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8:	GRIM-Filter	Walkthrough

9:	Results	&	Conclusion

o Baseline: mrFAST with FastHASH mapper code [Xin+, BMC Genomics
2013]. However, GRIM-Filter is fully complementary to other
mappers, too.

o Key Results of GRIM-Filter:
• 5.59x-6.41x less false negative locations, and
• 1.81x-3.65x end-to-end speedup over the state-of-the-art read
mapper mrFAST with FastHASH.

o We show the inherent parallelism of our filter and ease of
implementation for 3D-stacked memory. There is great promise
in adapting DNA read mapping algorithms to state-of-the-art and
emerging memory and processing technologies.

o Other Results:
• Examined sensitivity to number of bins: 450x65536
• Examined sensitivity to q-gram size: 5
• Found to be the best tradeoff between memory consumption,
filtering efficiency, and runtime.

*In	the	figures	shown,	smaller	bars	indicate	better	performance

5:	3D-Stacked	Logic-in-Memory	DRAM	

Design and implement a new filter that rejects incorrect mappings
before the alignment step
o Minimize the occurrences of unnecessary alignment
o Maintain high sensitivity and comprehensiveness
o Obtain low runtime and low false positive rate

Accelerate read mapping by overcoming memory bottleneck with
3D-stackedmemory and its PIM for data-intensive computation
o Very fast parallel operations on big data sets near memory

1:	Read	Mapping

Recent technology that tightly couples memory and logic vertically
with very high bandwidth connectors.

Numerous Through Silicon Vias (TSVs) connecting layers, enable
higher bandwidth and lower latency and energy consumption.

Customizable logic layer for application-specific accelerators.

Logic layer enables fast, massively parallel operations on large sets
of data, and provides the ability to run these operations near
memory to alleviate the memory bottleneck.

Processing in 3D-stacked memory is extremely good at
accelerating embarrassingly parallel simple bit operations.

3:	Problem
Read	Mapping:	Mapping	billions	of	DNA	
fragments	(reads)	against	a	reference	
genome	to	identify	genomic	variants	
o Requires	approximate	string	matching
o Computationally	expensive	alignment	

using	quadratic-time dynamic
programming algorithm

o Bottlenecked	by	memory	bandwidth

Three	general	types	of	read	mappers:
o Suffix-array	based	mappers
o Hash	table	based	mappers
o Hybrid

2:	Hash	Table	Based	Mappers
Seed-and-extend procedure to map
reads against a reference genome
allowing e indels. They have:
o High	sensitivity (can	tolerate	

many	errors)
o High	comprehensiveness (can	

find	more	mappings)
BUT

o Low speed

The most recent fastest hash table
based read mapper, mrFAST with
FastHASH [Xin+, BMC Genomics 2013]

4:	Our	Goal

For lower runtimes, location filters can efficiently determine
whether a candidate mapping location will result in an incorrect
mapping before performing the computationally expensive
incorrect verification by alignment. They should be fast.

6:	GRIM-Filter	Mechanism
GRIM-Filter is based on two key ideas:
o Introduce parallelism to q-gram string matching
o Utilize a 3D-stacked DRAM to alleviates the memory bandwidth

issue of our algorithm and parallelizes most of the filter.

GRIM-Filter has twomain steps:
1) Precomputation: Divide the reference genome into consecutive

bins and generate existence bitvectors for each bin.
2) Filtering Algorithm: Filter locations by quickly determining

whether a read can map to a specific segment of the genome.

Runtimes	for	GRIM-Filter	as	error	threshold	varies	

7:	Bins	&	Bitvectors

False	Negative	Rates	for	GRIM-Filter	as	error	threshold	varies	

Existence	bitvectors
represent	the	existence	of	
all	possible	permutations	of	
q-length nucleotide	
sequences	in	each	bin.

Bitvectors are	distributed	
throughout	the	memory	
layers of	3D-stacked	DRAM
on	top	of	the	customized	
logic	layer,	which	enables	
processing-in-memory and	
high parallelism.

Memory Array Customized Logic

http://www.amd.com/en-us/innovations/software-technologies/hbm
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… GAACTTGGAGTC TACGAGGGTTTC CTAACGTGCCTT GCATGTAGCTAC CTGACAGGAACT …
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GAACTTGGAGTCTACGAGGGTTTCCTAACGTGCCTTGCATGTAGCTACCTGACAGGAACTGA
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mrFAST with FastHASH GRIM-3D

GRIM-Filter:
Seed	Location	Checker

0001010001110001010      010011010... ......

GA A C TTGGA GTC T A C GA G GTA C GA TT  ...
INPUT:	Read	Sequence

GRIM-Filter:	Filter	Bitmask	Generator

Seed	Location	Filter	Bitmask
0001010001110001010      010011010... ......

020128 020131 414415... ... .		.		. ...
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