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Challenges of DRAM scaling:

* High access latency — bottleneck for improving system performance/energy
* Refresh overhead — reduces performance and consume high energy
* Exposure to vulnerabilities (e.g., RowHammer)
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Copy-Row DRAM (CROW) 3. Row
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3: The Components of CROW 4: CROW Operations

Copy-Row DRAM (CROW): a flexible in-DRAM substrate that can be used in multiple different

ways to address the performance, energy efficiency, and reliability challenges of DRAM Row COpy Two-Row Activation
Enables quickly copying a reqular row into a copy row Enables fast access to data that is duplicated
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5: CROW-cache 6: CROW-ret 7: Mitigating RowHammer
Problem: ngh 3cCcess Iatency E:‘g:!’ee?:eshe];;etseh has hlgh overheads. Weak rows lead to Key idea: remap victim rows to COpY rows
Key idea: Use copy rows to enable low-latency access to » weak row: at least one of the row’s cells cannot retain data correctly 0= 0= =0z
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_ Key idea: Avoid storing data in a weak regular row by victim ) > 4
CROW-cache combines: remapping it to a strong copy row ‘i‘i‘i‘ik
* row copy — copy a newly activated regular row to a copy row ‘_.‘..‘_.
* Two-row activation — activate the regular row and CROW-ref uses:
copy row together on next access '

* row copy — copy a weak regular row to a strong copy row

Reduces activation latency by 38% CROW-ref eliminates more than half of the refresh requests

8: Evaluation

Methodology CROW-cache Performance CROW-ref Performance
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* System Parameters ' . ' ' . ' single-core four-core
° 1/4- core System with 8 MiB LLC Sing[e-core faur-core
* LPDDR4 main memory
8 copy rows per 512-row subarray CROW-cache improves sing]e- / four-core system performance CROW-ref significantly reduces the performance overhead of DRAM refresh
Combining CROW-cache and CROW-ref Hardware Overhead Other Results in the Paper
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