
`

A Framework for Memory
Oversubscription Management

in Graphics Processing Units

Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach,

Youtao Zhang, Onur Mutlu, Yang Guo, Jun Yang

1

• Problem: Memory oversubscription causes GPU performance

degradation or, in several cases, crash

• Motivation: Prior hand tuning techniques require heavy loads on

programmers and have no visibility into other VMs in the cloud

• Application-transparent mechanisms in GPU are needed

• Observations: Different applications have different sources of

memory oversubscription overhead

• ETC: an application-transparent framework that applies Eviction,

Throttling and Compression selectively for different applications

• Conclusion: ETC outperforms the state-of-the-art baseline on all

different applications

Executive Summary

2

• Executive Summary

• Memory Oversubscription Problem

• Demand for Application-transparent Mechanisms

• Demand for Different Techniques

• ETC: An Application-transparent Framework

• Evaluation

• Conclusion

Outline

3

• Limited memory capacity becomes a first-order design and

performance bottleneck

Memory Oversubscription Problem

Cloud providers oversubscribe
resource for better utilization

DNN training requires larger
memory to train larger models

4

Memory Oversubscription Problem

• Unified virtual memory and demand paging enable

memory oversubscription support
Memory oversubscription causes GPU
performance degradation or, in several
cases, crash

5

• Executive Summary

• Memory Oversubscription Problem

• Demand for Application-transparent Mechanisms

• Demand for Different Techniques

• ETC: An Application-transparent Framework

• Evaluation

• Conclusion

Outline

6

• Prior Hand-tuning Technique 1:

- Overlap prefetch with eviction requests

Demand for Application-transparent Framework

Prefetch

Eviction

Hide eviction latency

7

• Prior Hand-tuning Technique 2:

- Duplicate read-only data

Duplicate read-only data
instead of migration

Reduce the number of
evictions

No need to evict
duplicated data

Drop duplicated data instead
8

Demand for Application-transparent Framework

• Prior Hand-tuning Techniques:

- Overlap prefetch with eviction requests

- Duplicate read-only data

Requires programmers to manage data movement manually
No visibility into other VMs in cloud environment

Application-transparent mechanisms are
urgently needed

9

Demand for Application-transparent Framework

• Executive Summary

• Memory Oversubscription Problem

• Demand for Application-transparent Mechanisms

• Demand for Different Techniques

• ETC: An Application-transparent Framework

• Evaluation

• Conclusion

Outline

10

Demand for Different Techniques

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2DCONV 3DCONV RED ATAX MVT

R
u

n
ti

m
e
 N

o
rm

a
li
z
e
d

 t
o

1
0
0
%

 o
f

A
p

p
li

c
a
ti

o
n

's
 F

o
o

tp
ri

n
t

75% of application's footprint

50% of application's footprint

>1000X >1000X

Collected from NVIDIA GTX1060 GPU

• Different Applications behave differently under

oversubscription

Average 17% performance loss Crashed

11

Demand for Different Techniques

• Representative traces of 3 applications

Streaming access
Small working set

Random access
Large working set

Data reuse by kernels
Small working set

Waiting for Eviction Thrashing
Moving data back and
forth for several times

ATAX3DCONV LUD

12

Regular applications
with no data sharing

Regular applications
with data sharing

Irregular applications

Hiding Eviction Latency
Hiding Eviction Latency;
Reducing data migration

Reducing working set size

Different techniques are needed to mitigate
different sources of overhead

Outline

• Executive Summary

• Memory Oversubscription Problem

• Demand for Application-transparent Mechanisms

• Demand for Different Techniques

• ETC: An Application-transparent Framework

• Evaluation

• Conclusion

13

• Application-transparent Framework

Our Proposal

ETC Framework

Proactive Eviction

Memory-aware Throttling

Capacity Compression

14

A
p

p
lic

at
io

n

C
la

ss
if

ic
at

io
n

Application Classification

No data sharing

Irregular applications

Data sharing

LD/ST Units
Sampled coalesced memory

accesses per warp

Regular applications

Compiler-information

< threshold > threshold

15

• Key idea of proactive eviction: evict pages preemptively

before GPU runs out of memory

Regular Applications with no data sharing

Waiting for EvictionProactive Eviction

Page A Page B Page C Page D Page F Page H Page J Page L

Page E Page G Page I Page K Page M

CPU-to-GPU

GPU-to-CPU

Proactive
Eviction

(b)
Saved Cycles

Page A Page B Page C Page D

Page E

Page F

Page G

Page H

Page I

Page J

Page K

Page LCPU-to-GPU

GPU-to-CPU
Baseline(a)

First page
fault detected

GPU runs
out of memory

time

Demand
Pages

Evicted
Pages

16

Proactive Eviction

ETC Implementation

Page Fault
Allocate a
New Page

Not Enough Space

Enough Space

Evict a Chunk

Fetch a New Page

Proactive Eviction Evict A Chunk

Virtual Memory Manager

Memory Oversubscribed

Available Memory Size < 2MB

App Classification

App Type: Regular

17

• Key idea of capacity compression: Increase the effective

capacity to reduce the oversubscription ratio

• Implementation: transplants Linear Compressed Pages (LCP)

framework [Pekhimenko et al., MCIRO’13] from a CPU system.

Regular Applications with data sharing

Moving data back and
forth for several times

Capacity Compression

Waiting for EvictionProactive Eviction

18

• Key idea of memory-aware throttling : reduce the working

set size to avoid thrashing

Irregular Applications

Reduce concurrent
running thread blocks

Thrashing
Memory-aware

Throttling

Fit the working set into
the memory capacity

19

Memory-aware Throttling

ETC Implementation
（SM Throttling）

20

Execution EpochDetection Epoch

Throttle SM

Release SM

Page fault

detected

Time expires with

no page fault

Page eviction

detected

No page

eviction

4
1

2

3
5

Irregular Applications

Thrashing
Memory-aware

Throttling

Lower Thread Level Parallelism (TLP)

Capacity
Compression

Lower Thread Level Parallelism

21

ETC Framework

Proactive Eviction

Memory-aware Throttling

Capacity Compression

No single technique can work for
all applications

Regular applications
with no data sharing

Regular applications
with data sharing

Irregular applications

22

• Application-transparent Framework

ETC Framework

APP Classification

Memory Coalescers

Compiler
Proactive Eviction

All Regular App

Memory-Aware Throttling

All Irregular App

Capacity Compression

Data Sharing Regular App
All Irregular App

App starts
Oversubscribing

memory

GPU Runtime

GPU Hardware

23

Outline

• Executive Summary

• Memory Oversubscription Problem

• Demand for Application-transparent Mechanisms

• Demand for Different Techniques

• ETC: An Application-transparent Framework

• Evaluation

• Conclusion

24

• Mosaic simulation platform [Ausavarungnirun et al., MICRO’17]

• Based on GPGPU-Sim and MAFIA [Jog et al., MEMSYS ’15]

• Models demand paging and memory oversubscription support

• Real GPU evaluation

• NVIDIA GTX 1060 GPU with 3GB memory

• Workloads
• CUDA SDK, Rodinia, Parboil, and Polybench benchmarks

• Baseline

• BL: the state-of-the-art baseline with prefetching [Zheng et al., HPCA’16]

• An ideal baseline with unlimited memory

Methodology

25

• ETC performance normalized to a GPU with unlimited

memory

Performance

0

0.2

0.4

0.6

0.8

1

1.2

Regular apps
(no data sharing)

Regular apps
(data sharing)

Irregular apps

P
e
rf

o
rm

a
n

c
e
 N

o
rm

a
li
z
e
d

to

U
n

li
m

it
e
d

 M
e
m

o
ry

75% BL 75% ETC 50% BL 50% ETC

436%

102%59.2%

3.1%

61.7%

6.1%

Regular applications
with no data sharing

Irregular applications

Regular applications
with data sharing

Compared with the

state-of-the-art baseline,

26

Fully mitigates the
overhead

60.4% of performance
improvement

270% of performance
improvement

• In-depth analysis of each technique

• Classification accuracy results

• Cache-line level coalescing factors

• Page level coalescing factors

• Hardware overhead

• Sensitivity analysis results

• SM throttling aggressiveness

• Fault latency

• Compression ratio

Other results

27

Outline

• Executive Summary

• Memory Oversubscription Problem

• Demand for Application-transparent Mechanisms

• Demand for Different Techniques

• ETC: An Application-transparent Framework

• Evaluation

• Conclusion

28

• Problem: Memory oversubscription causes GPU performance degradation or,

in several cases, crash

• Motivation: Prior hand tuning techniques require heavy loads on

programmers and have no visibility into other VMs in the cloud

Application-transparent mechanisms in GPU are needed

• Observations: Different applications have different sources of memory

oversubscription overhead

• ETC: an application-transparent framework that

• Proactive Eviction Overlaps eviction latency of GPU pages

• Memory-aware Throttling Reduces thrashing cost

• Capacity Compression Increases effective memory capacity

• Conclusion: ETC outperforms the state-of-the-art baseline on all different

applications

Conclusion

29

A Framework for Memory
Oversubscription Management

in Graphics Processing Units

Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach,

Youtao Zhang, Onur Mutlu, Yang Guo, Jun Yang

30

