CROW: A Low-Cost Substrate for Improving

DRAM Performance, Energy Efficiency, and Reliability
ETHzurich

Hasan Hassan Minesh Patel Jeremie S. Kim A. Giray Yaglikci

o | o Carnegie
Nandita Vijaykumar Nika Mansouri Ghiasi Saugata Ghose Onur Mutlu Mellon
University

Challenges of DRAM scaling:

* High access latency — bottleneck for improving system performance/energy
* Refresh overhead — reduces performance and consume high energy
* Exposure to vulnerabilities (e.g., RowHammer)

DRAM
" Cell

.........................

R o o
ek wwile m ol Ball SO NS Al R R phaa A phe B
e 3
13 Lo liHl A l. LALLLE B il '.'"l.""' l.llll'hll"l. e
.4t o

Copy-Row DRAM (CROW) 3. Row
* Introduces copy rows into a subarray §§ ‘:‘:‘:‘:‘:‘: r i% l‘fl{gr M \‘ < X X X X X >
« The benefits of a copy row: S| o S e A B emory g < X X X X >
o 0 .‘.‘.‘.‘.‘.) Bus \
« Efficiently duplicating data from regular 050500000 e (X X X X >
row to a copy row sg (3 3 O S %< |copy rows -
* Quick access to a duplicated row 53 - Vo ™ i _
_ Memory H A
* Remapping a regular row to a copy row Controller \ B A row is opened Many read /write
Use cases: CPU ¢ sense-Amplifier The sense amplifiers commands can be issued Ready to open (activate)
* CROW-cache & CROW-ref (20% speedup and 22% less DRAM energy) 5) Each cell stores a single- :> could be accessed to the open row anewrow
* Mitigating RowHammer bit of data
. ' icQ) — Low Ch : -
We hope CROW enables many other use cases going forward Logic 0 ow Charge (ACtlvate J (Read/erte J (PreCharge J
Logic 1 — High Charge

3: The Components of CROW 4: CROW Operations

Copy-Row DRAM (CROW): a flexible in-DRAM substrate that can be used in multiple different

ways to address the performance, energy efficiency, and reliability challenges of DRAM Row COpy Two-Row Activation
Enables quickly copying a reqular row into a copy row Enables fast access to data that is duplicated
DRAM Subarray c CROW:-table across a reqular row and a copy row
regular [c“él:?;:zr DRAM Subarray DRAM Subarray
J DRAM
DRAM' rows 195059,050,00 LBRAM [RREERR =
S UVOC) (regular S WWITVIVIUY) | regular
S OOUUC) | rows S OOOO() | rows
copy rows = 050,0,050,00 —1020,020,0,05
sg 10202050500 cOProws ﬁACT-C 192950,9,0,0 copy rows ACT-t
S e Memory . [Memory
Controller Controller
5: CROW-cache 6: CROW-ret 7: Mitigating RowHammer
Problem: ngh 3cCcess Iatency E:‘g:!’ee?:eshe];;etseh has hlgh overheads. Weak rows lead to Key idea: remap victim rows to COpY rows
Key idea: Use copy rows to enable low-latency access to » weak row: at least one of the row’s cells cannot retain data correctly 0= 0= =0z
most-recently-activated regular rows in a subarray when refresh interval is increased oty B WAL . BUA . BUAS
oagrespor o &
_ Key idea: Avoid storing data in a weak regular row by victim) > 4
CROW-cache combines: remapping it to a strong copy row ‘i‘i‘i‘ik
* row copy — copy a newly activated regular row to a copy row ‘_.‘..‘_.
* Two-row activation — activate the regular row and CROW-ref uses:
copy row together on next access '

* row copy — copy a weak regular row to a strong copy row

Reduces activation latency by 38% CROW-ref eliminates more than half of the refresh requests

8: Evaluation

Methodology CROW-cache Performance CROW-ref Performance
* Simulator 0 CROW-1 0 CROW-8 | | | |
« DRAM Simulator (Ramulator [Kim+, @ CROW-64 @ CROW-128 08 Gbit B 16 Gbit @ 32 Gbit W 64 Gbit
CAL’15]) 120 m Ideal CROW-cache (100% Hit Rate) 1.20 17%
https://github.com/CMU-SAFARI/ramulator Q. 1' 15 i 6.6% 7.1% A, 115 11.99,
- Workloads _é’ 110 Tl e \ \ 3.8% ,.g 1.10 7.1%
* 44 single-core workloads O 1.05 7 I I) L 1.05
» SPEC CPU2006, TPC, STREAM, MediaBench D 100 il 8‘ 1.00
* 160 multi-programmed four-core UD)" 0.95 { { v 095
o ehoasin from s 0.90 (WM IVRR TUURIR T TIERR TR VUV THER TTRA TR T 0.0 (VI THIR TR T TR TR T T
* By randomly choosing from single-core g % Yy o O
workloads 8 % > 5 E 8 = S S E % S @ &é\ @c QOQQ {QS’Q (’}0% &Q\i\ &\é”b ,@QQ @Q (\g}&o Qg»éo \882&
* Execute at least 200 million representative = & 7 2 v = S = 2 S & ¢ & & & >
. .)) 2 2 S h
instructions per core - j= Yy = > 3 S ¥
% < <<)
* System Parameters ' . ' ' . ' single-core four-core
° 1/4- core System with 8 MiB LLC Sing[e-core faur-core
* LPDDR4 main memory
8 copy rows per 512-row subarray CROW-cache improves sing]e- / four-core system performance CROW-ref significantly reduces the performance overhead of DRAM refresh
Combining CROW-cache and CROW-ref Hardware Overhead Other Results in the Paper
0 CROW - * Sensitivity to:
O CROW-(cache+ref) -(cache-+ret) For 8 COPY r'oOws: Number of copy-rows per subarray
E Ideal CROW-cache + no refresh . .
B Ideal CROW-cache + no refresh 1.00 0 _ * Chip density
1.30 17% 20% = gﬁ ' 7230/ t 220/ * 0.5% DRAM chip a.rea * Last-level cache capacity
__9;‘ 1?8 N 5 090 ’ * 1.6% D_RAM capacity * CROW-cache with prefetching
8 1:00 % Lﬁ % - - * 11.3 KiB memory controller * CROW-cache against other in-DRAM caching mechanisms:
O (90 £ < 070 storage + TL-DRAM [Lee+, HPCA'13]
o 0.80 5 <5 0.60 + SALP [Kim+, ISCA'12]
0.70 L L Z ~ 0.50 L | L |
single-core four-core single-core four-core Available in July:
CROW-(cache+ref) p.rov1des more perforlTlance and DRAM energy gith ub.com /CMU- SAFARI /CROW S A F A R l
benefits than each mechanism alone

