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Collaborative	Computing	

•  Traditionally,	accelerators	(GPUs,	
FPGAs,	etc.)	have	been	used	as	
offload	engines	

Host	processor	offloads	
computation	tasks	to	accelerators	

Host	
Processor	

System	
Memory	

Accelerators	

PC
Ie
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Collaborative	Computing	

•  Traditionally,	accelerators	(GPUs,	
FPGAs,	etc.)	have	been	used	as	
offload	engines	

•  Heterogeneous	architectures	
moving	towards	tighter	
integration	

•  Unified	memory	
•  System-wide	atomics	

Xilinx	Zynq	UltraScale+	MPSoC	
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Collaborative	Computing	

•  Traditionally,	accelerators	(GPUs,	
FPGAs,	etc.)	have	been	used	as	
offload	engines	

•  Heterogeneous	architectures	
moving	towards	tighter	
integration	

•  Unified	memory	
•  System-wide	atomics	

•  Tighter	integration	allows	fine-
grained	collaboration	

Intel	Xeon	+	FPGA	Integrated	Platform	(MCP)	

HS
SI
	

Key	challenge:	identify	the	best	
CPU-FPGA	collaboration	strategy	
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Integrated	Heterogeneous	Systems	
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Our	vision	of	an	integrated	heterogeneous	system:		
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Collaborative	Patterns	
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Collaborative	Patterns	

Fine-grained	Task	Partitioning	

Device	1	 Device	2	

…
	

…
	

…
	

…
	

…
	 …

	

…	

…	

data-parallel	tasks	

sequential	
sub-tasks	

coarse-grained	
synchronization	

Program	Structure	



9 

Collaborative	Patterns	
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Data	Partitioning	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

CPU	

Input	images	

Output	images	

Using	Canny	Edge	Detection	(CED)	as	an	example	

CPU	Implementation	
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Data	Partitioning	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
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Input	images	
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Using	Canny	Edge	Detection	(CED)	as	an	example	

CPU	

FPGA	Acceleration	
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Data	Partitioning	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

CPU	 FPGA	

Input	images	

Output	images	
(CPU	part)	

Output	images	
(FPGA	part)	

Using	Canny	Edge	Detection	(CED)	as	an	example	

𝛼	 1−𝛼	

CPU-FPGA	Collaboration	
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Data	Partitioning	vs.	Task	Partitioning	

Gaussian	Filter	
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Input	images	 Input	images	

FPGA	

CPU	

Output	images	

Using	Canny	Edge	Detection	(CED)	as	an	example	

𝛼	 1−𝛼	

Output	images	
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Output	images	
(FPGA	part)	
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Another	Data	Partitioning	Example:		
Image	Histogram	

FPGA	CPU	 FPGA	CPU	

Input	pixels	distributed	across	devices	 Output	bins	distributed	across	devices	
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Analytical	Models	

• 𝑁:	Number	of	data	parallel	tasks	in	the	application	
•  ​𝑡↓𝑖, 𝐶 :	Execution	time	of	sub-task	𝑖	by	a	CPU	worker	
•  ​𝑡↓𝑖, 𝐹 :	Execution	time	of	sub-task	𝑖	by	an	FPGA	worker	
•  ​𝑤↓𝐶 :	Number	of	available	CPU	workers	
•  ​𝑤↓𝐹 :	Number	of	available	FPGA	workers	
• 𝛽:	Distribution	and	aggregation	overhead	factor	
• 𝛼:	Fraction	of	data	parallel	tasks	assigned	to	CPU	:	Fraction	of	data	parallel	tasks	assigned	to	CPU	
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Analytical	Models	
• 𝑁:	Number	of	data	parallel	tasks	in	the	application	

•  ​𝑡↓𝑖, 𝐶 :	Execution	time	of	sub-task	𝑖	by	a	CPU	worker	
•  ​𝑡↓𝑖, 𝐹 :	Execution	time	of	sub-task	𝑖	by	an	FPGA	worker	
•  ​𝑤↓𝐶 :	Number	of	available	CPU	workers	

•  ​𝑤↓𝐹 :	Number	of	available	FPGA	workers	

• 𝛽:	Distribution	and	aggregation	overhead	factor	

• 𝛼:	Fraction	of	data	parallel	tasks	assigned	to	CPU	:	Fraction	of	data	parallel	tasks	assigned	to	CPU	

Data	partitioning	
	
The	total	execution	time	is	

​𝑡↓data, total = ​𝛽↓data ∙max​(​𝛼𝑁∑𝑖↑▒​𝑡↓𝑖,𝐶  /​𝑤↓𝐶  , ​
(1−𝛼)𝑁∑𝑖↑▒​𝑡↓𝑖,𝐹  /​𝑤↓𝐹  )	

		

Total	CPU	execution	time	
(sequential	execution)	

Total	FPGA	execution	time	
(sequential	execution)	

…
	

…
	

CPU	 FPGA	
Data	partitioning	
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Analytical	Models	
• 𝑁:	Number	of	data	parallel	tasks	in	the	application	

•  ​𝑡↓𝑖, 𝐶 :	Execution	time	of	sub-task	𝑖	by	a	CPU	worker	
•  ​𝑡↓𝑖, 𝐹 :	Execution	time	of	sub-task	𝑖	by	an	FPGA	worker	
•  ​𝑤↓𝐶 :	Number	of	available	CPU	workers	

•  ​𝑤↓𝐹 :	Number	of	available	FPGA	workers	

• 𝛽:	Distribution	and	aggregation	overhead	factor	

• 𝛼:	Fraction	of	data	parallel	tasks	assigned	to	CPU	:	Fraction	of	data	parallel	tasks	assigned	to	CPU	

Data	partitioning	
	
The	total	execution	time	is	

​𝑡↓data, total = ​𝛽↓data ∙max​(​𝛼𝑁∑𝑖↑▒​𝑡↓𝑖,𝐶  /​𝑤↓𝐶  , ​
(1−𝛼)𝑁∑𝑖↑▒​𝑡↓𝑖,𝐹  /​𝑤↓𝐹  )	

		

Fixing	all	the	variables	except	𝛼,	the	optimal	𝛼	(global	minimum	point)	is	

​𝛼↑∗ = ​​∑𝑖↑▒​𝑡↓𝑖,𝐹  /​𝑤↓𝐹  ∕(​∑𝑖↑▒​𝑡↓𝑖,𝐶  /​𝑤↓𝐶  + ​∑𝑖↑▒​
𝑡↓𝑖,𝐹  /​𝑤↓𝐹  ) 	

Workloads	of	CPU	and	FPGA	workers	are	balanced	

…
	

…
	

CPU	 FPGA	
Data	partitioning	
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Analytical	Models	

Fine-grained	task	partitioning	
The	total	execution	time	is	

​𝑡↓task, total = ​𝛽↓task 𝑁∙max​(​∑𝑖∈ ​𝑆↓𝐶 ↑▒​𝑡↓𝑖,𝐶  /​𝑤↓𝐶  , ​
∑𝑖∈ ​𝑆↓𝐹 ↑▒​𝑡↓𝑖,𝐹  /​𝑤↓𝐹  )	

		
Coarse-grained	task	partitioning	
The	total	execution	time	is	

​𝑡↓task, total = ​𝛽↓task 𝑁∙​(​∑𝑖∈ ​𝑆↓𝐶 ↑▒​𝑡↓𝑖,𝐶  /​𝑤↓𝐶  + ​∑𝑖∈ ​
𝑆↓𝐹 ↑▒​𝑡↓𝑖,𝐹  /​𝑤↓𝐹  )	

• 𝑁:	Number	of	data	parallel	tasks	in	the	application	

•  ​𝑡↓𝑖, 𝐶 :	Execution	time	of	sub-task	𝑖	by	a	CPU	worker	
•  ​𝑡↓𝑖, 𝐹 :	Execution	time	of	sub-task	𝑖	by	an	FPGA	worker	
•  ​𝑤↓𝐶 :	Number	of	available	CPU	workers	

•  ​𝑤↓𝐹 :	Number	of	available	FPGA	workers	

• 𝛽:	Distribution	and	aggregation	overhead	factor	

CPU	 FPGA	

…
	

…
	

…
	

…
	

…
	

CPU	 FPGA	

Fine-grained		
task	partitioning	

Coarse-grained		
task	partitioning	

(Assume	sub-tasks	are	very	fine-grained)	
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Chai	Benchmark	Suite	

•  Chai	benchmark	suite:		

 chai-benchmarks.github.io	
•  14	benchmarks	covers	data	partitioning,	fine-grain	task	
partitioning,	and	coarse-grain	task	partitioning	patterns	

•  OpenCL,	C++	AMP,	and	CUDA	versions	

•  Unified	memory	and	system-wide	atomic	versions	and	
traditional	discrete	architecture	versions	

Chai:	Collaborative	Heterogeneous	Applications	for	Integrated-architectures	
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Evaluated	Chai	Benchmarks	
Benchmark	 Description	 Strategy	

CED-D	 Canny	Edge	Detection	 Data	Partitioning	

CED-T	 Canny	Edge	Detection	 Task	Partitioning	

RSC-D	 Random	Sample	Consensus	 Data	Partitioning	

RSC-T	 Random	Sample	Consensus	 Task	Partitioning	

BS	 Bézier	Surface	 Data	Partitioning	

HSTO	 Image	Histogram	 Data	Partitioning	

SSSP	 Single-Source	Shortest	Path	 Task	Partitioning	

TQ	 Task	Queue	System	(Synthetic)	 Task	Partitioning	

TQH	 Task	Queue	System	(Histogram)	 Task	Partitioning	

OpenCL-D	(OpenCL	discrete	architecture)	versions	of	these	benchmarks	are	used.		
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Evaluation	Platforms	

Platform	A	 Platform	B	

FPGA	Board	 Terasic	DE5-Net	 Nallatech	510T	

FPGA	Chip	 Intel	Stratix	V	GX	 Intel	Arria	10	GX	

On-Board	Memory	 4	GB	(DDR3)	 8	GB	(DDR4)	

Host	CPU	 Intel	Xeon	E3-1240	v3	 Intel	Xeon	E5-2650	v3	

Host	Memory	 8	GB	(DDR3)	 96	GB	(DDR4)	

Interface	 PCIe	gen3.0	x8	 PCIe	gen3.0	x8	
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Intel	OpenCL	SDK	for	FPGA	
•  Intel	OpenCL	SDK	for	FPGA	is	used	to	compile	and	synthesize	
host	executable	and	FPGA	design		
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Compute	Unit	Replication	
•  OpenCL	kernels	are	synthesized	to	
compute	units	on	FPGA	

•  The	compute	units	on	FPGA	can	be	
replicated	by	adding	
num_compute_units	attribute	in	the	
OpenCL	kernel	code	

•  num_compute_units	attribute	
modifies	the	number	of	compute	
units	to	which	work-groups	can	be	
scheduled,	which	also	modifies	the	
number	of	times	a	kernel	accesses	
global	memory	

• We	evaluate	the	impact	of	compute	
unit	replication	

Intel®	FPGA	SDK	for	OpenCL™	Best	Practices	Guide		
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Evaluation:	Canny	Edge	Detection	
(Data	Partitioning)	
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Evaluation:	Canny	Edge	Detection		
(Data	Partitioning	and	Task	Partitioning)	
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Evaluation:	Random	Sample	Consensus	
(Data	Partitioning	and	Task	Partitioning)	
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Bézier	Surface	(BS,	Data	Partitioning)	
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Histogram	(HSTO,	Output	Data	Partitioning)	
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Kernel	Replication	–	Data	Partitioning	
We	evaluated	the	performance	under	different	kernel	replication	factors.		
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Kernel	Replication	–	Task	Partitioning	
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We	evaluated	the	performance	under	different	kernel	replication	factors.		
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Impact	of	Replication	
Canny	Edge	Detection	

•  Replication	factor	for	this	application	has	little	impact	on	performance	
•  Further	profiling	reveals	the	reason	of	performance	saturation	is	the	saturation	of	the	

memory	bandwidth	
•  Task	partitioning	can	afford	a	larger	replication	factor	

Kernel	Replication	Factor	
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Impact	of	Replication	

•  Replication	improves	performance	of	this	application	
•  Bounding	resource:	DSP	blocks	
•  Task	partitioning	releases	the	pressure	on	DSP	block	and	thus	can	afford	a	larger	replication	

factor	

Random	Sample	Consensus	

Kernel	Replication	Factor	
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Key	Insights	

•  Collaborative	execution	is	beneficial	
•  Data	partitioning	requires	careful	choice	of	partitions	to	
provide	the	highest	performance	

•  Task	partitioning	generally	enables	more	kernel	replication	
on	the	FPGA	than	data	partitioning	

•  Data	partitioning	inflicts	less	burden	on	programmers	and	
has	less	communication	overhead	than	task	partitioning	

•  OpenCL	stack	provides	a	convenient	programming	model	
while	there	is	still	room	for	better	programmability	and	
higher	performance	
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Chai	Project	

• Papers:	
•  Analysis	and	Modeling	of	Collaborative	Execution	Strategies	for	
Heterogeneous	CPU-FPGA	Architectures.	ICPE’19.	(this	work)	

•  Collaborative	Computing	for	Heterogeneous	Integrated	Systems.	
ICPE’17	Vision	Track.	

•  Chai:	Collaborative	Heterogeneous	Applications	for	Integrated-
architectures.	ISPASS’17.	

•  Chai	Benchmark	Suite:	
•  Website:	chai-benchmarks.github.io	
•  Code:	github.com/chai-benchmarks/chai	
•  Online	Forum:	groups.google.com/d/forum/chai-dev	
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