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Dynamic Parallelism on GPUs

* Dynamic parallelism enables executing GPU threads to launch other
grids of threads

Parent threads Tt~ .
Dynamic launch  Parameters and launch

configurations

Child grids

e Useful for implementing computations with nested parallelism



Dynamic Parallelism Overhead

* Using dynamic parallelism may cause many small grids to be launched

* Launching many small grids causes performance degradation due to:
* Congestion
* Limited number of grids can execute simultaneously (others need to wait)

e Hardware underutilization

* If grids are small, their may not be enough threads launched to fully utilize hardware
resources

e Solution: launch of




Prior Work: Aggregation

* Aggregation is an optimization where:
* Multiple child grids are consolidated into a single aggregated grid
* One parent thread launches the aggregated grid on behalf of the rest
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Prior Work: Aggregation

* Aggregation is an optimization where:
* Multiple child grids are consolidated into a single aggregated grid
* One parent thread launches the aggregated grid on behalf of the rest

Memory access
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Aggregated child grid

+ Reduces congestion by reducing the number of launched grids

+ Improves utilization because aggregated child grids have more threads then original ones



Prior Work: Aggregation

* Aggregates launches at different levels of granularity

' |
Block-Granularity Grid-Granularity



Contributions

* Thresholding (as a compiler optimization)
* Prior work relies on programmers to apply it manually

* Coarsening of child thread blocks
* Prior work on compiler-based coarsening not specialized for dynamic parallelism

* Aggregation of child grids at multi-block granularity
* Prior work only compiler-based aggregation only considers warp, block, and grid granularity

* One compiler framework that combined the three optimizations



Thresholding

* Thresholding is an optimization where:

* Agridis launched dynamically only if the number of child threads exceeds a
certain threshold

* Otherwise, work is executed sequentially by the parent thread

i



Thresholding

* Thresholding is an optimization where:

* Agridis launched dynamically only if the number of child threads exceeds a
certain threshold

* Otherwise, work is executed sequentially by the parent thread
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+ Reduces congestion by reducing the number of launched grids

+ Improves utilization by only allowing grids with many threads to be launched



Thresholding: Code Transtormation

__device__ _serial , dim3 _gDim, dim3 _bDim
for(_bx = 0; _bx < _gDim.x; ++_bx) {
for(_tx = 0; _tx < _bDim.x; ++_tx) {
/I Replace uses of blockldx.x with _bx,
} Il threadldx.x with _tx, gridDim with
} I _gDim, and blockDim with _bDim

_threads = ...; /| Extracted from gDim expression
if(_threads >= _THRESHOLD) {

}else {

child_serial (..., gDim, bDim);
}

* Create a serial device function executable by the parent

* Heuristic to detect total number of threads to be compared with threshold

* Detect number of threads to be launched by observing commonly used grid dimension
calculation expressions, such as ceiling divisions

* Apply a conditional guard to either launch or serialize



Coarsening

* Coarsening is a transformation where:
* The work of multiple child blocks is assigned to a single child block
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Coarsening

* Coarsening is a transformation where:
* The work of multiple child blocks is assigned to a single child block

Original thread block before
coarsening
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Coarsened child grids

+ When applied before aggregation, amortizes the cost of disaggregation (incurred once per child blocks)



Coarsening: Code Transformation

, _gDim
for(_bx = blockldx.x; _bx < _gDim.x; _bx += gridDim.x) {
Il Replace uses of blockldx.x with _bx
} Il 'and gridDim with _gDim

_cgDim =_gDim = ;
_cgDim.x = (_gDim.x + _CFACTOR - 1)/_CFACTOR;
_cgDim , _gDim

* Coarsening child kernel
* Insert the coarsening loop around the child kernel body

* Modify kernel parameters

* Add an extra parameter _gDim (being the original grid dimension) to be passed to the
coarsened child kernel

* Modify launch parameters
e Update grid dimension considering CFACTOR



Multi-block Granularity Aggregation

* Multi-block granularity aggregation is an optimization where:
* The child grids of multiple parent blocks are consolidated into a single
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Multi-block Granularity Aggregation

* Multi-block granularity aggregation is an optimization where:

* The child grids of multiple parent blocks are consolidated into a single
aggregated grid

+ Compared to block granularity, launches fewer and larger grids

+ Compared to grid granularity, launches child grids more eagerly



Multi-block Aggregation: Code Transformation

» See paper for detailed description of

the code transformation

* Key difference from other techniques:
e Every k blocks maintain a shared counter

e Each block atomically increments shared
counter when reaching launch

* The k" block to increment the counter

performs the launch

* Use thread fences to ensure that memory
visibility semantics are preserved

_paramsArray, _gDimScannedArray, _bDimArray
_parentldx = binary search in _gDimScannedArray
= _paramsArray[_parentldx]

_gDim = _gDimScannedArray[_parentldx] - _gDimScannedArray[_parentldx - 1]
_bx =blockldx.x - _gDimScannedArray[_parentldx - 1]
_bDim =_bDimArray[_parentldx]
if(threadldx < _bDim) {

I/ Replace uses of blockldx.x with _bx

I/ and gridDim with _gDim

}

_gDim=

_bDim=

_groupldx = blockldx.x/_AGG_GRANULARITY

find group's memory segments in a pre-allocated buffer based on _groupldx

if(_gDim > 0) {
(_parentldx, _sumPrevGDim) =

atomicAdd(&(_numParents|_groupldx], _sumGDim[_groupldx]), (1, _gDim))

_argsArray[_parentldx] =
_gDimScannedArray[_parentldx] = _sumPrevGDim + _gDim
_bDimArray[_parentldx] = _bDim
atomicMax(&_maxBDim[_groupldx], _bDim)

__threadfence()

__syncthreads()

if(threadldx == launcher thread in block) {
_nFinishedBlocks = atomicAdd(&_numFinishedBlocks[_groupldx], 1) + 1
_isLastBlockToFinish = (_nFinishedBlocks == _AGG_GRANULARITY)
if(_isLastBlockToFinish) {

_sumGDim[_groupldx] , _maxBDim[_groupldx]
_argsArray, _gDimScannedArray, _bDimArray

}
}



Putting it all together

Thresholding
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We evaluate all combinations of optimizations for 7 benchmarks with 2 datasets each
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Observation #1: Not using CDP performs better than

(same observation as prior work).




Overall Speedup

Speedup over CDP
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Observation #2: improves performance of (same observation as prior work).

is 12.1x faster than on average (geomean).
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Observation #3:

is 13.4x faster than

alone improves the performance over

on average (geomean).




Speedup over CDP
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Observation #4: Thresholding and Aggregation together improve the performance over

Geomean

even more.

Despite both targeting the same source of inefficiency, one optimization does not obviate the other.



Speedup over CDP
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Observation #5: Coarsening alone does not improve performance substantially over
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Overall Speedup
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Observation #6: Coarsening does improve performance when combined with the other optimizations.

Recall: main benefit was amortizing overhead of aggregation. CDP+T+C+A is 1.22x faster than CDP+T+A.



1.20

© © o B »
3 8 8 8 b©

o o
5 38

Execution Time (normalized to CDP+A)
o o
8 3

0.10

0.00

Observation #1: Thresholding increases parent work and decreases child work
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Observation #2: Thresholding decreases the overhead from launching, aggregation, and disaggregation

Observation #3: Coarsening decreases the overhead from launching and disaggregation




Impact of Threshold and Aggregation Granularity
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Observation #1: As the threshold increases initially, performance improves due to reduction in launches

Observation #2: For some benchmarks, increasing threshold too much degrades performance due to too much serialization

Observation #3: Different benchmarks perform best with different levels of aggregation granularity (including multi-block)




summary

* We present a compiler framework for optimizing the use of dynamic
parallelism on GPUs in applications with nested parallelism

* The framework includes three key optimizations:
* Thresholding
* Coarsening
* Aggregation

* Our evaluation shows that our compiler framework substantially
improves performance of applications with nested parallelism that
use dynamic parallelism

* 43.0x faster than CDP.
» 8.7x faster than No CDP
e 3.6x faster than prior aggregation work (KLAP)
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