Genome Read In-Memory (GRIM) Filter:
CarnegieMellon ~ Fast Location Filtering in DNA Read Mapping
using Emerging Memory Technologies

Bilkent University

Jeremie Kim!, Damla Senol!, Hongyi Xin!, Donghyuk Leel, Mohammed Alser?, Hasan Hassan3,
Oguz Ergin3, Can AlkanZ and Onur Mutlu? /\ TOBB

SAFARI

UNIVERSITY OF
LR P ECONOMICS & TECHNOLOGY

I Carnegie Mellon University, 2 Bilkent University, 3 TOBB University of Economics and Technology

Hash Table Based Mappers Problem
@ | !QueryRead!

GAACTTGGAGTGTACGAGGGTTTCCTAACGTGCCTTGCATGTAGCTACCTGACAGGAACTGA

l Selected k-mers

CTAACGTGCCTT @
GCATGTAGCTAC

TACGAGGGTTTC

Read Mapping

For lower runtimes, location filters can efficiently determine
whether a candidate mapping location will result in an incorrect
mapping before performing the computationally expensive
incorrect verification by alighment. They should be fast.

Seed-and-extend procedure to map
reads against a reference genome
allowing e indels.

o High sensitivity r

Read Mapping: Mapping billions of DNA
fragments (reads) against a reference
genome to identify genomic variants

GAAC'I'I'GGAGTC

o Approximate string matching
o Computationally expensive alignment

]]) . o Hi h com reh ensiven ess Location lists for selected k-mers _
using quadratic-time dynamic & BUTp e L TG TG T
programming algorithm High runtime Hash | [TACGAGCOTITC || 15 | 16 | 17 - 1 Design and implement a new filter that rejects incorrect mappings
. O CTAACGTGCCTT > L8 | L9 | L10 .
o Bottlenecked by memory bandwidth s I EETA P R T Reference before the alignment step
- o Minimize the occurrences of unnecessary alignment
Three types of read mappers: The most recent fastest hash table @l L e Y . 5
, , o Maintain high sensitivity and comprehensiveness

O SUfﬁX_array based mappers based read mapperl mrFAST WIth ... GAACTTGGAGTC TACGAGGGTTTC CTAACGTGCCTT GCATGTAGCTAC CTGACAGGAACT ... O Obta|n IOW runtlme and |OW false pos'hve rate
o Hash table based mappers FastHASH [Xin+, BMC Genomics 2013] ‘ Reference Fragment

Accelerate read mapping by overcoming the memory bottleneck by
utilizing 3D-stacked memory and its PIM capability to handle data-
Intensive computation

3D-Stacked LOgiC-in-Memory DRAM y o very fast and massively parallel operations on very large

amounts of data nearby memory

o Hybrid

Alignment / Verification @

5 DRAM Dic ' ! ! '_/-Ih;lsigrobump Recgnt”techaologyh’Fhstbtigcgwtl}ld (;]ouples memory and logic
vertically with very high banawidth connectors. GRIM-FiIter Mechanism
HBM DRAM Die ! ' ' ' Small and numerous Through Silicon Vias (TSVs) connecting |
T R (3 ! ! ! ' each layer, enable higher bandwidth, lower latency and GRIM-Filter is based on two key ideas:
T_T_T_T lower energy consumption. A\ o Modify g-gram string matching to enable parallel checking for
o DR e Logic layer enables fast, massively parallel operations on multiple locations, and

o Utilize a 3D-stacked DRAM architecture that both alleviates the
memory bandwidth issue of our algorithm and parallelizes most of
the filter.

GRIM-Filter has two main parts:

1) Precomputation: Divide the reference genome into consecutive

bins and generate existence bitvectors for each bin.

2) Filtering Algorithm: Filter locations by quickly determining whether

it is possible for a read to map to a specific segment of the genome.

large sets of data, and provides the ability to run these
operations near memory to alleviate the memory bottleneck.

(1 (]
Interposer J;L_T f

Package Substrate Logic layer can be customized for application-specific
accelerators.

Part 2: GRIM-Filter Walkthrough

Read Sequence Potential Locations | . .
GAACTTGGAGTCTACGAGeeeeessssGTACGATT »(20131) 12331 ..] 414415 Part 1: Bins & Bitvectors
o™ "N NN EEN EEN BN BN BN ENE BN BN SEN BEN BN SN NN BEN SN SEE\EEN BEN SEN BN BN B S Sy : Reference Genome . .
/, ﬂ @Generate q-grams \\ 7 N0 /N emmeme—e- . I Existence bitvectors
, \ , I{ mMrEAST ‘: i AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCTGA... .
I GAACT v Compute region L N ' , represent the existence of
1 | o i In-CPU operations 1! o) , ,
| TG 11 bit index temmmmoes F--------- - o pin, all possible permutations
: CTTGG 1 | : | b, b, bbb OF g-length nucleotide
[4 . .
TACGA [Lo AAAAG | O AAAAG AAAA 1)1
[ACGAT i @ Check a- I | & AAAAT | 0 . . AAMAT [0| 0 | 1
gd-gram ks _ _ AGAAA | 1 AAACA| 1|11 . . .
: CGATT 1AN X mask /’ § cccer | 1 e MACCI 110 1| g Bitvectors are distributed
= . GAAAA
I ﬂ @ Gather reg|0na| bit-vectors : e L L L I T Y"1« i§= _ _ GA(_-:AG -GACAG YY) A A é throughout the memory
I PASS PASS - | Sxists in . S
| GAACT 00100010001110001010..0100110110 : : L 2| core |1 come |10 ' +|-1-] 3 layers of 3D-stacked DRAM
I AACTT 01001010101011001001..0000101101 | | il WE - LIRS e on top of the customized
I ACTTG 00001010001110001010..0100110100 : Reference string storage = L e e 11 o : -
| : | w0 wm @t mm o oo | logic layer, which enables
: : [Local reference strings l | L\ . J processing-in-memory and
[CGATT+00001010001110001010'"0100110100 : GAACTTGGAGTCTACGAGees-- GTTCGATG i q-grYams BiYns * where t = number of bins h|gh parallelism.
[| : :
JS— oo \ Sum Vector : GAACTTGGAGTCTAAGAGe+++ GTACGATT ; Memory Array __ RAM e Customized Logic
: GRIM-Filter > : | . | Row 0: AAAA Bank Bucket Exste4nce Bitvector
. ° i ~SL S Z C -
=\ In-memory operations ,: ﬂ @ Generate g-gr ahm f||| ter b YS I l ’ | Row 1: AMC ||O| = Z e — —— SH=
--------------------- comparing each value in Sum | " . . ' Row 2: AMAG |lSlSl S o e e et TS sl 21
i Vector against threshold I Edit-distance calculation @ |— Correct mappings i NOW g g g g oA oA W E =S
\ | ' HEE b= pmiminmna i Sk
\ PASS 00001010001110001010...0100110100 : o] [sa] [=a) aa) iEEizaintizaEsiram e *
\\\ g-gram filter mask ,/ { RowN: TTTT] T L'Ogi:,ay’er f
N--——————-——————-——-———’ i Row Buffer VaUlt Row Buffer

Results & Conclusion

Benchmarks and their False Negative Rates

a o Baseline: mrFAST with FastHASH mapper code [Xin+, BMC Genomics 18 penchmarks and thelr Execution Times
0 Errors _ ITOrS
7 |[== FastHast 2013]. However, GRIM-Filter is fully complementary to other 0.9 —Fosttiash
B GRIM-Filter I GRIM-Filter
. mappers, too. i
10 . 2.5
o Key Results of GRIM-Filter:

4|/ FastHASH
B GRIM-Filter

[1 FastHASH
B GRIM-Filter

1.25

e 5.59x-6.41x less false negative locations, and

5)

Execution Time (x1000 seconds)
N O

w

* 1.81x-3.65x end-to-end speedup over the state-of-the-art read
—_ s mapper mrFAST with FastHASH.

B GRIM-Filter

e = 2 Errors
1 FastHASH
I GRIM-Filter

1.75

o We show the inherent parallelism of our filter and ease of
s implementation for 3D-stacked memory. There is great promise in

EE GRIM-Filter adapting DNA read mapping algorithms to state-of-the-art and
emerging memory and processing technologies.

e = 3 Errors
1 FastHASH
I GRIM-Filter

w
U

False Negative Rate (%)
(@)

H O

=

4 Errors

|| Fastrash o Other Results: | m—FostHASH

B GRIM-Filter)
Bl GRIM-Filter

~

- * Examined sensitivity to number of bins: 450x65536 0
70
. e Footinsn Examined sensitivity to g-gram size: 5 P
| Bl GRIM-Filter 35 1| FastHASH
° ° ° B GRIM-Filter
* Found the best tradeoff between memory consumption, filtering 1 & [h [h [i [h [h [i [i
EP\R24°726E'31R240726E';2m24°727 ERR240727E‘§R24072 ERR24°72 E§R24072 ERR24°72 E%\R240730E\%\P\240730—2 o] 0 L .
Benchmarks EfﬁC|ency, and runtime. erR24072 8324072804072 224072 (2407 280807 224072 22407 2224073 Y4073

Benchmarks

False Negative Rates for GRIM-Filter as error threshold varies. Runtimes for GRIM-Filter across the benchmarks as error threshold varies.

