
GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
using Emerging Memory Technologies

Jeremie Kim1, Damla Senol1, Hongyi Xin1, Donghyuk Lee1, Saugata Ghose1, Mohammed Alser2, Hasan Hassan4,3,
Oguz Ergin3, Can Alkan2 and Onur Mutlu4,1

8:	GRIM-Filter	Walkthrough

9:	Results	&	Conclusion

o Baseline: mrFAST with FastHASH mapper code [Xin+, BMC Genomics
2013]. However, GRIM-Filter is fully complementary to other
mappers, too.

o Key Results of GRIM-Filter:
• 5.59x-6.41x less false negative locations, and
• 1.81x-3.65x end-to-end speedup over the state-of-the-art read
mapper mrFAST with FastHASH.

o We show the inherent parallelism of our filter and ease of
implementation for 3D-stacked memory. There is great promise
in adapting DNA read mapping algorithms to state-of-the-art and
emerging memory and processing technologies.

o Other Results:
• Examined sensitivity to number of bins: 450x65536
• Examined sensitivity to q-gram size: 5
• Found to be the best tradeoff between memory consumption,
filtering efficiency, and runtime.

*In	the	figures	shown,	smaller	bars	indicate	better	performance

5:	3D-Stacked	Logic-in-Memory	DRAM	

Design and implement a new filter that rejects incorrect mappings
before the alignment step
o Minimize the occurrences of unnecessary alignment
o Maintain high sensitivity and comprehensiveness
o Obtain low runtime and low false positive rate

Accelerate read mapping by overcoming memory bottleneck with
3D-stackedmemory and its PIM for data-intensive computation
o Very fast parallel operations on big data sets near memory

1:	Read	Mapping

Recent technology that tightly couples memory and logic vertically
with very high bandwidth connectors.

Numerous Through Silicon Vias (TSVs) connecting layers, enable
higher bandwidth and lower latency and energy consumption.

Customizable logic layer for application-specific accelerators.

Logic layer enables fast, massively parallel operations on large sets
of data, and provides the ability to run these operations near
memory to alleviate the memory bottleneck.

Processing in 3D-stacked memory is extremely good at
accelerating embarrassingly parallel simple bit operations.

3:	Problem
Read	Mapping:	Mapping	billions	of	DNA	
fragments	(reads)	against	a	reference	
genome	to	identify	genomic	variants	
o Requires	approximate	string	matching
o Computationally	expensive	alignment	

using	quadratic-time dynamic
programming algorithm

o Bottlenecked	by	memory	bandwidth

Three	general	types	of	read	mappers:
o Suffix-array	based	mappers
o Hash	table	based	mappers
o Hybrid

2:	Hash	Table	Based	Mappers
Seed-and-extend procedure to map
reads against a reference genome
allowing e indels. They have:
o High	sensitivity (can	tolerate	

many	errors)
o High	comprehensiveness (can	

find	more	mappings)
BUT

o Low speed

The most recent fastest hash table
based read mapper, mrFAST with
FastHASH [Xin+, BMC Genomics 2013]

4:	Our	Goal

For lower runtimes, location filters can efficiently determine
whether a candidate mapping location will result in an incorrect
mapping before performing the computationally expensive
incorrect verification by alignment. They should be fast.

6:	GRIM-Filter	Mechanism
GRIM-Filter is based on two key ideas:
o Introduce parallelism to q-gram string matching
o Utilize a 3D-stacked DRAM to alleviates the memory bandwidth

issue of our algorithm and parallelizes most of the filter.

GRIM-Filter has twomain steps:
1) Precomputation: Divide the reference genome into consecutive

bins and generate existence bitvectors for each bin.
2) Filtering Algorithm: Filter locations by quickly determining

whether a read can map to a specific segment of the genome.

Runtimes	for	GRIM-Filter	as	error	threshold	varies	

7:	Bins	&	Bitvectors

False	Negative	Rates	for	GRIM-Filter	as	error	threshold	varies	

Existence	bitvectors
represent	the	existence	of	
all	possible	permutations	of	
q-length nucleotide	
sequences	in	each	bin.

Bitvectors are	distributed	
throughout	the	memory	
layers of	3D-stacked	DRAM
on	top	of	the	customized	
logic	layer,	which	enables	
processing-in-memory and	
high parallelism.

Memory Array Customized Logic

http://www.amd.com/en-us/innovations/software-technologies/hbm

1 2 3 4

Package Substrate

Interposer

PHY PHY

TSV
MicrobumpHBM DRAM Die

Logic Die
. . .

Processor (GPU/CPU/SoC) Die

. . .

3D-Stacked DRAM

DRAM Layers

Logic Layer

TSVs

Bank

Bi
tv

ec
to

rf
or

 b
in

 0
Bi

tv
ec

to
rf

or
 b

in
 1

Bi
tv

ec
to

rf
or

 b
in

 2

Bi
tv

ec
to

rf
or

 b
in

 t–
1

Row Buffer

Bank
Row 0: AAAAA
Row 1: AAAAC
Row 2: AAAAG

.

.

.
Row R–1: TTTTT

. . .

Seed Location Filter Bitmask

Row Data Register

In
cr

.
Ac

cu
m

ul
at

or
Co

m
pa

ra
to

r

Pe
r-B

in

Lo
gi

c M
od

ul
e

.

Per-Vault
Custom GRIM-Filter Logic

Vault

… GAACTTGGAGTC TACGAGGGTTTC CTAACGTGCCTT GCATGTAGCTAC CTGACAGGAACT …

Reference Fragment

GAACTTGGAGTCTACGAGGGTTTCCTAACGTGCCTTGCATGTAGCTACCTGACAGGAACTGA

Read

GAACTTGGAGTC

TACGAGGGTTTC

CTAACGTGCCTT

GCATGTAGCTAC

Seeds

Data
Structure

GAACTTGGAGTC

TACGAGGGTTTC

GCATGTAGCTAC

L1 L2 L3 L4

L5 L6 L7

L8 L9

Location lists for selected k-mers

Reference
Genome

Alignment / Verification

CTAACGTGCCTT L10

L11 L12 L13 L14

1

3

2

5

4

Reference
Genome

AAAAA
AAAAC
AAAAG
AAAAT

.
CCCCT

.

.

.

.
GCATG

.
TTGCA

.
TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

y y y y

b1 b2

b2: bitvector
for bin2

1
0
0
0
1
1
1
.
.
.
.
1
1
1
0

0
0
1
0
1
0
1
.
.
.
.
0
1
1
0

1
0
1
1
1
1
1
.
.
.
.
1
0
0
0

AAAAA
AAAAC
AAAAG
AAAAT
AAACA
AAACC
AAACG

.

.

.

.
TTTTA
TTTTC
TTTTG
TTTTT

* t = number of bins

bt-2 bt-1 bt *

Le
n

gt
h

 =
 4

5

GACAG
exists in
2nd bin

TTTTT
doesn’t
exist in
2nd bin

bin2

bin3
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA

bin1

tokens

(a)

(b)

yyy

bin4

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

Fa
lse

 N
eg

at
ive

 R
at

e

Sequence Alignment
Error Tolerance (e)

e = 0.00

e = 0.01

e = 0.02

e = 0.03

e = 0.04

e = 0.05

FastHASH filter GRIM-Filter

0.0
0.1
0.2
0.3
0.4
0.5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0

5

10

15

0
5

10
15
20
25
30

0
10
20
30
40
50
60
70

Ex
ec

ut
io

n
Ti

m
e (

×1
00

0
se

co
nd

s)

Sequence Alignment
Error Tolerance (e)

e = 0.00

e = 0.01

e = 0.02

e = 0.03

e = 0.04

e = 0.05

mrFAST with FastHASH GRIM-3D

GRIM-Filter:
Seed	Location	Checker

0001010001110001010 010011010...

GA A C TTGGA GTC T A C GA G GTA C GA TT ...
INPUT:	Read	Sequence

GRIM-Filter:	Filter	Bitmask	Generator

Seed	Location	Filter	Bitmask
0001010001110001010 010011010...

020128 020131 414415...

KEEP

x
DISCARD KEEP

INPUT:	All	Potential	Seed	Locations

Reference	Segment	Storage

Edit-Distance	Calculation

reference	
segment
@	020131

reference	
segment
@	414415

.

OUTPUT:	Correct	Mappings

1 2

3

Read	Mapper:	Sequence	Alignment4

INPUT:	Read	Sequence	r
GA A C TTGGA GTC TA C GA G GTA C GA TT

GA A C TTGGA GTC TA C GA G GTA C GA TT

...

GA A C TTGGA GTC TA C GA G GTA C GA TT
GA A C TTGGA GTC TA C GA G GTA C GA TT

1
0
1
.
.

0
1
1
.
.

1
0
0

Read	
bitvector for	
bin_num(z)

GA A C TTGGA GTC TA C GA G GTA C GA TT
GA A C TTGGA GTC TA C GA G GTA C GA TT ...

1

+ ≥	Threshold?

Send	to
Read	Mapper
for	Sequence
Alignment

tokens

2

3 4

5
Discard

NO YES

Sumz

