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Executive Summary

* Problem: Memory oversubscription causes GPU performance
degradation or, in several cases, crash

* Motivation: Prior hand tuning techniques require heavy loads on
programmers and have no visibility into other VMs in the cloud
m=) Application-transparent mechanisms in GPU are needed

* Observations: Different applications have different sources of
memory oversubscription overhead

* ETC: an application-transparent framework that applies Eviction,
Throttling and Compression selectively for different applications

e Conclusion: ETC outperforms the state-of-the-art baseline on all
different applications
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Memory Oversubscription Problem

Cloud providers oversubscribe DNN training requires larger
resource for better utilization = memory to train larger models

* Limited memoryv capacitv becomes a first-order design and
performance bottleneck



Memory Oversubscription Problem

Memory oversubscription causes GPU
performance degradation or, in several
_cases, crash
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Demand for Application-transparent Framework

* Prior Hand-tuning Technique 1:

- Overlap prefetch with eviction requests
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Demand for Application-transparent Framework

* Prior Hand-tuning Technique 2:

- Duplicate read-only data

: Reduce the number of
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Demand for Application-transparent Framework

* Prior Hand-tuning Techniques:

- Overlap prefetch with eviction requests

- Duplicate read-only data

X Requires programmers to manage data movement manually
X No visibility into other VMs in cloud environment

Application-transparent mechanisms are
urgently needed
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Demand for Different Techniques

 Different Applications behave differently under
oversubscription
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Demand for Different Techniques

* Representative traces of 3 applications
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Different techniques are needed to mitigate
different sources of overhead

I
12



Outline

* Executive Summary

* Memory Oversubscription Problem

* Demand for Application-transparent Mechanisms
* Demand for Different Techniques

* ETC: An Application-transparent Framework

* Evaluation

* Conclusion

13



Our Proposal

» Application-transparent Framework

Proactive viction

ETC Framework Memory-aware hrottling
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Application Classification

Sampled coalesced memory
accesses per warp

< threshold > threshold

Regular applications Irregular applications

Compiler-information

No data sharing

Data sharing
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Regular Applications with no data sharing

Proactive viction

) Waiting for Eviction
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Proactive Eviction
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Regular Applications with data sharing

Proactive viction

) Waiting for Eviction

Moving data back and
C ‘
forth for several times

* Key idea of capacity compression: Increase the effective
capacity to reduce the oversubscription ratio

* Implementation: transplants Linear Compressed Pages (LCP)
framework [Pekhimenko et al., MCIRO’13] from a CPU system.

18



Irregular Applications

T

—

Thrashing

* Key idea of memory-aware throttling : reduce the working

set size to avoid thrashing
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Memory-aware Throttling

Throttle SM
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Irregular Applications

Memory-aware
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Capacity
ompression

Lower Thread Level Parallelism ]
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ETC Framework

Proactive viction

Memory-aware hrottling

Capacity ompression

Regular applications
with no data sharing

Regular applications
with data sharing

Irregular applications

No single technique can work for
all applications
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ETC Framework

* Application-transparent Framework
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Methodology

* Mosaic simulation platform [Ausavarungnirun et al., MICRO’17]
e Based on GPGPU-Sim and MAFIA [Jog et al., MEMSYS "15]

 Models demand paging and memory oversubscription support

e Real GPU evaluation
 NVIDIA GTX 1060 GPU with 3GB memory

 Workloads
* CUDA SDK, Rodinia, Parboil, and Polybench benchmarks

e Baseline
* BL: the state-of-the-art baseline with prefetching [Zheng et al., HPCA'16]

* An ideal baseline with unlimited memory
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Performance

e ETC performance normalized to a GPU with unlimited

Compared with the
state-of-the-art baseline,
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Other results

* In-depth analysis of each technique

* Classification accuracy results

e Cache-line level coalescing factors

* Page level coalescing factors

e Hardware overhead

 Sensitivity analysis results
* SM throttling aggressiveness
* Fault latency

* Compression ratio
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Conclusion

* Problem: Memory oversubscription causes GPU performance degradation or,
in several cases, crash

* Motivation: Prior hand tuning techniques require heavy loads on
programmers and have no visibility into other VMs in the cloud

mm) Application-transparent mechanisms in GPU are needed

* Observations: Different applications have different sources of memory
oversubscription overhead

e ETC: an application-transparent framework that

* Proactive Eviction = Overlaps eviction latency of GPU pages
 Memory-aware Throttling m— Reduces thrashing cost
* Capacity Compression —) Increases effective memory capacity

e Conclusion: ETC outperforms the state-of-the-art baseline on all different

applications .
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