1866

A Compiler Framework for Optimizing
Dynamic Parallelism on GPUs

@AUB ETH:lurich <3 ILLINOIS

A merican University of Beirut nVIDIA® AAAAAAAAAAAAAAA
)}J\}M/&”ww

Organization of GPU Kernels

—_—————

__

Dynamic Parallelism on GPUs

* Dynamic parallelism enables executing GPU threads to launch other
grids of threads

Parent threads Tt~ .
Dynamic launch Parameters and launch

configurations

Child grids

e Useful for implementing computations with nested parallelism

Dynamic Parallelism Overhead

* Using dynamic parallelism may cause many small grids to be launched

* Launching many small grids causes performance degradation due to:
* Congestion
* Limited number of grids can execute simultaneously (others need to wait)

e Hardware underutilization

* If grids are small, their may not be enough threads launched to fully utilize hardware
resources

e Solution: launch of

Prior Work: Aggregation

* Aggregation is an optimization where:
* Multiple child grids are consolidated into a single aggregated grid
* One parent thread launches the aggregated grid on behalf of the rest

l. El Hajj, J. Gomez-Luna, C. Li, L-W. Chang, D. Milojicic, and W.-m. "~ Hwu, “KLAP: Kernel launch aggregation and promotion for optimizing dynamic parallelism,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on. IEEE, 2016, pp. 1-12

D. Li, H. Wu, and M. Becchi, “Exploiting dynamic parallelism to efficiently support irregular nested loops on GPUs,” in Proceedings of the 2015 International Workshop on Code Optimisation
for Multi and Many Cores. ACM, 2015, p. 5.

Li, D., Wu, H., & Becchi, M., “Nested parallelism on GPU: Exploring parallelization templates for irregular loops and recursive computations,” in Parallel Processing (ICPP), 2015 44th
International Conference on. IEEE, 2015, pp. 979—- 988.

H. Wu, D. Li, and M. Becchi, “Compiler-assisted workload consolidation for efficient dynamic parallelism on GPU,” arXiv preprint arXiv:1606.08150, 2016.

Prior Work: Aggregation

* Aggregation is an optimization where:
* Multiple child grids are consolidated into a single aggregated grid
* One parent thread launches the aggregated grid on behalf of the rest

Memory access

Aggregated child grid

+ Reduces congestion by reducing the number of launched grids

+ Improves utilization because aggregated child grids have more threads then original ones

Prior Work: Aggregation

* Aggregates launches at different levels of granularity

' |
Block-Granularity Grid-Granularity

Contributions

* Thresholding (as a compiler optimization)
* Prior work relies on programmers to apply it manually

* Coarsening of child thread blocks
* Prior work on compiler-based coarsening not specialized for dynamic parallelism

* Aggregation of child grids at multi-block granularity
* Prior work only compiler-based aggregation only considers warp, block, and grid granularity

* One compiler framework that combined the three optimizations

Thresholding

* Thresholding is an optimization where:

* Agridis launched dynamically only if the number of child threads exceeds a
certain threshold

* Otherwise, work is executed sequentially by the parent thread

i

Thresholding

* Thresholding is an optimization where:

* Agridis launched dynamically only if the number of child threads exceeds a
certain threshold

* Otherwise, work is executed sequentially by the parent thread

% % % 2 g Child thread serialized in parent thread
RRI

’ S~
ya ~ <
/| ~~o
’
’
7
’

__

+ Reduces congestion by reducing the number of launched grids

+ Improves utilization by only allowing grids with many threads to be launched

Thresholding: Code Transtormation

__device__ _serial , dim3 _gDim, dim3 _bDim
for(_bx = 0; _bx < _gDim.x; ++_bx) {
for(_tx = 0; _tx < _bDim.x; ++_tx) {
/I Replace uses of blockldx.x with _bx,
} Il threadldx.x with _tx, gridDim with
} I _gDim, and blockDim with _bDim

_threads = ...; /| Extracted from gDim expression
if(_threads >= _THRESHOLD) {

}else {

child_serial (..., gDim, bDim);
}

* Create a serial device function executable by the parent

* Heuristic to detect total number of threads to be compared with threshold

* Detect number of threads to be launched by observing commonly used grid dimension
calculation expressions, such as ceiling divisions

* Apply a conditional guard to either launch or serialize

Coarsening

* Coarsening is a transformation where:
* The work of multiple child blocks is assigned to a single child block

i

4 S~a ==
’ \ ~~_ ~—a_
’ \ S~ T==a
A ==~ Te--a
’ \ S~ Te-a
4 \ S~ S=-=a
’ \ ~~a - ==
’ \ S~ S=—a
4 \ T==a
’ \ S~ =
’ \ =<

Coarsening

* Coarsening is a transformation where:
* The work of multiple child blocks is assigned to a single child block

Original thread block before
coarsening

B
i

e |

Coarsened child grids

+ When applied before aggregation, amortizes the cost of disaggregation (incurred once per child blocks)

Coarsening: Code Transformation

, _gDim
for(_bx = blockldx.x; _bx < _gDim.x; _bx += gridDim.x) {
Il Replace uses of blockldx.x with _bx
} Il 'and gridDim with _gDim

_cgDim =_gDim = ;
_cgDim.x = (_gDim.x + _CFACTOR - 1)/_CFACTOR;
_cgDim , _gDim

* Coarsening child kernel
* Insert the coarsening loop around the child kernel body

* Modify kernel parameters

* Add an extra parameter _gDim (being the original grid dimension) to be passed to the
coarsened child kernel

* Modify launch parameters
e Update grid dimension considering CFACTOR

Multi-block Granularity Aggregation

* Multi-block granularity aggregation is an optimization where:
* The child grids of multiple parent blocks are consolidated into a single

- e ~
_- , ’ I \ N S ~ S
- ’ ’] \ N N S o S
- ’ ’ ’ \ \ N ~ RN
-~ . ’ N B
- . / B N N ~
-7 7 \ \\ o ~ ~<
_- L7 ’ B \ . N So
4 \ N ~
s , / \ N N ~
.7 , ’ N ~

e R R 1

Multi-block Granularity Aggregation

* Multi-block granularity aggregation is an optimization where:

* The child grids of multiple parent blocks are consolidated into a single
aggregated grid

+ Compared to block granularity, launches fewer and larger grids

+ Compared to grid granularity, launches child grids more eagerly

Multi-block Aggregation: Code Transformation

» See paper for detailed description of

the code transformation

* Key difference from other techniques:
e Every k blocks maintain a shared counter

e Each block atomically increments shared
counter when reaching launch

* The k" block to increment the counter

performs the launch

* Use thread fences to ensure that memory
visibility semantics are preserved

_paramsArray, _gDimScannedArray, _bDimArray
_parentldx = binary search in _gDimScannedArray
= _paramsArray[_parentldx]

_gDim = _gDimScannedArray[_parentldx] - _gDimScannedArray[_parentldx - 1]
_bx =blockldx.x - _gDimScannedArray[_parentldx - 1]
_bDim =_bDimArray[_parentldx]
if(threadldx < _bDim) {

I/ Replace uses of blockldx.x with _bx

I/ and gridDim with _gDim

}

_gDim=

_bDim=

_groupldx = blockldx.x/_AGG_GRANULARITY

find group's memory segments in a pre-allocated buffer based on _groupldx

if(_gDim > 0) {
(_parentldx, _sumPrevGDim) =

atomicAdd(&(_numParents|_groupldx], _sumGDim[_groupldx]), (1, _gDim))

_argsArray[_parentldx] =
_gDimScannedArray[_parentldx] = _sumPrevGDim + _gDim
_bDimArray[_parentldx] = _bDim
atomicMax(&_maxBDim[_groupldx], _bDim)

__threadfence()

__syncthreads()

if(threadldx == launcher thread in block) {
_nFinishedBlocks = atomicAdd(&_numFinishedBlocks[_groupldx], 1) + 1
_isLastBlockToFinish = (_nFinishedBlocks == _AGG_GRANULARITY)
if(_isLastBlockToFinish) {

_sumGDim[_groupldx] , _maxBDim[_groupldx]
_argsArray, _gDimScannedArray, _bDimArray

}
}

Putting it all together

Thresholding

512
256
128

= W o
A N b

Speedup over CDP

0.5
0.25
0.125

Overall Speedup

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A
pd o © 3 pd o zZ o on :: pd o pd o
S 3 |%T% 8|2 &2 &2 F|¢ B2 8
N4 o o0 A4 A4 < [T} A4 A4
™M < o
— o
o
|_
BFS BT MSTF MSTV SP SSSP TC Geomean

We evaluate all combinations of optimizations for 7 benchmarks with 2 datasets each

512
256
128

= W o
A N b

Speedup over CDP

0.5
0.25
0.125

We report speedup (higher is better) over the baseline that uses

Overall Speedup

No CDP mCDP KLAP(CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A
pd o © 3 pd o bl o o e pd o pd o
S s | % 8% 35|&% 88| F|2 88|82 =B
N4 o 0 A4 A4 < [T} A4 A4
™ < =
— o
o
|_
BFS BT MSTF MSTV SP SSSP TC Geomean

512
256
128

B W o
o N B

Speedup over CDP

0.5
0.25
0.125

Overall Speedup

mNo CDP mCDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A
pd o © 3 pd o bl o o e pd o pd o
S s |3 8| s|& B2 F| T 58|% =z
N4 o 0 A4 A4 < [T} A4 A4
™ < =
— o
o
|_
BFS BT MSTF MSTV SP SSSP TC Geomean

Observation #1: Not using CDP performs better than

(same observation as prior work).

Overall Speedup

Speedup over CDP

512
256 || mNoCDP mCDP mKLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A
128
64
32
16
8
4
2
1
0.5
0.25
0.125
s £ |8 8|38 g8 g3 5|38 g|38 ¢
o O Q Q o) o O % v o O ol @)
~ o o0 ¥ ¥ < LN ~ ¥
= S o
N
BFS BT MSTF MSTV SP SSSP TC Geomean
Observation #2: improves performance of (same observation as prior work).

is 12.1x faster than on average (geomean).

512
256
128

= W o
A N b

Speedup over CDP
(000}

0.5
0.25
0.125

Overall Speedup

mNo CDP mCDP mKLAP (CDP+A) mCDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A
S s |¢ &% &|8 B¢ 3|8 sB8|8g =&
~ o 0 A4 A4 < [Fp] A4 h4
o™ < o
[o
()]
|_
BFS BT MSTF MSTV SP SSSP TC Geomean

Observation #3:

is 13.4x faster than

alone improves the performance over

on average (geomean).

Speedup over CDP

512
256
128
64
32
16

0.5
0.25
0.125

Overall Speedup

mNoCDP mCDP mKLAP (CDP+A) mCDP+T CDP+C CDP+T+C mCDP+T+A CDP+C+A CDP+T+C+A
g |35 3|8 |8 |3 5|38 ¢
o S Q Q < S o S S W o S
X~ o 0 ~ ~ < N ~
o < o
= o
o
l_
BFS BT MSTF MSTV SP SSSP

KRON

TC

CNR

Observation #4: Thresholding and Aggregation together improve the performance over

Geomean

even more.

Despite both targeting the same source of inefficiency, one optimization does not obviate the other.

Speedup over CDP

512
256
128
64
32
16

0.5
0.25
0.125

Overall Speedup

Observation #5: Coarsening alone does not improve performance substantially over

CDP+Cis 1.01x faster than

mNo CDP mCDP mKLAP (CDP+A) mCDP+T mCDP+C CDP+T+C mCDP+T+A CDP+C+A CDP+T+C+A
g |35 3|8 |8 |3 5|38 ¢
o S Q Q < S o S S W o S
X~ o 0 ~ ~ < N ~
o < o
= o
o
l_
BFS BT MSTF MSTV SP SSSP

KRON

TC

CNR

Geomean

Overall Speedup

512

256 || mNo CDP mCDP mKLAP (CDP+A) mCDP+T mCDP+C mCDP+T+C mCDP+T+A mCDP+C+A [1CDP+T+C+A
128
64
a 32
S
- 16
(V]
3
° 8
=}
S 4
a
wn 2
1
0.5
0.25
0.125 |
s £ |8 & |3 g3 |3 =538 g3 ¢
o S Q Q < S o S S W e S e S
~ o [ole] h4 h4 < [Fp] A4 h4
™ < o
= o
o
|_
BFS BT MSTF MSTV SP SSSP TC Geomean

Observation #6: Coarsening does improve performance when combined with the other optimizations.

Recall: main benefit was amortizing overhead of aggregation. CDP+T+C+A is 1.22x faster than CDP+T+A.

1.20

© © o B »
3 8 8 8 b©

o o
5 38

Execution Time (normalized to CDP+A)
o o
8 3

0.10

0.00

Observation #1: Thresholding increases parent work and decreases child work

Execution Time Breakdown

z ¢ <=
+ O +
a B 9la
O a £|a
© g %le
Q.U%n.
-t Ofg
& ¥4
KRON

BFS

T 3
<
5 7
© &

|®]
CNR

KLAP (CDP+A)
CDP+T+A
CDP+T+C+A
KLAP (CDP+A)
CDP+T+A
CDP+T+C+A

T0032-C16 | T2048-C64
BT

— < <]~
T E T
8% F|8
c a8 fkle
Q.U%n.
g O|S
~ 4
KRON
MSTF

CDP+T+A
CDP+T+C+A

(@]
=2
=

— < <]~
T E T
8% F|8
c 8 fkle
n.U%n.
g O|S
~ 4
KRON
MSTV

CDP+T+A

(@]
=2
o

CDP+T+C+A
KLAP (CDP+A)

CDP+T+A
CDP+T+C+A
KLAP (CDP+A)

RAND-3

SP

CDP+T+A

5SAT

CDP+T+C+A

— < <|=
T E BT
8 F|8
c a8 k|le
o.U%n.
< O|S
~ 4
KRON
SSSP

CDP+T+A

(@]
2
o

CDP+T+C+A

T %
+ = +
8 % F|8
© g %le
o.U%n.
s Ofs
~ ~
KRON

TC

@ Disaggregation
O Aggregation

H Launch
EChildwork

@ Parent work

CDP+T+A
CDP+T+C+A [

(@]
2
o

KLAP (CDP+A)
CDP+T+A
CDP+T+C+A

Mean

Observation #2: Thresholding decreases the overhead from launching, aggregation, and disaggregation

Observation #3: Coarsening decreases the overhead from launching and disaggregation

Impact of Threshold and Aggregation Granularity

35.00 50.00 14.00 120.00
BFS (KRON) 45.00 | BT (T2048-C64) MSTF (KRON) MSTV (KRON)
30.00 40.00 12.00 » 100.00
25.00 /‘/\\ P e 10.00
\ 35.00 0= — 80.00
52000 \ S 30.00 5 800 El
] $ 25.00 g 8 60.00
& 15.00 & 20.00 & 6.00 3
10.00 _\ 15.00 4.00 40.00
10.00
20.00
5.00 2.00
5.00
>——o—=o —k o o o
0.00 0.00 — — 0.00 0.00
O = N < 00 O N S 0O N < 0 O N S 0 UV = N T 00O N S 0O AN 0 O AN T UV = N < 00O N 0LV AN 0 W AN S
c AN O NN AT D O 0O ‘\@'\/’lzb&%\,b,,”b(ob&,ﬁ)(ob,\',\,mv@ c A M O NN AT DO 0O c 4 M O NDNANT O O ®
o — NN O O O < MmN (8) N Vv (/) Q Q o — NN O O O < M I~ o - N 1N O O O d m
c - N < © g m QO N c — N < ®© 8 % c - N < 3
Threshol Threshol Threshol Threshol
Coarsening Factor = 16 reshold Coarsening Factor = 2 reshold Coarsening Factor = 32 reshold Coarsening Factor = 1 reshold
18.00 60.00 45.00
SP (5-SAT) SSSP (KRON) 2000 | TC (KRON)
16.00 :
50.00
14.00 35.00 Aggregation
12.00 40.00 30.00 Granularity
. a a :
—0—
5 1000 2 3000 \ 3 25.00 grid
Q o Iti-block
g- 8.00 & ;).,-2000 multi-bloc
.00 20.00 \ 15.00 block
4.00 10.00 10.00 warp
2.00 5.00 |0 =&—none
0.00 — 0.00 O+ NS 0O NS 0O NI 00N T 0.00 -
< 0 O AN S 0 O AN < 0 O N
N T ATTS K. S R, VR S 5 AR I i O I S g~ MmO NWLd NS
o SN R S TYMERSREN e =
Threshold Threshold
Coarsening Factor = 32 Threshold Coarsening Factor =8 Coarsening Factor = 32

Observation #1: As the threshold increases initially, performance improves due to reduction in launches

Observation #2: For some benchmarks, increasing threshold too much degrades performance due to too much serialization

Observation #3: Different benchmarks perform best with different levels of aggregation granularity (including multi-block)

summary

* We present a compiler framework for optimizing the use of dynamic
parallelism on GPUs in applications with nested parallelism

* The framework includes three key optimizations:
* Thresholding
* Coarsening
* Aggregation

* Our evaluation shows that our compiler framework substantially
improves performance of applications with nested parallelism that
use dynamic parallelism

* 43.0x faster than CDP.
» 8.7x faster than No CDP
e 3.6x faster than prior aggregation work (KLAP)

1866

Thank you!

A Compiler Framework for Optimizing
Dynamic Parallelism on GPUs

@AUB ETH:zurich <3 iLLINOIS

' ersity of ?_(}irut n‘IIDIA® AAAAAA -CHAMPAIGN

American Univ

