines

 CM-SW.: CIPHERMATCH on compute-centric system [same as real system]
e CM-PuM: CIPHERMATCH on memory-centric system [*, 32GB DDR4-2400]
* CM-PuM-SSD: CIPHERMATCH on storage-centric system [*, SSD DRAM - 2GB LPDDR4-1866]

[*] - SIMDRAM framework [Hajinazar+, ASPLOS 2021]

Workloads

* Varying query size (16-256 bits)* for encrypted database size of 128 GB
* Varying encrypted database size (8-128 GB)* for 16-bit query and 1000 queries

* including all circular shifted queries

SAFARI 74



Speedup for Different Query Sizes

I CM-SW

106
S 104
35 10
o
o 102
(7]

IIOO g il e el -I_I:I _____ |_|'_T____'|_I:I_____|_I-_T____'|_I'__I____

16 32 64 128 256 Avg
< Quety Size (in bits) >

SAFARI 75



Speedup for Different Query Sizes (1/3)

/cM-sw CI1CM-PuM EE CM-PuM-SSD B CM-IFP

106
S 10
3 10
o
o 102
(7]

100 + - - - -

16 64 128 256
< Quety Size (in bits) >

All three near-data processing systems
improve performance by reducing data movement

SAFARI 76



Speedup for Different Query Sizes (2/3)

/cM-sw CI1CM-PuM EE CM-PuM-SSD B CM-IFP

106
o 136.9x
35 10
o
o102
(7]

100 - - - - = ==

16 64 128 256
< Quety Size (in bits) >

CM-IFP outperforms CM-SW by 136.9x

CM-IFP outperforms other near-data processing systems

SAFARI 77



Speedup for Different Query Sizes (3/3)

/cM-sw CI1CM-PuM EE CM-PuM-SSD B CM-IFP

106
o 216.0x  168.9x  122.7x  100.2x 76.6x  136-9x
3 104 [ f t t !
T
o
o 102
N

100 —

16 32 64 128 256 Avg
< Quety Size (in bits) >

CM-IFP speedup decreases with query sizes
due to repeated flash read operations on same data
for circularly shifted queries

SAFARI 78



Energy Consumption for Different Query Sizes

Norm. Energy
Consumption

16 32 64 128 256 Avg
« Quety Size (in bits) —

SAFARI 79



Energy Consumption for Different Query Sizes

= CM-SW CI1CM-PuM EE CM-PuM-SSD B CM-IFP

Norm. Energy
Consumption
© o
RS o

32 64 128 256
- Quety Size (in bits) >

All three near-data processing systems
provide large energy savings over CM-SW

SAFARI 80



More Detalils in Our Paper

CIPHERMATCH: Accelerating Homomorphic Encryption-Based String Matching
via Memory-Efficient Data Packing and In-Flash Processing

Mayank Kabrat Rakesh Nadig{ Harshita Guptai Rahul Beraf
Vamanan Arulchelvan{ Yu LiangT Haiyu Maoi

ETH Zurich¥

Homomorphic encryption (HE) allows secure computation
on encrypted data without revealing the original data, provid-
ing significant benefits for privacy-sensitive applications. Many
cloud computing applications (e.g., DNA read mapping, bio-
metric matching, web search) use exact string matching as a
key operation. However, prior string matching algorithms that
use homomorphic encryption are limited by high computational
latency caused by the use of complex operations and data move-
ment bottlenecks due to the large encrypted data size. In this
work, we provide an efficient algorithm-hardware codesign to
accelerate HE-based secure exact string matching. We propose
CIPHERMATCH, which (i) reduces the increase in memory
footprint after encryption using an optimized software-based
data packing scheme, (ii) eliminates the use of costly homo-
morphic operations (e.g., multiplication and rotation), and (iii)
reduces data movement by designing a new in-flash processing
(IFP) architecture.

Manos Frouzakis¥
Mohammad Sadrosadatit  Onur Mutluf

King’s College Londoni

format). Since cloud servers can be shared among multiple
users, sensitive user data can become vulnerable to security
threats and leaks [24-26]. HE can significantly benefit privacy-
sensitive applications [27-31] that require exact string matching
[13-17,19,21-23] as the fundamental operation by directly op-
erating on encrypted data without requiring decryption.

Unfortunately, homomorphic operations are typically 10%x
to 10° x slower than their traditional unencrypted counterparts
in existing systems [32]. Prior works propose two main ap-
proaches to perform secure string matching: (1) the Boolean
approach (e.g., [17, 33]), and (2) the arithmetic approach
(e.g., [27,29,34]). The Boolean approach [17,33] packs individ-
ual bits into a polynomial, encrypts it, and uses homomorphic
XNOR and AND operations to perform secure string match-
ing on a search pattern of any size. In contrast, the arithmetic
approach [27,29, 34] packs multiple bits into a polynomial, en-
crypts it, and employs homomorphic multiplication and addition

SAFARI

https://arxiv.org/pdf/2503.08968

81



To Summarize ...

82



Conclusion

CIPHERMATCH

A new algorithm-hardware codesign that significantly improves the
performance of secure exact string matching algorithm

Pack multiple bits of database + Reduces memory footprint
and thus eliminate the use of + Provides scalable
homomorphic multiplication secure exact string-matching
Use in-flash processing (IFP) + Reduces data movement
@ to accelerate secure exact + Leverages bit-level
string-matching and array-level parallelism

Key Results

* CIPHERMATCH-SW: 42.9x speedup & 39.4x lower energy than best software
* CIPHERMATCH-IFP: 136.9x speedup & 256.4x lower energy than CM-SW

SAFARI 83



CIPHERMATCH

Accelerating Homomorphic Encryption-Based
String Matching via Memory-Efficient Data Packing
and In-Flash Processing

[m] ¥ [m]
L

[=]

arXiv
- Mayank Kabra

Rakesh Nadig, Harshita Gupta, Rahul Bera, Manos Frouzakis,
Vamanan Arulchelvan, Yu Liang, Haiyu Mao,
Mohammad Sadrosadati, and Onur Mutlu

ING'S

ETHzurich  SAFARI  [5{6¢




Backup slides



Summary

CM-SW provides 42.9x speedup
over the state-of-the-art approach in real systems

Due to our new memory-efficient data packing scheme
and use of only homomorphic additions

CM-IFP provides 136.9x speedup over CM-SW
and outperforms three near-data processing systems

Due to our new IFP design to perform in-flash operations
and exploiting large-scale bit-level parallelism

SAFARI 86



Executive Summary

Problem: Secure exact string matching using homomorphic encryption (HE) operations face performance
bottlenecks in two key areas:

(a) High computation cost due to use of complex homomorphic operations (e.g., multiplication)
(b) data movement bottleneck due to large homomorphically encrypted data

Motivation: Reducing memory expansion from HE and performing computation where the database
resides can improve the performance of secure exact string matching algorithm

Opportunity: (a) Perform memory-efficient packing of the database to reduce the increase in memory
footprint after encryption and (b) perform simple computations (e.g., HE addition) inside solid state drives
(SSDs —i.e., where the database is stored) to reduce data movement

that significantly improves the performance of
HE-based secure string matching by using only homomorphic addition and leveraging the operational
principles of NAND-flash memory.

Key Idea: Key Benefits:

1) To pack multiple bits of data in the each
coefficient of ciphertext

2) Use in-flash processing (IFP) to perform
string matching inside NAND-flash memory + Reduces data movement bottleneck

+ Reduce memory expansion after encryption
+ Eliminates the use of complex HE operations

Key Results: (i) Software-based CIPHERMATCH implementation (CM-SW) achieves 42.9x speedup over
state-of-the-art software approaches

(ii) CIPHERMATCH IFP implementation futher improves upon CM-SW, achieving 136.9x better
performance and 256.4x lower energy consumption

SAFARI 87




Executive Summary

Problem: Secure exact string matching using homomorphic encryption (HE) operations face performance
bottlenecks in two key areas:

(a) High computation cost due to use of complex homomorphic operations (e.g., multiplication)

(b) Data movement bottleneck due to large homomorphically encrypted data size

Motivation: Reducing memory expansion from HE and performing computation where the database
resides can improve the performance of secure exact string matching algorithm

Opportunity: (a) Optimize memory usage by packing encrypted data efficiently and (b) perform secure
string matching using simple HE operations (addition) inside SSDs, reducing data movement.

that significantly improves the performance of
HE-based secure exact string matching (a) by using only homomorphic addition and (b) leveraging the
operational principles of NAND-flash memory to perform secure exact string matching

Key Idea: Key Benefits:
1) Pack multiple bits of data in the each + Reduce memory expansion after encryption

coefficient of ciphertext

2) Use in-flash processing (IFP) to perform
string matching inside NAND-flash memory  + Reduces data movement bottleneck

+ Eliminates the use of complex HE operations

Key Results:
(i) Software-based CIPHERMATCH (CM-SW): 42.9 x speedup over existing state-of-the-art approaches

(ii) CIPHERMATCH with IFP: 136.9 x faster and 256.4 x lower energy consumption than CM-SW

SAFARI 88




W NAND Flash Basics: A Flash Cell

* A flash cell stores data by adjusting the amount of
charge in the cell

Erased Cell Programmed Cell
(Low Charge Level) (High Charge Level)

@ Activation @
Operates as a resistor Operates as an open switch

SAFARI 89



'NAND Flash Basics: A NAND String

* A set of flash cells are serially connected to form a
NAND String Bitline (BL)

{o-0e06¢

NAND String
SAFARI

90



W NAND Flash Basics: A NAND Block

* NAND strings connected to different bitlines comprise a NAND
block

4

\----------------—'

N

SAFARI

o1



W NAND Flash Basics: A NAND Plane

* A large number of blocks share the same bitlines

[Latches to store }
flash read data

(~ Fv A A A oY
>4 X1 Al &) A g
Block, X X X X X
PN A~ A A\ s
% ¥ 9 S ¥ 9
(~ F A A AN A
>4 X1 Al &) A g
Block, X X X X X
PN A~ A A\ s
TS 9 ST ¥ 9
F~ Fy F F F
x1 X Al 4 A g
Block e ~ o b b :
{ A A A A A .
S ¥ 9 S ¥ 9
BL, BL, BL, BL, BL BL,

SAFARI



Speedup for Different Database Size

[ Boolean —1 CM-SW

[ Arithmetic

1.2x103x |

8GB 16GB 32GB 64GB 128GB Avg
Encrypted Database Size (in GB)

CM-SW shows average speedup of 68.1x over prior arithmetic approach

CM-SW speedup decreases as data size exceeds DRAM capacity, primarily
due to increased data movement between storage and DRAM.

SAFARI Query Size of 16 bits 93



Speedup for Different Database Size

/ cM-sw ] CM-PuM [ CM-PuM-SSD [ CM-IFP

250.1x 250.1x 250.1x 295.1x 295.1X 556 3x ,268.3x
A A A
Q_ A
S 104 = 8
©
(<))
2 102
A 102 -
100 .

8GB 16GB 32GB 64GB 128GB Avg
Encrypted Database Size (in GB)

CM-IFP shows highest average speedup of 268.3x over CM-SW

CM-SW speedup decreases when data size goes beyond DRAM size due to
frequent data movement between storage and DRAM

SAFARI Query Size of 16 bits 94



Energy Consumption for Different Query Size

/] camv-sw (] CM-PuM 1 CM-PuM-SSD B CM-IFP

100

Norm. Energy
Consumption

16 32 64 128 256 Avg
Query Size (in bits)

CM-IFP shows highest average energy savings of 256.4x over CM-SW

CM-IFP energy efficiency decreases with increasing query sizes due to
expensive flash reads

SAFARI Database Size of 128 GB 95



CIPHERMATCH: NAND-Flash Bitwise Operations

NAND Flash Read Circuitry

~~~~~~~~ NAND Flash Chip
e \ E D-Latch I D-Latch
S-Latch S-Latch
IIIHIIENn L0000 TII00]
Blk#2 Blk#2
< ; Blk#1 Blk#1
A /__Plane#0 Plane#1
10 Ml /' Peripheral Circuitry
1 / X _=_=-—
'/ \ [\ e —— e
(I8 /
Al pidine U) 7 Die#0 r Die#1

L Sensing Latch (S-latch) /' -— —
(P " Storage (SSDY.. e
1 1
i i SSD Controller i Flash Controller Flash Chip | | Flash Chip [-++=== Flash Chip i
o (General Purpose Core) ; S , —>
i et I Flash Controller Flash Chip | | Flash Chip |--==="- Flash Chip i
1 1
i ; i
i Internal DRAM T I > !
: FlaSh Contr()ller Flash Chip | | Flash Chip |===="""* Flash Chip :
1 1
1 1
\ U

--

SAFARI

CIPHERMATCH: NAND-Flash Bitwise Operations

Mg |- Data Latch (D-latch)

é E)
M

A,]F
I

Bitline \.
Sensing Latch (S-latch)

SAFARI] Design proposed by prior work [Cho+, Patent 2022]

CIPHERMATCH: NAND-Flash Bitwise Operations

Bitwise AND of Aand B

Data (A) is read and stored in S-
latch

9 Data (A) is transferred from S-latch
to D-latch

Similarly data (B) is read and stored
in S-latch

|
M
0~ El

ﬁ
Sensing Latch (S-latch)

SAFARI 98

CIPHERMATCH: NAND-Flash Bitwise Operations

1->0

|_EN Data Latch (D-latch)

— Bitwise AND of Aand B

-l - m D-latch (A) S-latch (B)

yA
t
I 1
.g S 0 0 0
NAND \ 0
String é)
0
1

0 1
"o I 1 0
= R 1 1
B eﬁi‘i

Precharge the bitline to

Bitline \ logical 1
-=v Sensing Latch (S- latch)

SAFARI

Data Movement Bottleneck

* Compute-centric systems: Move entire data from storage to CPU/GPU

Memory bandwidth:
~40 GB/s R
MET: Storage
CPU/GPU
/ AUEIIE (NAND Flash-Based SSD)
(DRAM)
Storage I/O bandwidth:
~ 8 GB/s

SAFARI 100

Motivation (II) - Data Movement Bottleneck®

External I/O bandwidth of storage systems
Is the main bottleneck for memory intensive application

SAFARI 101

Motivation (II) - Data Movement Bottleneck®

* Compute-centric systems: Perform computations in CPU/GPU
* Memory-centric systems: Perform computations in main memory
* Storage-centric systems: Perform computations inside storage system

4 Storage R
(NAND Flash-Based SSD)
r N
[) Main [| S
e NAND NAND
CPU/GPU |€== Memory [@===j| Compute [Chip#l] "'[Chip#4]
g) (DRAM) X Units
- / [NAND] [NAND]
Chip#31) ™ | Chip#32

- J

SAFARI 102

Motivation (II) - Data Movement Bottleneck®

e -

SSD-internal bandwidth
becomes the new bottleneck for computations

SAFARI 103

In-Flash Processing (IFP)

Perform computations inside NAND-flash chips
by using operational principles of NAND-flash memory

r

CPU/GPU

.

(

—

J

SAFARI

_

Main
Memory
(DRAM)

~

Storage R
(NAND Flash-Based SSD)

J

LNAND
Chip#1

."[NAND]
Chip#4

[NAND] [NAND]
Chip#31) ™ | Chip#32

J

104

In-Flash Processing (IFP)

Prior Works ([Gao+, MICRO 2021], [Park+, MICRO 2022])
perform bitwise operations using the latching circuit

SAFARI

-

NAND Flash Chip

~

Operand O,

Operand O,

Operand O,

Operand O,

Bitlines (BLs)

105

Limitations of Prior Works

e Boolean ApprOaCh [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to ' 1. Low memory footprint due to
encryption of individual bits : data packing mechanism

m?D@{lOll...l 1(? m=[‘1/10][1(1)1]1...D€]

Enc(b,) Enc(b,) Enc(b,,) Enc(P.(x)) Enc(P,(x)) ... Enc(P,(x))

SAFARI 106

Limitations of Prior Works

e Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to 1. Low memory footprint due to
encryption of individual bits data packing mechanism

2. High computation cost due to
large number of HE operations

2. Low computation cost due to
small number of HE operations

Enc(b,) @ Enc(b,) @ Enc(b,) 1000X Enc(P,(x)) ¥ Enc(P,(x)) X 10X

SAFARI 107

Limitations of Prior Works

* Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to 1. Low memory footprint due to
encryption of individual bits data packing mechanism

2. High computation cost due to
large number of HE operations

2. Low computation cost due to
small number of HE operations

3. Support flexible query sizes
due to unlimited computations

3. Support limited query sizes
due to limited computations

SAFARI 108

Approaches for HE-based String Matching

Secure string matching using HE can be performed using two key approaches

|
| !

[Boolean Approach] [Arithmetic Approach]

@D Encrypt multiple padked bits

e.q., m/(D@\}Oll 11((1)) - eg, m=C__J]1...?
; !

@D Encrypt individual bits

Enc(b,) Enc(b,) Enc(b,) P1=b,x2+b,x*+b, P,(x)= box2+b, x*+b; ... Py(x)
} } }
Enc(P,(x)) Enc(P,(x)) ... Enc(P,(x))

SAFARI 109

Approaches for HE-based String Matching

Secure string matching using HE can be performed using two key approaches

! !

[Boolean Approach] [Arithmetic Approach]

@D Encryptindividual bits @D Encrypt multiple packed bits

@ Perform homomorphic
multiplication and addition operation

@ Perform homomorphic
XOR and AND operation

Enc(b,) Enc(b,) Enc(b,) Enc(P,(x)) Enc(P,(x)) ... Enc(P.(x))
S SV SV X X X
Enc(qo) Enc(q,) Enc(q,) Enc(Q,(x)) Enc(Q,(x)) ... Enc(Q,(x))

Enc(R,(x)) + Enc(R,(x)) +... + Enc(R,(x))
Result

Enc(r,) & Enc(r,) & ... & Enc(r,)
Result

SAFARI 110

Prior Works on HE-based String Matching

e Boolean ApprOaCh [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic ApprOaCh [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to ' 1. Low memory footprint due to
encryption of individual bits : data packing mechanism

m’=/®®{‘1011...1 1? m=[‘1/10][1(1)1]1...D@

Enc(b,) Enc(b,) Enc(b,,) Enc(P.(x)) Enc(P,(x)) ... Enc(P,(x))

SAFARI 111

Prior Works on HE-based String Matching

e Boolean Approach [Pradel+, TrustCom 2021 ; Aziz+, Information 2024]
e Arithmetic Approach [Yasuda+, CCSW 2013 ; Kim+, TDSC 2017 ; Bonte+, CCS 2020]

Boolean Arithmetic
Approach Approach

1. High memory footprint due to ' 1. Low memory footprint due to
encryption of individual bits : data packing mechanism

2. Support limited query sizes
due to limited computations

2. Support flexible query sizes
due to unlimited computations

SAFARI 112

Arithmetic Approach Performs Better

[Boolean Approach B Arithmetic Approach
(Aziz +, Information 2024) (Yasuda+, CCSW 2013)

Ty

[
(=]
'S

[

(=)
N
1

[

Q
o
1

[

°
N
1

16 32 64 128 Avg:i16 32 64 128 Avgi 16 32 64 128 Avg

Database Size Database Size Database Size
(64 bytes) (128 bytes) (256 bytes)

Query Size (in Bits) .

Execution Time (in s)

Arithmetic approach performs better
with larger database sizes due to fewer HE operations

SAFARI 113

Latency Breakdown of Arithmetic Approach

[Boolean Approach I Arithmetic Approach
(Aziz +, Information 2024) (Yasuda+, CCSW 2013)

LEALERA

[
o
B

Hom.

/A Add.

7 1 (1.8%)

] | Hom.

’ Mult.
(98.2%)

16 32 64 128 Avg |qtency

Database Size Breakdown
(256 bytes) (%)

[

o

N
1

<
S

[

(=)
o
1

[

<

N
[

16 32 64 128 Avg ;16 32 64 128 Avg

Database Size Database Size
(64 bytes) (128 bytes)

Query Size (in Bits)

Execution Time (in s)

A

v

SAFARI 114

Key Problem (I): Complex HE Operations

Hom.
/B Add.
" K| (1.8%)

. Hom.
Mult.
(98.2%)

Latency
Breakdown

(%)

Prior arithmetic approaches
use costly homomorphic multiplication operations
which limits the scalabilty of HE-based string matching

SAFARI 115

Key Observation

String matching can be performed using addition operation

If we negate the data, add it to the original data,
we getastringof1111’s

m= 01010010100101
+ ~m= 10 1011010110 10

Value which can be checked

SAFARI 116

Key Observation

String matching can be performed using addition operation

m= 01010010100101
+ ~m= 10 1011010110 10

Secure string matching can be performed using HE addition operation

Enc(m) = (5x124+10x'1023+ . +19,..)
+ Enc(~m) = (6x1%2%+11x1023 + . +3,.)

(1111..1x1024+ 1111..1x1923+ . +1111...1)

SAFARI 117

Key Observation

This output after homomorphic addition
Is an encrypted value of 1111’s
that can be used for matching

SAFARI 118

Memory-Efficient Data Packing Scheme (1)

s “\ s - N\
Client Machine Server Machine
f) | Encrypted | [)
Data Query || CPU S;c;);aDg)e
Query > EPacklntg! & Perform Ceam
neryprion String Encrypted
Matching Database
Result MatChed M |
.] Index O ’ \ J |
Y y \ y

Assume, Database(d) = 1010111100101111..10101

Encode database into multiple plaintext polynomials (P(x))
by packing multiple bits into a single polynomial coefficient

eg,Px)=10101..1x%024+10010..1x1923+ .. +11.10101

U

Encrypted
Database

SAFARI 119

CIPHERMATCH: Data Packing Scheme (1)

e “ 4 i “
Client Machine Server Machine
Data > CPU Storage
_ . (SSD)
Query » Packing & Perform
H . DRAM
Encryption Strlng Encrypted
Matching o || | Database
Result Matched
!] Index N g > ’)
. J \ J
Assume, Query(q) = 1110011 === 0001100

The query (q) is negated, replicated
and encoded into the plaintext polynomials (Q(x))

e.g,Qx)=00011..0x1%24+00011..0x1923+ ..+ 00011..0

l

Encrypted
Query

SAFARI 120

CIPHERMATCH: Identify the Match (2)

This output after homomorphic addition
Is an encrypted value of 1111’s
that can be used for matching

SAFARI 121

CIPHERMATCH: Identify the Match (2)

String matching can be performed using addition operation

m=01010010100101
+~m=10101101011010

Secure String matching can be performed using HE addition operation

Enc(m)
+ Enc(~m)

(5 x1024+ 10 x1023+ . +19,..)
(6 x1024+ 11 x1923 + . +3,..)

(11 x1024 4+ 21 x1023 + 422,)
Lo o o e o e e e e e e e e e : _______________

[Decrypt]

(1010...1x1924+|1111...1|x1923+ ...+ 1001...0)

SAFARI 122

CIPHERMATCH: Identify the Match (2)

Encrypted Database Enc(m) = (5x102%+10x1023+ .. +19,..)
Encrypted Query +Enc(~q) = (2x19%+14x1023 + . +3,..)

|
Result = (7 x'0%*+ 24 x10%3+ ... + 22, ..)

111,11 x1024 + 111,11 x1923 + . + 111..11
v

[Encrypt]
v

Match value = (91 x192% + 24 x1023+ [+32,..)

Match polynomial

SAFARI 123

CIPHERMATCH: Identify the Match (2)

Encrypted Database Enc(m) = (5x19%*+10x1023+ ... +19,..)
Encrypted Query +Enc(~q) = (2x19%%+14x1023 + . +3,..)

|
Result = (7 x!0%4+ 24 x10%3+ ... +22,..)

111,11 x1024 + 111,11 x1923 + . + 111..11
v

[Encrypt]
v

Match value = (91 x192% + 24 x1023+ [+32,..)

Match polynomial

SAFARI 124

CIPHERMATCH: Identify the Match (2)

Result = (7 x1024 424 |x1923+ | +22,..)

l

[Compare]——-' Generate Index
T

Match value = (91 x102% H24[x1923+ . +32,..)

Compare the match value

SAFARI 125

Qualitative Analysis of Prior Work

s 2 () -

Appr Client Machine Server Machine ible

() | Ciphertext | [| ,
’I‘Y] Query] Data Packin 9 ““0 --------- Storage (550 ’ry
0 & Encrypﬁotgl SSD NAND e
11..11 > CPU DRAM Controller Ml;l::;y —
[{3001 — 0 |—L_J cral|
ppr (L :
Arithi , —
fori=0.31: i 1 |
Appp latchwrite(8) \ @ SSD Controller 11+ NAND Flash Memory ;i |
transfer_S_to_D() E i b dd i — L L i
XOR(D1, D2) i s 4 @ Data Chip chip [Chip ! P
Tabl e] transfer_S_to_D() i ; Index Transposition 3)- > i ches
based flash_read(addr) /1 }Seneration Unit i : KT
ash_read(addr i 11| Flash lash as .

?iﬁ : wanster D105 | /118 HES | A n T ?ilig
of the | Pt Sttt | S
suppor Jatch_read(sum) i ___Internal DRAM D) SSD | ique
to supj Figure 6: System-level overview of CIPHERMATCH.

SAFARI 126

System-Level Overview of CIPHERMATCH

2) 4 N\
Client Machine Server Machine
I) | Ciphertext | [r N
Query —=> . 9 """ 9‘ """"" "1 Storage (SSD)
1 [|
11...11 —> CPU DRAM Controller MFlash
Internal (Eni':;opgd
Result DRAM Data)
& 9
(“““"""""“"'"“'“':::::::::::::::::I:::::\
fori=0.31: (\ I
i latch,write(B) X @ SSD Controller i 1 NAND Flash Memory | |
transfer_S_to_D() i i bop.addD @ i nl - | i E
xoR(o1. 52 | | o - B B
transfer_S_to_D() ! Index Transposition [(3 - : — i E
hash_read(addr) / i Gensra.l::i o onit i E Flash Flash Flash |
transfer_D_to_S() i O - 11| Chip chip || chip i
- T T e e e e e e e e e et e e e ettt ! : :
. I e ————— a |
o i Internal DRAM (12] SSD |

Figure 6: System-level overview of CIPHERMATCH.

SAFARI 127

Evaluation Configuration

SAFARI

Microarchitecture: Intel Skylake [149]

CPU: x86-64 [150], 6 cores, out-of-order, 3.2 GHz
Intel(R) Xeon(R) LI Data + Inst. Private Cache: 32kB, 8-way, 64B line
to8d SIS L2 Private Cache: 256kB, 4-way, 64B line
L3 Shared Cache: 8MB, 16-way, 64B line
Main Memory 32GB DDR4-2400, 4 channels
Storage (SSD) Samsung 980 Pro PCle 4.0 NVMe SSD 2 TB [102]
Operating System (OS) | Ubuntu 22.04.1 LTS

Table 2: Real CPU system configuration.

128

Evaluation Configuration

CM-PuM

32 GB DDR4-2400, 4 channel, 1 rank, 16 banks;
Peak throughput: 19.2 GB/s

Latency: Tphop: 49 ns; Energy: Eppop: 0.864 nJ;
where bbop is bulk bitwise operation

SSD External-Bandwidth: 7-GB/s external I/O bandwidth;
(4-lane PCIe Gen4)

CM-IFP
and
CM-PuM-SSD

48-WL-layer 3D TLC NAND flash-based SSD; 2 TB

SSD Internal DRAM: 2GB LPDDR4-1866 DRAM cache;
1 channel, 1 rank, 8 banks

NAND-Flash Channel Bandwidth: 1.2-GB/s Channel IO rate

Controller Cores: ARM Cortex-RS5 series @1.5GHz; 5 Cores [153]

NAND Config: 8 channels; 8 dies/channel; 2 planes/die;
2,048 blocks/plane; 196 (4x48) WLs/block; 4 KiB/page

Latency: Tye.q (SLC mode): 22.5 us [60]; Tanp/or: 20 ns [62];
Thatchtransfer: 20 ns [62]; Txor: 30 ns [60]; Tpma: 3.3 us;
Thit_add (CM_IFP): 29.38us

Energy: E...q (SLC mode): 20.5uJ/channel [60];
Eanp/or: 10nJ/KB [62]; Ejatchtransfer: 10nJ/KB [62];
Exor: 20nJ/KB [60]; Epma: 7.656uJ/channel;
Eindex_gen (SSD controller): 0.18J/page size;
Ebit_adda (CM_IFP): 32.22uJ/channel

Table 3: Simulated system configurations.

SAFARI

129

