The Locality Descriptor

A Holistic Cross-Layer Abstraction
to Express Data Locality in GPUs

Nandita Vijaykumar
Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons, Onur Mutlu

Carnegie

Mellon = GANVIDIA. ETH ziric

University

Executive Summary
Exploiting data locality in GPUs is a challenging task

Performance Speedups:
26.6% (up to 46.6%) from cache locality

53.7% (up to 2.8x) from NUMA locality

vescriptor ’

’
’
4

Hardware

———
Data Cache : Data
Placement Management CTAScheduling Prefetching

Outline

Why leveraging data locality is challenging?

Designing the Locality Descriptor

Evaluation

Data locality is critical to GPU performance

Core Core

Two forms of data locality:

Reuse-based locality (cache locality)

NUMA locality

Reuse-based (Cache Locality)

Data locality is critical to GPU performance

llllllllllllllllllllllllllllllllll
“““““““

Cores . Cores

Two forms of data locality:

NUMA NUMA
. __ Lone 0 Zone 1
Reuse-based locality (cache locality) ™o "
NUMA locality Cores Cores
Lone 2 y y Zone 3

0 0 ’ Q
II

NUMA Locality

The GPU execution and programming models are designed to
explicitly express parallelism...

But there is no explicit way to express data locality

Exploiting data locality in GPUs is a challenging and elusive feat

A case study in leveraging data locality: His to

Ydim

Xdim
Data Structure A

Ydim

ke
s

¥ 353

Xdim
(TA Compute Grid

(TAs along the Y dim
share the same data

Type of data
locality:
Inter-C1A

Leveraging cache locality

3% 3%

. Core Core
Ydim Ydim $§$ %é%
o Y A —

Data Structure A (TA Compute Grid Core Core

CTA scheduling is required to leverage inter-CTA cache locality

CTA scheduling is insufficient: we also need other techniques

Leveraging NUMA locality

\

Ydim Y dim

i

= Nadim Xdim e e reen e,
Data Structur (TA Compute Grid /

Cores ; Cores

%o .
..................................

NUMA Zone 2 NUMA Zone 3

Exploiting NUMA locality requires both
(TA scheduling and data placement

Today, leveraging data locality is challenging

As a programmer:

- No easy access to architectural techniques — CTA scheduling, cache
management, data placement, etc.

- Even when using work-arounds, optimization is tedious and not portable

As the architect:
- Key program semantics are not available to the hardware

Where to place data?
Which (TAs to schedule together?

To make things worse:

There are many different locality types: Inter-CTA, inter-warp, intra-thread, ...

Each type requires a different set of architectural techniques:
- Inter-CTA locality requires CTA scheduling + prefetching
- Intra-thread locality requires cache management

11

The Locality Descriptor

A hardware-software abstraction to express and exploit data locality

Connects locality semantics —
to the underlying [Application]
hardware techniques

New software interface
Software Locality

Hardware Descriptor __—

Access to key
program semantics

Data Cache : Data
Placement Management CTA Scheduling Prefetching

12

Goals in designing the Locality Descriptor

1) Supplemental and hint-based
Inter-CTA, inter-warp,

2) Architecture-agnostic [Application]/7|lntra-thread,...

interface <¢---eeo_____— el
"“;l, ¥ 3) Flexible and
-
Software Locality /"~ general
- /
Hardware Descriptor -=7
Data Cache : Data
Placement Management CTA Scheduling Prefetching

13

Designing the Locality Descriptor

LocalityDescriptor ldesc(X; Y, Z);

Hardware

Data Cache : Data
Placement Management CTA Scheduling Prefetching

14

An Overview: The components of the Locality Descriptor

/ 1) Data Structure

LocalityDescriptor ldesc(A, len,
INTER-THREAD, 3) Tile Semantics

/ tile,/7

2) Locality Type / loc);

4) Locality Semantics 5

Outline

Why leveraging data locality is challenging?
Designing the Locality Descriptor

Evaluation
16

1. How to choose the basis of the abstraction?

Key Idea: Use the data structure as the basis to describe data locality

- Architecture-agnostic
- Each data structure is accessed the same way by all threads

A new instance is required for each important data structure

LocalityDescriptor ldesc(A);

N

Data Structure 18

2. How to communicate with hardware?
Locality type drives

architecture mechanisms

Architecture-agnostic
interface <

Inter-CTA, inter-warp,
intra-thread, ...

Architecture-specific

[Application

Software Locality optimizations
Hardware Descriptor
/ \
Data Cache : Data
Placement Management CTA Scheduling Prefetching

19

2. How to communicate with hardware?

Key Idea: Use locality type to drive underlying architectural techniques

Origin of locality (or locality type) causes the challenges in exploiting it

E.g..
Inter-CTA locality requires CTA scheduling as reuse is across threads
Intra-thread locality requires cache management to avoid thrashing

Locality type is application-specificand known to the programmer

20

2. How to communicate with hardware?

Key Idea: Use locality type to drive underlying architectural techniques

Three fundamental types: INTER-THREAD %
INTER-THREAD i 5 35
OAELSE 4 3

LocalityDescriptor ldesc(A);INTER-THREAD);
21

Driving underlying architectural techniques

INTER_THREAD Y 1y A, NO_REUSE

Type?

INTRA_THREAD

4 . ™
Cache Bypassing
) CTA Scheduling (if NUMA)
\Memory Placement (if NUMA))

(CTA Scheduling)
Cache Soft Pinning
kMemory Placement (if NUMA))

22

3. How to describe Iocality?

Key Idea: Partition the data structure

/

‘ w §§ §§$ §$$ 555 and compute grld. into tiles

(L CLQ

tile((X _tile, Y _len, 1),
, GridSize.y, 1),
(1, 0, 0));

Data Tile Compute Tile

DataTile Compute Tile Compute-Data
Dimensions Dimensions Map

Additional features of the Locality Descriptor

Locality type insufficient to inform underlying architectural techniques
(INTER-THREAD, INTRA-THREAD, NO-REUSE)

In addition, we also have Locality Semantics to include:
- Sharing Type
- Access Pattern
(COACCESSED, REGULAR, X 1len)

LocalityDescriptor ldesc(A, INTER-THREAD, tile);loc);

24

A decision tree to drive underlying techniques

INTER_THREAD Locality

Type? NO REUSE
INTRA_THREAD

NEARBY Sharing

Type? COACCESSED

~\

(CTA Scheduling) Cache Bypassing
Next-line Stride Prefetching Access CTA Scheduling (if NUMA)
Memory Placement (if Pattern? Memory Placement (if NUMA)

\ NUMA) y REGULAR ‘ o

IRREGULAR

[T Scheduli (inni)
cneauiing Cache Hard Pinning
Guided Stride Prefetching CTA Scheduling (if NUMA)
Memory Placement (if NUMA 4) ;
L y (i) y CTA Scheduling \Memory Placement (if NUMA))

Cache Soft Pinning
\Memory Placement (if NUMA) y

25

Leveraging the Locality Descriptor

LocalityDescriptor ldesc(A, INTER-THREAD, tile, loc);

3555 t\/

Y dim % §$§ iéé Architectural techniques:

S
\

Y dim

1) (CTA Scheduling

§$§ §$§ 2) Prefetching

3) DataPlacement

1

v/ xdim v.dim

Data Structure A CTA Compute Grid

26

Cluster 0 Cluster 1 Cluster2 Cluster3

]
oDoac

Y dim Y dim

Xdim
Data Structure A (TA Compute Grid

27

Leveraging the Locality Descriptor

LocalityDescriptor ldesc(A, INTER-THREAD loc);
§§$ §§§ Architectural techniques:

@ 1) (CTA Scheduling

% §$§ 5%5 2) Prefetching
3 §$§ ééé 3) DataPlacement

v dim

CTA Compute Grid

\

Y dim Ydim

/|

<~ Xdim
Data Structure A

28

Data Placement

Cluster Queues

AVA

Cluster0 Cluster 1 Cluster2 Cluster3

Ydim Ydim

lll
000000000

Data Structure A

Memory Memory

.
--

NUMA Zone0 NUMAZone1 NUMAZone2 NUMA Zone3

Leveraging the Locality Descriptor

LocalityDescriptor ldesc(A, INTER-THREAD, tile,
\ —y All threads stall because

é | ﬁiﬁ $§$ they wait on the same data
i ééé iéi Archltectural techmques

Ydim Y dim
N4 \% ééé 2) Prefetchmg
= Kdm ~dim 3) Data Placement
Data Structure A CTA Compute Grid

30

Outline

Why leveraging data locality is challenging?

The Locality Descriptor

Methodology

Evaluation Infrastructure: GPGPUSim v3.2.2
Workloads: Parboil, Rodinia, CUDA SDK, Polybench

System Parameters:

Shader Core: 1.4 GHz; GTO scheduler [50]; 2 schedulers per SM, Round-robin (TA
scheduler

SM Resources Registers: 32768; Scratchpad: 48KB, L1: 32KB, 4 ways

Memory Model: FR-FCFS scheduling [59, 60], 16 banks/channel

Single Chip System: 15 SMs; 6 memory channels; L2: 768KB, 16 ways
Multi-Chip System:4 NUMA zones, 64 SMs (16 per zone); 32 memory channels;
L2: 4MB, 16 ways; Inter-GPM Interconnect: 192 GB/s;

DRAM Bandwidth: 768 GB/s (192 GB/s per module)

32

Locality descriptors are an effective means to leverage cache locality

Different locality types require different optimizations
A single optimization is often insufficient

SK DT \Hg 2D > SeM LIB AMD
INTER-THREAD fNTER-THREAD (NEARBY)) (INTRA-THREAD) Geomean
(COACCESSED

Performance Impact: Leveraging NUMA Locality

O Baseline O FirstTouch-Distrib O LDesc-Placement M LDesc
3

2.5 53.7%
o 2 (up to 2.8x)
=]

D 15
v
o
LA
0.5
0

34

Conclusion

Problem;

GPU programming models have no explicit abstraction to express data locality
Leveraging data locality is a challenging task, as a result

Our Proposal: The Locality Descriptor
A HW-SW abstraction to explicitly express data locality
A architecture-agnostic and flexible SW interface to express data locality
Enables HW to leverage key program semantics to optimize locality

Key Results:

26.6% (up to 46.6%) performance speed up from leveraging cache locality
53.7% (up to 2.8x) performance speed up from leveraging NUMA locality

35

The Locality Descriptor

A Holistic Cross-Layer Abstraction
to Express Data Locality in GPUs

Nandita Vijaykumar
Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons, Onur Mutlu

Carnegie

Mellon = GANVIDIA. ETH ziric

University

