
Rethinking Software Runtimes for Disaggregated Memory
Extended Abstract

Irina Calciu1, Talha Imran2, Ivan Puddu3, Sanidhya Kashyap4, Hasan Maruf5, Onur Mutlu3, Aasheesh Kolli2
1VMware Research, 2Penn State University, 3ETH Zürich, 4EPFL, 5University of Michigan

1. Motivation

Disaggregated memory addresses resource provisioning inef-
ficiencies in current datacenters by improving memory uti-
lization and decreasing the total memory over-provisioning
necessary to avoid out-of-memory errors or swapping [3]. In
addition, disaggregated memory enables independent scal-
ing of memory and compute, and it disentangles hardware
failures and replacements from the monolithic server. Fine-
grain microsecond-latency networking technologies, such as
Remote Direct Memory Access (RDMA) [8, 14, 15] and Gen-
Z [6] are key enablers for hardware disaggregated memory
and make the technology feasible in the near future.

Unfortunately, enabling applications to efficiently adopt
disaggregated memory is not straightforward. Many software
systems [10, 4, 2, 7, 12] have been proposed to enable appli-
cations to transparently, without code changes, use remote
memory – the memory of another host in the rack or mem-
ory that has been physically disaggregated from the compute.
These systems use various kernel subsystems [7, 2, 12] or
redesign the kernel altogether [11]. Fundamentally, they all
rely on the core virtual memory mechanism for three essen-
tial functions: 1) fetching remote data by detecting remote
accesses using page faults, and caching the remote pages in
a local DRAM cache; 2) dirty data tracking the cached data
by write-protecting pages and causing page faults on the first
write of each page; and 3) evicting cached pages from the
local DRAM cache, which requires marking the pages as not
present and flushing the translation look-aside buffers (TLBs).

Virtual memory provides application transparency, but re-
sults in high overhead and causes a significant drop in appli-
cation performance, even when the amount of remote data
accessed is small. Page faults latencies exceed network la-
tencies, creating a bottleneck in the system software stack.
Moreover, virtual memory requires moving and tracking data
at page-granularity, with a page size of 4KB or higher. In
contrast, throughout their lifetimes, applications often access
only a small part of each page, causing large amplification and
poor network utilization, by re-writing data that is already in
remote memory. For example, we typically see applications
modifying only 1-8 cache-lines in a 4KB page, but the entire
page is marked dirty and transferred over the network.

Overall, there is a mismatch between applications require-
ments for remote memory—low latency, fine-grain access,
transparency—and the mechanism used to implement these

requirements because virtual memory has not been designed
to provide low-latency or fine-grain access. We need a dif-
ferent, more efficient mechanism to realize practical memory
disaggregation.

2. Key Insights and Contributions

We identify two hardware primitives that are essential for mem-
ory disaggregation: 1) observing which data is accessed by
the application, without incurring page faults; and 2) enabling
fast dirty data tracking at cache-line granularity, without write
page faults. Our key observation is that both of these oper-
ations are trivially realized by the cache coherence protocol.
We describe an architecture using cache coherent FPGAs that
leverages this observation to augment virtual memory in a new
design for disaggregated memory. We designed and imple-
mented Kona, a new software runtime that emulates these two
new primitives using application instrumentation. In addition,
we built two simulators that allow us to evaluate how much
Kona can improve each remote memory operation.

We make the following contributions:
• We analyze the shortcomings of current software runtimes

for remote memory and show that they result in large over-
head and dirty data amplification.

• We propose a new approach for disaggregated memory
software, using hardware primitives for remote memory
caching and cache-line dirty data tracking based on cache
coherence; we describe a reference architecture for these
hardware primitives.

• We design and implement Kona, a software runtime that
makes use of the new hardware primitives.

• We design and implement multiple emulation and simula-
tion tools and we use them to measure the three different
types of remote memory operations in Kona.

3. Key Results

Kona improves the execution time compared to virtual memory
based systems by 6.6X (1 thread) and by 4-5X (2-4 threads)
on a benchmark accessing random memory. Kona is faster
because it improves all three core remote memory operations:
1) Kona improves remote memory caching by eliminating page
faults, resulting in a reduced average memory access time by
1.7X and 5X compared to LegoOS and Infiniswap, respectively.
2) Kona improves the application performance during dirty
data tracking by up to 35% compared to prior systems that



perform page granularity write-protection, while reducing the
amplification by 2-10X using cache-line granularity. 3) Kona
improves eviction efficiency by only writing modified cache-
lines back to the remote memory, resulting in 4-5X better
network goodput.

4. Main Artifacts

We designed and implemented Kona, a software runtime for
disaggregated memory. Kona consists of a runtime library im-
plemented in C, and two daemon processes: a rack resource
manager for remote memory and a daemon that manages re-
mote memory on every server. Other artifacts include an anal-
ysis of real applications’ memory access patterns at cache-line
granularity, realized using dynamic binary instrumentation.
Kona relies on hardware primitives that are not yet available.
Thus, we implemented two simulators that allow us to evaluate
these primitives.
1) Fetching remote data. We developed KCacheSim, a cache
simulator to measure the average memory access time for
applications using remote memory.
2) Dirty data tracking. We developed KTracker to emulate
cache-line granularity dirty tracking. KTracker attaches to a
running process using ptrace and creates memory snapshots.
Later, it compares the snapshots to find dirty cache lines.

5. Limitations of the State of the Art

A recent resurgence in software runtimes for remote memory
has been fueled by low latency networks, the availability of Re-
mote Direct Memory Access (RDMA) and new interconnects.
These systems rely on OS-level mechanisms and interfaces,
such as swapping or file systems, to offer remote memory to
applications transparently [7, 2, 12, 9], without any applica-
tions modifications. However, the ease of programmability
comes at the cost of forcing coarse-grain page-granularity
access to remote memory through expensive OS code paths,
leading to performance degradation and memory overhead.

A software system that provides access to remote memory
has to support three main operations (§1). All three operations
suffer from high overhead, due to their reliance on virtual
memory. Next, we describe the overheads in more detail.
High overhead in fetching remote data. Remote memory
systems incur large overheads due to page faults and TLB
invalidations, causing large performance degradation. For ex-
ample, we observed that moving as little as 25% of an appli-
cation’s data (Redis) remotely causes the throughput to drop
by more than 60%. This degradation is caused by the high
remote data access latency that all these systems incur: for
example, LegoOS incurs a 10µs latency for a remote access,
while Infiniswap incurs 40 µs. This high latency is astonishing,
considering that a 4KB RDMA read operation is generally as
fast as 3µs, and comes mainly from the software stack.
Overhead in dirty data tracking and eviction. We mea-
sured a 35% decrease in throughput for Redis due to write page

faults. The overheads are even higher for large pages, which
first get broken down to 4KB pages to decrease the amplifica-
tion [13]. Evicting pages adds its own overhead, since it incurs
additional TLB invalidations on top of the ones required for
dirty data tracking. We measured that eviction latencies could
be over 32 µs with Infiniswap even though a 4KB RDMA
write takes 3µs.

High dirty data amplification. Often, applications only write
to a small part of a page [1, 5]. However, remote memory sys-
tems track dirty data at page granularity, marking entire pages
as dirty when only a small part is modified. This results in high
amplification and poor network utilization, because more data
is transferred over the network than necessary. We measured
dirty data amplification for 4KB pages, 2MB pages, as well
as for cache-lines (64 bytes) and determined that applications
suffer from high dirty data amplification, as high as 31X for
4KB pages and 5500X for 2MB pages, respectively. In con-
trast, cache-line granularity tracking (64 bytes) results in a
very small amplification (close to 1), suggesting that dirty data
tracking is better done at cache-line granularity.

6. Why ASPLOS

Our work lies at the intersection between operating systems
and computer architecture. State-of-the-art remote memory
systems rely on virtual memory to offer remote memory to
applications transparently. Our work analyzes the limitations
of virtual memory for exposing remote memory and concludes
that new hardware support is needed to push the boundaries of
achievable performance. To this end, we leverage the cache-
coherence protocol, which is one of the most fundamental
concepts in computer architecture. Our proposed system con-
tinues to use virtual memory for translation and protection, as
well as for failure handling. Thus, our design requires a careful
interweaving of concepts from the two areas. In addition, our
evaluation uses tools from multiple areas: zero-copy process
communication and ptrace, dynamic binary instrumentation,
and a cache simulator.

7. Citation for Most Influential Paper Award

This paper proposed a fundamentally new approach for disag-
gregated memory, based on tapping into existing information
in current hardware – the cache coherence protocol. This ap-
proach was the first step in a long journey to make hardware
disaggregated memory practical and efficient, by enabling a
large part of the application data to reside remotely with only
a small increase in memory access time. More broadly, the
paper generated follow-on work on coherence-based runtimes
for disaggregated memory that combined productive collabo-
rations between researchers in operating systems, distributed
systems and hardware architecture and eventually led to the
adoption of disaggregated memory in every datacenter.

2



References
[1] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. Fast key-

value stores: An idea whose time has come and gone. In Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS ’19,
page 113–119, New York, NY, USA, 2019. Association for Computing
Machinery.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Subrah-
manyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote regions: a simple abstraction for remote memory.
In USENIX Annual Technical Conference (ATC), Boston, MA, 2018.

[3] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati,
Rajesh Venkatasubramanian, and Michael Wei. Remote memory in
the age of fast networks. In ACM Symposium on Cloud Computing
(SoCC), 2017.

[4] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. Can far memory improve job throughput? In European
Conference on Computer Systems (EuroSys), 2020.

[5] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel
Gandhi, Onur Mutlu, and Pratap Subrahmanyam. Project PBerry:
FPGA Acceleration for Remote Memory. In Workshop on Hot Topics
in Operating Systems (HotOS), page 127–135, 2019.

[6] Gen-Z draft core specification—december 2016. http:
//genzconsortium.org/draft-core-specification-
december-2016.

[7] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. Efficient Memory Disaggregation with Infiniswap. In
Symposium on Networked Systems Design and Implementation (NSDI),
2017.

[8] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. RDMA over commodity ether-
net at scale. In ACM SIGCOMM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), August 2016.

[9] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros,
and Konstantinos Sagonas. Turning centralized coherence and dis-
tributed critical-section execution on their head: A new approach for
scalable distributed shared memory. In Proceedings of the 24th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’15, page 3–14, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

[10] Hasan Al Maruf and Mosharaf Chowdhury. Effectively Prefetching
Remote Memory with Leap. In USENIX Annual Technical Conference
(ATC), 2020.

[11] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Le-
goOS: A disseminated, distributed OS for hardware resource disaggre-
gation. In Symposium on Operating Systems Design and Implementa-
tion (OSDI), Carlsbad, CA, 2018.

[12] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared
persistent memory. In ACM Symposium on Cloud Computing (SoCC),
2017.

[13] Mario Smarduch. Enhanced Live Migration For Intensive Mem-
ory Loads. https://events.static.linuxfound.org/sites/
events/files/slides/CloudOpen-Japan-2015.pdf.

[14] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA support for
datacenter applications. In ACM Symposium on Operating Systems
Principles (SOSP), October 2017.

[15] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. The end
of a myth: Distributed transactions can scale. 10(6), February 2017.

3


