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Executive Summary
Exploiting data locality in GPUs is a challenging task

Performance Speedups:
26.6% (up to 46.6%) from cache locality

53.7% (up to 2.8x) from NUMA locality

vescriptor ’

’
’
4

Hardware

———
Data Cache : Data
Placement Management CTAScheduling Prefetching



Outline

Why leveraging data locality is challenging?

Designing the Locality Descriptor

Evaluation



Data locality is critical to GPU performance
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Two forms of data locality:
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Data locality is critical to GPU performance
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The GPU execution and programming models are designed to
explicitly express parallelism...

But there is no explicit way to express data locality

Exploiting data locality in GPUs is a challenging and elusive feat



A case study in leveraging data locality: His to
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Leveraging cache locality
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CTA scheduling is required to leverage inter-CTA cache locality

CTA scheduling is insufficient: we also need other techniques




Leveraging NUMA locality
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Today, leveraging data locality is challenging

As a programmer:

- No easy access to architectural techniques — CTA scheduling, cache
management, data placement, etc.

- Even when using work-arounds, optimization is tedious and not portable

As the architect:
- Key program semantics are not available to the hardware

Where to place data?
Which (TAs to schedule together?




To make things worse:

There are many different locality types: Inter-CTA, inter-warp, intra-thread, ...

Each type requires a different set of architectural techniques:
- Inter-CTA locality requires CTA scheduling + prefetching
- Intra-thread locality requires cache management
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The Locality Descriptor

A hardware-software abstraction to express and exploit data locality

Connects locality semantics —
to the underlying [ Application ]
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Goals in designing the Locality Descriptor

1) Supplemental and hint-based
Inter-CTA, inter-warp,

2) Architecture-agnostic [ Application ]/7|lntra-thread,...
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Designing the Locality Descriptor

LocalityDescriptor ldesc(X; Y, Z);
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An Overview: The components of the Locality Descriptor

/ 1) Data Structure

LocalityDescriptor ldesc(A, len,
INTER-THREAD, 3) Tile Semantics

/ tile,/7

2) Locality Type / loc);

4) Locality Semantics 5
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1. How to choose the basis of the abstraction?

Key Idea: Use the data structure as the basis to describe data locality

- Architecture-agnostic
- Each data structure is accessed the same way by all threads

A new instance is required for each important data structure

LocalityDescriptor ldesc(A);
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2. How to communicate with hardware?
Locality type drives

architecture mechanisms

Architecture-agnostic
interface <
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2. How to communicate with hardware?

Key Idea: Use locality type to drive underlying architectural techniques

Origin of locality (or locality type) causes the challenges in exploiting it

E.g..
Inter-CTA locality requires CTA scheduling as reuse is across threads
Intra-thread locality requires cache management to avoid thrashing

Locality type is application-specificand known to the programmer
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2. How to communicate with hardware?

Key Idea: Use locality type to drive underlying architectural techniques

Three fundamental types: INTER-THREAD %
INTER-THREAD i 5 35
OAELSE 4 3

LocalityDescriptor ldesc(A);INTER-THREAD);
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Driving underlying architectural techniques
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3. How to describe Iocality?

Key Idea: Partition the data structure
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Additional features of the Locality Descriptor

Locality type insufficient to inform underlying architectural techniques
(INTER-THREAD, INTRA-THREAD, NO-REUSE)

In addition, we also have Locality Semantics to include:
- Sharing Type
- Access Pattern
(COACCESSED, REGULAR, X 1len)

LocalityDescriptor ldesc(A, INTER-THREAD, tile);loc);
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A decision tree to drive underlying techniques
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Leveraging the Locality Descriptor

LocalityDescriptor ldesc(A, INTER-THREAD, tile, loc);
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Leveraging the Locality Descriptor

LocalityDescriptor ldesc(A, INTER-THREAD loc);
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Data Placement
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Leveraging the Locality Descriptor

LocalityDescriptor ldesc(A, INTER-THREAD, tile,
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Methodology

Evaluation Infrastructure: GPGPUSim v3.2.2
Workloads: Parboil, Rodinia, CUDA SDK, Polybench

System Parameters:

Shader Core: 1.4 GHz; GTO scheduler [50]; 2 schedulers per SM, Round-robin (TA
scheduler

SM Resources Registers: 32768; Scratchpad: 48KB, L1: 32KB, 4 ways

Memory Model: FR-FCFS scheduling [59, 60], 16 banks/channel

Single Chip System: 15 SMs; 6 memory channels; L2: 768KB, 16 ways
Multi-Chip System:4 NUMA zones, 64 SMs (16 per zone); 32 memory channels;
L2: 4MB, 16 ways; Inter-GPM Interconnect: 192 GB/s;

DRAM Bandwidth: 768 GB/s (192 GB/s per module)
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Locality descriptors are an effective means to leverage cache locality

Different locality types require different optimizations
A single optimization is often insufficient
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Performance Impact: Leveraging NUMA Locality
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Conclusion

Problem;

GPU programming models have no explicit abstraction to express data locality
Leveraging data locality is a challenging task, as a result

Our Proposal: The Locality Descriptor
A HW-SW abstraction to explicitly express data locality
A architecture-agnostic and flexible SW interface to express data locality
Enables HW to leverage key program semantics to optimize locality

Key Results:

26.6% (up to 46.6%) performance speed up from leveraging cache locality
53.7% (up to 2.8x) performance speed up from leveraging NUMA locality
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