A Framework for Memory
Oversubscription Management
in Graphics Processing Units

Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach,
Youtao Zhang, Onur Mutlu, Yang Guo, Jun Yang

Carnegie Mellon ETH...
O TEXAS vmware

Executive Summary

* Problem: Memory oversubscription causes GPU performance
degradation or, in several cases, crash

* Motivation: Prior hand tuning techniques require heavy loads on
programmers and have no visibility into other VMs in the cloud
m=) Application-transparent mechanisms in GPU are needed

* Observations: Different applications have different sources of
memory oversubscription overhead

* ETC: an application-transparent framework that applies Eviction,
Throttling and Compression selectively for different applications

e Conclusion: ETC outperforms the state-of-the-art baseline on all
different applications

2

Outline

* Executive Summary

* Memory Oversubscription Problem

* Demand for Application-transparent Mechanisms
 Demand for Different Techniques

* ETC: An Application-transparent Framework

* Evaluation

* Conclusion

Memory Oversubscription Problem

Cloud providers oversubscribe DNN training requires larger
resource for better utilization = memory to train larger models

* Limited memoryv capacitv becomes a first-order design and
performance bottleneck

Memory Oversubscription Problem

Memory oversubscription causes GPU
performance degradation or, in several
_cases, crash

' Data movement !

I/ N

Demand Paging ::
————

Unified Virtual Memory t 00000 i

Outline

* Executive Summary

* Memory Oversubscription Problem

 Demand for Application-transparent Mechanisms
 Demand for Different Techniques

* ETC: An Application-transparent Framework

* Evaluation

* Conclusion

Demand for Application-transparent Framework

* Prior Hand-tuning Technique 1:

- Overlap prefetch with eviction requests

1 0 0 0 0 0 ' ' ' ' '
:EE CPU ;;: Prefetch - m -
1. rF e———- | -

tnnunui' Eviction 00000

Demand for Application-transparent Framework

* Prior Hand-tuning Technique 2:

- Duplicate read-only data

: Reduce the number of

NN :EViCtiOI‘IS BEERE
q:: CPU | C Duplicate read-only data - m -
7 . : C instead of migration = =

tnunuui <_Non.eedtoevict ?UUUUU‘i
duplicated data ———

Drop duplicated data instead

Demand for Application-transparent Framework

* Prior Hand-tuning Techniques:

- Overlap prefetch with eviction requests

- Duplicate read-only data

X Requires programmers to manage data movement manually
X No visibility into other VMs in cloud environment

Application-transparent mechanisms are
urgently needed

Outline

* Executive Summary

* Memory Oversubscription Problem

* Demand for Application-transparent Mechanisms
* Demand for Different Techniques

* ETC: An Application-transparent Framework

* Evaluation

* Conclusion

10

Demand for Different Techniques

 Different Applications behave differently under
oversubscription

@ 75% of application's footprint
m50% o i

e

é(
0.5 2
0.25 Y-

0

=
SN
GG EN

=
N
&

Runtime Normalized to
100% of Application's Footprint
o
\l

Collected from NVIDIA GTX1060 GPU

11

Demand for Different Techniques

* Representative traces of 3 applications

Regular gpdallcatlons. Regular ﬁBthatu)ns ! ..
. IrregulxTapplications
with o yyharmg with data sharing ©

33000 fo-cwoccioooae L

Hiding Eviction Latency;

= Hiding Eviction Latency

30800 |- - -ua®® ________ .

32750

Page Number

Reducing data migration

0O 50 100 150 200 250 300
Cycle Count (x10k)

|
|
0 100 200 300 400 500 : 0 50 100 150 200 250 300
Cycle Count (x10Kk) : Cycle Count (x10k)
|
I

Different techniques are needed to mitigate
different sources of overhead

I
12

Outline

* Executive Summary

* Memory Oversubscription Problem

* Demand for Application-transparent Mechanisms
* Demand for Different Techniques

* ETC: An Application-transparent Framework

* Evaluation

* Conclusion

13

Our Proposal

» Application-transparent Framework

Proactive viction

ETC Framework Memory-aware hrottling

c 5
C o
Q_(n
2 ©
<s

Capacity ompression

14

Application Classification

Sampled coalesced memory
accesses per warp

< threshold > threshold

Regular applications Irregular applications

Compiler-information

No data sharing

Data sharing

15

Regular Applications with no data sharing

Proactive viction

) Waiting for Eviction

Demand Evicted
First page GPU runs - Pages - Pages
fault detected out of memory
I I

1
(o {IRNci VIl Page A Page B Page C PageD

(a) Baseline

GPU-to-CPU | Page E | R
: : : time
* Key idea of proactive eviction: evict pages preemptively
before GPU runs out of memory
| |
. . >

[T Y- I a L - IR R R4V Page A PageB PageC PageD PageF PageH Page J Page L
< .- 1 <
Eviction GPU-to-CPU Page E Page G Pagel PageK Page M Saved Cycles
I

(b)

A 4

16

Proactive Eviction

| Allocate a

\ 4

Page Fault *| New Page

\ 4

App Classification

App Type: Regular

Virtual Memory Manager

Memory Oversubscribed

Not Enough Space —

Evict a Chunk

Enough Space —

Fetch a New Page

Evict A Chunk

ETC Implementation

A

17

Regular Applications with data sharing

Proactive viction

) Waiting for Eviction

Moving data back and
C ‘
forth for several times

* Key idea of capacity compression: Increase the effective
capacity to reduce the oversubscription ratio

* Implementation: transplants Linear Compressed Pages (LCP)
framework [Pekhimenko et al., MCIRO’13] from a CPU system.

18

Irregular Applications

T

—

Thrashing

* Key idea of memory-aware throttling : reduce the working

set size to avoid thrashing

33050

~ Page Number

33000 _'"Lfff‘ffi‘?f‘f?i‘?fi‘TT‘ffi‘ffi‘TTi‘?i‘fTf‘TTi‘TT‘fTT‘?Ti‘TTi‘T:‘T%T‘TTi‘T .
050 ||
. 32900 . __._._T_é_.__._._."._._T_._E_T_._."._._."._._%_._.__._._."._._T_é_._f_._."._._"_é__.'_._._'._._."._._%"._:_._._ . .
32850 | S . —
32800 [yt | | | | |

Reduce concurrent]
running thread blocks

|

32750

10 20 30

|

... Thread BlockID

Fit the working set into
the memory capacity

Memory-aware Throttling

Throttle SM

A
Q Page eviction

detected
o Page fault

detected 9

A 4

5

| Detection Epoch

2,

No page

» Execution Epoch

eviction

Time expires with
no page fault

>

|

Release SM

ETC Implementation
(SM Throttling)

Irregular Applications

Memory-aware
hrattlina ‘

Capacity
ompression

Lower Thread Level Parallelism]

21

ETC Framework

Proactive viction

Memory-aware hrottling

Capacity ompression

Regular applications
with no data sharing

Regular applications
with data sharing

Irregular applications

No single technique can work for
all applications

22

ETC Framework

* Application-transparent Framework

App starts
Oversubscribing
All Regular App
memory Compiler
Proactive Eviction
All Irregular App
GPU Runtime e
APP Classification

Memory-Aware Throttling s

GPU Hardware

Data Sharing Regular App
All Irregular App

Capacity Compression

Memory Coalescers

Outline

* Executive Summary

* Memory Oversubscription Problem

* Demand for Application-transparent Mechanisms
 Demand for Different Techniques

* ETC: An Application-transparent Framework

* Evaluation

* Conclusion

24

Methodology

* Mosaic simulation platform [Ausavarungnirun et al., MICRO’17]
e Based on GPGPU-Sim and MAFIA [Jog et al., MEMSYS "15]

 Models demand paging and memory oversubscription support

e Real GPU evaluation
 NVIDIA GTX 1060 GPU with 3GB memory

 Workloads
* CUDA SDK, Rodinia, Parboil, and Polybench benchmarks

e Baseline
* BL: the state-of-the-art baseline with prefetching [Zheng et al., HPCA'16]

* An ideal baseline with unlimited memory

25

Performance

e ETC performance normalized to a GPU with unlimited

Compared with the
state-of-the-art baseline,

Regular applications
with no data sharing

memory
- @E75% BLE75% ETC m50% BL m50% ETC
_g > 12
< © 3.1% 6.1%
£ E 17
S o
S E 0.8 1--
§ 3L o6 1--
© E 0.4 +--
Ec
S 2 02+4--
te
o 0-

Regular apps Regular apps
(no data sharing) (data sharing)

Fully mitigates the
overhead

Regular applications
with data sharing

Irregular apps

60.4% of performance
improvement

Irregular applications

270% of performance
improvement 26

Other results

* In-depth analysis of each technique

* Classification accuracy results

e Cache-line level coalescing factors

* Page level coalescing factors

e Hardware overhead

 Sensitivity analysis results
* SM throttling aggressiveness
* Fault latency

* Compression ratio

27

Outline

* Executive Summary

* Memory Oversubscription Problem

* Demand for Application-transparent Mechanisms
 Demand for Different Techniques

* ETC: An Application-transparent Framework

* Evaluation

* Conclusion

28

Conclusion

* Problem: Memory oversubscription causes GPU performance degradation or,
in several cases, crash

* Motivation: Prior hand tuning techniques require heavy loads on
programmers and have no visibility into other VMs in the cloud

mm) Application-transparent mechanisms in GPU are needed

* Observations: Different applications have different sources of memory
oversubscription overhead

e ETC: an application-transparent framework that

* Proactive Eviction = Overlaps eviction latency of GPU pages
 Memory-aware Throttling m— Reduces thrashing cost
* Capacity Compression —) Increases effective memory capacity

e Conclusion: ETC outperforms the state-of-the-art baseline on all different

applications .

A Framework for Memory
Oversubscription Management
in Graphics Processing Units

Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach,
Youtao Zhang, Onur Mutlu, Yang Guo, Jun Yang

Carnegie Mellon ETH...
O TEXAS vmware

