
DR-STRaNGe:
End-to-End System Design

for DRAM-based True Random Number Generators

F. Nisa Bostancı

Ataberk Olgun Lois Orosa A. Giray Yağlıkçı

Jeremie S. Kim Hasan Hassan Oğuz Ergin Onur Mutlu

DR-STRaNGe Summary
Motivation:

- Random numbers are important for many applications

- DRAM-based True Random Number Generators (TRNGs) can provide true random
numbers at low cost on a wide range of systems

Problem: There is no end-to-end system design for DRAM-based TRNGs

1. Interference between regular memory requests and RNG requests significantly slows
down concurrently running applications

2. Unfair prioritization of RNG applications degrades system fairness

3. High latency of DRAM-based TRNGs degrades the RNG applications’ performance

Goal: A low-cost and high-performance end-to-end system design for DRAM-based TRNGs

DR-STRaNGe: An end-to-end system design for DRAM-based TRNGs that

- Reduces the interference between regular memory requests and RNG requests by
separating them in the memory controller

- Improves fairness across applications with an RNG-aware memory request scheduler

- Hides the large TRNG latencies using a random number buffering mechanism combined
with a new DRAM idleness predictor

Results: DR-STRaNGe

- Improves the average performance of non-RNG (17.9%) and RNG (25.1%) applications

- Improves the average system fairness (32.1%) when generating random numbers
at a 5 Gb/s throughput

- Reduces the average energy consumption (21%)

2

True random numbers are critical for many
real-world applications

True random numbers are generated by harnessing entropy
resulting from random physical processes

Dedicated hardware true random number
generators (TRNGs) cannot be easily used in all systems

True Random Numbers (TRN)

3

Why DRAM-based TRNGs?

DRAM is widely available in most computer systems
and can be integrated into mobile and IoT devices as

main memory

DRAM-based TRNGs enable true random number
generation within widely available DRAM chips

4

Integration of DRAM-based TRNGs
into Real Systems

5

No prior work provides
an end-to-end system design
to enable DRAM-based TRNGs

in real systems

Three Key Challenges

6

RNG Interference
significantly slows down concurrently-running
applications

1.
Unfair Prioritization
degrades overall system fairness2.
High TRNG Latency
degrades RNG applications’ performance3.

Our Goal

7

To develop a low-cost and high-performance
end-to-end system design for DRAM-based TRNGs

DR-STRaNGe: Overview

8

DR-STRaNGe

D
R

A
MRandom Number

Buffering
Mechanism

RNG-Aware
Scheduler

A
p

p
lic

a
ti

o
n

 I
n

te
rf

a
c

e

DR-STRaNGe: Overview

9

DR-STRaNGe

D
R

A
M

RN Buffering Mechanism

RNG-Aware
Scheduler

A
p

p
lic

a
ti

o
n

 I
n

te
rf

a
c

e

DRAM Idleness Predictor

Last Accessed Memory Address

Predictor Table

2-bit saturating counter

Random Number Buffer

Predicts and utilizes idle DRAM channels to generate random numbers
Stores the generated random numbers in a buffer to be served to upcoming RNG requests

Serves RNG requests with low latency

Key Idea: Use the last accessed
memory addresses to predict
the length of the idle periods

DR-STRaNGe: Overview

10

DR-STRaNGe

D
R

A
M

RN Buffering
Mechanism

RNG-Aware
Scheduler

A
p

p
lic

a
ti

o
n

 I
n

te
rf

a
c

e

Accumulates RNG and regular memory requests in separate queues
Schedules requests based on the priority levels set by the operating system

Reduces the RNG interference and improves system fairness
W

ri
te

 Q
u

e
u

e

R
e

a
d

 Q
u

e
u

e

R
N

G
 Q

u
e

u
e

PRIORITY

DR-STRaNGe: Overview

11

DR-STRaNGe

D
R

A
M

RN Buffering
Mechanism

RNG-Aware
Scheduler

A
p

p
lic

a
ti

o
n

 I
n

te
rf

a
c

e

Exposes a secure interface to applications that use random numbers

Completes the end-to-end system design and ensures security

Evaluation

• Performance, fairness, energy efficiency, and area overhead

• Cycle-level simulations using Ramulator [Kim+, CAL’16] and
DRAMPower [Chandrasekar+]

• System configuration:

12

Processor 1-,2-,4-,8-,16-core, 4 GHz clock frequency,
3-wide issue, 128-entry instruction window

DRAM DDR3-1600, 800Mhz bus frequency, 4 channels,
1 rank/channel, 8 banks/rank, 64K rows/bank

Memory
Controller

32-entry read/write queues,
FR-FCFS with a column cap of 16

DR-STRaNGe 32-entry random read queue, RNG-aware scheduler,
256-entry predictor table/channel,
16-entry random number buffer

Key Results: Performance and Fairness

13

17.9%

25.1%

20.6%

32.1%

Improves the performance of both non-RNG (17.9%) and RNG (25.1%)
applications compared to the RNG-oblivious baseline design

Improves the system fairness (32.1%)

Improves the performance of RNG applications (20.6%) over
the RNG application’s single-core performance

Key Results: Scalability, Area, Energy

14

Performance improvement increases with
the number of memory-intensive applications in the workload mix

Incurs minor area overhead
(0.0022mm2, 0.00048% of an Intel Cascade Lake CPU Core)

Reduces the average energy consumption (21%)

More in the Paper

• Security Analysis of DR-STRaNGe
• Security of Random Numbers

• Timing Side-Channel Attacks

• Covert Channel Attacks

• Denial of Service Attacks

• More Results
• Impact of DRAM Idleness Predictor

• Comparison to a Q-learning-based RL agent

• Impact of the Random Number Buffer

• Impact of RNG-Aware Scheduling

• Impact of the Low Utilization Prediction

• Experiments using QUAC-TRNG [Olgun+, ISCA’21]

• Results of RNG Applications with Low RNG Demand

15

DR-STRaNGe:
End-to-End System Design

for DRAM-based True Random Number Generators

F. Nisa Bostancı

Ataberk Olgun Lois Orosa A. Giray Yağlıkçı

Jeremie S. Kim Hasan Hassan Oğuz Ergin Onur Mutlu

