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ABSTRACT
Disaggregated memory can address resource provisioning inef-
ficiencies in current datacenters. Multiple software runtimes for
disaggregated memory have been proposed in an attempt to make
disaggregated memory practical. These systems rely on the virtual
memory subsystem to transparently offer disaggregated memory
to applications using a local memory abstraction. Unfortunately,
using virtual memory for disaggregation has multiple limitations,
including high overhead that comes from the use of page faults
to identify what data to fetch and cache locally, and high dirty
data amplification that comes from the use of page-granularity for
tracking changes to the cached data (4KB or higher).

In this paper, we propose a fundamentally new approach to
designing software runtimes for disaggregated memory that ad-
dresses these limitations. Our main observation is that we can use
cache coherence instead of virtual memory for tracking applications’
memory accesses transparently, at cache-line granularity. This simple
idea (1) eliminates page faults from the application critical path
when accessing remote data, and (2) decouples the application mem-
ory access tracking from the virtual memory page size, enabling
cache-line granularity dirty data tracking and eviction. Using this
observation, we implemented a new software runtime for disag-
gregated memory that improves average memory access time by
1.7-5X and reduces dirty data amplification by 2-10X, compared to
state-of-the-art systems.
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• Software and its engineering→ Distributed memory.
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1 INTRODUCTION
To meet modern applications’ stringent low latency and high
throughput demands, datacenter administrators over-provision
monolithic servers to account for peak demand. As a consequence,
datacenter memory utilization is low, stagnating around 65% [78].
In addition, applications’ ever increasing demands for memory of-
ten translate into the need to frequently upgrade the computing
infrastructure altogether, as the monolithic server model is based on
a tight coupling between computing resources and memory. This
tight coupling is also problematic in the face of hardware failures,
since the entire server will stop working when one component fails.
All these inefficiencies add up and increase datacenter costs [18].

Disaggregated memory addresses these problems by improv-
ing memory utilization and decreasing the total memory over-
provisioning necessary to avoid out-of-memory errors or swap-
ping [11]. In addition, disaggregated memory enables independent
scaling of memory and compute, and it disentangles hardware
failures and replacements from the monolithic server. Fine-grain
microsecond-latency networking technologies, such as Remote
Direct Memory Access (RDMA) and Gen-Z [33], make hardware
disaggregated memory feasible in the near future [37, 79, 82].

Unfortunately, enabling applications to efficiently adopt disag-
gregated memory is not straightforward. Software runtimes [10,
15, 36, 57, 72] have been proposed to enable applications to trans-
parently, without code changes, use remote memory – the memory
of another host in the rack or memory that has been physically
disaggregated from the compute. These systems use various kernel
subsystems [10, 36, 72] or redesign the kernel altogether [71]. Fun-
damentally, they all rely on the core virtual memory mechanism
for three essential functions: (1) fetching and caching remote data
by first detecting remote accesses using page faults, then caching
the remote pages in a local DRAM cache; (2) tracking dirty data
among the cached pages by write-protecting the pages and causing
a write page fault on the first write to each page; and (3) evicting
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cached pages from the local DRAM cache, which requires marking
the pages as not present and flushing the translation look-aside
buffers (TLBs).

Virtual memory provides application transparency, but results
in high overhead and causes a significant drop in application per-
formance, even when the amount of remote data accessed is small
(§2). Page faults incur high latencies, exceeding network latencies,
which makes the software stack a bottleneck for accessing remote
memory. Moreover, virtual memory requires moving and tracking
data at page-granularity, with a page size of 4KB or higher. In con-
trast, throughout their lifetimes, applications write a small part of
each page, typically only 1-8 cache-lines out of 64, causing large
dirty data amplification and poor network utilization, by re-writing
the same data that is already in remote memory. We analyzed mul-
tiple production-quality applications and measured a dirty data
amplification between 2X and 31X for 4KB pages (§2).

Some systems [29, 30, 61] avoid page faults and work at a finer-
granularity than pages (objects), but require specialized application
changes and thus sacrifice transparency. In practice, rewriting ex-
isting applications for remote memory is error-prone and requires
expensive engineering resources and expertise. Thus, our focus is
on application-transparent mechanisms that do not require any
source code changes or recompilation.

Overall, there is a mismatch between applications’ requirements
for remote memory—low latency, fine granularity, application-
transparency—and the virtual memory mechanism, which has not
been designed to provide low-latency or fine-granularity. Our key
insight is that cache coherence can provide better hardware
primitives to support disaggregated memory, by transpar-
ently tracking applications’ memory accesses at cache-line
granularity, without page faults.1 We describe a reference ar-
chitecture that provides the necessary primitives to software using
future cache-coherent field programmable gate arrays (§2.3). We ex-
pect such hardware support to become available in the near future,
with the adoption of CXL-based platforms [74].

In this paper, we propose a principled approach to building soft-
ware runtimes for remote memory based on the new hardware
primitives (§3). We designed and implemented Kona, a software
runtime that rethinks the design of each of the three remote mem-
ory functions performed by virtual memory in current systems
(fetching remote memory, tracking dirty data and evicting cached
pages) to rely on new hardware primitives enabled by the cache
coherence protocol (§4). Kona moves high-overhead virtual mem-
ory operations off the critical path of execution, and tracks dirty
cache-lines, decoupling tracking and movement from the virtual
memory page size, for a 6.6X speedup.

The challenge is to accurately evaluate Kona’s benefits and over-
heads using current architectures, despite the lack of hardware
support. To solve this challenge, we developed several tools (§5)
that allow us to simulate or emulate the necessary hardware primi-
tives. We used them to measure Kona’s benefits for the three types
of remote memory operations: (1) Kona improves fetching remote
memory by eliminating page faults, resulting in a reduced average
memory access time by 1.7X and 5X compared to LegoOS [71] and

1 We extend a workshop paper [25] by implementing a runtime system and multiple
tools for simulation and emulation.

Infiniswap [71], respectively. (2) Kona improves performance of
dirty data tracking by 35% compared to page granularity write-
protection, while reducing write amplification by 2-10X, by using
cache-line granularity. (3) Kona improves eviction efficiency by
writing only modified cache-lines back to the disaggregated mem-
ory, which improves network goodput by 4-5X.

In summary, we make the following contributions:
• We analyze the shortcomings of current runtimes for remote
memory and show that they result in large overhead and
dirty data amplification (§2).

• We propose a new approach for disaggregated memory soft-
ware, using hardware primitives for remote memory caching
and cache-line dirty data tracking based on cache coherence;
we describe a reference architecture that can implement
these primitives (§4.3).

• We design and implement Kona, a software runtime that can
use the new hardware primitives for efficient execution (§4).

• We design and implement multiple emulation and simulation
tools (§5) and we use them to measure Kona’s solutions for
the three types of remote memory operations (§6).

The code is available at github.com/project-kona/asplos21-ae [24].

2 BACKGROUND AND MOTIVATION
Object-based remote memory systems can provide fine-grain access
to remote data and expose a key-value or a data-structure-based
interface [29, 30, 61]. These systems achieve good performance,
but rely on application semantic information to allocate or access
data in remote memory and require intrusive code changes to port
legacy applications. In contrast, page-based remote memory systems
rely on OS-level mechanisms and interfaces, such as swapping
or file systems, to offer remote memory to applications (almost2)
transparently [10, 36, 45, 72]. However, the ease of programmability
comes at the cost of forcing coarse-grain (page-granularity) access
to remote memory through expensive OS code paths, leading to
performance degradation and memory overhead.

Page-based and object-based systems achieve different tradeoffs
in the remote memory space. We seek to leverage the benefits from
both (Table 1). Our goal is to support legacy applications without
changing them. Our system, Kona, is most similar to page-based
remote memory,3 but it leverages cache coherence mechanisms to
achieve cache-line granularity dirty data tracking and to avoid page
faults on the application critical path. Unlike current systems, Kona
requires hardware support.

Remote memory Granularity Programability Mechanism
Page-based [10, 36] coarse (page) (-) transparent (+) virtual memory

Object-based [29, 30, 61] fine (object) (+) app-specific (-) code changes
Kona cache-line (+) transparent (+) cache coherence

Table 1: Taxonomy of remote memory systems.

Page-based systems work by mapping remote memory in an
application’s address space and using virtual memory mechanisms
to cache remote pages into a local software-managed DRAM cache.
2Page-based systems can be completely transparent to the application, or offer addi-
tional features using small application modifications.
3Thus, in this paper we compare only to page-based remote memory systems.
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Figure 1: Life of a memory access in a remote memory system

Fig. 1 shows the different steps in the life of a memory access in
a page-based remote memory system, which has to support three
main operations:
1. Fetching remote data.When an application attempts to read or
write data that is not present in the local DRAM cache, a page fault
is triggered and the page is fetched from the remote host 5○ by a
custom page fault handler. Once the page has been fetched, the page
tables and TLBs are appropriately modified 6○ and the memory
access moves forward. However, in certain scenarios, there might
not be enough free space in the local DRAM cache to insert a new
page, causing an eviction mechanism to make room for incoming
pages 4○.
2. Tracking dirty data. Locally cached pages that have been mod-
ified need to be written back to remote hosts to avoid data loss.
Keeping track of modified pages is called dirty data tracking and
is realized using write page faults: a page is initially marked as
read-only when it is first fetched into the local DRAM cache and
when the application tries to modify it, a page fault will be triggered
to disable the write-protection on the page. The page is marked
dirty when the write page fault is serviced. If an eviction candidate
page is dirty 9○ then a writeback operation is issued to the remote
host 10○.
3. Evicting local data back to remotememory. Periodically, the
local cache evicts some cached remote pages to make room for new
remote pages. Pages chosen for eviction that have not beenmodified
since they were last brought into the local DRAM cache can be
silently evicted.

2.1 Current remote memory shortcomings
All three remote memory operations above suffer from high over-
head, because they rely on virtual memory mechanisms. We de-
scribe their shortcomings next.
High overhead in fetching remote data. Page-based remote
memory systems incur large overheads due to page faults and TLB
invalidations. We ran Redis [7], a data-structure server application,
with a state-of-the-art remote memory system (Infiniswap) and
we observed that moving as little as 25% of the application’s data
remotely causes the throughput to drop by more than 60%. The
explanation for this huge degradation is given by the high remote
data access latency: we measured Infiniswap’s remote access la-
tency to be over 40µs . LegoOS, a new operating system designed
for disaggregated memory, incurs a 10µs latency for a remote fetch

operation. This high latency is astonishing, considering that a 4KB
RDMA read operation is generally as fast as 3µs . The difference is
all caused by the software stack and is not specific to Infiniswap
or LegoOS. Other page-based remote memory frameworks also
experience similar degradation [10, 72] due to their reliance on
page faults to fetch remote data [11, 25, 32, 50]. Moreover, page
faults cause the processor to flush its instruction pipeline, pollute
CPU caches, and reduce the CPU prefetcher’s effectiveness, as it
cannot prefetch past a page fault. Unfortunately, there is no silver
bullet to improve the latency. It is the compounded result of a sum
of small operations, such as finding and allocating virtual memory
areas (VMAs), managing the page cache and the LRU list [57]. Our
approach is to move these operations off the critical path of the
application.
Overhead in dirty data tracking and eviction.We measured a
35% decrease in throughput for Redis due to write page faults (§6).
In addition, write-protecting pages requires modifying page tables
and invalidating the TLBs, during which time the application is
not running. The time an application is stopped increases with the
size of its memory. The overheads are even higher for large pages,
which first get broken down to 4KB pages to decrease the amplifi-
cation [77]. Evicting pages also requires changing their protection,
which incurs additional TLB invalidations on top of the ones re-
quired for dirty data tracking. We measured that eviction latencies
could be over 32 µs with Infiniswap even though an RDMA 4KB
write takes 3µs . Similarly to the remote fetch latency, we cannot
expect to improve performance significantly by optimizing a small
number of functions. The eviction and dirty tracking overhead adds
up from many small operations: checking if the page is locked,
checking for other PTEs referencing the page, unmapping the page,
clearing the dirty bit, flushing the TLB, etc.
High dirty data amplification. We define amplification as the
ratio of data marked as dirty using the tracking granularity to the
actual number of bytes written by the application. For example, if
the application writes 1KB of data within a page, with 4KB-tracking
the entire page is marked dirty, so the dirty data amplification is
4. Often, applications access only a small part of a page [9]. There-
fore, using page granularity for tracking dirty data results in high
amplification and poor network utilization, because more data is
transferred over the network than necessary. We used dynamic
binary instrumentation with the Intel Pin tool [5] to measure dirty
data amplification in real applications. We split each application’s
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execution to discrete time windows (10 seconds) and measure the
behavior online in each window. We consider the following appli-
cations: 1) Redis [7], a data structure server, running uniformly
random (Rand) and sequential (Seq) workloads; 2) GraphLab [52] -
a graph analytics framework, running Page Rank, Graph Coloring,
Connected Components and Label Propagation; 3) Metis [56], an
in-memory MapReduce framework running Linear Regression and
Histogram and 4) VoltDB [8], an in-memory column store database,
running a TPC-C workload. Memory allocated and used by these
applications varies between 133MB (Redis Seq) and 40GB (Linear
regression and Histogram). We measured dirty data amplification
for different tracking granularities: 4KB page, 2MB page, as well
as cache-line granularity (64 bytes). Redis-Rand suffers from the
highest dirty data amplification with page granularity tracking, as
high as 31X for 4KB pages and 5500X for 2MB pages, respectively
(Table 2). In contrast, Redis-Seq has one of the lowest dirty data
amplification, due to its sequential access pattern. All applications
exhibit amplification (> 2) for page granularity tracking. In contrast,
cache-line tracking results in a very small amplification (close to 1),
suggesting that cache-line granularity would result in significant
improvement.

Memory Dirty data amplification
Application (GB) 4KB page 2MB page 64B cache-line
Redis-Rand 4 31.36 5516.37 1.48
Redis-Seq 0.13 2.76 54.76 1.08

Linear Regression 40 2.31 244.14 1.22
Histogram 40 3.61 1050.73 1.84
Page Rank 4.2 4.38 80.71 1.47

Graph Coloring 8.2 5.57 90.37 1.57
Connected Components 5.2 5.67 82.35 1.62

Label Propagation 5.6 8.14 95.00 1.85
VoltDB 11.5 3.74 79.55 1.17

Table 2: Dirty data amplification for different tracking gran-
ularities. The amplification is measured against the number
of dirty bytes.

2.2 Memory access patterns in Redis
The average dirty data amplification shown in Table 2 indicates
that every application encounters pages that are not fully written.
Next, we break down this amplification further by looking at ac-
cess patterns of cache-lines within pages and their contiguity. We
focus on two workloads at opposite extremes, with high and low
amplification, Redis-Rand and Redis-Seq.
Spatial locality. Fig. 2 shows the cache-lines accessed within each
page, as a CDF of pages with N accessed cache-lines, for N from 1
to 64 (full 4KB page). Pages have either a small number of cache-
lines accessed (1-8 cache-lines), or all 64 cache-lines are accessed.
Both workloads experience both types of pages, but Redis-Rand is
skewed towards accessing a small number of cache-lines per page,
while Redis-Seq is skewed towards accessing all cache-lines within
each page. This result indicates that page granularity tracking and
transfer is useful for some pages, but many pages can benefit from
cache-line granularity.
Contiguous cache-lines. We define a segment as a group of con-
tiguous cache-lines within a 4KB page that were accessed (read or
written) in the same window. The length of a segment is given by
the number of cache-lines in that segment. We count the segments
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Figure 2: Accessed cache-lines in a page (Redis).

of length N, with N from 1 to 64 (a full page) and show the results
as a CDF in Fig. 3 for Redis-Rand and for Redis-Seq. Most segments
are of length 1 to 4 contiguous cache-lines for both workloads. For
Redis-Seq, a large fraction of the segments are page-length, while
for Redis-Rand, contiguous segments are short. Dirty cache-line
contiguity is paramount for optimizing network transfer (§6.4).
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Figure 3: Contiguous cache-lines in a page (Redis).

2.3 Local memory coherence
Cache coherence protocols (e.g., VI, MSI, MESI, MOESI [60, 64])
ensure consistency between multiple cached copies of a memory
location.When the CPU reads or writes a cache-line, it first requests
the cache-line from a memory controller, which maintains access
permissions for all cache-lines belonging to its physical memory. A
cache also has to send back the data to the memory controller when
it evicts a modified cache-line. Thus, for a given cache-line, the
memory controller has excellent visibility to when the cache-line
is being read or written.
Cache-coherent FPGAs (ccFPGAs) are connected to the CPU(s)
using a point-to-point link that ensures memory coherence between
a CPU-attached memory and an FPGA-attached memory (Fig. 5).
The interconnect maintains coherence using a cache coherence
protocol. Multiple ccFPGAs are expected to become available com-
mercially or for research in the near future [3, 28, 41, 51], enabled by
new interconnect standards, such as CXL [74] or CCIX [2]. These
FPGAs can observe the CPU’s local memory coherence events and
use this information to enable new remote memory systems that
do not suffer from the shortcomings of the current systems (§2.1).



Rethinking Software Runtimes for Disaggregated Memory ASPLOS ’21, April 19–23, 2021, Virtual, USA

3 OVERVIEW AND DESIGN PRINCIPLES
We propose a new class of software remote memory runtimes that
rely on hardware cache coherence to speed up critical operations
previously realized using virtual memory. Our main observation
is that we can use the unmodified local hardware cache coherence
protocol within a server to track applications’ reads and writes. We
designed and implemented Kona, a representative remote memory
runtime based on this idea. Kona assumes the existence of new
hardware primitives, which we describe in more detail in §4.

Below, we outline the key principles we use in our design and we
discuss several benefits that Kona provides over a virtual-memory
remote memory system.
Leverage hardware to track memory accesses. There is a se-
mantic gap between applications and a remote memory runtime,
which includes applications’ memory accesses. This is generally
resolved using expensive operations: for example, the remote mem-
ory implementation uses page faults to find out which pages the
application has written (dirty data tracking). Our main observa-
tion is that the hardware already tracks memory accesses, through
memory coherence. If the hardware exposed primitives that cached
remote data and informed the software runtime of local modifi-
cations, the remote memory runtime could stop using inefficient
virtual memory operations for these operations. Kona departs from
state-of-the-art systems by relying on cache coherence to avoid
page faults, write page faults and TLB shootdowns. Eliminating
page faults from the critical path has the additional benefit that
hardware prefetchers can prefetch more data, even from remote
memory4 and enables the CPU to avoid flushing the instruction
pipeline, which happens in current systems due to the page fault.
Decouple datamovement size from the virtualmemory page
size. As both application data and memory sizes are increasing, so
are translation overheads. Therefore, it is natural for applications to
improve performance by using large pages, but for applications that
need to move data over the network, the drawbacks of dirty data
amplification when using large pages outweigh the positives [77].
Kona tracks accessed and modified data at cache-line granularity,
irrespective of the virtual memory page size. By decoupling the size
of the tracked data from the page size, Kona enables applications
to benefit from huge pages without suffering from data movement
amplification (§6). Kona still relies on virtual memory for translation
and protection, but can choose the data movement size between
page and cache-line granularity.
Separate data and control path. Remote data access is on the
applications’ critical path, thus low-latency execution is paramount.
Nevertheless, remote memory systems incur page faults on this
critical path, significantly increasing the latency of a memory ac-
cess [11]. For an efficient transparent remote memory runtime to
be feasible, the low-latency data path operations need to be exe-
cuted by the hardware. Kona expects such a hardware primitive to
be available, replacing the need to rely on page faults for caching
remote data. In contrast, control path operations are complex and
require more flexibility, thus Kona implements them in software.
Control path operations include setting up translation information
for remote memory, enabling/disabling tracking, choosing policies

4A prefetch operation does not happen across a page fault, so current remote memory
systems cannot benefit from the existing hardware prefetchers [43].
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Figure 4: The Kona remote memory. Stripes indicate emu-
lated components. Thick black rectangles represent differ-
ent nodes in a rack. An application runs on a single com-
pute node and accesses disaggregated memory on the mem-
ory nodes. Access to disaggregated memory is transparently
realized by the KLib library. A rack controller allocates dis-
aggregated memory at coarse granularity (large slabs).

to be executed by the hardware, resource management and error
handling.

4 KONA: COHERENCE-BASED REMOTE
MEMORY

In this section, we describe Kona’s design and implementation.
Kona offers remote memory to applications transparently, without
requiring source code changes to applications. We first describe
the software runtime’s high level architecture and components
(§4.1). Kona assumes new hardware primitives, so we describe them
next (§4.2) and we outline a reference hardware architecture that
enables these primitives (§4.3). Finally, we discuss the runtime in
more detail (§4.4) and provide a brief overview of Kona’s failure
mitigation options (§4.5).

4.1 Overview and components
We show Kona’s high-level software architecture in Figure 4. An
application runs on a single compute node and can access disag-
gregated memory offered by one or more memory nodes. Disag-
gregated memory allocation is handled by a rack controller, which
allocates memory at a coarse granularity, using large slabs. It does
so off the critical path of the application. Each memory node has
to register with the controller the amount of memory offered to
applications. In our design, we assume the controller is a centralized
entity managing the allocations [10], but a distributed approach is
also feasible [36]. Similar to prior work, we assume each compute
node has some amount of DRAM, which is used as a software cache
for disaggregated memory [71].

The main part of the Kona runtime is an application library,
KLib that hides all interactions with the controller, with the mem-
ory servers and with the new hardware primitives. KLib uses a
Resource Manager to interact with the controller and pre-allocate
disaggregated memory in large batches (slabs), which it maps in the
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application’s address space. In addition, KLib uses AllocLib, an allo-
cation interposition library that handles fine-grained local memory
allocations on the compute node. AllocLib interposes on applica-
tions’ malloc and mmap calls and ensures that there is sufficient
disaggregated memory available for the allocation.

KLib consists of three components that implement the threemain
remote memory operations: fetch, track, evict (§2). The Caching
Handler fetches remote data that is not in the local DRAM cache
when the application accesses it; the Dirty Data Tracker monitors
data modified in the local DRAM cache; the Eviction Handler mon-
itors the cache utilization and evicts pages to make room for new
remote pages. These components rely on new hardware primitives.
We discuss these primitives next. An additional component, the
Poller, optimizes the RDMA communication with the controller
and with the memory nodes, by polling for RDMA completions.

4.2 New hardware primitives
Current remotememory systems use virtualmemory for the Caching
Handler and for the Dirty Data Tracker. In essence, they use page
faults to detect applications’ reads and writes. This approach is
often used in practice, but it incurs large overheads. For efficient
remote memory, we need two new hardware primitives that pro-
vide the same two functions: (1) cache-remote-data: identify what
data to fetch from remote memory and cache it in local memory;
(2) track-local-data: identify what data has been modified locally
and needs to be written back to remote memory, at fine granularity
(i.e., cache-line).

The Eviction Handler copies dirty cache lines or pages to the
remote host. While this operation can be realized on current hard-
ware, it could also benefit from hardware acceleration. We propose
a third, optional, hardware primitive: (3) copy-dirty-data.

With Kona, applications still use virtual memory for translation
and protection, but Kona does not use virtual memory to provide
remote memory. Next, we discuss a reference architecture for how
such hardware support can be implemented.

4.3 A reference architecture using FPGAs
Supporting remotememory caching and fine granularity dirty track-
ing in hardware using information from the cache coherence pro-
tocol requires changes to the CPU cache or memory controllers.
However, such hardware changes are complex and intrusive, and
have a long production cycle (if they ever become available). In
this section, we propose an alternate mechanism [25], which we
believe could be implemented sooner, when cache-coherent FPGAs
become commercially available (§2.3).

The hardware architecture consists of an FPGA attached to the
CPU using a coherent interconnect. Both the CPU and the FPGA
have their own attached memories (CMem and FMem, respectively).
The FPGA also exports a fake large physical address space, larger
than FMem (called virtual FMem, or VFMem), which is not backed
by local DRAM. Instead, the FPGA uses remote memory to back
VFMem (Figure 5). The FPGA implements a memory agent that
maintains a directory for VFMem, similar to current directories in
the CPU. An application that accesses VFMem generates requests to
the VFMem directory maintained by the FPGA. Thus, the FPGA can
observe all the cache lines requested by the CPU from VFMem, and

CMem

FMem

Coherent
interconnect

FPGA

NIC logicNIC

Coherence 
protocol Kona 

Bitstream

CPU VFMem
Remote memory

Application host

Figure 5: The Kona Architecture: An FPGA connected to a
CPU through a coherent interconnect. Both the CPU and
the FPGA have DRAM attached (CMem and FMem, respec-
tively). The FPGA exposes fake physicalmemory to the CPU
(VFMem), backed by remote memory.

fetch them from the disaggregated memory (the cache-remote-data
primitive necessary for the Caching Handler). In addition, the FPGA
can observe the cache-line writebacks, and track them in a bitmap
for cache-line granularity dirty data tracking (the track-local-data
primitive necessary for the Dirty Data Tracker).

This approach has the limitation that the FPGA cannot track
CMem. To leverage this approach, we have to map all remote data
in VFMem, to enable the FPGA to track accesses. All other memory
for a process, such as thread stacks, global variables, executable
pages, etc., are allocated from CMem.

The FPGA uses FMem as a cache for VFMem. The CPU never
accesses FMem directly, but always accesses addresses in VFMem.
Using VFMem for remote data results in two overheads: (1) accesses
to the FPGA memory (FMem and VFMem) are slower than accesses
to CMem, and (2) there is an additional translation step that the
FPGA needs to perform from VFMem to FMem, even when the data
is cached. FMem and VFMem are slower than CMem because of
the limited interconnect bandwidth and because the directory logic
is implemented in the FPGA. Eventually, this logic can be hard-
ened, making its performance more competitive to a server NUMA
system, where accessing a non-local socket is 1.5X slower than
accessing the local socket [26]. Nevertheless, these overheads are
much lower than current virtual memory and network overheads
present in remote memory systems.

4.4 Remote memory operations in Kona
We describe how Kona works when our proposed hardware primi-
tives are available. In §5, we describe how we simulate the FPGA
hardware that is not yet available.
Allocating remote memory. The KLib Resource Manager re-
quests remote memory from the rack controller (§4.1) and maps it
in VFMem, logically pre-populating the memory. Since VFMem is a
fake physical memory exposed by the FPGA, no physical memory
is actually allocated at this time, only the page tables are set up and
the pages are marked present.
Fetching remote data. In a state-of-the-art remote memory sys-
tem, identifying data to fetch from remote memory is achieved
using page faults (§2). Kona essentially replaces page faults with
cache misses by mapping the remote data in VFMem and mark-
ing all pages as present. Thus, when an application accesses data
in VFMem, it will not incur any page faults because the pages are
already marked as present, but it will incur cache misses from all
the CPU cache hierarchies. The CPU will thus send a cache-line
request to the VFMem directory on the FPGA, which can fetch
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the cache-line from the remote host on demand. Since pages re-
main mapped at the same location and with the same permissions,
this approach also avoids TLB invalidations and shootdowns, which
are otherwise incurred during eviction in a virtual memory based
remote memory system.

Kona does not expose FMem directly to applications or to the
OS, but uses it as a cache for VFMem. When the CPU accesses data
from VFMem, the FPGA first checks if the data is cached in FMem,
and if so, responds with the data. If the data is not cached, the FPGA
fetches the data from the remote host, and decides whether to cache
the data in FMem or not (based on how likely it is the data will be
accessed again in the near future, or that nearby data – in the same
page – will be accessed soon). FMem always caches entire pages.
Moreover, the hardware prefetcher can request other cache lines
likely to be accessed soon, which can cause the FPGA to prefetch
the pages from remote memory. This is not possible in a virtual
memory based remote memory, because page faults are serializing
and the hardware prefetcher does not cross a page boundary [43].
Tracking dirty data. State-of-the-art remote memory uses write
page faults for identifying what data has been modified locally (§2).
Instead, with Kona, we can avoid the write page faults by tracking all
cache-line write-backs that go to VFMem. The FPGA can identify
which data has been modified without the page faults, and can do
so at cache-line granularity. When the FPGA decides to write out
dirty cache lines, it has to snoop them from CPU caches, in case the
CPU has a newer copy of the data. Snooping is necessary because
the FPGA only finds out about dirty data when the data is evicted
from CPU caches and reaches memory.
Evicting dirty data. Kona uses a software log based on a ring
buffer design similar to FaRM [29] to transfer dirty cache lines.
We copy and aggregate the dirty cache-lines into the log, and use
RDMA writes to transfer the log to the remote host. The Cache-line
Log Receiver running on a thread on the remote host distributes the
cache-lines from the received log into their locations and sends an
acknowledgment to the application host. The process is asynchro-
nous: the acknowledgment latency can be hidden by continuing to
process more dirty cache-lines during the waiting time.
Address translation. The local host’s page tables contain transla-
tions between the virtual addresses of a process to fake physical
addresses in VFMem, as pages always remain mapped as present in
VFMem. To discover the remote addresses of the missing pages, the
FPGA uses a hashmap (Remote translation). The FPGA needs to im-
plement additional metadata to keep track of which pages mapped
in VFMem are present in the FMem cache (Local translation).
1) Remote translation. Upon a memory allocation, Kona stores
metadata in a hashmap recording the remote memory addresses
corresponding to each allocated slab in local memory. Kona allo-
cates remote memory proactively in batches, so the allocation is
not on the critical path. The remote allocation uses large sizes of
one or multiple slabs. Kona uses a local memory allocator to split
a large slab for smaller allocations on the client side. Kona stores
the information in shared memory, with the FPGA being able to
access it. The FPGA never updates the map, but it consults it when
it fetches data from a remote host or when it writes dirty data back
to a remote host.
2) Local translation. We design FMem as a 4-way set associative
cache, with its block size equal to the page size. This approach is

a good tradeoff that reduces the size of the metadata required to
translate VFMem to FMem, while also ensuring that we keep the
latency of a CPU memory access to VFMem low and enable a low
eviction rate from the cache. Moreover, FMem always caches at
page granularity instead of cache-line granularity, because the CPU
hardware caches are sufficient to ensure that an application can
benefit from temporal locality. The purpose for the FMem cache is
to ensure that applications can also benefit from spatial locality.

4.5 Failures
Kona applications run on a single compute host, but access disag-
gregated memory located elsewhere in the rack. This is similar to
prior work [36, 71]. Therefore, we consider three classes of pos-
sible failures: 1) the application or the compute host crashes; 2)
the network is slow or unresponsive; 3) the disaggregated memory
containing the application data fails. We discuss each failure mode
in more detail.
1) Application or compute host failures. If the application or
the application host fails, the application needs to be restarted,
potentially on a different host. This is similar to today’s mono-
lithic server model. In this case, Kona does not add additional fault
tolerance to applications that do not already provide it.
2) Network failures. A network failure or delay [59] is problem-
atic because it can introduce timeouts in the cache coherence proto-
col, which has not been designed to handle large delays. The cache
coherence protocol can result in a timeout due to slow or failed net-
work operations, which triggers a machine check exception (MCE).
There are two ways to address this problem: i) handle the MCE,
which is possible using Intel’s machine check architecture present
on high-end servers [43]; or ii) move the page tables to FMem, which
allows the FPGA to track the page table accesses and prefetch the
remote data [25]. If the prefetch fails, the FPGA will mark the pages
as not present, triggering a page fault, which enables the software
to handle the failure, report it back to the application, wait until
the network delay or outage is resolved, and/or notify an operator.
This approach is inspired by translation-triggered prefetching [20].
3) Disaggregated memory failures. In case of memory failures,
replication can ensure that the application data is still available.
Kona can replicate the data during eviction, by sending the data to
multiple replicas at the same time and waiting for all the acknowl-
edgments. Kona reduces write amplification for each replica, so
the network bandwidth improvement increases with the number
of replicas. Adding more replicas can slow down eviction, but it
rarely impacts application performance because eviction is not on
the application critical path.

5 SIMULATING HARDWARE SUPPORT FOR
KONA

We propose new primitives that can be implemented in a cache-
coherent FPGA with attached memory. This hardware is not yet
available, but it will be in the future (e.g., CXL-connected FPGAs),
making our primitives feasible. In this section, we describe how the
Kona components emulate the hardware primitives. The Caching
Handler emulates cache-remote-data by instrumenting application
reads and writes to remote memory. The Dirty Data Tracker em-
ulates track-local-data by creating snapshots of the application’s
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pages cached in FMem. During eviction, the Dirty Data Tracker
compares the application datawith the snapshot to determinewhich
cache-lines have been modified within each page.

Our evaluation focuses on applications, their access patterns and
their locality characteristics. Our goal is to determine if our new
hardware primitives can benefit real workloads and to comparewith
existing software solutions for disaggregated memory. To this end,
we study the end-to-end benefit using an emulated implementation
that relies on instrumenting application reads and writes. If the
hardware were available, we would not need to instrument the
application. In addition, we study each of the three remote memory
operations in isolation: fetching remote data, tracking dirty data
and evicting cached data. To do so, we had to develop our own tools.
We are conservative in our assumptions, choosing the best case for
the baselines. Next, we describe the two simulators we built, which
allow us to measure each of the operations independently.
(1) Fetching remote data. We developed KCacheSim to simu-
late the fetch from remote memory operation without page faults.
KCacheSim measures the average memory access time (AMAT) for
applications runningwith Kona, Infiniswap and LegoOS. KCacheSim
uses an existing cache simulator, Cachegrind [39], to determine the
cache miss rates for each application from each level of the cache.
Based on the cache miss rates, KCacheSim computes the AMAT.
For Kona, we model the DRAM cache (FMem) as another level in
the cache hierarchy, with a 4KB block size. For the baselines, we
use main memory (CMem) instead of FMem. Using known average
access latencies to remote memory (§2.1), we estimate the average
access latency for all memory accesses in an application (local and
remote). Our model includes the cost of the software stack in the
remote memory access latency. Thus, we model a page fault as
an increase in the transfer latency from remote memory. This is a
conservative approach that favors the page fault based approach
because it does not consider the impact of additional overheads
that page faults cause: flushing the processor pipeline and hard-
ware cache invalidations caused by the kernel mode execution. To
determine the latency of a remote access for the baselines, LegoOS
and Infiniswap, we run these systems to observe their latencies,
including the overhead of the page faults. While this metric does
not directly indicate application performance, it is a useful metric
to understand how remote accesses with different latencies impact
the application.
(2) Tracking dirty data.We developed KTracker to emulate Kona
dirty data tracking at cache-line granularity by comparing snap-
shots of the application’s memory in software (Fig. 6). KTracker
uses ptrace to attach to a running process and create snapshots
of its memory. Later, it diffs the application’s memory with the
copy to find out dirty cache lines. KTracker runs the application
for a fixed amount of time, which gives us an indication of the
application performance in real time, not simulated. KTracker up-
dates its memory snapshot every second (a configurable parameter)
and includes all accessed pages. While fork and copy-on-write can
also be used to snapshot application’s memory, we did not use
this approach because we want to avoid causing additional page
faults in the application. While the application runs at full speed
during the execution, KTracker suffers from overheads in doing the
diffs, which slows down the emulation (§6.3). KTracker can also run
in write-protection mode, where it write-protects pages to track
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Application address space
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/usr/lib/
pthread

KTracker

…

Vaddr start

maps pages

Old-maps-datastructVaddr end

Vaddr start Vaddr end New-maps-datastruct

KTracker
address space

Figure 6: The KTracker simulator and its data structures.

what pages have changed. This emulates a current remote memory
system based on virtual memory, allowing us to compare the cache-
line tracking in the same environment, with similar overheads, for
a real apples-to-apples comparison.

5.1 Implementation
We implemented Kona as a C library that interposes on an appli-
cation’s memory allocation and uses a cooperative user thread for
handling page faults [80]. The library has a total of 3.6k lines of code
(LoC). The Kona server and controller run as separate daemons,
and were implemented in 542 and 575 lines of C code, respectively.
Emulating hardware support for tracking dirty data.We im-
plemented KTracker in C in 2.4k LoC. Kona uses a simplified version
of KTracker to emulate cache-line dirty data tracking (200 LoC): for
each page that is fetched from remote memory, we create a copy
of the page that is used by the eviction thread to determine which
cache-lines have changed when the page is evicted (Fig. 4).
RDMA eviction. To evaluate cache-line RDMA eviction, we im-
plemented a microbenchmark that continuously writes dirty cache-
lines or pages to a remote host using RDMA. We considered a
few different optimizations for Kona cache-line RDMA eviction,
as well as for the 4KB eviction baselines, and we kept those that
were beneficial for each: (1) batching and linking multiple RDMA
read or RDMA write operations together significantly improves
the performance of the transfer; (2) unsignaled completions—we
batch the completions as well as the requests, and only the last
operation in a batch gets a completion from the NIC; (3) inline data
turns out to not be beneficial for the size of transfers we considered
(cache-line or 4KB) (4) using AVX instructions—copying data within
the same host takes a lot of time but needs to be done because all
RDMA reads and writes use buffers registered with the NIC; AVX
instructions significantly reduce the overhead of the local copy.

6 EVALUATION
In this section, we evaluate Kona’s end-to-end performance using
emulation of the unavailable hardware primitives through appli-
cation instrumentation. We compare Kona with a virtual memory
remote memory system using a microbenchmark (§6.1). Next, we
use our software tools and benchmarks to evaluate each of the three
types of remote memory operations: fetching remote data (§6.2),
tracking dirty data (§6.3), and evicting local data back to remote
memory (§6.4).
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Test-bed. We perform the RDMA experiments on a cluster of dual
processor Skylake servers running at 2.2GHz with Mellanox Con-
nect X5 cards connected through a 100Gbps RoCE switch. We run
the simulations on CloudLab [31].

6.1 Microbenchmark performance
In this section, we compare Kona with a virtual memory-based
implementation (Kona-VM). First, we want to confirm that Kona-
VM is on par with state-of-the-art virtual memory based systems.
We compared Kona-VM with Infiniswap running Redis without any
emulation or simulation on CloudLab instances c6220, where we
could run Infiniswap successfully. Kona-VM is similar to or faster
than Infiniswap by up to 60%.

Infiniswap has very high remote access latency (40µs). Most of
the overhead comes from implementing Infiniswap as a block device
and from using the bio layer (§2), with the rest distributed among
small operations, such as finding and allocating VMAs, managing
the page cache and the LRU list. In contrast, Kona-VM relies on
handling page faults in user-space [80] and achieves lower latency
than Infiniswap.

Next, we use emulation to compare Kona with Kona-VM, by
instrumenting every remote memory access in the benchmark to
provide the address, size and type of the memory access. Kona-VM
is a good baseline to indicate the performance gains from our tech-
niques, because Kona and Kona-VM use the same algorithms for
data caching and eviction. Kona-VM uses virtual memory, while
Kona emulates the proposed hardware primitives through bench-
mark instrumentation.

The benchmark allocates 4GB of remote memory per thread, and
uses 1, 2, or 4 threads to read and write 1 cache-line in every page;
each thread accesses distinct pages. As we increase the number of
threads, the total amount of work increases. The benchmark reports
the total execution time. Kona is faster than Kona-VM by 6.6X at 1
thread and by 4-5X for 2 and 4 threads when the benchmark runs
with 50% local cache and eviction happens concurrently with the
application execution (Figure 7). Kona only writes the dirty cache-
lines to the remote host, while Kona-VM has to write entire pages.
Both Kona and Kona-VMuse the same algorithm andmake the same
decisions about which pages to evict. This ensures that the results
reflect the difference between page and cache-line granularities and
not a difference in eviction algorithms. Kona can copy the data to
remote memory directly from FMem; it does not need an additional
copy to CMem first. Thus, no NUMA penalties are incurred.

Next, we evaluated the benchmark with all the initial data in
remote memory, but without eviction from the DRAM cache. Here,
Kona-NoEvict is faster than Kona-VM-NoEvict by 3-5X. Kona-VM
incurs two page faults for caching a remote page. The first is to
fetch the page from remote memory, and the second, minor page
fault removes the write-protection on the page, marks the page
dirty and enables the write. Kona avoids both page faults. We also
ran a version of Kona-VM that avoids write-protection (NoWP),
so it only incurs one page fault. This version cannot track dirty
pages so it is incomplete, yet it is still slower than Kona-NoEvict
by 1.2-2.9X.
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Kona-VM-NoWP0
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Figure 7: Kona and Kona-VM.

6.2 Fetching remote data
In this section, we evaluate the remote data fetch operation. We use
KCacheSim to study the average memory access time (AMAT) for
applications accessing remote memory as a function of the available
cache size, cache associativity and cache block size. Finally, we
measure the overhead of the simulation.

KCacheSim simulates Kona’s Caching Handler component and
compares it to remote access based on virtual memory. KCacheSim
models remote access latencies based on our measurements using
real RDMA hardware and different memory hierarchies for each
system. For Kona, the memory hierarchy includes hardware caches,
FMem (NUMA memory with higher latency) and remote memory.
We also evaluate Kona-main, a version of Kona where the data is
cached in CMem, thus avoiding the NUMA overheads present in
Kona. This shows the best performance that Kona can achieve if it
could track CMem, not only FMem (likely via processor architecture
modifications).

For Infiniswap and LegoOS, the memory hierarchy includes hard-
ware caches, CMem (locally attached DRAM) and remote memory.
We measured remote access latencies in these systems running on
real hardware (not in simulation), including page fault overheads
and we use these measurements for the simulation (10 µs for Le-
goOS and 40 µs for Infiniswap). Infiniswap is consistently worse
than LegoOS by 2.3-3.7X, so we do not show it on the graphs for
better visibility. We also omit Kona-VM, which achieves similar
remote access latency with LegoOS, resulting in similar AMAT.

LegoOS is orthogonal to Kona and to the main ideas in this paper.
In fact, cache-line granularity and avoiding page faults could also be
applied to LegoOS to improve remote memory caching and eviction.
Here, we use LegoOS as a baseline because it achieves lower remote
access latency than Infiniswap.

CMem has lower latency than FMem, while Kona’s remote ac-
cesses are faster than the baselines’ remote accesses because Kona
avoids page faults. Thus, there is a tradeoff between lower local
latencies and lower remote latencies. We experimented with multi-
ple classes of applications (map-reduce, graph analytics, key-value
stores), to explore these tradeoffs. Our model does not consider
network congestion, but we use the same model for Kona as well
as for the baselines. Our simulations are with memory prefetching
turned off, so our results are conservative for Kona, which can
benefit from hardware prefetching even when the data is in remote
memory.
(1) AMAT. For large cache sizes, close to 100% of application peak
resident set sizes, all systems perform similarly because the number
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Figure 8: Simulating remote data fetch

of remote accesses is small. However, the AMAT increases quickly
for smaller caches, as the applications incur more (expensive) re-
mote memory accesses. As Fig. 8 shows, Kona makes disaggregated
memory possible, as the AMAT increases much more slowly com-
pared to the software systems. When only 25% of the data is cached,
which is not unrealistic for disaggregated memory, Kona achieves
1.7X and 5X lower AMAT than LegoOS and Infiniswap, respectively.
The one exception is Linear Regression (Fig. 8b), where the memory
access latency is almost constant irrespective of local cache size.
This behavior is due to the workload’s streaming access pattern,
where there is almost no data reuse and hence little use for a local
cache. Kona incurs overhead from caching remote data in FMem,
due to NUMA effects, as shown by the comparison with Kona-main.
We measured the worst overhead for Linear Regression (25%), while
Redis and Graph Coloring incur only 2-13% higher AMAT due to
NUMA effects.
(2) Associativity and cache block size.We found that the asso-
ciativity does not significantly impact overall latency. We consid-
ered cache block sizes ranging from cache-line (64B) up to 30KB
for different percentages of the local cache size (Fig. 8d). Kona can
fetch remote memory at any granularity larger than a cache-line.
However, we found that small block sizes did not fully exploit the
available spatial locality in the applications (Fig. 8d). In contrast,
large block sizes increased conflict misses and latency. For almost
all of our workloads, we found that 1KB block size achieved the
lowest AMAT. 4KB size increased the AMAT by a small margin,
thus we made the decision to use a block size of 4KB (page granular-
ity) for remote data fetch, which simplifies metadata management.
In contrast, we use cache-line granularity for dirty data tracking.
(3) Simulation overhead. We measured KCacheSim’s simulation
overhead by running Redis with the same workload both natively
and in simulation. Redis has 43X lower throughput running in
simulation.

6.3 Tracking dirty data
We evaluate coherence-based cache-line granularity dirty data
tracking without page faults and compare it to the virtual memory
based 4KB granularity write-protection approach. We developed
KTracker (§5) to simulate cache-line tracking. KTracker allows
us to understand (1) how much coherence-based remote mem-
ory reduces the dirty data amplification using cache-line instead
of 4KB-page tracking; and (2) coherence-based remote memory’s

speedup due to avoiding write page faults. We also evaluate (3) the
KTracker simulation overhead. KTracker simulates the Dirty Data
Tracker component and compares it to dirty data tracking using
virtual memory based write-protection with a real-time window
of 1-second. KTracker tracks dirty data only locally, without using
the network.
(1) Tracking granularity. First, we measured the dirty data am-
plification with cache-line granularity tracking. We show the 4KB-
page amplification relative to cache-line tracking in Figure 9. We
show Redis-Seq and Redis-Rand, which represent the more extreme
workloads. The Redis-Seq workload finishes faster than Redis-Rand,
so it requires fewer 1 second windows. The first 10 windows of the
experiment are the server startup and initialization, so they look
similar for both workloads. Cache-line granularity reduces the am-
plification for both Redis-Rand and Redis-Seq, by 2-10X and by 2X,
respectively. As expected, the random workload experiences higher
amplification and thus the benefit from cache-line granularity is
higher.

Other workloads experience an amplification between Redis-
Rand and Redis-Seq. The graph analytics and the map-reduce work-
loads perform random access and sequential access, respectively,
with a cyclic amplification behavior.

We measure the amplification up until the process exit, when
KTracker gets an exit notification. The last window contains the
normal process tear-down, which includes a small number of writes
with high amplification (e.g., main() return value). We do not con-
sider this last window in the results reported because it skews the
average amplification in the favor of cache-line granularity (e.g.,
we report a 2-10X amplification for Redis-Rand, without including
the 30X amplification in the last window).
(2) Tracking speedup.Weuse KTracker tomeasure the coherence-
based dirty data tracking speed-up compared to 4KB-page write-
protection and report the results in Fig. 10. The speedup ranges
from 1% (Redis-seq and Histogram) to 35% (Redis-rand).
(3) Simulation overhead. To measure the simulation overhead,
we ran the Redis server with the same workload natively and with
KTracker. In both cases, we use a memtier client [4] that runs na-
tively. The simulated Redis server experiences 60% lower through-
put, 95% of which is caused by copying and comparing the applica-
tion’s memory. 5% of the overhead is caused by using ptrace. Next,
we compared the native and the simulated executions to deter-
mine if there are any unexpected side-effects of running Redis with
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Figure 9: Dirty data amplification reduction.
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KTracker. Unsurprisingly, the running time of the application is
longer due to the pauses that KTracker introduces. In addition, the
number of context switches increased by 62%, while CPU utilization
for Redis decreased by 57% with KTracker. However, we did not no-
tice any other significant differences. In particular, the numbers of
page faults, L3 cache misses and TLB misses were similar between
the two executions.

6.4 Evicting local data back to remote memory
We evaluate cache-line granularity eviction and compare it to tradi-
tional virtual memory based eviction (4KB page granularity). Kona-
VM evicts 4KB pages and writes all dirty pages to the remote hosts
using RDMA one-sided verbs [49], after having copied them from
the application’s address space to RDMA-registered buffers. Kona
also evicts 4KB pages, but writes only the dirty cache-lines to the
remote hosts, an ability enabled by Kona’s cache-line granularity
dirty data tracking. Like Kona-VM, Kona also needs to copy the
dirty data to RDMA-registered buffers before using RDMA verbs, so
it uses the buffers to aggregate multiple dirty cache-lines, even from
different pages, into bigger chunks that can be written together to
the remote host. We call the buffer with the aggregated cache-lines
the CL log.

For this experiment, we use a microbenchmark that continuously
writes N cache-lines out of each 4KB page in a 1GB region, for
values of N between 1 and 64 (full 4KB page). The benchmark then
writes the dirty data to a remote host using RDMA.

We evaluate two scenarios: contiguous or alternate (representing
random) dirty cache-lines in a page. Copying contiguous dirty
cache-lines is more efficient due to higher cache locality enabled by
automatic next cache-line prefetching. We measure the total time
to complete the transfer, including any necessary acknowledgment

from the remote host (only for the CL log), and compute the goodput
for each situation based on the number of dirty cache-lines. We
define goodput as the amount of useful data (i.e., the dirty cache-
lines) transferred over the network during the measurement time.

Kona’s cache-line log (CL log) achieves 4-5X higher goodput than
Kona-VM’s 4KBwrites for 1-4 contiguous dirty cache-lines (Fig. 11a)
and 2-3X higher goodput for 2-4 random cache-lines (Fig. 11b).
Kona-VM has lower goodput than Kona because Kona-VM uses
4KB RDMA writes, which transfer more data than necessary over
the network (e.g., for 1 dirty cache-line, 4032 bytes are actually
clean, but 4096 bytes are transferred, not including packet headers).

If dirty cache-lines are contiguous, Kona is always better than
Kona-VM, or on par when the whole page is dirty. Kona achieves
lower goodput than Kona-VM only for more than 16 discontiguous
dirty cache-lines, which is rare in real applications. Even pages that
have many dirty cache-lines show some contiguity. As we have
shown in §2.2, pages often have 1-8 dirty cache-lines.

Unlike Kona-VM, Kona needs a thread running on the remote
host to unpack the log of dirty cache-lines and write them at their
proper destination in the remote memory. The remote thread reads
sequential cache-lines from the log received from the application
host and writes each cache-line at its proper address, then sends
an acknowledgment. The overhead of the remote thread is small,
consisting of a few memory reads and writes.

We show a breakdown of the Kona cache-line eviction perfor-
mance in Figure 11c. Most of the time is spent copying the data to
the RDMA buffer (Copy). 15-20% of the time is spent on the RDMA
operations (RDMA write), with another 15-20% checking a bitmap
to determine which cache-lines are dirty (Bitmap). Finally, there
is a small amount of time spent waiting for an acknowledgment
from the remote host, which has to unpack the aggregated dirty
cache-lines (Ack wait).
Idealized baselines. In figures 11a and 11b we also show two ide-
alized baselines that require no copy to an RDMA buffer: 4KB writes
no-copy and CL writes no-copy. The idealized baselines use RDMA
writes to copy the data to the remote host, at 4KB page granularity
and cache-line granularity, respectively. For these baselines we use
local buffers that are already registered for RDMA, so no copy is
necessary locally. Similarly, the remote addresses are registered, so
there is no remote thread unpacking cache-lines. These baselines
cannot be used directly in a remote memory system, because the
application’s address space is not registered for RDMA and a copy
to a separate buffer is required, but we include them for comparison.

4KB writes no-copy always achieves 1.5X higher goodput than
Kona-VM, which needs the additional local 4KB copy for each page.
CLwrites no-copy workwell for a small number of contiguous cache-
lines, but do not work well when dirty cache-lines are discontiguous
or when a large part of the page is dirty, because many small RDMA
operations need to be issued.

In contrast, Kona aggregates dirty cache-lines in the RDMA
buffer, whether they are contiguous or not, and can issue fewer
RDMA writes, of larger size, resulting in better network utiliza-
tion. We use linking and batching to optimize both Kona and the
baselines, but Kona is more efficient because it submits a single
request to the NIC for the whole log. We also experimented with
using the scatter-gather NIC functionality, but the performance
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Figure 11: Eviction goodput using cache-line (CL) granularity

was consistently worse than Kona (not shown), due to inefficiencies
in gathering many different entries.

7 DISCUSSION
Disaggregated memory provides multiple benefits: it improves
memory utilization, decreases memory over-provisioning and al-
lows independent scaling of memory and compute hardware. For
example, applications running in a datacenter might need TB of
memory altogether, but not so much CPU. Independent scaling
through disaggregated memory allows the datacenter operator to
add more memory, without having to add more CPUs that will end
up being underutilized.

These benefits cannot be achieved by increasing the amount of
memory in a single host. Memory utilization in current datacenters
is already low [63, 66, 78]. Increasing the amount of memory on
individual hosts worsens datacenter memory utilization, bringing
up both capital and operating expenditures. In addition, memory
cannot be scaled up arbitrarily on a single host due to the limited
number of DIMM slots, and CPU grade requirements (premium
CPUs are needed for large memory machines, which significantly
increases cost).

Our approach requires adding a cache coherent FPGA to each
application host, which is an additional cost. However, we expect
this cost to be small compared to the overall cost savings brought by
enabling disaggregated memory – by improvingmemory utilization
and enabling independent scaling of CPUs/memory.

Similar to prior work on systems for disaggregated memory
(LegoOS, Infiniswap, etc.), Kona targets applications that run on a
single node. Kona does not offer distributed shared memory. Appli-
cations running on the same host or on different hosts can share
data through files, but they require additional coordination if they
access the data concurrently.

Applications never allocate disaggregated memory directly. This
is done transparently by Kona. Kona exposes disaggregatedmemory
as if it is local memory to applications through a large fake physical
address space, and transparently allocates and populates remote
memory with the application data created locally.

8 RELATEDWORK
To our knowledge, we are the first to propose coherence-based
remote memory. We discuss other remote memory systems, tech-
niques for tracking applications’ access patterns, compiler support
for sub-page memory access tracking and performing computa-
tion at memory nodes in a disaggregated memory environment.
Remote memory systems. Works on distributed shared mem-
ory [16, 19, 48, 69, 70] provide shared memory and cache coherence

across hosts. In contrast, Kona leverages local cache coherence
within a single host to expose remote memory to legacy appli-
cations transparently. The availability of low-latency networking
makes remote memory practical. Recently, we are seeing a resur-
gence of research in this field [10, 15, 36, 57, 71]. However, these
works, including disk swapping [1, 6, 44], rely on page faults and
page-based tracking, which limits their performance. Some remote
memory systems [29, 30, 61, 67] use an object-based interface that
avoids the virtual memory subsystem’s overhead, but these sys-
tems require modifications of the application code. Meanwhile,
Kona avoids virtual memory overhead by using the local cache
coherence traffic via the cache-coherent FPGA to access remote
data while also remaining transparent to the applications. Hence,
cache-coherent FPGAs provide an alternative solution to the remote
memory problem. Kona’s use of FPGAs is in line with the emerg-
ing trend of increasingly using FPGAs in the datacenter [27, 65],
albeit for different purposes, such as accelerating applications [12–
14, 22, 35, 38, 47, 55, 62, 73, 75, 76], smart NICs [34, 58], and allowing
multi-tenancy [46, 54, 83].
Tracking application access patterns. Priorworks have explored
sub-page granularity memory access tracking by using (1) specific
APIs [29, 30, 61, 67], (2) source code annotations requiring appli-
cation modification [61], (3) run-time techniques to track reads
and writes [5, 23, 53], (4) architectural simulations [21, 68], and (5)
hardware support for sub-page protection [17, 40]. Intel introduced
Page Modification Logging (PML), which logs modified pages in
hardware and informs the hypervisor of dirty pages in batches of
512 pages [42]. PML reduces the overhead of dirty data tracking, but
continues to rely on page granularity. These approaches trade-off
generality, tracking granularity, and application performance based
on the specific use-case. In this work, we use a suite of techniques
to achieve cache-line granularity tracking of applications’ access
patterns without experiencing the slowdowns that other tools incur.
Compiler support. A software-only solution could use language
or compiler support to track applications’ accesses at finer granular-
ity than a page. Unfortunately, there is no off-the-shelf transparent
software-only solution that we can compare with Kona. If there
existed such a solution, there would be tradeoffs. The software so-
lution sacrifices generality and cannot support arbitrary code (e.g.,
the guest kernel in a VM). In contrast, our solution requires new
hardware, but it is not limited to a specific language or compiler.
Computation at memory nodes. Kona uses a remote thread at
the disaggregated memory to unpack aggregated dirty cache-lines
and distribute them to their memory addresses. Other proposals
for disaggregated memory also make use of a remote thread for
memory management, performing even more operations than Kona.
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For example, Semeru [81] uses remote threads for tracing pointers
in garbage collection.

9 CONCLUSION
We introduced coherence-based remote memory, a new class of
remote memory that uses the local host’s cache coherence mecha-
nisms to track applications’ memory accesses. We identified two
main hardware primitives needed to enable coherence-based re-
mote memory. We designed and implemented Kona, a represen-
tative software runtime that uses these primitives to reduce dirty
data amplification and to improve network utilization and applica-
tion performance. In addition, we developed new software tools to
evaluate coherence-based remote memory using emulation and sim-
ulation with microbenchmarks and real applications. Using these
tools, we show that coherence-based remote memory improves
the average memory access time by 1.7-5X and reduces dirty data
amplification by 2-10X, compared to state-of-the-art systems. We
conclude that coherence-based remote memory is a promising ap-
proach to building efficient disaggregated memory.
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