The Locality Descriptor **A Holistic Cross-Layer Abstraction** to Express Data Locality in GPUs

ISCA 2018

Nandita Vijaykumar

Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons, Onur Mutlu

Data locality is critical to GPU performance

Exploiting data locality in GPUs is a challenging and elusive feat...

... requiring a range of architectural techniques

Cache Management CTA Scheduling

Data Placement

Data Prefetching

• • •

Furthermore...

A <u>single</u> technique is often insufficient

The required set of techniques depends on the <u>program</u>

Challenging for the programmer/software

No easy access to many architectural techniques

Tedious and un-portable programming:

Bypass Cache Line A
Schedule Thread Block 2 at SM 1

Challenging for the architect

Hardware misses key program semantics required for optimization

Where to place data?

Which threads to schedule together?

Which data to bypass?

The Locality Descriptor

A hardware-software abstraction to express and exploit data locality

A Sneak Peak Address Range Data Structure Locality Type LocalityDescriptor ldesc(); len, INTER-THREAD, tile, loc, priority); Locality Tile Semantics **Priority** Semantics

Key Performance Results:

Leveraging Cache Locality: 126.6% on average (up to 46.6%)

Leveraging NUMA Locality: ↑53.7% (up to 2.8X)

The Locality Descriptor **A Holistic Cross-Layer Abstraction** to Express Data Locality in GPUs

ISCA 2018

Nandita Vijaykumar

Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons, Onur Mutlu

