
Proceedings

2012 IEEE/ACM 45th International Symposium

on Microarchitecture

MICRO-45

Proceedings

2012 IEEE/ACM 45th International Symposium

on Microarchitecture

1-5 December 2012 / Vancouver, British Columbia, Canada

Los Alamitos, California

Washington • Tokyo

Copyright © 2012 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy
beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at
the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect
the authors’ opinions and, in the interests of timely dissemination, are published as presented and without change.
Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer
Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number E4924

ISBN 978-0-7695-4924-8

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office

10662 Los Vaqueros Circle P.O. Box 1331 Watanabe Bldg., 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama

Los Alamitos, CA 90720-1314 Tel: + 1 732 981 0060 Minato-ku, Tokyo 107-0062
Tel: + 1 800 272 6657 Fax: + 1 732 981 9667 JAPAN
Fax: + 1 714 821 4641 http://shop.ieee.org/store/ Tel: + 81 3 3408 3118

http://computer.org/cspress
csbooks@computer.org

customer-service@ieee.org Fax: + 81 3 3408 3553
tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Bob Werner
Cover art production by Joseph Daigle / Studio Productions

IEEE Computer Society

Conference Publishing Services (CPS)
http://www.computer.org/cps

2012 IEEE/ACM 45th Annual

International Symposium

on Microarchitecture

MICRO 2012

Table of Contents

Message from the General Chair...ix

Message from the Program Chair..x

Organizing Committee...xiii

Program Committee ...xiv

External Review Committee..xv

Reviewers..xvii

Session IA - Memory Systems I

FPB: Fine-grained Power Budgeting to Improve Write Throughput of Multi-level Cell

Phase Change Memory ...1

Lei Jiang, Youtao Zhang, Bruce R. Childers, and Jun Yang

Leveraging Heterogeneity in DRAM Main Memories to Accelerate Critical Word

Access ...13

Niladrish Chatterjee, Manjunath Shevgoor, Rajeev Balasubramonian, Al Davis, Zhen Fang,

Ramesh Illikkal, and Ravi Iyer

Transactional Memory Architecture and Implementation for IBM System Z ...25

Christian Jacobi, Timothy Slegel, and Dan Greiner

Session IB - Fault Tolerance

Warped-DMR: Light-weight Error Detection for GPGPU ..37

Hyeran Jeon and Murali Annavaram

The Performance Vulnerability of Architectural and Non-architectural Arrays

to Permanent Faults ..48

Damien Hardy, Isidoros Sideris, Nikolas Ladas, and Yiannakis Sazeides

NoCAlert: An On-Line and Real-Time Fault Detection Mechanism

for Network-on-Chip Architectures ..60

Andreas Prodromou, Andreas Panteli, Chrysostomos Nicopoulos, and Yiannakis Sazeides

vv

Session IIA - GPUs and SIMD

Cache-Conscious Wavefront Scheduling ...72

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt

Libra: Tailoring SIMD Execution Using Heterogeneous Hardware and Dynamic

Configurability ..84

Yongjun Park, Jason Jong Kyu Park, Hyunchul Park, and Scott Mahlke

Unifying Primary Cache, Scratch, and Register File Memories in a Throughput

Processor ...96

Mark Gebhart, Stephen W. Keckler, Brucek Khailany, Ronny Krashinsky, and William J. Dally

Kernel Weaver: Automatically Fusing Database Primitives for Efficient GPU

Computation ...107

Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili

Session IIB - Energy I

KnightShift: Scaling the Energy Proportionality Wall through Server-Level

Heterogeneity ..119

Daniel Wong and Murali Annavaram

Rethinking DRAM Power Modes for Energy Proportionality ...131

Krishna T. Malladi, Ian Shaeffer, Liji Gopalakrishnan, David Lo, Benjamin C. Lee,

and Mark Horowitz

CoScale: Coordinating CPU and Memory System DVFS in Server Systems ..143

Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F. Wenisch,

and Ricardo Bianchini

Predicting Performance Impact of DVFS for Realistic Memory Systems ...155

Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N. Patt

Session IIIA – Big Data

Vector Extensions for Decision Support DBMS Acceleration ...166

Timothy Hayes, Oscar Palomar, Osman Unsal, Adrian Cristal, and Mateo Valero

NOC-Out: Microarchitecting a Scale-Out Processor ...177

Pejman Lotfi-Kamran, Boris Grot, and Babak Falsafi

SLICC: Self-Assembly of Instruction Cache Collectives for OLTP Workloads ...188

Islam Atta, Pınar Tözün, Anastasia Ailamaki, and Andreas Moshovos

Session IIIB – Energy II

Systematic Energy Characterization of CMP/SMT Processor Systems via Automated

Micro-Benchmarks ...199

Ramon Bertran, Alper Buyuktosunoglu, Meeta S. Gupta, Marc Gonzalez, and Pradip Bose

vivi

AUDIT: Stress Testing the Automatic Way ...212

Youngtaek Kim, Lizy Kurian John, Sanjay Pant, Srilatha Manne, Michael Schulte,

W. Lloyd Bircher, and Madhu S. Sibi Govindan

Accurate Fine-Grained Processor Power Proxies ...224

Wei Huang, Charles Lefurgy, William Kuk, Alper Buyuktosunoglu, Michael Floyd,

Karthick Rajamani, Malcolm Allen-Ware, and Bishop Brock

Session IVA – Memory Systems II

Fundamental Latency Trade-off in Architecting DRAM Caches: Outperforming

Impractical SRAM-Tags with a Simple and Practical Design ...235

Moinuddin K. Qureshi and Gabe H. Loh

A Mostly-Clean DRAM Cache for Effective Hit Speculation and Self-Balancing

Dispatch ..247

Jaewoong Sim, Gabriel H. Loh, Hyesoon Kim, Mike O’Connor, and Mithuna Thottethodi

CoLT: Coalesced Large-Reach TLBs ..258

Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattacharjee

Session IVB – Interconnects

NoRD: Node-Router Decoupling for Effective Power-gating of On-Chip Routers ...270

Lizhong Chen and Timothy M. Pinkston

Dynamic Reconfiguration of 3D Photonic Networks-on-Chip for Maximizing

Performance and Improving Fault Tolerance ...282

Randy Morris, Avinash Karanth Kodi, and Ahmed Louri

Addressing End-to-End Memory Access Latency in NoC-Based Multicores ...294

Akbar Sharifi, Emre Kultursay, Mahmut Kandemir, and Chita R. Das

Session VA – Core Design

MorphCore: An Energy-Efficient Microarchitecture for High Performance ILP

and High Throughput TLP ...305

Khubaib, M. Aater Suleman, Milad Hashemi, Chris Wilkerson, and Yale N. Patt

Composite Cores: Pushing Heterogeneity Into a Core ...317

Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M. Sleiman, Ronald Dreslinski,

Thomas F. Wenisch, and Scott Mahlke

Control-Flow Decoupling ...329

Rami Sheikh, James Tuck, and Eric Rotenberg

Session VB – Coherence and Consistency

Spatiotemporal Coherence Tracking ..341

Mohammad Alisafaee

viivii

Predicting Coherence Communication by Tracking Synchronization Points at Run

Time ..351

Socrates Demetriades and Sangyeun Cho

Vulcan: Hardware Support for Detecting Sequential Consistency Violations

Dynamically ..363

Abdullah Muzahid, Shanxiang Qi, and Josep Torrellas

Session VIA – Caching

Amoeba-Cache: Adaptive Blocks for Eliminating Waste in the Memory Hierarchy ..376

Snehasish Kumar, Hongzhou Zhao, Arrvindh Shriraman, Eric Matthews, Sandhya Dwarkadas,

and Lesley Shannon

Improving Cache Management Policies Using Dynamic Reuse Distances ...389

Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero,

and Alexander V. Veidenbaum

Session VIB – Modeling and Partitioning

Kernel Partitioning of Streaming Applications: A Statistical Approach to

an NP-complete Problem ..401

Petar Radojković, Paul M. Carpenter, Miquel Moretó, Alex Ramirez, and Francisco J. Cazorla

Inferred Models for Dynamic and Sparse Hardware-Software Spaces ..413

Weidan Wu and Benjamin C. Lee

Session VIIA – Dynamic Optimization and Parallelization

SMARQ: Software-Managed Alias Register Queue for Dynamic Optimizations ...425

Cheng Wang, Youfeng Wu, Hongbo Rong, and Hyunchul Park

Profiling Data-Dependence to Assist Parallelization: Framework, Scope,

and Optimization ..437

Alain Ketterlin and Philippe Clauss

Session VIIB – Accelerators

Neural Acceleration for General-Purpose Approximate Programs ..449

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger

Designing a Programmable Wire-Speed Regular-Expression Matching Accelerator ..461

Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran, Uzi Shvadron,

and Kubilay Atasu

Author Index ...473

viiiviii

Message from the General Chair

I would like to extend a warm welcome to all Micro-45 attendees to Vancouver, British Columbia. As
Micro’s first time in Canada, it is perhaps appropriate as a late fall conference that it is hosted in Canada’s
warmest city. The Vancouver metropolitan area is Canada’s third largest by population, and Vancouver
has consistently ranked near the top in worldwide “livable city” rankings for more than a decade. I am
hopeful that first time visitors as well as those well acquainted with this great city and surrounding region
take this opportunity to explore the many things it has to offer. We have planned an exciting banquet and
excursion to the Vancouver Aquarium, Canada’s largest and one of Vancouver’s top attractions.

Micro continues its tradition as the premier forum for presentation and discussion of new ideas in
microarchitecture, compilers, hardware/software interfaces, and design of advanced computing and
communication systems. As the foundation of any successful conference is the program, I would like to
thank first and foremost Program Chair Onur Mutlu. Onur worked tirelessly to establish the program
committee, develop the review process, run the program committee meeting and develop the physical
program. Two unique aspects this year proposed and developed by Onur are the Lightning Session and
the Poster Session. This year we are also pleased to have three invited speakers: Charles Webb of IBM,
Turner Whitted of Microsoft Research and this year’s Bob Rau award recipient Josh Fisher.

I am also grateful to the rest of the organizing committee. The huge effort involved in putting on a Micro
conference would not have been possible without their assistance. Finance Chair Tor Aamodt was
responsible for raising corporate donations. Tutorials and Workshops Chair Derek Chiou supervised the
administration of tutorials and workshops, which are an important component of the overall conference.
This year we have five workshops and three tutorials during the weekend before the conference.
Publication Chair Benjamin Lee handled the publication process. This year we are publishing both main
conference and workshop papers online and providing them to attendees in electronic form, with printed
proceedings available upon special order. Registration Chair Arrvindh Shriraman has been indispensable
with setting up and supervising the online registration process, and physical registration will be assisted
by some of his students. Student Travel Grant Chair Matt Farrens is running the travel grant process to
control the distribution of travel grants. Finally, I would like to acknowledge Web and Submissions
Chairs Chris Fallin, Justin Meza and Vivek Seshadri who maintained the paper submissions web site and
the conference web site.

I would also like to thanks our corporate sponsors, whose valuable funding helped make the conference
possible: AMD, ARM, HP, IBM Research, Intel, Microsoft and Qualcomm. The Steering Committee has
provided helpful advice and guidance. Finally we are indebted to our society sponsors: ACM SIGMICRO
and IEEE TC-uARCH for their continued interest and support.

Steve Melvin

General Chair, Micro-45

ixix

Message from the Program Chair

I am delighted to present you the technical program for Micro-45. This year’s program consists of 40
technical papers and two keynote speeches. In addition to appearing in the mostly-online proceedings, the
papers will be presented in three different forms during the conference: as a 100-second key idea
presentation during the opening lightning (or, teaser) session, a full 25-minute length presentation during
paper sessions, and as a poster in the poster session. We hope this format will allow the benefits of having
parallel sessions while giving the authors an opportunity to reach out to most of the Micro attendees
during the lightning and poster sessions, and allowing the attendees to delve into the presented works at
different levels of depth.

The 40 papers you will be exposed to were selected from the 228 paper submissions. The Program
Committee (PC), consisting of 44 distinguished experts, made this selection, closely aided by an External
Review Committee (ERC) of 106 additional experts active in our field. Additional external reviewers
aided both committees. In total, 248 reviewers wrote 1325 reviews, 815 of which were written by the
Program Committee members. The average number of reviews per paper was 5.8. 216 submissions
received at least 5 reviews, 159 received at least 6 reviews, and 44 received at least 7 reviews. I myself
assigned all reviewers for each paper after careful examination of the paper, except for those 29 I had a
conflict-of-interest with. The review process of the 26 submissions I had a conflict-of-interest with were
completely handled by Scott Mahlke, and that of the 3 submissions both Scott and I had a conflict-of-
interest with were completely handled by Derek Chiou. I thank both of them for their dedicated service.

The authors were given a chance to respond to the initial evaluations of the reviewers via the rebuttal
process. After the rebuttal period ended on August 16, 2012, all reviewers were asked to revise their
evaluations (both numerical scores and written comments) for each paper, taking into account the author
response. Extensive online discussions and review revisions occurred during the 10 days before the PC
meeting. At least 160 of the submissions were discussed online. External reviewers were fully involved in
the entire review and discussion process leading up to the PC meeting. I requested additional expert
reviews after rebuttal for some submissions where there were differences of opinion among the reviewers.

The Program Committee met for 1.5 days on August 25-26, 2012 at the Hilton Chicago O’Hare Airport to
make the final selection of papers. All PC members were present for the entire first day of the meeting,
and 42 out of the 44 members were present on the second day. In total, 82 submissions were discussed
during the meeting, in a rank order of overall merit score that takes into account both pre-rebuttal and
post-rebuttal overall merit scores of each reviewer, weighted by the reviewer’s expertise and generosity,
which I intend to disclose in another document. Any PC member who did not have a conflict-of-interest
with a paper or an external reviewer who reviewed the paper had the choice to request the discussion of a
submission during the meeting. Several controversial submissions received extensive discussions during
the meeting, which was facilitated by the multi-day nature of the meeting. I sought consensus across the
entire PC to make a decision for each paper, and resorted to a full vote across the entire PC to make the
accept/reject decision only in cases where consensus was not reached. I am very grateful for the hard
work, professionalism, fairness, and thorough reviews of the PC members during, before and after the PC
meeting.

After the accept/reject decisions were made, with the help of the PC members, I assembled summary
statements that provide a summary of the PC discussion for most of the papers that were discussed but
rejected in the PC meeting. I hope this information provided more transparency to the PC discussion
process and would be useful for the authors in improving their research.

Each accepted paper was shepherded by one PC member between September 20 and November 5, 2012.
The authors of each paper provided the shepherd with a “summary of changes” document describing how

xx

they would address the reviewer feedback. The shepherd PC member assembled and conveyed the
feedback of the PC and the reviewers to the authors, and aided the authors in improving the paper.

This year, we introduced several new and different aspects into both the submission and review process as
well as the final program. The main goals were to improve: 1) the quality of the decisions during the
paper selection process, 2) the transparency of the paper selection process, 3) the level of involvement of
the external reviewers in the selection process, 4) the authors’ ability to respond to initial reviewer
evaluations and potential questions that may come up after the rebuttal process, 5) the quality of the final
program, and 6) the quality of interactions during the conference, especially in the presence of parallel
sessions. I intend to describe the reasoning behind these new and different aspects, and detail the feedback
we received on them in a longer experience report separately. Here, I briefly list some of them:

 The submission format of the papers was made the same as the final format to, most importantly,
improve the fairness of paper selection process and to begin an attempt to standardize the
submission format of Micro and other architecture conferences. I am delighted to see that this
format was improved and adopted for the purposes of HPCA 2013 and ISCA 2013 submissions.

 The authors were given the option to upload an appendix in addition to the submission.
Reviewers were not required to read the appendix; some of them did. An important purpose was
to give the authors a chance to anticipate potential detail questions and satisfy the curiosity of the
reviewers who wanted to dig deeper.

 The authors were given the option to upload a document summarizing any past reviews they may
have received for a previous version of the submission, if any, to a past venue, along with a
description of how they addressed those reviews. The purpose was to give the authors a chance to
proactively address potential concerns that might appear after the rebuttal period.

 The Program Committee meeting spanned 1.5 days instead of the conventional 1-day meeting.
This allowed the committee to deliberate more and reduced the pressure on the committee for
making hasty decisions.

 An External Review Committee was employed to aid the Program Committee by augmenting the
expertise of the PC members. ERC members committed to reviewing 3-6 submissions before the
conference. Some ERC members reviewed as many as 7 submissions.

 All external reviewers were involved in the paper selection process, before and after the rebuttal
until up to the Program Committee meeting. External reviewers were allowed to see rebuttals and
other reviews, discuss the paper with other reviewers, and update their scores and reviews based
on the rebuttal and the discussion.

 The rebuttal process was made more transparent to the authors. All initial numerical scores of
reviewers were exposed to the authors during the rebuttal process. The review form explicitly
allowed the reviewers to specify the three most important specific questions to be answered by
the authors.

 The reviewers were required to read the author rebuttals and revise their reviews accordingly.
They were asked to include “post-rebuttal comments” in their revised reviews. A large majority
of reviewers updated their reviews as part of this process.

 Summary statements were provided to the authors of many rejected papers, if the paper was
discussed during the PC meeting, describing the key points of the PC discussion of the paper.

 All accepted papers were shepherded to improve quality.
 A single-track lightning session will be the opening session of the conference (after the first

keynote) to enable authors to get across key ideas of their papers to most of the conference
attendees.

 A poster session will take place on the second day of the conference to enable the authors to
discuss their work with the attendees and enable the attendees to have a technical networking
session.

xixi

Clearly, this entire process has only been possible with the continuous hard work and participation of the
Program Committee members, External Review Committee members, and the external reviewers who
aided the PC and the ERC. I thank them gratefully. I especially thank the PC members who, in addition to
thoroughly reviewing papers, caringly and diligently shepherded the accepted papers – I know the hard
work they put in for this effort, as I was CC’ed in most of the correspondence between the authors and the
shepherds. Special thanks to Scott Mahlke, who coordinated the review process of a considerably large
number of (26) papers I had conflict-of-interest with.

Vivek Seshadri, the head Micro-45 submissions and web chair, was a key enabler of the entire submission
and review process, as he tremendously helped with all aspects of it. Without his extensive help in
running the submissions and review website, preparations for the PC meeting, and attendance, assistance
and note-taking during the PC meeting, none of the above would have been easily possible. I would also
like to thank two of my other PhD students, Chris Fallin and Justin Meza, who worked hard as the other
submissions and web chairs.

I would like to especially thank Rich Belgard, Yale Patt, Tom Conte, and Wen-mei Hwu, who provided
valuable advice in all steps and were always available. Many thanks to the other Steering Committee
members, David Albonesi, Kemal Ebcioglu, Paolo Faroboschi, Scott Mahlke, Margaret Martonosi, Bill
Mangione-Smith, and Milos Prvulovic for being helpful when needed and supportive. I am very much
grateful to Pradip Bose, Ronny Ronen and Ben Zorn, whom I consulted with on many issues. Last year’s
Program Co-chairs, Andreas Moshovos and Milos Prvulovic, and the 2010 Program Chair Sanjay Patel
provided feedback on their recent experience along with useful documents. Doug Burger, James Hoe,
Trevor Mudge, Jim Smith, Guri Sohi, Per Stenstrom, and Chris Wilkerson also provided valuable
feedback and opinions at various points in time, and I thank them for that. I am also very thankful to the
General Chair Steve Melvin for being supportive and acting as a sounding board.

Finally, I would like to thank our keynote speakers, Charles Webb and Turner Whitted, for accepting my
invitation, the Publications Chair Ben Lee and the Registration Chair Arrvindh Shriraman for putting up
with my requests, and Laura McGee and Can Alkan for their help with meeting organization and the
conference website.

The technical program of Micro-45 reflects a strong and thriving community effort, shaped by literally
hundreds of contributors, including especially the submitting authors, PC and ERC members, external
reviewers, invited speakers, and others acknowledged above (and yet others I may have unintentionally
forgotten to acknowledge) whom have directly or indirectly affected the process. I would like to thank
especially the submitting authors for the strong and diverse submissions that have allowed the review
committees to choose from a strong set of technical papers.

I hope you enjoy Micro-45, and are looking forward to the technical program as much as I am. It was an
honor for me to serve as the Program Chair. I would very much welcome any feedback you may have on
anything related to Micro-45, especially on the new things we tried this year.

Onur Mutlu
Program Chair, Micro-45

xiixii

Organizing Committee

General Chair
Stephen Melvin, Consultant

Program Chair
Onur Mutlu, Carnegie Mellon University

Finance Chair
Tor Aamodt, British Columbia

Tutorials and Workshops Chair
Derek Chiou, UT Austin

Publication Chair
Benjamin Lee, Duke University

Registration Chair
Arrvindh Shriraman, Simon Fraser University

Web and Submissions Chairs
Chris Fallin, Carnegie Mellon University
Justin Meza, Carnegie Mellon University
Vivek Seshadri, Carnegie Mellon University

Student Travel Grant Chair
Matt Farrens, UC Davis

Steering Committee
David Albonesi, Cornell
Richard Belgard, Consultant (Chair)
Tom Conte, Georgia Tech.
Kemal Ebcioglu, Global Supercomputing
Paolo Faraboschi, HP Labs
Wen-mei Hwu, University of Illinois
Scott Mahlke, University of Michigan
Margaret Martonosi, Princeton
Bill Mangione-Smith, IP Navigation Group
Yale Patt, UT Austin
Milos Prvulovic, Georgia Tech

xiiixiii

Program Committee

Tor Aamodt, British Columbia
David Albonesi, Cornell
Krste Asanovic, Berkeley
Todd Austin, Michigan
Rajeev Balasubramonian, Utah
Richard Belgard, Consultant
Pradip Bose, IBM Research
David Brooks, Harvard
Douglas Carmean, Intel
Derek Chiou, UT Austin
Robert Colwell, DARPA
Tom Conte, Georgia Tech
Chita Das, Penn State
Michel Dubois, USC
Evelyn Duesterwald, IBM
Lieven Eeckhout, Ghent University
Boris Grot, EPFL
Nikos Hardavellas, Northwestern
James Hoe, CMU
Wen-mei Hwu, Illinois
Engin Ipek, Rochester
Daniel Jimenez, UT San Antonio
Hyesoon Kim, Georgia Tech
Konrad Lai, Intel
Gabriel Loh, AMD
Ahmed Louri, NSF/Arizona
Scott Mahlke, Michigan
Srilatha Manne, AMD
Andreas Moshovos, Toronto
Trevor Mudge, Michigan
Yale Patt, UT Austin
Milos Prvulovic, Georgia Tech
Moinuddin Qureshi, Georgia Tech
Ronny Ronen, Intel
Yanos Sazeides, Cyprus
Michael Schlansker, HP Labs
Andre Seznec, IRISA/INRIA
Michael Shebanow, Samsung
Burton Smith, Microsoft
Jared Smolens, Oracle
Viji Srinivasan, IBM
Chris Wilkerson, Intel
Yuanyuan Zhou, UCSD
Craig Zilles, Illinois

xivxiv

External Review Committee

Jung Ho Ahn, Seoul National University
Alaa Alameldeen, Intel
Murali Annavaram, USC
Leslie Barnes, AMD
Brad Beckmann, AMD
Ricardo Bianchini, Rutgers
Doug Burger, Microsoft
Alper Buyuktosunoglu, IBM
John Carter, IBM
Luis Ceze, Washington
Jichuan Chang, HP Labs
Zeshan Chishti, Intel
Sangyeun Cho, Pitt
Adrian Cristal, Barcelona Supercomputing
 Center and Microsoft
Reetuparna Das, Michigan
Ganesh Dasika, ARM
Nirav Dave, SRI
Srinivas Devadas, MIT
Eiman Ebrahimi, NVIDIA
Elmootazbellah Elnozahy, IBM
Mattan Erez, UT-Austin
Yoav Etsion, Technion
Babak Falsafi, EPFL
Matt Farrens, UC Davis
Kayvon Fatahalian, CMU
Krisztian Flautner, ARM
Kanad Ghose, Binghamton
Andy Glew, MIPS and comp-arch.net
Brian Gold, Oracle
Paul Gratz, TAMU
Rajiv Gupta, UC Riverside
Shantanu Gupta, Intel
Sudhanva Gurumurthi, Virginia/AMD
Dan Hammerstrom, DARPA
Maurice Herlihy, Brown
Glenn Hinton, Intel
Brian Hirano, Oracle
Jim Holt, Freescale
Michael Huang, Rochester
Jaehyuk Huh, KAIST
Hillery Hunter, IBM
Ravi Iyer, Intel
Norm Jouppi, HP Labs
Mahmut Kandemir, Penn State
Manolis Katevenis, FORTH and

Univ of Crete
Steve Keckler, NVIDIA and UT-Austin
Omer Khan, UConn

John Kim, KAIST
Nam Sung Kim, Wisconsin
Vijaykrishnan Narayanan, Penn State
Avinash Kodi, Ohio
Christos Kozyrakis, Stanford
Eren Kursun, IBM
Jim Larus, Microsoft
James Laudon, Google
Chang Joo Lee, Intel
Benjamin C. Lee, Duke
Hsien-Hsin Lee, Georgia Tech
Jaejin Lee, SNU
Ruby Lee, Princeton
David Lie, University of Toronto
Shan Lu, Wisconsin
Milo Martin, Penn
Mojtaba Mehrara, NVIDIA
Stephan Meier, Apple
David Meisner, Facebook
Asit Kumar Mishra, Penn State
Subhasish Mitra, Stanford
Naveen Muralimanohar, HP Labs
Ravi Nair, IBM
Satish Narayanasamy, Michigan
Emre Ozer, ARM
Sanjay Patel, Illinois
Timothy Pinkston, USC
Brian Prasky, IBM
Partha Ranganathan, HP Labs
VJ Reddi, UT-Austin
Steve Reinhardt, AMD
Glenn Reinman, UCLA
Jose Renau, UCSC
Scott Rixner, Rice
Ali Saidi, ARM
Simha Sethumadhavan, Columbia
Xipeng Shen, William and Mary
Tim Sherwood, UCSB
Jim Smith, Wisconsin
Dan Sorin, Duke University
Per Stenstrom, Chalmers
Karin Strauss, MSR
Edward Suh, Cornell
Aater Suleman, Calxeda
Dam Sunwoo, ARM
Oliver Temam, INRIA
Radu Teodorescu, Ohio State
Josep Torrellas, Illinois
Osman Unsal, BSC

xvxv

Mateo Valero, UPC
Thomas Wenisch, Michigan
Emmett Witchel, UT-Austin
Yuan Xie, Penn State
Sudhakar Yalamanchili, Georgia Tech
Qing Yang, Rhode Island
Sungjoo Yoo, Postech
Doe Hyun Yoon, HP Labs
Huiyang Zhou, NCSU
Ben Zorn, Microsoft Research

xvixvi

MICRO 2012 Reviewers

Yoshi Abe, CMU
Almutaz Adileh, EPFL
Berkin Akin, CMU
Haitham Akkary, AUB
Fuad Al Tabba, Oracle
Erik Altman, IBM
Amin Ansari, Illinois
Adria Armejach, BSC
David August, Princeton
Rachata Ausavarungnirun, CMU
Seungjae Baek, Pittsburgh
Ali Bakhoda, UBC
Ioana Baldini, IBM Research
Avram Bar-Cohen, DARPA
Christopher Batten, Cornell
Michela Becchi, Missouri
Oren Ben-Kiki, Intel
Keren Bergman, Columbia
Kerry Bernstein, DARPA
Valeria Bertacco, Michigan
Jesse Beu, Georgia Tech
Rishiraj Bheda, Georgia Tech
Hans Boehm, HP Labs
Michael Bond, Ohio State
Mary Brown, IBM
Francisco Cazorla, BSC
Gaurav Chadha, Michigan
Kevin Chang, CMU
Sai Charan, UC Riverside
Karam Chatha, Arizona State
Niladrish Chatterjee, Utah
Lizhong Chen, USC
Hsiang-yun Cheng, Penn State
Naveen Cherukuri, Intel
Trishul Chilimbi, Microsoft Research
Hyoun Kyu Cho, Michigan
Fred Chong, UC Santa Barbara
David Christie, AMD
John Chu, AMD
Eric Chung, Microsoft Research
Robert Cohn, Intel
Jason Cong, UCLA
Kypros Constantinides, Microsoft Research
Ayse Coskun, Boston University
Yigit Demir, Northwestern
Chen Ding, Rochester
Sang Do, USC
Ronald Dreslinski, Michigan
Ahmed El-Shafiey, UBC

Stijn Eyerman, Ghent
Chris Fallin, CMU
Min Feng, NEC Labs
Michael Ferdman, Stony Brook University
Wilson Fung, UBC
Ron Gabor, Intel
Siddharth Garg, Waterloo
Joseph Gebis, Oracle
Phillip Gibbons, Intel Labs
Boris Ginzburg, Intel
Eugene Gorbatov, Intel
R Govindarajan, Indian Institute of Science
Ed Grochowski, Intel
Anthony Gutierrez, Michigan
Faruk Guvenilir, UT-Austin
Sebastian Hack, Saarland University
Tim Harris, Oracle Labs
Milad Hashemi, UT-Austin
Mike Healy, IBM Research
Eric Hein, Georgia Tech
Mark Hill, Wisconsin
Ron Ho, Oracle
Sunpyo Hong, Georgia Tech
Chris Hughes, Intel
Ibrahim Hur, BSC
Canturk Isci, IBM Research
Ben Jaiyen, CMU
Aamer Jaleel, Intel
Gangwon Jo, Seoul National University
Lizy John, UT Austin
Ryan Johnson, Toronto
Jose Joao, UT-Austin
Adwait Jog, Penn State
Ulya Karpuzcu, Minnesota
Ramesh Karri, NYU Poly
Onur Kayiran, Penn State
Cansu Kaynak, EPFL
Samira Khan, CMU/Intel
Khubaib, UT-Austin
Changkyu Kim, Intel
Dong Wan Kim, UT Austin
E.J. Kim, Texas A&M
Jangwoo Kim, POSTECH
Jungrae Kim, UT Austin
Minjang Kim, Qualcomm
Yoongu Kim, CMU
Nevin Kirman, Intel
Marios Kleanthous, Cyprus
Amit Kumar, Intel

xvii

Pranith Kumar, Georgia Tech
Nagesh Lakshminarayana, Georgia Tech
Benjamin Lee, IBM Research
Chang Joo Lee, Intel
Donghyuk Lee, CMU
Jaekyu Lee, Georgia Tech
Joohwan Lee, Georgia Tech
Charles Lefurgy, IBM
Brian Leung, Intel
Ching-Kai Liang, Georgia Tech
Changhui Lin, UC Riverside
Jamie Liu, CMU
Pejman Lotfi-Kamran, EPFL
Danny Lynch, NVIDIA
Rakan Maddah, Pittsburgh
Ken Mai, CMU
Abhinandan Majumdar, Cornell
Dilan Manatunga, Georgia Tech
Bill Mangione-Smith, Phase Two LLC
Rajit Manohar, Cornell
Mehrtash Manoochehri, USC
Rami Melhem, Pittsburgh
Stephen Melvin, Zytek
Justin Meza, CMU
Rustam Miftakhutdinov, UT-Austin
Abdullah Muzahid, UT San Antonio
Nachi Nachiappan, Penn State
Veynu Narasiman, UT-Austin
Stephen Neuendorffer, Xilinx
Panagiota Nicolaou, Cyprus
Chrysostomos Nicopoulos, Cyprus
Mike O’Connor, AMD Research
Jungju Oh, Georgia Tech
Kunle Olukotun, Stanford
Oscar Palomar, BSC
Andreas Panteli, Cyprus
Michael Papamichael, CMU
Dong-kook Park, Intel
Sunjae Park, Georgia Tech
Yongjun Park, Michigan
Sudeep Pasricha, Colorado State
Bharath Pattabiraman, Northwestern
Gennady Pekhimenko, CMU
Fernando Pereira, UFMG
Keshav Pingali, UT Austin
Jason Poovey, Georgia Tech
Michael Powell, Intel
Andreas Prodromou, Cyprus
Joseph Pusdesris, Michigan
Shanxiang Qi, Illinois
Xuehai Qian, Illinois

Rodric Rabbah, IBM
Paul Racunas, Intel
Shlomo Raikin, Intel
Brian Railing, Georgia Tech
Bipin Rajendran, IBM
Lihu Rappoport, Intel
Minsoo Rhu, UT Austin
Efraim Rotem, Intel
Daniel Ben-Dayan Rubin, Intel
P Sadayappan, Ohio State
Juan Carlos Saez Alcaide,

Complutense University of Madrid
Suleyman Sair, Intel
Mehrzad Samadi, Michigan
Satya, CMU
Rob Schreiber, HP Labs
Naser Sedaghati, Ohio State
Sangmin Seo, Seoul National University
Vivek Seshadri, CMU
Jagdeep Shah, DARPA
Manjunath Shevgoor, Utah
Arrvindh Shriraman, Simon Fraser University
Jaewoong Sim, Georiga Tech
Inderpreet Singh, UBC
Anand Sivasubramaniam, Penn State
Michael Spear, Lehigh
Vilas Sridharan, AMD
Santhosh Srinath, NVIDIA
Sadagopan Srinivasan, Intel
Srikanth Srinivasan, Intel
Jared Stark, Intel
Lavanya Subramanian, CMU
Jinho Suh, Intel
Jakub Szefer, Princeton
Sudha Thiruvengadam, AMD
Mithuna Thottethodi, Purdue/AMD
Yingying Tian, UT San Antonio
Sasa Tomic, BSC
Francis Tseng, Intel
Dean Tullsen, UC San Diego
George Tziantzioulis, Northwestern
Aniruddha Udipi, ARM
Alexander Veidenbaum, UC Irvine
Xavier Vera, Intel
Carlos Villavieja, UT-Austin
Thomas Vogelsang, Rambus
Carl Waldspurger, Consultant
Yan Wang, UC Riverside
Yu Wang, CMU
Zhe Wang, UT San Antonio
Uri Weiser, Technion

xviii

Gabe Weisz, CMU
Wei Wu, Intel
Hongyi Xin, CMU
Adi Yoaz, Intel
HanBin Yoon, CMU
Alenka Zajic, Georgia Tech
Ayal Zaks, Intel
Tao Zhang, Penn State
Xiangyu Zhang, Purdue
Jishen Zhao, Penn State
Hongzhong Zheng, Rambus
Tianhao Zheng, UT Austin
Xiaoyun Zhu, VMware

xix

FPB: Fine-grained Power Budgeting to Improve Write Throughput of Multi-level
Cell Phase Change Memory

Lei Jiang † Youtao Zhang § Bruce R. Childers§ Jun Yang †
† Electrical and Computer Engineering Department

§ Department of Computer Science
University of Pittsburgh

†{lej16,juy9}@pitt.edu §{zhangyt,childers}@cs.pitt.edu

Abstract
As a promising nonvolatile memory technology, Phase Change Mem-
ory (PCM) has many advantages over traditional DRAM. Multi-
level Cell PCM (MLC) has the benefit of increased memory capacity
with low fabrication cost. Due to high per-cell write power and
long write latency, MLC PCM requires careful power management
to ensure write reliability. Unfortunately, existing power manage-
ment schemes applied to MLC PCM result in low write throughput
and large performance degradation.

In this paper, we propose Fine-grained write Power Budgeting
(FPB) for MLC PCM. We first identify two major problems for MLC
write operations: (i) managing write power without consideration
of the iterative write process used by MLC is overly pessimistic;
(ii) a heavily written (hot) chip may block the memory from ac-
cepting further writes due to chip power restrictions, although most
chips may be available. To address these problems, we propose two
FPB schemes. First, FPB-IPM observes a global power budget and
regulates power across write iterations according to the step-down
power demand of each iteration. Second, FPB-GCP integrates a
global charge pump on a DIMM to boost power for hot PCM chips
while staying within the global power budget. Our experimental re-
sults show that these techniques achieve significant improvement on
write throughput and system performance. Our schemes also inter-
act positively with PCM effective read latency reduction techniques,
such as write cancellation, write pausing and write truncation.

1. Introduction
Phase Change Memory (PCM) has emerged as a leading technol-
ogy to alleviate the leakage and scalability problems of traditional
DRAM [24]. With advantages over DRAM, such as near zero
cell leakage, better scalability and comparable read speed, PCM
is poised to replace a significant portion of DRAM in main mem-
ory [12, 19, 31]. A PCM cell uses different resistances to represent
logic bits. Single-level cell PCM (SLC) differentiates between two
resistance levels to store a bit (logic ‘0’ or ‘1’). Due to the large
resistance contrast between ‘0’ and ‘1’, intermediate levels can be
used to store multiple bits per cell in multi-level cell PCM (MLC).

Although memory capacity is effectively increased with low per
bit fabrication cost in MLC PCM, this technology has shorter write
endurance, longer access latency, and larger write power than SLC
PCM. Many schemes have been proposed to address some of these
issues. In addition to schemes for SLC PCM [12, 18, 19, 25, 26, 31],
Qureshi et al. proposed to transform MLC PCM pages to SLC pages
for fast access [21]; Qureshi et al. proposed to pause MLC write op-
erations and prioritize read operations to improve performance [20];
Jiang et al. proposed write truncation to reduce average MLC write
time and use ECC to correct write errors [10]. Joshi et al. proposed
an energy-efficient programming scheme for MLC PCM [11].

While past research has made significant strides, high PCM write
power remains a major obstacle to improving throughput. For ex-
ample, a recent study showed that the power provided by DDR3-
1066×16 memory allows only 560 SLC PCM cells to be written in
parallel [8], i.e., at most two 64B lines can be written simultaneously
using Flip-n-Write [4]. Hay et al. proposed to track the available
power budget and issue writes continuously as long as power de-
mands can be satisfied [8]. Their heuristic works well for SLC PCM
based main memory.

Unfortunately, applying the heuristic to MLC PCM results in low
write throughput and large performance degradation: On average,
we observed a 51% performance degradation over an ideal baseline
without power limit. We identified two major problems for MLC
PCM that limit throughput and performance for this heuristic.

The first problem is that allocating the same power budget for the
entire duration of an MLC line write is often too pessimistic. A MLC
PCM write is done in iterations, starting with a RESET pulse and
followed by a varying number of SET pulses. The RESET pulse is
short and of large magnitude while the SET pulse is long and of low
magnitude. In addition, when writing one PCM line, most cells in
the line require only a small number of SET pulses [10]. Allocating
power according to the RESET power request and for the duration
of the longest cell write is power inefficient.

The second problem is that one heavily written (hot) PCM chip
may block the memory subsystem even though most memory chips
are idle. This phenomenon arises because the power that each chip
can provide is restricted by the area of its charge pump. When mul-
tiple writes compete for a single chip, some writes have to wait to
avoid exceeding the charge pump’s capability. Otherwise, cell writes
become unreliable.

We propose two new fine-grained power budgeting (FPB)
schemes to address these problems:

• FPB-IPM is a scheme that regulates write power on each write it-
eration in MLC PCM. Since writing one MLC line requires multi-
ple iterations with step-down power requirements, FPB-IPM aims
to (i) reclaim any unused write power after each iteration and
(ii) reduce the maximum power requested in a write operation
by splitting the first RESET iteration into several RESET itera-
tions. By enabling more MLC line writes in parallel, FPB-IPM
improves memory throughput.

• FPB-GCP is a scheme that mitigates power restrictions at chip
level. Rather than enlarging the charge pump in an individual
chip, FPB-GCP integrates a single global charge pump (GCP) on
a DIMM. It dynamically pumps extra power to hot chips in the
DIMM. Since GCP has lower effective power efficiency (i.e., the
percentage of power that can be utilized for writes), we consider
different cell mapping optimizations to maximize throughput.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.10

1

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.10

1

one logic bank (interleaved across 8 physical chips)

8 PCM chips

per rank

�
�
�

�
�
�

From/To DRAM buffer/caches

�
��
��

LCPLCPLCPLCPLCP LCPLCPLCP

�	
��
��
�

IM

������
����������

Scheduler

DIMM

����� !"#
$%&# $��'(%)'�*+ &,!-
./# .0+�'01�� /'�'*+�
234# 2+'5 4,+,+
624# 6�10+ 4,+,+
2+"-4# 2+'5 2+"-��"+ 4,+,+

Figure 1: The baseline architecture of a MLC PCM-based memory subsystem (One DIMM).

We evaluate our proposed schemes and compare them to state-of-
the-art PCM power management. Our results show that FPB-IPM
and FPB-GCP are orthogonal designs that together successfully ad-
dress the problems described above for MLC write operations. On
average, FPB achieves a 3.4× throughput improvement and 76% per-
formance improvement over state-of-the-art power budgeting.

The rest of the paper presents background and motivation for our
designs in Section 2. FPB-IPM and FPB-GCP are described in Sec-
tions 3 and 4. We present our experimental methodology and an-
alyze results in Section 5 and 6 respectively. Related work is dis-
cussed in Section 7. Section 8 concludes the paper.

2. Background and motivation
In this section, we first discuss a typical MLC PCM memory archi-
tecture and details of MLC write operations. Next, we motivate our
designs by analyzing how simple power management heuristics be-
have for MLC PCM.

2.1. MLC PCM memory architecture

Our baseline architecture of a MLC PCM memory subsystem is
shown in Figure 1. Similar to a traditional DRAM organization, a
DIMM has eight memory chips (PCM) that are organized into eight
logical banks. Due to non-deterministic MLC PCM write charac-
teristics [10], we adopt the universal memory interface design pro-
posed by Fang et al. [7]. In Figure 1, device control is performed
collaboratively between the on-CPU memory controller and the on-
DIMM bridge. The memory controller’s scheduler issues requests
in the read queue (RDQ) and write queue (WRQ) according to bus
availability, bank availability, circuit timing constraints, and global
DIMM and local chip power budgets. Completed read requests
(from MLC PCM banks) wait in the read response queue (RespQ)
until the bus or interconnect is available at which point the read data
is sent back to the cores [7].

Memory interface: a universal memory interface [7] makes
PCM timing and device-specific management issues transparent to
memory controller. Instead of memory controller, a bridge chip on
DIMM tracks the status of each DIMM and ongoing access opera-
tions. A new protocol is proposed to avoid conflicts on the shared
data bus and to reply memory controller when requested data is
ready. In this paper, we adopted this design to handle the communi-
cation between memory controller and bridge chip and leave PCM
DIMM/chip management to bridge chip.

Different cell stripping methods: In this paper, we strip cells
from one memory line across all chips in our baseline configuration,
so that we can access all cells in one memory line in one round.
There are two design alternatives:

• Stripping cells across half of the chips, and accessing one line in
one round. Each chip handles twice as many cells and requires
wider bus/peripherals. This is similar to chopping each chip into
two sub-chips, or simply doubling the number of chips and using
only half of them for one access. Our techniques can be applied
to either case.

• Stripping cells across half of the chips and accessing one line in
two rounds. Each chip handles the same number of cells as strip-
ping cells across all chips. However, the read and write latency to
memory array is doubled, which will harm system performance.

2.1.1. Non-deterministic MLC write MLC PCM devices widely
adopt program-and-verify (P&V) [2, 15] to ensure programming
(write) accuracy. For a given PCM line write, only a subset of cells in
the line need to be changed [4, 31]. For these cells, the write circuit
first injects a RESET pulse with large voltage magnitude to place
them in similar states, and then injects a sequence of SET pulses
with low voltage magnitudes. After each SET pulse, a read/verify
operation is performed. A cell write is terminated when its target
MLC resistance level is reached. The line write finishes when all
cell writes are completed.

Due to process variations and material fluctuation [3, 14], non-
determinism arises for MLC PCM writes. The cells comprising a
MLC PCM line can take a varying number of iterations to finish
(e.g., one cell might take a few iterations, while another may take
the worst case number). Further complicating cell programming, the
same cell may require a different number of iterations to finish for
different write instances. Studies have shown that most cells finish
in only a small number of iterations [20]. Jiang et al. proposed write
truncation to speed up MLC write accesses [10].

To handle non-deterministic MLC PCM writes, it is beneficial to
divide PCM device control between the memory controller and the
bridge chip. Fang et al. evaluated the details of this division [7]. If
an approach similar to DRAM is employed, i.e., the on-CPU mem-
ory controller does all device control, the memory controller may
have to assume that all MLC write operations take the worst case
number of iterations, which greatly degrades performance.

2.1.2. DIMM power budget PCM requires much higher per-cell
write power than DRAM. Hay et al. calculated that the power pro-
vided by a typical DDR3-1066×16 DRAM memory allows up to
560 SLC PCM simultaneous cell writes. In comparison, a single
DRAM refresh round can simultaneously write one 2KB row, or
16,384 DRAM cells.

The DIMM power budget is a critical parameter in a PCM mem-
ory subsystem as it restricts the number of simultaneous cell changes.

22

Figure 2 reports the average number of cell changes per PCM line
write under different configurations for 2-bit MLC.1

Figure 2: The cell changes under different settings.

According to Figure 2, 2-bit MLC tends to change a smaller num-
ber of cells than SLC. In addition, a larger line size results in more
cell changes. In this paper, we assume the power budget per DIMM
can support 560 MLC cell writes, which is the same number for SLC
cell changes in previous work [8]. This represents a relaxed DIMM
budget as MLC often needs more write power [11]. To explore con-
figurations with different cell changes and thus power budget de-
mands, we perform a wide design space exploration with different
line sizes and power budgets. This also addresses the designs that
use different write row buffer sizes at the device level [12].

Note that in future memory subsystems, the DIMM power budget
is unlikely to increase significantly. First, PCM based main memory
tends to be big to support large scale parallelizable workloads [19],
which limits the budget available to a DIMM. Second, recent years
have seen the need for low power DIMMs [13, 29].
2.1.3. Chip level power budget Another power restriction is the
chip-level power budget. Since PCM writes require higher voltages
than Vdd , PCM chips integrate CMOS-compatible charge pumps [6,
17] to supply required voltage and power. Studies have shown that
the area of a charge pump is proportional to the maximum current
that it can provide [17]:

Atot = k ·
N2

(N+1) ·Vdd−Vout

IL

f
(1)

Here, Atot is the total area overhead of the charge pump. k is a
constant that depends on the process used to realize the capacitors. N

indicates the number of stages in the charge pump. Vdd is the supply
voltage and Vout is the target programming voltage. f denotes the
charge pump’s working frequency. IL is the total write current.

Chip0 Budget

4

All banks,

All Lines

Chip1 Budget

4

Chip2 Budget

4

WR-A �� ������	

Request being served

WR-B �� ����
�	

Request to be served

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

� �����

� ����� ������

�� �� ���������

�� �� ����

Figure 3: Writes blocked by chip level power budget (assuming three
chips/bank for discussion purpose).

The write throughput of MLC PCM may be constrained by a chip
power budget. In Figure 3, we assume (i) one bank spreads across

1The simulation framework and parameters are summarized in Section 5.

three chips; (ii) the memory initially contains all 0s; (iii) the chip
power budget can support 4 cell changes; (iv) the system is serving
request WR-A when request WR-B arrives. They write to different
banks and change 4 and 5 cells respectively (shown as shaded boxes
with white font).

While these two writes change 9 cells in total and the DIMM
power budget allows 12 cell changes, WR-B cannot be issued as the
sum of cell changes for chip 1 is 5, which is larger than the chip’s
budget. If WR-B is issued, both writes may fail as there is not enough
power for reliable programming.

A typical charge pump occupies 15% to 20% of a PCM chip’s
area [16]. Thus, it is undesirable to enlarge the charge pump to in-
crease its maximum output current/power.
2.1.4. Our model In this paper, we adopt two-phase modeling [10,
21] for MLC PCM writes. For the DIMM power limit, we adopt the
same one as past work [8]. To get the default chip power limit, we
divide the DIMM power limit by 8 (i.e., eight chips per DIMM and
the sum of the chip power limits equal the DIMM power limit). Our
experiments consider an extensive design space. The results show
that our schemes are independent of concrete model parameters. The
designs are robust under a wide range of configurations.

2.2. Design motivation

To evaluate the impact of DIMM and chip power budgets for MLC
PCM, Figure 4 compares several simple power management heuris-
tics. The results are normalized to Ideal, which is a scheme that does
not restrict power, i.e., a MLC write can be issued whenever a re-
quested bank is idle.1

In Figure 4, DIMM-only is a case where only the DIMM power limit
is enforced. There is no chip power budget, i.e., a MLC write can be
issued whenever the DIMM has enough power to satisfy the write’s
power demand. DIMM-only adopts Hay et al.’s power management
heuristic [8] to prevent the DIMM from drawing too much power.
From the figure, the heuristic incurs 33% performance loss for MLC
PCM, which is significantly worse than the small 2% loss for SLC
PCM [8]. The reason for this discrepancy is DIMM-only does not
consider MLC write iterations and it allocates the same power for the
full duration of a complete line write. However, the maximum power
demand happens only in the first iteration of the MLC PCM write: (i)
RESET power is much larger than SET power; and, (ii) many MLC
cells finish in a small number of iterations. Clearly this heuristic is
overly pessimistic by budgeting the maximum write power for a line
for the entire duration of the longest cell write.

Figure 4 also illustrates the impact of a PCM chip power bud-
get. DIMM+chip uses the same heuristic as DIMM-only but it enforces
both DIMM and chip power budgets. On average, there is a 51%
performance loss. The increased loss over DIMM-only (i.e., the por-
tion beyond DIMM-only’s 33% loss) is due to the chip power budget.
When several writes compete for a busy chip, some writes must wait
to avoid exceeding the chip power budget, even though the DIMM
power budget may not be exceeded. Violating the chip power budget
leads to unreliable MLC writes.

To alleviate this problem for an individual chip, we tried three
schemes. First, we tried to remove power competition at the chip
level. PWL is an enhanced heuristic that adopts overhead-free near-
perfect intra-line wear leveling. Since the lower order bits within a
data block (words, double words, etc.) are more likely to be changed,
intra-line wear leveling has been proposed to balance bit changes
across all chips to extend lifetime [31]. We used intra-line wear-
leveling to balance write power requests across chips. We assume

33

Figure 4: The performance under power restrictions for MLC PCM.

that each line is shifted by a random offset after every 8 to 100 writes
and report the best results. From the figure, PWL achieves approxi-
mately a 2% improvement over DIMM+chip. We also tried different
cell mapping schemes (i.e., cells are interleaved across chips) but
observed similar small gains.

Second, we increased the chip’s maximum power: 1.5xlocal and
2xlocal increased the chip’s power budgets by 50% and 100%, re-
spectively. From Figure 4, if the charge pump can provide 2× power,
the performance loss relative to DIMM-only is negligible. Note, we
have shown that the loss from Ideal to DIMM-only is due to iteration-
oblivious power budgeting. The results show that the fluctuation
in chip power demand is below 2× on average. However, for 50%
more power, the loss is still significant, on average 20% loss. Increas-
ing the maximum power is effective but has large area overhead.

Finally, we scheduled writes in the write queue (out-of-order)
based on chip power availability. Sche-X is this scheme with an X-
entry write queue. Figure 4 shows that a large write queue has little
effect in mitigating performance loss.

To summarize, high MLC write power demand has a large perfor-
mance impact. It cannot be resolved by state-of-the-art power man-
agement heuristics and/or simple adjustments at different levels.

3. FPB-IPM: iteration power management

In this section, we describe FPB-IPM, an iteration power manage-
ment scheme for MLC PCM. For discussion purposes, we consider
only the DIMM power budget in this section. The chip power budget
is considered in the next section.

Figure 5 illustrates how FPB-IPM works. The scheme is token
driven: in order for writes to proceed, there must be enough power
tokens available to satisfy the number of bit changes required by
a write. Each token represents the power for a single cell RESET.
Assume that (i) two writes WR-A and WR-B arrive at the bridge chip
and request to change 50 and 40 cells, respectively; and, (ii) the
available DIMM power budget can support a RESET on 80 cells
simultaneously, i.e., there are 80 available power tokens (APT).

Consider a simple per-write power management heuristic, as
shown in Figure 5(a). This heuristic tracks APT with a counter, and
releases a write only when there are enough unused tokens. Since
WR-A arrives first and it requests fewer tokens than the DIMM’s bud-
get of 80 tokens, WR-A is served immediately. As a consequence,
APT is reduced to 30 until WR-A finishes. In this case, WR-B stalls
until WR-A returns its tokens. From Figure 5(a), the write throughput
is low as the two writes do not overlap. However, some of the tokens
allocated to WR-A are not actually used. For example, in the fourth
iteration of WR-A, a SET is done to only 6 cells, and thus, only 3
tokens are used (SET power is half of RESET power). Nevertheless,
WR-A holds all 50 tokens until the write is finished.

Allocated tokens:

50Cell changes:

APT:

WR-A: (1 RESET, 3 SET iterations)

80

Cell changes:

50

30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40

80 30 15 35 36 38 49 57 70 74

saved from IPM

50 50

40Allocated tokens:

WR-B: (1 RESET, 4 SET iterations)

48 26 12

240

40 40 40

36 20 12

50

25 24 13

48 26 12

40

20 18 10

36 20 12

(a) Per-write based Power Management Heuristic

(b) IPM: Iteration based Power Management Heuristic

6

2

7474

WR-A arrives (50 cell changes)

Timing

WR-B arrives(40 cell changes)

APT: 80

Allocated tokens:

Cell changes:

WR-A: (1 RESET, 3 SET iterations)

Cell changes:

Allocated tokens:

WR-B: (1 RESET, 4 SET iterations)

APT:

40

50

50

40

Figure 5: FPB-IPM: iteration power management (assuming SET
power is half of RESET power and RESET pulse is half the
length of SET pulse).

To resolve this problem, we designed FPB-IPM to reclaim unused
power tokens as early as possible, which increases the number of
simultaneous writes. Figure 5(b) illustrates our improved scheme.
In this scheme, FPB-IPM first allocates power tokens to incoming
write requests (e.g., WR-A) if there are enough ones. This is similar
to the simple per-write management heuristic in Figure 5(a).

Next, after the first RESET iteration, FPB-IPM reclaims ((C-

1)/C)×PTRESET tokens, where RESET_power = C×SET_power and
PTRESET is the number of tokens allocated in the first iteration. For
example, half of the allocated tokens are reclaimed in write iteration
2, as shown in Figure 5(b). Because a MLC write operation finishes
in a non-deterministic number of iterations, the number of cells that
need to be written decreases after each SET iteration. The consumed
write power also drops as the write operation proceeds. Thus, FPB-
IPM also reclaims tokens after SET iterations. To reclaim unused
tokens as early as possible, FPB-IPM dynamically adjusts the power
token allocation on each iteration.

Starting from the 3rd iteration, FPB-IPM allocates write tokens
based on cell changes in preceding iterations. In Figure 5(b), 24
tokens are allocated for the 3rd iteration of WR-A, which can SET 48
cells. This is enough tokens. Because the 2nd iteration changes 48
MLC cells, it is impossible to change more than 48 cells in the 3rd
iteration and beyond.

44

3.1. Architecture enhancement

To enable iteration power management, FPB-IPM needs to know
how many cells will be changed in each iteration. Hay et al. tracks
SLC cell changes in the last-level cache [8]. However, this approach
cannot be applied to FPB-IPM as MLC writes are non-deterministic
and FPB-IPM regulates the power tokens at iteration granularity.

FPB-IPM integrates the power management logic in the bridge
chip and includes two enhancements. One enhancement does a read
before a write operation. The old data is compared with the new data
to determine how many cells will be changed. This is slightly more
expensive than differential-write [31] and Flip-n-Write [4] as these
schemes perform the comparison inside the PCM chip. In FPB-IPM,
the extra read increases bus contention within the DIMM. However,
the read does not compete for the bus between the DIMM and the
memory controller, which is a more precious resource in a multiple-
DIMM memory subsystem. In the experiments, we model the cost
of doing the full read before each write.

The other enhancement is each PCM chip reports the number of
cells that finish after the verification operation in each write iteration.
This helps FPB-IPM reclaim unused power tokens. The allocation
for write iteration i, where i >= 3, is determined by the number
of cell changes that remain after iteration i− 2. This value can be
computed during iteration i−1 using the information reported by the
PCM devices at the end of iteration i−2. As a result, the allocation
is available at the start of iteration i and the computation has no
impact on write latency (overhead). For example, in Figure 5(b), 22
cells finished in the 2nd iteration of WR-A, which means 13 tokens
are allocated in iteration 4 (i.e., 13=(2-1)/2×(48-22)).

3.2. Multi-RESET

By reclaiming unused power tokens after each iteration, the avail-
able power tokens accumulate fast. However, due to the large ratio
between RESET and SET power, a write is often blocked because
there are not enough tokens for the write’s RESET iteration. If this
iteration had a lower power demand, then the write would be more
likely to go ahead without delay.

80 30 55 55 0 30 37 49 62 70

saved from

IPM

50

WR-A:

25 20 13

WR-B:

40 26 12

60

30 18 10

36 20 12

(a) Simple FPB-IPM Heuristic

6

2

7470

80 0 35 35 36 38 49 57 70 74

saved from

Multi-RESET50

WR-A:

25 24 13

WR-B:

48 26 12

30

30 18 10

36 20 12

(b) FPB-IPM with Multi-RESET

6

2

7474

30

74 7474

WR-A arrives (50 cell changes)

WR-B arrives (60 cell changes)

80

Allocated tokens:

Cell changes:

Allocated tokens:

Cell changes:

Allocated tokens:

Cell changes:

Allocated tokens:

Cell changes:

60

3030

50

50

APT:

Timing:

APT:

APT:

Figure 6: Multi-RESET reduces maximum power demand.

Based on this observation, we propose Multi-RESET, a technique
that breaks a write’s RESET iteration into several RESET iterations.

Only a subset of cells are RESET in each iteration. After all cells
are reset, the write does the normal SET iterations. By reducing the
maximum power demand, Multi-RESET has the potential to enable
more simultaneous writes. The disadvantage is increased write la-
tency: if the RESET iteration is split into m RESET iterations, then
the write latency increases by m-1 RESET iterations.

Figure 6 shows how Multi-RESET works. After issuing WR-A, the
APT is 30. Since WR-B requests 60 power tokens, it has to wait until
there are enough tokens (Figure 6(a)). By adopting Multi-RESET,
WR-B splits the single, power-expensive RESET iteration into two
less power-expensive iterations. Each iteration does a RESET for
30 cells. With this strategy, WR-B can be issued immediately. In this
way, WR-A and WR-B have more overlap, resulting in improved write
throughput (Figure 6(b)).

Implementing Multi-RESET requires that cells are grouped care-
fully. There are two approaches. One approach groups cells based
on the cells to be changed. The other groups cells no matter if they
are changed or not. The former tends to perform better while the lat-
ter has lower hardware overhead. In this paper, we choose the latter
scheme and split cells from one chip into three groups. This requires
a 2-bit control signal to a PCM chip to enable individual groups (‘11’
indicates all groups are RESET in one iteration).

Comparison. Multi-RESET shares similarity with write paus-
ing [20], which pauses MLC writes to prioritize reads. Multi-
RESET stalls the cells written in early RESET iterations until all
cells to be changed are RESET. However, the design goal is differ-
ent. Multi-RESET aims to lower the maximum power demand while
write pausing aims to improve read performance. Due to the short la-
tency pause after RESET, MLC resistance drift [30] can be ignored.

Multi-RESET also shares similarity with a multi-round write op-
eration. If the DIMM has 560 power tokens, it is impossible to write
a 512B line when half of all cells must be changed (i.e., 1024 cells).
In this scenario, the line is written in two rounds and each round
writes 512 cells. The difference is that multi-round write breaks one
write into two non-overlapped writes, which doubles the write la-
tency. Multi-RESET has much less latency overhead.

4. FPB-GCP: mitigating chip power restrictions by a
global charge pump

In this section, we propose using a global charge pump (GCP) to
mitigate performance loss due to a PCM chip’s power budget. We
present the architecture details and design trade-offs.

LCP

������ ���	

GCP

IM

��
�
������
� ����
������

�������� �� ���
�������
��� ����

���� �������� ��

�������� ���� ������

��� ���� �!�
�

������
������

���������

Figure 7: Integrating a global charge pump (GCP).

4.1. FPB-GCP Scheme

Section 2 describes how doubling the maximum power of the charge
pumps in all chips on the DIMM can effectively eliminate the per-
formance loss due to the chip power budget. This strategy incurs
a large area overhead. Instead of making each local charge pump
(LCP) in a PCM chip larger, we add a global charge pump (GCP)

55

into the bridge chip. As shown in Figure 7, the GCP resides in the
bridge chip and uses a dedicated wire to supply the pumped voltage
and write current to each PCM chip. Each bank segment (within
a PCM chip) has an analog current controller to choose the write
voltage from either the LCP or GCP (but not both). By default, the
maximum power that the GCP can provide is set to the same power
as one LCP.

While the GCP can provide extra power, the existing power bud-
gets still need to be enforced: (i) the DIMM and chip power budgets
must be obeyed and (ii) the DIMM and chip power budgets are not
changed by introducing the GCP. In other words, the power that the
GCP provides to one chip is actually “borrowed” from other chips.

Chip0 Budget

4

All banks,

All Lines

4

Global Budget Chip1 Budget

4

Chip2 Budget

4

WR-A �� ������	

Request being served

WR-B �� ����
�	

Request to be served

WR-C �� ������	

or

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

� � ����

� � ����

� ����� �� ���� �� �

�� �� ���������

����� � � ��

Figure 8: Schedule MLC PCM writes under FPB-GCP (assuming three
chips/bank).

Figure 8 illustrates how FPB-GCP works. It has the same assump-
tion as the earlier case in Figure 3. Now, the GCP has 4 power to-
kens. When WR-A is served, the available tokens are 2/2/0 for PCM
chips 0/1/2 respectively. WR-B is chosen to be served next. Since
it changes three cells for the 2nd segment (in chip 1), WR-B needs
three tokens for chip 1. Given that only two tokens are available
on chip 1, the write cannot be served using only the LCP. Thus, the
GCP kicks in and injects extra power to write the segment in chip 1.
Meanwhile, the LCP on chip 0 is used to write the first segment of
WR-B: this segment asks for two tokens, which chip 0 has available.

In FPB-GCP, one segment uses either LCP or GCP, but not both.
For example, it may still be impossible to serve WR-C and WR-A

simultaneously because the GCP does not have enough tokens. As-
sume the GCP is used to write the 2nd segment of WR-C. Now, only
one GCP token is available. Since WR-C changes three cells in its
3rd segment and chip 2 has no tokens available, the GCP is needed.
However, WR-C cannot proceed as there are no enough GCP tokens.

In this example, the GCP might dynamically borrow tokens from
chip 1 (has two available tokens). However, due to GCP power effi-
ciency (discussed next), the two LCP tokens from chip 1 may corre-
spond to only one GCP token. Thus, WR-A and WR-C still cannnot
be served simultaneously.

4.2. Power efficiency

An important parameter for a charge pump is its power efficiency,
i.e., what percentage of input power can be utilized to write
cells. Since LCP and GCP use the same CMOS-compatible charge
pumps [6, 17], they have the same power efficiency by themselves.
However, the wire from the GCP to the write driver is much longer
than the wire from the LCP. The pumped voltage and write current
from the GCP needs to travel a long distance before it is consumed.
While wide wires can be used to reduce wire resistance, the long

distance will cause an inevitable power loss. Power loss is common
even within one chip, e.g., Oh et al. observed around a 10% power
loss within a PCM cell array [16]. To compensate for the loss, the
GCP needs to output slightly larger current to ensure that the desired
current can reach the farthest chip. This indicates a lower effective
power efficiency. Given a limited number of pumping stages, the
GCP may also need to add extra resistance to provide stable write
current for nearby chips. A design alternative is to perform per-chip
regulation to compensate different power losses between GCP and
each chip, which tends to achieve better power efficiency at the cost
of more complicated control logic. In addition, there is an efficiency
loss from the pin to the write driver. Since the overall efficiency of
the GCP depends on both technology and a combination these fac-
tors, the design of a highly power efficient GCP is beyond the scope
of this paper.

To evaluate the effectiveness of GCP, we assume that the LCP
has a 95% power efficiency, while the GCP has an effective power
efficiency in the range [30%, 95%].

4.3. Cell mapping optimization

Due to low GCP power efficiency, the GCP wastes a non-negligible
portion of input power. The more frequently the GCP is used, the
more energy it wastes. Clearly, when two schemes have the same
performance improvement, the one that uses the GCP less is pre-
ferred. In this section, we propose cell mapping optimizations to
maximize throughput while minimizing GCP usage.

Our analysis shows that GCP usage is proportional to the imbal-
ance of power demands at the chip level because the GCP “borrows”
power tokens from the LCP. If all chips had exactly the same power
demands, they would use up their power tokens at the same time,
which leaves no tokens available to borrow. In practice, the imbal-
ance exists due to memory access characteristics at the application
level. For example, studies have shown that the lower-order bits of
integer values are more likely to change. To minimize imbalance,
and thus, the frequency of using the GCP, we study different map-
ping schemes that interleave cells across the chip.

��� ����� ��� �����

��� �� !� "���� ��� �����

��!� # �$�"�% �&� '�()� *�����+!�)� ,�""��-

��� ./,0 .�1!���� /�!�1���)��-

222 222 222 222

222 3

222

222

222

222

222

3 4 5 6

6 3 � �

� 6 4 �

� � 3 �

4 � �

�7� �/,0 �1��7�7 /�!�1���)��-

�

4

3

6

222

5

222 *899

222

222

222

222

222

*: *; *< *= *;>

*;? *;@ *;A *;B ���
��� ��� ��� ��� ���
��� ��	 ��
 ��� ���
��� ��� ��� ��� ���
��� ��� �� ��� ��� �

���

���
���
���
���

� � � � �
� � � � �
� � � � �
� � � � �
��� ��� ��� ��� ���
� � � �

� ��������� ��� ���� �� ��� �

!"# $%&#
'%()*+
,- ./012

�

��� ��� ��� ���
�

� � � �
� � � �
� � � �
� � � �

� � �

345

678

���
���

���
���
���
���

���
���

���
���
���
���

Figure 9: Different cell mapping schemes.

As shown in Figure 9(a), storing one 64B PCM line needs 256
2-bit MLC cells. We put 246 MLC cells into a 16×16 matrix layout

66

for illustration. The cell position keeps the same in Figure 9(b,c,d).
A naïve mapping stores consecutive cells within one chip, e.g., the
first 32 cells could be stored in chip 0 (Figure 9(b)).

For floating point (FP) programs, changing a FP value may lead
to changing cells in one word (i.e., consecutively 16 logical cells),
which incurs a request for more tokens from one chip. To distribute
these changes, we propose Vertical Interleaving Mapping (VIM) that
maps cells to chips as shown in Figure 9(c). The mapping function
can be written as:

chip_index = cell_index mod 8 (2)

For integer benchmark programs, the lower-orders bits in a word
are more likely to change. To further balance cell changes, we pro-
pose Braided Interleaving Mapping (BIM) that distributes the lower-
order cells from different words to different chips (Figure 9(d)). The
mapping function is:

chip_index = (cell_index−
cell_index

16
) mod 8 (3)

Cell mapping optimization overhead: BIM and VIM are static
cell mapping optimization for distributing logic cells into different
physical chips at the device level. On the contrary, intra-line wear
leveling [31] periodically shifts a logical memory line by several
bytes. Our cell mapping optimization is orthogonal to intra-line wear
leveling: the inputs of BIM and VIM cell mapping functions are
the outputs from intra-line wear leveling. Our schemes map logic
MLC cell positions, instead of bit positions, to different chips. We
observed that mapping bit positions by separating two consecutive
bits in one cell would increase cell changes. BIM and VIM do not
affect read procedure in PCM chip, since static cell mapping opti-
mization does change row activation and wordline/bitline structure.
Therefore, our schemes do not need any extra read/write dynamic
energy. The cell mapping translation logic for 256 cells costs 87ps
and 49μW at each access to PCM chip under 45nm technology.

5. Experimental methodology

5.1. Baseline configuration

To evaluate the effectiveness of our proposed schemes, we adopted
the same simulation framework from [8] and compared our schemes
to existing heuristics. The simulator is built as a PIN tool, which
is used to collect long memory traces. Since our study focuses on
memory subsystem performance and power characteristics, we used
a memory trace-driven simulator (instead of a detailed pipeline sim-
ulator) to model accesses to and from MLC PCM main memory.

Our simulator faithfully models the entire memory hierarchy, in-
cluding L1, L2 and DRAM last-level caches, the memory controller,
and MLC PCM main memory. Several traces can be combined and
interleaved by the simulator to create a multi-programmed workload.
The simulator considers cache-to-cache and cache-to-memory bus
contention, bank conflicts, and memory bus scheduling constraints.
The memory controller gives higher priority to read requests. A
write request is scheduled only when there is no read request. When
the write queue is full, the memory controller schedules a write burst,
which blocks any pending read requests until all the writes in the
queue are finished. This strategy was also used by [8]. In addi-
tion to the normal bus and chip scheduling policies, writes can only
be scheduled when there are enough available power tokens. We
also consider the integration of our schemes with write cancellation,
write pausing and write truncation.

CPU 8-core, 4GHz, single-issue, in-order
L1 I/D private, I/D 32KB each/core, 64B line, 2-cycle hit

L2 private, 2MB/core, 4-way LRU, 64B line, write back
2-cycle tag, 5-cycle data hit, 16-cycle CPU to L2

DRAM L3 private, offchip, 32MB/core, 8-way LRU, write back
256B line, 50ns (200-cycle hit), 64-cycle CPU to L3

Memory onchip, 24-entry R/W queues, MC to bank 64-cycle
Controller scheduling reads first, issuing writes when there is

no read, issuing write burst when W queue is full [8]
4GB, the same line size as L3, single-rank
8 banks, MLC read 250ns (1000 cycles)

PCM RESET: 125ns (500 cycles), 300μA, 1.6V, 480μW
Main SET: 250ns (1000 cycles), To f f [9] included, 150μA

Memory 1.2V, 90μW [12], MLC Write Model: 2-bit MLC[20, 10]
‘01’: i/F1/F2 = 2/0.375/0.625, 8 iterations on average;
‘10’: i/F1/F2 = 2/0.425/0.675, 6 iterations on average;
‘00’: fixed 1 iteration; ‘11’: fixed 2 iterations

Table 1: Baseline configuration

Our baseline configuration follows past work [10, 20]. There are
eight cores in our CMP system. Each core is single-issue, in-order
and can be operated at 4GHz. Our trace-driven simulation methodol-
ogy limits the simulated cores to be in-order. Each core in the base-
line has a 32MB private write-back DRAM cache to alleviate pres-
sure on MLC PCM main memory bandwidth. The DRAM cache has
a default 256B line size. We also examine 64B and 128B line sizes
in a sensitivity study. The detailed parameters can be found in Ta-
ble 1. The results showed that our techniques can obtain significant
improvement on a wide range of baseline configurations.

We consider a main memory with a single 4GB MLC PCM
DIMM. The 4GB PCM main memory is divided into 8 banks. A
bank spreads across 8 PCM chips. Therefore, 8 banks share 8 PCM
chips. The programming current of one chip is supplied by local
charge pump.

We use the same DIMM power token number PTDIMM as past
work [8]. Let ELCP and EGCP represent the power efficiency of LCP
and GCP, respectively. The following formula computes the maxi-
mum power tokens PTLCP that each chip has:

PTLCP =
PTDIMM×ELCP

8
(4)

Assume the GCP borrows Borrowedi tokens from each chip
(1≤i≤8 and 0≤Borrowedi≤ PTLCP). The following formula com-
putes the power tokens that the GCP can provide:

PTGCP =
8

∑
i=1

Borrowedi

ELCP

×EGCP (5)

Thus, clearly, we have:

PTDIMM =
8

∑
i=1

PTLCP−Borrowedi

ELCP

+
PTGCP

EGCP

(6)

5.2. Simulated workloads

We modeled a CMP that executes multi-programmed workloads.
We chose a subset of programs from the SPEC2006, BioBench,
MiBench and STREAM suites to construct workloads that exhibit
different memory access characteristics. Table 2 lists the R/W-PKI
(Read/Write accesses per thousand instructions) of each workload.
We used SimPoint [27] to pickup representative phase. We simulate
1 billion instructions to obtain performance results.

77

Name Description RPKI WPKI

ast_m SPEC-CPU2006 (C), 8 C.astar 2.45 1.12
bwa_m SPEC-CPU2006 (C), 8 C.bwaves 3.59 1.68
lbm_m SPEC-CPU2006 (C), 8 C.lbm 3.63 1.82
les_m SPEC-CPU2006 (C), 8 C.leslie3d 2.59 1.29
mcf_m SPEC-CPU2006 (C), 8 C.mcf 4.74 2.29
xal_m SPEC-CPU2006 (C), 8 C.xalancbmk 0.08 0.07
mum_m BioBench (B), 8 B.mummer 10.8 4.16
tig_m BioBench (B), 8 B.tigr 6.94 0.81
qso_m MiBench (M), 8 M.qsort 0.51 0.47
cop_m STREAM (S), 8 S.copy 0.57 0.42
mix_1 2S.add-2C.lbm-2C.xalan-2B.mummer 1.16 0.58
mix_2 2S.scale-2C.mcf-2C.xalan-2C.bwaves 0.94 0.61
mix_3 2S.triad-2B.tigr-2C.xalan-2C.leslie3d 0.96 0.58

Table 2: Simulated applications

For our results, we define speedup as:

Speedup =
CPIbaseline

CPItech

(7)

where CPIbaseline and CPItech are the CPIs of the baseline setting and
the setting with scheme tech, respectively. This metric is also used
by previous closely related research [10, 20].

Write burst: We adopted a write scheduling strategy from [8].
When write queue is 100% full, a write burst postponing all read re-
quests is issued. And it is finished when the write queue is drained
to be empty. The percentage of time in write burst of our base-
line directly shapes the performance improvement achieved by our
schemes. Figure 10 shows the percentage of write burst in the entire
application simulation time for baseline. Since most of our simu-
lated benchmarks are write intensity, the average percentage of time
in write burst for our baseline is 52.2%, which is a strong motivation
to improve heavily power constrained MLC PCM write throughput.
Our result on write burst percentage is higher than that in [8] for
several reasons: (i) MLC PCM has ×8 long write latency than SLC
PCM; (ii) compared to the baseline configuration in [8], the CPU fre-
quency in our baseline is doubled; (iii) larger memory line size and
chip level power restriction have more significant negative influence
on write throughput than Flip-n-Write [4].

Figure 10: Percentage of execution cycles in write burst for baseline.

6. Experimental results

We implemented and compared the following schemes.
• Ideal: an ideal scheme that has an unlimited power budget.
• DIMM-only: a scheme that enforces only a DIMM power budget

(PTDIMM=560) [8]. The chip power is unrestricted.
• DIMM+chip: a scheme that enforces both DIMM and chip power

budgets using Hay et al.’s technique [8]. To adopt this scheme,
an oracle counter is introduced to provide the exact number of
chip-level cell changes with no latency overhead. Here, PTLCP =
PTDIMM × 0.95 / 8.

• GCP-CL-E: a scheme that uses only FPB-GCP. The cell mapping,
CL, may be NE (naïve mapping), VIM, or BIM. The GCP’s power
efficiency, E, ranges from 50% to 95% (0.5 to 0.95).

• GCP+IPM: a scheme that uses both FPB-GCP and FPB-IPM. By
default, we use GCP-BIM-0.7 for the GCP. Multi-RESET (MR) is
also evaluated.

Evaluation order and normalization. In Figure 4, we showed that
the performance drop from Ideal to DIMM-only is due to iteration-
oblivious budgeting, and the drop from DIMM-only to DIMM+chip is
due to the chip power budget. In this section, we aim to restore
these performance drops in reverse order. We first evaluate FPB-
GCP with the goal to restore performance close to DIMM-only. Next,
we add FPB-IPM with the goal to restore performance close to Ideal.

In this section, the speedup values are normalized to DIMM+chip.

6.1. Effectiveness of FPB-GCP

6.1.1. Performance improvement Figure 11 shows IPB-GCP’s ef-
fectiveness for different GCP power efficiency values. We used the
naïve cell mapping (NE) in this experiment. We compared GCP with
DIMM-only as IPB-GCP aims to eliminate the chip power budget.

Figure 11: Speedup with different GCP power efficiencies.

From Figure 11, the GCP’s power efficiency has a large perfor-
mance impact. When ELCP = EGCP, GCP-NE-0.95 is 36.3% better
than DIMM+chip. We found that GCP-NE-0.95 and DIMM-only have the
same performance. The reason is, when ELCP = EGCP, there is no
waste to let IPB-GCP borrow tokens from the LCPs (Equation 5).

In practice, the GCP is likely to be less efficient than the LCP.
When EGCP=70% (a typical value for an off-chip power supply),
GCP-NE-0.7 improves performance by 23.7% over DIMM+chip. How-
ever, when the power efficiency is decreased further, its effectiveness
diminishes. When EGCP=50%, the GCP cannot help at all: on aver-
age, only 2.8% improvement was observed.

In Figure 11, some programs are less sensitive to chip power bud-
get. There are three scenarios. (i) When write operations are inten-
sive, e.g., mc f or mum, the bottleneck shifts to the DIMM power
budget. IPB-GCP often cannot borrow enough tokens to help. (ii)
When a program has few writes, e.g., xal, the writes have little per-
formance impact. (iii) When a program has many more reads than
writes, e.g., tig, the performance bottleneck shifts from the writes to
the reads such that the chip power budget has a small impact.
6.1.2. Cell mapping optimization Figure 12 compares different cell
mapping. In these results, the GCP has practical power efficiency
values. When EGCP=70%, VIM and BIM effectively mask the chip
power budget; the performance loss versus DIMM-only is only 2% and
1.4%, respectively. VIM and BIM are comparably effective with
BIM being slightly better. BIM better balances cell changes when a
PCM line stores either FP or integer values.

More importantly, VIM and BIM make FPB-GCP effective for a
50% GCP power efficiency. These advanced cell mappings better

88

Figure 12: Speedup of cell mapping optimizations.

balance cell changes, which reduces how often the GCP needs to
be employed. With fewer requests sent to the GCP, the advanced
mappings relax the demands on the highly power-inefficient GCP.
6.1.3. GCP area overhead We next estimated the GCP’s area over-
head. Since the area of the charge pump is proportional to the max-
imum power that it can provide, we collected the maximal power
tokens requested for GCP under different cell mappings and com-
pared their area overheads.

Figure 13: Maximum number of tokens requested by the GCP.

Figure 13 reports the maximum power tokens for each workload
when EGCP is 70% and 50%. The maximum requested power tokens
are 66, 16, and 28 for the naïve mapping, VIM, and BIM, respec-
tively. Interestingly, with VIM, there is no request to the GCP for
the bwa benchmark, which indicates VIM balanced the cell writes
very well across the PCM chips.

Using the maximum power tokens requested, Table 3 estimates
the area overheads under different schemes. As discussed in Section
2.2, 2xLocal can also mask the chip power budget. However, this
scheme doubles the LCP area in each chip, i.e., 100% overhead. Us-
ing the GCP greatly reduces area overhead. For example, with VIM
and 70% GCP power efficiency, the GCP overhead is only 4.1% of
2xLocal.

Scheme Power Tokens Overhead

Baseline (8 chips) 70∗8 = 560 —
2×Local (8 chips) 140∗8 = 1120 100%

GCP-NE-0.95 66/0.95 = 70 12.5%
GCP-NE-0.70 64/0.70 = 92 16.4%

GCP-VIM-0.95 16/0.95 = 17 3.1%
GCP-VIM-0.70 16/0.70 = 23 4.1%
GCP-BIM-0.95 28/0.95 = 30 5.4%
GCP-BIM-0.70 28/0.7 = 40 7.1%

Table 3: Charge pump overhead as measured by power tokens

We only compare the charge pump size. FPB-GCP also needs a
dedicated pin for each PCM chip to inject the extra power from the
GCP. A wire is needed on the DIMM to connect the GCP to each
PCM chip as well.
6.1.4. GCP pin and packaging overhead To realize GCP, an extra
pin is needed per PCM chip to deliver the high voltage and large cur-

rent produced by the GCP on the DIMM. This overhead can be justi-
fied by the large performance improvement and small GCP size. In
addition, the pin overhead is localized to the DIMM, rather between
the memory controller and the CPU/PCM chips. Several recent de-
signs use a similar approach. Raghavan et al. [23] use additional
pins to inject extra power for concurrent computing in embedded
systems. A similar external current supply interface has been imple-
mented in a recent PCM chip prototype [5].

The wire overhead between the GCP and PCM chips on the
DIMM is negligible. Although write throughput on a DIMM is sig-
nificantly increased with our techniques, thermal dissipation is also
increased from more simultaneous writes, which requires better ther-
mal control.

Figure 14: Averge power tokens requested by NE, VIM and BIM.

6.1.5. Minimize wasted energy When different cell mappings have
similar performance improvement, the mapping that needs fewer
power tokens from the GCP is preferred as it reduces energy waste
on the wire. Figure 14 reports the average number of tokens re-
quested per line write from the GCP. VIM and BIM greatly reduce
the total number of tokens requested. And thus, on average, VIM
and BIM reduce energy waste by 78.5% and 64.4% over the naïve
mapping at 70% GCP power efficiency.
6.1.6. BIM overall effectiveness The last experiment considers
BIM effectiveness as the GCP’s power efficiency is decreased. Fig-
ure 15 reports speedup for three typical workloads. BIM helps pre-
serve the performance benefit relative to DIMM+chip with very low
GCP power efficiency. For example, in mix_1, BIM is still effective,
although GCP power efficiency is as low as 20%.

Figure 15: Speedup with BIM as GCP efficiency is decreased.

6.2. Effectiveness of FPB-IPM

6.2.1. Performance improvement We evaluated the effectiveness
of FPB-IPM. The goal is, together with FPB-GCP, to make perfor-
mance close to Ideal. Figure 16 reports the speedup achieved by
IPM and Multi-RESET over DIMM+chip. GCP is used with BIM at
70% GCP power efficiency. Figure 16 also shows the performance
improvement for GCP power efficiency values of 50% (gm0.5) and
30% (gm0.3).

99

Figure 16: IPM and Multi-RESET Speedup.

On average, IPM improves performance by 26.9% over GCP-BIM.
IPM+MR includes Multi-RESET that splits the first RESET iteration
of a write into 3 new iterations, when there are not enough power
tokens. IPM+MR has a 30.7% performance improvement over GCP-

BIM and 75.6% improvement over DIMM+chip. This value is within
12.2% of Ideal, which has no power restrictions.

Also, from Figure 16, the overall performance improvement de-
creases with decreasing GCP power efficiency (compare gmean,
gm0.5 and gm0.3). In addition, the improvement from IPM is sta-
ble from 70% GCP efficiency to 50% efficiency but drops at 30%.
Multi-RESET tends to be more beneficial as efficiency decreases.
For the benchmarks with a large number cell changes and a large
WPKI, e.g., mc f and mum, IPM achieves significant improvements
over GCP-BIM, indicating IPM makes better use of DIMM power for
these benchmarks.

Intuitively, Multi-RESET increases the overlap among the long
SET portions of multiple write requests. With a small available
budget that cannot support all RESETs in one write, Multi-RESET
adopts a greedy strategy to start a portion of RESETs in one write
as early as possible. Without Multi-RESET, the many small pieces
of available budget will be wasted for at least the current iteration.
By fully utilizing these small available budget fragments, the power
consuming RESETs in a write finish in multiple rounds. In this way,
the processing time in every write burst can be reduced.

Figure 17: Multi-RESET iteration split limit.

6.2.2. Multi-RESET iteration count Multi-RESET introduces
more RESET iterations. In turn, this lowers the maximum power de-
mand but lengthens write latency. We examined how Multi-RESET
should split the RESET iteration; i.e., how many new iterations
should a single RESET be split into. Figure 17 reports performance
when Mutli-RESET splits the first RESET iteration into 2, 3, or 4
new RESET iterations. As shown in Figure 17, the best improve-
ment is achieved for 3 iterations. There is a 2% performance de-
crease at 4 iterations due to the longer write latency. Thus, we use 3
as the limit when applying Mutli-RESET.

6.3. Throughput improvement

As the performance improvement comes mainly from improved
write throughput, we report overall throughput gains in Figure 18.

Figure 18: Write throughput improvement.

The results are normalized to DIMM+chip. From Figure 18, FPB
achieves around 58.8% throughput improvement from GCP and
3.4× improvement when GCP, IPM and MR are applied. The write
throughput obtained by GCP, IPM and MR is smaller than the Ideal

(no power restrictions) write throughput by 22%. This throughput
gap is due to the tight DIMM level power budget and the large mem-
ory line size.

6.4. Design space exploration

To evaluate the effectiveness of our proposed fine-grained power
budgeting schemes under different settings, we did experiments in a
wide design space with different memory line sizes, last-level cache
capacities, number of entries in the write queue, and number of
power tokens. We also integrated our FPB schemes with the state-of-
the-art designs for MLC PCM: write cancellation, write pausing [20]
and write truncation [10]. These methods are orthogonal to power
budgeting. In the following design exploration, we use IPM+MR with
BIM and EGCP=70%. We abbreviated this combined scheme as FPB.

In the comparison, when studying the sensitivity of parameter X,
each bar is normalized to DIMM+chip that has the same X value. Dif-
ferent bars show different X values.
6.4.1. Cache/memory line size Figure 19 compares the perfor-
mance impact with different memory line sizes. We assume that
the MLC PCM memory line size is the same as the last-level cache’s
line size. For 64B line size, Hay et al. observed that the existing
DIMM power budget barely meets the demand for eight simultane-
ous line writes [8]. The improvement that FPB achieves is modest
for 64B line size. For large line sizes (or large row buffer sizes),
the number of line writes are reduced but each line write changes
more cells, which creates contention for the power budget as writes
are issued. From Figure 19, FPB achieves a larger improvement with
bigger line sizes due to better utilization of the DIMM power budget.
On average, FPB has a 41.3%, 61.8% and 75.6% improvement for
64B, 128B and 256B line sizes.

Figure 19: Speedup of FPB for different line sizes.

6.4.2. Last-level cache capacity Figure 20 compares performance
for FPB under different last-level cache (LLC) capacities. With a
small LLC, e.g., 8MB, there are a large number of memory accesses,
which causes the system bottleneck to be main memory bandwidth.

1010

Enforcing the DIMM and chip power budget with DIMM+chip results
in even lower memory throughput and performance. On average,
FPB achieves 39.9% improvement over DIMM+chip in this setting.

However, as LLC capacity is increased, the number of writes is
reduced, yet each line write tends to have more cells to be changed.
An improvement in the memory throughput exhibits large perfor-
mance improvement. On average, FPB achieves 62.1% and 75.6%
performance gains for 16MB and 32MB LLC capacities.

We also tried 128MB LLC size per core (1GB LLC for 8 cores).
With a large LLC capacity, the offchip read and write traffic in
the benchmarks is substantially reduced. Our power management
schemes improve performance by 23.4% due to the short write burst
time in this case. Most part of performance gain is achieved on
streaming benchmarks, such as qso and cop.

Figure 20: Speedup of FPB for different LLC capacities.

6.4.3. Number of write queue entries Figure 21 shows FPB’s ef-
fectiveness for varying number of write queue entries. The writes
in the queue are flushed when the queue is full. With more entries
in the queue, the bursty flush tends to request more power tokens,
which is sensitive to write throughput. On average, FPB improves
performance by 75.6%, 85.2% and 88.1% for three write queues.

Figure 21: Speedup of FPB for different write queue sizes.

For benchmarks with large WPKI, such as mum, FPB has a large
speedup. The overall performance improves significantly when the
write entry count is increased from 24 to 48. It saturates at 48, and
a 96-entry write queue does not exhibit notable improvement over a
48-entry queue.
6.4.4. Number of power tokens Figure 22 shows the performance
impact of using 1/8 more or fewer power tokens. We chose this
setting to study performance when the overall area change (increase
or decrease) is about one LCP size, i.e., all eight chips each increase
or decrease by 1/8 size.

From Figure 22, FPB does better with a tighter power budget.
This phenomenon is due to FPB better using the power budget than
DIMM+chip. If there is an abundant power budget, then wasting some
tokens will not have a large performance impact and it is less critical
to design advanced power budgeting schemes.
6.4.5. Integrating write pausing and write truncation Write can-
cellation, write pausing [20], and write truncation [10] are recent

Figure 22: Speedup of FPM for different power token budgets.

effective read latency reduction schemes for MLC PCM. Although
they address different issues than FPB, we examined their compati-
bility with FPB.

Figure 23: FPB with WC, WP and WT.

Figure 23 shows performance improvement when FPB is inte-
grated with write cancellation (WC), write pausing (WP), and write
truncation (WT). As WC needs a large write queue, we increased
the entries in the read and write queues to 320 (40 R/W entries per
bank, 8 banks). In our experiments, WC is always enabled with WP.

From Figure 23, we observe that FPB, WC, WT, and WT are
orthogonal designs that target different performance opportunities.
When all these designs are combined, on average, FPB+WP+WT

achieves 175.8% improvement over DIMM+chip. This is a gain of
57% over FPB.

However, FPB+WP+WT has a smaller improvement over WP+WT.
This happens because WC, WP and WT mitigate the importance of
writes on performance, i.e., WC and WP move many writes off the
critical path and WT reduces write latency. As discussed, FPB gains
performance due to improved write throughput. Thus, when writes
are less critical, the performance improvement from FPB is less.

7. Prior art

In addition to the related research discussed in the preceding sec-
tions, we discuss other related work in this section.

PCM power management. High write power is known as a ma-
jor disadvantage of PCM. Schemes have been proposed to change
only the cells that need to be changed [12, 31]. Cho et al. proposed
Flip-n-Write that can pack two line writes with the power budget of
writing the number of one line cells [4]. It has limited benefit for
MLC PCM due to the additional states used in MLC PCM. Hay et
al. proposed to track/estimate bit changes in the last-level cache and
issue write operations as long as the DIMM power budget can be sat-
isfied [8]. These power management schemes focus mainly on SLC
PCM. The FPB schemes proposed in this paper address MLC PCM
write by exploiting its characteristics.

To address write power in MLC PCM, Joshi et al. proposed a
novel programming method that decreases write energy and latency
by switching between two write algorithms: single RESET multi-
SET and single SET multi-RESET [11]. The latter is often less re-

1111

liable. Wang et al. proposed to reduce write energy by adopting
different mappings between data values and resistance levels [28].

MLC PCM. MLC PCM can effectively reduce per bit fabri-
cation cost. Schemes have been proposed to address its latency,
write energy, and endurance issues [20, 21, 10]. MLC PCM differs
from SLC PCM in that it has a non-negligible resistance drift prob-
lem. Zhang et al. proposed different encoding schemes to mitigate
drift [30]. Awasthi et al. proposed lightweight scrubing operations
to prevent soft errors [1].

Asymmetric write. The RESET and SET operations have asym-
metric characteristics in terms of latency and power [24]. For SLC
PCM, Qureshi et al. proposed to perform SET operations before the
memory line is evicted from last-level cache [22]. When a write op-
eration comes, only the short-latency RESET needs to be performed.
Applying PRESET on MLC PCM indicates the adoption of single
SET multi-RESET write scheme, which tends to increase the demand
for power tokens.

Industry chip demonstration. Samsung recently demonstrated
a 20nm PCM chip [5] that splits the conventional local charge pump
into sub-pumps to reduce voltage drop and current consumption
along long wires. The prototype adds an external high voltage and
current supplement interface. Our scheme is orthogonal to this de-
sign as IPM can be applied at the sub-pump level, while GCP can
reuse the current supplement interface.

8. Conclusions and Future Work

In this paper, we proposed FPB, fine-grained power budgeting, that
applies two new power management strategies: FPB-IPM enables it-
eration power management to reclaim unused power tokens as early
as possible at the DIMM level and FPB-GCP uses a global charge
pump to mitigate power restrictions at the chip level. Our experi-
mental results showed that FPB is effective and robust for a broad
range of MLC PCM settings. On average, FPB improves perfor-
mance by 76% and write throughput by 3.4× over previous power
management technique [8].

In this paper, we used a range of power efficiencies to accommo-
date different device types and their associated parameters. For a
more detailed evaluation and low level understanding of the circuit
behavior, our future work will consider the circuit level design and
conduct SPICE simulations.

9. Acknowledgments

We thank the anonymous reviewers for their constructive sugges-
tions, and Prof. Moinuddin K. Qureshi for sheparding the paper.
We also acknowledge the support from PCM@Pitt research group.
This research is supported partially by National Science Foundation
grants CNS CAREER-0747242 and CNS-1012070.

References

[1] M. Awasthi, et al., “Efficient Scrub Mechanisms for Error-Prone
Emerging Memories,” in HPCA, 2012.

[2] F. Bedeschi, et al., “A Bipolar-Selected Phase Change Memory Featur-
ing Multi-Level Cell Storage,” JSSC, 2009.

[3] M. Boniardi, et al., “Impact of Material Composition on the Write Per-
formance of Phase-Change Memory Device,” in IMW, 2010.

[4] S. Cho and H. Lee, “Flip-N-Write: A Simple Deterministic Technique
to Improve PRAM Write Performance, Energy and Endurance,” in MI-
CRO, 2009.

[5] Y. Choi, et al., “A 20nm 1.8V 8Gb PRAM with 40MB/s program band-
width,” in ISSCC, 2012.

[6] J. Dickson, “On-chip High Voltage Generation in NMOS Integrated
Circuits using an Improved Voltage Multiplier Technique,” JSSC, 1976.

[7] K. Fang, et al., “Memory Architecture for Integrating Emerging Mem-
ory Technologies,” in PACT, 2011.

[8] A. Hay, et al., “Preventing PCM Banks from Seizing Too Much Power,”
in MICRO, 2011.

[9] Y. Hwang, et al., “MLC PRAM with SLC write-speed and robust read
scheme,” in VLSIT, 2010.

[10] L. Jiang, et al., “Improving Write Operations in MLC Phase Change
Memory,” in HPCA, 2012.

[11] M. Joshi, et al., “Mercury: A Fast and Energy-Efficient Multi-level Cell
based Phase Change Memory System,” in HPCA, 2011.

[12] B. C. Lee, et al., “Architecting Phase Change Memory as a Scalable
DRAM Alternative,” in ISCA, 2009.

[13] K. T. Malladi, et al., “Towards Energy-Proportional Datacenter Mem-
ory with Mobile DRAM,” in ISCA, 2012.

[14] D. Mantegazza, et al., “Statistical Analysis and Modeling of Program-
ming and Retention in PCM Arrays,” in IEDM, 2007.

[15] T. Nirschl, et al., “Write Strategies for 2 and 4-bit Multi-Level Phase-
Change Memory,” in IEDM, 2007.

[16] H. Oh, et al., “Enhanced Write Performance of a 64-Mb Phase-Change
Random Access Memory,” JSSC, 2006.

[17] G. Palumbo and D. Pappalardo, “Charge Pump Circuits: An Overview
on Design Strategies and Topologies,” IEEE Circuits and Devices Mag-
azine, 2010.

[18] M. K. Qureshi, et al., “Enhancing Lifetime and Security of PCM-based
Main Memory with Start-Gap Wear Leveling,” in MICRO, 2009.

[19] M. K. Qureshi, et al., “Scalable High Performance Main Memory Sys-
tem Using Phase-Change Memory Technology,” in ISCA, 2009.

[20] M. K. Qureshi, et al., “Improving Read Performance of Phase Change
Memories via Write Cancellation and Write Pausing,” in HPCA, 2010.

[21] M. K. Qureshi, et al., “Morphable Memory System: A Robust Archi-
tecture for Exploiting Multi-Level Phase Change Memories,” in ISCA,
2010.

[22] M. K. Qureshi, et al., “PreSET: Improving Read Write Performance of
Phase Change Memories by Exploiting Asymmetry in Write Times,” in
ISCA, 2012.

[23] A. Raghavan, et al., “Computational Sprinting,” in HPCA, 2012.
[24] S. Raoux, et al., “Phase-change Random Access Memory: A Scalable

Technology,” IBM J. RES. & DEV., 2008.
[25] S. Schechter, et al., “Use ECP, not ECC, for Hard Failures in Resistive

Memories,” in ISCA, 2010.
[26] N. H. Seong, et al., “Security Refresh: Prevent Malicious Wear-out

and Increase Durability for Phase-change Memory with Dynamically
Randomized Address Mapping,” in ISCA, 2010.

[27] T. Sherwood, et al., “Automatically Characterizing Large Scale Pro-
gram Behavior,” in ASPLOS, 2002.

[28] J. Wang, et al., “Energy-efficient Multi-Level Cell Phase-Change Mem-
ory System with Data Encoding,” in ICCD, 2011.

[29] D. H. Yoon, et al., “BOOM: Enabling Mobile Memory Based Low-
Power Server DIMMs,” in ISCA, 2012.

[30] W. Zhang and T. Li, “Helmet: A Resistance Drift Resilient Architecture
for Multi-level Cell Phase Change Memory System,” in DSN, 2011.

[31] P. Zhou, et al., “A Durable and Energy Efficient Main Memory Using
Phase Change Memory Technology,” in ISCA, 2009.

1212

Leveraging Heterogeneity in DRAMMain Memories to Accelerate Critical Word Access ∗

Niladrish Chatterjee‡ Manjunath Shevgoor‡ Rajeev Balasubramonian‡ Al Davis‡

Zhen Fang§† Ramesh Illikkal∞ Ravi Iyer∞

‡University of Utah §Nvidia Corporation ∞Intel Labs
{nil,shevgoor,rajeev,ald}@cs.utah.edu zfang@nvidia.com {ramesh.g.illikkal,ravishankar.iyer}@intel.com

Abstract

The DRAM main memory system in modern servers is largely ho-
mogeneous. In recent years, DRAM manufacturers have produced
chips with vastly differing latency and energy characteristics. This
provides the opportunity to build a heterogeneous main memory sys-
tem where different parts of the address space can yield different
latencies and energy per access. The limited prior work in this area
has explored smart placement of pages with high activities. In this
paper, we propose a novel alternative to exploit DRAM heterogene-
ity. We observe that the critical word in a cache line can be easily
recognized beforehand and placed in a low-latency region of the
main memory. Other non-critical words of the cache line can be
placed in a low-energy region. We design an architecture that has
low complexity and that can accelerate the transfer of the critical
word by tens of cycles. For our benchmark suite, we show an aver-
age performance improvement of 12.9% and an accompanying mem-
ory energy reduction of 15%.

1. Introduction

The main memory system is a significant performance and energy
bottleneck in modern high−performance platforms. Several trends
threaten to amplify the memory bottleneck. It is increasingly evident
that overall performance/cost and performance/watt are improved by
using simpler cores [10]. This shifts the energy bottleneck from pro−
cessor to memory. Simpler cores offer increased core count per die,
placing greater pressure on memory bandwidth. Simpler cores also
tend to be less effective in hiding memory latency. There is also a
demand for higher memory capacities because of the data−intensive
workloads that execute on many datacenter platforms. For example,
the RAMCloud project argues that disks are incapable of fulfilling
high query rates in future datacenters and disks must be replaced by
large DRAM memories accessed via a network [31]. There is also a
push towards in−memory databases within the database community.
This trend will also increase the contribution of the memory system
to overall system energy and performance.

To date, the main memory system has been largely homogeneous;
the DIMMs that are employed in a server have uniform timing pa−
rameters and only exhibit minor variations. But it is well known that
all data elements do not have a uniform impact on overall perfor−
mance. Some data elements are more critical to performance than
others. This argues for having a heterogeneous main memory design
where critical words or cache lines are placed in low−latency por−
tions of memory and non−critical elements are placed in low−energy
portions. Little prior work has explored the use of different types

∗This work was supported in parts by NSF grants CCF−0811249, CCF−0916436,
NSF CAREER award CCF−0545959, and the University of Utah.

†Work done while at Intel Labs.

of DRAM chips to build and exploit a heterogeneous memory sys−
tem. This paper takes an important step in uncovering the potential
of such a heterogeneous DRAM memory system.

The DRAM industry already produces chips with varying proper−
ties. Micron offers a Reduced Latency DRAM (RLDRAM) product
that offers lower latency and lower capacity, and is targeted at high
performance routers, switches, and network processing [7]. Mi−
cron also offers a Low Power DRAM (LPDRAM) product that of−
fers lower energy and longer latencies and that has typically been
employed in the mobile market segment [6]. Our work explores
innovations that can exploit a main memory that includes regular
DDR chips as well as RLDRAM and LPDRAM chips. To reduce
complexity, we do not integrate different types of DRAM chips on
the same DIMM or even the same channel. We assume that each
DRAM chip type has its own DIMM and can be accessed via its
own channel and memory controller. We propose a critical-word-
first (CWF) optimization that organizes a single cache line across
multiple channels. We observe that the first word in a cache line
is typically most critical and benefits from being placed in a low−
latency channel/DIMM. Other non−critical words in the cache line
can be placed in a low−energy channel/DIMM, thus improving per−
formance and reducing energy. The phenomenon of critical word
regularity was first reported by Gieske [17] and was exploited in the
same work to optimize accesses to the on−chip SRAM caches. Our
results show that the CWF optimization yields an average 12.9% per−
formance improvement and a 15% memory energy reduction, while
incurring low implementation overheads.

Modern memory systems already incorporate a CWF optimiza−
tion where the critical word is returned before the other words when
servicing a cache line request (p. 372 [19], [13]). However, this only
prioritizes the critical word by a few CPU cycles, while not yielding
energy efficiency for the non−critical words. We show that our CWF
optimization prioritizes the critical word by 70 CPU cycles on aver−
age because the critical word has its own independent channel with
lower queuing delays, and it allows non−critical words to be placed
in low−energy DRAM chips. It is therefore a novel and significant
advancement over the state−of−the−art.

2. Background

In a modern server, the main memory system is comprised of multi−
ple channels, each having one or more Dual Inline Memory Modules
(DIMMs). Each DIMM consists of several DRAM chips which are
grouped into ranks. All DRAM chips in a rank work in unison to ser−
vice a cache line request. Each rank is itself partitioned into many
banks and all these banks may be in operation at the same time, each
servicing a different request, subject to various timing constraints.
Ranks and banks on a single channel enable memory−level paral−
lelism, but the accesses are finally serialized on the channel because

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.11

13

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.11

13

the data transfer has to utilize this shared resource. Each bank in a
DRAM chip consists of 2D arrays of DRAM cells and a row buffer
which stores the most recently accessed row of the bank. An acti−
vate operation fetches data from an entire row (on the order of 8 KB)
into the row buffer. A column−read command transfers a cache line
from the row buffer to the processor. If a subsequent access is to the
same row, it yields a row buffer hit and can be completed at a lower
delay and energy cost. Before activating a new row, a precharge op−
eration must be performed. A close−page policy precharges a bank
after every column−read command to prepare the bank for access to
a new row. An open−page policy keeps the row open to service row
buffer hits and precharges the bank only when a new row is encoun−
tered. We next examine the specific properties of different flavors of
DRAM chips that can be used to construct memory systems.

2.1. DDR3

The most widely used DRAM variant in mid−to high−end computing
is the Dual−Data−Rate (DDR3) module. DDR3 DRAM chips attempt
to strike a balance between performance and density and are pro−
duced in very high volumes for desktop, laptop, and server market
segments. We model a standard x8 (data output width of 8 bits), 800
MHz DDR3 part that has a pin data bandwidth of 1600MBps [28]
and a capacity of 2Gb. Each DRAM chip has an 18 bit address and a
5 bit command bus. The address is provided in two cycles (row and
column). Two primary determinants of the possible throughput of a
DRAM chip are its bank count and bank−turnaround time. While
a larger number of banks promotes better concurrency, the bank−
turnaround time (tRC) determines the minimum time that needs to
elapse before a new row in the bank can be activated. To maximize
density, DDR3 chips are seldom designed with more than 8 banks,
and DDR3 bank−turnaround is about 50 ns.

2.2. LPDRAM

Low Power DRAM or mobile DRAM chips are used as an alter−
native to DDR3 chips in mobile devices. Designed for low−power
usage, LPDDR2 [29] has lower per pin bandwidth due to the lower
operating frequency (400 MHz). The core densities and bank counts
remain the same across LPDDR2 and DDR3. Due to lower oper−
ating voltages, the core latencies are increased by a small fraction
leading to a bank−turnaround time of 60 ns. The lower voltages allow
low active power consumption; the output drivers are also designed
to consume less power. In addition to regular low−power modes,
LPDDR2 supports many additional low−power modes like Tempera−
ture Compensated Self−Refresh (TCSR), Partial Array Self−Refresh
(PASR), and Deep Power Down (DPD) modes, all suited for use in
a mobile environment. While current LPDDR2 modules employ a
10−bit address/command bus that is dual−pumped, future low−power
DRAM chips could employ DDR3−style 23−bit address/command
buses.

2.3. RLDRAM

Reduced Latency DRAM (RLDRAM3 [30]) was designed as a deter−
ministic latency DRAM module for use in high−speed applications
such as network controllers [40]. While the pin−bandwidth of RL−
DRAM3 is comparable to DDR3, its core latencies are extremely
small, due to the use of many small arrays. This sacrifice in density
is justified by a bank−turnaround time (tRC) of 10−15 ns compared
to 50 ns for DDR3, and a higher bank count (16 as opposed to 8
for DDR3). The maximum capacity offered by an RLDRAM3 chip

currently (576 Mb) is several times less than the capacity of a DDR3
chip −however Micron roadmaps [1] show plans for 1Gb and 2Gb
parts in the near future. In DDR3 devices, to limit the current draw,
a timing window tFAW is defined, during which only 4 bank activa−
tions can be issued. RLDRAM does not have any such restrictions,
favoring low latency over peak power guarantees. RLDRAM uses
SRAM−style addressing −the entire address is provided with a sin−
gle READ or WRITE command, instead of separate RAS and CAS
commands (although, this could be modified in future RLDRAM
chips). After a read or a write, the bank gets precharged automati−
cally. Thus, effectively, an RLDRAM chip can only operate with a
close−page policy.

3. Motivational Data

Most high−end servers employ DDR3 parts because they provide the
best combination of memory capacity and high performance. If ca−
pacity constraints are removed, the use of RLDRAM3 chip latencies
can lead to a dramatic improvement in performance. Likewise, if
DDR3 parts are replaced with LPDDR2 parts, performance is wors−
ened, but memory energy is reduced. The graph in Figure 1.(a)
shows the sensitivity of applications to these different DRAM prop−
erties, while still presenting a homogeneous main memory sys−
tem. We show results for an 8−core system running programs from
SPEC2k6 and NAS Parallel Benchmark (NPB) suites. We show re−
sults for homogeneous memory systems where the chips are all ei−
ther RLDRAM3, DDR3, or LPDDR2. More methodology details
are in Section 5.

RLDRAM3 outperforms DDR3 by 31% across the simulated
workloads (Figure 1a) while LPDDR2 suffers a 13% reduction in
throughput. The average main memory access time of RLDRAM3
is about 43% lower than that of DDR3. The breakdown of the laten−
cies in Figure 1b shows that each memory read request spends sub−
stantially less time in the queue in a RLDRAM3 system (Queue La-
tency) compared to DDR3, and also requires less time to be serviced
from the memory array (Core Latency). The low bank−turnaround
time of RLDRAM3 (10ns, compared to 50ns for DDR3) leads to
the low queuing delay. The lack of write−to−read turnaround delays,
as well as the higher bank counts of RLDRAM3, also allow it to
provide 24% higher sustained bandwidth compared to DDR3, even
though the pin bandwidth of the RLDRAM3 system is the same as
that of the DDR3 baseline. On the other hand, the LPDDR2 latency
is 41% higher than DDR3. The higher latency of LPDDR2 is due
to the higher bank−turnaround time, the slower arrays (due to lower
voltages) as well as the lower data bus frequency.

However, RLDRAM3 offers much lower capacity. It is well−
known that many applications require large amounts of main mem−
ory space [21, 31, 36, 42] and frequent page faults can lead to severe
drop in performance –for example, Qureshi et al. quantify the page
fault rates seen in several representative benchmarks as a function
of DRAM capacity [36]. Thus, an RLDRAM3 system that has the
same silicon area as a DDR3 system will have much lower capacity
and potentially lower performance for applications with large mem−
ory footprints.

While RLDRAM3 is a clear winner in terms of access latencies, it
incurs a power overhead. Figure 2 shows the power consumption of
the 3 DRAM variants for different bus utilization values. Section 5
outlines the power calculation methodology. We see that at low uti−
lization, the RLDRAM3 power consumption is much higher (due
to the high background power), while at higher activity scenarios,

1414

(a) Performance (b) DRAM Latency Breakdown
Figure 1: Sensitivity of Applications to Different DRAM Flavors.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

D
D

R
3

R
L

D
R

A
M

3

L
P

D
D

R
2

D
D

R
3

R
L

D
R

A
M

3

L
P

D
D

R
2

D
D

R
3

R
L

D
R

A
M

3

L
P

D
D

R
2

D
D

R
3

R
L

D
R

A
M

3

L
P

D
D

R
2

P
ow

er
(m

W
)

Bus Utilization

100% 75% 50% 25%

Background
Rd−Wr/Termination
Activate

Figure 2: Power vs Bus Utilization(the RLDRAM3 part has a capacity
of 512Mb while the DDR3 and the LPDDR2 parts have ca-
pacities of 2Gb)

the power consumptions are more comparable. The high power con−
sumption of RLDRAM3 stems from its high background consump−
tion. This is in spite of the fact that the RLDRAM3 part supports
lower capacity. LPDDR2, by virtue of its lower operating voltage
and frequency, as well as enhanced low−power modes, can yield sub−
stantial power savings over DDR3.

Thus, a single memory type cannot yield a design point that is
favorable on all metrics. This motivates a heterogeneous memory
architecture where selective use of different memory types can help
improve performance, energy, and cost.

4. Exploiting Main Memory Heterogeneity

Instead of implementing a homogeneous memory system with
DDR3 DIMMs, we implement a memory system where some chan−
nels access LPDDR2 DIMMs and some channels access RLDRAM3
DIMMs. We attempt this in a manner that improves performance
and energy, at acceptable cost. The design of a heterogeneous
DRAM main memory system is a new topic and even some of the
basic implementation questions have not been addressed. Therefore,
in Section 4.1, we start by describing one design from prior work, ex−
plain why a simpler design approach is required, and finally describe
a heterogeneous memory architecture that is viable. Section 4.2 then
integrates a critical word first optimization with this heterogeneous
main memory.

4.1. Building a Heterogeneous Main Memory

Prior Work. Prior work attempted a heterogeneous DRAM de−
sign where three types of DIMMs were connected to a single chan−
nel [35]. The authors assume that one DIMM is optimized for low
latency by using narrow arrays, a wider address bus, and small
prefetch buffers. A second DIMM is optimized for low power by
using LPDRAM techniques (partial array self refresh and tempera−
ture compensated self refresh), fewer banks, narrower banks, small

prefetch buffers, and low voltage. The third DIMM is regular DDR
and offers high bandwidth by using many wide banks. With an off−
line profiling process, applications are classified as either latency or
bandwidth sensitive, or a candidate for power optimizations. Ac−
cordingly, pages are placed in the low−latency or low−power DIMM,
or striped across all three DIMMs if they are bandwidth−sensitive.
The authors argue that such a design is meaningful because opti−
mizing a DRAM device for one of the three properties (latency, en−
ergy, bandwidth) usually compromises the other two. While this
prior work took an excellent first step in an important area, some
implementation issues were not addressed. Some of the significant
roadblocks that need to be overcome to successfully institute a het−
erogeneous memory system are listed below:

• Operating different types of DRAM on the same channel is ex−
tremely complex (if not impossible) because of the different oper−
ating frequencies and voltages as well as different commands and
addressing modes.

• The complexity of the memory controller is extremely high as it
has to simultaneously handle the different command timing re−
quirements and states of the three kinds of DIMMs. Besides,
the RLDRAM command set is completely different from that of
DDR3 or LPDRAM.

• As we shall see in Section 4.1, using LPDRAM in a server−like
setting requires some modifications to the interface. This intro−
duces a few power overheads. The methodology in [35] assumes
different latency and power properties for different DRAM chips
while assuming no impact on the DRAM I/O interface, area or
power.

• RLDRAM is power hungry and must be used sparingly in the de−
sign − simply provisioning one−third of the main memory with
RLDRAM as done in [35], will lead to significant increase in
memory system power consumption.

In this section, we first address the above issues to develop a
scalable, cost−effective heterogeneous memory design that is imple−
mentable.

A Focus on Two Types of DIMMs. Unlike the prior work that in−
tegrates three types of DIMMs in a heterogeneous main memory
(latency−optimized, power−optimized, and bandwidth−optimized),
our design only integrates two types of DIMMs (performance−
optimized and power−optimized). An evaluation of existing chips
shows that a DIMM made with RLDRAM chips can not only offer
lower latency, but also higher bandwidth. Compared to a DDR chip,
RLDRAM has the same peak frequency, lower gap between succes−
sive requests (tRC), and twice as many banks. Hence, we see lit−
tle value in creating separate DRAM modules for latency and band−

1515

width. The memory controller complexity is also increased by strip−
ing some pages across 3 DIMMs (for high bandwidth [35]) and some
pages across a single DIMM. Therefore, in our work, we employ a
high−performance DRAM module that is built with RLDRAM de−
vices and that offers low latency and high bandwidth. We employ a
second type of DRAM module that is built with LPDRAM devices
and that has lower bandwidth, higher latency, and lower power. A
third type of DRAM module can also be built out of regular DDR3
devices that represents an intermediate design point in terms of per−
formance and power. To reduce cost and complexity, we implement
DIMMs that are themselves homogeneous, i.e., a DIMM only has
chips of one type.

Homogeneous DIMMs on a Channel. In the proposed system,
each DIMM type has its own dedicated channel. The memory con−
troller would have high complexity if a single channel controlled
DIMMs of different types. In all of our discussions, for simplic−
ity, we assume that only 1 or 2 DIMMs of the same type are at−
tached to each channel. This is consistent with projections that
future DDR generations will only support 1−2 DIMMs per high−
speed channel. However, our proposals are equally applicable to
configurations that can support more DIMMs or ranks per channel.
Modern high−performance processors implement multiple memory
channels. Our heterogeneous memory system is built by designat−
ing a subset of these channels as performance−optimized channels
and a subset as power−optimized channels. In our designs, our
performance−optimized DIMM/channel is representative of state−of−
the−art RLDRAM technology and operates at high frequency. Our
power−optimized DIMM/channel uses LPDRAM chips at lower fre−
quency, an open−row policy (that is known to minimize energy), and
an aggressive sleep−transition policy.

Adapting LPDRAM and RLDRAM for Server Memories. In
our work, we rely on existing DRAM chips and do not introduce
extensive chip optimizations of our own. We therefore restrict
ourselves to modeling DRAM chips that closely resemble regular
DDR3, LPDRAM, and RLDRAM properties. We allow a few modi−
fications that can be easily integrated into future generations of these
chips. For example, we assume that x8 and x9 RLDRAM chips can
be supported (only x18 and x36 are available today) and that LP−
DRAM chips support ODT and DLL.

As described in Section 2, RLDRAM parts are designed for low
latency response as well as high sustained bandwidth. In such en−
vironments, RLDRAM chips are soldered onto the motherboard,
communicating one−on−one with the processor. LPDRAM modules,
used in the embedded domain, are also soldered onto the system
PCB. This is in contrast to a regular server/desktop environment
where individual DDR chips form a DIMM, which is then plugged
onto the DRAM channel on the motherboard. While using LP−
DRAM parts in a DIMM form factor, it is important that additional
features be implemented to ensure signal timing and integrity, par−
ticularly when high−speed signalling is employed. RLDRAM parts
already employ these features.
ODT : An important feature present in modern DDR memory is on−
die−termination (ODT) for signals. The purpose of ODT is to match
the terminating impedance on the transmission die to the impedance
of the transmission line. A mismatch in the terminating impedance
leads to signal reflections which act as a source of noise on the mem−
ory channel. RLDRAM devices, by virtue of their high−speed operat−
ing environments, already incorporate ODT for signal integrity. LP−

DRAM devices, typically operated in power−sensitive systems, use
lower frequencies, and hence, LPDDR2 is not equipped with ODT.
However, LPDDR3 chips will incorporate ODT resistors to increase
signal integrity in high−frequency environments [32]. ODT resistors
can be incorporated in the LPDDR2 chips with very little area over−
head as they reside near the data pins [43]. The main overhead of
introducing the termination resistors is the increase in static power
which we model in the same way as in a DDR3 chip.
DLL : Modern DDRx SDRAM devices utilize an on−chip DLL
(delay−locked loop) to synchronize the data signals and the source−
synchronous clocking reference signal DQS with the global clock
used by the memory controller. The data sent out on the data bus
by a DIMM is synchronous with the DQS signal which in turn is
used by the memory controller to sample the data. To make sure that
the skew between the global clock fed to the DRAM chip and the
DQS signal seen by the memory controller is not catastrophic, the
on−chip DLL delays the DQS signal (and the data signals) enough
so as to put them in phase with the global clock [19]. DDRx devices
as well as RLDRAM 3 devices already use DLLs for this purpose
while LPDRAM chips, due to their power constraints, do not have
any such feature. We assume that DLLs can be integrated into the
I/O circuitry of the LPDRAM chips at a power cost. In Section 5
we describe how we account for this increased power cost in our
simulations.
Silicon Cost: It is well known that changes to a DRAM chip must
be very sensitive to area and cost. A recent paper [43] pointed out
that changes made to a DRAM chip are most disruptive to chip den−
sity when they are instituted in the bit−line sense−amplifier stripe,
followed by the local word−line driver stripe, then in the column
logic, and finally in the center stripe. To implement the DLLs and
the ODTs, we need to introduce and modify circuits close to the I/O
pads near the center stripe −we can therefore localize the changes
to the least sensitive portion of the DRAM chip. The inclusion of
ODTs in future generation LPDDRs (LPDDR3 [32]) demonstrates
that adapting LPDRAM for higher frequency and long channel envi−
ronments is indeed commercially viable.

We have thus instituted a low−complexity heterogeneous main
memory by introducing the following features: (1) the use of only
two types of DIMMs (performance−optimized vs. power−optimized)
in one design, (2) the use of only one type of DIMM per channel,
(3) the integration of DLL and ODT in LPDRAM chips to make
them server−class. It should also be noted that the use of hetero−
geneity need not be exposed to application developers and does not
pose programmer complexity. Similar to the non−uniformity intro−
duced by row buffer hits/misses, memory latencies will differ based
on whether heterogeneity is successfully exploited or not.

4.2. Accelerating Critical Words

4.2.1. Motivation. The few prior efforts [35, 37] that have con−
sidered non−uniform or heterogeneous memories have attempted to
classify data at the granularity of cache lines or OS pages. Instead,
we focus on another data criticality opportunity that has not been
previously leveraged by heterogeneous memories. A cache line is
fetched from memory when a given CPU word request results in on−
chip cache misses. It is well known that the word requested by the
CPU is more critical than the other words in that cache line. When
transferring the cache line, it is re−ordered so that the critical word
is sent before the other words, thus reducing access latency by a few
cycles [19, 18]. We argue that the transfer of the critical word can

1616

(a) leslie3d (b) mcf

Figure 3: Distribution of critical words in highly accessed cache-lines

Figure 4: Distribution of Critical Words

be improved by tens of cycles if it is placed on a separate DIMM
with lower device latencies and lower queuing delays. Since the
other non−critical words in the cache line are not required urgently,
they can be placed in low−power DRAM modules without incurring
a performance penalty.

For such an optimization it is necessary that the critical word in
a cache line remain fairly constant over a long period of time. The
graphs in Figure 3 demonstrate such critical word regularity. We
monitor DRAM accesses over a billion cycle period to identify the
criticality of words in the cache. In Figure 3, we plot the percentage
of accesses to different words, of the most accessed cache lines for
two applications. The graphs show that for most cache lines, some
words are more critical than others. For leslie3d (Figure 3.a), the
most accessed critical word is word 0. On the other hand, in mcf
(Figure 3.b), other words (i.e., 1 thru 7) are often the most frequently
accessed critical words in the cache line. But clearly, in both cases,
we see that within a cache line, there is a well−defined bias towards
one or two words. We see the same pattern for all the simulated
benchmarks.

A critical word first (CWF) optimization is facilitated if the criti−
cal word for a cache line remains unchanged over the execution of
a program. If every cache line has a different critical word, more
book−keeping would be required to track the identity of the critical
word. The implementation is simplified if the same word is always
the critical word for all cache lines and is placed in a low−latency
DIMM.

Figure 4 shows the distribution of critical words for our bench−
mark suite. For 21 of 27 programs, of the 8 words in a cache line,
word−0 is critical in more than 50% of all cache line fetches. In 6 pro−
grams, there is no well−defined bias and all words have roughly an
equal probability of being the critical word. The Appendix includes

a description explaining these biases for a variety of programs. In
summary, if the program is performing a sequential scan across an
array of data, early words in a cache line have a higher probability
of being critical than later words in the cache line, especially if the
stride is small and the word alignment is favorable. Pointer chasing
codes tend to exhibit less bias.

4.2.2. Data Placement. On average, across the entire suite, word−
0 is critical for 67% of all cache line fetches. To keep the design
simple, we therefore assume a static architecture where word−0 is
always placed in a low−latency DIMM and words 1−7 are placed in
a low−power DIMM. We later also describe a more complex and
flexible data organization.

In our baseline system (Figure 5a), an entire cache line plus
SECDED ECC is placed on a single DDR3 DIMM and striped
across 9 chips, where each chip is x8 wide. The proposed design for
a single channel is shown in Figure 5b. The 9−chip 72−wide DDR3
rank is replaced by an 8−chip 64−wide LPDRAM rank. The 8 chips
store words 1−7 and the ECC codes for each cache line. Word−0
for each cache line is now stored in a separate low−latency DIMM
(rank) made of RLDRAM chips, and controlled by its own inde−
pendent channel and memory controller. It is important for the RL−
DRAM DIMM to have its own independent controller. Since the
RLDRAM DIMM has lower queuing delays, the request for word−0
from the RLDRAM DIMM can be issued many cycles before the
request for words 1−7 from the LPDRAM DIMM gets issued. This
allows the critical word to arrive tens of cycles before the rest of
the cache line, having an impact much higher than other CWF opti−
mizations that have been considered by processors [19, 18]. Since
RLDRAM has lower density, we assume that 4 RLDRAM chips are
required to support the same capacity as one DDR3 or LPDRAM
chip. In order to remain processor−pin−neutral, the RLDRAM chan−
nel is assumed to only be 8 bits wide (plus a parity bit, explained
shortly). We have thus replaced a single conventional 72−bit chan−
nel/DIMM with a 64−bit low−energy channel/DIMM and 9−bit low−
latency channel/DIMM. The 9 DDR chips that made up a rank have
now been replaced by 8 low−power LPDDR chips and 4 low−latency
RLDRAM chips. The low−power and the low−latency channels re−
quire their own independent 23−bit address/command bus and inde−
pendent memory controllers on the processor. We will shortly pro−
pose optimizations to reduce these overheads.

In our CWF design, whenever there is an LLC miss, an MSHR
entry is created and two separate memory requests are created, one
in the LPDRAM memory controller and one in the RLDRAM mem−

1717

�����
��	�

��������������

�
�������������
���������������

����� ��
���

� �!!"#��

(a) A baseline DDR3 system, with a 72−bit wide Data +

ECC bus and a 23−bit wide address/control bus. The

processor has four instances of this configuration.

$������
���������

������
���������

���	�

%�����������
&����������'�
$��������������

(���������&)�*������������

�(����
)
*�������

����� ��
���

� �!!"#��

�����
��	�

����� ��
�(�����
� �!!"#��

(b) A heterogeneous Static−CWF memory system where

word−0 is placed in a single−rank RLDRAM DIMM and

other words are placed in a single−rank LPDRAM

DIMM. The processor has four instances of this

configuration.

$������������
%���������
���������������

�(��

(���������&)�*������������

��+�����!,"��� �!!"#���-��(���.�"�� ��)
*�������

�%��������������

%�����������&�����
/����'��(����
� �!!"#�

� 	� � &� �
� � ��

����� �
(���
� �!!"#��

�����
��	�

(c) A low−cost heterogeneous Static−CWF memory

system where the critical words of all 4 channels are

aggregated on a 16−chip RLDRAM DIMM and other

words are placed in four single−rank LPDRAM DIMMs.

Figure 5: A basic Static-CWF heterogeneous memory system and an optimized low-cost version of it.

ory controller. Both channels are completely independent and will
access their respective DIMMs and return data many cycles later. In
the common case, word−0 arrives first and is buffered at the MSHR.
If it is the critical word, it is returned to the CPU. When the second
part of the cache line arrives, the access is deemed complete. The
caches are then populated, and the MSHR entry is freed. The added
complexity is the support for buffering two parts of the cache line in
the MSHR and the additional memory controller for the RLDRAM
channel.

4.2.3. Handling ECC Checks. Memory systems are often required
to provide ECC support that can detect and recover from a single bit
error [38]. The ECC check can only happen after the entire cache
line arrives. However, our CWF design wakes up a waiting instruc−
tion before confirming that the data is free of errors. Typically, the
waiting instruction is at the head of the reorder buffer and will be
retired soon after the critical word arrives and likely before the ECC
code arrives. If the ECC−check flags an error, roll−back is often not
possible because the instruction that consumed the critical word has
already retired. We solve this problem as follows. A parity bit is
attached to every byte stored in the RLDRAM DIMM. RLDRAM
chips are already available in x18 and x36 configurations, i.e., they
already are provisioned for additional bits that can be used for fault
tolerance. When word−0 arrives at the processor, it is forwarded to
the waiting instruction if there is no parity error. If there is a parity
error, the data is forwarded only after the ECC code arrives and the
error has been corrected. Parity checks can lead to silent data cor−
ruption if there are multi−bit errors. However, this is already beyond
the scope of the baseline fault tolerance support which typically can
only guarantee recovery from a single bit failure per 64−bit word. As
in the baseline, our design will detect a 2−bit error on the 64−bit word
when the ECC finally arrives. This general approach of lightweight
error detection within RLDRAM and full−fledged error correction
support within LPDRAM can also be extended to handle other fault
tolerance solutions such as chipkill [9]. To summarize, the parity so−
lution does not replace the SECDED scheme; it augments SECDED.
So the error coverage is exactly the same as in the baseline SECDED.
The only deviation is that a multi−bit error (not detected by parity)
will cause an erroneous result to commit; this will be detected by
the regular SECDED a few cycles later when the full cache line is
received. The new model will also fail−stop and the point of failure
will be precisely known.

4.2.4. Reducing Overheads. We propose two optimizations to im−
prove upon the basic design described so far. First, we recognize
that energy overhead is increased by striping word−0 across 4 chips
on the RLDRAM DIMM. Instead, we place each word−0 and its
parity bit on a single x9 RLDRAM chip. Hence, the RLDRAM
DIMM is implemented as 4 ranks, each with one x9 chip. The ad−
dress/command bus is now 26−bits wide to accommodate chip−select
signals (see Figure 5b).

By having more narrow ranks, we not only reduce activation en−
ergy, we also increase rank and bank level parallelism and reduce
queuing delays. While narrow ranks lead to a narrow row, that is not
a problem because RLDRAM employs a close−page policy and does
not yield row buffer hits anyway.

The second optimization targets the overhead of having an ex−
tra 26−bit wide address/command bus and memory controller for
each critical−word RLDRAM channel. Our baseline has four 72−
bit DDR3 channels. If our CWF proposal is applied to each chan−
nel, it produces four separate 9−bit RLDRAM channels, each with
its own memory controller and 26−bit address/command bus. To
reduce these overheads, we aggregate the four RLDRAM channels
into a single memory controller and channel (see Figure 5c). The
aggregated RLDRAM channel will now have a 36−bit data bus and a
38−bit address/command bus (note the extra signals for chip−select).
This organization is similar to Rank−Subsetting [8] where one ad−
dress/cmd bus is used to control many skinny data channels. The
only change from our previous scheme is that the four 9−bit wide
channels will all share the same address/command bus. It is safe to
share the address/command bus among four data channels without
creating contention. This is because the transfer of word−0 from a
RLDRAM chip keeps the data bus busy for eight clock edges, but
keeps the address bus busy for only two clock edges1. We can thus
afford to increase the utilization of the address/command bus by a
factor of four. The address/command bus now drives 16 chips on the
RLDRAM DIMM, an already common scenario in modern chan−
nels.

With these optimizations in place, some of the initial overheads
are reduced by a factor of four. Now, every access activates the
same number of DRAM chips (9) as the baseline, keeping activation

1RLDRAM uses a close−page policy and does not require an explicit precharge on
the address/cmd bus after every data access. Hence, the utilization of the data and ad−
dress/cmd bus is in the ratio 4:1. We assume double−data−rate for the address/command
bus, as is done for LPDRAM [29], and GDDR5 [5]

1818

energy in check. We are introducing only one additional memory
controller and only 42 (38 for the address/cmd bus and 4 for parity)
new pins to control the RLDRAM channel. This is a small overhead
given that modern processors have 1000+ pins.
4.2.5. Adaptive Placement. Design complexity is an important
guiding metric in creating our static CWF architecture. We there−
fore assume that word−0 is always critical and place it in the RL−
DRAM DIMM/channel. This makes it easy to locate and assemble
the two parts of a cache line. As a potential study, we also consider
a more complex organization where every cache line is allowed to
designate one of its eight words as the critical word. We assume
that the critical word on the previous fetch will also be the critical
word on the next fetch. Hence, when a dirty line is evicted from
cache, the line is re−organized and placed in DRAM memory such
that the predicted critical word is placed in the low−latency DIMM.
With such prediction, 79% of all critical words will be found in the
low−latency DIMM, compared to the 67% success rate of the static
CWF architecture. The critical word would need a 3−bit tag in cache
and DRAM to identify itself as one of the eight words in the cache
line. We present results for this model to showcase the additional
room for improvement with an adaptive CWF optimization, but ac−
knowledge the relatively high design complexity required to realize
this added improvement.
4.2.6. Discussion. To summarize, our innovations allow us to
enhance system performance and lower the memory system en−
ergy. To achieve this, we add a memory controller, one extra ad−
dress/command bus and four extra data pins. On the processor, some
support from the MSHR is required to handle the fragmented trans−
fer of a cache line. The total memory capacity and DRAM error
coverage is the same as in the baseline. The use of RLDRAM will
lead to a higher purchase cost.

5. Methodology

Processor

ISA UltraSPARC III ISA
CMP size and Core Freq. 8−core, 3.2 GHz

Re−Order−Buffer 64 entry
Fetch, Dispatch, Maximum

Execute, and Retire 4 per cycle

Cache Hierarchy

L1 I−cache 32KB/2−way, private, 1−cycle
L1 D−cache 32KB/2−way, private, 1−cycle
L2 Cache 4MB/64B/8−way, shared, 10−cycle

Coherence Protocol Snooping MESI

DRAM Parameters

DDR3 MT41J256M4 DDR3−1600 [28],
RLDRAM3 Micron MT44K32M18 [30]
LPDDR−2 Micron MT42L128M16D1 [29] (400MHz)
Baseline 4 72−bit Channels
DRAM 1 DIMM/Channel

Configuration (unbuffered, ECC)
1 Rank/DIMM, 9 devices/Rank

Total DRAM Capacity 8 GB
DRAM Bus Frequency 800MHz

DRAM Read Queue 48 entries per channel
DRAM Write Queue Size 48 entries per channel

High/Low Watermarks 32/16

Table 1: Simulator parameters.

Simulator Details. We use the Wind River Simics [25, 4] simu−
lation platform for our study. Table 1 details the salient features
of the simulated processor and memory hierarchy. We model an

Parameter DRAM RLDRAM3 LPDDR2

tRC 50ns 12ns 60ns
tRCD 13.5ns − 18ns
tRL 13.5ns 10ns 18ns
tRP 13.5ns − 18ns

tRAS 37ns − 42ns
tRTRS 2 Bus Cycles 2 Bus Cycles 2 Bus Cycles
tFAW 40 ns − 50ns
tWTR 7.5ns 0 7.5ns
tWL 6.5ns 11.25ns 6.5ns

Table 2: Timing Parameters [30, 29, 28, 23]

out−of−order processor using Simics’ ooo-micro-arch module and
use a heavily modified trans-staller module for the DRAM simu−
lator. The DRAM simulator is adapted from the USIMM simulation
framework [12]. We also model a stride prefetcher. At the memory
controller, demand requests are prioritized over prefetch requests in
general, unless the prefetch requests exceed some age threshold, at
which point they are promoted over demand requests.
DRAM Simulator. The memory controller models a First−Ready−
First−Come−First−Served (FR−FCFS) scheduling policy (for DDR3
and LPDRAM2) and models all DRAM, RLDRAM3 and LPDDR2
commands and timing parameters. We describe the most perti−
nent ones in Table 2. The DRAM device model and timing pa−
rameters were derived from Micron datasheets [28, 19, 29, 30].
DRAM address mapping parameters for our platform (i.e., number
of rows/columns/banks) were adopted from Micron data sheets [28,
29, 30]. The open row address mapping policy from [19] is
used in the baseline and LPDDR2. We use this address mapping
scheme because this results in the best performing baseline on av−
erage when compared to other commonly used address interleaving
schemes [44, 19]. For the RLDRAM modules, we use a close−page
policy. Note that the queuing delays that we see in the baseline in
our simulations (Figure 1.b) are lower than those observed in prior
work such as [41] because we simulate more channels and larger
last level cache capacities which reduce the traffic in each channel.
Workloads. Our techniques are evaluated with full system simula−
tion of a wide array of memory−intensive benchmarks. We use multi−
threaded workloads (each core running 1 thread) from the OpenMP
NAS Parallel Benchmark [11] (cg, is, ep, lu, mg, sp) suite and the
STREAM [3] benchmark. We also run multiprogrammed work−
loads from the SPEC CPU 2006 suite (astar, bzip2, dealII, gromacs,
gobmk, hmmer, h264ref, lbm, leslie3d, libquantum, mcf, milc, om−
netpp, soplex, sjeng, tonto, xalancbmk and zeusmp). Each of these
single threaded workloads are run on a single core −so essentially
each workload is comprised of 8 copies of the benchmark running on
8 cores. For multi−threaded applications, we start simulations at the
beginning of the parallel−region/region−of−interest of the application.
For the multiprogrammed SPEC benchmarks, we fast forward the
simulation by 2 billion instructions on each core before taking mea−
surements. We run the simulations for a total of 2 million DRAM
read accesses after warming up each core for 5 million cycles. Two
million DRAM read accesses correspond to roughly 540 million pro−
gram instructions on average. For comparing the effectiveness of the
proposed schemes, we use the total system throughput defined as ∑i
(IPCi

shared/IPCi
alone) where IPCi

shared is the IPC of program i in a
multi−core setting. IPCi

alone is the IPC of program i on a stand−alone
single−core system with the same memory system.
Power Modeling. We use the Micron DRAM power calculators [2]
to model the power consumption of each DRAM chip. While the

1919

DDR3 and RLDRAM3 calculators can directly be used to model
the power of each of these variants of DRAM chips, we modify the
DDR3 power calculator to serve as the power model for LPDDR2.
We change the current values from those of DDR3 to the correspond−
ing LPDDR2 values for all except the background currents (Idd3P
and Idd3PS). This is to ensure that we do not artificially inflate the
LPDDR2 power savings. As mentioned in Section 4.1 we assume
that an LPDDR2 chip used on a DIMM will have a DLL. This DLL
consumes power in idle modes. To account for this component of
the idle power, we assume that an LPDDR2 chip consumes the same
amount of current that a DDR3 chip does in idle state. We also as−
sume that LPDRAM requires ODT and calculate the static power
contribution of such termination resistors.

6. Evaluation

6.1. Critical Word Optimization

6.1.1. Performance Analysis. We evaluate the proposed critical
word optimizations for three memory configurations. In the first two
of these, an eighth of the DRAM capacity (meant for storing critical
words) is constructed out of RLDRAM3 while the rest is built with
DDR3 and LPDDR2 respectively. In the third configuration, DDR3
is used to store the critical word and the rest of the word is stored in
LPDDR2. The three configurations are as follows.
• RD : 1GB RLDRAM3 and 7GB DDR3 (plus 1GB ECC)
• RL : 1GB RLDRAM3 and 7GB LPDDR2 (plus 1GB ECC)
• DL : 1GB DDR3 and 7GB LPDDR2 (plus 1GB ECC)

In Figure 6, we present the throughput of each of these systems
normalized to an 8GB DDR3 baseline, while Figure 7 shows the
average DRAM latency of the requested critical word. Each system
represents a different point on the power−performance space, depend−
ing on the type of DRAM chip in use. We see in Figure 6 that RD has
an average throughput improvement of 21% over DDR3 while RL
has an average improvement of 12.9% over the baseline. The source
of these improvements are the 30% and 22% reductions in critical
word latency for RD and RL respectively. The overall performance
degradation with the power optimized DL scheme is 9%.

Maximum improvements with the RLDRAM based configura−
tions are observed for those benchmarks that have a large fraction
of critical words placed in RLDRAM. Figure 8 shows the fraction
of total critical word requests served by the faster RLDRAM module.
Applications like cg, lu, mg, sp, GemsFDTD, leslie3d, and libquan-
tum show significant improvements with RL and RD because most
of the requested critical words for these benchmarks are to word 0
and hence are serviced with RLDRAM3 latency. In fact, for these
benchmarks, RD and RL perform very similarly because the latency
of the slower DRAM module rarely affects the system performance.
For the same reason, DL is able to hide the latency of LPDDR2 to
a large extent in these cases and suffers minimal performance degra−
dation.

On the other hand, applications like lbm, mcf, milc, and omnetpp
have a large fraction of critical words that are not the first word in the
cache line and are hence serviced from the slower DRAM module
(Figure 8). For these applications, RL performs nominally better
than the baseline. In fact, with RL, bzip2 performs about 4% worse
than the baseline because of the increased critical word latency.

To further understand the performance gains from the RL scheme,
we collected statistics on the time gap between the first request for a
cache−line and the subsequent access to the same cache−line, but to
a different word. This is to determine if accesses to words 1 through

7 in the cache−line occur sufficiently late in the instruction window
to tolerate the increased LPDDR latency. We compare the average
gap between the first two accesses to a cache−line to the average LP−
DRAM access latency for all the benchmarks which have word−0 as
the most frequently accessed critical word. We see that in the ma−
jority of the applications that benefit from our proposed architecture,
this gap is greater than or very close to the LPDRAM latency for
more than 82% of all accesses. This means that there is very lit−
tle additional slowdown compared to an all DDR baseline for these
applications. However, some applications such as tonto and dealII,
which see reduced critical word latencies with both RD and RL, due
to the large percentage of critical word 0 accesses, still experience
marginal overall slowdown compared to the baseline. This is be−
cause in these applications, most of the second accesses to cache−
lines (more than 75%) occur before the whole line is returned from
the LPDDR.

All the results above are with a system that employs a stream
prefetcher. In the absence of the prefetcher the performance gain
with the RL system is 17.3%, simply because there is more opportu−
nity for latency hiding with CWF.

We also perform an experiment where the critical words are as−
sumed to be randomly mapped between the RLDRAM and LP−
DRAM systems (with the critical word being 7 times more likely
to be found in the LPDRAM system compared to the RLDRAM sys−
tem). This experiment is done to ensure that the intelligent data map−
ping contributes to the performance gains observed above. We see
that with a random mapping, the average performance improvement
is only 2.1% for RL (compared to the DDR3 baseline) with many ap−
plications showing severe performance degradation because a large
percentage of their critical words are fetched from LPDRAM.

6.1.2. Analyzing RLDRAM+LPDDR performance. Since the RL
scheme has comparable performance to the RD scheme and (as
shown later) has significant energy advantages over RD, we choose
it as our flagship configuration. We apply the adaptive critical word
placement on it and present the results in the following graph, Fig−
ure 9.

The bar RL OR in Figure 9 represents system throughput with
an oracular scheme, where we assume that every critical word is
fetched from RLDRAM3. The performance obtained with RL−OR
is the highest (28% improvement) that can be achieved by the RL
configuration. Note that the performance thus obtained will be
lower than an all−RLDRAM3 system represented by the last bar, RL−
DRAM3, in Figure 9. Note that in RL OR, only the critical word
comes from the RLDRAM3 part, compared to the whole cache line
in RLDRAM3. The other factor restricting the performance of the
RL OR system is the limited address/command bus bandwidth. Even
though the RLDRAM chips are organized into 4 independent data
channels, the single address and command bus can become a bottle−
neck, especially for applications with high memory pressure such as
mcf, milc, lbm.

The RL AD bar represents the performance of the adaptive criti−
cal word placement scheme. The RL AD scheme re−organizes the
layout of the cache word to place the last used critical word in the
RLDRAM3 part. This scheme performs better (15.7% improvement
over baseline) than the RL scheme (12.9% improvement over the
baseline) because it lowers the critical word latency of more requests
compared to the RL scheme. Mcf is one of the applications that ben−
efits from adaptive placement (a 20% improvement over baseline
compared to 12% for RL). This is because in mcf, word 0 and word

2020

Figure 6: Performance of CW optimization

Figure 7: Critical Word Latency

Figure 8: Percentage of Critical Word Accesses Served By RLDRAM3

3 are the most accessed critical words (see Figure 4). With adaptive
placement, during a write to the lines which have word 3 as the criti−
cal word, the layout of the cache line is altered and subsequent reads
to these lines have lower critical word latencies. The performance
of the RL AD scheme is dependent on the write−traffic −i.e., unless
a word is written to, its organization in the main memory is not al−
tered. Therefore, not all applications that have words 1 through 7 as
critical words can be accelerated with the RL AD scheme.

6.1.3. Energy Analysis. In this section, we analyze the energy con−
sumption of the ensemble. The system energy consumption for the
different configurations is shown in Figure 10.

Methodology: To calculate system energy, we assume the power
consumption of the DRAM system in the baseline to be 25% of the
entire system [27, 22]. We assume that one−third of the CPU power
is constant (leakage + clock), while the rest scales linearly with CPU
activity. We calculate the power consumption of DDR3, RLDRAM3
and LPDDR2 chips using activity factors from the simulator, which
are then fed to the Micron DRAM power calculators [2].

As seen in Figure 2, the power consumption of a single RL−
DRAM3 chip is higher than that of a DDR3 chip at the bus utiliza−
tion values that we see in our simulations (between 5% and 40%).
In an RL system, we have 16 RLDRAM3 chips and 32 LPDDR2

chips compared to 36 DDR3 chips in the baseline. In the baseline,
every cache line request requires the activation of 9 DDR3 chips,
while in RL, 1 RLDRAM3 chip and 8 LPDDR2 chips are activated
for each request. The high power consumption of RLDRAM3 is
alleviated by the lower power consumption of the LPDDR2 chips.
In our experiments we find that by only fetching one cache−word
from the RLDRAM3 chip, its active power consumption is kept in
check. Also, since each RLDRAM3 chip sees one−fourth of the ac−
tivity seen by each DDR3 chip (because of the sub−ranking optimiza−
tion), the I/O power of the RLDRAM3 chips is kept lower. The
LPDDR2 channels, due to their lower frequency and lower operat−
ing voltage consume about 20% less power on average compared to
the DDR3 system. The faster power−down entry and exit modes al−
low the LPDDR2 ranks to be put to sleep more frequently compared
to the baseline. The overall memory power decreases by 1.9% and
memory energy reduces by 15%.

We see that the overall system energy consumption drops by about
6% with RL while the DL scheme consumes about 13% lower en−
ergy compared to a DDR3 baseline. The RL scheme exhibits maxi−
mum energy savings for high−bandwidth applications with high criti−
cal word 0 accesses −e.g., mg, sp, GemsFDTD, leslie3d, and libquan−
tum. High DRAM utilization bridges the gap between DDR3’s
power consumption and that of RLDRAM3 (Figure 2) to a certain
extent. When such high−bandwidth applications can benefit from the
critical word optimization, i.e., have a high number of critical word
0 accesses, the overall system energy is reduced. On the other hand,
high bandwidth applications such as lbm, mcf, and milc, which show
modest performance improvements with our schemes do not show a
marked reduction in system energy consumption.

Applications like bzip2, dealII and gobmk, have low bandwidth
requirements. As a result, the power consumption of the RLDRAM3
component is high enough that the DRAM power in the RL config−
uration exceeds the baseline DDR3 power consumption. Coupled
with this are the marginal execution time reductions (increase in
bzip2) for these applications with RL, resulting in overall system

2121

Figure 9: Performance of various RLDRAM3+LPDDR2 configurations

Figure 10: System Energy Normalized to DDR3 Baseline

Figure 11: Bandwidth Utilization vs Energy Savings

energy consumption increases.
Figure 11 shows the energy savings obtained for the RL scheme

as a function of bandwidth utilization (each point in the figure repre−
sents a different workload). As explained above, the energy savings
are a function of two parameters −the critical word regularity and
the bandwidth utilization. We notice in Figure 11 that in general,
with increasing bandwidth utilization, the system energy savings are
progressively greater. This is because the energy gap between RL−
DRAM and DDR3 shrinks at high utilization. This implies that in
future systems constrained by bandwidth, our innovations can be ex−
pected to provide greater energy savings and performance improve−
ments.

7. Alternate Heterogeneous Memory Design Options

7.1. Comparison to Page Placement Proposals

Most heterogeneous main memory proposals, including that of
Phadke et al., place a group of cache−lines (usually belonging to
the same physical page) in a single DRAM variant on a single chan−
nel. To compare the merits of such a strategy against our proposal
we evaluate a heterogeneous memory system that consists of RL−
DRAM3 and LPDRAM2. An application is statically profiled and
a fraction of its pages are placed in RLDRAM3 and the rest in LP−

DRAM2. In this experiment, to ensure that the memory configura−
tion is practical, we assume that the system consists of four 72 bit
wide channels. Three contain 2GB LPDDR2 DIMMs each while
the fourth channel has only .5GB of RLDRAM3 memory. This de−
sign allows the RLDRAM3 system to enjoy the pin bandwidth of a
conventional system and curbs the energy consumption of the RL−
DRAM3 system by restricting the number of chips. Hence the base−
line configuration and the one described above are iso−pin−count and
iso−chip−count. We do not consider the performance effects of the re−
duced RLDRAM3 capacity. The applications are profiled offline and
the top 7.6% (.5GB/6.5GB) of the accessed pages wwere placed in
RLDRAM3. We see that the performance varies widely, from a 9.3%
loss to a 11.2% improvement, yielding an average improvement of
about 8%. Those applications, most of whose working set fits in the
RLDRAM memory, benefit from this organization showing higher
benefits compared to our scheme. However, the loss in performance
is due to many accesses to the LPDRAM − since the top 7.6% of
pages only account for a maximum of 30% of all accesses for any of
the programs. In addition, [39] demonstrates that for most applica−
tions, few cache−lines in a page make up the majority of all accesses
to that page. Thus, allocating space on RLDRAM at a page granu−
larity does not yield much benefit. It is also necessary to note that
the improvements reported here will likely be less once page−fault
effects due to the smaller overall capacity of the memory system are
taken into consideration (our simulations are not long enough to con−
sume even the reduced memory capacity). The power consumption
of this system is decidedly better than our scheme, because
• there is less RLDRAM3 in the system compared to the proposed

scheme, thus less background power.
• pages in LPDRAM have low access frequencies, thus the LP−

DRAM can stay in power down modes for longer, thereby reduc−
ing power consumption further.

7.2. Alternate LPDRAM Design
As noted in Section 9, Malladi et al. have looked at adapting LP−
DRAM for use in server memories [26]. Their analog simulations

2222

show that even in the absence of On−Die−Termination, the "eye" of
the read and write signals is wide enough to allow using unmodified
LPDRAM chips (grouped into packages of four) to construct the
memory channel. We simulate a similar system in our experiments
and find that the LPDRAM power is further reduced in this case with
very little loss in performance (due to deeper sleep modes) and thus
the energy savings are boosted to 26.1%.

8. Cost Analysis

The total cost of ownership of a server system is an important de−
sign metric. The acquisition cost of a product is intrinsically tied to
the volume of production. LPDRAM is already being used in high−
volume markets (portable compute devices) which will help reduce
its price. The higher cost−per−bit of the RLDRAM3 devices is kept
in check in our design by using RLDRAM for only 1/8th of the to−
tal memory space. The CapEx involved will reduce if a case can
be made for large−scale adoption of such devices. In the recent fu−
ture, we expect non−volatile memories to relieve the DRAM system
of its high density requirements. It can therefore be expected that
DRAM products, their target markets, and their volumes will evolve
accordingly in the future. Energy−optimized memory systems, like
the one we propose in this work, will drive down the OpEx by reduc−
ing overall system−energy. We expect this to be a big motivation for
the adoption of such a design in the data−center space and this will
likely help drive up the volume of these specialty parts.

9. Related Work

Critical Word Regularity : Regularity in the critical word accesses
was reported by Gieske et al. [17]. In this work the repeatable pat−
terns in critical words to optimize the L2 cache’s power and perfor−
mance characteristics via a "critical−word−cache".
Heterogeneous Memory : A recent paper [35] proposes one possi−
ble application of heterogeneous DRAM based memories. The au−
thors propose an offline analysis of the LLC miss−rate and average
wait−time of an instruction at the head of the queue to determine if
an application is latency or bandwidth sensitive. Section 3 already
provides a qualitative comparison. Quantitatively, we observed that
for a similar pin count and chip count as the baseline, this approach
only yields an 8% improvement.
Dong et al. [15] discuss the possibility of having a two−tiered
DRAM−based hierarchy where an on−chip dram is used in conjunc−
tion with traditional off−chip DDR DIMMs. However, in contrast to
convention [24, 47, 20], the on−chip dram is not used as a large LLC,
but instead considered a part of the main memory. The authors de−
scribe hardware accounting techniques to identify candidate pages
to migrate from the on−chip dram to the main DRAM.
Memory design with LPDRAM : Very recently, two techniques to
construct server memory entirely out of mobile DRAM parts have
been proposed [45, 26]. In these papers, the authors aim to exploit
the low background−power characteristics of LPDRAM and focus
on solutions to overcome the lower bandwidth, lower channel ca−
pacity and ECC implementation problems of memory systems built
with LPDDR. Our proposals are complementary to their designs.
Specifically, we demonstrate that the addition of RLDRAM to such
a LPDDR based design can provide significant performance benefits
for most applications.
Hybrid DRAM+NVM Memory : Several papers have suggested
integrating Phase Change Memory (PCM) technology in the main
memory hierarchy [23, 48, 36, 46]. Considering the longer read

and write latencies of PCM, it seems likely that DRAM cannot be
completely substituted by PCM −rather, a combination of the two
technologies would be the better choice. Consequently, the man−
agement of such a hybrid memory space has been studied by some
recent papers. Proposals for managing such a hybrid system consist
of placement of performance critical and frequently written pages in
DRAM and the rest in PCM [37], write−frequency counter guided
page placement to manage wear−levelling [14] and migration of data
pages between PCM and DRAM based on access counts to mitigate
background power consumption [33].

10. Conclusions

We show that modern memory systems can be enhanced by promot−
ing heterogeneity in their construction. Existing production DRAM
parts can be utilized to construct an efficient heterogeneous main
memory system with low complexity with changes to the memory
controller and channel organization. We also identify a novel pattern
in the repeatability of critical word accesses at the DRAM level for a
variety of workloads and achieve 12.9% performance improvement
and 6% system energy reduction by exploiting the critical word reg−
ularity with a heterogeneous memory. Trends indicate that our tech−
niques can be used in future bandwidth−hungry systems to achieve
higher performance and energy savings.

It is also likely that in the future, 3D−stacked DRAM technology
will become mainstream. The recently announced Hybrid Memory
Cube (HMC) from Micron [34] is one embodiment of such 3D tech−
nology. Each HMC device consists of 2D DRAM dies that are
stacked on top of one another and connected via high−bandwidth
TSVs to a logic layer at the bottom. The HMC is touted as a solu−
tion for the scaling problems with current DDR technology by virtue
of its high capacity, high bandwidth and low power consumption. If
we witness widespread use of HMCs in the future, then we can think
of integrating some kind of heterogeneity in a HMC−based memory
system. There are two ways to enable a critical−data−first architec−
ture with HMCs. In one possible variant, one could include dies with
different latency/energy properties and the critical data could be re−
turned in an earlier high−priority packet. In another implementation,
one could imagine having a mix of high−power, high−performance
and low−power, low−frequency HMCs. The high−speed signalling
employed in the baseline HMC makes it power−hungry. Thus a crit−
ical data bit could be obtained from a high−frequency HMC and the
rest of the data from a low−power HMC.

11. Acknowledgments

We thank our reviewers (especially our shepherd Derek Chiou) and
members of the Utah Arch group for their suggestions to improve
this work.

References

[1] “Micron RLDRAM Memory,” http://www.micron.com/~/media/
Documents/Products/Product%20Flyer/rldram_flyer.pdf.

[2] “Micron System Power Calculator,” http://goo.gl/4dzK6.
[3] “STREAM − Sustainable Memory Bandwidth in High Performance

Computers,” http://www.cs.virginia.edu/stream/.
[4] “Wind River Simics Full System Simulator,” http://www.windriver.

com/products/simics/.
[5] “Quimonda GDDR5−White Paper,” http://www.hwstation.net, 2007.
[6] “All You Need to Know About Mobile LPDRM,” http://download.

micron.com/pdf/flyers/mobile_lpdram_flyer.pdf, 2008.

2323

[7] “RLDRAM3 Press Release,” http://www.issi.com, 2011.
[8] J. Ahn et al., “Future Scaling of Processor−Memory Interfaces,” in Pro-

ceedings of SC, 2009.
[9] AMD Inc., “BIOS and Kernel Developer’s Guide for AMD NPT Fam−

ily 0Fh Processors.”
[10] O. Azizi, A. Mahesri, B. Lee, S. Patel, and M. Horowitz, “Energy−

Performance Tradeoffs in Processor Architecture and Circuit Design:
A Marginal Cost Analysis,” in Proceedings of ISCA, 2010.

[11] D. Bailey et al., “The NAS Parallel Benchmarks,” International Jour-
nal of Supercomputer Applications, vol. 5, no. 3, pp. 63–73, Fall 1994.

[12] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: the Utah
SImulated Memory Module,” University of Utah, Tech. Rep., 2012,
uUCS−002−12.

[13] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A Performance Compar−
ison of Contemporary DRAM Architectures,” in Proceedings of ISCA,
1999.

[14] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A Hybrid PRAM and
DRAM Main Memory System,” in Proceedings of DAC, 2009.

[15] X. Dong, Y. Xie, N. Muralimanohar, and N. Jouppi, “Simple but Effec−
tive Heterogeneous Main Memory with On−Chip Memory Controller
Support,” in Proceedings of SC, 2010.

[16] K. Ganesan, J. Jo, and L. K. John, “Synthesizing Memory−Level Paral−
lelism Aware Miniature Clones for SPEC CPU2006 and ImplantBench
Workloads,” in Proceedings of ISPASS, 2010.

[17] E. J. Gieske, “Critical Words Cache Memory : Exploiting Criticality
Withing Primary Cache Miss Streams,” Ph.D. dissertation, 2008.

[18] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 4th ed. Elsevier, 2007.

[19] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems - Cache, DRAM,
Disk. Elsevier, 2008.

[20] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian, “CHOP: Integrating
DRAM Caches for CMP Server Platforms,” IEEE Micro (Top Picks),
Jan/Feb 2011.

[21] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server Engineering
Insights For Large−Scale Online Services,” in IEEE Micro, 2010.

[22] J. Laudon, “UltraSPARC T1: A 32−Threaded CMP for Servers,” 2006,
invited talk, URL: http://www.cs.duke.edu.

[23] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” in Proceedings of ISCA,
2009.

[24] G. Loh and M. Hill, “Efficiently Enabling Conventional Block Sizes for
Very Large Die−stacked DRAM Caches,” in In Proceedings of MICRO,
2011.

[25] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” IEEE Computer, vol. 35(2), pp. 50–58,
February 2002.

[26] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C. Lee, C. Kozyrakis,
and M. Horowitz, “Towards Energy−Proportional Datacenter Memory
with Mobile DRAM,” in Proceedings of ISCA, 2012.

[27] D. Meisner, B. Gold, and T. Wenisch, “PowerNap: Eliminating Server
Idle Power,” in Proceedings of ASPLOS, 2009.

[28] “Micron DDR3 SDRAM Part MT41J256M8,” Micron Technology Inc.,
2006.

[29] “Micron Mobile LPDDR2 Part MT42L128M16D1,” Micron Technol−
ogy Inc., 2010.

[30] “Micron RLDRAM 3 Part MT44K32M18,” Micron Technology Inc.,
2011.

[31] J. Ousterhout et al., “The Case for RAMClouds: Scalable High−
Performance Storage Entirely in DRAM,” SIGOPS Operating Systems
Review, vol. 43(4), 2009.

[32] J. P. Park, S. J. Rhee, S. B. Ko, Y. Jeong, K. S. Noh, Y. Son, J. Youn,
Y. Chu, H. Cho, M. Kim, D. Yim, H. C. Kim, S. H. Jung, H. I. Choi,
S. Yim, J. B. Kee, J. S. Choi, and K. Oh, “A 1.2V 30nm 1.6Gb/s/pin
4Gb LPDDR3 SDRAM with Input Skew Calibration and Enhanced
Control Scheme,” in Proceedings of ISSCC, 2012.

[33] Y. Park, D. Shin, S. Park, and K. Park, “Power−aware Memory Manage−
ment For Hybrid Main Memory,” in Proceedings of ICNIT, 2011.

[34] T. Pawlowski, “Hybrid Memory Cube (HMC),” in HotChips, 2011.
[35] S. Phadke and S. Narayanasamy, “MLP−aware Heterogeneous Main

Memory,” in In Proceedings of DATE, 2011.
[36] M. Qureshi, V. Srinivasan, and J. Rivers, “Scalable High Performance

Main Memory System Using Phase−Change Memory Technology,” in
Proceedings of ISCA, 2009.

[37] L. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid
Memory Systems,” in Proceedings of ICS, 2011.

[38] B. Schroeder et al., “DRAM Errors in the Wild: A Large−Scale Field
Study,” in Proceedings of SIGMETRICS, 2009.

[39] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramo−
nian, and A. Davis, “Micro−Pages: Increasing DRAM Efficiency
with Locality−Aware Data Placement,” in Proceedings of ASPLOS-XV,
2010.

[40] C. Toal, D. Burns, K. McLaughlin, S. Sezer, and S. O’Kane, “An rl−
dram ii implementation of a 10gbps shared packet buffer for network
processing,” in Proceedings of the 2nd NASA/ESA Conference on Adap-
tive Hardware and Systems, 2007.

[41] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. Jouppi, “Rethinking DRAM Design and Organization
for Energy−Constrained Multi−Cores,” in Proceedings of ISCA, 2010.

[42] VMWare Performance Team, “Ten Reasons Why Oracle Databases
Run Best on VMware,” http://blogs.vmware.com/performance/2007/
11/ten−reasons−why.html, 2007.

[43] T. Vogelsang, “Understanding the Energy Consumption of Dynamic
Random Access Memories,” in Proceedings of MICRO, 2010.

[44] D. Wang et al., “DRAMsim: A Memory−System Simulator,” in
SIGARCH Computer Architecture News, September 2005.

[45] D. H. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan,
“BOOM: Enabling Mobile Memory Based Low−Power Server DIMMs,”
in Proceedings of ISCA, 2012.

[46] W. Zhang and T. Li, “Exploring Phase Change Memory and 3D Die−
Stacking for Power/Thermal Friendly, Fast and Durable Memory Ar−
chitectures,” in Proceedings of PACT, 2009.

[47] Z. Zhang, Z. Zhu, and Z. Zhang, “Design and Optimization of Large
Size and Low Overhead Off−chip Caches,” IEEE Transactions on Com-
puter, July 2004.

[48] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy Ef−
ficient Main Memory Using Phase Change Memory Technology,” in
Proceedings of ISCA, 2009.

A. Appendix: Explaining Critical Word Accesses in Pro-
grams

A profile of LLC filtered memory accesses of different applications
shows that for almost all cache lines, one particular word in the
cache line accounts for the vast majority of critical accesses to the
cache line. The existence of such critical word regularity is not sur−
prising, i.e., it is reasonable to expect that data in a region will be tra−
versed in a similar order on multiple occasions. Such critical word
regularity was reported and exploited by Gieske to optimize LLC
performance [17].

Applications that stream through large data arrays will exhibit crit−
ical word accesses to words near the beginning of the cache line −
most often to word 0 (at the DRAM level). Applications which have
strided accesses with small stride lengths are most likely to have
word 0 as the most critical word. For example, an application like
hmmer has a dominant stride length of 0 for 90% of all accesses [16]
−hence word 0 is the most popular critical word for hmmer. The
STREAM benchmark has 4 parts, Copy, Scale, Sum and Triad. Each
of these kernels uses unit strided accesses over large arrays, also re−
sults in word 0 being critical.

On the other hand, applications like mcf and xalancbmk spend
most of their time in chasing pointers. For xalancbmk, 80% of
misses are generated by two nested loops of pointer chasing, while
in mcf, 70% of accesses are generated by random pointer chasing.
These kinds of applications demonstrate a more uniform critical
word distribution.

2424

Transactional Memory Architecture and Implementation for IBM System z

Christian Jacobi, Timothy Slegel

IBM Systems and Technology Group
Poughkeepsie, NY, USA

cjacobi@us.ibm.com, slegel@us.ibm.com

Dan Greiner

IBM Systems and Technology Group
San Jose, CA, USA

dgreiner@us.ibm.com

Abstract—We present the introduction of transactional memory
into the next generation IBM System z CPU. We first describe
the instruction-set architecture features, including requirements for
enterprise-class software RAS. We then describe the implementation in
the IBM zEnterprise EC12 (zEC12) microprocessor generation, focus-
ing on how transactional memory can be embedded into the existing
cache design and multiprocessor shared-memory infrastructure. We
explain practical reasons behind our choices. The zEC12 system is
available since September 2012.

I. INTRODUCTION AND RELATED WORK

Over the last years, the number of CPU cores on a chip and the

number of CPU cores connected to a shared memory have grown

significantly to support growing workload capacity demand. For

example, the IBM zEC121 enterprise server [1][2] supports operat-

ing system images with up to 101 CPUs. The increasing number of

CPUs cooperating to process the same workloads puts significant

burden on software scalability; for example, shared queues or data-

structures protected by traditional semaphores become hot spots

and lead to sub-linear n-way scaling curves. Traditionally this has

been countered by implementing finer-grained locking in software,

and with lower latency/higher bandwidth interconnects in hardware.

Implementing fine-grained locking to improve software scalability

can be very complicated and error-prone, and at today’s CPU’s

frequency, the latency of hardware interconnects is limited by the

physical dimension of the chips and systems, and by the speed of

light.

In [3], Herlihy et al. introduced transactional memory: a group

of instructions called a transaction is operating atomically and

in isolation (called serializability in [3]) on a data structure in

memory; the transaction executes optimistically without obtaining

a lock, but may need to abort and retry if the operation conflicts

with other operations on the same memory locations. The authors

propose one implementation with a special transaction cache to

hold pending transactional stores.

Various alternative hardware transactional memory designs have

been proposed since [3]. In the Transactional Memory Coherence

and Consistency (TCC) model [4], all stores performed during

a transaction are buffered, and a request to store them out to

memory is put on the bus at the end of the transaction. The

bus arbitrates between multiple CPUs, and while one CPU is

storing its stores, other CPUs are snooping the stores for conflicts

and abort their transaction if necessary. A different approach is

chosen in LogTM [5]: the transaction speculatively updates the

memory but keeps the original value in a log and can restore the

1IBM, System z, z/OS, z/Architecture, zEnterprise, Blue Gene are
trademarks of the International Business Machines Corporation.

original memory content from the log in case of an abort. LogTM

allows faster commit than TCC, and the less frequent aborts take

longer than in TCC. LogTM uses a directory based eager conflict

detection mechanism, where on a local cache miss other CPUs are

informed of the transactional access so that they can detect potential

conflicts and abort. Recent commercial implementations include

Sun Microsystems’ Rock [6] and IBM’s BlueGene/Q processors

[7]; Intel has announced transactional memory for their Haswell

CPUs expected in 2013 [8]. A major difference of our architecture

is that it supports constrained transaction which are guaranteed to

eventually succeed.

In [9], architectural semantics for transactional memory have

been studied. The authors propose to combine transactional hard-

ware with a software layer that provides 2-phase commit, software

handlers for transaction commit/abort, and closed and open nested

transactions. In [10], the same group discusses virtualization of

transactions to address overflows, interrupts, and other condi-

tions with the help of the operating system. We have chosen

to implement a pure hardware transactional system with closed

nesting. In our design, each non-constrained transaction needs a

fallback path, which then can also be invoked in circumstances

where the transaction cannot complete, e.g. due to interrupts or

transaction size overflows. Therefore the additional complexity of

a software assist layer was not warranted for our implementation.

Not relying on a software layer furthermore enables all components

of the software stack including firmware, hypervisor, and operating

system to exploit transactional memory.

There is a significant body of work on software-based and

hybrid hardware/software transactional memory; since this is only

remotely related to our work we refer to a transactional memory

overview that discusses some of them [11].

The three use cases we considered during the definition of

transactional memory are lock elision, lock-free data structures,

and general code optimization. In lock elision [12], a data structure

that is typically guarded by a lock is accessed with transactional

memory operations without first obtaining the lock. If the trans-

action aborts due to conflicts with other CPUs, the program can

obtain the lock as a fallback path (see figure 1). Every transaction

must check that the lock is free to prevent concurrent operation of

a transactional CPU and a CPU currently in the fallback path. This

method also works with programs that have only been partially

changed to use transactional memory, which is important for

realistic introduction of transactional memory into large software

products. In [12], lock elision is defined with special instructions;

we embed the idea into the general transactional memory context.

Lock free data structures have been studied extensively (see e.g.

[13]). Transaction semantics provide a more powerful and easy-

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.12

25

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.12

25

LHI R0,0 *initialize retry count=0
loop TBEGIN *begin transaction

JNZ abort *go to abort code if CC!=0
LT R1,lock *load&test the fallback lock
JNZ lckbzy *branch if lock busy
...perform operation...
TEND *end transaction
...

lckbzy TABORT *abort if lock busy; this resumes after TBEGIN

abort JO fallback *no retry if CC=3
AHI R0,1 *increment retry count
CIJNL R0,6,fallback *give up after 6 attempts
PPA R0,TX *random delay based on retry count
... potentially wait for lock to become free
J loop *jump back to retry

fallback
OBTAIN lock *using Compare&Swap
...perform operation...
RELEASE lock
...

Figure 1: Example Transaction

to-use foundation than for example a simple compare-and-swap

instruction. Lastly, transactions provide a mechanism for code

optimization, for example re-ordering code more aggressively,

relying on the atomicity and isolation of memory accesses and

the provided register-rollback for correctness [14].

During the definition of the transactional memory facility, it

became clear very early that special care had to be taken for soft-

ware testability and debug. Transactional memory poses interesting

challenges [15]: for example, the non-transactional fallback path is

rarely exercised which may lead to test coverage problems; when a

program fails for example with an access exception inside a transac-

tion, the memory and register state is rolled back due to transaction

abort, which makes post-mortem analysis more difficult; and lastly,

in our implementation interactive debugging is restricted by the

fact that interrupts cause transactions to abort, and so for example,

setting break-points inside a transaction would be impractical. We

discussed many alternative solutions with IBM software teams in

order to minimize hardware cost and complexity while meeting the

requirements for efficient software development. In section 2, we

describe the instruction set architecture for transactional memory,

including features for software test and debug.

The design of a high-speed, scalable, and reliable multi-

processor shared memory protocol is very complex and time-

consuming and represents a significant investment. The micropro-

cessor design also evolves from generation to generation without a

complete redesign. It was therefore clear from the beginning that

transactional memory support must fit into a mostly unchanged

SMP protocol, and that changes to the microprocessor core design

should be minimized. At the same time the design must provide

robust transactional memory performance to compete with the

performance of obtaining idle locks; otherwise a compiler could not

know at compile time whether to replace a lock with a transaction.

We describe our implementation in section 3. In section 4 we eval-

uate the performance of the transactional memory implementation

under a set of micro-benchmarks. The results show good scalability

even for very high numbers of CPUs under realistic contention

scenarios. We also provide some early results on real-world code.

Section 5 summarizes the paper.

II. INSTRUCTION SET ARCHITECTURE

A. New Instructions and General TX Operation

The Transactional Execution (TX) Facility provides 6 new in-

structions to the z/Architecture [16], as well as a few new control

bits. This section gives an overview of the central features of the

facility, further details can be found in [16].

Transactions are formed by pairs of Transaction Begin and

Transaction End instructions (TBEGIN and TEND, respectively).

Except as described below, either all or none of the instructions in-

side a transaction are executed (atomicity), and all operand accesses

to memory are performed isolated (sometimes called serializable,

block-concurrent, or also atomic), that is, other CPUs and the I/O

subsystem cannot observe changes made by the transaction before

it successfully ends, and the transaction cannot observe changes

made by other CPUs or the I/O subsystem during the transaction.

Transactions may abort. There are various reasons for transac-

tions to abort, including interrupts (e.g., page faults, divide by

zero, or asynchronous interrupts like timer and I/O), exceeding

the maximum nesting depth, overflow of the CPU’s capability

to track transactional accesses to memory (footprint overflow),

or conflicts on accessed memory locations with other CPUs or

the I/O subsystem that would cause an isolation violation if the

transactional execution would continue. Privileged instructions that

modify the control state of the CPU and some other complex

instructions are not allowed inside a transaction and always lead

to a transaction abort.

The architecture requires that the partial execution of the trans-

action before an abort was detected is isolated with respect to

other CPUs and I/O (this is referred to as opacity in [17]). This

2626

Storage location of TDB (if B1!=0)

TBEGIN D1(B1),I2

D1‘E560’ B1 GRSM //// AFPIFC

Storage location of TDB (if B1!=0)

TBEGIN D1(B1),I2

D1‘E560’ B1 GRSM //// AFPIFC

Figure 2: TBEGIN instruction text

was an important request from our software community since it

prevents execution based on inconsistent data. For example, one

transaction might pop the last element from a stack by updating

the count of elements to 0 and by setting the stack pointer to

NULL. If another transaction would first read the old non-zero

element count, and then would proceed to access the stack pointer

without NULL-checking, a page fault would result. Such situations

are prevented by requiring that the entire execution is isolated even

if the transaction aborts. Herlihy [3] proposed a validate instruction

to prevent such zombie transactions [18]. We choose the stronger

isolation since it is easier to use for software developers and does

not require additional path length for the intermediate validations.

The architecture also requires isolation of transactions against

non-transactional accesses done by other CPUs and I/O (strong
atomicity in [19]). Again this was an important requirement from

our software community to be able to mix transactional and tradi-

tional locking-based code in order to ease stepwise introduction of

TM technology into existing programs.

Execution of TBEGIN sets the Condition Code (CC) to 0. If a

transaction aborts, the Instruction Address in the Program Status
Word (PSW) is restored to the instruction immediately after the

TBEGIN, and a condition code is set to a non-zero value. A

typical program will test the condition code after TBEGIN to

either start the actual transaction processing (CC=0) or branch

to the abort handler (CC!=0). The abort handler may return to

retry the transaction, or it may perform the same functionality non-

transactionally on a fallback path. An example is shown in figure

1.

Depending on whether the CPU considers the abort reason

transient (e.g. another CPU conflicting) or permanent (e.g. a

restricted instruction), the condition code is either set to 2 or 3.

This allows the program a quick check on whether it should retry

the transaction (with a threshold count) or immediately branch to a

non-transactional fallback path. Depending on the program, certain

clean-up is necessary before repeating the transaction, like restoring

certain registers (see below).

Before repeating a transaction after a transient abort, it often

makes sense to introduce a random delay that increases with

the number of aborts, in order to prevent harmonic, repetitive,

aborts due to conflicts between two CPUs (for example using

random exponential back-off). The optimal delay distribution may

depend on the particular abort reason, specifics of the design

of the CPU generation, and details of the SMP configuration.

In order to avoid changing the program to adjust the delays to

these design parameters, the new Perform Processor TX-Abort
Assist (PPA with function code TX) instruction is introduced. The

program passes the current abort count to the instruction, which

then performs a random delay optimal for the current configuration;

that way software does not have to be adjusted for future machine

generations or different configurations.

If the CPU is already in transactional execution mode when

a TBEGIN is executed, a nested inner transaction is started, and

the CPU increments the transaction nesting depth. The maximum

supported nesting depth is 16. The TEND instruction closes a

transaction by decrementing the current nesting depth; if the current

nesting depth is 1, execution of TEND commits the transaction and

the CPU leaves transactional execution mode. If a transaction abort

happens on a nested transaction, the entire nest of transactions

is aborted (flattened nesting), the nesting depth is set to 0, and

execution continues at the instruction after the outermost TBEGIN.

The Extract Transaction Nesting Depth (ETND) instruction can

be used to load the current nesting depth into a General Register

(GR).

The support of nested transactions is important to software in

certain cases. Compilers may produce code that calls sub-routines

from within transactions, and if those sub-routines were themselves

compiled to use transactions, nesting occurs. Sometimes it is

important for a sub-routine to know whether it is being called

transactionally, which can be done quickly with ETND by checking

whether the depth is 0.

While the CPU is in transactional mode, stores performed by

the CPU are not made visible to other CPUs or the I/O subsystem

until the outermost TEND completes. If the transaction aborts, all

stores done during the transaction are discarded. The exception

are stores performed by the Non-transactional Store (NTSTG)

instruction; these 8-byte stores are also isolated, that is, not visible

to other CPUs and I/O while the transaction executes, but unlike

normal stores they are committed to memory even in the case of

transaction abort. The main use case for NTSTG is transactional

debugging: a programmer/compiler can store intermediate results

into memory and analyze the data even in the abort case to

see which program path and data was observed prior to the

abort (breadcrumb debugging). The architecture requires that the

memory locations stored to by NTSTG do not overlap with other

stores from the transaction.

The Transaction Abort (TABORT) instruction causes an imme-

diate abort. The operand provides an abort reason code which is

placed into the optional Transaction Diagnostic Block (see below).

The least significant bit of the abort code determines whether the

condition code is set to 2 or 3 to indicate transient versus permanent

abort to the abort handler.

B. TBEGIN Control Fields

The TBEGIN instruction has a set of operand fields (see figure

2). The General Register Save Mask (GRSM) is an 8 bit field,

each bit corresponding to an even/odd pair of the 16 General

Registers (GRs). At the execution of the outermost TBEGIN, the

pairs indicated with a ’1’ in the mask are saved, and are restored to

their pre-TBEGIN content in the case of transaction abort. GR-pairs

not indicated in the mask keep their current value in case of abort

(this is an exception to the ”all or nothing” atomicity rule, since

modified state survives the abort). Saving only a subset of GRs

during TBEGIN speeds up execution, and not restoring all GRs

during abort provides information for debugging and analysis.

The IBM z/Architecture supports additional register sets, namely

Access Registers (ARs) and Floating-Point Registers (FPRs), for

which no save/restore mechanism is provided - it is up to software

2727

to save necessary registers before entering a transaction, and to

restore those registers in the abort handler.

Some software may expect ARs or FPRs to not be modified

and thus does not provide save/restore in the abort handler. But

when calling a sub-routine — potentially in a linked library — the

sub-routine might inadvertently change one of those registers. Even

worse, a sub-routine might for example use an AR as scratch space

and later restore it. This is not observable if the transaction does

not abort, but in the (rare) case of an abort while the register is

modified, unpredictable results may occur due to modified register

content after the abort. Such failures may be rare and extremely

difficult to debug. To protect against such situations, the TBEGIN

instruction provides AR and FPR modification control bits. Any

instruction attempting to modify an AR or FPR, respectively, leads

to a restricted-instruction abort if the respective control bit is ’0’.

For nested transactions, the effective control is the ’AND’ of all

control bits in the nest.

C. Interruption Filtering

When a program-exception condition is detected during normal

program execution, an interruption into the operating system oc-

curs. The PSW at which the exception is detected is stored as

program-old PSW, and a program-new PSW pointing to the OS

interrupt handler is loaded. The OS can then service the interrupt

(e.g. page in memory from disk) and then return to program

execution by loading the saved program-old PSW into the PSW.

(The same concept is used for other interruptions like I/O, but we

omit the details here.)

The transactional memory architecture provides control over

whether certain exceptions detected during a transaction actually

lead to a program interruption into the OS, or whether the interrup-

tion is filtered. In both cases the transaction is first aborted. If an

interruption into the OS occurs, the program-old PSW will point to

the instruction after the TBEGIN with a non-zero condition code.

That way, when the OS returns control to the program, the program

knows to execute the abort handler before potentially retrying the

transaction. In the case of a filtered interruption, the condition code

is also non-zero, and the program continues execution after the

outermost TBEGIN without first trapping into the OS.

Exceptions are categorized into 4 groups. First, some exceptions

can never occur during transactional execution, for example since

they are related to specific instructions that are restricted in trans-

actions. Second is a group of exceptions that is always considered

a programming error and thus is always causing interruption into

the OS; examples include undefined instruction op-codes in the in-

struction stream. Third is a group of exceptions related to accessing

of memory, for example page fault exceptions. Fourth is a group

of exceptions related to arithmetic and data, e.g. divide-by-zero or

overflow exceptions. The third and fourth group of exceptions can

be filtered under the control of the Program Interruption Filtering
Control (PIFC) field of the TBEGIN instruction. Values 0 to 2 in

this field correspond to no filtering, filtering of group 4 only, and

filtering of groups 3 and 4, respectively. In a nested transaction,

the effective PIFC is the highest value of all TBEGINs in the nest.

Interruption filtering is useful in many speculative program

optimizations, e.g. by not performing null-pointer checks before

accessing data, or not performing NaN or zero checks before per-

forming computations. Instead these (depending on the program)

TBEGINC *begin constrained transaction
...perform operation...
TEND *end transaction
...

Figure 3: Constrained transaction example

rare conditions can be treated in the transaction abort handler,

improving performance for the normal case and penalizing the

rare case only. Of course null-pointer or NaN checking are only

examples; once the infrastructure is available, the compiler can

perform general if-then-else speculation and other optimization

using the same concepts [14].

It is important for the program to adhere to certain rules when

using interruption filtering. For example, a filtered page fault

encountered during a transaction is not reported to the OS; if the

abort handler does not access the same memory locations non-

transactionally, the program may never trap the page fault into the

OS, the page fault will never be resolved, and thus the transaction

continues to fail every time it is executed. Exceptions related to

instruction fetching are never filtered. The program-old PSW will

indicate a transient abort condition code of 2, so that the program

usually repeats the transaction immediately after the OS handled

the interrupt. If instruction fetching exceptions were filtered, a page

fault on an instruction page that is only used during transactional

execution would never be resolved by the OS and always cause

that transaction code to abort.

D. Constrained Transactions

Transactions started with TBEGIN are not assured to ever

successfully complete with TEND, since they can experience

an aborting condition at every attempted execution, e.g. due to

repeating conflicts with other CPUs. This requires that the program

supports a fallback path to perform the same operation non-

transactionally, e.g. by using traditional locking schemes. This puts

significant burden on the programming and software verification

teams, especially where the fallback path is not automatically

generated by a reliable compiler.

Many transactions operating on shared data structures are ex-

pected to be short, touch only few distinct memory locations, and

use simple instructions only. For those transactions, the concept

of constrained transactions is available; under normal conditions,

the CPU assures that constrained transactions eventually end suc-

cessfully, albeit without giving a strict limit on the number of

necessary retries. A constrained transaction starts with a TBEGINC

instruction and ends with a regular TEND. Implementing a task

as constrained or non-constrained transaction typically results in

very comparable performance, but constrained transactions simplify

software development by removing the need for a fallback path.

A transaction initiated with TBEGINC must follow a list of

programming constraints; otherwise the program takes a non-

filterable constraint-violation interruption. The constraints include:

the transaction can execute a maximum of 32 instructions, all

instruction text must be within 256 consecutive bytes of memory;

the transaction contains only forward-pointing relative branches

(hence no loops or sub-routine calls); the transaction can access

a maximum of 4 aligned octowords (32 bytes) of memory; and

restriction of the instruction-set to exclude complex instructions

2828

like decimal or floating-point operations. The constraints are

chosen such that many common operations like double-linked

list-insert/delete operations can be performed, including the very

powerful concept of atomic compare-and-swap targeting up to 4

aligned octowords. At the same time the constraints were chosen

conservatively such that future CPU implementations can assure

transaction success without needing to adjust the constraints, since

that would otherwise lead to software incompatibility.

TBEGINC mostly behaves like TBEGIN, except that the FPR

control and the program interruption filtering fields do not exist

and the controls are considered to be zero. On a transaction abort,

the instruction address is set back directly to the TBEGINC instead

to the instruction after, reflecting the immediate retry and absence

of an abort path for constrained transactions.

Nested transactions are not allowed within constrained transac-

tions, but if a TBEGINC occurs within a non-constrained transac-

tion it is treated as opening a new non-constrained nesting level

just like TBEGIN would. This can occur e.g. if a non-constrained

transaction calls a sub-routine that uses a constrained transaction

internally.

Since interruption filtering is implicitly off, all exceptions during

a constrained transaction lead to an interruption into the OS.

Eventual successful finishing of the transaction of course relies on

the capability of the OS to page-in the at most 4 pages touched by

any constrained transaction. The OS must also ensure time-slices

long enough to allow the transaction to complete.

Figure 3 shows the constrained-transactional implementation of

the code in figure 1, assuming that the constrained transactions

does not interact with other locking-based code. No lock testing

is shown therefore, but could, of course, be added if constrained

transactions and lock-based code were mixed.

E. Debugging Features

Reliable software is essential for enterprise class computing,

and transactional memory poses interesting challenges to how

software debugging and testing is performed during the software

development cycle and during field failure analysis. Significant

effort was spent on the development of architectural features to

support debugging and testing.

1) Transaction Diagnostic Block: The TBEGIN instruction has

an optional address operand called the Transaction Diagnostic
Block (TDB) Address. The TDB is not used during normal trans-

action processing, but if a transaction aborts and a TDB Address

is specified on the outermost TBEGIN, detailed information about

the abort is stored in the TDB. The TDB is 256 bytes in length,

and its fields include: (i) Transaction Abort Code, indicating the

detailed reason for the abort; (ii) Conflict Token, providing the

address that caused a conflict with another CPU; this field cannot

always be provided and there is a bit indicating the validity;

(iii) Aborted-Transaction Instruction Address, indicating the IA

at which the abort was detected; (iv) Exception information like

Program Interruption Code and Translation Exception Address; (v)

the content of all GRs at the time of abort; and (vi) CPU spe-

cific information not formally architected. The last item provides

detailed CPU-generation dependent information on the details of

why the transaction aborted, and which path the program took from

the outermost TBEGIN to the abort IA.

It is expected that extracting the information and storing the

TDB on transaction abort takes a number of CPU cycles, and

thus only code in debug/test or with extremely low abort rates

will enable TDBs on performance-sensitive transactions. During

initial hardware validation of the transactional facility, the infor-

mation in the TDB was invaluable for debugging test program

and hardware/firmware problems. We expect similar usefulness for

debugging application code.

A second copy of the TDB is stored into the processor prefix

area (a memory area containing reserved locations specific for each

CPU in the system) on every abort due to a program interruption;

this is valuable for post-mortem failure analysis after a program

ended abnormally, e.g. on an access exception.

2) PER: In z/Architecture, traditionally Program Event Record-

ing provides a hardware mechanism to trigger a program interrup-

tion for certain events. The supported events include stores into a

specified memory range, execution of instructions from a specified

memory range, and branching into a specified memory range. This

mechanism is used extensively for software debugging, for example

in z/OS SLIP traps, or in GDB under Linux for setting break- or

watch-points.

Detection of a PER event inside a transaction causes a transaction

abort and a non-filterable interruption into the OS. Two new

features are added to PER for transactional memory: (i) PER
Event Suppression suppresses any PER event while running in

transactional mode, and (ii) the new PER TEND event triggers

on successful execution of an outermost TEND instruction.

For example, if a debugger is running in single instruction

mode, a PER instruction-fetch event is enabled for the entire

address range. PER event suppression can be used to avoid aborting

every single transaction on the first instruction after the TBEGIN.

This effectively makes entire transactions look like single ”big

instructions” in the single-step mode.

Another use case of PER is monitoring for stores into a specific

memory range for implementing watch-points. Without event sup-

pression, a transaction modifying memory in the monitored range

always aborts and eventually takes the fallback path. To enable

debugging of the transactional code itself, event suppression can

be enabled alongside the new PER TEND-event, which triggers at

the ending of every transaction. The debugger can then check all

active watch-points for whether the memory content changed and

enter the interactive debugging mode in that case.

For constrained transactions, it is up to the OS to enable event

suppression after a PER event caused a transaction abort, in order

to enable the transaction to complete on the next retry. The OS

can use PER TEND to disable event suppression after successful

transaction completion.

3) Transaction Diagnostic Control: Most transactions will abort

only infrequently, and the point of abort inside the transaction

may be non-uniformly distributed. For example, certain instructions

cause conflicts with other CPUs more frequently than other instruc-

tions. This creates unique debugging and testing challenges. The

abort path and fallback path might be sparsely exercised leading to

poor testing coverage. Also, the random distribution of the abort

point may lead to unusual corner cases after the abort if residual

state survives the abort (for example non-restored registers). This

may lead to program failures that are very hard to reproduce and

to debug.

2929

In order to enhance the testing coverage of the abort path and to

protect against untested corner cases, the Transaction Diagnostic

Control is provided to force random aborts. At one setting, the

CPU is instructed to often, randomly abort transactions at a random

point. At a more aggressive setting, the CPU is instructed to

abort every transaction at a random point but at latest before the

outermost TEND instruction. The latter setting can be used to stress

the reaching of the retry-threshold and force the non-transactional

fallback path to be used. This more aggressive setting is treated

like the less aggressive setting for constrained transactions. The

Transaction Diagnostic Control can be enabled by the OS for

testing specific programs.

III. IMPLEMENTATION

The main implementation components of the transactional mem-

ory facility are a transaction-backup register file for holding pre-

transaction GR content, a cache directory to track the cache

lines accessed during the transaction, a store cache to buffer

stores until the transaction ends, and firmware routines to perform

various complex functions. In this section we describe the detailed

implementation.

A. System Background

The transactional execution facility is first implemented in the

IBM zEC12 processor [1], the successor of the z196 processor

described in [20]. The processor can decode 3 instructions per clock

cycle; simple instructions are dispatched as single micro-ops, and

more complex instructions are cracked into multiple micro-ops.

The micro-ops are written into a unified issue queue, from where

they can be issued out-of-order. Up to two fixed-point, one floating-

point, two load/store, and two branch instructions can execute every

cycle. A Global Completion Table (GCT) holds every micro-op.

The GCT is written in-order at decode time, tracks the execution

status of each micro-op, and completes instructions when all micro-

ops of the oldest instruction group have successfully executed.

The L1 data cache is a 96KB 6-way associative cache with 256

byte cache-lines and 4 cycle use-latency, coupled to a private 1MB

8-way associative 2nd-level data cache with 7 cycles use-latency

penalty for L1 misses. Both L1 and L2 caches are store-through.

Six cores on each CP chip share a 48MB 3rd-level store-in cache,

and six CP chips are connected to an off-chip 384MB 4th-level

cache, packaged together on a glass-ceramic multi-chip module

(MCM). Up to 4 MCMs can be connected to a coherent SMP

system with up to 144 cores (not all cores are available to run

customer workload).

Coherency is managed with a variant of the MESI protocol.

Cache-lines can be owned read-only (shared) or exclusive; the L1

and L2 are store-through and thus do not contain dirty lines. The

L3 and L4 caches are store-in and track dirty states. Each cache is

inclusive of all its connected lower level caches.

Coherency requests are called cross interrogates (XI) and are

sent hierarchically from higher-level to lower-level caches, and

between the L4s. When one core misses the L1 and L2 and requests

the cache line from its local L3, the L3 checks whether it owns the

line, and if necessary sends an XI to the currently owning L2/L1

under that L3 to ensure coherency, before it returns the cache line

to the requestor. If the request also misses the L3, the L3 sends a

request to the L4 which enforces coherency by sending XIs to all

necessary L3s under that L4, and to the neighboring L4s. Then the

L4 responds to the requesting L3 which forwards the response to

the L2/L1.

Note that due to the inclusivity rule of the cache hierarchy,

sometimes cache lines are XI’ed from lower-level caches due to

evictions on higher-level caches caused by associativity overflows

from requests to other cache lines. We call those XIs LRU XIs.

Demote-XIs transition cache-ownership from exclusive into

read-only state, and Exclusive-XIs transition cache-ownership from

exclusive into invalid state. Demote- and Exclusive-XIs need a

response back to the XI sender. The target cache can accept the XI,

or send a reject response if it first needs to evict dirty data before

accepting the XI. The L1/L2 are store through, but may reject

demote- and exclusive XIs if they have stores in their store queues

that need to be sent to L3 before downgrading the exclusive state.

A rejected XI will be repeated by the sender. Read-only-XIs are

sent to caches that own the line read-only; no response is needed

for such XIs since they cannot be rejected. The details of the SMP

protocol are very similar to those described for the IBM z10 in

[21].

B. Transactional Instruction Execution

The instruction decode unit (IDU) keeps track of the current

transaction nesting depth (TND, see figure 4). When the IDU

receives a TBEGIN instruction, the nesting depth is incremented,

and conversely decremented on TEND instructions. The nesting

depth is written into the GCT for every dispatched instruction.

When a TBEGIN or TEND is decoded on a speculative path that

later gets flushed, the IDU’s nesting depth is refreshed from the

youngest GCT entry that is not flushed. The transactional state is

also written into the issue queue for consumption by the execution

units, mostly by the Load/Store Unit (LSU).

Similar to the nesting depth, the IDU/GCT collaboratively track

the AR/FPR-modification masks through the transaction nest; the

IDU can place an abort-request into the GCT when an AR/FPR-

modifying instruction is decoded and the modification mask blocks

that. When the instruction becomes next-to-complete, completion

is blocked and the transaction aborts. Other restricted instructions

are handled similarly, including TBEGIN if decoded while in a

constrained transaction, or exceeding the maximum nesting depth.

An outermost TBEGIN is cracked into multiple micro-ops de-

pending on the GR-Save-Mask; each micro-op will be executed

by one of the two FXUs to save a pair of GRs into a special

transaction-backup register file, that is used to later restore the GR

content is case of a transaction abort. Also the TBEGIN spawns

micro-ops to perform an accessibility-test for the TDB if one is

specified; the address is saved in a special purpose register for

later usage in the abort case. At the decoding of an outermost

TBEGIN, the instruction address and the instruction text of the

TBEGIN are also saved in special purpose registers for a potential

abort processing later on.

TEND and NTSTG are single micro-op instructions; NTSTG

is handled like a normal store except that it is marked as non-

transactional in the issue queue so that the LSU can treat it

appropriately. TEND is a no-op at execution time, the ending of

the transaction is performed when TEND completes.

As mentioned, instructions that are within a transaction are

marked as such in the issue queue, but otherwise execute mostly

3030

valid

96KB

L1 cache

STQ

L1
tags

set tx−read on load execution
64x6way L1 cache and dir

tx−
dirty

tx−
read

Dispatch

TX Back−
up GRs

Out−of−order issue/
execute

Addr Calc 2x LSUs

in STQ & directory
for updating states
completion events

IDU

L2 CacheStore Cache
Gathering

To L3

−/+

circular queueTND

1MB

by L2 to L1/STQs

2x FXU

Instruction Cache
Instruction Fetching

Issue Queue

GRs

send tbegin/tend

Decode

In−order completion

GCT/completion logic

and responses

XI forwarded

XI from L3
and response back

TND uop 0 uop1 uop2

refresh
on flush

L1 writeback set tx−dirty

Figure 4: Block diagram of CPU

unchanged; the LSU performs isolation tracking as described in

the next section.

Since decoding is in-order, and since the IDU keeps track of the

current transactional state and writes it into the issue queue along

with every instruction from the transaction, execution of TBEGIN,

TEND, and instructions before, within, and after the transaction can

be performed out-of-order. It is even possible (though unlikely) that

TEND is executed first, then the entire transaction, and lastly the

TBEGIN executes. Of course program order is restored through the

GCT at completion time. The length of transactions is not limited

by the size of the GCT, since GRs can be restored from the backup

register file.

During execution, the PER events are filtered based on the Event

Suppression Control, and a PER TEND event is detected if enabled.

Similarly, while in transactional mode, a pseudo-random generator

may be causing the random aborts as enabled by the Transaction

Diagnostics Control.

C. Tracking for Transactional Isolation

The Load/Store Unit tracks cache lines that were accessed during

transactional execution, and triggers an abort if an XI from another

CPU (or an LRU-XI) conflicts with the footprint. If the conflicting

XI is an exclusive or demote XI, the LSU rejects the XI back to the

L3 in the hope of finishing the transaction before the L3 repeats

the XI. This stiff-arming is very efficient in highly contended

transactions. In order to prevent hangs when two CPUs stiff-arm

each other, a XI-reject counter is implemented, which triggers a

transaction abort when a threshold is met.

The L1 cache directory is traditionally implemented with

SRAMs. For the transactional memory implementation, the valid

bits (64 rows x 6 ways) of the directory have been moved into

normal logic latches, and are supplemented with two more bits per

cache line: the tx-read and tx-dirty bits.

The tx-read bits are reset when a new outermost TBEGIN

is decoded (which is interlocked against a prior still pending

transaction). The tx-read bit is set at execution time by every load

instruction that is marked transactional in the issue queue. Note that

this can lead to over-marking if speculative loads are executed, for

example on a mispredicted branch path. The alternative of setting

the tx-read bit at load completion time was too expensive for silicon

area, since multiple loads can complete at the same time, requiring

many read-ports on the load-queue.

3131

Stores execute the same way as in non-transactional mode, but

a transaction mark is placed in the store queue (STQ) entry of the

store instruction. At writeback time, when the data from the STQ

is written into the L1, the tx-dirty bit in the L1-directory is set

for the written cache line. Store writeback into the L1 occurs only

after the store instruction has completed, and at most one store is

written back per cycle. Before completion and writeback, loads can

access the data from the STQ by means of store-forwarding; after

write-back, the CPU can access the speculatively updated data in

the L1. If the transaction ends successfully, the tx-dirty bits of all

cache-lines are cleared, and also the tx-marks of not yet written

stores are cleared in the STQ, effectively turning the pending stores

into normal stores.

On a transaction abort, all pending transactional stores are

invalidated from the STQ, even those already completed. All cache

lines that were modified by the transaction in the L1, that is,

have the tx-dirty bit on, have their valid bits turned off, effectively

removing them from the L1 cache instantaneously.

As described in Section 2, the architecture requires that before

completing a new instruction we ensure that isolation of the trans-

action read- and write-set is maintained. This is ensured by stalling

instruction completion at appropriate times when XIs are pending;

we allow speculative out-of-order execution, optimistically assum-

ing that the pending XIs are to different addresses and not actually

cause a transaction conflict. This design fits very naturally with the

XI-vs-completion interlocks that are implemented on prior systems

to ensure the strong memory ordering that the architecture requires

[22].

When the L1 receives an XI, it accesses the directory to check

validity of the XI’ed address in the L1, and if the tx-read bit

is active on the XI’ed line and the XI is not rejected, the LSU

triggers an abort. When a cache line with active tx-read bit is

LRU’ed from the L1, a special LRU-extension vector remembers

for each of the 64 rows of the L1 that a tx-read line existed on

that row. Since no precise address tracking exists for the LRU

extensions, any non-rejected XI that hits a valid extension row the

LSU triggers an abort. Providing the LRU-extension effectively

increases the read footprint capability from the L1-size to the

L2-size and associativity, provided no conflicts with other CPUs

against the non-precise LRU-extension tracking causes aborts;

section 4 contains statistical analysis of the effectiveness of the

LRU extension.

The store footprint is limited by the store cache size (next

section) and thus implicitly by the L2 size and associativity. No

LRU-extension action needs to be performed when a tx-dirty cache

line is LRU’ed from the L1.

D. Store Cache

In prior systems, since the L1 and L2 are store-through caches,

every store instruction causes an L3 store access; with now 6

cores per L3 and further improved performance of each core, the

store rate for the L3 (and to a lesser extent for the L2) becomes

problematic for certain workloads. In order to avoid store queuing

delays a gathering store cache had to be added, that combines stores

to neighboring addresses before sending them to the L3.

For transactional memory performance, it is acceptable to kill

every tx-dirty cache line from the L1 on transaction aborts, because

the L2 cache is very close (7 cycles L1 miss penalty) to bring back

the clean lines. It would however be unacceptable for performance

(and silicon area for tracking) to have transactional stores write the

L2 before the transaction ends and then kill all dirty L2 cache lines

on abort (or even worse on the shared L3).

The two problems of store bandwidth and transactional memory

store handling can both be addressed with the gathering store cache.

The cache is a circular queue of 64 entries, each entry holding

128 bytes of data with byte-precise valid bits. In non-transactional

operation, when a store is received from the LSU, the store cache

checks whether an entry exists for the same address, and if so

gathers the new store into the existing entry. If no entry exists,

a new entry is written into the queue, and if the number of free

entries falls under a threshold, the oldest entries are written back

to the L2 and L3 caches.

When a new outermost transaction begins, all existing entries

in the store cache are marked closed so that no new stores can

be gathered into them, and eviction of those entries to L2 and

L3 is started. From that point on, the transactional stores coming

out of the LSU STQ allocate new entries, or gather into existing

transactional entries. The writeback of those stores into L2 and L3

is blocked, until the transaction ends successfully; at that point

subsequent (post-transaction) stores can continue to gather into

existing entries, until the next transaction closes those entries again.

The store cache is queried on every exclusive or demote XI,

and causes an XI reject if the XI compares to any active entry. If

the core is not completing further instructions while continuously

rejecting XIs, the transaction is aborted at a certain threshold to

avoid hangs.

The LSU requests a transaction abort when the store cache

overflows. The LSU detects this condition when it tries to send

a new store that cannot merge into an existing entry, and the entire

store cache is filled with stores from the current transaction. The

store cache is managed as a subset of the L2: while transactionally

dirty lines can be evicted from the L1, they have to stay resident

in the L2 throughout the transaction. The maximum store footprint

is thus limited to the store cache size of 64 x 128 bytes, and it is

also limited by the associativity of the L2. Since the L2 is 8-way

associative and has 512 rows, it is typically large enough to not

cause transaction aborts.

If a transaction aborts, the store cache is notified and all entries

holding transactional data are invalidated. The store cache also has

a mark per doubleword (8 bytes) whether the entry was written

by a NTSTG instruction - those doublewords stay valid across

transaction aborts.

E. Millicode-implemented functions

Traditionally, IBM mainframe server processors contain a layer

of firmware called millicode which performs complex functions

like certain CISC instructions, interruption handling, system syn-

chronization, and RAS. Firmware resides in a restricted area

of main memory that customer programs cannot access. When

hardware detects a situation that needs to invoke millicode, the

instruction fetching unit switches into millicode mode and starts

fetching at the appropriate location in the millicode memory area.

For transactional memory, millicode is involved in various

complex situations. Every transaction abort invokes a dedicated

millicode sub-routine to perform the necessary abort steps. The

3232

transaction-abort millicode starts by reading special-purpose regis-

ters (SPRs) holding the hardware-internal abort reason, potential

exception reasons, and the aborted instruction address, which

millicode then uses to store a TDB if one is specified. The TBEGIN

instruction text is loaded from an SPR to obtain the GR-save-mask,

which is needed for millicode to know which GRs to restore. The

CPU supports a special millicode-only instruction to read out the

backup-GRs and copy them into the main GRs. The TBEGIN

instruction address is also loaded from an SPR to set the new

instruction address in the PSW to continue execution after the

TBEGIN once the millicode abort sub-routine finishes. That PSW

may later be saved as program-old PSW in case the abort is caused

by a non-filtered program interruption.

The TABORT instruction is millicode implemented; when the

IDU decodes TABORT, it instructs the instruction fetch unit to

branch into TABORT’s millicode, from which millicode branches

into the common abort sub-routine.

The Extract Transaction Nesting Depth (ETND) instruction is

also millicoded, since it is not performance critical; millicode loads

the current nesting depth out of a special hardware register and

places it into a GR.

The PPA instruction is millicoded; it performs the optimal delay

based on the current abort count provided by software as an

operand to PPA, and also based on other hardware internal state.

For constrained transactions, millicode keeps track of the number

of aborts. The counter is reset to 0 on successful TEND completion,

or if an interruption into the OS occurs (since it is not known if or

when the OS will return to the program). Depending on the current

abort count, millicode can invoke certain mechanisms to improve

the chance of success for the subsequent transaction retry. The

mechanisms involve, for example, successively increasing random

delays between retries, and reducing the amount of speculative

execution to avoid encountering aborts caused by speculative

accesses to data that the transaction is not actually using. As a last

resort, millicode can broadcast to other CPUs to stop all conflicting

work, retry the local transaction, before releasing the other CPUs to

continue normal processing. Multiple CPUs must be coordinated

to not cause deadlocks, so some serialization between millicode

instances on different CPUs is required.

IV. PERFORMANCE EVALUATION

We conducted a set of experiments to measure the performance

of transactional memory in comparison to lock-based concurrency,

over a range of realistic and artificial conditions. We used micro-

benchmarks for these experiments since application-level transac-

tional memory exploitation is still in development. The benchmarks

use different pools of shared variables ranging from a single

variable to 10k variables, each on a separate cache line. Each CPU

repeatedly picks either 1 or 4 random variables from the pool and

increments the chosen variable(s). If the pool consists of only 1

variable, we use 4 consecutive cache lines for the tests that update

4 variables.

We use both coarse and fine grained locking for comparison with

transactional memory. For coarse-grained locking, we use a single

lock for the entire pool. For fine-grained locking, we define a lock

for each variable, each lock sitting on a separate cache line. In both

cases we use a simple mutex algorithm, which first tests the lock

to be empty and spins if necessary, then uses compare-and-swap

to set the lock, which starts over if not successful; the unlock uses

a simple store to unset the lock.

For non-constrained transactions, we use the code from figure 1;

for the fallback lock we use the single coarse-grained lock in all

experiments. The constrained transaction code from figure 3 does

not need fallback locks.

Each CPU independently picks random variables and performs

the incrementing on the shared variables. We use the Store Clock
Fast instruction to measure the time between each lock/tbegin and

unlock/tend, but exclude the overhead such as random number

generation from the results. The overhead is significant for small

numbers of CPUs since the path length for lock/update/unlock is

very short compared to computing four random variables. From the

measured times we compute the system throughput as the quotient

of the number of CPUs divided by the average time per update.

All results are normalized to a throughput of 100 for 2 CPUs

concurrently updating a single variable from a pool of 1 variable.

Contention for most objects is relatively low in typical com-

mercial applications, and if an object is accessed once it likely

will be accessed again by the same CPU. As a result, many lock

obtain/release operations are performed with L1-cache hits and thus

are very fast. It was important in the design of transactional mem-

ory that starting and ending a transaction has similar overhead as

locking and releasing a lock that is in the L1-cache; otherwise any

performance gain from better behavior on contended locks could

have been eroded by non-contended locks. Our experiments cover

this case by having only a single CPU participate, and by setting

the pool size to a single cache line. In that experiment, transactions

outperform locks by 30%. This is mostly due to the longer path

length of the lock and release code. The results also show that the

overhead of testing the lock in the non-constrained transaction (see

figure 1) is insignificant since the branch is perfectly predictable

in this case; the performance difference between constrained and

non-constrained transactions is 0.4%.

One major drawback of lock-based methods is the complexity

involved with fine-grained locking. For example, in the case of

updating 4 random variables, the programmer would have to ensure

that locks are acquired in a certain order to prevent deadlocks,

which in practice can be very hard, e.g. when the objects involved

in an operation are not all known a priori. Thus one major use

case of transactions is to allow fine grained concurrency in cases

where fine-grained locking is hard to achieve. Figure 5(a) shows

the performance of updating 4 random variables from a large pool

(1k and 10k entries), using transactions versus using a coarse lock.

For small numbers of CPUs, the performance grows slightly as

CPUs are added since the entire pool does not fit into a single

CPU’s cache, and some cache miss penalty can be hidden under the

lock-waiting. But as expected, coarse grain locking leads to very

poor throughput when the number of CPUs grows further (note

the step-functions as the number of CPUs crosses the chip and

MCM boundaries). In contrast, transactions scale very well. Even

at 100 CPUs, the performance is not limited by the concurrency, but

by the cache miss penalty that almost every iteration incurs when

accessing a cache line that was previously accessed by another

CPU: at 100 CPUs, the throughput with TBEGINC is 99.8% of

the throughput without any locking scheme.

While not particularly interesting for real-world commercial

applications, we also studied the performance of transactions versus

3333

 5

 10

 20

 40

 100

 200

 400

 800

 1600

 2 3 4 5 6 8 10 20 40 60 80 100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of CPUs
(a) TX vs locks, four variables, poolsizes 1k/10k

Lock 1k
TBEGINC 1k

TBEGIN 1k
Lock 10k

TBEGINC 10k
TBEGIN 10k

 10

 20

 40

 100

 200

 2 3 4 5 6 8 10 20 40 60 80 100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of CPUs
(b) TX vs locks, single variable, poolsize 10

Coarse Lock
Fine Lock

TBEGINC
TBEGIN

 5

 10

 20

 40

 2 3 4 5 6 8 10 20 40 60 80 100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of CPUs
(c) TX vs locks, four variables, poolsize 10

Lock
TBEGINC

TBEGIN

 40

 100

 200

 400

 800

 1600

 3200

 2 3 4 5 6 8 10 20 40 60 80 100
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

Number of CPUs
(d) TX vs read-write lock, four variables read, poolsize 10k

R/W Lock
TBEGINC

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of CPUs
(e) Lock-Elided Java Hashtable

Locks
TBEGIN

0.01%

0.1%

1%

10%

100%
 100 200 300 400 500 600 700 800

S
ta

tis
tic

al
 a

bo
rt

 r
at

e

Accessed cache lines
(f) Effect of LRU extension to fetch footprint

No LRU extension: 64x6way
With LRU extension: 512x8way

Figure 5: Performance Results

locks for very high contention cases. As can be seen in figure 5(a),

when using a pool of 1000 lines, the throughput using TBEGIN

drops steeply after the number of CPUs reaches a threshold,

but still exceeds the locking performance. Figure 5(b) shows the

performance of updating a single variable from a very small pool

of only 10 variables. As expected, coarse grain locks yield very

poor throughput. The throughput is better with fine grained locks,

although it does not grow much with the number of CPUs and

declines with more than 10 CPUs. In contrast, with transactions,

the throughput grows up to 24 CPUs (the size of the MCM node

in the tested system) and holds steady beyond, and transactions

out-perform locks across the entire CPU range. Figure 5(c) shows

updating of 4 variables from a pool of 10. With up to 6 CPUs,

transactions behave slightly better than a coarse grained lock. But

as the number of CPUs and such the contention grows further, locks

perform better, not dropping as steeply as transactions. The reason

for the difference between single-variable and four-variable updates

is that for the latter case a CPU must receive all 4 lines into the

L1 cache before it can commit the transaction; after the first line

is received, the increment instruction for that variable can execute

out-of-order. The transaction then becomes subject to conflicts on

that cache line while the CPU is waiting for the other cache lines.

This leads to a high abort rate, which means that many cache line

transfers in the system are wasted. In contrast, as soon as a CPU

obtains a lock, that CPU is guaranteed to finish the update on all

4 lines and thus less cache bandwidth is wasted.

It is interesting to note that under extreme contention, con-

strained transactions behave better than non-constrained transac-

tions. This is because the CPU turns off speculative fetching

after a certain number of aborts for constrained transactions,

preserving some cache bandwidth which helps throughput. We did

not implement this feature for performance reasons, but in order

to guarantee eventual success for constrained transactions.

The above test cases all update shared variables. Another impor-

3434

tant case is reading of shared variables. Traditionally a read-write

lock is used if updates are relatively rare. This allows shared access

to the variables by multiple CPUs while no updates are in progress.

Typical implementations of read-write locks require updating of the

lock-word every time a reader enters or leaves its critical section, in

order to keep track of how many readers are in-flight. The update

of the read-count causes the lock-word to be transferred between

CPUs, which limits the throughput significantly (see figure 5(d)).

Transactions avoid this problem since they only need to check the

write-count to be 0, without updating the read-count. If a writer

enters during the transaction, the writer’s update of the write-count

causes all reader transactions to abort, but as long as no writers

appear, all CPUs can share the read/write count cache line. This

leads to almost linear performance improvement with the number

of CPUs.

Figure 5(e) shows the performance of a more real-world ex-

ample. The IBM Java team has prototyped an optimization in

the IBM Testarossa JIT to automatically elide locks used for

Java synchronized sections. This optimization has been shown to

transparently improve the scalability of widely used standard data

structures such as java/util/hashtable. Multiple software

threads run under z/OS, accessing the hash table for reading and

writing. As can be seen in figure 5(e), the performance using locks

is flat, whereas the performance grows almost linearly with the

number of threads using transactions.

In another experiment (not shown in figure 5), the Java team has

implemented the ConcurrentLinkedQueue using constrained

transactions. The throughput using transactions exceeds locks by a

factor of 2. In [23], the IBM XL C/C++ team compares a subset

of the STAMP benchmarks using pthread locks and transactions.

Depending on the benchmark application, transactional execution

improves performance by factors between 1.2 and 7.

As described in section 3.3, the L1 cache employs a LRU-

extension scheme to enhance the supported fetch footprint beyond

the L1 cache size. Figure 5(f) shows the statistical abort rate (%)

from associativity conflicts with n=1. . . 800 accesses to random

congruence classes. As can be seen, the abort rate for large transac-

tions is significantly reduced when the footprint limitation is moved

from the L1 cache to the L2 cache, as is done by the L1 cache LRU

extension scheme. Of course, very large and long transactions may

suffer from other abort reasons like conflicts with other CPUs, LRU

evictions from higher level caches, or asynchronous interrupts.

These effects limit the practical transaction size. Learning over time

will show exactly how to best tailor transactions, but we feel that

with the LRU extension, the read footprint will not be a limitation.

V. SUMMARY

We have described the instruction-set architecture and implemen-

tation of the transactional memory feature of the latest mainframe

server processor in the IBM zEC12 system. Special focus was

put on software test and debug, as well as the introduction of

transactional memory support into an existing SMP and micropro-

cessor design. The transactional memory feature is defined so that

integration into existing large-scale software products can be done

without a complete software redesign. For example we have shown

how transactions and locks can co-exist by eliding locks using

transactions. The introduction of constrained transactions eases the

explitation of transactional memory be removing the need for a

lock-based fallback path.

We have evaluated the performance on a set of micro-

benchmarks, and under realistic contention, the performance of the

transactional memory system meets our expectations and clearly

exceeds the performance of traditional lock based methods, in

some cases significantly. Preliminary performance experiments

with examples like a parallel hash table are very promising and

show almost linear n-way scalability.

The IBM compiler development teams are involved in ongoing

development for support of transactional memory in various pro-

gramming languages. In [24], the support of transactional memory

in IBM’s XL C/C++ compiler is described. The operating systems

and middleware development groups are aggressively identifying

opportunities to improve the scaling of hot-spots. Transactional

memory is a very promising new tool for improving parallel

software scalability, that is driving innovation in both hardware

and software design now and in the future.

REFERENCES

[1] http://www-03.ibm.com/press/us/en/pressrelease/38653.wss

[2] K. Shum, IBM zNext – The 3rd Generation High Frequency
Microprocessor Chip, HotChips, 2012

[3] M. Herlihy, J. Eliot, B. Moss, Transactional Memory: Architectural
Support for Lock-Free Data Structures, ISCA, 1993

[4] L. Hammond et al., Transactional Memory Coherence Consistency,
ISCA, 2004

[5] K. Moore, J. Bobba, M. Moravan, M. Hill and D. Wood, LogTM
Log-Based Transactional Memory, HPCA, 2006

[6] S. Chaudhry et al., Rock: A high-performance Sparc CMT proces-
sor. IEEE Micro, 29(2):6-16, 2009

[7] R. Haring et al., The IBM Blue Gene/Q Compute Chip. IEEE
Micro 32(2): 48-60 (2012)

[8] http://software.intel.com/en-us/blogs/2012/02/07/transactional-
synchronization-in-haswell/

[9] A. McDonald et al., Architectural Semantics for Practical Trans-
actional Memory, ISCA, 2006

[10] J. Chung et al., Tradeoffs in Transactional Memory Virtualization,
ASPLOS, 2006

[11] T. Harris et al., Transactional Memory: An Overview, IEEE Micro
27:3, May 2007

[12] R. Rajwar, J. Goodman. Speculative lock elision: enabling highly
concurrent multithreaded execution. MICRO, 2001

[13] M. Herlihy. A methodology for implementing highly concurrent
data objects. In ACM Transactions on Programming Languages
and Systems 15:5, 1993

[14] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, C. Zilles.
Hardware Atomicity for Reliable Software Speculation. ISCA,
2007

3535

[15] Y. Lev, M. Moir. Debugging with transactional memory. TRANS-
ACT ’06: 1st Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, 2006.

[16] z/Architecture Principles of Operation, IBM Publication SA22-
7832-09, 2012

[17] R. Guerraoui, M. Kapalka. On the correctness of transactional
memory. Symposium on Principles and Practice of Parallel Pro-
gramming (PpoPP), 2008

[18] D. Dice, O. Shalev, N. Shavit, Transactional locking II, DISC 06:
20th International Symposium on Distributed Computing, 2006

[19] C. Blundell, E. C. Lewis, and M. Martin. Deconstructing transac-
tions: The subtleties of atomicity. WDDD 05: 4th Annual Work-
shop on Duplicating, Deconstructing, and Debunking, 2005

[20] F. Busaba, M. Blake, B. Curran, M. Fee, C. Jacobi, P.-K. Mak,
B. Prasky, C. Walters, IBM zEnterprise 196 microprocessor and
cache subsystem, IBM Journal of Research and Development, Vol
56:1.2, 2012

[21] P. Mak, C. Walters, G. Strait, IBM System z10 processor cache
subsystem microarchitecture, IBM Journal of Research and Devel-
opment, Vol 53:1, 2009

[22] K. Choy, J. Navarro, C.-L. Shum, A. Tsai, Method, System, and
Computer Program Product for Cross-invalidation Handling in a
Multi-level Private Cache, US Patent Application 20090240889

[23] M. Mitran, V. Vokhshori, Evaluating the zEC12 Transactional
Execution Facility, IBM Systems Magazine, 2012

[24] M. Mitran, V. Vokhshori, IBM XL C/C++ Maximizes zEC12’s
Transactional Execution Capabilities, IBM Systems Magazine,
2012

3636

Warped-DMR: Light-weight Error Detection for GPGPU

Hyeran Jeon Murali Annavaram

University of Southern California

{hyeranje,annavara}@usc.edu

Abstract

General purpose graphics processing units (GPGPUs) are feature
rich GPUs that provide general purpose computing ability with mas-
sive number of parallel threads. The massive parallelism combined
with programmability made GPGPUs the most attractive choice in
supercomputing centers. Unsurprisingly, most of the GPGPU-based
studies have been focusing on performance improvement leveraging
GPGPU’s high degree of parallelism. However, for many scientific
applications that commonly run on supercomputers, program cor-
rectness is as important as performance. Few soft or hard errors
could lead to corrupt results and can potentially waste days or even
months of computing effort. In this research we exploit unique ar-
chitectural characteristics of GPGPUs to propose a light weight
error detection method, called Warped Dual Modular Redundancy
(Warped-DMR). Warped-DMR detects errors in computation by rely-
ing on opportunistic spatial and temporal dual-modular execution
of code. Warped-DMR is light weight because it exploits the under-
utilized parallelism in GPGPU computing for error detection. Error
detection spans both within a warp as well as between warps, called
intra-warp and inter-warp DMR, respectively. Warped-DMR achieves
96% error coverage while incurring a worst-case 16% performance
overhead without extra execution units or programmer’s effort.

1. Introduction

Recently GPU architectures have been enhanced with several microar-

chitectural features that allow GPUs to be used not only for graphics

applications but also for general purpose computing. Nowhere else

is this trend more visible than in super-computing centers which are

adopting GPUs as processing engines to achieve massive parallel

execution. Named GPGPU, the new GPU variant is known to derive

superior performance over multi-core CPUs by allowing thousands

of concurrent threads to run efficiently within a limited power budget.

Many application developers have been attracted to this new powerful

and relatively cheap parallel execution paradigm. Significant effort

has been expended to port applications to GPGPU paradigm in or-

der to achieve better performance by efficiently leveraging abundant

parallel computational resources.

GPGPUs now run business-critical applications, long running sci-

entific codes, and financial software. These new application domains

demand strict program correctness [7]. A few erroneous computa-

tions or a corrupt value could have severe negative repercussions.

CMOS technology scaling, while provided power and performance

benefits, is also leading to significant number of reliability concerns.

GPGPU will be vulnerable to soft/hard error and the vulnerability is

predicted to grow exponentially [6]. Since GPGPUs evolved from

GPUs, the primary focus of GPGPU design has been to increase paral-

lel performance. In particular, reliability is considered as a secondary

issue in GPU computations since traditional graphics applications

have been shown to be inherently fault tolerant [7]. However, to

support business critical application domains on GPGPUs, there is

a need to provide architectural support for at least error detection.

As a first step, error detection can translate the most harmful silent

data corruption (SDCs) errors to detectable but unrecoverable errors

(DUEs). In fact, commercial GPGPU designers have already started

addressing reliability concerns. Recently NVIDIA’s Fermi GPGPU

added ECC for the memory components [16].

GPGPUs have hundreds of hardware thread contexts today and

in the near future they will have thousands of contexts. Each thread

context contains a relatively simple processor pipeline with very

minimal resources to support speculation, if any. Hence the vast

majority of the chip area is dedicated to execution units, such as

ALUs. In the presence of hundreds (or even thousands) of thread

contexts, even a tiny probability of a logic error in each thread con-

text adds up to an exponentially high probability of errors at the

chip level. Recognizing this concern, several researchers have been

focusing on improving reliability of GPGPU computation. They are

mostly software approaches [6] [22]. Software approaches can be

more flexible but demand programmers to re-write their applications

with focus on fault tolerance, which is quite undesirable given that

writing a GPGPU application itself is non trivial [11]. Compilers

could reduce some of the burden on the programmer by automati-

cally providing redundant code execution [22]. However, the error

coverage is limited by the granularity of compiler’s code insertion

and has the hidden error problem: even though each line of code
is executed twice for verification purpose, if the two instances are

executed on the same processing core, some hardware defects, such

as stuck-at faults, cannot be detected. Note that software does not

decide which thread is mapped to which core in current GPGPU

architectures. Furthermore, in software approaches the results from

redundant execution are mostly compared at the end of the program

execution. Hence faults are likely to be discovered too late to take

quick corrective action.

In this paper we propose a low-overhead hardware approach for

detecting computation errors in GPGPUs. The approach uses dual

modular redundancy (DMR) [13] but opportunistically switches be-

tween spatial and temporal redundancy to improve error coverage

while reducing the error detection overhead. We call this approach

Warped-DMR. In this paper, we assume that only execution units

are vulnerable. Memory is assumed to be protected by ECC, as is

done in many industrial GPU designs [16]. Hence, for the memory

operations, we only verify the address computations and assume that

the loaded data is always error free.

1.1. Exploiting Opportunity

Before presenting the details of Warped-DMR, we first present moti-

vating data that shows the utilization of thread contexts on a GPGPU.

Figure 1 shows the execution time breakdown in terms of the number

of active threads for a subset of benchmarks selected from NVIDIA

CUDA SDK [4], Parboil Benchmark Suite [5], and ERCBench [1].

These results were generated by simulating a modern NVIDIA-style

GPGPU architecture using GPGPU-Sim [3]. More details of the sim-
ulated architecture and benchmarks are provided later in Section 5.

NVIDIA GPGPU executes instructions in a batch of threads unit

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.13

37

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.13

37

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BFS Nqueen MUM SCAN BitonicSort Laplace MatrixMul RadixSort SHA Libor CUFFT

32
22-31
12-21
2-11
1

Figure 1: Execution time breakdown with respect to the number of active threads

(a.k.a. Warp) which consists of 32 threads. Each color in the bar
chart denotes the fraction of cycles that the corresponding number of

threads are actively executing the code. As can be seen, majority of

applications do not have 32 active threads all the time. For example,

over 40% of BFS instructions are executed by only single thread. In

other words, the remaining 31 threads within the warp are idle while

the single active thread is executing instructions. The processing

cores associated with the idle threads remain unused during the idle

period. The reasons for this underutilization are described later in

Section 2.2.

The underutilization of GPGPU resources provides us an oppor-

tunity to provide error detection capability by exploiting the under-

utilized resources without incurring performance overheads. In this

paper we present Warped-DMR, which consists of two techniques

for error detection.

(1) Intra-warp DMR: Our first error detection method is called
intra-warp DMR. Intra-warp DMR simply uses the inactive threads
to verify execution of active threads in the same warp by using dual

modular spatial redundancy. The underutilized or idle cores are used

as computational checkers for a subset of active threads. Hence the

overhead of intra-warp DMR is nearly zero, with the exception of a

negligible area overhead needed to compare the computation results

and duplicate the input data.

(2) Inter-warp DMR: The second error detection approach is called
inter-warp DMR. When a warp is fully utilized, all 32 threads are
active in a warp, and hence there is no opportunity for intra-warp

DMR. In this scenario we use dual modular temporal redundancy.

A duplicated execution of each fully utilized warp is scheduled for

execution later whenever the associated execution unit becomes idle.

A special purpose Replay Queue(ReplayQ) is used for the purpose of
buffering the duplicate execution warps. We also shuffle the execution

of redundant threads onto different cores, compared to the original

thread-to-core assignment, to reduce the hidden error problem. Inter-

warp DMR when combined with the ReplayQ mechanism reduces

the need for unnecessary stalls in the pipeline to execute redundant

instructions, thus significantly lowering the performance overhead of

temporal redundancy.

Simulation results on several GPGPU applications shows that intra-

warp and inter-warp DMR complement each other to provide 96.43%

error coverage with 16% worst case performance overhead.

The remainder of this paper is organized as follows. Section 2

provides background on the design of contemporary GPGPUs and

error detection methods. Section 3 describes Warped-DMR. Section 4

describes the architectural modification for supporting Warped-DMR.

Section 5 shows our evaluation methodology and results. Section 6

discuss related work and we conclude in Section 7.

Operand buffering

Register File
4x128-bit Banks

(1R1W)

SPs

Shared Memory

Operand beffering

Register File
32x128-bit Banks

32 SPs

SFUs &
LD/ST units

SFUs LD/STs

Figure 2: GPGPU Chip architecture and a SIMT cluster(modified after
borrowing from [8])

2. Background

2.1. GPGPU Architecture

The GPGPU architecture varies depending on vendors and models.

In this paper, we use the basic architecture of NVIDIA’s Fermi [16]

as our GPGPU model. A GPGPU consists of a scalable number of

streaming multiprocessor(SM)s, each comprising of shader proces-
sor(SP) cores for arithmetic operations, LD/ST units for memory
operations, Special Function Units (SFUs) for instructions such as
sine, cosine, and square root, several register file banks, and shared

memory. In this paper, we assume that each SM has 32 SPs, 32

register file banks and 64KB of shared memory.

Fig 2 shows the internals of one SM. The shared memory is accessi-

ble by all the SPs within a SM and part of this memory is configurable

as an L1 cache. Each SM schedules threads in a unit of thread group

of 32 threads, called a Warp. The threads within a warp execute

the same code in a lock step manner. They all share one program
counter(PC) but access different data operands. Such an execution
approach is called Single Instruction Multiple Threads(SIMT) execu-
tion. Each thread in a warp may use a different register bank within a

SM to access its data operands. Each individual thread execution is

referred to as SIMT lane.
Within each SM, we further assume that four SIMT lanes make a

SIMT cluster as in [8]. Thus each warp has eight SIMT clusters. As
shown in Fig 2, each SIMT cluster has 4 SPs and 4 banks of register

files. Each entry of a register bank is 128-bit wide and contains

four 32-bit registers, each associated to one SIMT lane [8]. As each

entry of the register bank consists of 4 registers having the same

name but associated with 4 different threads, loading an entry from

a register bank can feed all 4 SIMT lanes at once. Most common

instructions that read 2 operands, write 1 result (2R1W), as well as
the special instruction like MULADD that read 3 operands, write 1

result (3R1W) can access the four register banks to read their input
operands and write output data concurrently without any register port

3838

stalls most of the time. However, if an instruction fetches operands

from the same bank, the operands cannot be fetched concurrently.

To handle bank conflicts, GPGPUs use operand buffering logic that

hides the latency of multi-cycle register fetch.

2.2. Underutilization of GPGPU Resources
Underutilization of GPGPU’s computational resources can be due to

two reasons (1) underutilization within homogeneous execution units

and (2) underutilization among heterogeneous execution units.

Underutilization of homogeneous units: Underutilization

within homogeneous execution units is caused by lock-step execution

in GPGPUs. All 32 threads in a warp share a single PC. Whenever

a branch instruction is encountered, some of the threads within the

warp may take the branch while others may not depending on the

data operands. Due to a single PC-constraint, threads with not-taken

branch are executed first followed by threads with taken branches (or

vice-versa). While the not-taken path instructions are executed, the

core assigned to the taken path threads are idled. This is called the

branch divergence problem.

To execute the divergent instructions, GPGPU hardware scheduler

uses an active mask which consists of 32 bits indicating the active
state of each thread within a warp. At each cycle, the threads whose

active bit is set to ’1’ are allowed to execute the issued instruction,

while the threads whose active bit is set to ’0’ wait. We call the thread

as an active thread if it has ’1’ in the corresponding bit of the active
mask and as an inactive thread otherwise. Note that there is one
active mask per each warp.

A simple example of a branch divergence is illustrated in Figure 3.

Let us assume that an if-then-else statement(shown in Figure 3(a))

is executed by a warp of two threads. When both threads reach the

conditional branch instruction and if the condition is true for both

threads then the two threads are concurrently executed (shown in

Figure 3.(b)). However, if the two threads take different branch paths

then only one thread can execute at a time (shown in Figure 3.(c)).

In this example, the utilization of the system while executing the

if-else statement becomes only 75% since among 8 cycles (2 cores

× 4 cycles each), 6 cycles are actually used for the execution. Un-

derutilization is even worse in real applications as shown in Figure 1:

ranging from 7% in BFS to up to 77% in Bitonic Sort.

Underutilization of heterogeneous units: The underutilization
among heterogeneous execution units is caused by the limitations in

the scheduler feeding three different execution units. GPGPUs have

three different types of execution units: SPs, LD/ST units, and SFUs.

All three different types of execution units are fed by a single warp

scheduler and an instruction dispatcher unit [16]. Hence, during any

given cycle, only one instruction can be issued to one of the three

execution units which leads to idle units. Heterogeneous unit under-

utilization has not been considered as severe as the underutilization

caused by control divergence. However, if a code segment executes

the same type instructions in a burst fashion then the scheduler will

schedule instructions to just one type of execution unit while the rest

two execution units remain idle.

Some state-of-the-art GPGPUs such as NVIDIA Fermi and Ke-

pler [17] have multiple schedulers per SM. For example, Fermi has

two schedulers in a SM which can issue instructions concurrently.

The two schedulers share LD/ST units and SFUs while having their

own SPs. Hence, instructions can be simultaneously issued to two

different type execution units among three if the two schedulers issue

different type operations. Even in this case there is still an underuti-

lization of heterogeneous units since not all three execution units are

used, but the degree of underutilization is decreased. Furthermore,

due to several scheduling issues such as data dependency among the

instructions, schedulers are not likely to be able to issue instructions

to all the execution units.

3. Warped-DMR

Warped-DMR exploits the two types of underutilized resources to

execute code redundantly and opportunistically. Different execution

strategy is used for each of them.

3.1. Intra-warp DMR

To detect errors in execution units, intra-warp DMR relies on DMR

execution approach. In traditional DMR there are as many verifi-
cation cores as the number of monitored cores. A verification core
executes the same instruction stream of the associated monitored

core and the two execution outputs are compared. Error is detected

if the results on the two cores differ. Every single instruction is thus

executed twice providing 100% error coverage. However, the area

or performance overhead of DMR exceeds 100% since at least one

verification core should be added for each monitored core.

Intra-warp DMR uses the cores idled by underutilization within ho-

mogeneous execution units to execute the code redundantly, instead

of adding extra cores for verification purpose. Whenever a partially

utilized warp is scheduled, the operands of an active thread within

the warp are forwarded to an inactive thread. The inactive thread thus

can DMR an active thread’s execution. The execution results of the

inactive thread and the active thread are compared at the end of execu-

tion. If the two results are not identical, the hardware scheduler will

be notified of an error occurrence. The necessary microarchitectural

support for intra-warp DMR are discussed in Section 4.

Since the focus of this work is to detect errors, error handling is

out of scope of this paper. But one can use simple techniques that

allow the scheduler to either re-schedule the warp (in case of transient

errors) or to stop running the program and raise an exception to the

system (in case of a permanent fault).

3.2. Inter-warp DMR

Intra-warp DMR is an opportunistic approach that exploits idle cores.

But when a warp utilizes all the cores, intra-warp DMR is unable to

provide error detection coverage. To handle this case we present the

second error detection method, called inter-warp DMR. Inter-warp

DMR exploits resource underutilization caused due to heterogeneous

execution units. As mentioned earlier, NVIDIA GPGPU uses SPs

for arithmetic operations, LD/ST units for memory instructions, and

SFUs for complex GPGPU operations such sine and cosine. In any
given cycle the instruction issue logic issues instructions to only one

of the three execution units. Hence, when an instruction is issued

to SFUs or LD/ST units, the SPs may become idle. If different

instruction types are issued in an interleaved manner, then each

instruction’s verification is done at the following cycle of the original

execution. For instance, if an arithmetic instruction is followed by a

LD/ST instruction, then the arithmetic instruction will be redundantly

executed in the next cycle on SPs when the primary LD/ST instruction

is being executed.

Figure 4 shows a simplified execution of a code segment which has

several interleaved add and load instructions. As the two instructions
use different type of execution units(add uses SPs and load executes
on LD/ST units), whenever an instruction is issued onto the corre-

sponding execution units, the other type of execution units become

3939

If(cond) {
b++;

} else {
b--;

}
a = b;

(a) Code

Core 2Core 1

b++ b++

a = b

Cond?

(b) No Divergence

Core 2Core 1

b++

b--

Cond?

a = b

(c) Divergence

Core 2Core 1

b++

b--

Cond?

a = b

DMR

DMR

b++

b--

(d) Proposed

Figure 3: Example of underutilization of homogeneous units and Intra-Warp DMR

warp1 ld.shared.f32 %f20, [%r99+824];
warp2 add.f32 %f16, %f14, %f15;
warp1 ld.shared.f32 %f21, [%r99+956];
warp2 add.f32 %f18, %f12, %f17;
warp3 ld.shared.f32 %f2, [%r70+4];
warp2 add.f32 %f19, %f11, %f18;
warp3 ld.shared.f32 %f10, [%r99+1636];
warp1 add.f32 %f13, %f20, %f21;

(a) Code

SPs

SFUs

LD/STs

time

Decoded
instruction

(b) Normal Execution

SPs

SFUs

LD/STs

time

Decoded
instruction

Ordinary execution verification

(c) Execution with Inter-warp DMR

Figure 4: Example of underutilization of heterogeneous units and Inter-Warp DMR

idle. If both units take only one cycle to execute, inter-warp DMR

allows the add and load instructions to be DMRed one cycle later
than the original execution cycle on the associated execution units,

without the need for stealing many cycles from regular program exe-

cution. Figure 4(c) depicts the operation of inter-warp DMR which

only adds one extra cycle at the end of the eight cycle execution.

Inter-warp DMR does not interfere with the execution scheduling of

the primary add and load instructions.

Even with inter-warp DMR, there are scenarios when it is not pos-

sible to completely eliminate the overhead of DMR. In the example

shown above, instructions that require different types of execution

units are interleaved. But when the same type of instructions are

scheduled for several cycles in a row, a new microarchitectural struc-

ture called ReplayQ is used to buffer the unverified instructions so

that the instructions can be dequeued and re-executed whenever the

corresponding execution unit becomes available. Note that we do

not allow an instruction to consume unverified instruction results

that are still buffered in the ReplayQ. Hence, whenever there is a

RAW dependency on an unverified result, the dependent instruction

is forced to wait and the ReplayQ gives priority to verify the source

instruction.

During intra-warp DMR, the original code and verification code

are guaranteed to be executed on different SIMT lanes. However,

during inter-warp DMR, no such guarantee can be provided by default

since contemporary GPGPUs may use core affinity that assigns a

thread to the same core when redundantly executed. If an execution

is DMRed on the same core, hardware defect on the core cannot be

detected. For example, if core i has stuck-at-zero error, the result of
the verification and original execution both will be 0, which leads

to a hidden error. To avoid such hidden errors, inter-warp DMR

associates a verification thread to a different SIMT lane than the

original SIMT lane. We call this approach Lane Shuffling. Lane
shuffling is operated within a SIMT cluster to minimize the wiring

overhead. The microarchitectural enhancements for inter-warp DMR

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

LD/ST
SFU
SP

Figure 5: Execution time breakdown with respect to the instruction
type

are discussed in Section 4.

3.3. Error Coverage

The theoretical error checking coverage of intra-warp DMR is 100%

when the number of the active threads is less than half of the warp

size. In this scenario every active thread’s execution can be verified by

at least one of the inactive threads. If the active thread count is greater

than half of the warp size, the coverage is #inactive_threads∗100
#active_threads %. The

overhead of intra-warp DMR is almost zero as verification is done

on the existing idle cores concurrently with the active threads. Only

minimal hardware logic is added for register forwarding and results

comparison.

The theoretical error checking coverage of inter-warp DMR is

100% as each fully occupied warp’s execution is re-executed a few

cycles later. The best case execution overhead of inter-warp DMR is

zero as the redundant execution is done only when the corresponding

execution unit is idle. In reality, due to the capacity of the ReplayQ

and the unbalanced instruction distribution(see Figure 5 for instruc-

tion type distribution), there will be some overhead. Our results

show that the worst case overhead is 16%, which is well below the

theoretical overhead of 100%.

4040

Priority MUX0 MUX1 MUX2 MUX3

1st 0 1 2 3

2nd 1 0 3 2

3rd 2 3 0 1

4th 3 2 1 0

Table 1: Priority table of RFU MUXs

3.4. Advantages of Warped-DMR

Warped-DMR verifies the computations at individual execution unit

level(i.e. SP). The DMR can be done at a coarser granularity, such

as at the entire SM level by duplicating a thread block1 onto two

different SMs or at the chip level by invoking two copies of a kernel

function onto two GPGPUs. The coarser method might be simpler to

implement. However, the finer method allows for more aggressive

error detection. For example, when there is a faulty SP, a SM-level or

a chip-level error checking cannot isolate which core has the defect.

Hence, the only option to fix the problem is to disable the entire SM

even though the remaining 31 SPs in the SM as well as the other

logic blocks including scheduler, dispatcher, and the local memory

are fault-free. Similarly, when using chip level checking, one has

to disable an entire GPGPU chip even with just one failed SP. With

Warped-DMR we can monitor the reliability at the granularity of a

SP. In the previous examples, we can still use the SM even though a

SP has a defect by using a core re-routing approach as suggested in

[23].

It is also worth noting that the static power consumption of GPG-

PUs is nearly 60% of the total power consumption. To reduce static

power consumption [9] showed that it is best to provide power gating

at the SM level. Idle SM periods can be long and hence they can be

completely turned off . But providing power gating at the SP level

does not provide enough benefits. While SPs are idle for a significant

fraction of the time, the idleness is finely interspersed with periods

of activity. The latency of power gating outweighs the benefits of

turning off idle SPs. Warped-DMR is thus an ideal choice for repur-

posing idle SPs to provide reliability since power gating idle SPs is

not beneficial.

4. Architectural support for Warped-DMR

4.1. Register Forwarding Unit

For intra-warp DMR each inactive thread that is going to verify the

computation should be able to either access an active thread’s register

file or get the active thread’s register values using data forwarding.

As adding an extra port to the register file is expensive, we added

a Register Forwarding Unit(RFU) at the end of each register bank.
RFU consists of four 4 32-bit input MUXs as can be seen in Figure 6.

A 128-bit entry of a register bank is divided into 4 32-bit data and

forwarded to all the 4 MUXs.

To enable intra-warp DMR the four MUXs in the RFU pair active

threads with inactive threads based on a priority. The priority config-

uration of the 4 MUXs within a SIMT cluster is shown in Table 1.

Each column indicates the priority ordering for each MUX. As a first

priority every MUX delivers the input data to its associated SIMT

lane if that SIMT lane’s active mask is set. MUX0 provides input data

to SIMT lane 0, MUX1 to SIMT lane 1 and so on. If a SIMT lane’s

1A thread block in NVIDIA CUDA programming is a logical partition of a program.
Any thread can communicate with other threads only when they are in the same thread
block. A thread block is launched onto a SM.

active mask is reset, then that SIMT lane is idle and can be used for

DMR. Hence, every idle SIMT lane looks for an active SIMT lane

whose computation can be redundantly executed on the idle SIMT

lane. To find an active SIMT lane which can be redundantly executed

on an idle SIMT lane, each MUX looks for the active SIMT lane

according to the priority listed in the table. For instance, if SIMT lane

0 is idle, then MUX0 looks at SIMT lane 1 to see if it is active as lane

1 is the 2nd priority for MUX0. If so, then the inputs from SIMT lane

1 are then simply directed by MUX0 to run on SIMT lane 0. If SIMT

lane 1 is also inactive then SIMT lane 2 active mask bit is checked

followed by SIMT lane 3 active mask to find an active thread. As can

be seen from Table 1, each MUX runs through a different priority

sequence to allow uniform pairing possibilities between active and

idle SIMT lanes. In this algorithm, if there is only one active lane,

the lane is redundantly executed on the rest three idle lanes, which

results in more than dual modular redundancy. We simply allow such

a scenario to occur rather than to add additional hardware logic in

the MUX to prevent this scenario since it does not lower the error

coverage.

In Figure 6, the bold lines inside of RFU illustrates a simple exam-

ple of an intra-warp DMR when an active mask for an instruction is

4’b0011. As each bit of an active mask indicates each corresponding

thread’s activeness, 4’b0011 means that thread 0 and 1 are active

and thread 2 and 3 are inactive for the instruction. Thread 2 and 3

will perform DMR for the execution of thread 0 and 1 according to

intra-warp DMR assignment from Table 1.

We implemented a RFU design and a 128-bit comparator by using

Synopsis Design Compiler v.Y-2006.06-SP4 [21]. The respective
area overhead is 390μm2 and 622μm2 and the timing overhead is
0.08ns and 0.068ns. The timing overhead of the MUX is thus less

than 0.06% compared to a typical cycle period(1.25ns) of GPGPU of

40nm technology and 800MHz core clock. [2]

4.2. Thread-Core Mapping

Since the register forwarding is limited to within a SIMT cluster of

just four SPs, in intra-warp DMR the verification and monitored core

are restricted to be within the same SIMT cluster. This limitation

minimizes wire delays and complex routing paths. With this mapping

restriction, however, some SIMT clusters might not be able to use

intra-warp DMR if all the SIMT lanes within a cluster are fully

utilized, even when some SIMT lanes across clusters are idle. Based

on preliminary experiments we found that many applications are

likely to have unbalanced active thread distribution within a warp.

To improve the availability of idle SPs within a SIMT cluster, we

modified the thread to core affinity scheduling algorithm. There is

only sparse documentation on how current GPGPUs assign threads

to SPs within a warp. It is believed that the threads are mapped to

cores in order: for example, thread 0 is always executed on core 0,

thread 1 is mapped to core 1 and so on. Our modified scheduling

algorithm assigns threads to SIMT clusters in a round-robin fashion.

Thus thread 0 is assigned to cluster 0, thread 1 is assigned cluster

1 and so on. We show later in our results section that this simple

scheduler change increased error detection opportunities by 9.6%

compared to the default in order mapping of threads to core.

4.3. ReplayQ

As discussed earlier, inter-warp DMR relies on re-executing an in-

struction at a later time if the corresponding execution units are not

free. Instead of stalling program execution, inter-warp DMR buffers

4141

register banks

a register banka register banka register bank

ac
tiv

e
m

as
k

th0.r1 th1.r1 th0.r1 th1.r1

th0.r1 th1.r1 th2.r1 th3.r1

128bit

Register Forwarding Unit

core core core core

R
F

EX
E

W
B

Comparator

active mask

Error!

Figure 6: Register Forwarding Unit and Comparator for Intra-Warp DMR

FETCH (1 cycle)

DEC/SCHED
(1~2 cycles)

RF
(3 cycles)

Replay
checker

EXE
(3~ cycles)

1

CORECORECORECORE
M
E
M

M
E
M

M
E
M

S
F
U

2 3

4

ReplayQ

op src1 destsrc2 src3

Figure 7: ReplayQ and Replay Checker for Inter-Warp DMR

unverified instructions into a ReplayQ whenever the corresponding

execution unit is not available. A Replay Checker engine is designed
to manage the ReplayQ. There is one Replay Checker and ReplayQ

per SM.

Figure 7 shows how the Replay Checker works within the context

of current GPGPU pipeline. A GPGPU pipeline in the figure has the

following stages: instruction fetch stage (FETCH), decode & sched-

ule stage (DEC/SCHED), register fetch stage (RF), and execution

stage (EXE). The write back stage (WB) is omitted in the figure for

simplicity. The latency of each pipeline stage is also shown in the

figure. The stages having multiple cycle latency consist of multiple

sub-stages. For example, RF is comprising of RF0, RF1, and RF2.

These latencies reflect the pipeline latencies of current GPGPUs that

we modeled [8].

If active mask of the instruction in the first RF stage is all active,
the Replay Checker is activated. If the active mask has some idle slots

intra-warp DMR will verify the warp’s execution. During intra-warp

DMR execution Replay Checker and ReplayQ do not play any role

in managing the warp’s redundant execution. Once Replay Checker

is active it compares the instruction type of the warp in RF(�) and
that of the warp in DEC/SCHED stage(�). If the instruction type is
different, then the Replay Checker creates a DMR copy of the RF
instruction to be co-executed with the instruction in DEC/SCHED
(�). DMR copy consists of the values of the input operands and

opcode. Note that even though an instruction takes several cycles

of the execution, the next instruction can be issued at the following

cycle to the execution unit as the EXE stage itself is super-pipelined.

If RF and DEC/SCHED instruction type are the same then the in-
struction type in RF stage (a two bit value indicating SP, LD/ST or

SFU instruction) is compared against all the queued entries in the

ReplayQ (�). The instruction decoder would have already marked

each instruction based on its execution resource demand into either

SP, LD/ST or SFU instruction type. In our experiments the maximum

size of ReplayQ is 10 entries. Hence, 10 two bit XORs are used for

this comparison. If any instruction in the ReplayQ has different type

than the instruction in RF then the Replay Checker dequeues that
instruction and pairs it with the instruction in RF stage (�) for co-
execution in the next cycle. When multiple ReplayQ instructions are

available for co-execution then one instruction is picked at random.

The instruction in RF stage is then enqueued in the ReplayQ. When
an instruction RF is enqueued into ReplayQ it simply implies that the
instruction that is one cycle behind RF is going to use the same type
of execution units as the instruction in RF . Hence, there will be no
opportunity to verify the RF instruction in the next cycle following
its execution cycle. Hence, that instruction needs to be buffered for

future verification.

Also to distinguish a DMR execution from an original execution, a

single dmr bit is added. dmr is set by Replay Checker when creating
a DMR copy. By using this value, RFU can apply the lane shuffling

only to the fully utilized DMR executions.

If there is no instruction in the ReplayQ whose instruction type

is different than the instruction in the RF stage, the Replay Checker
checks if the ReplayQ is full. If the ReplayQ has empty slots, the

RF instruction is enqueued to the ReplayQ (�). If the ReplayQ is
full, a stall cycle is inserted into the pipeline immediately after the

instruction in RF finishes the first EXE stage and then the instruction
is re-executed by using the operand values that are still available in

the pipeline. This eager re-execution reduces unnecessary register

reads but adds one cycle performance penalty. Note that this penalty

is applicable only in the rare case that ReplayQ has no instruction

that is different than RF stage instruction and ReplayQ is full.
Whenever a new instruction is scheduled in the pipeline which is

going to consume (RAW dependency) data from an unverified instruc-

tion that is buffered in the ReplayQ then the Replay Checker stalls

the pipeline and executes the verification of the source instruction

before allowing the consumer instruction to execute.

Algorithm 1 shows the pseudo code of the Inter-Warp DMR with

ReplayQ.

4.3.1. Components and Effective Size of ReplayQ Since ReplayQ

buffers instructions only when there is no available resource, it is

4242

Algorithm 1 Inter-Warp DMR with ReplayQ
ir f := instruction in RF stage
idec := instruction in DEC/SCHED stage
opr f := instruction type o f ir f
opdec := instruction type o f idec
if opr f �= opdec then

Coexecute DMR o f ir f with idec execution
else

if ∃irq : irq ∈ ReplayQ and instruction type o f irq �= opr f
then

Dequeue irq f rom ReplayQ
Enqueue ir f to ReplayQ
Coexecute DMR o f irq with ir f execution

else
if ReplayQ is f ull then

Insert a Stall cycle
DMR ir f one cycle later the original execution

else
Enqueue ir f to ReplayQ

end if
end if

end if

0
2
4
6
8

10
12
14
16
18
20 SP

LD
ST
SFU

(a) Instruction type switching distances within 1000 cycles

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

MatrixMul
CUFFT
BitonicSort
Nqueen
Laplace
SHA
RadixSort

(b) RAW dependency distances of the registers of warp1 thread 32(warp0
thread1 for SHA)

Figure 8: Two key factors to determine effective ReplayQ size

OS Ubuntu Linux kernel v2.6.38

CPU Intel Core i7(quad core) @ 2.67 GHz

Compiler nvcc-2.3 / gcc-4.3.4

Table 2: Experimental Environment

Parameter Value

Execution Model In-order

Execution Width 32 wide SIMT

Warp Size 32

Threads/Core 1024

Register Size 64 KB

Register Banks 32

Core(SP)s/Multiprocessor(SM) 32

SMs 30

Table 3: Simulation Parameters

critical to quantify how often such a scenario occurs in GPGPUs.

ReplayQ also stalls the pipeline whenever there is RAW dependency

on an unverified instruction.

Figure 8(a) shows the average cycle distance before an instruction

type is switched to another. In most of the applications, normally less

than 6 instructions of the same type are consecutively issued. CUFFT,

Libor, and SHA have longer distances between different instruction

types but it is also bounded to a maximum of 20. Hence, the ReplayQ

only needs to buffer 20 instructions in the worst case, but an average

size of 6 will suffice for most applications.

Figure 8(b) shows the number of cycles between when a register

is written to the time when that register is read by another instruction.

In this figure we only show the RAW dependency distance for warp1

thread 32. But the data is quite similar for all warps and all threads

within each warp. The RAW dependency distance is at least 8 cycles

and almost half of the registers have greater than 100 cycles of

distance and some have even longer than 1000 cycles of distance.

Hence, the RAW dependency related pipeline stalls are likely to be

just a few in Warped-DMR.

Each entry of the ReplayQ should maintain opcode and the original

execution result as well as the source register values. The original

execution result is for verifying the original execution. Each SM has

one ReplayQ which covers all the SIMT Clusters. Each entry of a

ReplayQ contains 32 lanes×3 operands(each instruction can have
up to 3 operands)×4 bytes for the source register values, 32 lanes×
4 bytes for the original execution result and 2∼ 4 bytes for the opcode
so total of 514 ∼ 516 bytes. Therefore, the ReplayQ size with 10
entries is around 5KB. This is only 4% of the register file size which

is assumed to have 128KB in [8].

5. Evaluation

5.1. Settings and Workloads

We used GPGPU-Sim v3.0.2 [3] to evaluate the proposed Warped-
DMR approach. The simulation environment is described in Table 2

and the simulation parameters are set as listed in Table 3. The simula-

tion parameters model our baseline GPGPU architecture as illustrated

in Fig 2. A GPGPU chip has 30 SMs and each SM is comprising of

32 SIMT lanes. 4 SIMT lanes build a SIMT cluster which consists of

4 register banks, 4 SPs, 4 LD/ST units and 4 SFUs.

For the workloads, we used several applications from NVIDIA

CUDA SDK [4], Parboil Benchmark Suite [5], and ERCBench [1].

4343

Category Benchmark Parameter

Scientific Laplace transform gridDim = 25×4, blockDim = 32×4
Mummer input f iles : NC_003997.20k. f na and NC_003997_q25bp.50k. f na
FFT gridDim = 32, blockDim = 25

Linear Algebra/Primitives BFS input file : graph65536.txt, gridDim = 256, blockDim = 256
Matrix Multiply gridDim = 8×5, blockDim = 16×16
Scan Array gridDim = 10000, blockDim = 256

Financial Libor gridDim = 64, blockDim = 64

Compression/Encryption SHA directmode, inputsize : 99614720, gridDim = 1539, blockDim = 64

Sorting Radix Sort –n = 4194304 –iterations = 1 –keysonly
Bitonic Sort gridDim = 1, blockDim = 512

AI/Simulation NQueen gridDim = 256, blockDim = 96

Table 4: Workloads

As mentioned earlier, our main target applications are those need-

ing strict accuracy such as scientific computing or financial appli-

cations. Hence, we excluded some applications that are inherently

fault tolerant, such as graphics applications. We picked 6 categories

of applications: scientific computing, linear algebra/primitives, fi-

nancial, compression/encryption, sorting, and AI/simulation. The

applications that are included in the 6 categories are listed in Table 4.

5.2. Error Coverage and Overhead

Figure 9(a) shows the percentage of executed instructions covered

by Warped-DMR. We compare three different implementations. The

baseline implementation is the 4 SIMT lane cluster with no enhanced

thread-core mapping. The second bar shows the impact of increasing

the cluster size to 8 SIMT lanes and allowing register forwarding

within a larger cluster size. The last bar shows the results using the

enhanced thread-core mapping as stated in the Section 4.2. Warped-

DMR with enhanced thread mapping provide an average of 96.43%

error coverage compared to 91.91% error coverage with a more

hardware intensive 8 SIMT lane cluster. The gaps in error coverage

are primarily due to intra-warp DMR when the number of idle cores

is fewer than the number of active cores. For instance, BFS is almost

exclusively covered by only intra-warp DMR as all the warps are

underutilized. The utilization of all the warps in BFS is less than

50% as illustrated in Figure 1. Hence, every single active thread’s

execution can be verified by inactive threads without any ReplayQ

involvement. Such applications also have negligible performance

overhead (almost zero)as seen in Figure 9(b) while the error coverage

is 100%. CUFFT derived the lowest error coverage, 90.167%, as most

of the underutilized warps’ utilization is greater than 80%, implying

only 25% of active threads’ executions can be verified.

Applications that are well parallelized like Libor, MatrixMul, and

SHA are mostly covered by inter-warp DMR as most of the warps are

fully utilized. In such applications, the error coverage is almost 100%

but the performance overhead is higher than the other applications as

shown in Figure 9(b). There are four bars per benchmark in Figure

9(b). Each bar is normalized to the kernel execution cycles of the base

machine with zero error detection support. Using the data presented

in Section 4.3.1, we varied the ReplayQ from 0 to 10 entries. As the

ReplayQ size increased to a maximum of just 10 entries the average

performance overhead reduced to 16%. In some applications that are

mostly covered by inter-warp DMR such as MatrixMul, performance

overhead without ReplayQ exceeds 70%. However, by using 10

entries of ReplayQ, the overhead drops to 18%.

5.3. Comparison with SW approach

In this section, we compare Warped-DMR with other approaches. We

modified applications to provide error detection capabilities through

R-Naive and R-Thread approaches as described in [6]. R-Naive

simply invokes the kernel function twice and then compares the

output data. As each kernel should use the same input data, the

memory copy between CPU and GPGPU also should be duplicated.

It is relatively simple to implement but has more than 100% time

overhead [6]. R-Thread duplicates the thread blocks within a kernel

and then compares the output of the original and the duplicated

thread block. The duplicated thread block refers to the original thread

block’s input data by modifying index calculations. If there is any SM

that is not used for the kernel execution, the redundant thread block

can be executed on it simultaneously with the original thread blocks.

Otherwise, R-Thread also can have quite high execution overhead

as the execution time for redundant thread blocks cannot be hidden.

R-Thread does not call expensive CUDA APIs redundantly like R-

Naive but it still requires twice as much data transfer from GPGPU

to CPU resulting in significant data transfer overhead. R-Scatter in

[6] is not used in this experiment as it is for VLIW architecture and it

was shown to be inferior to R-Thread. We also implemented a dual

modular temporal redundancy(DMTR) which verifies every single

instruction in the following cycle. It is a simplified version of SRT

with 1 cycle of slack time [19].

Figure 10 shows the execution time of the four different error

detection approaches and the original execution without error detec-

tion. The execution time includes data transfer time between CPU

and GPGPU as well as kernel execution time. As the data transfer

between CPU and GPGPU is not included in the simulation, the data

transfer time was measured by using CUDA Timer API. As R-Naive

should call kernel twice, the data transfer time also becomes twice

the original. In R-Thread, twice the size of original output should be

copied back to the CPU as the output of redundant and original thread

block are compared on the CPU side. On the other hand, both DMTR

and Warped-DMR have the same data transfer time as the original

execution as they compare the execution results on the GPGPU.

Of the four approaches, R-Naive took the longest time for execu-

tion. It is mainly due to two individual kernel executions and the

twice the data transfer time. R-Thread can reduce the execution

overhead in the presence of idle resources at granularity of a SM. For

instance, Bitonic Sort uses fewer than 30 SMs and hence idle SMs

are always available. However, in the other applications which use all

the SMs for the original execution, R-Thread has no room to hide the

execution time of the redundant thread blocks. Also, R-Thread trans-

4444

89.60
91.91

96.43

0

20

40

60

80

100

120

with 4core cluster with 8core cluster cross mapping

89.60
91.91

96.43

0

20

40

60

80

100

120

with 4core cluster with 8core cluster cross mapping

(a) Error coverage with respect to the SIMT cluster organization and Thread to Core mapping

1.41
1.32
1.24
1.16

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 5 10

(b) Normalized Kernel simulation cycles with respect to the ReplayQ size

Figure 9: Error coverage and Overhead of Warped-DMR

0

100

200

300

400

500

600

1

Data Transfer
Kernel

R-Thread

R-Naive
DMTR

Warped-DMR

Original

Figure 10: Execution times of different approaches

fers twice the output data to the CPU. Therefore, R-Thread suffered

the second longest execution time in many of the tested applications.

Warped-DMR derived the best performance among the four different

approaches due to opportunistic error detection. In some applications

like Laplace, Warped-DMR has 20% longer kernel execution time

compared to the original execution. However, when the data transfer

time is included, the overall overhead is reduced to 13%.

1.11
1.31

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Power
Energy

Figure 11: Normalized Power Consumption

5.4. Power Consumption

We measured power and energy consumption by using an analytical

model [9]. In [9], the power consumption of processing components

are estimated based on the following equation:

RPcomp = MaxPowercomp ×AccessRatecomp (1)

AccessRatecomp =
∑#Insts_accessing_comp per SM
Exec_cycles÷ Ints_sched_interval

(2)

The total power consumption consists of runtime and idle power.

The runtime power is again comprising of runtime power of SMs and

Memory. Each SM’s runtime power is aggregated power consump-

4545

tion of several processing components(SPs, SFUs, caches, shared

memory, register file, and fetch/decode/schedule unit) and a constant

factor. Each component’s runtime power(RPcomp) can be calculated

by multiplying the access rate of the component(AccessRatecomp)

by a power parameter(MaxPowercomp) as shown in Equation 1.

AccessRatecomp is estimated by dividing the total number of in-

structions accessing the component(#Insts_accessing_comp) by
the execution cycles(Exec_cycles) over the instruction scheduling
interval(Ints_sched_interval).
We assume that the architecture dependent parameters(i.e.

MaxPowercomp, idle power, and constant factor) are the same as

in [9]. By using the total simulation cycles and the number of ex-

ecuted instructions acquired from our simulation, we estimated the

power consumption of each application with and without Warped-

DMR. Memory components such as caches and shared memory are

not included in the estimation since Warped-DMR only doubles the

address calculations for the memory operations and the redundant

executions are always conducted on already loaded data. ReplayQ is

assumed to have 10 entries.

As shown in Figure 11, the power consumption of Warped-DMR

is 11% higher and the overall energy consumption is 31% higher than

the baseline with zero error detection capability. Some applications

such as Laplace consume the worst case 60% more energy due to

timing overhead as shown in Figure 9. Energy consumption is calcu-

lated by multiplying the power consumption of each application by

its execution time. The execution time is calculated by multiplying

the number of simulated cycles by the cycle duration. We assume

that the cycle duration is 1.25 ns.

6. Related Work
In this section we describe the most relevant prior work on GPGPU

reliability and DMR execution. [6] proposed three software ap-

proaches: R-Naive, R-Scatter, and R-Thread. R-Naive simply invokes

memory API and kernel function twice to create a software-centric

DMR execution within a GPGPU. R-Scatter tries to exploit underuti-

lized VLIW lanes for redundant execution by duplicating kernel code.

R-Thread doubles the thread block count for a kernel and uses the

newly added thread blocks do the redundant execution. We compared

our work with the R-Naive and R-thread approaches and showed that

Warped-DMR significantly reduces the overhead of DMR execution.

[14] checks computations, control flow, and data flow of a GPGPU

program by inserting signature collector code. After the kernel execu-

tion, the collected signatures are compared with statically generated

signatures. However, this approach only checks the computation after

the kernel code is complete, which can be much later than when the

error was first encountered.

[22] is a systematic approach which uses a guardian process that

intercepts the crash event and restarts the program using checkpoints.

They also instrumented the source code, duplicated non-loop code

and inserted range checking code for loops. This approach also re-

lies on extensive software instrumentation and large checkpoints to

support redundant execution. Many of these reliability studies for

GPGPUs are software approaches. Software approaches are always

more flexible compared to hardware approaches. However, the er-

ror coverage can be limited by the granularity of programmers (or

compiler’s) code insertion. Compared to those approaches, Warped-

DMR can check 96.43% of all instructions without any programmer’s

effort.

[15] suggested a sampling DMR in which DMR is conducted

only for a short period of time within each epoch rather than doing it

for entire execution time. Using this approach the authors state that

permanent errors can be eventually detected even though transient

errors might be missed. Warped-DMR takes advantage of GPU-

specific microarchitectural features to provide high coverage for both

transient and permanent faults.

[19] proposed a Simultaneous and Redundantly Threaded (SRT)

processor design. Instead of replicating hardware resources, they

used thread level replication. Trailing thread redundantly executes the

same program copy that the leading thread executes. The hardware

resources are shared between the trailing and the leading threads.

[13] proposed a Chip-level Redundantly Threaded (CRT) processor

which explicitly disables core-affinity to make sure that two threads

execute on different cores. This approach essentially exploits the

performance advantage of SRT’s loose synchronization as well as the

high fault coverage of lockstepping method [20]. [10] proposed a

method to reduce the performance overhead of SRT by preventing

the trailing thread from redundantly fetching register data. The key

idea is to reuse the already fetched data for the trailing thread.

Compared to the hardware based DMR or RMT approaches,

Warped-DMR has some domain-specific advantages. Warped-DMR

checks every single instruction (but in less than 4% of cases it checks

only partial number of inputs). This approach not only detects per-

manent errors but most transient errors can also be detected. Also,

unlike [20], Warped-DMR does not use an entire core just for DMR.

Instead, we utilize the idle periods of cores for DMR.

Due to DMR’s high area overhead, some self-checking schemes

also have been studied. One of the most popular self-checking

schemes is residue checking [18] [12]. Instead of duplicating en-

tire execution units, residue checking adds residue operator units

which require much less area than the entire execution units. An error

in the original operator unit is detected by comparing the residue of

the original computation result and the output of the residue operation

which is executed on the residue operator unit. Residue checking

has small area footprint but residue checking is only applicable for

some simple arithmetic operations(it cannot be used for exponent

calculations [12]). Warped-DMR can detect errors in any arithmetic

operation supported on a GPGPU, including complex operations

implemented in an SFU.

7. Conclusion
As GPGPUs play critical role in high performance computing to-

day, reliability should be treated as a first class citizen alongside

performance. In this paper, we proposed Warped-DMR a hardware

approach to detect computation errors in GPGPUs. We presented

the reasons for underutilization of resources in GPGPU applications

and then presented inter-warp and intra-warp DMR to exploit the

idle resources for error detection. Intra-warp DMR checks the active

threads’ execution by using idle cores from underutilized warps. For

the fully utilized warps, inter-warp DMR verifies computation by

using temporal DMR whenever the corresponding execution unit

becomes idle. A simple ReplayQ microarchitecture design is used for

maintaining instructions in case the corresponding execution unit is

not idle for several cycles. To prevent an instruction from being exe-

cuted and verified on the same core, which may lead to hidden errors,

we designed a register forwarding/lane shuffling logic. We presented

a detailed state space exploration and showed that Warped-DMR

provides 96.43% error coverage with 16% performance overhead.

Acknowledgement
We would like to thank the anonymous reviewers for their valuable

comments. This work was supported by DARPA-PERFECT-HR0011-

4646

12-2-0020 and NSF grants NSF-1219186, NSF-CAREER-0954211,

NSF-0834798.

References
[1] “Ercbench.” [Online]. Available: http://ercbench.ece.wisc.edu/
[2] “Geforce 400 series.” [Online]. Available:

http://en.wikipedia.org/wiki/GeForce_400_Series
[3] “Gpgpu-sim.” [Online]. Available:

http://www.ece.ubc.ca/ aamodt/gpgpu-sim/
[4] “Nvidia cuda sdk 2.3.” [Online]. Available:

http://developer.nvidia.com/cuda-toolkit-23-downloads
[5] “Parboil benchmark suite.” [Online]. Available:

http://impact.crhc.illinois.edu/parboil.php
[6] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software ap-

proaches for gpgpu reliability,” in Proceedings of 2nd Workshop on
General Purpose Processing on Graphics Processing Units, March
2009, pp. 94–104.

[7] X. Fu, N. Goswami, and T. Li, “Analyzing soft-error vulnerability on
gpgpu microarchitecture,” in Proceedings of the 2011 IEEE Interna-
tional Symposium on Workload Characterization, November 2011, pp.
226–235.

[8] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for man-
aging thread context in throughput processors,” in Proceedings of the
38th annual International Symposium on Computer Architecture, Jun
2011, pp. 235–246.

[9] S. Hong and H. Kim, “An integrated gpu power and performance model,”
in Proceedings of the 37th annual International Symposium on Com-
puter Architecture, Jun 2010, pp. 280–289.

[10] S. Kumar and A. Aggarwal, “Reducing resource redundancy for concur-
rent error detection techniques in high performance microprocessors,” in
Proceedings of the 12th International Symposium on High Performance
Computer Architecture, February 2006, pp. 212–221.

[11] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x gpu vs. cpu myth: an evaluation
of throughput computing on cpu and gpu,” in Proceedings of the 37th
annual International Symposium on Computer Architecture, Jun 2010,
pp. 451–460.

[12] D. Lipetz and E. Schewarz, “Self checking in current floating-point
units,” in Proceedings of the IEEE 20th Symposium on Computer Arith-
metic, July 2011, pp. 73–76.

[13] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” in Proceedings of
the 29th annual International Symposium on Computer Architecture,
May 2002, pp. 99–110.

[14] R. Nathan and D. J. Sorin, “Argus-g: A low-cost error detection scheme
for gpgpus,” in Workshop on Resilient Architectures, December 2010.

[15] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju, and M. de Kruijf,
“Sampling + dmr: Practical and low-overhead permanent fault detec-
tion,” in Proceedings of the 38th annual International Symposium on
Computer Architecture, Jun 2011, pp. 201–212.

[16] NVIDIA, “Fermi white paper v1.1.” Available:
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_
Compute_Architecture_Whitepaper.pdf

[17] NVIDIA, “Nvidia geforce gtx 680 white paper v1.0.” Avail-
able: http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-
680-Whitepaper-FINAL.pdf

[18] N. Ohkubo, T. Kawashimo, M. Suzuki, Y. Suzuki, J. Kikuchi, M. Tokoro,
R. Yamagata, E. Kamada, T. Yamashita, T. Shimizu, T. Hashimoto, and
T. Isobe, “A fault-detecting 400 mhz floating-point unit for a massively-
parallel computer,” in International Solid-State Circuits Conference,
February 1999, pp. 368–369.

[19] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” in Proceedings of the 27th annual Inter-
national Symposium on Computer Architecture, Jun 2000, pp. 25–36.

[20] T. J. Slegel, R. M. A. III, M. A. Check, B. C. Giamei, B. W. Krumm,
C. A. Krygowski, W. H. Li, J. S. Liptay, and J. D. MacDougall, “Ibm’s
s/390 g5 microprocessor design,” in IEEE MICRO, March 1999, pp.
12–23.

[21] Synopsis, “Design compiler user guide,” 2010. Available:
http://acms.ucsd.edu/info/documents/dc/dcug.pdf

[22] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. K. Iyer,
“Hauberk: Lightweight silent data corruption error detector for gpgpu,”
in Proceedings of 25th IEEE International Parallel & Distributed Pro-
cessing Symposium, May 2011, pp. 287–300.

[23] L. Zhang, Y. Han, Q. Xuz, and X. Li, “Defect tolerance in homogeneous
manycore processors using core-level redundancy with unified topology,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, March 2008, pp. 891–896.

4747

The performance vulnerability of architectural and non-architectural arrays to permanent faults

Damien Hardy∗†, Isidoros Sideris∗, Nikolas Ladas∗, Yiannakis Sazeides∗
∗University of Cyprus †University of Rennes 1, IRISA, France

Abstract
This paper presents a first-order analytical model for determining the
performance degradation caused by permanently faulty cells in archi-
tectural and non-architectural arrays. We refer to this degradation
as the performance vulnerability factor (PVF).

The study assumes a future where cache blocks with faulty cells are
disabled resulting in less cache capacity and extra misses while faulty
predictor cells are still used but cause additional mispredictions.

For a given program run, random probability of permanent cell
failure, and processor configuration, the model can rapidly provide
the expected PVF as well as lower and upper PVF probability distri-
bution bounds for an individual array or array combination.

The model is used to predict the PVF for the three predictors and
the last level cache, used in this study, for a wide range of cell failure
rates. The analysis reveals that for cell failure rate of up to 1.5e-6
the expected PVF is very small. For higher failure rates the expected
PVF grows noticeably mostly due to the extra misses in the last level
cache. The expected PVF of the predictors remains small even at
high failure rates but the PVF distribution reveals cases of significant
performance degradation with a non-negligible probability.

These results suggest that designers of future processors can lever-
age trade-offs between PVF and reliability to sustain area, perfor-
mance and energy scaling. The paper demonstrates this approach by
exploring the implications of different cell size on yield and PVF.

1. Introduction
For the past 50 years, technological advances have enabled contin-

uous miniaturization of circuits and wires. The increasing device

density offers designers the opportunity to place more functionality

per unit area and in recent years has allowed the integration of large

caches and many cores into the same chip. Unfortunately, the scaling

of device area has been accompanied by at least two negative conse-

quences: a slowdown of voltage scaling and frequency, due to slower

scaling of leakage current as compared to area scaling [34], and a

shift to probabilistic design and less reliable silicon primitives due to

variations [6, 9].

Technology trends suggest that in tomorrow’s computing world

failures will become commonplace due to many and/or frequent

causes such as: static [6] and dynamic [9] variations, latent-faults

due to limited burn-in [35], higher temperatures and accelerated

wear-out [33], near subthreshold operation [36], etc. A recently pub-

lished resilience roadmap [24] underlines the expected increase of

probability of failure (pfail) with scaling. Table 1 shows the pfail

predicted in [24] for inverters, latches and SRAM cells due to random

dopant fluctuations as a function of technology node (the trends for

negative-bias-temperature-instability are similar). The table shows

that the pfail of all types of devices increases dramatically with scal-

ing. However, the table clearly indicates that not all types of devices

are equally vulnerable; SRAM cells that are usually aggressively

sized are distinctively more problematic.

A variety of well known approaches, such as column/row sparing

and error correcting codes [29], have been adopted to provide fault-

free chips by mitigating manufacturing faults and static parametric

Tech Node Inverter Latch SRAM
45nm ≈0 ≈0 6.1e-13
32nm ≈0 1.8e-44 7.3e-09
22nm ≈0 5.5e-18 1.5e-06
16nm 2.4e-58 5.4e-10 5.5e-05
12nm 1.2e-39 3.6e-07 2.6e-04

Table 1: Predicted probability of failure (pfail) for different types of
circuits vs technology node [24]

variations while preserving an important abstraction: performance-
invariability. This is defined to be the expectation that two identi-

cal chips, or even two cores within a chip, when each is operating

stand-alone under identical conditions have identical cycle by cycle

behavior and, therefore, identical performance.

The central hypothesis of this paper is that the abstraction of

performance-invariability is unrealistic to preserve for future pro-

cessor chips due to the non-scalable cost of existing techniques to

mitigate the mismatch between the scaling rates of area, voltage and

static and dynamic variations. Replacing a chip and coarse grain

disabling (e.g. core, cache bank/ways) may be acceptable when

variability phenomena are rare but with increasing static and dy-

namic variations finer disabling and deconfiguration (e.g. individual

functional units, cache blocks) will become economically necessary.

We are going, therefore, to enter an era of performance-variability:

functionally correct chips with variable degraded performance, intra-

chip and across-chips, from the time when parts are shipped. The

performance-variability will be due to lower resource capacity caused

by the disabling of faulty cache blocks or units [32, 21, 36], timing

misspeculation in the datapath due to timing variations [13], and

extra mispredictions caused by faulty predictor cells [20].

In this paper, we propose a first-order analytical model for under-

standing the implications on performance of permanently faulty cells

in architectural and non-architectural arrays. The model for a given

program execution, micro-architectural configuration, and probability

of cell failure, provides rapidly the Performance Vulnerability Factor
(PVF). PVF is a direct measure of the performance degradation due to

permanent faults. In particular, the model can determine the expected

PVF as well as the PVF probability distribution bounds for caches

and prediction arrays without using an arbitrary number of random

fault-maps.

PVF is analogous to the Architectural Vulnerability Factor

(AVF) [23] proposed for assessing the vulnerability of architectural

structures to soft-errors. PVF like AVF can be used by design-

ers/researchers to appreciate and compare vulnerability of different

structures and perform reliability driven trade-offs. However, PVF is

complementary to AVF as it measures performance degradation due

to permanent errors.

Virtually all previous micro-architectural work aiming to assess

the performance implications of permanently faulty cells relies on

simulations with random fault-maps, assumes faulty blocks are dis-

abled [32, 21, 4, 1], and focuses on architectural arrays such as caches.

These studies are, therefore, limited by the fault-maps they use that

may not be representative for the average and distributed performance.

Moreover, they are incomplete by ignoring faults in non-architectural

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.14

48

arrays, such as predictors, that do not affect correctness but can de-

grade performance. A narrow understanding of the consequences

of permanently faulty cells can lead to a processor fault-reliability

strategy that neither addresses key reliability challenges nor leverages

reliability driven trade-offs.

A recent relevant study [27] proposes a method that given a cache,

random probability of permanent cell failure, and an address trace,

can calculate without any fault-maps the expected miss ratio when

blocks with permanent faults are disabled. The model proposed in

our paper, augments the method in [27], to predictors, can produce

for caches and predictors the miss-rate and misprediction distribution

bounds respectively, and provides the expected performance and

performance distribution bounds for individual or combination of

faulty arrays.

The paper establishes that for three predictors (a return address

stack, a gshare direction predictor and an indirect jump predictor) and

the last level cache used in this study, the proposed model assump-

tions are valid. The model is used to predict, for the same arrays and

processor, the expected PVF and PVF distribution bounds at different

technology nodes using projected cell failure rates due to random

dopant fluctuations.

The experimental analysis shows that for cell pfail of up to 1.5e-6

the expected PVF is very small for any array or array combination.

For higher pfail the PVF grows considerably mainly due to the extra

misses in the last level cache. The expected PVF of all predictors

remains small even at high pfail, but the PVF distribution reveals

cases of significant performance degradation with small but notice-

able probability. These results suggest that in the future designers can

leverage trade-offs between PVF and reliability to improve efficiency.

The paper demonstrates this approach by investigating the impact of

different cell size on yield and PVF.

The remainder of the paper is organized as follows. Section 2

introduces the notion of PVF. The model that determines PVF is

presented in Section 3. Experimental results are given in Section 4.

Section 5 reviews related work and Section 6 concludes the paper

and gives direction for future work.

2. Performance Vulnerability Factor - PVF

The Performance Vulnerability Factor (PVF) is a measure of the

performance degradation that a processor will experience for a given

benchmark run due to permanently faulty cells in its arrays. PVF

takes values in the range [0,1), with zero meaning no vulnerability

at all (100% of performance) and for values near 1 almost zero

performance. To define PVF, we rely on the notion of Computation
Capacity (CC) as follows:

PV F = 1−CC (1)

where the computation capacity [5] is the fraction of the original

pristine machine’s performance that is still available given current

hardware conditions and defined in our work as:

CC =
Cbase

Cbase +overhead ∗# f ailures
(2)

where Cbase corresponds to the number of cycles of a fault-free run

of a program by the microarchitecture under study, # f ailures is the

number of failures, e.g. misses or mispredictions, resulting from

permanently faulty cells and, overhead represents the mean increase

in cycles of the overall execution time per failure.

For mathematical convenience, we introduce the notation ETV

(Execution Time Vulnerability) which represents the normalized

execution cycle increase of a program due to faults in arrays and

defined as:

ETV = penalty∗# f ailures (3)

where penalty = overhead
Cbase

and corresponds to the normalized over-

head of a single failure to the overall cycle count of a fault free run.

By substituting ETV in Eq. 2 the computation capacity becomes:

CC =
1

1+ETV
(4)

PVF and expected PVF (noted PV F) can be determined directly

from ETV and ETV by using Eq. 1 and 4.

In the following section we describe a model that can determine the

ETV, ETV and ETV distribution bounds for caches and prediction

arrays.

3. ETV for non-architectural and architectural arrays

This section presents a first-order analytical model for predicting

the ETV of an individual or combination of non-architectural and

architectural arrays. First we present the model assumptions and then

introduce the basic model. We then present how to use the model for

non-architectural and architectural arrays. In particular, we focus on

how to obtain the mean penalty per failure and the number of failures

for each array. After, we describe a method to determine lower and

upper ETV probability distribution bounds. At the end of the section,

we discuss model limitations, extensions and uses.

3.1. Model Fault Assumptions

The model assumes that permanently faulty SRAM cells locations

are random, each cell has equal probability of failure, and broken

cells behave as stuck-at faults (the stuck-at assumption is only needed

for predictors). The random behavior aims to capture some major

causes of uncorrelated faults, such as line edge roughness and random

dopant fluctuation. Also, the granularity of spatial correlation is large

and within a chip the failures can be treated as uncorrelated [10].

The cells in processor can be divided into the following categories:

• can be faulty and not disabled - e.g. predictor bits

• can be faulty and must be disabled - e.g. cache block data bits

• cannot be faulty (fault free or replaced with a spare) - e.g. PC bits,

block disable bit

The third category affects correctness and yield. Our model focuses

on the first two categories, which affect performance. Based on the

above cell classification, faulty entries in prediction arrays are used

normally and can lead to extra mispredictions. In caches, on the

other hand, blocks with faults are disabled and thus reduce the array

capacity and lead to extra misses. For caches, an entry (i.e. a cache

block) with at least one permanent fault is considered as faulty. Faulty

cache blocks are assumed to be detected with post-manufacturing and

boot-time tests, ECC, and built in self tests. Cache block disabling

has been proposed for commercial processors in [22].

The model does not address the effect of rarely occurring transient

errors, e.g. due to particle strikes because their effects are rare and

short lived. In fact, they will cause at most a handful of mispredictions

in prediction arrays and a repair when captured by ECC in caches.

49

��������	
��

Figure 1: Operation of a 2-bit saturating counter used for prediction (a) Fault Free, (b) With Faults

3.2. Basic Model

At the core of determining PVF is the computation of ETV (Eq. 3)

which can be obtained for a given program run by:

ETV = penalty∗# f ailures =
u

∑
i=1

Mi

∑
j=1

Pi j (5)

where u is the number of arrays with faults, Mi is the number of

failures caused by faults in array i, and Pi j is the penalty for the jth

failure in the program from array i. Mi corresponds to additional

mispredictions (faulty-mispredictions) in case the unit i is a predictor,

and additional cache misses (faulty-misses) in case i is a cache. Eq. 5

can be simplified to:

ETV =
u

∑
i=1

ETVi =
u

∑
i=1

MiPi (6)

where ETVi is the ETV of unit i and Pi is the mean normalized penalty

for each failure in array i. Finally, the expected ETVi of unit i can be

obtained from:

ETVi = Mi ∗Pi (7)

This is the same equation as Eq. 6 except Mi that represents the

expected number of faulty-mispredictions or faulty-misses due to

unit i.
The above model assumes that ETV is additive, i.e. we determine

the ETVi of each array i separately and simply sum them together to

obtain the overall ETV . We discuss in Section 3.5 why this can be

accurate.

Next we describe how to determine for non-architectural and archi-

tectural arrays: (i) Pi, (ii) Mi when given a fault-map, (iii) Mi when

given a random cell pfail but without fault-maps, and (iv) distribution

bounds of ETV when given a random cell pfail without fault-maps.

3.3. ETV for non-architectural arrays

The focus of this part is on the performance implications of perma-
nently faulty SRAM cells in non-architectural arrays. Today’s high-

end processors employ several non-architectural arrays for improving

performance. Such arrays are used to predict: next instruction line,

direction for conditional branches, target for branches (especially

for return and indirect branches), addresses for prefetching, etc. In

addition, non-architectural arrays are used to guide the updating of

predictors (hysteresis bits).

Although faults can occur in any of these arrays, the performance

implications of a faulty cell vary depending on how the value in a

faulty cell is used in a pipeline and, in particular, on how a faulty cell

influences performance. For example, a faulty cell in a conditional

predictor, a return-address-stack and an indirect-jump predictor can

cause a misprediction and a pipeline flush and, therefore, have a large

misprediction penalty. In contrast, a faulty line-predictor cell has

a smaller misprediction penalty because a line-predictor is usually

corrected by a more accurate predictor within one or two cycles.

A faulty cell can have different implications depending on its

semantic functionality. For example, a stuck-at fault in an 1-bit

hysteresis, used to guide replacement on a misprediction, can lead

to two behaviors: always replace or never update. Both behaviors

can degrade performance but the second can be more grave. Fig. 1

illustrates how different combinations of stuck-at fault(s) at different

bit positions transform the operation of a 2-bit saturating counter

used for direction prediction. It is interesting to observe that such

faults mainly result in always taken or always not-taken behavior.

Another key parameter that influences the vulnerability of a non-

architectural array to faults is the distribution of accesses. A per-

manent fault in a frequently accessed entry is likely to cause more

degradation than a fault in an infrequently accessed entry. Also, a

program with many "hot" entries has higher probability to have a

faulty hot entry. However, for the same number of accesses the more

the hot entries the lower the impact from each.

The bias of the values stored in a non-architectural array also influ-

ences the performance with faults. For instance, an entry that contains

bits that are highly biased will experience worst case degradation

when at least one of these bits is stuck-at in the opposite value of the

bias.

The above discussion reveals that performance is not equally vul-

nerable to faults across non-architectural arrays and even within an

array. Furthermore, there is variation due to differences in the dy-

namic behavior between programs, such as the access distribution,

instruction mix, predictability and misprediction penalty. For exam-

ple, it is obvious that a program with or with low branch predictability

will not suffer significantly from faults in the predictors.

Below we define the basic analytical model for determining the

performance impact of permanently faulty cells in non-architectural

arrays.

3.3.1. Model for non-architectural arrays
According to Eq. 6, the ETVi, of a non-architectural array i, can be

obtained from Mi and Pi. Pi can be obtained by linear regression of

the additional cycles and additional mispredictions from runs that

inject randomly stuck-at faults in unit i1. It is known from previous

work [15] that misprediction penalty is sensitive to the number of

mispredictions, but our approximation for Pi is found to be accurate

for most benchmarks and non-architectural arrays we considered

in this study. If more accuracy is needed future work can consider

models that correlate penalty to other parameters [15].

The Mi for a non-architectural array i and a program run, can be

obtained using the access-map and bias-maps of the array. An access-
map represents the number of correct predictions from each entry

1We used ten runs for each of the following fractions of faulty bits in unit i: 0.5, 2
and 8%

50

������ ������

�� ��� ���

�� �� �	�

	� ��� ���

� �
� �
�

����� �����

�� �� ��

�� �� ��

	� �� ��

� �� ��

Figure 2: Mi computation example for a 4 entry 1bit/entry predictor.
The predictor has a stuck-at-1 bit in entry 1 resulting in 6
extra misspredictions (Bias0 map) and a stuck-at-0 bit in
entry 2 resulting in 30 extra misspredictions (Bias1 map).

during a fault free run of the program. The access map is further

broken into bias-maps, bias0 and bias1, that indicate for each bit in

the array, during the fault free run, how many times it is part of a

correct prediction with value 0 and 1 respectively.

Next we explain how to use the access and bias maps to obtain the

Mi when given a fault-map, and to determine the expected Mi and

ETVi when given a cell pfail.

3.3.2. Mi from a fault-map
We can obtain Mi for a specific fault-map, that indicates whether

a bit is faulty and its stuck-at value, by taking effectively the dot

product of the fault-map and the bias-maps. This is illustrated in

Figure 2 for a single-bit per entry predictor. For a 2-bit saturating

predictor, this approach works as well because, as shown in Figure 1,

a stuck-at bit in such a predictor, can lead to always taken or always

not-taken predictions.

We limit the fault-maps used for non-architectural arrays to at most

one faulty-bit per entry to keep the bias-maps simple, as multiple

faulty bits in an entry are very unlikely for the pfail range considered

in this work.

3.3.3. Expected ETVi and Mi for a given cell pfail
The expected ETVi, for a benchmark running on a processor with

faulty cells in a non-architectural array i, can be obtained from Eq. 7.

The term Mi represents the expected number of mispredictions due to

faults in unit i. Mi can be obtained probabilistically for a given cell

pfail without using fault-maps as follows:

Mi =
∑entriesi

j=1 access_map j

2
∗ p f ail_entryi (8)

where entriesi represents the total number of entries in predictor

array i, access_map j is the number of correct predictions of entry j

during a fault free run, and p f ail_entryi is the expected probability

of having a faulty entry determined as follows for an n bit entry:

1− (1− p f ail)n (9)

The halving in Eq. 8 captures the probability of a fault being

stuck-at 0 or 1.

The non-architectural PVF model is valid as long as the access-

map and bias-maps of an array, for a given program run, are virtually

insensitive to pipelining effects, i.e. the number of correct predictions

is insensitive to pipelining effects. Fortunately, this is the case for

prediction arrays that are not speculatively updated or when they are

speculatively updated they are repaired from wrong path effects [18,

31].

������
�	��
�

������ ������ ����

����� ���� ���� ���� ���

����� ���� ���� ���� ���

����� ���� ���� ��� ���

����� ���� ���� ���� ���

Fault Map
1
0
3
2

Figure 3: M computation example for a 4 set 4 ways LRU cache. M =
454 resulting from 1 faulty block in set 0, 3 faulty blocks in
set 2 and 2 faulty block in set 3.

3.4. ETV for architectural arrays

Nowadays, caches take most of the real-estate in processors and

contain numerous SRAM cells. As explained before, we assume that

blocks that contain permanently faulty cells are disabled and thus

reduce the cache capacity.

Architectural arrays vulnerability, similar to non-architectural, de-

pends on the distribution of hit accesses across sets and within sets

and cache miss latency. Consequently, the PVF for architectural ar-

rays can vary across programs and across sets, and, it depends on the

dynamic program behavior. The model detailed hereafter is proposed

to assess the performance impact of permanently faulty SRAM cells

in architectural arrays.

3.4.1. Notations and Assumptions
A cache configuration is defined by the number of sets s, ways

per set n, and block size in bits k. The model is defined for the

LRU replacement policy, the generalization of the model to other

replacement policies is left for future work.

3.4.2. Model for architectural arrays
The ETVi, caused by faulty blocks in cache i, can be obtained using

Eq. 6. For caches, Mi corresponds to the number of additional misses

caused by faulty blocks, and Pi is the average normalized penalty

per additional miss. Pi can be determined by linear regression using

additional cycles and additional misses from handful runs2.

The number of additional misses Mi for a program run is deter-

mined by using the access-map of the cache during a fault free run

of the program. An access-map represents the number of hits per set

and per LRU position during a fault free run. In the access-map, a

row corresponds to a set and each column corresponds to a position

in the LRU stack.

Next we present how to use cache access maps to obtain the Mi
when given a cache fault-map, and to determine the expected Mi and

expected ETVi when given a cell pfail.

3.4.3. Mi from a fault-map
Given an access-map, we can obtain Mi for a specific fault-map of

cache i, which indicates the number of faulty blocks w per set, by

simply adding the accesses to the last w columns as illustrated in

Figure 3 and suggested by [25]. It can be noticed that, thanks to the

LRU replacement policy, the exact position of the faulty-blocks are

not needed because the LRU stack is reduced by the number of faulty

blocks in each set.

3.4.4. Expected ETVi and Mi for a given cell pfail
The expected ETVi, for a benchmark running on a cache with faulty

cache blocks, can be obtained from Eq. 7. The term Mi represents

the expected number of additional misses due to faulty blocks. Mi

2We used n (associativity of the cache) runs by considering 1 way faulty in each set,
2 ways faulty etc.

51

can be obtained analytically for a given cell pfail without using fault-

maps as proposed in [27]3. To determine Mi, we first compute the

probability of a cache block failure pb f with Eq. 9 for k bits. Then,

the probability pei for i faulty ways in a set can be determined based

on the well-known binomial probability:

pei =

(
n
i

)
pi

b f (1− pb f)
n−i (10)

which can provide, for every value of i[0 . . .n], the probability of

having i faulty ways. This distribution provides insight about how

likely it is to have a given number of faulty ways in a set and, can

be used to obtain the expected number of additional misses. The

expectation of a random variable X = x1,x2, . . . ,xn for which each

possible value has probability P = p1, p2, . . . , pn is given by:

E[X] =
n

∑
i=1

xi ∗ pi (11)

In our case, the random variable X corresponds to the total number of

additional misses in a cache set with faults, xi corresponds to the total

number of additional misses when there are i faulty ways in a set,

noted hereafter mi,set , and pi the probability of having i faulty ways

in a set. mi,set is simply determined by adding the last n− (i− 1)
columns of the access map of the set:

mi,set =
n

∑
j=n−(i−1)

access_map[set][j] (12)

Therefore, the expectation of the number of additional cache misses

Mset for a given set can be expressed as follows:

Mset =
n

∑
i=1

mi,set ∗ pei (13)

Finally, we sum this expectation for each set to get the expected

number of additional misses Mi.

We note that the ETV model requires that the access-map and the

number of cache hits per set and LRU position, for a given program

run, to be rather insensitive to pipelining effects. Our empirical

analysis presented in Section 4 reveals that this assumption is true.

3.5. Why are ETVis additive?

Eq. 6 assumes that ETVi for each array i is additive when computing

the overall ETV . It is known from previous work [30, 14] that, the

penalty of different units can overlap, thus, how can this additive

claim be accurate?

The proposed method for the penalty estimation of an array i
considers the overall execution increase due to additional misses or

mispredictions while it captures the overlapping and interactions with

other pipelining effects and events as well as the non-constant main

memory latency. Specifically, the penalty Pi, for an array is obtained

by activating faults while in the pipeline there can be other concurrent

misses, mispredicts, stalls, memory accesses etc.

The simple summation of ETVis is found to be accurate for the

benchmarks, faulty arrays, and microarchitecture used in this study.

If more accuracy is needed, future work can consider the detail

interaction between units [30, 14].

3The model used in this section to estimate Mi is from [27] and is presented here for
completeness.

Clustering function

Entry 0 Entry 1 Entry 2 Entry 3

upper/lower
bound

C2 C2 C2
C1

C1

C2
C

C2

a. Hierarchical computation

x1= 0.012 3 ; P(x1)=i
x2= 0.012 5 ; P(x2)=j

x3= 0.00421 ; P(x3)=k

2
2

(c1) Cluster 0.012: P(r)=i+j
(min) r=0.0123
(max) r=0.0125

(c2) Cluster 0.0042: P(r)=k
r=0.00421

b. Clustering function α=2

x1=
x2=

x3=

Figure 4: Hierarchical distribution computation and clustering func-
tion example.

3.6. ETV probability distribution bounds

To draw more insight about the PVF, we introduce an analysis that

determines the lower and upper PVF probability distribution bounds

for an individual or any combination of arrays for a given cell p f ail.
These bounds are computed in two steps: (i) estimation of a discrete

ETV probability distribution per entry for each unit i, (ii) combining

the multiple discrete ETV probability distributions by using a heuris-

tic to determine a lower bound and an upper bound of the distribution.

Although, not discussed further, the heuristic can be trivially used to

produce the Mi probability distribution bounds by using Eq. 6.

Estimation of a discrete probability distribution. For predictors,

a discrete ETV probability distribution is first determined per entry.

For each entry, this distribution is determined by the sum of prob-

abilities that can cause a given ETV by considering the following

cases:

• ETV = 0 which corresponds to a fault free entry. The correspond-

ing probability is 1− p f ail_entryi
• ETVbias0

4 which corresponds to the ETV caused by a stuck-at-1

bit in the entry. The corresponding probability is p f ail_entryi/2.

The ETVbias0 can be obtained using Eq. 6.

• ETVbias1 which corresponds to the ETV caused by a stuck-at-0 bit

in the entry. The corresponding probability is p f ail_entryi/2.

For a cache, the discrete ETV probability distribution is deter-

mined at the granularity of a set. We obtain at most associativity+1

different ETVs that correspond to 0 up to all blocks faulty in a set

with the probability for each case given by pei.

Combining multiple discrete probability distributions. To de-

termine the resulting ETV probability distribution of an array or com-

bination of arrays, we need to combine together all the previously

computed distributions. It is well known that exhaustive combining

is infeasible due to a combinatorial explosion [16]. To avoid this

problem we propose a parametric (α) heuristic to determine a lower

bound and an upper bound of the ETV distribution.

A hierarchical approach [16] is used based on a binary tree rep-

resentation as illustrated in Figure 4.a. Each leaf represents the

distribution of an entry for predictors or the distribution of a set in

a cache. The root represents the resulting upper/lower distribution

bound and each intermediate node an intermediate joint distribution.

4For arrays that predict multi-bit values, like the return address-stack, ETV is deter-
mined for each bit and the probability is further divided by the number of bits per entry.
This approach is similarly used for ETVbias1

52

To avoid the combinatorial explosion, after obtaining each inter-

mediate distribution (at each intermediate node), we use a cluster-

ing approach by summing probabilities when ETV values are close

enough.

This strategy uses a clustering function as illustrated in Figure 4.b.

It starts with a truncation of each value (i.e. ETV) after the first α non-

zero digits5. Equal resulting values are then grouped together and

their respective probability are summed. The value r representative

of each group is the minimal/maximal value of the group before the

truncation. This ensures (see the proof in appendix) a lower/upper

bound ETV probability distribution.

3.7. How many runs are needed to determine the input values of
the analytical model?

In this section, we summarize the number of runs needed by the

analytical model to determine the expected PVF and the PVF distri-

bution bounds. We like to note that the PVF analysis assumes a fixed

microarchitecture. Therefore, for each distinct microarchitecture a

separate PVF analysis is required.

For each array under study the model needs information provided

by a single run without faults for each program that is analyzed. This

fault-free run is performed to collect the Cbase, program baseline

performance, and the access-maps of each array. The access-maps

obtained for predictors and caches are then used to compute the

expected PVF and PVF distribution bounds.

The mean penalty, Pi, for a unit i is obtained per program by

running it on the given microarchitecture with increasing number of

faults in the unit i. Typically ki (=30 in this study6) runs for each

predictor and as many runs as the number of ways, wi, in cache i are

sufficient to observe how the overall execution increases as a function

of additional faulty mispredictions and misses.

Therefore, for one benchmark the total number of runs needed to

determine the input values for the analytical model is given by:

1+
#arch_units

∑
i=1

wi +
#non_arch_units

∑
i=1

ki

So assuming 26 benchmarks, 3 predictors and an 8 way cache we

need to perform 2574 simulations to completely characterize the

microarchitecture.

The model key strengths is that once the characterization is com-

plete, the model does not require performing new simulations when

changing cell pfail. It can very fast and accurately obtain the expected

PVF (few seconds) and the PVF distributions (1 minute on a current

machine) for different pfails.

To put in perspective, to produce the model results using random

fault maps and simulations will require exponential to the number

of entries and sets runs for each unique pfail. The benefits of our

analytical model as compared to current practice depend on the

number of distinct pfail to consider and the number of fault-maps

to simulate. The proportion of runs needed between our model and

current practice for a benchmark is:

1+∑#arch_units
i=1 wi +∑#non_arch_units

i=1 ki

#p f ails∗# f aultmaps

5α is a parameter that determines the precision and allows to trade-off accuracy for
computation time.

6ki is determined empirically. Furthermore, ki has been validated by a sensitivity
analysis over the penalty values, which reveals that in most of the cases there is a range
of values around the determined penalties that provides the same PVF.

The denominator is the number of runs for current practice and the

numerator is the number of runs needed to determine the input values

of the model (100 is an upper bound in our study). Our cost is thus

a small number of runs whereas a random fault map methodology

may require huge amount of runs to obtain the expected PVF and its

distribution.

3.8. Model limitations

The model is a first-order approximation and can underestimate the

PVF in some cases. In particular, for prediction arrays when multiple

bits of the same entry happen to be faulty and their combined mispre-

dictions is more than their individual contributions, then the expected

PVF is underestimated. For arrays with 1-bit entries or 2-bit satu-

rating counters this is not a problem since the faulty mispredictions

are determined uniquely by the faulty bits, the faulty value and the

bias (see Fig. 1) and, therefore, Mi can be estimated at the granularity

of an entry. For arrays that predict multi-bit values, like the return

address-stack and the indirect jump predictor, this is not a problem as

long as the fault-maps are random and the number of faults is small

enough that render very unlikely to have more than one faulty bit in

a frequently accessed entry. These assumptions are reasonable for

the configuration and parameters used in this study (in particular for

pfail ≤0.001).

It is possible that faults in the prediction arrays and caches can

result in a significant increase in the cache accesses and misses that

may not be captured by our model. We have not observed such

behavior for the pfails considered in this study.

All these limitations are directions for future model improvements

if higher model accuracy is required.

3.9. Model Extensions

The model, in its current version, is defined for three predictors and

a cache of a single core. The model, however, should be applicable

to other arrays as long as we can derive a method to obtain the

number of extra events due to faults and their corresponding penalties.

For non-arrays, like functional units, we believe that the model can

be extended based on the probability of timing violations [13, 19].

Finally, for multi-cores the impact on performance of faults in shared

resources, such as caches and interconnect, will need to be modeled

while also considering the interactions between benchmarks.

With the currently modeled structures, we observe that the per-

formance degradation depends on the penalty and on the number

of accesses to a structure. The more accessed an entry is and the

higher the penalty of an extra miss or misprediction, the higher the

performance degradation when the entry is faulty. We believe that

this observation will also hold for other structures.

3.10. Model Uses

The model, once derived, can be used to explore processor behavior

with different cell pfail. This can be helpful to forecast how processor

performance may be affected by faults in the future. Additionally,

this information can be useful to explore the use of different cell

sizes that enable a trade-off between area and PVF. Another use of

the model is to determine which arrays have significant PVF and

make design decisions to reduce their PVF, for example through

a protection mechanism, using larger cells, or even by selecting

a different array organization. The PVF distributions bounds can

help establish how a population of chips is affected due to faults in

predictors and caches. Such binning provides an indication about

53

Parameter description Setting

Pipeline depth 15 stages
Fetch/Decode/Issue/Commit up to 4/4/6/4 instr. per cycle
Line Predictor 4096 entries
RAS 16 entries (31 bits per entry) x 2 (fetch and commit)
Indirect Jump Predictor 512 entries (31 bits per entry)
Branch Predictor 8 KB gshare (32768 entries - 2 bits per entry, 15 bits history)
Branch Resolution In-order
Issue Queue/Reorder buffer 40 INT entries, 20 FP entries/128 entries
Functional Units 4 INT ALUs, 4 INT mult/div, 1 FP ALUs, 1 FP mult/div
L1 instr./data cache 64 KB, 2-way, 64 B blocks, 1-cycle, LRU / 64 KB, 2-way, 64 B blocks, 3-cycle, LRU
L2 unified cache 2 MB, 8-way, 64 B blocks, 12-cycle hit latency, 255 cycles miss latency, LRU

Table 2: Processor Configuration

Benchmark Baseline Conditional Returns Indirect L2 cache Accuracy Overheads
IPC branches (M) jumps MPKI Gshare RAS Ijump Gshare RAS Ijump L2 cache

ammp00 1.54 8.8 21K 0 1.19 0.97 1.00 0 20 25 0 58
applu00 0.52 0.6 100 94 22.04 0.99 0.99 0.68 33 41 0 51
apsi00 2.35 3.5 58K 0 0.82 0.99 1.00 0 25 29 0 187
art00 1.82 8.6 110 0 0.25 0.99 0.99 0 45 27 0 70

bzip00 1.29 14.4 353K 0 0.82 0.95 1.00 0 17 18 0 62
crafty00 1.90 8.7 1.09M 209K 0.17 0.96 0.99 0.66 24 24 25 66
eon00 1.26 7.0 2.04M 571K 0.01 0.99 1.00 0.76 14 16 13 48

equake00 0.64 1.7 1.06M 0 12.73 0.97 1.00 0 39 28 0 55
facerec00 1.58 6.7 166K 0 4.22 0.98 1.00 0 23 24 0 43
fma3d00 1.43 16.3 1.43M 278K 0.04 0.96 1.00 0.83 19 25 25 76
galgel00 2.42 5.8 0 0 0.24 0.99 0 0 29 0 0 55

gap00 1.56 9.5 2.05M 1.53M 1.01 0.99 0.99 0.77 23 25 26 38
gcc00 1.17 6.9 478K 213K 4.02 0.97 1.00 0.59 17 27 34 74
gzip00 1.54 7.0 1.05M 13 0.17 0.94 1.00 0.77 20 20 0 94
lucas00 0.70 1.3 0 0 13.39 1.00 0 0 9 0 0 40
mcf00 0.13 20.4 3.33M 0 86.42 0.96 1.00 0 58 68 0 60

mesa00 1.73 5.9 1.19M 547K 0.20 0.97 1.00 0.99 29 25 27 35
mgrid00 0.82 0.4 327 154 10.58 0.99 0.99 0.90 16 0 0 66
parser00 1.19 12.3 1.99M 240 1.37 0.96 0.99 0.90 20 21 0 82

perlbmk00 1.28 9.2 2.11M 1.54M 0.19 0.99 1.00 0.77 21 16 23 48
sixtrack00 1.96 2.3 128 24K 0.29 0.99 1.00 0.80 28 34 38 50
swim00 0.40 2.3 66 46 26.36 0.99 1.00 0.57 24 23 0 45
twolf00 1.06 10.6 705K 0 0.25 0.90 1.00 0 20 24 0 86
vortex00 1.86 10.8 2.06M 79K 0.34 0.99 0.99 0.95 23 24 23 81

vpr00 0.72 9.7 647K 49 6.13 0.94 1.00 0.93 23 31 0 72
wupwise00 1.78 8.8 652K 18 2.79 0.99 1.00 0 25 17 0 85

Table 3: Benchmark Characteristics

how many chips will be affected by failures and up to what extent.

Finally, the PVF analysis can provide a first order timing analysis for

systems with performance constraints such as real time systems.

The above types of studies are facilitated by the proposed method-

ology, since being analytical it allows for quick exploration, without

long micro-architectural simulation or fault maps generation.

4. Experimental Results

4.1. Experimental setup

In our experiments, the validated cycle accurate simulator sim-
alpha [12] is used. We have extended it to measure the performance

implications of faults in three prediction arrays: a return address

stack, a gshare direction predictor and an indirect jump predictor;

and the L2 cache of a high performance out-of-order superscalar

processor. Key parameters of the processor configuration are sum-

marized in Table 2. For L2 cache, we consider blocks comprised of

64 bytes for data, 11 bits for its ECC, 25 bits for the tag, 3 control

bits for valid, disable and dirty states and 7 bits for the tag ECC.

The experiments are conducted using SPEC CPU2000 benchmarks.

The applications characteristics are summarized in Table 3 that also

shows the estimated overhead per failure for each benchmark and

structure. An in-house SimPoint [17]-like tool is used to select the

regions to simulate and run them for 100M committed instructions.

Two types of experimental results are reported: simulation based
(Section 4.2.1) and model-based (Section 4.2.2).

The simulation based results are used to validate the accuracy of

our model. The validation compares the values obtained by simula-

tions against the values predicted by the model presented in Sections

3.3.1 and 3.4.2. The validation runs used 1000 fault maps. A fault-
map represents the location of the faulty entries. Each fault-map

represents a processor with faults and contains the locations of faults

in the prediction arrays and the L2 cache. The validation fault-maps

are randomly generated with cell probability failure of 1e-3 (lower

probabilities have also been used to validate the model). For predic-

tion arrays, unlike architectural arrays, it is not sufficient to know

that a cell is faulty but we also need to know what is the faulty value.

Therefore, for the prediction arrays, each fault-map is paired with a

value-map that contains, for each fault location, a randomly generated

fault value. For each fault map, the PVF of the predictions arrays

and the L2 cache are estimated for each of the benchmarks using the

model. If the PVF is 1% or more for both the prediction arrays and

the L2 cache, a detailed performance simulation is performed. Out

of the 26000 possible runs, only 1847 are predicted to produce PVF

54

������������

��

��

���

���

���

���

	��

	��

�� �� ��� ��� ��� ��� 	�� 	��

��
��

��
��
��
��

��
��

��
	�

��
��
��

��
��

��
�

��
��
��
��
�

�����	���������	�
�������������
���������

Figure 5: Actual vs. Predicted number of additional mispredictions
with pfail=0.001.

����������

��

��

���

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ��� ���

��
��

��
��
��
��

��
��

��
���
��
	�

�

��
��
�� ��
��
��
��
�

��������������������	��
������
���������

Figure 6: Actual vs. Predicted number of additional L2 misses with
pfail=0.001.

������������

��

����

����

����

����

����

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��

��
��
��
�	

��

������	��

Figure 7: Actual vs. Predicted PVF with pfail=0.001.

more than 1% for both type of arrays.

For the model based results, we determine the expected PVF and

the distribution bounds. The pfails values in [24] for technologies

ranging from 32nm to 12nm (7.3e-09 to 2.6e-04) are used in this

study. To account for aging phenomena and lower voltage, we use

cell pfail of 1.0e-03, which also falls in the range considered by many

recent studies [11, 1, 4, 36, 26, 2]. Finally, we explore for the L2

cache the impact of more robust but larger cells on the expected PVF

and yield.

4.2. Experimental results

4.2.1. Simulation based results
The simulation based results are used to validate the model. Each

point in Figures 5 and 6 shows the additional mispredictions (respec-

tively additional misses) predicted from the model and the actual

obtained through simulation for different benchmarks and fault-maps

when cell pfail is 0.001. On each figure, the linear regression of all

points and its corresponding equation is shown. We can observe from

Figure 5 that the prediction model for additional mispredictions is

very accurate (3.79% error on average) with virtually all predicted

and actual values being equal. Figure 6 shows the same trends for

the additional misses (3.34% error in average) except for two cases

which are underestimated. We further analyzed these cases and found

that for both cases the underestimation comes from the interaction

with the faulty predictors which increase significantly the number of

accesses to the L2 cache. We have validated this hypothesis by using

only the cache fault-map and found that the predicted and actual

values match in that case.

Figure 7 compares the PVF predicted from the model and the

actual obtained through simulations. We observe again that the

proposed model is quite accurate (7.15% error in average) with most

of the predictions being close to the actual experimental outcome.

However, there is more deviation in Figure 7 as compared to Figures 5

and 6. Considering that the additional misprediction and misses are

predicted very accurately, the deviation is attributed to the variability

in the penalties which are not captured by the proposed approach.

Overall, the results suggest that the model is quite accurate and also

validate the model assumption that the ETV of different prediction

arrays and the L2 cache are additive.

4.2.2. Model based results
This set of experiments estimates the expected PVF for cell pfails that

correspond to different technology nodes [24]. Results are shown in

Table 4. In this table, the first two columns show the technology node

and the corresponding pfail, the next six columns show the maximal

expected PVF in at least one benchmark for gshare, ras, ijump, all the

predictors together, L2 cache and the global expected PVF. The last

column shows the expected PVF for a composite benchmark which

treats the consecutive benchmark execution as a single benchmark.

As shown in Table 4, the expected performance degradation from

permanent faults in predictors is small and at most 2% when pfail

equals to 1e-03. For the L2 cache, the performance degradation ob-

served at current technology nodes is small, but, at pfail=2.6e-04 and

pfail=1e-03 the maximal expected PVF is close to 30% and 84% re-

spectively. Further analysis, not shown, reveals one benchmark, art00,

experiences large PVF. The composite expected PVF for the different

benchmarks at the two highest pfails is low but still significant at 2%

and 14% respectively. Our model, therefore, can be useful to estimate

at which point the performance degradation due to permanent faults

can be tolerated and when it starts to become problematic and needs

to be addressed with fault tolerance techniques.

The lower PVF of the predictors as compared to the L2 cache is

mainly due to the size and the organization of each structure: number

of total bits and number of bits per entry. Specifically, for the same

cell pfail the expected number of faulty bits in the L2 cache will be

L2_size_in_bits/Predictor_size_in_bits times more. For example,

55

Technology pfail [24] Max Expected PVF Composite Bench.
Gshare RAS ijump Predictors L2 cache global Expected PVF

32nm 7.3e-09 0.00001% 0.00001% 0.00001% 0.00002% 0.00007% 0.00007% 0.00003%
22nm 1.5e-06 0.00106% 0.00213% 0.00111% 0.00347% 0.01441% 0.01533% 0.00621%
16nm 5.5e-05 0.03874% 0.07792% 0.04055% 0.12697% 1.70053% 1.73797% 0.25661%
12nm 2.6e-04 0.18286% 0.36615% 0.19083% 0.59581% 29.96965% 30.05939% 1.95337%

- 1.0e-03 0.69939% 1.37861% 0.72203% 2.23256% 83.71776% 83.73641% 14.60214%

Table 4: Expected Performance Vulnerability Factors (PVFs) for different technology nodes

�	�����
�	�����
�	�����
�	�����
�	�����
�	�����
�	�����
�	�����
�	�����
�	�����
�	����
�	����
�	����
�	����
�	���� �� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��

��
���
�	
�

���

����

���	���� ������	
��� �
���

�������

�������

�������

�������
�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

Figure 8: art00: average of the lower and upper distribution bounds.
pfail=0.001 ; α = 2.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������
������
������
������ �� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

�
��

��
���
�	
�

���

��������

��������� ������	
��� �
���

�������

�������

�������

�������
�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

Figure 9: vortex00: average of the lower and upper distribution
bounds. pfail=0.001; α = 2.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
�������
�������
�������
������� �� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

�
��

��
���
��
�

	
��

��������

��������� ������	
��� �
���

�������

�������

�������

�������
�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

Figure 10: galgel00: average of the lower and upper distribution
bounds. pfail=0.001; α = 2.

�
��

�
�

�
��

�
��

�
��

�
��

�
 �

�
!�

�
��

�
��

��

�
�� �
� �
�� �
�� �
�� �
�� �
 � �
!� �
�� �
��
��

	�
��

��
���
��
�

	
��

��������� 	
�	�����
�����

Figure 11: Cumulative distribution of the lower and upper distribu-
tion bounds for all units together. pfail=0.001 ; α = 2.

for pfail=1.0e-3 the L2 cache used in this study will experience about

18000 faulty bits whereas the gshare predictor 65. Furthermore, the

impact of a faulty bit in the L2 is significantly more pronounced since

the size of a block is typically much larger than a predictor entry. We

observe that the performance degradation due to a structure depends

on the penalty and on the number of accesses to that structure. The

more accessed an entry is and the higher its penalty, the higher the

performance degradation when the entry is faulty.

PVF distribution bounds: To draw more insight about the ex-

pected PVF and to show that the range of possible PVF values can be

quite distant from the expectation, we determine the lower and upper

bounds of the PVF distributions. For reading ease, we show only

three benchmarks representative of the different cases we observed.

Figures 8, 9, and 10 present the average of the two distribution

bounds for the last level cache, the predictors and all units together.

Figure 11 shows the cumulative distribution of the two bounds for the

three benchmarks when all units are considered together to highlight

the small distance between the bounds (i.e. small error).

The first observation is that the combined distribution of all units is

dominated by the distribution of the unit that has the highest expected

PVF (the cache for art00 and galgel00, the predictors for vortex00).

Moreover, the distribution results help to reveal the shortcoming

of analysis based only on expected values and limited number of

random fault maps: they cannot reveal the shape of the distribution.

For instance, even if the highest PVF probability is close to the

expectation, there is a significant probability to suffer a much higher

PVF. In terms of population of processors, this will mean that a

significant number will experience a PVF higher than the expectation.

For example, with vortex00, 1 per 1000 processors will experience a

PVF near 0.2 while the expected PVF is only 0.02.

56

������

�������

�����"�

�����#�

�����$�

�������

�������

�����	�

�����
�

�������

�������

���%���

�����

���#�

����

�����

���	�

�����

���#�

��$�

��$��

��$	�

������ ��������� �
����
�� �	���
��� �����	��� ������#��

�
��
��
��
��
��
��
	

��
�
��
�
��
��
��

��
��
��
�
��

�������������������������

���������� ����������������� �����������

Figure 12: Die yield vs. Max Expected PVF for different L2 cell size
(32nm).

�������
�������
�������
�������
�����	�
�����
�
�������
�������
������
�������
�������
�������
�������
�������

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�
��
��
��
��
��
��
	

��

�������������������

Figure 13: Max Expected PVF for different L2 cell size (x) and spare
blocks (s). The configurations Cx-s are sorted in decreas-
ing order according to their corresponding estimated die
area.

The main cause for this difficult to detect behavior, when using

fault maps, is that accesses are not evenly distributed across entries

and, in general, it will require many fault-maps to produce a repre-

sentative distribution.

Finally, the cumulative distributions in Figure 11 show that the

bounds are accurate for all benchmarks with a small error, 0.027 on

average and up to 0.07, when α is set to 2. In terms of computation

time, computing the two bounds for all units together takes 1 minute

per benchmark on average, when running on a typical desktop.

4.2.3. Case study: design trade-offs using PVF
As shown above, for the same cell pfail the L2 cache has higher PVF

than the predictors. An approach that can reduce the L2 PVF is to use

more robust cells. On the other hand, robust cells require more die

area. This is especially true for large size L2 cache which occupies a

significant part of the total processor’s area and thus will lower the

die yield. To assess this trade-off, we use six different cells sizes with

their corresponding pfail from [37] for 32nm technology. Figure 12

shows the die yield7, the maximal expected PVF for the different

L2 cell size and their corresponding pfail. The results show that by

choosing a less robust cell (c2 in this case) instead of the most robust

one (c6), the PVF remain low (1.0e-4 vs. 1.0e-9) with a significant

improvement in die yield (0.72 vs. 0.63). Furthermore, the cell with

higher yield (c1) results in the largest PVF (close to 0.05). This first

order analysis helps identify that c2 can be a good compromise.

Another approach to reduce the PVF is to use spare blocks (for

instance s per set). The notion of spares can be easily incorporated in

our model by changing Equation 10 as follows:

pei =

(
n+ s
i+ s

)
pi+s

b f (1− pb f)
n−i

which provides, for every value of i [1...n], the probability of having

i+ s faulty blocks. To assess the benefits of sparing, Figure 13 shows

the expected maximal PVF when using different cell size and number

of spare blocks. Each configuration is noted Cx-s where x is the cell

type and s is the number of spare blocks per set. In the figure, the

different configurations are sorted in decreasing order according to

7die yield =wa f er yield ∗(1+ die area∗de f ects per unit area
α)−α , where wa f er yield = 1,

de f ects per unit area = 0.4, α = 4 and the die area for the processor is estimated by
using hotfloorplan [28] in our experiments.

their estimated area/yield. As shown in the figure, using spares with

the less robust cell (c1) is not a good solution because it decreases

significantly the die yield to achieve the same PVF as c2 without

spares (PVF(C1-3)∼PVF(C2-0)). Nevertheless depending on the

targeted PVF threshold, it can be better to use relatively robust cells

with some spares to maximize the die yield instead of using only the

most robust cells. C2-2, for instance, gives a lower PVF and a better

die yield as compared to C5-0 and C6-0.

The two cases studies highlight how the rapid exploration of PVF

and area trade-offs can help designers configure and optimize their

array designs.

5. Related Work

Previous work investigating the implications of permanently faulty

cells in processor arrays focused on caches and considered yield and

performance analysis.

Yield analysis provides the probability distribution in terms of

number of faulty blocks expected in a cache given a specific cache

configuration and a random probability for permanently faulty cells.

Such analysis is usually based on binomial probability and helps

determine the expected fraction of fault-free caches and number of

spares that may be required by the caches with faults [2, 26, 36,

4, 1, 11]. The cell pfail depends on several parameters including

technology node, failure sources, such as static process-variations

and below Vcc-min operation, operating conditions and fault-model.

Performance analysis is useful to assess the performance of a pro-

cessor that operates with disabled faulty blocks that have not been

replaced with spares. Sohi [32] studied the impact on miss-rate of a

cache organization with randomly disabled portions, such as ways

and sets. The aim of [32] is to improve yield without noticeable

miss-rate increase. Related research performed by Pour and Hill [25]

also studied the impact of manufacturing faults on cache miss-rate.

The work by [25] quantified analytically the expected miss-rate im-

plications of different fault scenarios using a single run through an

address trace. This approach aims to eliminate the need for long sim-

ulations but uses large number of random-fault maps. They estimate

the expected miss ratio for a fixed number of faults by generating all

the possible distributions of these faults over the cache sets. In [27],

a methodology is proposed to estimate the expected miss rate and its

expected distribution by using pfail without the need to generate fault

57

maps. Our work shares similarities to [27] but, as highlighted in the

introduction, also some key differences.

A number of recent studies consider the performance implications

with disabled cache blocks assuming random fault-maps [21, 4, 1].

Our model does not rely on fault-maps but rather on probability

analysis.

An earlier work is concerned with the testing and validation of

mechanisms aiming to enhance performance [7]. This underlines

the importance of mitigating faults in prediction arrays. However,

this work does not evaluate the performance implications of faults.

Bower et al. [8] investigate the performance effects of up to 8 per-

manently faulty entries in a branch history table. Their conclusion is

that it is not worthwhile to protect this table against hard faults as per-

formance degradation is negligible. Also, Makris et al. [3] evaluated

the effect of a single fault in the most frequently accessed entry of a

conditional branch predictor. Our paper considers the performance

impact more rigorously using an analytical approach.

6. Conclusions and Future work

This work proposes a model for predicting PVF: the expected per-

formance degradation in the presence of permanently faulty cells in

architectural and non-architectural arrays. The model for a given

program execution, micro-architectural configuration, and cell pfail,

provides rapidly the PVF. PVF can be used by designers/researchers

to evaluate and compare vulnerability of different structures and

perform reliability driven trade-offs.

The model assumptions are validated and shown to be correct by

comparing the predicted values of our model against actual values

obtained by simulations with many fault-maps.

Predictions using the model reveal that the expected PVF for pre-

dictors is small even with high pfail. However, the PVF distribution

reveals cases where processors in a given population will experience

a significant performance degradation. Consequently, future proces-

sor reliability strategies may need to consider predictors. For the

last-level cache, the PVF becomes increasingly prominent with tech-

nology scaling. This suggests that last level cache PVF mitigation

techniques will become essential for future processors.

Design trade-off analysis using the model reveals that choosing

appropriately the cell size in an array can help maintain PVF low

with a small impact on die yield.

Future work, will extend and validate the proposed PVF model

for other non-architectural arrays and architectural arrays as well as

to multi-cores. We also plan to investigate low-cost detection and

repair schemes for both architectural and non-architectural arrays

to ensure a given PVF bound for all processors in a population.

Developing an integrated AVF-PVF analysis will help measure the

interactions between the two types of vulnerability when making

design decisions.

Acknowledgements

The research leading to this paper is supported by the European

Commission FP7 project "Energy-conscious 3D Server-on-Chip for

Green Cloud Services (Project No:247779 "EuroCloud")". Damien

Hardy was also supported by a mobility grant by HiPEAC (FP7

Network of Excellence). We like to thank the reviewers for their

critique and comments that helped improve significantly the quality

of this manuscript. The last author likes to acknowledge Veerle

Desmet, Babak Falsafi, Emre Özer, Ronny Ronen, and André Seznec

for their encouragement to pursue this line of work.

References

[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. González, “Low
vccmin fault-tolerant cache with highly predictable performance,” in
MICRO42, 2009, pp. 111–121.

[2] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy, “A process-
tolerant cache architecture for improved yield in nanoscale technologies,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 13, no. 1, pp. 27–38,
Jan. 2005.

[3] S. Almukhaizim, T. Verdel, and Y. Makris, “Cost-effective graceful
degradation in speculative processor subsystems: The branch prediction
case,” Computer Design, p. 194, 2003.

[4] A. Ansari, S. Gupta, S. Feng, and S. Mahlke, “Zerehcache: armoring
cache architectures in high defect density technologies,” in MICRO42,
2009, pp. 100–110.

[5] M. D. Beaudry, “Performance-related reliability measures for computing
systems,” IEEE Trans. Comput., vol. 27, no. 6, pp. 540–547, Jun. 1978.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in
DAC40, Jun. 2003, pp. 338–342.

[7] P. Bose, “Testing for function and performance: Towards anintegrated
processor validation methodology,” J. Electron. Test., vol. 16, no. 1-2,
pp. 29–48, 2000.

[8] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin, “Tolerating hard
faults in microprocessor array structures.” in DSN34, Jun. 2004, pp.
51–60.

[9] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De,
and S. Borkar, “Circuit techniques for dynamic variation tolerance,” in
DAC46. New York, NY, USA: ACM, 2009, pp. 4–7.

[10] L. Cheng, P. Gupta, C. J. Spanos, K. Qian, and L. He, “Physically
justifiable die-level modeling of spatial variation in view of systematic
across wafer variability,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 30, no. 3, pp. 388–401, 2011.

[11] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu,
“Improving cache lifetime reliability at ultra-low voltages,” in MICRO42,
2009, pp. 89–99.

[12] R. Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-alpha: a vali-
dated execution driven Alpha 21264 simulator,” CS Dept., University of
Texas at Austin, Tech. Rep. TR-01-23, 2001.

[13] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power
pipeline based on circuit-level timing speculation,” in Proceedings of
the 36th International Symposium on Microarchitecture, Dec. 2003, pp.
7–18.

[14] S. Eyerman, K. Hoste, and L. Eeckhout, “Mechanistic-empirical proces-
sor performance modeling for constructing cpi stacks on real hardware,”
in Performance Analysis of Systems and Software (ISPASS), 2011 IEEE
International Symposium on, april 2011, pp. 216 –226.

[15] S. Eyerman, L. Eeckhout, and J. E. Smith, “Characterizing the branch
misprediction penalty,” in Proceedings of the 2006 IEEE International
Symposium on Performance Analysis of Systems and Software, Mar.
2006.

[16] D. Fass, “Approximation of discrete multivariate probability distribu-
tions: Recursive and hierarchical approaches,” 2005.

[17] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program analysis,” in Journal of Instruction Level
Parallelism, 2005.

[18] E. Hao, P.-Y. Chang, and Y. N. Patt, “The effect of speculatively updating
branch history on branch prediction accuracy, revisited,” in MICRO27,
Nov. 1994, pp. 228–232.

[19] E. Krimer, P. Chiang, and M. Erez, “Lane decoupling for improving the
timing-error resiliency of wide-simd architectures,” in ISCA, 2012, pp.
237–248.

[20] N. Ladas, Y. Sazeides, and V. Desmet, “Performance Implications of
Faults in Prediction Arrays,” in 2nd HiPEAC Workshop on Design for
Reliability, 2010.

[21] H. Lee, S. Cho, and B. R. Childers, “Performance of graceful degrada-
tion for cache faults,” in IEEE Computer Society Symposium on VLSI,
Mar. 2007, pp. 409–415.

[22] C. McNairy and J. Mayfield, “Montecito error protection and mitiga-
tion,” in HPCRI ’05: 1st Workshop on High Performance Computing
Reliability Issues, in conjunction with HPCA ’05, 2005.

58

[23] S. S. Mukherjee, C. Weaver, J. S. Emer, S. K. Reinhardt, and T. M.
Austin, “A systematic methodology to compute the architectural vulner-
ability factors for a high-performance microprocessor,” in MICRO36,
Dec. 2003, pp. 29–42.

[24] S. R. Nassif, N. Mehta, and Y. Cao, “A resilience roadmap,” in DATE,
2010, pp. 1011–1016.

[25] A. F. Pour and M. D. Hill, “Performance implications of tolerating cache
faults,” IEEE Transactions on Computers, vol. 42, no. 3, pp. 257–267,
Mar. 1993.

[26] D. Roberts, N. S. Kim, and T. N. Mudge, “On-chip cache device scaling
limits and effective fault repair techniques in future nanoscale technol-
ogy,” Microprocessors and Microsystems - Embedded Hardware Design,
vol. 32, no. 5-6, pp. 244–253, May 2008.

[27] D. Sánchez, Y. Sazeides, J. L. Aragón, and J. M. Garcia, “An analytical
model for the calculation of the expected miss ratio in faulty caches,” in
IOLTS, 2011, pp. 252–257.

[28] K. Sankaranarayanan, S. Velusamy, M. Stan, C. L, and K. Skadron, “A
case for thermal-aware floorplanning at the microarchitectural level,”
Journal of ILP, vol. 7, 2005.

[29] D. P. Siewiorek, R. S. Swarz, and A. K. Peters, Reliable computer
systems (3rd ed.): design and evaluation. Ltd, 1998.

[30] L. J. Simonson and L. He, “Micro-architecture performance estimation
by formula.” in SAMOS’05, 2005, pp. 192–201.

[31] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark, “Improv-
ing prediction for procedure returns with return-address-stack repair
mechanisms,” in MICRO31, Nov. 1998, pp. 259–271.

[32] G. S. Sohi, “Cache memory organization to enhance the yield of high per-
formance VLSI processors,” IEEE Transactions on Computers, vol. 38,
no. 4, pp. 484–492, Apr. 1989.

[33] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Lifetime reliability:
Toward an architectural solution,” IEEE Micro, vol. 25, no. 3, pp. 70–80,
May 2005.

[34] Y. Taur, “CMOS design near to the Limit of Scaling,” IBM Journal of
Research and Development, vol. 46, no. 2/3, pp. 213–222, Mar./May
2002.

[35] A. Vassighi, O. Semenov, M. Sachdev, S. Member, A. Keshavarzi, and
C. Hawkins, “Cmos ic technology scaling and its impact on burn-in,”
IEEE Trans. on Devices and Materials Reliability, vol. 4, 2004.

[36] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-
L. Lu, “Trading off cache capacity for reliability to enable low voltage
operation,” in ISCA35, Jun. 2008, pp. 203–214.

[37] S.-T. Zhou, S. Katariya, H. Ghasemi, S. Draper, and N. S. Kim, “Mini-
mizing total area of low-voltage sram arrays through joint optimization
of cell size, redundancy, and ecc,” in Computer Design (ICCD), 2010
IEEE International Conference on, oct. 2010, pp. 112 –117.

Appendix

Sketch of proof: correctness of the discrete distribution
lower/upper bounds.
Let’s consider the min clustering function (similar reasoning can be

applied to the max clustering function).

1 Let’s assume a discrete distribution P. By applying the clustering

function on P, we obtain distribution P′.
By construction of the min clustering function, the following prop-

erty (pa) is ensured:

pa : ∀X ,P′(x < X)≥ P(x < X)

The correctness is ensured for the first step of the algorithm.

2 Let’s assume two distributions P1 and P2 and their corresponding

P′
1 and P′

2 distributions resulting from the min clustering function.

The next step of the algorithm consist of combining P′
1 with P′

2,

noted P′
1,2 and we want to be sure that the following condition (ca):

ca : ∀Z,P′
1,2(x < Z)≥ P1,2(x < Z)

is always valid to ensure the correctness of this step.

With property pa, we have:

∀Z,P′
1(x < Z)≥ P1(x < Z)

∀Z,P′
2(y < Z)≥ P2(y < Z)

Thus,

∀(x+ y)< Z,

P′
1(x < Z − y)≥ P1(x < Z − y)

∧
P′

2(y < Z − x)≥ P2(y < Z − x)

Thus,

∀(x+ y)< Z,

P′
1(x < Z − y)∗P′

2(y < Z − x)≥ P1(x < Z − y)∗P2(y < Z − x)

And the combination of distributions is a multiplication of proba-

bilities thus, ca is verified.

3 By induction we obtain a safe distribution bound.

�

59

NoCAlert: An On-Line and Real-Time Fault Detection Mechanism
for Network-on-Chip Architectures

Andreas Prodromou1, Andreas Panteli1, Chrysostomos Nicopoulos1, and Yiannakis Sazeides2

{prodromou.andreas, panteli.andreas, nicopoulos}@ucy.ac.cy, yanos@cs.ucy.ac.cy
1Department of Electrical and Computer Engineering, University of Cyprus

2Department of Computer Science, University of Cyprus

Abstract

The widespread proliferation of the Chip Multi-Processor (CMP)

paradigm has cemented the criticality of the on-chip interconnection

fabric. The Network-on-Chip (NoC) is becoming increasingly sus-

ceptible to emerging reliability threats. As technology feature sizes

diminish into the nanoscale regime, reliability and process variabil-

ity artifacts within the NoC start to become prominent. The need

to detect the occurrence of faults at run-time is steadily becoming

imperative. In this work, we propose NoCAlert, a comprehensive

on-line and real-time fault detection mechanism that demonstrates

0% false negatives within the interconnect, for the fault model and

stimulus set used in this study. Based on the concept of invariance

checking, NoCAlert employs a group of lightweight micro-checker

modules that collectively implement real-time hardware assertions.

The checkers operate seamlessly and concurrently with normal NoC

operation, thus eliminating the need for periodic, or triggered-based,

self-testing. More importantly, 97% of the faults are detected instan-

taneously. Extensive cycle-accurate simulations in a 64-node CMP

demonstrate the efficacy of the proposed technique. Finally, hard-

ware synthesis results using commercial 65 nm technology libraries

indicate minimal area and power overhead of 3% and less than 1%,

respectively, and negligible impact on the router’s critical path.

1. Introduction

Diminutive technology feature sizes have enabled microprocessors

with billions of transistors on a single chip die [1]. This un-

precedented abundance of on-chip resources, coupled with thin-

ning Instruction-Level Parallelism (ILP), have urged designers to

switch their attention to another computational archetype: the Chip

Multi-Processor (CMP) [2]. The presence of multiple on-chip pro-

cessing entities has precipitated a shift from computation-centric

to communication-centric micro-architectures. As a result, the on-

chip interconnection fabric is fast becoming a mission-critical com-

ponent. Packet-based Networks-on-Chip (NoC) are widely viewed

as the de facto communication medium of future multi-/many-core

CPUs, primarily due to their inherent scalability attributes and mod-

ular nature [3].

However, the march towards CMPs with tens – or even hundreds

– of processing cores has been marred by the emergence of an omi-

nous threat: waning reliability [4]. The extreme downscaling trends

of CMOS technology have rendered transistors more susceptible to

both permanent and transient faults. Moreover, digital circuits are

increasingly affected by growing process variability artifacts [5] and

accelerated aging effects [6, 5], all of which are consequences of

dwindling feature sizes. Just like any on-chip component, the in-

terconnection backbone is also affected by decreasing reliability [7].

In fact, a single fault in the on-chip network may paralyze an other-

wise healthy CMP. Faults within the NoC may result in such show-

stopping predicaments as network disconnections, network-level

deadlocks, protocol-level (cache coherence) deadlocks, lost packets,

and severely degraded on-chip communication performance [8].

Architects and designers have proposed a multitude of techniques,

mechanisms, and design modifications to increase the fault tolerance

and reliability of the NoC. However, the vast majority of the related

work found in the literature concentrates on fault prevention (improv-

ing durability/fault-tolerance, prolonging lifetime, etc.) [9] and/or

recovery (redundancy, reconfiguration, adaptation, etc.) [10, 11].

The equally important aspect of fault detection has not been ade-

quately addressed.

Traditionally, fault detection is undertaken by Built-In Self-Test

(BIST) mechanisms that predominantly assume a disruption in the

system’s operation. The BIST process may be executed by the man-

ufacturer prior to shipment, or it may constitute part of system boot-

up [12, 13]. Runtime BIST is also possible, but system operation is

(partially) halted while the module-under-test is examined [10, 14].

BIST usually entails the use of predefined test vectors, patterns,

or routines, which tend to be pure overhead. Regardless, detect-

ing faults at run-time is rapidly becoming a necessity, in light of

the aforementioned decline in reliability. When BIST or BIST-like

methodologies are employed within the context of on-line (run-time)

testing, the process is usually triggered periodically [14]. Choosing

the length of the period between two consecutive test sessions is cer-

tainly non-trivial: if testing is conducted too frequently, the impact

on performance will be more pronounced, due to excessive interrup-

tions; if testing is rarely performed, then faults may go unnoticed for

a prolonged period of time [15]. Furthermore, periodic testing often

implies the use of checkpointing, which adds further overhead (both

in terms of performance and hardware/storage/power).

Near-instantaneous fault detection may be achieved in the data-

path of the interconnect through the use of error detecting codes.

Simple parity checks – or more elaborate coding – will detect (and

may even correct) errors affecting the contents of in-flight packets

[16]. While this methodology guarantees protection of the message

contents, faults within the control logic of the NoC may still wreak

havoc with the operation of the entire CMP. Hence, what is needed to

guarantee functional correctness within the NoC – and, by extension,

within the CMP – is to protect the NoC’s control logic (assuming that

the flit contents are protected by error-correcting codes). This thesis

statement marks the central theme of our work.

Realizing the significance of accurate and timely run-time detec-

tion of faults within the NoC’s control logic, we hereby propose

a comprehensive on-line fault detection mechanism, aptly called

NoCAlert, which provides full fault coverage for all on-chip network

control logic components and achieves instantaneous detection of

any erroneous behavior. Depending on the application’s criticality,

instantaneous detection may be of paramount significance. The No-

CAlert mechanism is based on the notion of invariance checking,

whereby the system is continuously checked for illegal outputs as

a result of upsets (permanent, transient, or intermittent). An ille-

gal output is defined here as an operational decision that violates

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.15

60

the functional correctness rule(s) of a particular component. The

underlying principle of this technique is inspired by prior efforts

to protect the microprocessor by using invariances [17]. NoCAlert

comprises several checker micro-modules distributed throughout the

NoC router, which seamlessly and concurrently monitor all NoC

modules for illegal activity. The checkers never interfere with –

or interrupt – the operation of the NoC and they provide real-time

on-line fault detection. In essence, NoCAlert implements an all-

encompassing collection of extremely lightweight real-time hard-

ware assertions that can detect illegal outputs within the NoC’s con-

trol logic.

In particular, the main contributions of this work are:

1. The development of a comprehensive on-line and real-time

fault detection mechanism for the control logic of the NoC of

multi-core CMPs. The proposed NoCAlert checker modules op-

erate seamlessly and concurrently with normal NoC operation,

thus obviating the need for testing epochs and periodic trigger-

ing of testing sessions that may interrupt/impede normal system

operation.

2. The NoCAlert protective blanket ensures 0% false negatives

within the interconnect for the fault model (single-bit transient)

and stimulus set used in this study, with 97% of the faults de-

tected instantaneously (i.e., in the same cycle as the fault occur-

rence). This attribute allows for ultra-fast response by a potential

fault recovery scheme and/or re-configuration mechanism. No-

CAlert is intended to be used in conjunction with fault recovery

techniques.

3. We demonstrate that by using checkers that solely detect illegal

outputs (outputs that cannot be produced by any input) for all

NoC control components, we observe 0% false negatives for the

entire network using the fault model of this study. This empirical

observation leads to an interesting hypothetical corollary about

a NoC router’s control components: if a unit produces a faulty

but legal output, which does not lead to subsequent invariance

violations, it is always benign as far as the overall NoC operation

in concerned.

4. The entire NoCAlert scheme is extremely lightweight in terms

of all salient design metrics. Hardware synthesis results using

commercial 65 nm standard-cell libraries indicate minimal area

and power overhead of 3% and less than 1%, respectively. More

importantly, the critical path of the router is shown to be negli-

gibly affected (around 1%), rendering the proposed mechanism

transparent to normal operation. Our analysis clearly indicates

that checkers used to detect only illegal outputs have significantly

lower hardware cost, as compared to the cost of the unit they

check; i.e., the complexity of determining whether an output is

illegal – given an input – is much simpler than producing the out-

put.

5. The NoCAlert framework is evaluated by injecting faults in

all possible locations (according to the employed fault model)

within the NoC of a 64-node CMP arranged in an 8×8 mesh. Ex-

tensive simulations were run in a cycle-accurate NoC evaluation

framework. The results and ensuing analysis corroborate the effi-

cacy of the NoCAlert mechanism.

6. Through a detailed experimental comparison, NoCAlert is shown

to outperform ForEVeR [15], a recently proposed state-of-the-

art fault detection and recovery framework. NoCAlert provides

more than 100× reduction in fault detection latency, with no loss

in detection accuracy, and without the need to rely on a secondary,

fault-free checker network for detection purposes.

To the best of our knowledge, this work constitutes the first at-

tempt to utilize real-time hardware-based assertion checkers to en-

sure 0% false negatives within the on-chip interconnection network

of CMPs.

The rest of the paper is organized as follows: Section 2 discusses

related prior work in fault-tolerant NoCs. Section 3 introduces the

idea of invariance checking within the on-chip network, while Sec-

tion 4 delves into the description, implementation, and analysis of

the proposed NoCAlert mechanism. Section 5 presents the em-

ployed evaluation framework, the various experiments, and accom-

panying analysis. Finally, Section 6 concludes the paper.

2. Related Work

In general, research in the field of fault tolerance revolves around

two fundamental axes: (1) Fault Detection, and (2) Fault Recov-

ery/Protection/Isolation. While the focus is often slanted more to-

ward the latter, both axes are essential in delivering a robust sys-

tem. Research in the field of NoC reliability naturally falls into two

main categories: (a) Inter-router faults (i.e., faults within the links in-

terconnecting the various switches), and (b) Intra-router faults (i.e.,

faults within the switches themselves). The following sub-sections

will concentrate on these two categories.

2.1. Inter-Router Faults

Disabled inter-router links in the network reduce connectivity. Re-

duced connectivity may, in turn, lead to network deadlocks and –

depending on the routing algorithm used – may lead to halted net-

work operation. Broken network links imply reduced path diversity,

creation of hotspots, and network delay due to back-pressure effects.

Default Backup Paths (DBP) [18] were proposed as a means to main-

tain connectivity in the presence of faults. In [11], all the physical

links are doubled in order to enhance NoC connectivity. Naturally,

the presence of fully disabled links predominantly affects the routing

algorithm within the network routers.

The assumption of fully disabling a parallel multi-bit inter-router

link is overly pessimistic. In reality, each parallel link (ranging from

32 up to 256 wires) is individually driven. Whenever a wire fails,

the rest can still function properly. Hence, in a real-world scenario,

a fault within the links will give rise to partially faulty links. It is

this realization that has led researchers to look into Error-Correcting

Codes (ECC) [19, 20], utilizing redundant wires/bits. For online

detection and diagnosis purposes, these codes are very effective. Re-

transmission mechanisms are typically required to co-operate with

ECC schemes [19]. Researchers have devised methodologies to

transfer flits through these partially faulty links through shifting and

multi-cycle transmissions [21], and by using spare wires [20].

2.2. Intra-Router Faults

This sub-section presents prior work regarding fault-tolerant routing

and architectural redundancy schemes.

Fault-Tolerant Routing in NoCs: Most NoC fault-tolerant rout-

ing algorithms are inspired from seminal work conducted in the

domain of large-scale, multi-computer interconnection networks

[22, 23]. NoCs are characterized by severely limited on-chip re-

sources, scarce energy budgets, and the imperative need for ultra-

high performance. As such, the fault-tolerant routing algorithms pro-

posed for NoCs must account for these salient attributes. Universal

Logic-Based Distributed Routing (uLBDR) [24] aims to eliminate

fault-susceptible routing tables. Stochastic routing algorithms [25]

have been employed to bypass faulty links in the network. Dynamic

reconfigurable routing algorithms [26] determine forbidden turns at

61

run-time to avoid deadlocks while bypassing faulty components. De-

flection routing [27, 28] is another technique that favors routing re-

silience, and it has been employed as a fault-tolerant routing mech-

anism [28]. Distributed [29] and multi-path [30] routing strategies

aim to evenly spread network traffic over a faulty network topol-

ogy without deadlocks. Finally, the concept of exploration/scouting

packets [31, 32] has also been used to identify faulty nodes ahead of

regular data packets.

Architectural Techniques to Tackle Datapath and Control

Logic Faults: Besides the multitude of routing algorithms designed

to provide uninterrupted network functionality in the presence of

faults, a lot of research has addressed fault-tolerance in the criti-

cal components comprising the datapath and control logic of NoC

routers.

The Row-Column (RoCo) Decoupled router [33] provides exten-

sive fault tolerance and graceful degradation by decomposing the

router into two independent modules and by employing resource

sharing. Bulletproof [9] proposes various online repair and recov-

ery capabilities and investigates protection at various levels, ranging

from system-level to arbitrary partitions of the design.

Fault-tolerant techniques provide effective recovery mechanisms

that ensure correct functionality in the presence of faults. Of course,

the basic assumption is that the fault must first be detected. While

most of the techniques considered in this Section so far assume the

presence of fault detection capability and concentrate on the recov-

ery aspects, others have also tackled the non-trivial facet of detecting

the faults in the first place.

The proposed mechanism in [13] broadcasts test vectors within

the NoC during boot-up only and detects faults by examining the

responses of the various router components. To accommodate run-

time occurrence of faults, the work in [12] is also capable of gen-

erating on-line test vectors that are broadcast in the network. Test

vector results are then evaluated by neighboring routers. However,

in this scheme, the entire network’s operation is halted for testing

purposes. In order to mitigate the performance degradation caused

by testing interruptions, the token-based mechanism in [14] inter-

rupts only a small portion of the network at any given time. The

Allocation Comparator of [19] performs on-line, real-time diagno-

sis by observing the occurrence of some invalid operations within

the router arbiters as a result of transient faults. The Vicis router

[10] employs ECC codes to detect some faults. Subsequently, spe-

cialized BIST testers located in each router are utilized for more

extensive testing and fault localization [10]. Finally, the appropri-

ate reconfiguration mechanism is triggered to combat the detected

fault. Error-correcting codes have also been used in conjunction

with a packet/flit counting technique to detect and diagnose perma-

nent faults in the network [34].

The ForEVeR framework [15] was recently proposed, which

complements the use of formal methods and runtime verification to

ensure functional correctness in NoCs. While ForEVeR’s goal is to

protect against escaped design-time verification errors with a run-

time technique, the scheme may also be used to provide robustness

against run-time faults. Fault detection is achieved with the help of

(a) an additional lightweight checker network that is assumed to be

100% reliable, (b) the Allocation Comparator from [19], and (c) an

end-to-end checker. The checker network is used to alert destina-

tion nodes ahead of time about incoming flits. The destination node

increases a flit counter upon a notification reception, and decreases

the same counter upon flit reception. Time is separated in so called

epochs, and at the end of each epoch the counter must have reached

the value of zero at least once within the epoch interval. If not, a

recovery mechanism is triggered, which delivers the in-flight data to

the intended destination via the checker network. The use of timing

intervals implies the non-trivial task of finding the optimal epoch du-

ration to minimize false positives. In fact, if the epoch duration is

not carefully chosen, the mechanism may give rise to false positives

even in a fault-free environment. Moreover, the epoch duration is

sensitive to the traffic injection rate, which hinders widespread ap-

plicability. More importantly, the use of an end-to-end, epoch-based

scheme, such as ForEVeR, results in significantly delayed fault de-

tection. Particular to ForEVeR, fault detection relies on ahead-of-

time notifications sent through the checker network; hence, a run-

time fault in the checker network would incapacitate fault detection.

Finally, any faults that cause degradation in performance, but do not

cause a functional error at the output (end-to-end delivery) will never

be detected (i.e., only faults that cause functional errors are detected).

A detailed quantitative comparison between NoCAlert and ForEVeR

[15] will be presented in Section 5.

In summary, recovery and reconfiguration schemes rely on effi-

cient, accurate, and quick-responding fault detection mechanisms.

In the absence of such mechanisms, the efficacy of recovery is

severely compromised. Inaccurate detection mechanisms can cause

undue network/system performance degradation, while delayed de-

tection will necessitate the presence and invocation of checkpointing

mechanisms, which inevitably incur both hardware and performance

overhead.

The NoCAlert mechanism proposed in this work ensures on-line

and real-time fault detection within the NoC, and it guarantees

0% false negatives under the employed fault model. Most impor-

tantly, the technique works concurrently with normal network op-

eration (i.e., no testing interruptions) and is shown to be extremely

lightweight. Moreover, NoCAlert may be used to complement any

other fault recovery scheme, such as ForEVeR [15]. The recovery

mechanism – aided by NoCAlert’s instantaneous fault detection –

may react much more rapidly (if deemed necessary), thus minimiz-

ing the effect on system-level performance.

3. Invariance Checking within the NoC

The NoCAlert mechanism is based on the concept of invariance

checking. When checking for invariances, the system is continu-

ously examined for illegal outputs as a result of some kind of per-

turbation (fault). As previously mentioned, the term illegal output

is defined here as an operational output that is impossible to occur,

based on the set of functional correctness rules of a given component.

Thus, the term “invariance” describes a condition that cannot – by

definition – vary. Consequently, an invariance violation is the break-

ing of fundamental rules within the context of a system component.

Invariance is a general term that applies to every system governed by

some rules within a specific context. Considering an adder circuit as

an example, one derived invariance would be that the sum of two

even numbers must always be even as well.

A well-known implementation of invariance checking is the use of

assertions in software development [35]. Software assertions ensure

that a forbidden state cannot be reached; if it is reached, a notifica-

tion is issued.

In this work, we adopt the notion of invariance checking and ap-

ply it to all the modules of a NoC router’s control logic to detect

abnormalities in the network resulting from either transient, or per-

manent, faults. The assertions are implemented in hardware so as to

provide near-instantaneous detection of anomalies.

The salient characteristic of invariance checking, in general, is the

fact that only functionally illegal outputs are flagged as violations.

In other words, a fault that causes the generation of an erroneous,

62

���������	
�

������

���
��	��
���

���
��	��
���

���
��	��
���

���
��	��
���

����
�	���������������
���������������

���
����	��
�����
���������������	
	��

������������

�
���������

!��	
��
��	��
�����

���������������
���
�	���

���
����	��
�����
�����	��	��������

�
���"��

!��	
����	��
�����
���������������

���
�	���

�����#�
��$"�
���

�����#�
��$"�
�����
���������
�	����	���

����%

�����

�����

����&

����'���
�
"
��(

����%

�����

�����

����&

����'���
�
"
��(

����%

�����

�����

����&

����'���
�
"
��(

����%

�����

�����

����&

����'���
�
"
��(

����%

�����

�����

����&

����'������

����)�
*
��)�

���
)+

,����)�
�����)�

-��������#�*��$���)�

)�"�
-��

*
����
,������
�������
-��������#�
*��$�����

������-�"�����

Figure 1: Overview of the router pipeline. The baseline router has five
pipeline stages; namely, Routing Computation (RC), Virtual
channel Allocation (VA), Switch Arbitration (SA), Crossbar
(XBAR) traversal, and Link Traversal (LT).

yet functionally legal, output will not be identified as a breach of

correctness.

Knowing this innate limitation of invariance checking, what we

aim to explore in this work – among others – is how often, and un-

der what conditions, such non-invariant faults could potentially lead

to compromised network-level correctness. We will demonstrate em-

pirically that non-invariant faults within the NoC routers, which do

not cause any subsequent invariance violations (i.e., they are not

caught by subsequent checkers), always prove to be innocuous at

the system level, i.e., they do not cause network-level malfunction.

Before we proceed with the identification of invariant conditions

(invariances) within the NoC, we first present – without loss of gen-

erality – a typical router micro-architecture [36], which forms the

foundation of most router implementations discussed in the litera-

ture. It is important to note that this architecture is general enough

to allow the proposed NoCAlert mechanism to be applicable to any

router implementation. Later on in the paper, we will briefly show

how NoCAlert can also be fitted to different router designs.

3.1. A Generic NoC Router Micro-architecture

Figure 1 presents a high-level, abstracted view of the baseline

router micro-architecture assumed in this work. This generic input-

buffered router design consists of five input/output ports. Four of

them are used to communicate with the adjacent routers in the net-

work (in the four cardinal directions of a 2D mesh) and the fifth port

is used to communicate with the local processing element. Each in-

put port has a number of Virtual Channels (VC) that support (poten-

tially) the routing algorithm (e.g., adaptive) and, more importantly,

the cache coherent protocol employed within the CMP. VCs are used

to avoid protocol-level deadlocks in the network, as well as to en-

hance bandwidth utilization at the network level. A central crossbar

(XBAR) facilitates the interconnection between the input and output

ports, as shown in Figure 1. The main modules of the router’s con-

trol logic are the Routing Computation (RC) unit, the Virtual chan-

nel Allocation (VA) unit, and the Switch Arbitration (SA) unit. The

RC unit is responsible to compute the output direction that a packet

must follow to get to the next hop, based on the destination informa-

tion found in the header flit of each packet. The VA unit allocates

a downstream VC to each packet. This is the VC that the packet

will use in the adjacent router. Finally, the SA unit decides which

flits traverse the crossbar in each cycle. The baseline router is as-

sumed to be wormhole-switched (the predominant choice in on-chip

networks) and to use credit-based flow control.

The employed router has a five-stage pipeline, with each stage

corresponding to one of the major functional units within the router:

RC, VA, SA, XBAR traversal, and Link Traversal (LT), as illustrated

in Figure 1. The first two stages are executed only for the header

flit of each packet (in order to set up the wormhole), while the re-

maining stages are executed for all flits. As can be seen in Figure

1, the VA and SA stages are further separated into local (intra-port)

and global (inter-port) sub-stages. Local stages perform arbitration

within a specific port, while the global stages resolve conflicts be-

tween the various ports. The data-path of the router comprises the

input buffers and the XBAR switch. Each input port employs an

input de-multiplexer and an output multiplexer to accommodate the

sharing of one physical channel by multiple VCs. This organiza-

tion implies that only one flit can arrive to, or leave from, an input

port in each cycle. Furthermore, VCs may be atomic or non-atomic.

Atomic VCs can only store the flits of a single packet at any given

time. In other words, flits from two different packets cannot co-exist

in the same VC.

3.2. Examples of On-Chip Network Invariances

This sub-section presents three representative examples of invari-

ances found within the NoC. To aid understanding, the examples

are depicted in Figure 2.

Assuming the 4×4 mesh network in Figure 2(a), let us identify

one important invariance pertaining to the widely used XY rout-

ing algorithm. Routing algorithms, in general, forbid some turns

to avoid deadlocks and/or livelocks in the network. The XY rout-

ing algorithm, in particular, first routes a packet along the X dimen-

sion until the intended destination’s X-coordinate has been reached,

and then along the Y dimension until the destination node has been

reached. Suppose the origin of the Cartesian system is the bottom

left router, and assume that a packet is injected in router (1,1) with

destination (1,3). Upon reaching router (1,2), a fault in the RC unit

of said router forwards the packet to the East output port, toward

router (2,2). This action constitutes an invariance violation, since a

packet arriving from the Y dimension (North or South input ports)

may not make a turn to the X dimension (East or West output ports)

under XY routing. Such an invariance violation, if caught, indicates

a malfunctioning RC unit.

As described in Section 3.1, there are five pipeline stages in

the baseline router. Under normal operation, those pipeline stages

should be executed in the correct order. To maintain the pipeline

functionality, each VC keeps its own functional state. Figure 2(b)

shows an example of a VC’s status table. In this example, a header

flit is present at the head of the queue and is waiting for the VA stage

(VC allocation) to be executed. Since the “VA done” field in the

status table is set to 0, an output VC has not yet been allocated to

the specific packet. A malfunctioning SA arbiter, however, sends

an active grant success signal to the VC, thus violating the correct

pipeline order (SA success before VA is complete). This invariance

violation identifies erroneous behavior within the SA module.

Finally, Figure 2(c) illustrates a router’s input port with four VCs.

Suppose that the flit at the head of the VC0 queue is ready to proceed

to the XBAR stage, as indicated by the active “Read Signal” at VC0.

However, a fault leads to the simultaneous assertion of the VC1 read

signal in the same clock cycle. As can be seen in the figure, only one

flit from each input port may depart in a single clock cycle, due to the

63

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�����

�����

�����

�����

�	
�����
�

�	
�����
�

������������
��������	��

�
��� ������	 ���	����� ������	 �����
� � ����� � �

�����
����
��	���
�	

�
 �� ��

!������	������

��"
��
��	�����
����#��
������������
�����
����		����	$��	����
�����
�����������	�

�%������	&�$�	�������

��'�

�
��'�

��'� ��'�

Figure 2: Examples of NoC invariances. The first example (a) illustrates the case whereby a malfunctioning XY routing computation unit
attempts to route a packet in a forbidden direction (S: Source node; D: Destination node). The second example (b) demonstrates an
invariance violation that occurs upon receiving an SA success signal before the VA stage is complete. Finally, the third example (c)
illustrates the erroneous case of having more than one active read signals in the same router port in the same cycle.

presence of the multiplexer. The presence of two concurrently active

read signals in the same input port indicates an invariance violation.

3.3. Identifying Invariances within the NoC Router

In order to identify a component’s invariances, one must carefully

examine the operation of said component within the context of its

governing functional rules. In general, it is not always obvious that

a range of values will never appear under normal operation. In the

case of NoC routers, invariance identification is possible, because

of the inherent modularity of the constituent modules. Each router

module is usually responsible for a very specific task. For example,

the RC unit is only tasked with the determination of the output di-

rection1 of a particular incoming packet. An arbiter grants one out

of a number of requests, and the crossbar module is responsible for

interconnecting input and output ports.

In this work, invariances were constructed by observing the oper-

ation and behavior of each functional module. Specifically, the list

of invariances is constructed using a bottom-up approach. The NoC

router design is implemented in a modular and hierarchical manner;

e.g., FIFO buffers→ Arbiters→ Input Port→ Crossbar Switch→

. . . → Entire Router. The algorithm responsible for the functional

operation of each module (e.g., the routing algorithm) is then exhaus-

tively inspected to identify all functional rules. This analysis allows

us to identify the functional rules of all components (which are not

prohibitively many in a NoC), and, by extension, all functionally

illegal outputs. Hence, the assertions are derived from each func-

tional rule in the algorithm that describes the operation(s) of each

module. This methodology is repeated for higher levels in the de-

sign hierarchy until the whole router is covered. Finally, end-to-end

invariances at the network level (considered to be the highest level

in the hierarchy) are also identified. To be able to follow the same

procedure, designers must keep the design modular, so as to enable

the decomposition of each module’s operation.

By viewing the design hierarchically (not just locally), invari-

ances manifesting in a coupled/combined manner are also covered.

By gradually moving up the hierarchy (from individual modules to

groups of modules), new assertions are derived from functional rules

governing the higher levels of the hierarchy (e.g., rules that apply to

the input-port-level).

The completeness of invariances depends on the completeness of

the functional analysis of the design itself: a NoC consists of a set of

functional rules. These rules are defined by the modules (and their

1Some routing algorithms also provide the output VC, in addition to the output di-

rection [36].

interactions) within the routers. If the invariance checkers cover all

functional rules, NoCAlert will detect any illegal behavior.

All identified invariances are listed in Table 1, which will be de-

scribed in more detail in Section 4.

It should be stressed at this point that our focus is on the control

logic of the on-chip network. The data-path is usually protected by

the well-established and ubiquitous practice of augmenting the flit

payload with Error Detecting Codes (EDC) [19, 10]. In fact, more

elaborate codes can also be employed that can even correct some er-

rors (bit flips) within the flit contents. Hence, our only assumption

in this paper is that the contents of the flits/packets are protected by

a simple error detecting code, which will alert the system of any un-

desired alteration in the message contents (the code usually provides

coverage for both the payload and the network overhead bits). In its

simplest guise, the EDC could be a single-bit parity check.

Protecting the message contents, however, is not enough to guar-

antee the functional correctness of the NoC. Erroneous behavior

within the control logic can lead to catastrophic results, since the con-

trol logic is the coordinator of the network’s operation. Control logic

upsets may lead to flit drop, packet loss, network/protocol deadlocks,

network livelocks, packet mixing (which is not detected by the EDC,

since it involves the flits of different packets erroneously following

the same wormhole), and degraded performance (at best).

It is precisely for this reason that we advocate the incorporation

of the NoCAlert mechanism into the on-chip network. NoCAlert

provides on-line and real-time detection of faults within the control

logic of the entire NoC. The flow of packets – from injection to

ejection – is seamlessly monitored for any digression from normalcy.

The NoCAlert scheme acts as a guardian of NoC operation and casts

a protective blanket over the entire interconnect.

4. NoCAlert: An On-Line, Hardware-Assertion-Based

Fault Detection Mechanism for NoCs

The proposed NoCAlert utilizes the principle of invariance checking

and implements it in the form of real-time hardware-based asser-

tions. The key idea is to have a simple hardware checker module

for every NoC component. This checker module will take as inputs

the inputs and outputs of the protected component and it will check

whether any functional rule is broken during the component’s opera-

tion. Checkers mostly perform simple comparisons and, hence, they

comprise simple combinational circuits with very low complexity.

As previously mentioned, in order to deploy and integrate the

checkers in the router design, all the invalid outputs of all the main

modules of the router had to be identified through a comprehensive

analysis of each module’s operation. This detailed exploration of

64

Routing Computation (RC) Unit

1 Illegal turn Routing algorithms forbid some turns to prevent deadlocks in the network.
2 Invalid RC output direction There are some invalid RC output directions. For example, if the router has five ports (numbered

1 to 5), value 6 is invalid [19].
3 Non-minimal routing (if required) The RC unit’s output direction must take the flit one step closer to its destination.

Arbiter Modules (VA and SA Stages)

4 Grant w/o request It is not possible for a flit to win a grant without making a request.
5 Grant to nobody The arbiter must always provide a winner when there is at least one client request.
6 1-hot grant vector The arbiter’s output vector must have at most one bit set to logic high.
7 Grant to occupied or full VC A grant to an occupied or full VC (based on the neighbor’s credits) is forbidden.
8 One-to-One VC assignment An input VC must not be assigned to multiple output VCs.
9 One-to-One port assignment An input port must not gain simultaneous access to multiple output ports.
10 VA agrees with RC The output VC assigned by the VA unit must be in agreement with the result of the RC stage, as

originally proposed in [19].
11 SA agrees with RC The SA result must be in agreement with the result of the RC stage, as originally proposed in

[19].
12 Intra-VA stage order If a VC wins the VA2 arbitration stage, it must have also won the VA1 stage.
13 Intra-SA stage order If a VC wins the SA2 arbitration stage, it must have also won the SA1 stage.

Crossbar (XBAR)

14 1-hot column control vector At most one connection must be active in each column of a matrix-style XBAR in each clock
cycle (to avoid flit mixing).

15 1-hot row control vector At most one connection must be active in each row of a matrix-style XBAR in each clock cycle
(to avoid unwanted multicasting).

16 # of Incoming flits equals # of Outgoing flits During each clock cycle, the number of flits exiting the XBAR must be equal to the number of
flits entering the XBAR.

Buffer State (Note: Each VC buffer maintains its own state)

17 Consistent VC buffer state The NoC router pipeline stages must be executed in the correct order.
18 Only header flits in free VC buffers A VC buffer is free when it is not allocated to an in-flight packet. During this state, only a header

flit may enter the buffers (i.e., a new packet creating a wormhole).
19 Invalid output VC value At the end of the VA stage, the computed output VC of the packet is saved in order to extend and

maintain the wormhole. The output VC value cannot be out of range [19].
20 Complete RC stage on a non-header flit Routing computation is performed only on header flits. Thus, to make a transition from the RC

to the VA stage, a header flit must be present at the head of the buffer.
21 Complete RC stage on an empty VC A transition from the RC to the VA stage is forbidden if the buffer of the respective VC is empty.
22 Complete VA stage on a non-header flit Virtual channel allocation is performed only on header flits. Thus, to make a transition from the

VA to the SA stage, a header flit must be present at the head of the buffer.
23 Complete VA stage on an empty VC A transition from the VA to the SA stage is forbidden if the buffer of the respective VC is empty.
24 Read from an empty buffer A “read” signal cannot be issued to an empty VC buffer.
25 Write to a full buffer A “write” signal cannot be issued to a full VC buffer.
26 Buffer atomicity violation (if required) If the buffers are atomic, only flits from a single packet may reside in the buffer at any given time.

Thus, a header flit cannot arrive at a non-free VC buffer.
27 Packet mixing in non-atomic buffer If the buffers are non-atomic, a tail flit may only be followed by a header flit.
28 Packet flit-count violation Typically, packets belonging to the same message class have the same length, i.e., the same num-

ber of flits. Thus, the number of a packet’s flits arriving at a VC belonging to a specific message
class must always be the same (equal to a pre-defined constant) [34].

Port-Level Invariances

29 Concurrent read from multiple VCs Only one flit may leave a single input port in each clock cycle (due to multiplexer).
30 Concurrent write to multiple VCs Only one flit may arrive at a single input port in each clock cycle (due to de-multiplexer).
31 Concurrent RC stage completion of multiple

VCs
Since only one flit can arrive at an input port in a single clock cycle, only one VC may complete
its RC stage in a single clock cycle in each input port [assuming that (a) atomic buffers are used,
and (b) all VCs in a single port use the same routing algorithm].

Network-Level Invariance

32 End-to-End delivery violation The destination address of all packets ejected from a node should equal that node’s address.

Table 1: Complete list of the invariances associated with the baseline NoC router design of Figure 1. Note that Invariance 5 (shaded in grey)
is innocuous if the fault causing it is transient/intermittent (leading only to momentary performance degradation analogous to a NOP
instruction in a microprocessor), while it may prove catastrophic if the fault causing it is permanent (packets stuck in NoC buffers).

the router’s micro-architecture identified a total of 32 invariances,

which are listed in Table 1. The invariances are categorized based

on the router module they are associated with: the Routing Computa-

tion unit, Arbiters, Crossbar, VC State, Port-Level, and End-to-End.

This list of invariances completely characterizes the operational

behavior of the router: any forbidden behavior (as dictated by the

functional rules that govern the router’s operation) will be captured

by at least one of these 32 assertion checkers.

4.1. Ensuring Network Correctness Using Invariances

As NoCs are increasingly becoming more complex, the task of ensur-

ing their functional correctness as a whole is becoming more daunt-

ing. Prior research [37, 15] has identified four main conditions that

ensure functional correctness within the network: (1) No packets

are dropped, (2) Delivery time is bounded, (3) No data corruption oc-

curs, and (4) No new packet is generated within the network. If satis-

fied, these four conditions guarantee functional correctness [37, 15].

Following this guideline, the 32 invariances of Table 1 are cate-

gorized according to the aforementioned four general requirements,

as illustrated in Figure 3. Each number in the diagram refers to the

corresponding entry of Table 1. Even though the original categoriza-

tion of [37, 15] was made at the packet level, we choose to operate

at the flit level, since the smallest unit of flow control is the flit. By

65

,��'������"

��������
����.��(

,���

�
�����"���/
,��"
�0��

$����#

,����1�'���
#����
���

�

&

2

�

3

4

5

�

�%

��

��

�&

�2

��

�3 �4

�6

�5
�%��

��

�&

�2

�3 �4

�6

�5

&%

&�

&�

6

��

Figure 3: Using invariances to ensure functional correctness. The
32 invariances of Table 1 are categorized based on the 4
fundamental conditions that ensure functional correctness
within the NoC [37, 15].

doing this transformation, we actually make the four requirements

even stronger, because flits are sub-units of packets. For example,

if an extra flit is generated in the network and becomes part of an

existing packet, the flit-level rule will correctly identify this as an

error, whereas the packet-level rule would not capture this anomaly.

Note that operating at the flit level adds the additional requirement

that intra-packet flit ordering is maintained by the network (a typ-

ical assumption in NoCs). Upsets causing such flit ordering viola-

tions also violate some of the fundamental invariances monitored

by NoCAlert; thus, the proposed mechanism also safeguards against

intra-packet flit order changes.

Bounded delivery implies the delivery of all flits to their intended

destination within a finite amount of clock cycles. This rule speci-

fies that no deadlock or livelock should occur in the network. No flit

drop specifies that no flit should be lost during its traversal through

the network. No new flit generation specifies that no new flits should

be spontaneously generated within the NoC. Abnormal flit duplica-

tion is also included in this requirement. Finally, no data corrup-

tion/packet mixing specifies that there should be no collision of flits,

and that no flit belonging to a packet should enter the wormhole of

another packet (packet mixing). Even though the message contents

are assumed to be protected by error-detecting codes, data corrup-

tion could still occur by packet mixing, which would escape the per-

flit error-detecting codes.

Due to lack of space, only two of the 32 invariances of Table

1 will be described in detail. Specifically, two invariances will be

analyzed, which can cause several types of errors. In particular, in-

variances 13 and 17 sit at the intersection of multiple categories in

Figure 3 and may breach three out of the four functional correctness

requirements.

As described in Section 3.1, the Switch Arbitration stage is further

separated into the SA1 (local) and SA2 (global) arbitration stages.

Invariance 13 (see Table 1) specifies that if a VC wins in the SA2

arbitration, it must also have won its SA1 arbitration. If a VC wins

the SA2 stage without winning SA1, there is a possibility of being

forwarded to a full VC in the adjacent router (since credits are eval-

uated in SA1), and, therefore, it will be dropped (No flit drop viola-

tion). Additionally, since the SA2 stage drives the crossbar switch,

��	���

)�.
��
��������0��

������
��7����

���"��!�
��
�����

����0��8��
��"�

Figure 4: An example NoCAlert checker circuit. This checker con-
stantly monitors an arbiter module at run-time to detect
whether a grant signal has been issued at the arbiter’s out-
put without any requests at the arbiter’s inputs. Note that
the figure is not drawn to scale; the checker module is ex-
aggerated for clarity. In reality, the invariance checkers are
significantly smaller than the units they check.

a flit might be sent in a different direction than the one calculated by

the RC unit. If the flit happens to be sent to an idle VC, this may

lead to a deadlock due to “breaking up” of the packet (malfunction-

ing wormhole). Thus, a Bounded delivery rule violation will occur.

Finally, if the flit is sent to an occupied VC, the No packet mixing

rule will be breached.

Invariance 17 states that pipeline stages must be executed in the

correct order. Suppose that the VA stage is executed before the RC

stage. In this case, the flits of the packet might be forwarded to

an occupied VC in the adjacent router (No packet mixing violation).

Now suppose that the SA stage is executed before the VA stage. The

flit will be forwarded to the adjacent router without correct VC ID

information. Thus, the flit will be written to an arbitrary VC. If that

VC is full, the flit will be dropped (No flit drop violation). Finally,

suppose that the SA stage is executed before the RC stage, i.e., on

an empty VC buffer. This will cause a flit to be forwarded to an

adjacent router, but garbage information will be sent (since buffers

employ pointers to maintain FIFO order, an “empty" buffer slot is

not blank). Therefore, a new flit may be generated (No new flit gen-

eration violation).

4.2. Hardware Complexity of the NoCAlert Checkers

The NoCAlert fault detection mechanism consists of an array of dis-

tributed hardware checkers, which constantly and seamlessly mon-

itor the modules comprising the control logic of the router. Each

checker is a simple combinational circuit performing a specific

check, according to the rules of the module being monitored.

An example checker circuit is shown in Figure 4. This checker is

responsible to monitor an arbiter module and detect whether there

is an active grant signal without any requests at the arbiter’s inputs.

As can be seen from the figure, only two logic gates are needed for

each input/output of the arbiter, as well as an OR gate to combine

all individual checks. Furthermore, the checker size grows linearly

with the number of arbiter inputs, whereas the arbiter size grows in

a polynomial fashion.

Invariance checking relies mostly on value comparison, which, in

hardware terms, translates into simple combinational circuits con-

sisting of inverters, AND, OR, and XOR gates. Therefore, the No-

CAlert checkers provide a lightweight and holistic approach to run-

time fault detection, as will be demonstrated through hardware syn-

thesis results in Section 5.

4.3. Faults That Do Not Cause Invariance Violations

As previously mentioned, invariance checking only detects illegal

outputs, not necessarily incorrect ones. Faults that give rise to func-

66

tionally legal outputs – based on the given input – will not be de-

tected. A simple NoC example to illustrate this scenario is the RC

unit’s functionality. Suppose a packet enters a router from the East

port and is destined to the West output port. Even under determin-

istic XY routing, a misdirection to the North output port will not

constitute an invariance violation, since X-to-Y turns are allowed in

XY routing. Moreover, adaptive routing algorithms – such as Du-

ato’s Protocol [38] – inherently allow more than one routing options

to avoid congestion. It is clear that faults in the RC unit have a good

chance of still returning a valid/legal output that does not violate any

invariance.

The two elemental questions here are the following:

• If such non-invariant upsets cause some other func-

tional/invariance violation later on in the network, will the

fault be caught by one/some subsequent NoCAlert checkers?

• If these non-invariant upsets do not cause any other func-

tional/invariance violation later on in the network (i.e., they are

never caught by any NoCAlert checker), do they end up affect-

ing the overall network correctness (as defined in Section 4.1 and

[37, 15])?

An example relevant to the second question is when a packet re-

quests VC1 of a specific output port, but a fault occurrence causes

the grant of, say, VC2 of the same output port, which also happens to

be available. If both of these VCs belong to the same protocol-level

message class, then this fault does not cause an invariance violation

and it is, in fact, benign, i.e., no functional error manifests itself at

the network or system level later on.

The extensive simulations of Section 5 will answer these two im-

portant questions. It turns out (empirically) that all the non-invariant

faults that end up causing a functional error later on are, indeed, suc-

cessfully captured by subsequent NoCAlert checkers, whereas the

non-invariant faults that do not cause any other invariance violation

later on turn out to be benign, as far as overall network correctness

is concerned.

4.4. Applicability of the NoCAlert Framework to Any Router

Micro-architecture

Based on our exploration so far, it is clear that the invariance concept

is closely related to the micro-architecture under test. Changes in

the router’s micro-architecture may result in subtle (or not so subtle)

changes in the components’ invariances. However, the underlying

principles will still be the same: study each individual module and

identify invariances, while gradually moving up to coarser granular-

ities (e.g., port-level). There are many proposed router architectures

[39, 33, 40, 41], with each one involving changes to the constituent

modules, or the pipeline stages and associated flow. The inherent

modularity of all router designs (a direct consequence of the router’s

parallel nature) allows the designer to fairly easily identify the new

functional invariances.

This sub-section will briefly investigate the key changes to the

invariances of the generic router model when some key router pa-

rameters are varied. The chosen variations are typical alterations ob-

served in the literature. For example, the router design may forego

the use of VCs, it may choose to employ non-atomic FIFO buffers,

it may implement a speculative design (e.g., the VA and SA hap-

pening concurrently), and it may employ a more elaborate routing

algorithm. By exploring how these changes will affect invariance

checking, one may appreciate the flexibility and widespread applica-

bility of the NoCAlert scheme.

In the absence of virtual channels in the design, the VA pipeline

stage is eliminated. Hence, all the invariance checks pertaining to

the VA stage in Table 1 may be removed. For example, invariances

29 and 30 in the table are no longer needed.

Non-atomic buffers allow the simultaneous storage of flits belong-

ing to different packets (albeit without mixing), unlike the atomic

buffers in the baseline architecture, which only allow the flits of a

single packet to reside in the buffer at any given time. If non-atomic

buffers are used, all invariances that forbid a new packet to arrive

in an already-occupied VC buffer are discarded. At the same time,

however, a new invariance is created (invariance 27 in Table 1). The

mixing of flits from two different packets is still forbidden in non-

atomic buffers. This means that an assertion should be raised if the

flit following a tail flit is not a header flit of a new packet.

In speculative router designs [36], the VA and SA stages are exe-

cuted in parallel. In this case, the SA may, in fact, finish before the

VA stage. Thus, invariance 17 in Table 1 must be altered, so as not

to raise an assertion if SA succeeds before VA is done.

The functional definition of a routing algorithm defines its invari-

ances. Most routing algorithms have some turn restrictions in order

to prevent network deadlocks and livelocks, as well as protocol dead-

locks. Some routing algorithms also provide a specific output VC, in

addition to the output direction. In all cases, the NoCAlert checkers

are derived from these restrictions. For example, Duato’s Protocol

[38] dictates that “when making a turn from the East to the North,

a packet must enter VC0.” This statement immediately defines an

assertion checker.

5. Experimental Evaluation

5.1. Evaluation Framework

The goal of the experimental evaluation is to thoroughly assess the

efficacy and efficiency of the NoCAlert mechanism in a realistic envi-

ronment. Our evaluation approach is double-faceted and consists of

(a) extensive simulations in a cycle-accurate simulator, and (b) hard-

ware evaluation based on a full Verilog implementation of NoCAlert

and synthesis using 65 nm commercial standard-cell libraries.

For the former part, the cycle-accurate GARNET NoC simulator

[42] is employed. GARNET models the packet-switched routers

down to the micro-architectural level. The simulator was further

extended with all the checker modules listed in Table 1 (see Section

4) and the fault injection framework to be described in Section 5.2.

Since the focus of this work is the fault detection performance of

NoCAlert (and not the network/system performance), the use of syn-

thetic traffic patterns in an 8×8 mesh suffices to accurately capture

the salient characteristics of the design. Synthetic traffic patterns are

typically more effective in stressing the router design to its limits

and isolating the inherent attributes of the network itself. Hence, we

employ synthetic (uniform random) traffic at various injection rates

to ensure all router components are stressed over a range of traffic

intensities.

The NoCAlert framework is also compared to ForEVeR [15],

a recently proposed state-of-the-art fault detection and recovery

framework (see Section 2). The ForEVeR mechanism was cycle-

accurately implemented within GARNET with all three of its key

fault-detecting techniques: the secondary checker network (includ-

ing the counters and timers), the Allocation Comparator from [19],

and the end-to-end checker.

Without loss of generality, the router architecture assumed in this

evaluation is the baseline implementation described in Section 3.1.

The router is five-stage pipelined (4 intra-router stages + 1 link

traversal stage), with four 5-flit deep VCs per input port, and 128-

bit inter-router links. Atomic VC buffers, wormhole switching, and

67

credit-based flow control are also assumed. The routing algorithm

used is deterministic XY.

For the hardware evaluation part, we implemented the baseline

NoC router augmented with the NoCAlert mechanism (all 32 invari-

ance checker modules) in Verilog Hardware Description Language

(HDL). The resulting design was synthesized using Synopsys De-

sign Compiler and 65 nm commercial TSMC libraries at 1 V oper-

ating voltage and 1 GHz clock frequency. The results were used to

perform detailed area/power/timing analysis and evaluate the over-

head footprint of NoCAlert.

5.2. Fault Model and Fault Injection Framework

Throughout the evaluation, we assume the occurrence of single

faults in the NoC mesh. Specifically, the simulator injects single-

bit, single-event transient faults at different locations and at differ-

ent instances (network states). The above-mentioned fault model

is widely used in the literature and it was chosen as a proof-of-

concept for NoCAlert. More elaborate fault models are left for fu-

ture work. Even though we employ transient fault injections for the

purposes of our simulations, the mechanism works with permanent

failures in an identical manner. Effectively, the fault model used

evaluates fault behavior for single-event upsets and single perma-

nent faults. The difference is that the NoCAlert checkers will raise

permanent/prolonged (rather than momentary) assertions upon the

occurrence of a permanent/intermittent fault. In other words, since

the NoCAlert checkers raise an exception upon an invariance viola-

tion, NoCAlert’s performance/accuracy is orthogonal to whether the

invariance is temporary or permanent; as soon as the invariance vi-

olation commences, NoCAlert will detect it. The reasoning is that

a permanent fault, or an intermittent fault, will trigger the same

checker as a transient fault, but the checker’s flag will remain raised

for more than one cycle (indicating an intermittent, or permanent,

fault). Note that even if the erroneous value disappears after one

clock cycle, the effects of that short “malfunction” perturbation may

propagate through the network with unpredictable results.

Our fault model looks at the router micro-architecture at the

fine granularity of individual sub-components. These sub-

components comprise all the modules responsible for the router’s

control logic: individual RC units, control status tables, VC buffer

status, arbiters in both VA and SA, and the crossbar control logic.

Our only assumption is that the packet/flit contents are already pro-

tected by error-detecting codes (see Section 3.3), so the datapath of

the router is also covered. Our model has the capability of inject-

ing single-bit faults at the inputs and the outputs of each individual

module. The fault injection framework is illustrated in Figure 5. By

looking at the router micro-architecture at this fine granularity, we

are able to inject single-bit faults at 205 different locations within

a single 5-port NoC router. Taking into account corner and edge

routers (which have fewer ports), the total number of fault locations

is 11,808 in an 8×8 mesh network.

5.3. Experimental Methodology

One simulation run at a single traffic injection rate and one network

state consists of 11,808 different simulations (to exhaustively inject

faults in all possible locations of an 8×8 mesh, assuming the specific

single-fault injection model used in this work). The traffic injection

rate was varied from low to high (0.1–0.4 flits/node/cycle) in steps

of 0.05 flits/node/cycle. Moreover, three different scenarios of fault

injection instances were studied (fault injection at cycle 0, 32K, and

64K). Hence, 21 different scenarios were investigated (7 injection

rates × 3 injection times), for a total of 21× 11,808 ≈ 248K fault-

injection simulations.

��#���9�����

����0���
9�����

��#���9�����

����0���
9�����

:
; :	;

)�.
��
����
��������

)�"�

)�.
��
����
��������

��"� ��"�

���#��<���=
��
���#��<���=
��

)�"�

Figure 5: Abstract view of the employed fault injection framework.
The evaluation framework used in this work has the capabil-
ity of injecting single-bit faults at the inputs (a), or outputs
(b), of each individual router module. The module granular-
ity is very fine, which results in 11,808 possible fault loca-
tions in an 8×8 mesh network.

The exact same experiments were also run in a fault-free envi-

ronment and detailed flit ejection logs were collected and compiled

in a so called Golden Reference (GR) report. The GR is then used

to ensure that no violations of the four network correctness rules

of Section 4.1 and [37, 15] occur. Furthermore, the GR also de-

tects any changes in the intra-packet flit order (as previously men-

tioned, such order violations constitute erroneous behavior). Since

NoCAlert only captures faults that cause invariances, the GR is used

to facilitate the investigation of the two key questions posed in Sec-

tion 4.3. Moreover, by comparing the GR with the equivalent under-

fault log report, we can study the effects of any fault occurrence on

overall network correctness. This allows us to assess the false pos-

itive (assertions that prove benign) and false negative (undetected

network correctness violations) performances of both NoCAlert and

ForEVeR [15].

5.4. Simulation Results

As discussed in Section 5.1, simulation experiments were performed

in an 8×8 2D mesh network using synthetic traffic patterns. In this

sub-section, we present the results and an evaluation of NoCAlert’s

efficacy and efficiency in terms of several key metrics. Moreover,

we conduct a quantitative comparison with the ForEVeR [15] frame-

work.

We begin our exploration with NoCAlert’s fault detection capabil-

ities. It is important at this point to differentiate the injected faults

from the actual errors manifesting themselves at the network-level

(as defined in Section 4.1 and [37, 15]). NoCAlert’s ultimate goal

is to ensure that no actual error at the network-level escapes detec-

tion. Therefore, injected faults that do NOT cause a real functional

error within the network are viewed as benign. Based on this crucial

differentiation, we classify each of NoCAlert’s detection outcomes

into one of four main categories:

• True Positive: Event detected by NoCAlert when the injected

fault causes an actual error at the network-level (network correct-

ness violation).

• False Positive: Event detected by NoCAlert when the injected

fault turns out to be benign.

• True Negative: Nothing detected by NoCAlert when the injected

fault turns out to be benign.

• False Negative: Nothing detected by NoCAlert when the injected

fault causes an actual error at the network-level (network correct-

ness violation).

In order to identify which injected faults turned out to be mali-

cious (i.e., they caused a network correctness violation), we used

the Golden Reference (GR) log report described in Section 5.3.

Obviously, the most important metric when evaluating the perfor-

mance of a detection mechanism is the occurrence of False Nega-

tives, i.e., actual faults that evade the detection process.

68

(�)*+ (�)*+ (�)*+
�,)+(�,)+(�,)+(

��)*�
��)�� �-)-*

+()��
�*)*� +�)(*

�-)-�
�*)�(��)(. �*)��

�+).� �,)..

�/
��/
��/
��/
+�/
(�/
*�/
-�/
,�/
.�/

���/

0����	�� 0����	��
�
������

!��1�	� 0����	�� 0����	��
�
������

!��1�	�

���	
�

2��	�3�����"	 !
��	�3�����"	 2��	�0	�
��"	

Figure 6: Fault coverage breakdown (over all injected faults) using
synthetic (uniform random) traffic in an 8×8 mesh at two
different fault injection instances (cycle 0 and cycle 32K).
The “NoCAlert Cautious” bars refer to a system where In-
variances 1 and 3 of Table 1 are considered low risk (see
text for details).

Observation 1: Out of all the simulations we ran, NoCAlert reg-

istered zero false negatives. In other words, all faults that violated

network correctness were successfully captured by NoCAlert. The

same was true for ForEVeR [15]. Thus, both mechanisms exhibit the

same fault detection accuracy.

Figure 6 presents a breakdown of the fault detection performance

of both NoCAlert and ForEVeR at two different fault injection in-

stances: cycle 0 and cycle 32K (the results for fault injection at cy-

cles 32K and 64K are very similar; thus, only the 32K results are

shown here for brevity). The results for cycle 0 are representative

of an empty network, while the results for cycle 32K are represen-

tative of networks at steady-state (warmed up). Note that the true

positive percentages are identical for NoCAlert and ForEVeR, since

both mechanisms detected all network correctness violations (all of

the injected faults that actually violated the network correctness).

The notable difference is in the False Positives, where NoCAlert is

slightly worse in both cases. This result is attributed to the real-time

nature of NoCAlert, which raises assertions instantaneously. Instead,

ForEVeR is epoch-based, which means that some benign faults sim-

ply “vanish” by the time the epoch expires. In general, the false

positive percentages are higher for cycle 32K – as compared to cy-

cle 0 – because violations are more likely to be masked by other

traffic in a warmed up network. For example, in an empty network,

an erroneous switch allocation request would propagate to the output

uncontested (since there are no other packets competing for crossbar

access). However, in a more congested environment, the erroneous

request may lose the arbitration to another packet.

The false positive percentages may be markedly reduced if the

recovery mechanism’s reaction is guided by the checkers’ risk lev-

els. In other words, the NoCAlert checkers may be classified into

different categories, based on their risk levels. Low-risk checkers

would trigger a delayed/deferred response, in order to account for

the high probability of a false positive. For instance, we made a very

interesting observation regarding NoCAlert. In our conducted set of

experiments, invariances 1 and 3 of Table 1 never led to network-

level incorrectness when asserted alone, even though they might the-

oretically have led to a deadlock. These invariances are violated if

the RC unit misdirects a header flit (possibly in a direction further

away from the packet’s destination). We noticed that many benign

faults registered as false positives by NoCAlert were caused by those

two invariances. In all those cases, the invariances were asserted by

�

��

��

��

+�

(�

*�

-�

,�

.�

���

� + �* *+ �(* ���+ +�.* �*�,+

�
��

��
��

��
��

��
��

��
�

�����������������������

0����	��
!��1�	�

Figure 7: Cumulative fault-detection delay distribution for the true
positive faults (The epoch duration in ForEVeR was set to
1,500 cycles; see text for details).

themselves (no other assertion was raised). Hence:

Observation 2: If the fault recovery mechanism connected to No-

CAlert sees either Invariance 1 or Invariance 3 (Table 1) violated,

without any other assertions raised, it could move into a “cautious”

state, whereby the fault recovery mechanism is not triggered until

there is further evidence later on that a deadlock actually occurred. If

this strategy is followed, then NoCAlert’s False Positive rates would

drop to 22.01% and 36.62% for cycles 0 and 32K, respectively, as

indicated by the “NoCAlert Cautious” bars in Figure 6.

Invariance 5 in Table 1 exhibits noteworthy behavior. Said invari-

ance is violated whenever an arbiter produces an all-zero grant vec-

tor (i.e., no arbitration winner is declared), even though there was at

least one active client request. If the fault is transient or intermittent,

this fault would only result in brief performance degradation, similar

to a NOP instruction in a microprocessor’s pipeline. However, if the

fault is permanent (i.e., the checker remains permanently asserted),

the consequences could be quite dramatic. The fault may lead to

network/protocol deadlocks.

Observation 3: Invariance 5 in Table 1 exhibits the unique char-

acteristic of being benign (in terms of network correctness) under

transient/intermittent faults, but malicious under permanent faults.

The real strength of NoCAlert is its fault detection latency. Figure

7 shows the cumulative fault detection delay distribution for both No-

CAlert and ForEVeR. In this figure, only faults that resulted in true

positives were evaluated. Notice that 97% of all faults are captured

instantaneously (in the same cycle) by NoCAlert, 99% are captured

within 9 clock cycles, and 100% are captured after 28 cycles. For-

EVeR’s epoch-based scheme takes significantly longer, with 99%

of faults being captured after 3,000 cycles and 100% captured after

11,995 cycles. The epoch duration in ForEVeR was set to 1,500 cy-

cles, which was the shortest period that did not yield excessive false

positives under the fault model employed in this work. These results

demonstrate that:

Observation 4: NoCAlert provides near-instantaneous fault de-

tection with a staggering 97% of all true positive faults captured at

the instance of injection (same cycle). The worst-case detection la-

tency is only 28 cycles after fault injection. Moreover, NoCAlert

achieves several orders of magnitude lower fault detection latency

than ForEVeR [15].

In order to answer the critical questions posed in Section 4.3, we

need to examine all injected faults that did not result in an invariance

violation at the instance of fault injection. It turns out that 78% of

those faults did not cause a subsequent invariance violation, and all

of them turned out to be benign (no network correctness violation).

The remaining 22% caused a subsequent invariance violation and

69

�)��+
�
�)�
�)�
�)�
�)+
�)(
�)*

�

(

��

�(

��

� � � + (* - , . �� �� �� �� �+ �(�* �- �, �. �� �� �� �� �+ �(�* �, �. �� �� ��

�
��

��
��

��
��

��
��

��
�

�����������������

Figure 8: Percentage of invariance violations captured by each indi-
vidual NoCAlert checker of Table 1 (over all experiments).
The bottom part of the figure has a finer y-axis scale and
focuses on the very low y-axis values of the top part. In-
variance 27 is missing, because it is only applicable to non-
atomic VC buffers.

�

��

��

��

+�

(�

*�

-�

,�

.�

���

� � � + (* - , . ��

�
��

��
��

��
��

��
��

���
�

�������� ���������

Figure 9: Cumulative distribution of invariance violations as a func-
tion of the number of simultaneously asserted checkers.

were successfully captured by NoCAlert.

Observation 5: Injected faults that do not cause any invariance

violation in the network are always benign (i.e., they never cause any

network correctness violation).

Figures 8 and 9 evaluate the behavior of the 32 invariance check-

ers. Specifically, Figure 8 shows the percentage of invariance viola-

tions caught by each individual checker over all experiments. Note

that Invariance 27 is missing, because it refers to non-atomic buffers

(we used atomic VC buffers in our simulations, as stated in Section

5.1). It should also be noted that all checkers detected invariances in

the absence of any other checker assertions. This fact indicates that

no single checker is redundant. Finally, Figure 9 shows the cumula-

tive distribution of invariance violations as a function of the number

of simultaneously asserted checkers. Most invariances were caught

by two checkers, while the maximum number of checkers triggered

due to a single invariance violation was 9.

5.5. Hardware Evaluation – Area/Power/Timing Overhead

As described in Section 5.1, a baseline NoC router augmented

with the complete NoCAlert mechanism was implemented in Ver-

ilog HDL and synthesized using 65 nm commercial standard-cell

libraries.

In order to assess the scalability of NoCAlert, we vary the num-

ber of VCs per port from two [41] to eight [39] and evaluate the

NoCAlert percentage area and power overhead. The number of VCs

per port is dictated by the employed routing algorithm (e.g., deter-

ministic vs. adaptive) and/or the cache-coherence protocol (number

of message classes). The area results are shown in Figure 10. To

better appreciate the size of NoCAlert, we also implemented a de-

sign with Double Modular Redundancy (DMR) in the entire NoC

control logic (designated as “DMR-CL” in the figure). DMR serves

�

��

��

��

+�

(�

*�

-�

,�

.�

���

�
�
�
�
+
(
*
-
,
.

��
��
��

���� ���� +��� (��� *��� -��� ,���

��
�

�!
"�

��
�

��
#�

��
��

�
$�

��
�

���
��

�
�

��
��

�

�������� �%���&���#���

4
�	���	

0����	��

�5���6

0����	�����	
�7"	��	
���/

�5���6���	
�7"	��	
���/

Figure 10: The NoCAlert area overhead as a function of the number
of VCs per input port. A comparison with double modu-
lar redundancy in the control logic (“DMR-CL”) is also pre-
sented.

as the most complete fault detection solution possible, albeit a very

expensive one. Clearly, the NoCAlert area overhead is minimal and

ranges from 1.38% to 4.42% (3%, on average) and the percentage

overhead remains fairly constant as the number of VCs increase. On

the other hand, the percentage area overhead of DMR increases lin-

early from 5.41% in the case of two VCs, up to 31.32% in the case

of eight VCs per port.

The power results exhibit the same trends and are, thus, omitted

for brevity. The absolute numbers, however, are much smaller for

NoCAlert, since the checkers comprise purely combinational logic

and have no power-hungry storage elements. Hence, the percentage

power overhead ranges from 0.3% to 1.2% (0.7%, on average), i.e., it

is negligible. The power numbers were extracted from the Synopsys

Design Compiler power report, with switching activity set to 50%

for all nets.

The final key design metric evaluated was the critical path delay,

which sets the maximum possible operating frequency. Our synthe-

sis results indicate minimal impact on the critical path of at most 3%

and, on average, around 1%. This means that the proposed NoCAlert

mechanism is, essentially, transparent to overall network operation.

These results corroborate the fact that NoC control logic checkers

used to detect only illegal outputs have significantly lower hardware

cost than the units they check.

6. Conclusions

This paper proposes NoCAlert, a comprehensive on-line and real-

time fault detection mechanism that ensures 0% false negatives

within the NoC, under the employed fault model. NoCAlert is

based on the concept of invariance checking, whereby the outputs

of the control logic modules of the on-chip network are constantly

checked for illegal outputs, based on current inputs. By combining a

collection of such micro-checker modules dispersed throughout the

router’s control logic modules, the proposed mechanism implements

real-time hardware assertions. The checkers operate seamlessly and

concurrently with normal NoC operation, thus obviating the need for

periodic (epoch-based), or triggered-based, self-testing.

Extensive simulation results validate the efficacy of the NoCAlert

mechanism and yield important insight as to the behavior of the

network when non-invariant faults (that evade the checkers) occur.

Specifically, non-invariant faults either cause some subsequent in-

variance violation (and are captured), or they prove benign at the net-

work/system level. Hardware synthesis analysis using 65 nm com-

mercial libraries demonstrates the extremely lightweight nature of

NoCAlert in terms of area/power/timing overhead. Furthermore, a

detailed comparison with a recently proposed framework [15] high-

70

lights higher than 100× improvements in detection latency, with no

loss in detection accuracy and with much lower overall complexity.

In summary, this work demonstrates the potential for extremely

accurate and near-instantaneous fault detection within the NoC using

minimally intrusive hardware-based invariance checkers.

Acknowledgments

This work was supported by “EuroCloud, Project No 247779”

of the European Commission 7th RTD Framework Programme –

Information and Communication Technologies: Computing Sys-

tems, and by the Cyprus Research Promotion Foundation’s Grant

TΠE/ΠΛHPO/0609(BIE)/09 (co-funded by the Republic of Cyprus

and the European Regional Development Fund).

References

[1] S. Damaraju et al. A 22nm ia multi-cpu and gpu system-on-chip.
In Proc. of the International Solid-State Circuits Conference (ISSCC),
2012.

[2] K. Olukotun et al. The case for a single-chip multiprocessor. In Proc.
of the International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), 1996.
[3] W.J. Dally and B. Towles. Route packets, not wires: on-chip inter-

connection networks. In Proc. of the Design Automation Conference
(DAC), 2001.

[4] S.R. Nassif, N. Mehta, and Yu Cao. A resilience roadmap. In Proc. of
the Design, Automation and Test in Europe Conference (DATE), 2010.

[5] S. Borkar. Microarchitecture and design challenges for gigascale inte-
gration. In Proc. of the International Symposium on Microarchitecture
(MICRO), 2004.

[6] E Wu et al. Interplay of voltage and temperature acceleration of oxide
breakdown for ultra-thin gate oxides. In International Journal of Solid-
State Electronics, November 2002.

[7] C. Nicopoulos et al. On the effects of process variation in network-on-
chip architectures. In IEEE Trans. on Dependable and Secure Comput-
ing, July 2010.

[8] K. Aisopos, C.-H.O. Chen, and L.S. Peh. Enabling system-level mod-
eling of variation-induced faults in networks-on-chips. In Proc. of the
Design Automation Conference (DAC), 2011.

[9] K. Constantinides et al. Bulletproof: a defect-tolerant cmp switch archi-
tecture. In Proc. of the International Symposium on High-Performance
Computer Architecture (HPCA), 2006.

[10] D. Fick et al. Vicis: A reliable network for unreliable silicon. In Proc.
of the Design Automation Conference (DAC), 2009.

[11] M.R. Kakoee, V. Bertacco, and L. Benini. Relinoc: A reliable network
for priority-based on-chip communication. In Proc. of the Design, Au-
tomation and Test in Europe Conference (DATE), 2011.

[12] A. Strano et al. Exploiting network-on-chip structural redundancy for
a cooperative and scalable built-in self-test architecture. In Proc. of the
Design, Automation and Test in Europe Conference (DATE), 2011.

[13] M. Hosseinabady, A. Dalirsani, and Z. Navabi. Using the inter- and
intra-switch regularity in noc switch testing. In Proc. of the Design,
Automation and Test in Europe Conference (DATE), 2007.

[14] M.R. Kakoee, V. Bertacco, and L. Benini. A distributed and topology-
agnostic approach for on-line noc testing. In Proc. of the International
Symposium on Networks-on-Chip (NOCS), 2011.

[15] R. Parikh and V. Bertacco. Formally enhanced runtime verification to
ensure noc functional correctness. In Proc. of the International Sympo-
sium on Microarchitecture (MICRO), 2011.

[16] A. Kohler, G. Schley, and M. Radetzki. Fault tolerant network on chip
switching with graceful performance degradation. In IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
June 2010.

[17] Albert Meixner, Michael E. Bauer, and Daniel Sorin. Argus: Low-
cost, comprehensive error detection in simple cores. In Proc. of the
International Symposium on Microarchitecture (MICRO), 2007.

[18] M. Koibuchi et al. A lightweight fault-tolerant mechanism for network-
on-chip. in Proc. of the International Symposium of Networks-on-Chip
(NOCS), 2008.

[19] D. Park et al. Exploring fault-tolerant network-on-chip architectures.
In Proc. of the International Conference on Dependable Systems and
Networks (DSN), 2006.

[20] S. Shamshiri, A. Ghofrani, and Kwang-Ting Cheng. End-to-end error
correction and online diagnosis for on-chip networks. In Proc. of the
International Test Conference (ITC), 2011.

[21] M. Palesi, S. Kumar, and V. Catania. Leveraging partially faulty links
usage for enhancing yield and performance in networks-on-chip. In
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-

tems (TCAD), March 2010.
[22] J. Duato. A theory of fault-tolerant routing in wormhole networks. In

IEEE Trans. on Parallel and Distributed Systems (TPDS), August 1997.
[23] W.J. Dally et al. The reliable router: A reliable and high-performance

communication substrate for parallel computers. In Proc. of the Inter-
national Workshop on Parallel Computer Routing and Communication

(PRCW), 1994.
[24] S. Rodrigo et al. Addressing manufacturing challenges with cost-

efficient fault tolerant routing. In Proc. of the International Symposium
on Networks-on-Chip (NOCS), 2010.

[25] T. Dumitraş, S. Kerner, and R. Mărculescu. Towards on-chip fault-
tolerant communication. In Proc. of the Asia and South Pacific Design
Automation Conference (ASP-DAC), 2003.

[26] B. Fu et al. An abacus turn model for time/space-efficient reconfig-
urable routing. In Proc. of the International Symposium on Computer
Architecture (ISCA), 2011.

[27] T. Moscibroda and O. Mutlu. A case for bufferless routing in on-chip
networks. In Proc. of the International Symposium on Computer Archi-
tecture (ISCA), 2009.

[28] A. Kohler and M. Radetzki. Fault-tolerant architecture and deflection
routing for degradable noc switches. In Proc. of the International Sym-
posium on Networks-on-Chip (NOCS), 2009.

[29] D. Fick et al. A highly resilient routing algorithm for fault-tolerant
nocs. In Proc. of the Design, Automation and Test in Europe Confer-
ence (DATE), 2009.

[30] S. Murali et al. A multi-path routing strategy with guaranteed in-order
packet delivery and fault-tolerance for networks on chip. In Proc. of
the Design Automation Conference (DAC), 2006.

[31] K. Aisopos et al. Ariadne: Agnostic reconfiguration in a disconnected
network environment. In Proc. of the International Conference on Par-
allel Architectures and Compilation Techniques (PACT), 2011.

[32] V. Puente et al. Immunet: Dependable routing for interconnection net-
works with arbitrary topology. In IEEE Trans. on Computers, Decem-
ber 2008.

[33] J. Kim et al. A gracefully degrading and energy-efficient modular
router architecture for on-chip networks. In Proc. of the International
Symposium on Computer Architecture (ISCA), 2006.

[34] A. Ghofrani et al. Comprehensive online defect diagnosis in on-chip
networks. In Proc. of the VLSI Test Symposium (VTS), 2012.

[35] C. A. R. Hoare. An axiomatic basis for computer programming. In
Communications of the ACM, October 1969.

[36] L.S. Peh and W.J. Dally. A delay model and speculative architecture
for pipelined routers. In Proc. of the International Symposium on High-
Performance Computer Architecture (HPCA), 2001.

[37] D. Borrione et al. A generic model for formally verifying noc com-
munication architectures: A case study. In Proc. of the International
Symposium on Networks-on-Chip (NOCS), 2007.

[38] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An
Engineering Approach. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1st edition, 1997.

[39] J. Howard et al. A 48-core ia-32 processor in 45 nm cmos using on-die
message-passing and dvfs for performance and power scaling. In IEEE
Journal of Solid-State Circuits, Jan. 2011.

[40] A. Kumary et al. A 4.6tbits/s 3.6ghz single-cycle noc router with a
novel switch allocator in 65nm cmos. In Proc. of the International
Conference on Computer Design, 2007. (ICCD), 2007.

[41] S.R. Vangal et al. An 80-tile sub-100-w teraflops processor in 65-nm
cmos. In IEEE Journal of Solid-State Circuits, Jan. 2008.

[42] N. Agarwal et al. Garnet: A detailed on-chip network model inside
a full-system simulator. In Proc. of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2009.

71

Cache-Conscious Wavefront Scheduling

Timothy G. Rogers1 Mike O’Connor2 Tor M. Aamodt1
1University of British Columbia 2Advanced Micro Devices Inc. (AMD)

tgrogers@ece.ubc.ca, mike.oconnor@amd.com, aamodt@ece.ubc.ca

Abstract

This paper studies the effects of hardware thread scheduling on
cache management in GPUs. We propose Cache-Conscious Wave-
front Scheduling (CCWS), an adaptive hardware mechanism that
makes use of a novel intra-wavefront locality detector to capture lo-
cality that is lost by other schedulers due to excessive contention
for cache capacity. In contrast to improvements in the replace-
ment policy that can better tolerate difficult access patterns, CCWS
shapes the access pattern to avoid thrashing the shared L1. We show
that CCWS can outperform any replacement scheme by evaluating
against the Belady-optimal policy. Our evaluation demonstrates that
cache efficiency and preservation of intra-wavefront locality become
more important as GPU computing expands beyond use in high per-
formance computing. At an estimated cost of 0.17% total chip area,
CCWS reduces the number of threads actively issued on a core when
appropriate. This leads to an average 25% fewer L1 data cache
misses which results in a harmonic mean 24% performance improve-
ment over previously proposed scheduling policies across a diverse
selection of cache-sensitive workloads.

1. Introduction

Manycore accelerators, such as GPUs, enable efficient execution of
parallel workloads, allowing continued performance improvement
with each process node despite diminished voltage scaling [11]. Pro-
gramming interfaces like OpenCL [24] and CUDA [33] require the
user to define the behavior of a single scalar thread which can be
run thousands of times across dozens of simple single instruction
multiple data (SIMD) compute units (also known as shader cores).
This type of architecture, sometimes referred to as single instruction
multiple thread (SIMT) [28], allows the GPU’s SIMD core to make
progress on multiple threads using a single instruction by group-
ing them into wavefronts (or warps), thus amortizing the instruction
fetch and decode overhead.

Each cycle, a hardware wavefront scheduler must decide which
of the multiple active wavefronts execute next. Our work focuses
on this decision. The goal of a wavefront scheduler is to ensure
the execution pipeline is kept active in the presence of long latency
operations. The inclusion of caches on GPUs [32] can reduce the la-
tency of memory operations and act as a bandwidth filter, provided
there is some locality in the access stream. Figure 1 presents the av-
erage number of hits and misses per thousand instructions (PKI) of
highly cache-sensitive (HCS) and moderately cache-sensitive (MCS)
benchmark access streams using an unbounded level one data (L1D)
cache. The figure separates hits into two classes. We classify local-
ity that occurs when data is initially referenced and re-referenced
from the same wavefront as intra-wavefront locality. Locality re-
sulting from data that is initially referenced by one wavefront and
re-referenced by another is classified as inter-wavefront locality.
Intra-wavefront locality is a combination of intra-thread locality [27]
(where data is private to a single scalar thread) and inter-thread local-
ity where data is shared among scalar threads in the same wavefront.

0

20

40

60

80

100

120

AVG-Highly Cache Sensitive AVG-Moderately Cache Sensitive

(
H

i
t
s

/
M

i
s

s
)

P

K
I

Misses PKI

Inter-Wavefront Hits PKI

Intra-Wavefront Hits PKI

Figure 1: Average hits and misses per thousand instructions (PKI)
using an unbounded L1 data cache (with 128B lines) on
cache-sensitive benchmarks.

Figure 1 illustrates that the majority of data reuse observed in our
HCS benchmarks comes from intra-wavefront locality.

To exploit this type of locality in HCS benchmarks, we intro-
duce Cache-Conscious Wavefront Scheduling (CCWS). CCWS uses
a novel lost intra-wavefront locality detector (LLD) that alerts the
scheduler if its decisions are destroying intra-wavefront locality.
Based on this feedback, the scheduler assigns intra-wavefront local-
ity scores to each wavefront and ensures that those wavefronts losing
intra-wavefront locality are given more exclusive access to the L1D
cache.

Simple wavefront scheduling policies such as round-robin are
oblivious to their effect on intra-wavefront locality, potentially
touching data from enough threads to cause thrashing in the L1D.
A two level scheduler such as that proposed by Narasiman et al. [31]
exploits inter-wavefront locality while ensuring wavefronts reach
long latency operations at different times by scheduling groups of
wavefronts together. However, Figure 1 demonstrates that the HCS
benchmarks we studied will benefit more from exploiting intra-
wavefront locality than inter-wavefront locality. Existing schedulers
do not take into account the effect issuing more wavefronts has on
the intra-wavefront locality of those wavefronts that were previously
scheduled. In the face of L1D thrashing, the round-robin nature of
their techniques will cause the destruction of older wavefront’s intra-
wavefront locality.

Figure 2 illustrates the cache size sensitivity of our benchmarks
(described in Section 4) when using a round-robin scheduler and the
baseline system described in Section 4. Although all of these bench-
marks are somewhat cache-sensitive, the HCS benchmarks plotted
on the left in Figure 2 see 3× or more performance improvement
with a much larger L1 data cache.

For GPU-like architectures to effectively address a wider range of
workloads, it is critical that their performance on irregular workloads
is improved. Recent work on the highly cache-sensitive Memcached
(MEMC) [16] and BFS [30] has shown promising results running
these commercially relevant irregular parallel workloads on GPUs.
However, since current GPUs face many performance challenges
running irregular applications, there are relatively few of them writ-
ten. In this work we evaluate a set of irregular GPU applications and

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.16

72

36.3

0

1

2

3

4

5

6

7

BFS KMN MEMC GC HMEAN-HCS

N
o

r
m

a
l
i
z
e

d

I
P

C
32k L1D ������

0

0.5

1

1.5

CFD SSSP STMCL WP HMEAN-MCS

N
o

r
m

a
l
i
z
e

d

I
P

C

32k L1D 8M L1D

Figure 2: Performance using a loose round-robin scheduler at various L1D cache sizes for highly cache-sensitive (left) and moderately cache-
sensitive benchmarks (right), normalized to a cache size of 32k. All caches are 8-way set-associative with 128B cache lines.

�

���

���

���

���

�

���

���

���

���

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

�
�
�
�
�
�
�
�
	

�
�

�
�
�
�
�
�
�

A
v
e

r
a

g
e

M

P
K

I

Wavefronts Actively Scheduled

���� ����	
	��������
���

Figure 3: Average misses per thousand instructions (MPKI) and har-
monic mean (HMEAN) performance improvement of HCS
benchmarks with different levels of multithreading. Instruc-
tions per cycle (IPC) is normalized to 32 wavefronts.

demonstrate their performance can be highly sensitive to the GPU’s
wavefront scheduling policy.

Figure 3 highlights the impact wavefront scheduling can have
on preserving intra-wavefront locality. It shows the effect of stat-
ically limiting the number of wavefronts actively scheduled on a
core. Peak throughput occurs at a multithreading value less than
maximum concurrency, but greater than the peak cache performance
point (which limits concurrency to a single wavefront). Although it
may seem counterintuitive to limit the amount of multithreading in a
GPU, our data demonstrates a trade-off between hiding long latency
operations and creating more of them by destroying intra-wavefront
locality.

Our work draws inspiration from cache replacement and inser-
tion policies in that it attempts to predict when cache lines will be
reused. However, cache way-management policies’ decisions are
made among a small set of blocks. A thread scheduler effectively
chooses which blocks get inserted into the cache from a pool of po-
tential memory accesses that can be much larger than the cache’s
associativity. Similar to how cache replacement policies effectively
predict each line’s re-reference interval [21], our proposed scheduler
effectively changes the re-reference interval to reduce the number
of interfering references between repeated accesses to high locality
data. Unlike scheduling approaches for managing contention im-
plemented in the operating system [39], our technique exploits fine-
grained information available to the low-level hardware scheduler.

This paper makes the following contributions:
• It identifies intra and inter wavefront locality and quantifies the

trade-off between maximizing intra-wavefront locality and con-
current multithreading.

• It proposes a novel Cache-Conscious Wavefront Scheduling
(CCWS) mechanism which can be implemented with no changes
to the cache replacement policy. CCWS uses a novel lost intra-
wavefront locality detector (LLD) to update an adaptive locality
scoring system and improves the performance of HCS workloads
by 63% over existing wavefront schedulers.

Memory Partition

L2 Cache

PortionPort

Off-Chip

DRAM

Channel

Controller

Compute Unit

Work Group

Constant

Cache

Texture

Cache

Memory

Port

Register File

L1 Data

Cache

Local

Data

StoreWork Group

Compute Unit

Work Group

Constant

Cache

Texture

Cache

Memory

Port

Register File

L1 Data

Cache

Local

Data

StoreWork Group

Interconnect

Network

Host CPU

Compute Unit

Work Group

Constant

Cache

Texture

Cache

Memory

Port

Register File

L1 Data

Cache

Local

Data

StoreWork Group

Launch

Kernel Grid

Memory Partition

L2 Cache

PortionPort

Off-Chip

DRAM

Channel

Controller

Memory Partition

L2 Cache

PortionPort

Off-Chip

DRAM

Channel

Controller

Figure 4: Overview of our GPU-like baseline accelerator architecture.

• It demonstrates that CCWS reduces L1D cache misses more than
the Belady-optimal replacement scheme.

• It demonstrates that CCWS can be tuned to trade-off power and
performance. A power-tuned configuration of CCWS reduces
energy-expensive L1D cache misses an additional 18% above the
performance tuned configuration while still achieving a 49% in-
crease in performance on HCS workloads.
The rest of this paper is organized as follows, Section 2 describes

our baseline architecture, Section 3 describes our scheduling tech-
niques including CCWS, Section 4 describes methodology, Sec-
tion 5 describes our results, Section 6 describes related work, and
Section 7 concludes.

2. Baseline Architecture

In this work we study modifications to the GPU-like accelerator
architecture illustrated in Figure 4. The workloads we study are
written in OpenCL [24] or CUDA [33]. Initially, an application be-
gins execution on a host CPU and then a kernel is launched on the
GPU. An OpenCL kernel is composed of “work items” which can
be thought of as scalar threads. To facilitate communication, “work
items” are collected into “work groups” which can communicate
through local memory. Work items are grouped into wavefronts that
execute in lock-step on a GPU core. The microarchitecture of the
baseline GPU core with the extensions required to support CCWS is
illustrated in Figure 5. The GPGPU-Sim 3.x Manual [1] describes
the baseline pipeline in more detail.

Issuing a single wavefront memory instruction can generate up
to W data cache accesses where W is the wavefront width. Mod-
ern GPUs attempt to reduce the number of memory accesses gener-
ated from each wavefront by coalescing the lane’s memory requests
into cache line sized chunks when there is spatial locality across
the wavefront [33]. Applications with highly regular access patterns
may generate as few as two memory requests that service all W lanes.
Our baseline (L1D) cache evicts global data on writes and reserves
cache lines on misses.

73

Our baseline architecture assigns workgroup sized chunks of
threads to compute units. Each compute unit is able to schedule
wavefronts from multiple workgroups. The number of workgroups
assigned to each core is limited by the total number of threads on the
core and the static resource usage of each workgroup [32].

This work focuses on the decision made by the wavefront issue
arbiter (WIA) (1 in Figure 5). An in-order scoreboard (2) and de-
code unit (3) control when each instruction in an instruction buffer
(I-Buffer 2) is ready to issue. The WIA decides which of these
ready instructions issues next.

3. Wavefront Scheduling to Preserve Locality

This section describes our scheduling techniques, which take advan-
tage of the insights mentioned in Section 1. First, Section 3.1 an-
alyzes wavefront scheduling for locality preservation in an exam-
ple workload with intra-wavefront locality. Next, Section 3.2 intro-
duces static wavefront limiting (SWL) which gives high-level lan-
guage programmers an interface to tune the level of multithreading.
Finally, Section 3.3 describes Cache-Conscious Wavefront Schedul-
ing (CCWS), an adaptive hardware scheduler that uses fine-grained
memory system feedback to capture intra-wavefront locality.

3.1. A Code Example

Consider the inner loop of a graph processing workload presented in
Example 1. The problem has been partitioned by having each scalar
thread operate on all the edges of a single node. The adjoining edges
of each node are stored sequentially in memory. This type of storage
is common in many graph data structures including the highly space
efficient compressed sparse rows [6] representation. This workload
contains intra-wavefront locality resulting from intra-thread locality
(data’s initial reference and subsequent re-references come from the
same scalar thread).

The inner loop of each scalar thread strides through attributes of
its assigned node’s edges sequentially. This sequential access stream
has significant spatial locality that can be captured by a GPU’s large
cache line size (e.g. 128B). If the GPU was limited to just a single
thread per compute unit, the memory loads inside the loop would
hit in the L1D cache often. In realistic workloads, more than one
thousand threads executing this loop will share the same L1D cache.

Example 1 Example graph algorithm kernel run by each scalar
thread.

int node_degree = nodes[thread_id].degree;
int thread_first_edge = nodes[thread_id].starting_edge;
for (int i = 0; i < node_degree; i++) {

edge_attribtes = edges[thread_first_edge + i];
int neighbour_node_id = edge_attributes.node;
int edge_weight = edge_attributes.weight;
...

}

We find that if the working set of all the threads is small enough
to be captured by the L1D, optimizing both cache efficiency and
overall throughput is largely independent of the scheduler choice. In
the other extreme, if only one wavefront’s working set fits in the
cache, optimizing misses would have each wavefront run to comple-
tion before starting another. Optimizing performance when the L1D
is not large enough to capture all of the locality requires the wave-
front scheduler to intelligently trade-off preserving intra-wavefront
locality with concurrent multithreading.

If the scheduler had oracle information about the nature of the
workload, it could limit the number of wavefronts actively scheduled
to maximize performance. This observation motivates the introduc-
tion of static wavefront limiting (SWL) which allows a high-level
programmer to specify a limit on the number of wavefronts actively
scheduled per compute unit at kernel launch.

3.2. Static Wavefront Limiting (SWL)

Figure 3 shows the effect limiting the number of wavefronts actively
scheduled on a compute unit has on cache performance and sys-
tem throughput. Current programming API’s such as CUDA and
OpenCL allow the programmer to specify workgroup size. How-
ever, they allow as many wavefronts to run on each compute unit
as shared core resources (e.g., registers, shared scratchpad memory)
permit. Consequently, even if the programmer specifies small work-
groups, multiple workgroups will run on the same compute unit if
resources permit. As a result, the number of wavefronts/warps run-
ning at once may still be too large a working set for the L1D. For
this reason, we propose static wavefront limiting (SWL) which is
implemented as a minor extension to the wavefront scheduling logic
where a register is used to determine how many wavefronts are ac-
tively issued, independent of workgroup size.

In SWL, the programmer must specify a limit on the number of
wavefronts when launching the kernel. This technique is useful if
the user knows the optimal number of wavefronts prior to launching
the kernel, which could be determined by profiling.

In benchmarks that make use of work group level synchronization,
SWL limits the number of wavefronts running until a barrier, allows
the rest of the work-group to reach the barrier, then continues with
the same multithreading constraints.

In Section 5 we demonstrate that the optimal number of wave-
fronts is different for different benchmarks. Moreover, we find this
number changes in each benchmark when its input data is changed.
This dependence on benchmark and input data makes an adaptive
CCWS system desirable.

3.3. Cache-Conscious Wavefront Scheduling (CCWS)

This subsection first defines the goal and high level implementation
of CCWS in Section 3.3.1. Next, Section 3.3.2 details how CCWS
is applied to the baseline scheduling logic. Section 3.3.3 explains
the lost intra-wavefront locality detector (LLD), followed by Sec-
tion 3.3.4 which explains how our locality scoring system makes
use of LLD information to determine which wavefronts can issue.
Finally, Section 3.3.5 describes the locality score value assigned to
a wavefront when lost locality is detected.
3.3.1. High-Level Description The goal of CCWS is to dynamically
determine the number of wavefronts allowed to access the mem-
ory system and which wavefronts those should be. At a high level,
CCWS is a wavefront scheduler that reacts to access level feedback
(4 in Figure 5) from the L1D cache and a victim tag array (VTA)
at the memory stage. CCWS uses a dynamic locality scoring system
to make scheduling decisions.

The intuition behind why our scoring system works can be ex-
plained by Figure 6. At a high level, each wavefront is given a score
based on how much intra-wavefront locality it has lost. These scores
change over time. Wavefronts with the largest scores fall to the bot-
tom of a sorted stack (for example, W2 at T1), pushing wavefronts
with smaller scores above a cutoff (W3 at T1) which prevents them
from accessing the L1D. In effect, the locality scoring system re-
duces the number of accesses between data re-references from the

74

Memory Unit

Wavefront Issue Arbiter

Fetch/

Decode

WIA

Waves

Ready

[1:N]

LSS

LLD

W
1

W
2

W
N

Tag

Tag

Tag

Tag

Tag

Tag

Tag

Tag

WID

WID

Data

Data

VTAHit

(WID)

L1D

Cache

Victim Tag

Array

To Exec

Inst.

(WID)

Intersection

Prioritized

Waves

[1:N]

Baseline

Priority

Logic

Is Load

[1:N]

Can

Issue

[1:N]

LLS Cutoff Test

Score

[1:N]

Access

From

Coaleser

(WID + Tag) On Evict/Miss

To LSS WID

(On VTA Hit)

Registers/

Execution

Mem. Unit

I-Buffer/

Scoreboard

LLS
W2

LLS
WN

LLS
W1

LLS Update Logic

Inst. Issued

Total

VTAHit

Total

Waves

Ready

[1:N]

Inst.

(WID)

1

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

1819

11

Figure 5: Modeled GPU core microarchitecture. N is the number
of wavefront contexts stored on a core. LSS=locality
scoring system, LLD=lost intra-wavefront locality detector,
WID=wavefront ID, LLS=lost-locality score, VTA=victim tag
array, I-Buffer=instruction buffer

W0

W0

C
u

m
u

l
a

t
i
v
e

L

L
S

Time

Cumulative

LLS Cutoff
To

W1

W2

W3

Wave

0's

LLS

W1

W2

W3
W1

W3

T
0

W1

W0

W3

LLDS

T
1

T
2

T
4

W
Z

Wave Cannot

Issue Loads

...

Legend

Cumulative

LLS Cutoff
T4

W0

...

W2

...

...

W1

W2

W0

W3

T
3

a

b

VTA Hit

(W2)

VTA Hit

(W2,W0)

No VTA

Hits

VTA

Hit

(W0)

W2

Finish

...

Figure 6: Locality scoring system operation example. LLS=lost-
locality score, LLDS=lost-locality detected score

same wavefront by removing the accesses of other wavefronts. The
following subsections describe CCWS in more detail.

3.3.2. Effect on Baseline Issue Logic Figure 5 shows the modifica-
tions to the baseline wavefront issue arbiter (1) and memory unit
(5) required for CCWS. CCWS is implemented as an extension to
the system’s baseline wavefront prioritization logic (6). This prior-
itization could be done in a greedy, round-robin or two level manner.
CCWS operates by preventing loads that are predicted to interfere
with intra-wavefront locality from issuing through a "Can Issue" bit
vector (7) output by the locality scoring system (8). The intersec-
tion logic block (9) selects the highest priority ready wavefront that
has issue permission.

3.3.3. Lost Intra-Wavefront Locality Detector (LLD) To evaluate
which wavefronts are losing intra-wavefront locality, we introduce
the LLD unit (10) which uses a victim tag array (VTA) (11). The
VTA is a highly modified variation of a victim cache [23]. The sets
of the VTA are sub-divided among the all the wavefront contexts
supported on this core. This gives each wavefront its own small
VTA (12). The VTA only stores cache tags and does not store line
data. When a miss occurs and a line is reserved in the L1D cache, the
wavefront ID (WID) of the wavefront reserving that line is written
in addition to the tag (13). When that line is evicted from the cache,
its tag information is written to that wavefront’s portion of the VTA.
Whenever there is a miss in the L1D cache, the VTA is probed. If the
tag is found in that wavefront’s portion of the VTA, the LLD sends
a VTA hit signal to the locality scoring system (14). These signals
inform the scoring system that a wavefront has missed on a cache
line that may have been a hit if that wavefront had more exclusive
access to the L1D cache.

3.3.4. Locality Scoring System Operation Figure 6 provides a
visual example of the locality scoring system’s operation. In this
example, there are four wavefronts initially assigned to the com-
pute unit. Time T0 corresponds to the time these wavefronts are
initially assigned to this core. Each segment of the stacked bar rep-
resents a score given to each wavefront to quantify the amount of
intra-wavefront locality it has lost. We call these values lost-locality
scores (LLS). At T0 we assign each wavefront a constant base lo-
cality score. LLS values are stored in a max heap (15) inside the
locality scoring system. A wavefront’s LLS can increase when the
LLD sends a VTA hit signal for this wavefront. The scores each
decrease by one point every cycle until they reach the base local-
ity score. The locality scoring system gives wavefronts losing the
most intra-wavefront locality more exclusive L1D cache access by
preventing the wavefronts with the smallest LLS from issuing load
instructions. Wavefronts whose LLS falls above the cumulative LLS
cutoff (a in Figure 6) in the sorted heap are prevented from issu-
ing loads. The value of the cumulative LLS cutoff is defined as
NumActiveWaves×BaseLocalityScore, where NumActiveWaves is
the number of waves currently assigned to this core.

The LLS cutoff test block (16) takes in a bit vector from the in-
struction buffer indicating what wavefronts are attempting to issue
loads. It also takes in a sorted list of LLSs, performs a prefix sum
and clears the "Can Issue" bit for wavefronts attempting to issue
loads whose LLS is above the cutoff. The locality scoring system is
not on the critical path, can be pipelined and does not have to update
the score cutoffs every compute unit cycle. In our example from Fig-
ure 6, between T0 and T1, W2 has received a VTA hit and its score has
been increased to the lost-locality detected score (LLDS), (b in Fig-
ure 6). Section 3.3.5 explains the LLDS in more detail. W2’s higher
score has pushed W3 above the cumulative LLS cutoff, clearing W3’s
"Can Issue" bit if it attempts to issue a load instruction. From a mi-
croarchitecture perspective, LLSs are modified by the score update
logic (17). The update logic block receives VTA hit Signals (with
a WID) from the LLD which triggers a change to that wavefront’s
LLS. We limit the amount one wavefront can dominate the point sys-
tem by capping each wavefront’s score at LLDS, regardless of how
many VTA hits it has received. Other methods of capping a wave-
front’s LLS were attempted and we found that limiting them to the
LLDS simplified the point system and yielded the best results. In
the example, between T1 and T2 both W2 and W0 have received VTA
hits, pushing both W3 and W1 above the cutoff. Between T2 and T3,

75

no VTA hits have occurred and the scores for W2 and W0 have de-
creased enough to allow both W1 and W3 to issue loads again. This
illustrates how the system naturally backs off thread throttling over
time. Between time T3 and T4, W2 finishes and W0 has received a
VTA hit to increase its score. This illustrates that when a wavefront
is added or removed from the system, the cumulative LLS cutoff
changes. Now that there are three wavefronts active, the LLS cutoff
becomes 3× the base score. Having the LLS cutoff be a multiple
of the number of active wavefronts ensures the locality scoring sys-
tem maintains its sensitivity to lost-locality. If the LLS cutoff does
not decrease when the number of wavefronts assigned to this core
decreases, it takes a higher score per wavefront to push lower scores
above the cutoff as the kernel ends. This results in the system taking
more time to both constrain multithreading when locality is lost and
back off thread limiting when there is no lost locality.
3.3.5. Determining the Lost-Locality Detected Score (LLDS) The
value assigned to a wavefront’s score on a VTA hit (the LLDS) is a
function of the total number of VTA hits across all this compute
unit’s wavefronts (18) and all the instructions this compute unit has
issued (19). This value is defined by Equation (1).

LLDS =

V TAHitsTotal

InstIssuedTotal
·KT HROTT LE ·CumLLSCuto f f (1)

Using the fraction of total VTA hits divided by the number of instruc-
tions issued serves as an indication of how much locality is being
lost on this core per instruction issued. A constant (KT HROT T LE) is
applied to this fraction to tune how much throttling is applied when
locality is lost. A larger constant favors less multithreading by push-
ing wavefronts above the cutoff value more quickly and for a longer
period of time. Finding the optimal value of KT HROTT LE is depen-
dent on several factors including the number threads assigned to a
core, the L1D cache size, relative memory latencies and locality in
the workload. We intend for this constant to be set for a given chip
configuration and not require any programmer or OS support. In our
study, a single value for KT HROTT LE used across all workloads cap-
tures 95.4% to 100% of the performance of any workload’s optimal
KT HROTT LE value. This static value is determined experimentally
and explored in more detail in Section 5.5. Like the LLS cutoff test,
the lost-locality detected score can take several cycles to update and
does not impact the critical path.

4. Experimental Methodology

We model the cache-conscious scheduling mechanisms as described
in Section 3 in GPGPU-Sim [4] (version 3.1.0) using the configura-
tion in Table 1. The Belady-optimal replacement policy [8], which
chooses the line which is re-referenced furthest in the future for evic-
tion, is evaluated using a custom stand alone GPGPU-Sim cache
simulator (SAGCS). SAGCS is a trace based cache simulator that
takes GPGPU-Sim cache access traces as input. Since SAGCS is not
a performance simulator and only provides cache information, we do
not present IPC results for the Belady-optimal replacement policy.
To validate SAGCS, we verified the miss rate for LRU replacement
using SAGCS and found that it was within 0.1% of the LRU miss
rate reported using GPGPU-Sim. This small difference is a result
of variability in the GPGPU-Sim memory system that SAGCS does
not take into account.

We perform our evaluation using the high-performance com-
puting GPU-enabled server workloads listed in Table 2 from Ro-
dinia [9], Hetherington et al. [16] and Bakhoda et al. [4]. While

Table 1: GPGPU-Sim Configuration

Compute Units 30
Wavefront Size 32

SIMD Pipeline Width 8
Number of Threads / Core 1024
Number of Registers / Core 16384

Shared Memory / Core 16KB
Constant Cache Size / Core 8KB
Texture Cache Size / Core 32KB, 64B line, 16-way assoc.

Number of Memory Channels 8
L1 Data Cache 32KB, 128B line, 8-way assoc. LRU

L2 Unified Cache 128k/Memory Channel, 128B line, 8-way assoc. LRU
Compute Core Clock 1300 MHz
Interconnect Clock 650 MHz

Memory Clock 800 MHz
DRAM request queue capacity 32

Memory Controller out of order (FR-FCFS)
Branch Divergence Method PDOM [12]
GDDR3 Memory Timing tCL=10 tRP=10 tRC=35

tRAS=25 tRCD=12 tRRD=8
Memory Channel BW 8 (Bytes/Cycle)

Table 2: GPU Compute Benchmarks (CUDA and OpenCL)

Highly Cache Sensitive (HCS)
Name Abbr. Name Abbr.
BFS Graph Traversal [9] BFS Kmeans [9] KMN
Memcached [16] MEMC Garbage Collection [5, 36] GC

Moderately Cache Sensitive (MCS)
Name Abbr. Name Abbr.
Weather Prediction [9] WP Streamcluster [9] STMCL
Single Source Shortest Path [4] SSSP CFD Solver [9] CFD

Cache Insensitive (CI)
Name Abbr. Name Abbr.
Needleman-Wunsch [9] NDL Back Propagation [4] BACKP
Speckle Red. Anisotropic Diff. [9] SRAD LU Decomposition [9] LUD

the regularity of the HPC applications makes them particularly well
suited for the GPU, they represent only one segment of the overall
computing market [18] [17].

In addition to the cache-sensitive benchmarks introduced earlier,
we also evaluate against a number of cache-insensitive (CI) bench-
marks to ensure CCWS does not have a detrimental effect.

To make use of a larger input, the KMN benchmark was slightly
modified to use global memory in place of both texture and constant
memory.

All of our benchmarks run from beginning to end which takes
between 14 million and 1 billion instructions.

4.1. GPU-enabled server workloads

This work uses two GPU-enabled server workloads. These bench-
marks were ported to OpenCL from existing CPU implementations.
They represent highly parallel code with irregular memory access
patterns whose performance could be improved by running on the
GPU.
Memcached-GPU (MEMC) Memcached is a key-value store and

retrieval system. Memcached-GPU is described in detail by
Hetherington et al. [16]. The application is stimulated with a
representative portion of the Wikipedia access trace collected
by Urdaneta et al. [37].

Tracing Garbage Collector (GC) Garbage collection is an impor-
tant aspect of many server applications. Languages such
as Java use system-controlled garbage collection to manage
resources [2]. A version of the tracing mark-and-compact
garbage collector presented in Barabash et al. [5] is created
in OpenCL. The collector is stimulated with benchmarks pro-
vided by Spoonhower et al. [36].

5. Experimental Results

This section is structured as follows, Section 5.1 presents the per-
formance of SWL, CCWS, other related wavefront schedulers and

76

5.9 4.1

1.15

0

0.5

1

1.5

2

BFS KMN MEMC GC HMEAN-HCS

N
o

r
m

a
l
i
z
e

d

I
P

C

LRR GTO 2LVL-GTO Best-SWL CCWS

Figure 7: Performance of various schedulers and replacement poli-
cies for the highly cache-sensitive benchmarks. Normal-
ized to the GTO scheduler.

the Belady-optimal replacement policy using the system presented
in Section 4. The results for CCWS presented in Section 5.1 repre-
sent a design point that maximizes performance increase over area
increase. The remainder of this section is devoted to exploring the
sensitivity of our design and explaining the behaviour of our bench-
marks.

5.1. Performance

The data in Figures 7, 8, 9 and 10 is collected using GPGPU-Sim for
the following mechanisms:
LRR Loose round-robin scheduling. Wavefronts are prioritized for

scheduling in round-robin order. However, if a wavefront can-
not issue during its turn, the next wavefront in round-robin or-
der is given the chance to issue.

GTO A greedy-then-oldest scheduler. GTO runs a single wavefront
until it stalls then picks the oldest ready wavefront. The age of
a wavefront is determined by the time it is assigned to the core.
For wavefronts that are assigned to a core at the same time (i.e.
they are in the same workgroup), wavefronts with the small-
est threads IDs are prioritized. Other greedy schemes (such
as greedy-then-round-robin and oldest-first) were implemented
and GTO scheduling had the best results.

2LVL-GTO A two-level scheduler similar to that described by
Narasiman et al. [31]. Their scheme subdivides wavefronts
waiting to be scheduled on a core into fetch groups (FG) and
executes from only one fetch group until all wavefronts in that
group are stalled. Narasiman et al. used a fetch group size of
8 and a round-robin scheduling policy to select among wave-
fronts in a fetch group as well as among fetch groups. To
provide a fair comparison against their scheduling technique
in our simulator and on our workloads, all fetch group sizes
were swept. We also explored alternate scheduling policies for
intra-FG and inter-FG selection. We found using GTO for both
of these policies was better than the algorithm they employed.
A fetch group size of 2 using GTO for both intra-FG and inter-
FG selection provides the best performance on our workloads
and is what we present in our results. This disparity in optimal
configuration can be explained by the nature of our workloads
and our baseline architecture. Their core pipeline allows only
one instruction from a given wavefront to be executing at a
time. This means that a wavefront must wait for its previously
issued instruction to complete execution before the wavefront
can issue another instruction. This is different from our base-
line which prevents a fetched instruction from issuing if the
scoreboard detects a data hazard.

Best-SWL Static Wavefront Limiting as described in Section 3.2.
All possible limitation values (32 to 1) were run and the best
performing case is picked. The GTO policy is used to select

between wavefronts. The wavefront value used for each bench-
mark is shown in Table 3.

CCWS Cache-Conscious Wavefront Scheduling described in Sec-
tion 3.3 with the configuration parameters listed in Table 3.
GTO wavefront prioritization logic is used.

The data for Belady-optimal replacement misses per thousand in-
structions (MPKI) presented in Figures 8 and 10 is generated with
SAGCS:
<scheduler>-BEL Miss miss rate reported by SAGCS when using

the Belady-optimal replacement policy. SAGCS is stimulated
with L1D access streams generated by using GPGPU-Sim run-
ning the specified <scheduler>. Since SAGCS only reports
misses, MPKI is calculated from the GPGPU-Sim instruction
count.

Figure 7 shows that CCWS achieves a harmonic mean 63% per-
formance improvement over a simple greedy wavefront scheduler
and 72% over the 2LVL-GTO scheduler on HCS benchmarks. The
GTO scheduler performs well because prioritizing older wavefronts
allows them to capture intra-wavefront locality by giving them more
exclusive access to the L1 data cache. The 2LVL-GTO scheduler
performs slightly worse than the GTO scheduler because the 2LVL-
GTO scheduler will not prioritize the oldest wavefronts every cycle.
2LVL-GTO only attempts to schedule the oldest FG intermittently,
once the current FG is completely stalled. This allows loads from
younger wavefronts, which would not have been prioritized in the
GTO scheduler, to be injected into the access stream, causing older
wavefront’s data to be evicted.

CCWS and SWL provide further benefit over the GTO sched-
uler because these programs have a number of uncoalesced loads,
touching many cache lines in relatively few memory instructions.
Therefore, even restricting to just the oldest wavefronts still touches
too much data to be contained by the L1D. The GTO, 2LVL-GTO,
Best-SWL and CCWS schedulers see a greater disparity in the com-
pletion time of workgroups running on the same core compared to
the LRR scheduler. Since all our workloads are homogeneous (at
any given time only workgroups from one kernel launch will be as-
signed to each core) and involve synchronous kernel launches, the
relative completion time of workgroups is not an issue. All that mat-
ters is when the whole kernel finishes. Moreover, the highly cache-
sensitive workloads we study do not use any workgroup or global
synchronization within a kernel launch, therefore older wavefronts
are never stalled waiting for younger ones to complete.

Figure 7 also highlights the importance of scheduler choice even
among simple schedulers like GTO and LRR. The LRR scheduler
suffers from a 64% slowdown compared to GTO. Scheduling wave-
fronts with a lot of intra-wavefront locality in a RR fashion strides
through too much data to be contained in the L1D. Best-SWL is able
to slightly outperform CCWS on all the benchmarks. The CCWS
configuration used here has been optimized to provide the highest
performance per unit area. If the VTA cache is doubled in size,
CCWS is able to slightly outperform Best-SWL on some workloads.
CCWS is not able to consistently outperform Best-SWL because
there is a start-up cost associated with detecting the loss of locality
and a cool-down cost to back off the wavefront throttling. Adding
to that, the execution time of these kernels is dominated by the code
section that benefits from wavefront limiting. Therefore, providing
the static scheme with oracle knowledge (through profiling) gives it
an advantage over the adaptive CCWS scheme. Section 5.6 exam-
ines the shortcomings of the SWL under different run-time condi-

77

153 115

0

10

20

30

40

50

60

70

80

90

BFS KMN MEMC GC AVG-HCS

M
P
K
I

LRR LRR-BEL

GTO GTO-BEL

2LVL-GTO 2LVL-GTO-BEL

Best-SWL Best-SWL-BEL

CCWS CCWS-BEL

Figure 8: MPKI of various schedulers and replacement policies for the highly cache-sensitive benchmarks.

0

0.2

0.4

0.6

0.8

1

1.2

CFD SSSP STMCL WP HMEAN-MCS

N
o

r
m

a
l
i
z
e

d

I
P

C

LRR GTO 2LVL-GTO Best-SWL CCWS

0

0.2

0.4

0.6

0.8

1

1.2

BACKP LUD NDL SRAD HMEAN-CI

N
o

r
m

a
l
i
z
e

d

I
P

C

LRR GTO 2LVL-GTO Best-SWL CCWS

Figure 9: Performance of various schedulers and replacement policies for moderately cache-sensitive (left) and cache-insensitive (right) bench-
marks. Normalized to the GTO scheduler.

tions.
Although not plotted here, it is worth mentioning the performance

of the 2LVL-LRR scheduling configuration evaluated by Narasiman
et al. On the HCS benchmarks the 2LVL-LRR scheduler is a har-
monic mean 43% faster than the LRR scheduler, however this is still
47% slower than the GTO scheduler. Performing intra-FG and inter-
FG scheduling in a round-robin fashion destroys the intra-wavefront
locality of older wavefronts that is captured by the GTO scheduler.
However, in comparison to the LRR scheduler, which cycles through
32 wavefronts in a round-robin fashion, cycling through smaller FG
sized pools (each fetch group has 8 wavefronts in their configuration)
will thrash the L1 data cache less.

Figure 8 illustrates that the reason for the performance advantage
of the wavefront limiting schemes is a sharp decline in the number
of L1D misses. This figure highlights the fact that no cache replace-
ment policy can make up for a poor choice in wavefront scheduler,
as even an oracle Belady-optimal policy on the LRR access stream
is outperformed by all the schedulers. The insight here is that even
optimal replacement cannot compensate for an access stream that
strides through too much data, at least for the relatively low asso-
ciativity L1 data caches we evaluated.. Furthermore, the miss rate
of CCWS outperforms both GTO-BEL and 2LVL-GTO-BEL. This
data suggests L1D cache hit rates are more sensitive to wavefront
scheduling policy than cache replacement policy.

Figures 9 and 10 present the performance and MPKI of our MCS
and CI benchmarks. The harmonic mean performance improvement
of CCWS across both the highly and moderately cache-sensitive
(HCS and MCS) benchmarks is 24%. In the majority of the MCS
and CI workloads, the choice of wavefront scheduler makes little
difference and CCWS does not degrade performance. There is no
degradation because the MPKI for these benchmarks is much lower
than the HCS applications, so there are few VTA hits compared to
instructions issued. As a result the lost-locality detected score as de-
fined by Equation (1) stays low and the thread throttling mechanism
does not take effect.

5.2. Detailed Breakdown of Inter- and Intra-Wavefront Locality

Figure 11 breaks down L1D accesses into misses, inter-wavefront
hits and intra-wavefront hits for all the schedulers evaluated in Sec-

Table 3: Configurations for Best-SWL (wavefronts actively sched-
uled) and CCWS variables used for performance data.

Best-SWL CCWS Config
Benchmark Wavefronts Actively Scheduled Name Value
BFS 5 KT HROTTLE 8
KMN 4 Wavefront Base Score 100
MEMC 7 VTA Tag array 8-way
GC 4 16 entries per wavefront
All Others 32 (512 total entries)

tion 5.1 on our HCS benchmarks. In addition, it quantifies the por-
tion of intra-wavefront hits that are a result of intra-thread locality. It
illustrates that the decrease in cache misses using CCWS and Best-
SWL comes chiefly from an increase in intra-wavefront hits. More-
over, the bulk of these hits are a result of intra-thread locality. The
exception to this rule is BFS, where 30% of intra-wavefront hits
come from inter-thread locality and we see a 23% increase in inter-
wavefront hits. An inspection of the code reveals that inter-thread
sharing (which manifests itself as both intra-wavefront and inter-
wavefront locality) occurs when nodes in the graph share neighbours.
Limiting the number of wavefronts actively scheduled increases the
hit rate of these accesses because it limits the amount of non-shared
data in the cache, increasing the chance that these shared accesses
hit.

Figure 12 explores the access stream of all the cache-sensitive
benchmarks using SAGCS and an unbounded L1D. It shows that
with the exception of SSSP, the MCS benchmarks have signifi-
cantly less locality in the access stream. The larger amount of intra-
wavefront locality in SSSP is consistent with the significant perfor-
mance improvement we observe for CCWS at smaller cache sizes
when the working set of all the threads does not fit in the L1D cache
(see Figure 14).

5.3. Sensitivity to Victim Tag Array Size

Figure 13 shows the effect of varying the VTA size on performance.
With a larger victim tag array the system is able to detect lost intra-
wavefront locality occurring at further access distances. Increasing
the size of the VTA keeps data with intra-wavefront locality in the
VTA longer and causes wavefront limiting to be appropriately ap-
plied. However, if the VTA size is increased too much, the lost-
locality detector’s time sensitivity is diminished. The VTA will
contain tags from data that was evicted from the L1 data cache so

78

0

1

2

3

4

5

6

7

8

9

CFD SSSP STMCL WP AVG-MCS

M
P
K
I

LRR LRR-BEL

GTO GTO-BEL

2LVL-GTO 2LVL-GTO-BEL

Best-SWL Best-SWL-BEL

CCWS CCWS-BEL

0

0.5

1

1.5

2

2.5

3

3.5

BACKP LUD NDL SRAD AVG-CI

M
P

K
I

LRR LRR-BEL

GTO GTO-BEL

2LVL-GTO 2LVL-GTO-BEL

Best-SWL Best-SWL-BEL

CCWS CCWS-BEL

Figure 10: MPKI of various schedulers and replacement policies for moderately cache-sensitive (left) and cache-insensitive benchmarks (right).

BFS KMN MEMC GC AVG-HCS

0

20

40

60

80

100

120

140

160

180

L
R

R

G
T

O

2
L

V
L

-
G

T
O

B
e

s
t
-
S

W
L

C
C

W
S

L
R

R

G
T

O

2
L

V
L

-
G

T
O

B
e

s
t
-
S

W
L

C
C

W
S

L
R

R

G
T

O

2
L

V
L

-
G

T
O

B
e

s
t
-
S

W
L

C
C

W
S

L
R

R

G
T

O

2
L

V
L

-
G

T
O

B
e

s
t
-
S

W
L

C
C

W
S

L
R

R

G
T

O

2
L

V
L

-
G

T
O

B
e

s
t
-
S

W
L

C
C

W
S

(
H

i
t
/
M

i
s

s
)

P

K
I

Miss

Inter-Wave

Intra-Wave Hit (inter-thread)

Intra-Wave Hit (intra-thread)

Figure 11: Breakdown of L1D misses, intra-wavefront locality hits
(broken into intra-thread and inter-thread) and inter-
wavefront locality hits per thousand instructions for highly
cache-sensitive benchmarks. The configuration from Sec-
tion 5.1 is used.

0

50

100

150

200

BFS KMN MEMC GC CFD SSSP STMCL WP

(
H

i
t
s

/
M

i
s
s
e

)

P

K
I

Misses PKI

Inter-Wavefront Hits PKI

Intra-Wavefront Hits PKI

Figure 12: Breakdown of L1D misses, intra-wavefront locality Hits
and inter-wavefront locality PKI using an unbounded L1
cache with 128 byte cache lines.

long ago that it would have been difficult to capture with changes to
the scheduling policy. For example, at the 512 entry design point,
each wavefront has a VTA that can track as much data as the en-
tire L1D. In this configuration, a wavefront would need exclusive
access to the L1 data cache to prevent all the detected loss of local-
ity. The increase in detected lost-locality results in excessive wave-
front constraining on some workloads. Based on this data, the best-
performing configuration with 16 entries per wavefront is selected.

5.4. Sensitivity to Cache Size

Figure 14 shows the sensitivity of CCWS to the L1D size. As the
cache size decreases, CCWS has a greater performance improve-
ment relative to the GTO scheduler. This is because at small cache
sizes it is even more desirable to limit multithreading to reduce cache
footprint. In fact SSSP, which showed no performance gain at 32k
shows a 35% speedup when the L1 cache is reduced to 8k. This
is because SSSP has significant intra-wavefront locality but its foot-
print is small enough that it is contained by a 32k L1D. As the cache
size increases, the effect of CCWS dwindles relative to the GTO
scheduler because the working set of most wavefronts fit in a larger
cache. At a large enough cache size, the choice of wavefront sched-
uler makes little difference.

At 128k per L1D, CCWS shows little benefit over the GTO sched-
uler. This is because the input to these benchmarks is small enough

that 128k captures most of the intra-wavefront locality. Since we are
collecting results on a performance simulator that runs several or-
ders of magnitude slower than a real device, the input to our bench-
marks is small enough that they finish in a reasonable amount of
time. Figure 15 show the effect of increasing the size of the BFS in-
put graph from the baseline 500k edges to 20M edges. As the input
size increases, the performance of CCWS over the GTO scheduler
also increases even at a 128k L1 cache size. We observe that simply
increasing the capacity of the L1 cache only diminishes the perfor-
mance impact of CCWS with small enough input sets. Hence, we
believe CCWS will have an even greater impact on data sizes used
in real workloads.

5.5. Sensitivity to KT HROTT LE and Tuning for Power

Figure 16 shows the effect of varying KT HROTT LE on L1D misses
and performance. KTHROT T LE is the constant used in Equation (1)
to tune the score assigned to wavefronts when lost locality is de-
tected (LLDS). At smaller KT HROTT LE values, there is less throttling
caused by the point system and more multithreading. At the smallest
values of KT HROT TLE multithreading is not constrained enough and
performance suffers. As KT HROTT LE increases, CCWS has a greater
effect and the number of L1D misses falls across all the HCS bench-
marks. In every HCS benchmark, except GC, performance peaks
then falls as KT HROT T LE increases. However, since a miss in the
L1D cache can incur a significant power cost it may be desirable to
use a higher KT HROTT LE value to reduce L1D misses at the cost of
some performance. For example, at KTHROT T LE = 32 there is an av-
erage 18% reduction in L1D misses over the chosen KTHROT T LE = 8
design point. KT HROT T LE = 32 still achieves a 46% performance im-
provement over the GTO scheduler.

Figure 16 also demonstrates that each benchmark has a differ-
ent optimal KT HROT T LE value. However, the difference in har-
monic mean performance between choosing each benchmark’s opti-
mal KT HROT TLE value and using a constant KT HROT TLE = 8 is< 4%.
For this reason, we do not pursue an online mechanism for determin-
ing the value of KTHROT T LE . If other HCS benchmarks have more
variance in their intra-wavefront locality then such a system should
be considered.

The value of KT HROTT LE makes no difference in the CI bench-
marks since there is little locality to lose and few VTA Hits are re-
ported. In the MCS benchmarks there are relatively few L1D MPKI,
which keeps the product of KT HROTT LE and VTAHitsTotal

InstIssuedTotal
low. In the

MCS benchmarks, CCWS performance matches GTO scheduler per-
formance until KT HROTT LE = 128. At this point there is a harmonic
mean 4% performance degradation due to excessive throttling. Since
their performance is largely unchanged by the value of KT HROT TLE ,
we do not graph the MCS or CI benchmarks in Figure 16.

5.6. Static Wavefront Limiting Sensitivity

In Section 3 we noted that the optimal SWL limiting number was
different for different benchmarks. We also indicated that this value

79

0

1

2

3

4

5

BFS KMN MEMC GC HMEAN-HCS

N
o

r
m

a
l
i
z
e

d

I
P

C

1 EPW 2 EPW 4 EPW

8 EPW 16 EPW 32 EPW

512 EPW

0

0.5

1

1.5

CFD SSSP STMCL WP HMEAN-MCS

N
o

r
m

a
l
i
z
e

d

I
P

C

1 EPW 2 EPW 4 EPW 8 EPW

16 EPW 32 EPW 512 EPW

Figure 13: Performance of CCWS at various victim tag array sizes. Normalized to the GTO scheduler. EPW=Entries per Wavefront. EWP 1-4 are
1-4 set associative respectively. All other victim tag arrays are 8-way set associative.

0

2

4

6

8

10

BFS KMN MEMC GC HMEAN-HCS

N
o

r
m

a
l
i
z
e

d

I
P

C

8k GTO 8k CCWS

16k GTO 16k CCWS

32k GTO 32k CCWS

64k GTO 64k CCWS

128k GTO 128k CCWS

0

0.5

1

1.5

CFD SSSP STMCL WP HMEAN-MCS

N
o

r
m

a
l
i
z
e

d

I
P

C

8k GTO 8k CCWS 16k GTO 16k CCWS 32k GTO

32k CCWS 64k GTO 64k CCWS 128k GTO 128k CCWS

Figure 14: Performance of CCWS and GTO at various cache sizes. Normalized to the GTO scheduler with a 32k L1D. All caches are 8-way set
associative. The VTA Size is 16 entries per wavefront for all instances of CCWS.

0

2

4

6

8

10

12

500k Edges 900k Edges 5M Edges 20M Edges

N
o

r
m

a
l
i
z
e

d

I
P

C

32k GTO 32k CCWS

64k GTO 64k CCWS

128k GTO 128k CCWS

Figure 15: Performance of CCWS on BFS with different graph sizes
when varying the L1D cache size and scheduler choice.
Normalized to the GTO scheduler with a 32k L1D. The VTA
size is 16 entries per wavefront for all instances of CCWS.

changes when running the same benchmark with different input sets.
Figure 17 illustrates that peak performance for each of the HCS
benchmarks occurs with different multithreading limits. This hap-
pens because each workload has a different working set and access
stream characteristics. Furthermore, Figure 18 shows that for differ-
ent input graphs on BFS, the values of the peak performance point
are different. This variation happens because the working set size is
input data dependent. Finding the optimal wavefront limiting num-
ber in SWL would require profiling of each instance of a particular
workload, making the adaptive CCWS more practical.

SWL also suffers in programs that have phased execution. The
larger and more diverse the application is, the less likely a single
wavefront limiting value will capture peak performance. This type
of phased behaviour is not abundant in the HCS workloads we study,
but as the amount and type of code running on the GPU continues to
grow so too will the importance of adaptive multithreading.

SWL is also sub-optimal in a multi-programmed GPU. If wave-
fronts from more than one type of kernel are assigned to the same
compute unit, a per-kernel limiting number makes little sense. Even
if there was no cache thrashing in either workload individually their
combination may cause it to occur. CCWS will adapt to suit the
needs of whatever wavefront combination is running on a compute
unit and preserve their intra-wavefront locality. Since there will
be no inter-wavefront locality among multi-programmed wavefronts,
preservation of intra-wavefront locality becomes even more impor-
tant.

5.7. Area Estimation

The major source of area overhead to support CCWS comes from
the victim tag array. For the configuration used in Table 3 and a 48-
bit virtual address space, we require 40 bits for each tag entry in our
VTA. Using CACTI 5.3 [38], we estimate that this tag array would
consume 0.026 mm2 per core at 55nm or 0.78 mm2 for the entire
30 core system. This represents 0.17% of GeForce GTX 285 area,
which our system closely models with the exception that we also
model data caches. There are a variety of smaller costs associated
with our design that are difficult to quantify and as a result are not
included in the above estimation. Adding an additional 5-bits to
each L1D cache line for the WID costs 160 bytes per core. There
are 32 lost-locality score values, each represented in 10 bits which
are stored in a max heap. Also, there are two counter registers, one
for the number of instructions issued and another for the total VTA
hit signals. In addition, there is logic associated with the scoring
system. Compared to the other logic in a compute unit, we do not
expect this additional logic to be significant.

6. Related Work

This section summarizes and contrasts CCWS against prior schedul-
ing and cache management work.

6.1. Thread Throttling to Improve Performance

Bakhoda et al. [4] present data for several GPU configurations, each
with a different maximum number of workgroups (or CTAs) that
can be concurrently assigned to a core. They observed that some
workloads performed better when less workgroups were scheduled
concurrently. The data they present is for a GPU without an L1 data
cache, running a round-robin wavefront scheduling algorithm. They
conclude that this increase in performance occurs because schedul-
ing less concurrent workgroups on the GPU reduces contention for
the interconnection network and DRAM memory system. In con-
trast, the goal of CCWS is use L1 data cache feedback to preserve
locality by focusing on fine-grained, issue level wavefront schedul-
ing, not coarse-grained workgroup assignment.

Guz et al. [15] use an analytical model to quantify the "perfor-
mance valley" that exists when the number of threads sharing a

80

0

10

20

30

40

50

60

0

1

2

3

4

5

K
=
1

K
=
2

K
=
4

K
=
8

K
=
1
6

K
=
3
2

K
=
6
4

K
=
1
2
8

K
=
1

K
=
2

K
=
4

K
=
8

K
=
1
6

K
=
3
2

K
=
6
4

K
=
1
2
8

K
=
1

K
=
2

K
=
4

K
=
8

K
=
1
6

K
=
3
2

K
=
6
4

K
=
1
2
8

K
=
1

K
=
2

K
=
4

K
=
8

K
=
1
6

K
=
3
2

K
=
6
4

K
=
1
2
8

K
=
1

K
=
2

K
=
4

K
=
8

K
=
1
6

K
=
3
2

K
=
6
4

K
=
1
2
8

.

BFS KMN MEMC GC HMEAN(IPC) AVG(MPKI)

M
P

K
I

N
o

r
m

a
l
i
z
e
d

I
P

C

Normalized IPC

MPKI

Figure 16: Performance of CCWS (normalized to the GTO scheduler) and MPKI of CCWS when varying KTHROT T LE .

1.15

0

1

2

3

4

5

6

BFS KMN MEMC GC

N
o

r
m

a
l
i
z
e

d

I
P

C

1 Wavefront

2 Wavefronts

4 Wavefronts

5 Wavefronts

7 Wavefronts

32 Wavefronts

Figure 17: Performance of SWL at various multithreading limits. Nor-
malized to 32 wavefronts.

0

0.5

1

1.5

2

0 5 10 15 20 25 30

N
o
r
m
a

l
i
z
e
d

I
P

C

Wavefronts Actively Scheduled

Graph A Graph B Graph C

Figure 18: Performance of SWL with different multithreading values
on BFS with different input graphs. Normalized to 32 wave-
fronts.

cache is increased. They show that increasing the thread count in-
creases performance until the aggregate working set no longer fits in
cache. Increasing threads beyond this point degrades performance
until enough threads are present to hide the system’s memory la-
tency. In effect, CCWS dynamically detects when a workload has
entered the machine’s performance valley and scales down the num-
ber of threads sharing the cache to compensate.

Cheng et al. [10] introduce a thread throttling scheme to reduce
memory latency in multi-threaded CPU systems. They propose an
analytical model and memory task limit throttling mechanism to
limit thread interference in the memory stage. Their model relies
on a stream programming language which decomposes applications
into separate tasks for computation and memory and their technique
schedules tasks at this granularity.

6.2. Wavefront Scheduling Techniques

Lakshminarayana and Kim [25] explore numerous warp scheduling
policies in the context of a GPU without hardware managed caches
and show that, for applications that execute symmetric (balanced)
dynamic instruction counts per warp, a fairness based warp and
DRAM access scheduling policy improves performance. In contrast
to our work, their study did not explore scheduling policies that im-
prove performance by improving cache hit rates.

Fung et al. [12] explore the impact of wavefront scheduling policy
on the effectiveness of their Dynamic Warp Formation (DWF) tech-
nique. DWF attempts to mitigate control flow divergence by dynam-
ically creating new warps when scalar threads in the same wavefront

take different paths on a branch instruction. They propose five sched-
ulers and evaluate their effect on DWF. Fung and Aamodt [13] also
propose three thread block prioritization schemes to compliment
their Thread Block Compaction (TBC) technique. The prioritization
schemes attempt to schedule threads within the same thread block
(or workgroup) together. Their approach is similar to the two-level
technique proposed by Narasiman et al. [31], except thread blocks
are scheduled together instead of fetch groups. In contrast to both
these works, CCWS explores the impact of scheduling on cache lo-
cality using existing control flow divergence mitigation techniques.

Gebhart and Johnson et al. [14] introduce the use of a two-level
scheduler to improve energy efficiency. Experiments we run using
their exact specification yielded mixed results. They note that the
performance of their workloads increases less than 10% if a perfect
cache is used instead of no cache at all. For this reason, they run all
their simulations with a constant 400 cycle latency to global mem-
ory. As a result their scheme switches wavefronts out of the active
pool whenever a compiler identified global or texture memory de-
pendency is encountered. We find that obeying this constraint causes
performance degradation because it does not take cache hits into ac-
count. However, if this demotion to the inactive pool is changed to
just those operations causing a stall (i.e. those missing in cache) it’s
operation is similar to Narasiman’s two level scheduler we evaluated
in Section 5.

Meng et al. [29] introduce Dynamic Warp Subdivision (DWS)
which splits wavefronts when some lanes hit in cache and some lanes
do not. This scheme allows individual scalar threads that hit in cache
to make progress even if some of their wavefront peers miss. DWS
improves performance by allowing run-ahead threads to initiate their
misses earlier and creates a pre-fetching effect for those left behind.
DWS attempts to improve intra-wavefront locality by increasing the
rate data is loaded into the cache. In contrast, CCWS attempts to
load data from less threads at the same time to reduce thrashing.

Narasiman et al. [31] detail a two-level wavefront scheduler simi-
lar to that proposed in [14]. Their work focuses on improving perfor-
mance by allowing groups of threads to reach the same long latency
operation at different times. This helps ensure cache and row-buffer
locality within a fetch group is maintained and the system is able to
hide long latency operations by switching between fetch groups. In
contrast, our work focuses on improving performance by adaptively
limiting the amount of multithreading the system can maintain based
on how much intra-wavefront locality is being lost.

6.3. Improving Cache Efficiency

There is a body of work attempting to increase cache hit rate by im-
proving the replacement policy (e.g., [21] [34] among many others).
All these attempt to exploit different heuristics of program behav-
ior to predict a block’s re-reference interval and mirror the Belady-
optimal [8] policy as closely as possible. While CCWS also at-

81

tempts to maximize cache efficiency, it does so by shortening the re-
reference interval rather than by predicting it. CCWS has to balance
the shortening of the re-reference interval by limiting the number
of eligible wavefronts while still maintaining sufficient multithread-
ing to cover most of the memory and operation latencies. Other
schemes attempt to manage interference among heterogeneous work-
loads [35, 19] but each thread in our workload has roughly similar
characteristics. Recent work has explored the use of prefetching
on GPUs [26]. However, prefetching cannot improve performance
when an application is bandwidth limited whereas CCWS can help
in such cases by reducing off-chip traffic.

Beckmann et al. [7] use victim tag information to detect locality
lost due to excessive replication in the cache hierarchy and adapt the
replication level accordingly. The LLD in CCWS differs from their
technique in that it subdivides the victim tag array by wavefront ID
and makes use of the this information to influence thread scheduling.

Concurrent to our work, Jaleel et al. [20] propose the CRUISE
scheme which uses LLC utility information to make high level
scheduling decisions in multi-programmed CMPs. Our work fo-
cuses on the first level cache in a massively multi-threaded environ-
ment and is applied at a much finer grain. Scheduling decisions
made by CRUISE tie programs to cores, where CCWS makes issue
level decisions on which bundle of threads should enter the execu-
tion pipeline next.

Agrawal et el. [3] present theoretical cache miss limits when
scheduling streaming applications represented as directed graphs on
uniprocessors. Their work shows that scheduling the graph by select-
ing partitions comes within a constant factor of the optimal scheduler
when heuristics such as working set and data usage rates are known
in advance.

Jia et al. [22] characterize GPU L1 cache locality in a current
NVIDIA Tesla GPU and present a compile time algorithm to deter-
mine which loads should be cached by the L1D. In contrast to our
work, which focuses on locality between different dynamic load in-
structions, their algorithm and taxonomy focus on locality across
different threads in a single static instruction. Moreover, since their
analysis is done at compile time they are unable to capture any local-
ity with input data dependence.

7. Conclusion
This work introduces a new classification of locality for GPUs. We
quantify the caching and performance effects of both intra- and inter-
wavefront locality for workloads in massively multi-threaded envi-
ronments.

To exploit the observation that intra-wavefront locality is of great-
est importance on highly cache-sensitive workloads, this work intro-
duces Cache-Conscious Wavefront Scheduling. CCWS is a novel
technique to capitalize on the performance benefit of limiting the
number of actively-scheduled wavefronts, thereby limiting L1 data
cache thrashing and preserving intra-wavefront locality. Our sim-
ulated evaluation shows this technique results in a harmonic mean
63% improvement in throughput on highly cache-sensitive bench-
marks, without impacting the performance of cache-insensitive
workloads.

We demonstrate that on massively multi-threaded systems, opti-
mizing the low level thread scheduler is of more importance than at-
tempting to improve the cache replacement policy. Furthermore, any
work evaluating cache replacement on massively multi-threaded sys-
tems should do so in the presence of an intelligent wavefront sched-
uler.

As more diverse applications are created to exploit irregular par-
allelism and the number of threads sharing a cache continues to in-
crease on both GPUs and CMPs, so too will the importance of intel-
ligent HW thread scheduling policies, like CCWS.

Acknowledgments

The authors would like to thank Wilson Fung, Hadi Jooybar, Inder-
preet Singh, Tayler Hetherington, Ali Bakhoda, the reviewers and
our shepherd Yale N. Patt for their insightful feedback. We also
thank Rimon Tadros for his work on the garbage collector bench-
mark. This research was funded in part by a grant from Advanced
Micro Devices Inc.

References
[1] T. M. Aamodt et al., GPGPU-Sim 3.x Manual, http://gpgpu-sim.org/

manual/index.php5/GPGPU-Sim_3.x_Manual, University of British
Columbia, 2012.

[2] O. Agesen, D. Detlefs, and J. E. Moss, “Garbage Collection and Lo-
cal Variable Type-Precision and Liveness in Java Virtual Machines,”
in Proc. of Prog. Lang. Design and Implementation (PLDI 1998), pp.
269–279.

[3] K. Agrawal, J. T. Fineman, J. Krage, C. E. Leiserson, and S. Toledo,
“Cache-Conscious Scheduling of Streaming Applications,” in Proc. of
Symp. on Parallelism in Algorithms and Architectures (SPAA 2012), pp.
236–245.

[4] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyz-
ing CUDA Workloads Using a Detailed GPU Simulator,” in Proc. of
Int’l Symp. on Performance Analysis of Systems and Software (ISPASS
2009), pp. 163–174.

[5] K. Barabash and E. Petrank, “Tracing Garbage Collection on Highly
Parallel Platforms,” in Proc. of Int’l Symp. on Memory Management
(ISMM 2010), pp. 1–10.

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. SIAM, 1994.

[7] B. M. Beckmann, M. R. Marty, and D. A. Wood, “ASR: Adaptive Se-
lective Replication for CMP Caches,” in Proc. of Int’l Symp. on Mi-
croarchitecture (MICRO 39), 2006, pp. 443–454.

[8] L. A. Belady, “A Study of Replacement Algorithms for a Virtual-
Storage Computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78 –101,
1966.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proc. of Int’l Symp. on Workload Characterization (IISWC
2009), pp. 44–54.

[10] H.-Y. Cheng, C.-H. Lin, J. Li, and C.-L. Yang, “Memory Latency Re-
duction via Thread Throttling,” in Proc. of Int’l Symp. on Microarchi-
tecture (MICRO 43), 2010, pp. 53–64.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in Proc.
of Int’l Symp. on Computer Architecture (ISCA 2011), pp. 365–376.

[12] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow,” in Proc. of
Int’l Symp. on Microarchitecture (MICRO 40), 2007, pp. 407–420.

[13] W. Fung and T. Aamodt, “Thread Block Compaction for Efficient
SIMT Control Flow,” in Proc. of Int’l Symp. on High Performance
Computer Architecture (HPCA 2011), pp. 25 –36.

[14] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-Efficient Mechanisms for Man-
aging Thread Context in Throughput Processors,” in Proc. of Int’l Symp.
on Computer Architecture (ISCA 2011), pp. 235–246.

[15] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. Weiser,
“Many-Core vs. Many-Thread Machines: Stay Away From the Valley,”
Computer Architecture Letters, vol. 8, no. 1, pp. 25 –28, jan. 2009.

[16] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M.
Aamodt, “Characterizing and Evaluating a Key-Value Store Applica-
tion on Heterogeneous CPU-GPU Systems,” in Proc. of Int’l Symp. on
Performance Analysis of Systems and Software (ISPASS 2012), pp. 88
–98.

82

[17] IDC, “HPC Server Market Declined 11.6% in 2009, Return to Growth
Expected in 2010,” Mar 2010.

[18] IDC, “Worldwide Server Market Rebounds Sharply in Fourth Quarter
as Demand for Blades and x86 Systems Leads the Way,” Feb 2010.

[19] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer, “Adaptive Insertion Policies for Managing Shared Caches,” in
Proc. of Int’l Conf. on Parallel Architecture and Compiler Techniques
(PACT 2008), pp. 208–219.

[20] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and J. Emer,
“CRUISE: Cache Replacement and Utility-Aware Scheduling,” in Proc.
of Int’l Conf. on Architectural Support for Prog. Lang. and Operating
Systems (ASPLOS 2012), pp. 249–260.

[21] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High Per-
formance Cache Replacement Using Re-Reference Interval Prediction
(RRIP),” in Proc. of Int’l Symp. on Computer Architecture (ISCA 2010),
pp. 60–71.

[22] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and Improving
the use of Demand-Fetched Caches in GPUs,” in Proc. of Int’l Conf. on
Supercomputing (ICS 2012), pp. 15–24.

[23] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,” in
Proc. of Int’l Symp. on Computer Architecture (ISCA 1990), pp. 364–
373.

[24] Khronos Group, “OpenCL,” http://www.khronos.org/opencl/.
[25] N. B. Lakshminarayana and H. Kim, “Effect of Instruction Fetch and

Memory Scheduling on GPU Performance,” in Workshop on Language,
Compiler, and Architecture Support for GPGPU, 2010.

[26] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc, “Many-Thread
Aware Prefetching Mechanisms for GPGPU Applications,” in Proc. of
Int’l Symp. on Microarchitecture (MICRO 43), 2010, pp. 213–224.

[27] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: A Com-
piler Framework for Automatic Translation and Optimization,” in Proc.
of Symp. on Principles and Practice of Parallel Programming (PPoPP
2009), pp. 101–110.

[28] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A Unified Graphics and Computing Architecture,” Micro, IEEE,
vol. 28, no. 2, pp. 39–55, March-April 2008.

[29] J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence Tolerance,” in Proc. of Int’l
Symp. on Computer Architecture (ISCA 2010), pp. 235–246.

[30] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU Graph
Traversal,” in Proc. of Symp. on Principles and Practice of Parallel
Programming (PPoPP 2012), pp. 117–128.

[31] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving GPU Performance via Large Warps and
Two-Level Warp Scheduling,” in Proc. of Int’l Symp. on Microarchitec-
ture (MICRO 44), 2011, pp. 308–317.

[32] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf , NVIDIA, 2009.

[33] NVIDIA CUDA C Programming Guide v4.2, http://developer.nvidia.
com/nvidia-gpu-computing-documentation/, NVIDIA Corp., 2012.

[34] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adap-
tive Insertion Policies for High Performance Caching,” in Proc. of Int’l
Symp. on Computer Architecture (ISCA 2007), pp. 381–391.

[35] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in Proc. of Int’l Symp. on Microarchitecture (MICRO
39), 2006, pp. 423–432.

[36] D. Spoonhower, G. Blelloch, and R. Harper, “Using Page Residency
to Balance Tradeoffs in Tracing Garbage Collection,” in Proc. of Int’l
Conf. on Virtual Execution Environments (VEE 2005), 2005, pp. 57–67.

[37] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia Workload Anal-
ysis for Decentralized Hosting,” Elsevier Computer Networks, vol. 53,
no. 11, pp. 1830–1845, 2009.

[38] S. Wilton and N. Jouppi, “CACTI: An Enhanced Cache Access and Cy-
cle Time Model,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 5,
pp. 677–688, May 1996.

[39] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing Shared
Resource Contention in Multicore Processors via Scheduling,” in Proc.
of Int’l Conf. on Architecture Support for Prog. Lang. and Operating
Systems (ASPLOS 2010), pp. 129–142.

83

Libra: Tailoring SIMD Execution using Heterogeneous Hardware and Dynamic Configurability

Yongjun Park Jason Jong Kyu Park Hyunchul Park∗ Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI, USA

{yjunpark, jasonjk, parkhc, mahlke}@umich.edu

Abstract

Mobile computing as exemplified by the smart phone has become
an integral part of our daily lives. The next generation of these de-
vices will be driven by providing an even richer user experience and
compelling capabilities: higher definition multimedia, 3D graphics,
augmented reality, games, and voice interfaces. To address these
goals, the core computing capabilities of the smart phone must be
scaled. However, the energy budgets are increasing at a much lower
rate, requiring fundamental improvements in computing efficiency.
SIMD accelerators offer the combination of high performance and
low energy consumption through low control and interconnect over-
head. However, SIMD accelerators are not a panacea. Many ap-
plications lack sufficient vector parallelism to effectively utilize a
large number of SIMD lanes. Further, the use of symmetric hard-
ware lanes leads to low utilization and high static power dissipation
as SIMD width is scaled. To address these inefficiencies, this paper
focuses on breaking two traditional rules of SIMD processing: ho-
mogeneity and static configuration. The Libra accelerator increases
SIMD utility by blurring the divide between vector and instruction
parallelism to support efficient execution of a wider range of loops,
and it increases hardware utilization through the use of heteroge-
neous hardware across the SIMD lanes. Experimental results show
that the 32-lane Libra outperforms traditional SIMD accelerators
by an average of 1.58x performance improvement due to higher loop
coverage with 29% less energy consumption through heterogeneous
hardware.

1. Introduction

Themobile devices market, including cell phones, netbooks, and per-
sonal digital assistants, is one of the most highly competitive busi-
nesses. The computing platforms that go into these devices must
provide ever increasing performance capabilities while maintaining
low energy consumption in order to support advanced multimedia
and signal processing applications. Application-specific integrated
circuits (ASICs) are the most common solutions for meeting these
requirements, performing the most compute-intensive kernels in a
high performance but energy-efficient manner. However, several fea-
tures push designers to a more flexible and programmable solution:
supporting multiple applications or variations of applications, pro-
viding faster time-to-market, and enabling algorithmic changes after
the hardware is constructed.

Processors that exploit instruction-level parallelism (ILP) provide
the highest degree of computing flexibility. Modern smart phones
employ a one GHz dual-issue superscalar ARM as an application
processor. Higher performance digital signal processors are also
available such as the 8-issue TI C6x. However, ILP processors

∗Currently with Programming Systems Lab, Intel Labs, Santa Clara, CA

have scalability limits including many-ported register files (RFs) and
complex interconnects. Alternately, single-instruction multiple-data
(SIMD) accelerators provide high efficiency because of their regu-
lar structure, ability to scale lanes, and low control logic overhead.
They have long been used in the desktop space for high performance
multimedia and graphics functionality. But, their combination of
scalable performance, energy efficiency, and programmability make
them ideal for mobile systems [24, 9, 15, 27].

In order to fully utilize the SIMD hardware, it is necessary for the
programmer or compiler to extract sufficient data-level parallelism
(DLP). Automatic loop vectorization is available in a variety of com-
mercial compilers including offerings from Intel, IBM, and PGI.
Classic scientific computing (regular structure, large trip count loops,
and few data dependences) are naturally well-matched to SIMD ac-
celerators. But, in many respects, the mobile terminal has become
a general-purpose computer. Thus, like the desktop, only a small
percentage of mobile applications look like classic scientific com-
puting. The computation is not dominated by simple vectorizable
loops, but by loops containing significant numbers of control and
data dependences to handle the complexity of modern multimedia
standards. As a result, applications have varying amounts of vec-
tor parallelism ranging from none to some to large amounts. The
net effect is that SIMD hardware goes unused for a large fraction
of application execution and thus cannot be counted on to provide
significant performance gains.

A second but inter-related problem with SIMD computing is low
hardware utilization even when vector loops are executed. The use
of homogeneous hardware (e.g, identical lanes) is one of the best ad-
vantages of SIMD datapaths by reducing design cost and complex-
ity. But, the utilization of the most complex components of a SIMD
lane is often disproportionally lower than the simple components.
For example, the H.264 video decoding application is dominated by
simple integer operations (adds, subtracts, shifts) and an average of
only 2.2% and 1.3% of the total dynamic instructions are multiplies
and divides [8]. This is not an outlying data point, most multimedia
and visual computing applications have small fractions of multiply,
divide and other expensive operators. For 128-bit SIMD (4 lanes),
such utilization rates may not matter, but as SIMD widths are scaled
to increase performance to 1024 bits (32 lanes) or more, the problem
becomes serious due to poor area utilization and high static power
dissipation.

To attack these problems, we propose a customizable SIMD accel-
erator that is capable of tailoring its execution strategy to the running
application, referred to as the Libra. Libra employs two key con-
cepts, heterogeneity and dynamic configurability, to achieve broader
applicability and better energy efficiency than traditional SIMD ac-
celerators. Heterogeneity allows lanes to have different functionali-
ties and better match functional capabilities with expected operator

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.17

84

������ ��	
���

������
�
���
����
�

����
�

����
�

����
�

����
�

����
�

����
�

�
�
�
�
�
�
�
�

�� �

��� �

!
"����

#��

���"����
�

$�
���%��
�
���

�� �
�� �

�� �
�� �

�� ��
�� ��

�� �&
�� �'

�(�

�(�
�(�

�(�
�(�

�(��
�(��

�(�&
�(�'

Figure 1: A traditional 32-lane SIMD accelerator.

distributions. Dynamic configurability enables lane resource to ex-
ecute as a traditional SIMD processor, be re-purposed to behave as
a clustered VLIW processor, or combinations in between. Dynamic
configurability also enables efficient sharing of expensive resources
between lanes (e.g., multipliers) by interleaving independent instruc-
tions with each lane’s expensive instruction so as to hide resource
contention. Libra consists of an array of simple processing elements
(PEs) that are tightly interconnected by a scalar operand network.
Groups of four PEs form PE groups that are normally driven by a
single instruction stream. Each group can behave as a building block
for a SIMD processor (e.g., PEs behave as SIMD lanes) or a VLIW
processor (e.g., PEs behave as a cluster of function units). The com-
piler maps 1 or more loops to the Libra accelerator by combining and
configuring clusters of PE groups to efficiently exploit the available
DLP and ILP.

This paper offers the following three contributions:
• An in-depth analysis of the available ILP/DLP parallelism and

its variability in three representative mobile application domains:
computer vision applications, commercial media applications op-
timized in industry level, and game physics engine applications.

• The design of a unified loop accelerator that can effectively sup-
port future mobile applications with varying performance require-
ments and characteristics. To achieve this objective, we offer
three key features:
1. Scalability: Libra can meet high performance requirements by

simply increasing the number of clusters, whereas most cur-
rent accelerators suffer from poor scalability.

2. Configurable performance: Libra can dynamically tune the
ILP/DLP-support capability in order to successfully support
ILP-intensive, DLP-intensive, and ILP/DLP-mixed applica-
tions, as well as tolerate performance degradation due to its
heterogeneity.

3. Energy efficiency: Simple hardware implementation achieves
high energy-efficiency with competitive performance.

• A light-weight design and organization of a configurable process-
ing element for supporting simple latency hiding techniques and
sharing expensive resources.

2. Background and Motivation

In this section, we examine the limitations of traditional SIMD ac-
celerators based on an analysis of various mobile applications. We
first introduce the target benchmarks and the baseline architecture,
and find two main sources of inefficiencies in SIMD accelerators.
We then propose high-level solutions to overcome these challenges
that facilitate designing efficient hardware and maximizing the uti-
lization of existing resources.

�)

��)

��)

*�)

&�)

���)

+�
,	

��
�"�

��
��

��
�"
��
�

,"
�"�
-

,.

"��
��
��
%

�
.% ��
� �+

-/
�*

�

�
.%

��
�0
�%

�"

��
�.

��
�"
��
�

���

�

��
�%
-"

�
.%

1�,��� �
+�� 2�
3�-�,��,

��
��
��
�	

�
���

��
�
��	

-�%-4#$� ���4#$� �5��6�

�/''333�/&�333�/��3333�/&*33�/&�333�/&* �/7&333�/&7333�/��333�/��33333333333333�/��333�/��33�/��333�/��

Figure 2: Loop categorization: The components of the bar indicate ra-
tio of execution time in SWPable loops, low-DLP, and high-
DLP SIMDizable loops. The ratio of loop execution time
over total execution time is indicated as a number above
each bar.

2.1. Benchmarks Overview

Three classes of mobile benchmarks are used for this application
analysis that contain varying degrees of vector parallelism. The
benchmarks consist of:
• Vision benchmark: We evaluated a subset of the SD-VBS bench-

mark suite [26] for mobile vision applications. As these bench-
marks are not originally optimized for a specific target architec-
ture, we manually modified these benchmarks to increase the op-
portunities for efficient execution with function inlining and loop
unrolling. All the benchmarks are functionally verified on QCIF1

input data sizes, which is widely used on mobile devices.
• Media benchmark: Three mobile media applications are selected:
AAC decoder (MPEG4 audio decoding, low complexity pro-
file), H.264 decoder (MPEG4 video decoding, baseline profile,
qcif) [13], and 3D (3D graphics rendering) [3]. These benchmarks
are optimized for DSPs in the production-quality level and a large
portion of the loops have a high potential degree of ILP and are
software pipelinable.

• Game physics benchmark: Three common kernels are extracted
frommobile game applications [2]. First, lineOfSight plays an im-
portant role of separating visible objects and non-visible objects.
Sound effects, collision detection and other functions involving
linear equations often exploit convolution and the conjugate gradi-
ent method. The three kernels mostly consist of high DLP loops.

2.2. Baseline Architecture

A SIMD architecture that is based on SODA [15] is used as the base-
line SIMD accelerator. This architecture has both SIMD and scalar
datapaths. The SIMD pipeline consists of a multiple-lane datapath
where each lane has an arithmetic unit working in parallel. Each
datapath has two read-ports, one write-port, a 16 entry register file,
and one ALU with a multiplier. The number of lanes in the SIMD
pipeline can vary depending on the characteristics of the target appli-
cations. The SIMD Shuffle Network (SSN) is implemented to sup-
port intra-processor data movement. The scalar pipeline consists of
one 32-bit datapath and supports the application’s control code. The
scalar pipeline also handles DMA (Direct Memory Access) trans-
fers.

2.3. Limitations for Current SIMD Accelerators

2.3.1. Loop Characterization Applications typically have many
compute intensive kernels that are in the form of nested loops.

1We used QCIF (176x144) image size for uniformity of benchmarks, and the similar
trend appears on higher resolution images.

85

����	
 ����� ���� �	���
��� ���	����� �/�� �/�* �/�� �/��
�������	����� �/�7 �/�� �/�� �/�*
���	�	�������		� �/'� �/�* �/�� �/7�
���	�	����� �		� � �/�� � �/��

869 8�98�9

�

�/�

�/�

�/*

�/&

�

����	
 ����� ����

�
��
��
��
��
��
�
	
�
�

��

 ��	��
�����������	
�
!"#$%�&�'(�)

�*

&

�

�

�
*

*+"

*+,

*+-

*+.

*+/

* *+, *+. *+# *+0 "

�
��
��
��
�	

�������	

�		�������1���	

���2�	����� �
���

���2�	����� �
���

Figure 3: Resource utilization: (a) average ratio of dynamic instruction count of expensive instructions and ratio of Mem/Mul dominant loops,
(b) loop distribution over ratio of Mem/Mul, and (c) performance degradation on a SIMD at different number of Mem/Mul resources.

Among these kernels, we analyze the available ILP and DLP of the
innermost loops and find the maximum natural vector width that is
achievable. To extract the maximum degree of ILP, we found the
Software pipelinable innermost loops: 1) counted loop, 2) no subrou-
tine call, and 3) no multiple exits/backedges. Control flows inside
the innermost loops are solved using if-conversion. Among the soft-
ware pipelinable (SWPable) innermost loops, we also identify the
SIMDizable innermost loops which can utilize DLP. We apply the
conditions used by the Intel compiler [12] to determine if a loop is
SIMDizable and the minimum iteration count is set to the maximum
available SIMD width (natural SIMD width).

2.3.2. SIMD Width Variance over Loops Figure 2 shows the rela-
tive execution time of SWPable loops and SIMDizable loops to total
execution time on a simple 1-issue ARM processor. As we use a 16-
lane SIMD processor for this experiment, SIMDizable loops with
natural SIMD width smaller than 16 are categorized into low-DLP
loops. On average, there is a substantial amount of time (87%) spent
on SWPable or SIMDizable loops as expected. An interesting ques-
tion here is how many applications are not well-matched to a wide
SIMD accelerator. Unfortunately, 4 of 11 applications are highly
dependent on SWPable and low-DLP loops, which means that not
all the lanes can be utilized. For example, traditional SIMD cannot
decrease the execution time of an AAC application more than 60%
of the total loop execution time because around 40% of the time is
spent on SWPable loops. In general, the game physics benchmarks
have high levels of data parallelism, vision benchmarks have mod-
est data parallelism, and media benchmarks have low degrees of data
parallelism. Results in Figure 2 confirm that a simple SIMD accel-
erator cannot effectively support the range of mobile applications.
Even with a perfect support for DLP, SWPable and low-DLP loop
execution result in low utilization of SIMD resources. Therefore,
further consideration is required to fully utilize the SIMD resources
on the execution of non-fully SIMDizable loops.

2.3.3. Resource Utilization Variance To maximize the total utiliza-
tion of computation resources, the number of each resource should
be decided based on the average fraction of dynamic instructions.
While current CPUs solve these challenges by out-of-order exe-
cution of parallel instructions on multiple execution units, current
SIMD architectures cannot solve this problem due to its homoge-
neous nature: the datapath of each SIMD lane has the same function-
alities, even for expensive units such as memory and multiply units.
These characteristics are unfavorable in terms of efficiency because
not all execution units are active every cycle, and expensive units are
much less utilized (an average of only 32% for a memory unit and
16% for a multiply unit (Figure 3(a))). A traditional solution for this
problem is to turn off the unused resources by clock/input gating,

but this solution does not eliminate leakage power. Power gating is
unlikely a practical solution because idle periods for expensive units
tend to be relatively short.

Another challenge is the diversity of instruction distribution
across/inside applications. Even if we are somehow able to place
a specific number of each execution unit based on average fraction,
careful consideration is also required because the fraction varies
greatly. In Figure 3(a), for example, the ratio of multiply instruc-
tion varies from 10% to 22% across three application domains. We
also define a loop to be memory/multiplication dependent if the frac-
tion of memory/multiplication instructions are more than 33% of
the total instructions. Figure 3(b) shows a distribution of the loops
according to the ratio of memory/multiply instructions. Based on
Figure 3(a) and (b), more than 54% of the loops in the three bench-
mark sets highly depend on the memory instructions, and therefore,
normal ALU functional units can be idle due to the memory oper-
ation bottleneck if only 33% of memory resources exist. On the
contrary, multiplication is not the critical performance bottleneck if
33% of multiplication resources exist because only 1% of the loops
are multiplication dependent. As a result, the high diversity in the
instruction distribution will make most loops to not be effectively ac-
celerated due to the lack of enough resources, or to waste resources
due to the excess resources, if the SIMD accelerator simply allocate
resources based on specific rules such as average fraction or one per
four lanes.

2.4. Insights for the Traditional SIMD

Based on the application analysis, we found several fundamental
sources of SIMD inefficiency. First, a traditional wide SIMD accel-
erator may be over-designed since the overall performance will be
saturated at some point and limited by non-high-DLP loops where
the SIMD accelerator is poorly utilized. Second, lane uniformity
makes the SIMD datapath inefficient due to over-provisioning expen-
sive resources. Third, the high variation in the resource requirements
of loops makes the problem more difficult than simple sharing of ex-
pensive resources would accomplish. A central challenge here is
how to decrease over-provided resources on traditional SIMD accel-
erators and to overcome the inflexibility in order to more effectively
utilize the hardware.

3. Libra Architecture

3.1. Overview

The Libra accelerator presented here is a unified accelerator for mo-
bile applications that allows flexible execution of loops by customiz-
ing the configuration adaptive to their key characteristics. The Libra

86

��� 	��� �1� �		� �3������4���	

'(�) ���	���
* "/

3��3)� 5
	 ���6	� �		��

�	%)� 5
	 ���

3��3)� 5 ���

���)&
���� ��
� �����
�

)� 5 ���

����
���� �

7���� �

Figure 4: Mapping loops to Libra: (a) identify hot loops, (b) find the
available DLP and resource requirement of each expensive
operation, and (c) change the configuration based on the
characteristics of each loop.

accelerator is based on traditional SIMD accelerators and has sev-
eral important extensions for providing both high energy-efficiency
and performance improvement. First, Libra is composed of a non-
uniform lane structure for power efficiency: only a subset of lanes
has expensive but infrequently used execution units. Furthermore,
dynamic configurability of logical lanes helps Libra in executing a
target loop in an efficient manner with high utilization. In Libra,
a group of logical lanes is executed in a SIMD manner, where the
logical lane is configured by a group of processing elements (PEs).
DLP is exploited in the form of parallel execution of logical lanes,
and ILP is exploited inside each logical lane in a way that each PE
execute different operations. Therefore, Libra is able to flexibly tune
the ILP/DLP-support capability by changing the logical lane config-
uration.

Figure 4 shows a conceptual view of the execution of Libra.
First, several hot loops are identified as candidates to be acceler-
ated utilizing the Libra architecture(Figure 4(a)). Second, software-
pipelinable loops are selected, and the DLP availability is also deter-
mined as discussed in Section 2.3.1(Figure 4(b)). In this step, several
additional key characteristics such as the amount of potential ILP in
the loopbody and the ratio of expensive instructions are also con-
sidered. Finally, a best matched logical lane configuration for each
loop is chosen by the compiler (Figure 4(c)). In Figure 4, we assume
a 16-lane heterogeneous SIMD including 12 basic and 4 expensive
PEs. Based on this, each PE constitutes one logical lane for full DLP
support to execute high-DLP loops having only simple instructions,
intermediate numbers of PEs form each logical lane for ILP/DLP
hybrid execution to support low-DLP loops or expensive operation-
intensive loops, and one large logical lane for full ILP execution
is configured for non-DLP loops. Note that fully exploiting SIMD
parallelism does not always outperform exploiting ILP on heteroge-
neous structures. Section 3.1.1 and 3.1.2 explain the core concept of
Libra in detail with evidence of its effectiveness.

3.1.1. Heterogeneity Heterogeneous lane organization, based on av-
erage fraction of resource utilization, is required in order to enhance
power efficiency: all the lanes support simple integer operations and
only a subset of the lanes support expensive operations. When an
expensive instruction is fetched, the accelerator stalls until this sub-
set of lanes generates results for all lanes, then resumes execution.
This structure delivers a high level of power efficiency due to the
expensive resource removal, but significant performance degrada-
tion will occur when executing expensive operation-intensive code.
Figure 3(c) illustrates the performance degradation as the number

* " , - �

��
�
�

��
�*

(
8
9
,+
,:

�*
 �*
;" �*
;, �*
;-

��
�" ��
�, ��
�-

�"
 �"
;" �"
;, �"
;-
�,
 �,
;" �,
;, �,
;-

�-

�-
;"

�-
;,
�-
;-

'�
��
�

* " , - �

��
�
�

��
� *

(
8
9
.

�*

�"

�,

�-

* "

,

-

3��3)� 5 " ���

�))

���

�))

�)) �*
;"
�"
;"

�,
;"
�*
;,

�"
;,�*
;-

�"
$"
�,
$"

�-
$"

�,
$,
�-
$,
�-
$-

��� ������� �		� �1� '����� ��	��� �3��
� ��� �	����� ��
� �����
�

Figure 5: Dynamic configurability on a 4-lane heterogeneous SIMD
(lane 3 has a multiplier): (a) a simple high-DLP loop with 1
multiply, (b) performance degradation due to stalls during
multiply execution, (c) logical lane formation removes stalls
by instruction pipelining.

of multiplier/memory units decreases on a 16-lane SIMD accelera-
tor. Each bar shows the relative performance normalized to that of
the homogeneous SIMD when each heterogeneous SIMD has spe-
cific number of expensive resources. From this graph, substantial
amounts of performance degradation exist in vision and game bench-
mark because they are highly dependent on expensive operations and
incur a number of stalls to handle these operations. However, media
benchmarks are not highly affected by the proportion of these ex-
pensive resources because the performance is already constrained
by low DLP.
3.1.2. Dynamic Configurability Dynamic configurability of lanes
helps the heterogeneous SIMD accelerator in dealing with the afore-
mentioned problems. One logical lane can consist of one PE for
highly SIMDizable loops with no expensive instructions, and also
consist of multiple PEs for non/low-SIMDizable loops or loops hav-
ing expensive instructions. The resulting SIMD width is decided by
the number of logical lanes and each logical lane executes the same
instruction stream in lockstep. Inside a logical lane, ILP is exploited
to use multiple lanes in parallel, and therefore it can efficiently dis-
tribute instructions between simple lanes and expensive lanes.

The effectiveness of dynamic lane mapping can be explained by
the simple following performance equation. In the equation, we
compare the total performance of the simple SIMD and the Libra
SIMD by the metric of IPC (instruction per cycle). The IPC of
SIMD can be calculated by the multiplication of IPC of one lane
(IPClane) and the minimum of the number of PEs (NSIMD) and the
available degree of DLP (NDLP) of the target loop (Equation (1)).
Similarly, the IPC of Libra can be the multiplication of IPC of one
logical lane (IPClogical_lane), consisting of m PEs, and the minimum
of the number of logical lanes (NSIMD

m) and the degree of DLP of
the loop (Equation (2)). Therefore, when executing non/low-DLP
loops, Libra can easily outperform the basic SIMD because it only
requires better performance of a logical lane than that of a PE, and
it is always true as a logical lane exploits ILP with multiple PEs in-
side(Equation (3)). Dynamic configurability is also able to address
the performance degradation problem on the heterogeneous SIMD.
When executing high-DLP loops, Libra outperforms SIMDwhen the
IPC of a logical lane is higher than that of m PEs. Although the ILP
performance is normally inferior to DLP performance because of its
dependences and complexity, Libra can frequently be better due to
the heterogeneity. Figure 5(a), (b) and (c) shows the superiority of
Libra. Figure 5(b) and (c) show the execution of a simple high-DLP
loop having a multiply instruction on both the simple SIMD and Li-
bra which have one multiplier on the PE 3. In this example, the IPC
of SIMD is less than the IPC of Libra when one large logical lane is
configured due to a number of stalls.

87

����
�

����
�

����
�

����
�

����
�

����
� �

��
,,

6�
�

�� �

�
�
�
 �

!

"
�
��
�

�� �7
�� ��

�� �
�(�

�(�7
�(��

�(�
�		� 8	
�������	
 1����

�<
�.
�

<�
�.
�
(
�

�<
�.
;"�

<�
�.
;"�
(
�;���

�<
�.
;,�

<�
�.
;,�
(
�;���

�<
�.
;-�

<�
�.
;-�
(
�

.�0
8	��1�

�.�
$"��

�.�
;"��

�.�
$"�;"�

�.�
;"�;"�

�.�
$"�;,�

�.�
;"�;,�

�.�
$"�;-�

�.�
;"�;-�

�		� 8	
���+

 � �	�� =

�� �*

�� ��
�� ��

�� ��
�(�*

�(��
�(��

�(��

(

�
�$
�
	�
�
8
	

���
�
�1
��
(

��
�
	

�
��

(

��
$
�
	�
�
8
	

���
�
�1
��
(

��
�
	

�
��

8����� "

8����� * 8����� *

'(�)
�	
�	���

�3���
�	
�	���

�< �
��� 1��� (
��$�	��
(
���	

���
(
��� 1���

>��	�� (
��$�	��
(
���	

���
(
��� 1���

�� � �(�
�� � �(�

�� � �(�
�� � �(�

�� * �(*
�� � �(�

�� � �(�
�� 7 �(7

�� �� �(��
�� �� �(��

�� & �(&
�� ' �('

�� �� �(��
�� �7 �(�7

�� �� �(��
�� �� �(��

�
	
��

*
�
	
��

"
�
	
��

,
�
	
��

-

 � �.
�

 � �.
;"�

 � �.
;,�

 � �.
;-�

8�����

8�����

8�����

8�����

��� �1� ��� ���

<��� (� 6&1��

6&1�� <���)�

(
��$�	��
(
���	

���

(
��$�	��
(
���	

���

>��

>��

>��

>��

	�
��
�
�
�	
	�

��
3�
��
��

�	
	�

��
��
��
�	

�	

�
	
�

�	�� *

�	�� "

�	�� ,

�	�� -

(
������	
 8��3� '(�) �	
�	��� �3��� �	
�	���

Figure 6: The 32-PE Libra architecture: (a) a 2-cluster Libra accelerator, (b) a cluster, (c) an example of a single PE group: PE 1 supports
memory operation and PE 2 supports multiply operation, and (d) execution modes.

IPCSIMD =min(NSIMD,NDLP)× IPClane (1)

IPCLibra =min(
NSIMD

m
,NDLP)× IPClogical_lane (2)

IPCLibra > IPCSIMD,

when

{
IPClogical_lane > IPClane, if NSIMD

m > NDLP

IPClogical_lane > m× IPClane, if NSIMD
m < NDLP

(3)

3.2. Microarchitectural Details

The Libra architecture with eight PE groups (32 PEs) is shown in
Figure 6(a). Differently from the traditional SIMD, the Libra dat-
apath consists of 2 groups of clusters, which can be configured to
create logical SIMD lanes of 2, 4, 8, and 16 PEs based on the loop
characteristics. Each of the clusters is composed of 4 PE groups.
The SIMD controller performs the role of managing the logical lane
status to exploit SIMD parallelism, while the thread controller man-
ages the ILP-exploiting method inside the logical lane. Each PE
group contains 4 PEs. Each of the PEs has an FU and a register file,
which can be thought as one lane of the traditional SIMD. Only one
of the PEs in a PE group has a multiplier while another has a mem-
ory unit. Differently from the traditional SIMD, each PE group also
has two kinds of reconfigurable interconnects inside and across PE
groups in order to achieve flexible configuration of logical lanes.

Key features of Libra architectures are as follows:
Scalability: The resources are fully distributed including FUs,

register files, and interconnections. PE groups have dense intercon-
nections inside but each PE group is sparsely connected with neigh-
bors. As a result, area and power costs increase approximately pro-
portional to the number of resources, which makes Libra as scalable
as a simple SIMD.

Polymorphic Lane Organization: PE groups can be aggregated
to form a larger logical lane in order to exploit the existing ILP inside
the loop body, or be split into multiple small logical lanes in order
to exploit DLP over loop iterations.

Resource Sharing: In heterogeneity, the major challenge is how
to determine the number of expensive resources and how to effi-
ciently share them between logical lanes when necessary. To flexibly
handle this, we place the expensive resources based on the average
utilization and provide a sharing mechanism between them in two
categories. A more detailed description is provided in Section 3.3.3.

Simple Multi-threading Mechanism: Even though a logical
lane provides a number of parallel resources, efficient use of the
available resources is limited due to the low ILP of the loopbody.
Therefore, we extended the ILP into loop-level parallelism through
modulo scheduling [20]. Modulo scheduling generally provides a
decent performance improvement by parallelizing instructions over
loop iterations and hiding long latency between back-to-back in-
structions. However, several Libra specific features, such as SIMD
capability and fully-distributed nature, diminish the effectiveness of
modulo scheduling. To compensate for this, simple static multi-
threading with list scheduling is proposed in Section 3.4.
3.2.1. PE GroupA detailed illustration of a single Libra PE group is
provided in Figure 6(c). A PE group consists of four PEs each with
a 32-bit FU and a 16-entry register file with 2-read/1-write ports
(write ports can be added to support threading). Integer arithmetic
operations are supported in all four FUs but multiply and memory
operations are available in only one FU per PE group (PE1 for mem-
ory and PE 2 for multiplication in Figure 6(c)). The FUs inside are
modified to connect with each other with a dense 4x8 full crossbar
network for passing data between the FUs without writing back to
the RF. This allows the PE groups to exploit ILP in a distributed
nature. In order to retain scalability, the Libra architecture has a sim-
ple and fully distributed across-PE group interconnect. Only FUs
are connected between the corresponding neighbors in adjacent PE
groups. In addition to these components, a loop configuration buffer
is added to store instructions for modulo/list scheduled loops. The
buffer is a small SRAM that saves the configuration information in-
cluding instructions, register addresses and interconnect index bits
of the current loop. The interconnect between the loop buffer and
SIMD/Thread controllers in the cluster is used to transfer instruc-
tions for executing loops. The hardware components and execu-
tion mechanism for SIMD/ILP support is explained in detail in Sec-
tions 3.3 and 3.4.
3.2.2. Cluster A cluster is a high-level basic unit that consists of
four PE groups and several additional features for flexible loop exe-
cution support: the SIMD controller and the thread controller. The
SIMD controller is a small controller to manage the logical lane or-
ganization inside the cluster, including the number of logical lanes
and the SIMD width of memory transfer. It receives the information
from the instruction cache. In addition, the SIMD controller also
gets the configuration for one logical lane from the instruction cache

88

,��� ,���
�(�

�$(�-��"
�
���

,��� ,����(�

�$(�-��"
�

,��� ,����(�

�$(�-��"
� �

,���

,��� ,���
�(�

�$(�-��"
� #�"�
6�	�,,

�

��
�

�++�
,,

#�"�
�: 6��+��+"-

#�"�

$�%���� ���
 �
�	����� ��
� *

� �

�

#

;

�*
7*

8*

)*
�*

�"
7"

8"

)"
�"

$��+ $��+

���

�++

�"��

�&���

"
,
-
.
/
#
?
0
:
"*

�8"�

 �* �" �, �-

8�9 869 8�9

���	��� 8	
�����@
8�
 � ��3�����

�������&
�
������	

�* �" �

7* 7" �
 �" �

7" �

�"5 7" ���� 1&����

$�%���� ���
 �

�	����� ��
� "

Figure 7: Resource sharing support: (a) hardware modification: PE 0 and 2 share the multiplier and PE 1 and 3 share the memory unit, (b)
example loop body dataflow graph, and (c) actual schedule: 1-cycle difference between lanes for resource contention avoidance.

and transfers it to each PE group. A thread controller is responsible
for executing loops. It also gets the information about which mode
is selected from the instruction cache and orchestrates the loop ex-
ecution. When modulo scheduling is selected, it just executes the
loop sequentially, and, when multi-threading is selected, it executes
the loop in the order of the thread sequence table. The information is
statically set during compile time and is fetched from the instruction
cache. Multiple clusters can execute one large loop or can execute
multiple parallel loops separately.

3.2.3. Configuration Process Loop execution of Libra can be di-
vided into two stages: configuration and execution. Configuration
stage is forming logical lanes and sending configuration bits to all
the loop buffers of each PE-group. For every loop, the instruction
cache contains both logical lane organization information and con-
figuration bits for one logical lane. The SIMD controller gets these
information from the instruction cache and then sends the configu-
ration bits to the loop buffers of the PE groups based on the logical
lane configuration. The thread controller also gets the information
about the execution mode and sequence table, if required, from the
instruction cache. This process takes 3-5 cycles on average before
the loop buffer receives the configuration bits for the first cycle and
the time varies depending on the size of the logical lane. The thread
controller starts the execution when the first cycle configuration is
ready on all the loop buffers.

3.2.4. Memory Support The memory operation of the Libra system
needs support for both scalar and SIMD memory access. For scalar
memory access, the local memory has the same number of banks
as the number of total memory units. For SIMD access, the local
memory also needs to support contiguous access across all logical
lanes in parallel. Therefore, for the 32-PE Libra system, a 64kB
local memory is used, consisting of 8 memory banks where each
bank is a 2-wide SIMD containing 1024 32-bit entries. As shown in
Section 2.3.1, all memory transfers have the same strides over iter-
ations in SIMDizable loops. Therefore, when several logical lanes
execute the same instructions for SIMDized loops, a single address
calculation followed by a wide memory operation is performed. The
data is then distributed to different logical lanes. Multiple memory
units inside a logical lane need to generate their own memory ad-
dresses. The SIMD width of each access and the number of different
addresses are determined by the logical lane configuration, which is
saved in the SIMD controller.

3.2.5. Communication with a Host Processor The Libra architec-
ture is a co-processor similar to a GPU and interfaces with a host pro-
cessor such as ARM using memory. The data transfer is performed
through a standard AMBA bus along with a DMA.

3.3. Execution Model

This section describes the three different execution modes of the Li-
bra architecture, which are full ILP, hybrid, and full DLP modes.
We first explain how each mode operates and then provide proof of
how the three modes can effectively support different kinds of loops.
The example provided assumes a four-PE group cluster as shown in
Figure 6(d).
3.3.1. Full ILP Mode In this mode, the Libra architecture decides
to use all the PEs as one large logical lane. The SIMD controller
spreads different configuration informations into the loop buffer of
each PE group. The execution mechanism is the same as the loop
acceleration technique of common VLIW solutions but the perfor-
mance might be slightly worse than previous solutions because the
Libra architecture sacrifices both centralized resources and dense
across-PE group interconnects. Applications which have a high pro-
portion of non-SIMDizable loops mostly utilize this mode for accel-
eration.
3.3.2. Hybrid Mode When a loop is SIMDizable, a cluster has the
possibility of either having several small logical lanes or forming a
large logical lane. In this case, the Libra architecture may choose to
use a hybrid mode with a cluster having at least two logical lanes,
each having at least one PE group. With smaller logical lanes, the
performance usually increases since SIMDization provides an oppor-
tunity to increase performance by the same amount as the degree of
DLP. Also the routing overhead decreases with small logical lanes,
further boosting performance. Figure 6(d) also has two examples of
hybrid mode execution. The SIMD controller distributes the same
configuration information and live values to the loop buffer and RFs
of each logical lane. When a loop lacks sufficient level of DLP or
has a moderate proportion of expensive resources, hybrid mode can
achieve the best performance.
3.3.3. Full DLPModeWhen a loop is highly data-parallel but has a
low degree of ILP, the resources (PEs) cannot be effectively utilized
because the degree of ILP in the loop cannot meet the minimum
degree of the PE group. To compensate for the lack of ILP, the
Libra architecture supports separation of PE groups, forming two
smaller logical lanes. As a result, SIMD parallelism can make up for
insufficient ILP in the loops (also in Figure 6(d)). Hence, a cluster
has a total of eight logical lanes executing in lockstep. Distinct from
loops with a small number of instructions, loops with unbalanced
resource usage can also be well matched to a full DLP mode, unlike
the hybrid mode. As mentioned in Section 2.3.3, the hybrid mode
cannot fully utilize resources in a PE group since performance of
loops with a high proportion of memory operations are constrained
by the memory unit.

The major challenge in full DLP mode is determining how to

89

<-�
�+ ���"����
�

��

���	 6���
�

��-
+��
 "�

<-�
�+ =+

,��� ,���
�(�

�$(�-��"
�
���

��"

<-�
�+ =+ <-�
�+ =+4�++
+

,�-
+��

�; �

2���	

���,"
�

8�9 869 8�9 8+9

8&��� �3�����(� �		� 1����
������

* * *

" * "

, " *

- " "

. * -

/ * .

* /

? " -

0 " .

: " /

>���
��
8&���

>���
��
8	
�������	
�

* �

" 7

, =>

- 8

.)

/ �

8&��� �3���$�%���
�	
�������	

* �*

" 7*

, �"

- 7"

. 8*

/)*

�*

? 8"

0)"

: �"

Figure 8: Multi-threading support & compiler support: (a) hardware modification: shaded components are modified, (b) sequence table in the
thread controller, (c) loop buffer, and (d) final multi-threaded schedule.

share expensive resources between two small logical lanes in a PE
group. The first category for resource sharing is expensive but in-
frequently used functionalities such as the multiply operation. As
shown in Figure 3(a), the average ratio of multiply is as low as
16% and only 1% of loops are multiply-dominant, and therefore sim-
ple sharing between two half-PE groups does not incur performance
degradation. The second category is frequently used functionalities
such as memory operations as shown in Figure 3(a). These instruc-
tions are already a performance bottleneck and simple sharing can-
not enhance the overall performance. Therefore, this shared resource
should lead to double the performance in a lightweight manner.

We accomplish these requirements using simple hardware modifi-
cations as shown in Figure 7(a). One PE group is mapped into two
small logical lanes with (PE 0, PE 1) and (PE 2, PE 3). Based on
the application analysis, only PE2 supports multiply operations and
PE 1 supports memory operations. To ensure that both logical lanes
support all functionalities, PE 0 and PE 2 share the multiplier and
PE 1 and PE 3 share the memory unit. To share the multiplier, PE 0
connects input and output ports to the multiplier of PE 2. A memory
controller in PE 1 is shared with PE 3 in a different manner. When
the memory controller receives a memory operation command, only
PE1 communicates with the memory with double bandwidth and
send/receives the data of PE 3 through a bypass logic.

To execute the same instructions in both logical lanes using the
above modifications, the following processes are required:
• The compiler must not schedule multiply instructions in a row, be-

cause the multiplier needs a spare cycle after the cycle in which
the multiply instruction is scheduled in order to handle the opera-
tion of the other logical lane. However, other instructions can be
placed since they have no resource or writeback contention. Mem-
ory instructions can be scheduled without any restrictions as the
hardware supports double bandwidth.

• The SIMD controller has the instruction configuration only for
one logical lane. The controller transfers the same configuration
into the loop buffer of both logical lanes with one-cycle difference
to avoid resource contention.
Figure 7(b) is an example of a full DLP mode execution. For a

simple dataflow graph of the loop body, the latency of the load and
multiply operations are set to 4 and 2. Due to the small size and
high memory dependent characteristic of the loop body, a full DLP
mode is selected and each PE group is separated into two logical
lanes. Identical schedules based on two PEs are transferred into the
loop buffer in the PE group with one cycle difference between log-
ical lane 0 and logical lane 1 (see Figure 7(c)). Different memory

operations can execute in the same cycle as shown in cycle 2 but dif-
ferent multiply instructions cannot be scheduled at cycle 7 because
logical lane 1 needs to use the multiplier in that cycle.

3.4. Improving ILP Performance

Although modulo scheduling has proven to be an effective solution
to exploit ILP over loops, it is not always the best solution because
1) original iteration count is divided by DLP capability, and there-
fore, the smaller iteration count may not compensate for the pro-
log and epilog overheads even in moderate DLP loops [23] and 2)
sparse interconnection between PEs and no centralized RFs make
the quality of the schedule worse. As a result, we suggest support-
ing list scheduling [6] of the loop body as another option to exploit
ILP. When either there is not much total ILP in the loop, or the
hardware cannot benefit from increased ILP, list scheduling can out-
perform modulo scheduling since it does not incur the overhead of
modulo scheduling: handling modulo information such as staging
predicates.

The remaining problem of adapting list scheduling to hide idle
cycles comes from long latency instructions such as multiply and
memory operations. To solve this problem, we propose a simple
multi-threading scheme with fast context switching. Assuming the
Libra architecture supports two threads, a loop with large number
of iterations is divided into two threads with identical loops with
half number of iterations. The two threads are then executed on the
same logical lane. To make the scheme simple, a switch of running
threads is allowed only when all the PEs are idle. Each thread has its
own register file space divided by the number of threads, similar to
what a GPU does, and therefore no context change overhead exists.
The schedule with multiple threads is statically decided at compile
time. The multi-threading technique is simple but highly effective
and is a realistic solution because of the following two reasons: 1)
low register pressure: loops with small number of instructions have
a small amount of data to save in the register file and list scheduling
does not require additional register overhead, and 2) a high chance of
hiding latency: this technique is applied only to SIMDizable loops
executing on small logical lanes, thus increasing the probability that
all FUs are idle.

Although multi-threading looks promising, the Libra architecture
faces a number of challenges in reality. There are three essential
challenges and we present the lightweight solutions incorporated in
the Libra architecture:

Context Saving: The fully distributed nature of Libra allows tem-
poral data to be saved in the register files as well as the output buffer

90

in order to directly transfer the data between FUs. As a result, the
output buffer data of each thread should also be saved in addition to
the register files. The register file is divided into the same number of
threads. The parts are then addressed by the thread ID. However, the
output buffer is originally a simple flip-flop without addressing sup-
port. Therefore, it is substituted by an n-entry register file addressed
by thread ID(n: the number of threads supported). The output data
can thus remain unchanged when another thread is executed.

Writeback Contention Avoidance: Handling multi-latency in-
structions is not a simple problem if the output data from a multi-
latency instruction is generated when the other thread is executing.
To solve this problem, multi-latency FUs need to save the thread ID
when the input is issued and be connected to the output buffer (small
register file) with an additional port addressed by the original input
thread ID. Since only a single additional port is required for multi-
ple FUs with the same latency, the overhead is negligible. For the
Libra architecture, only two ports are added to the whole PE group
to support a multiplier and a memory controller.

Code Bloat: Since multiple threads are scheduled at compile
time, the loop buffer of each PE group needs to contain the entire
schedule information of all threads for each cycle. This causes the
code bloat problem, requiring an increased loop buffer size which in-
curs a power overhead. However, an important observation to point
out is that the schedules of different threads are essentially the same,
just with different execution times. We can, therefore, solve the prob-
lem by 1) saving the schedule configuration of only one thread and 2)
adding a simple sequence table which contains a thread ID and the
corresponding loop buffer address pointing to the actual schedule
configuration. The thread controller contains the basic information
for supporting multi-threading and the sequence table.

Figure 8 shows an illustration of the Libra architecture with an em-
phasis on modified features(shaded components) to support multi-
threading, assuming that the architecture supports execution of two
threads. The loop buffer contains configuration information for only
one thread as shown in Figure 8(c). Therefore, its size is the same as
when one thread is executed. The thread controller in the cluster has
a tiny sequence table containing the actual thread ID and the address
of the configuration saved in the loop buffer. Figure 8(b) depicts an
example sequence table for two thread execution. Since two threads
are executed in this example, the space of RF is divided by two and
the output buffer is a 2-entry register file. By reading the sequence ta-
ble from cycle 0 to cycle 9, the thread controller transfers the thread
ID and loop buffer address for each cycle to the loop buffer. From
this information, the loop buffer generates the final configuration by
reading the appropriate configuration and adding a thread ID to the
register file address (see Figure 8(d)). The multiplier gets the thread
ID and has a separate data bus due to the multi-latency functionality.
When the original configuration B has the multiply operation for FU
2, the result data from thread 0 and B configuration can be stored in
the output buffer at cycle 2 without any writeback contention.

3.5. Decision Flow

In order to maximize the performance and resource utilization, the
Libra architecture depends on an intelligent selection of the config-
uration between the number of logical lanes and the size of each
logical lane. The system flow is shown in Figure 9. Applications
run through a front-end compiler, producing a generic Intermediate
Representation (IR), which is unscheduled and uses virtual registers.
The compiler also has a high-level machine specific information, in-
cluding the number of resources, size of register files, the size of a

8	����� <	
�$�
�

��
��� 8
�	���

���	��� ���	����	

�	���	
��3�����
�

���� ��3�����
�
%A �����$�3����
�

8	�� ��
����	

�������1��

�		�$��������
	�����4���	

8	�����
7��2$�
�

8������&�
� �3� �		�

6��%��
(
�	����	

)�����
�
'(�)�4�1����&

'�� '(�) �	��

'�� (� �	��

 	����
(
�	����	

Figure 9: Decision flow of the Libra architecture.

cluster, and the number of supported micro-threads. In addition to
this, the compiler needs to have profile information about the itera-
tion counts of loops and memory alias information. Given the IR,
hardware and profile information, the compiler categorizes loops
into two basic types: SWPable and SIMDizable loops. The com-
piler then decides the logical lane configuration of a cluster for each
loop (resource allocation). If a loop is not SIMDizable but only SW-
Pable, the entire cluster is assigned to the loop. If a loop is proved
as SIMDizable, the compiler finds the best configuration based on
the provided information such as average iteration count, instruction
and dependency information of the loop. Briefly speaking, the com-
piler tries to fully exploit SIMD parallelism by securing the maxi-
mum number of logical lanes without performance degradation due
to the instruction imbalance. However, it also performs broad design
space explorations by changing the number of logical lanes. This is
because 1) sometimes the effectiveness of DLP is not clear when
the divided trip count is small and the instruction number is not too
small, and 2) the scheduler uses a heuristic way to generate the mod-
ulo schedule. After deciding the lane configuration, the compiler
chooses the method to exploit ILP inside the logical lane. Finally,
the compiler performs modulo scheduling or list scheduling. It then
generates the final schedule and the configuration information.

4. Experiments

4.1. Experimental Setup

Target Architecture To evaluate the effectiveness of the Libra archi-
tecture, three example implementations with different sizes are used:
16 (one cluster, four PE groups), 32 (two clusters), and 64 (four clus-
ters) PEs. Four FUs per cluster are able to perform load/store in-
structions to access the data memory with four-cycle latency while
another four FUs support two-cycle pipelined multiply instructions.
The Libra is compared against two other accelerators in our exper-
iment. We generate 4(cluster)×4(PE), 8×4, and 16×4 heteroge-
neous VLIWs having the same organization of PEs as correspond-
ing Libra architectures. The wide SIMD architecture as discussed
in Section 2.2 is used and the number of SIMD resources can vary
from 16 to 64, having the same heterogeneous FU structure.

Target Applications As discussed in Section 2.1, the evaluation
is conducted for subsets of three domains. Max 20 top loops hav-
ing a high execution time are selected for vision and game physics
benchmarks, and 144 loop kernels, varying in size from 4 to 142

91

*+/-

���

�1�

"*+0".+? 0+0
"*+/

*
+/
*+"
*+"/
*+,
*+,/
*+-
*+-/
*+.

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

�������& �	����4���	
 �����3 ��� ���2�
� ��8 -) 6+,#. ��
�>�'��3� �	
�	����	
 �	
C�����

����	
 ����� ����� 3&����

=
	
�
��
�4
��
��
��
��
��	

�
��
�
�

'B �1����
	
$'(�)�4�1��� '(�)�4�1��

*

+/

*+"

*+"/

*+,

*+,/

*+-

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

����	
 ����� ����
 3&����

���

=
	
�
��
�4
��
��
��
��
��	

�
��
�
�

*
"
,
-
.
/
#
?
0
:
"*

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

'(
�
)

��
(B

��
1
�

�������& �	����4���	
 �����3 ��� ���2�
� ��8 -) 6+,#. ��
�>�'��3� �	
�	����	
 �	
C�����

����	
 ����� ����� 3&���� ���

=
	
�
��
�4
��
��

�
�
&

Figure 10: Performance/Energy comparison of 32-PE Libra/SIMD/VLIW architectures: (a) total loop execution time and (b) energy consumption.
All the data are normalized to that of a simple in-order core.

operations, are extracted from the media benchmark because the ra-
tio of execution time to the total execution time of the top 20 loops
is too small. High number of loops in the media benchmarks and
several major loops in the vision benchmarks have conditional state-
ments, while the gaming benchmarks do not have them. In order
to eliminate all internal branches, we applied if-conversion for these
loops.

Compilation and Simulation The industrial tool chain developed
by SAIT [5] is used for compilation and simulation of Libra. The
IMPACT compiler [19] is used as the frontend compiler. Basic list
scheduler [6], edge-centric modulo scheduling (EMS) [20]-based
modulo scheduler, and simple loop-level SIMDization scheduler us-
ing a SODA-style [15] wide vector instruction set are implemented
in the backend compiler. Based on the original modulo scheduler,
we developed a scheduler that can support both flexible execution
of Libra and list scheduling with static multi-threading technique.
The performance is generated by the cycle-accurate code schedule
of loops, accounting for the configuration overhead.

Performance Measurement For fair comparison, both list
scheduling and modulo scheduling are applied and the better per-
forming schedule is picked for the SIMD accelerator. For VLIW,
loop unrolling is applied when a loopbody size is too small and its
resources may not be fully utilized. Multi-threading technique of
Libra is also not applied for a fair comparison of the performance of
the three architectures. This issue is discussed in Section 4.6.

Power/Area Measurements All architectures are generated in
RTL Verilog, synthesized with the Synopsys design compiler, and
place-and-routed with the Cadence Encounter using IBM SOI 45nm
regular Vt standard cell library in slow operating conditions with a
0.81V operating voltage. Synopsys PrimeTime PX is used to mea-
sure the power consumption based on the utilization. The Artisan
Memory Compiler is used to determine the area and the power of
the memory operation using a 0.81 Volts operating voltage. The
target frequency of Libra is 500MHz2 similar to the latest mobile
GPUs.

2The FO4 delay of this process is about 13ps.

4.2. Performance/Energy Evaluation

We compared the performance of a 32-PE Libra architecture with
identically sized VLIW (8×4) and SIMD(32-wide) architectures.
Performance results are measured as the total loop execution time
when each loop is scheduled by the method the target architecture
supports. Figure 10(a) shows a plot comparing the performance of
the three architectures normalized to the simple 1-issue inorder core.
For individual benchmarks, the graph also indicates the fraction of
two different loop categories: SIMDizable and SWPable loops.

For benchmarks with a high ratio of non-SIMDizable loops such
as stitch, AAC, and lineOfSight, SIMD shows severe performance
degradation, whereas VLIW and Libra show a fair performance im-
provement. Libra outperforms even VLIW because it can acceler-
ate SIMDizable regions more efficiently. On the other hand, both
the SIMD and Libra deliver a substantial performance improvement
for benchmarks with mostly SIMDizable loops, while VLIW suf-
fers. The Libra also shows better performance than SIMD because
it effectively accelerates applications having low-SIMDizable loops
(3D, H.264) and its ILP capability also helps Libra to adequately
tolerate the lack of expensive resources for high-SIMDizable loops
(convolution, conjugate). Overall, Libra shows the best performance
in all benchmarks except H.264 benchmark. This is because of the
slightly lower performance gain on SWPable regions due to its dis-
tributed nature. Among average result of each domain, performance
gain of Libra is the highest on game physics. As a result, Libra
shows a performance gain of 2.04x and 1.38x over SIMD and VLIW,
respectively.

Despite using the same amount of computation resources,
performance-only comparison may not be fair due to the different
interconnection strategies among the architectures. An energy com-
parison may yield a better comparison considering both performance
and hardware overhead. Figure 10(b) shows the energy consump-
tion of three architectures and the results are also normalized to the
1-issue core. This graph shows a similar trend to Figure 10(a). On
average, even though SIMD added extra logics for handling sharing
resources (Figure 5(b)), VLIW shows 16% more power consump-
tion because of bigger RFs and complex control logics, and Libra
shows 20% more power consumption due to more interconnects and

92

*
/
"*
"/
,*
,/
-*
-/
.*

"# -, #. "# -, #. "# -, #. "# -, #. "# -, #. "# -, #.

�������& �	����4���	
 �����3 ��� ���2�
� ���

����	

=
	
�
��
�4
��
�
�
�	
�
�

��

*
,
.
#
0
"*
",
".
"#
"0
,*

"# -, #. "# -, #. "# -, #. "# -, #.

��8 -) 6+,#. ���

�����

*
/
"*
"/
,*
,/
-*
-/
.*
./
/*

"# -, #. "# -, #. "# -, #. "# -, #.

��
�>�'��3� �	
�	����	
 �	
C����� ���

����� 3&����

*

/

"*

"/

,*

,/

"# -, #.

������

Figure 11: Scalability of Libra/SIMD/VLIW architectures: the Libra architecture is highly scalable for most of benchmarks, while SIMD and VLIW
cannot be scalable for several benchmarks.

Libra-specific overhead such as a loop-buffer and a thread controller.
Based on these power differences, the Libra saves 38% and 19% en-
ergy compared to SIMD and VLIW, respectively3. As a result, the
Libra architecture shows a fair amount of performance improvement
in addition to high energy efficiency by providing a more suitable ac-
celeration scheme for each loop.

4.3. Scalability

Figure 11 shows the performance of each architecture normalized to
a 1-issue core for different sizes across three benchmark domains.
The number of PEs varying from 16 to 64 are shown on the X-
axis. The results show high scalability of the Libra architecture in
all benchmark domains.

In the vision and game domain benchmarks, applications are not
specially optimized to the SIMD-style architecture, but the perfor-
mance is highly scalable as the number of PEs increases because
most loops are simple and highly SIMDizable. Only the stitch is
barely scalable because the application is mostly sequential as the
dominating loop has only a small number of iterations. In the media
domain, the Libra accelerator performance also fairly increases as it
scales to more PEs. Compared to other architectures, VLIW perfor-
mance results are frequently saturated because modulo scheduling of
a big size loopbody(often unrolled) on a large number of PEs is too
complex to exploit ILP, while Libra solves this problem by schedul-
ing a small loopbody in a small logical lane and applying the same
schedule to multiple logical lanes. The SIMD results are also con-
strained by lack of expensive resources and program complexity. To
summarize, the Libra architecture can increase its performance with
larger resources when the application has enough total ILP/DLP par-
allelism.

4.4. From the Homogeneous SIMD to the Heterogeneous Libra

Section 4.2 and 4.3 evaluate three different architectures consist-
ing of the same computation resources. The key question here
is how much Libra surpasses the traditional SIMD architecture.
To answer this question, we compared the performance and en-
ergy consumption of the heterogeneous Libra and the homogeneous
SIMD. The heterogeneous Libra has a quarter of memory/multiply
resources and the homogeneous SIMD has the same number of mem-
ory/multiply resources as the total number PEs. Figure 12 shows the
average of relative performance and energy consumption of Libra
over SIMD for different sizes. In terms of performance, Libra out-
performs SIMD and the difference increases in proportion to the size
(Figure 12(a)). This is because 1) the lack of expensive resources can
be effectively compensated for by forming logical lanes and 2) the

3Figure 10(b) does not mean that a simple 1-issue core is 3x energy efficient than
Libra because the performances are different. For a performance-equivalent comparison,
Libra is much more efficient than the simple core.

lane utilization of the traditional SIMD is lower for a larger size due
to the program characteristics.

In terms of the energy consumption, Libra still shows similar re-
sults as its performance improvement because significantly less com-
putational units can reduce the overall power overheads, and the re-
sult is better on larger size. For example, the 32-PE heterogeneous
Libra consumes 11% more power than the same size homogeneous
SIMD due to 12% power savings on FUs with 23% overheads (Fig-
ure 12(c)). On average, Libra shows 101%, 71%, and 56% energy
consumption compared to the traditional SIMD.

��� �1� ���

"

"+,

"+.

"+#

"+0

,

"# -, #.

�
��
��
��
��
 �
�
	
�
�

��

���	���

*
*+,
*+.
*+#
*+0
"

"+,

"# -, #.
�
��
��
��
��
�

�
�&

���	���

*
*+,
*+.
*+#
*+0
"

"+,

3	�	��
�	��
'(�)

3���	��
�	��
��1�

�
��
��
��
��
�	
%
�

����)$��� 8	
�	� �< <�

Figure 12: Performance/energy improvement of the heterogeneous
Libra over the same sized homogeneous SIMD: (a) perfor-
mance, (b) energy consumption, and (c) power breakdown
with five categories: FU, RF, control logic, memory, and ar-
chitecture specific additional logic.

4.5. Acceleration Mode Selection
Our experiments so far have focused on the overall performance of
the Libra architecture compared to other architectures, showing con-
siderable performance enhancement. In this section, we evaluate
the effectiveness of flexible lane mapping to answer the question if
Libra really needs to provide various intermediate sizes of logical
lanes between SIMD and VLIW. Figure 13(a) shows the execution
time distribution at different logical lane sizes for the three appli-
cation domains on the 16, 32, and 64-PE Libra. On average, all
available modes are used for considerable fraction of time and no
dominating logical lane size exists, which proves the effectiveness
of flexible lane mapping. Furthermore, the lane sizes are selected
adaptive to the domain characteristics. For vision benchmarks, 2-PE
small sized logical lane is dominant because most loops are small
and memory operation dominant. In media benchmarks, large logi-
cal lanes are used for a high fraction of the execution because of lack
of DLP. Game physics uses a 4-PE logical lane in substantial fraction
to execute high-DLP loops with some ILP. Figure 13(b) compares
the normalized performance of Libra to that when only one specific
logical lane configuration is allowed to execute benchmarks. The
results of this graph further prove the effectiveness of flexibility by
showing that any fixed mode execution cannot win over the flexible
execution.

93

��� �1�

*D
,*D
.*D
#*D
0*D
"**D

"#-,#. "#-,#. "#-,#. "#-,#.
����	
 ����� ����

 3&����
���

, . 0 "# -, #.

*
/
"*
"/
,*
,/
-*

"# -, #. "# -, #. "# -, #. "# -, #.
����	
 ����� ����

 3&����
���

=
	
�
��
�4
��
�
�
�	
�
�

��

��1� , . 0
"# -, #.

Figure 13: Mode selection: (a) execution time distribution at different
logical lanes, (b) flexible vs. fixed execution.

4.6. Multi-threading Effectiveness

As discussed in Section 3.4, a simple multi-threading functionality
is added to Libra. In this section, we evaluate the effectiveness of
this functionality. Figure 14(a) shows the performance improvement
on SIMDizable loops only, since this technique can be only applied
to SIMDizable loops. On average, a performance gain of 12-16%
is achieved, and this is up to 28% more effective in vision bench-
marks because the majority of loops are small and multi-threading
is most effective in small size logical lane mapping. Figure 14(b)
shows the execution time distribution for different logical lane sizes
when multi-threading is applied. Compared to Figure 13(a), a sub-
stantial amount of 2 and 4-PE logical lane execution is substituted
with multi-threading. Overall, multi-threading is effective for small
logical lanes when executing SIMDizable loops.

*D

,*D

.*D

#*D

0*D

"**D

"# -, #. "# -, #. "# -, #. "# -, #.

����	
 ����� ����
 3&����

���

#.E�3 -,E�3 "#E�3 0E�3 .E�3 ,E�3
#. -, "# 0 . ,

"

"+*/

"+"

"+"/

"+,

"+,/

"+-

"#-,#. "#-,#. "#-,#. "#-,#.

����	
 ����� ����
 3&����

���

�
��
��
��
��
��
�
	
�
�

��
�

8�9 869

Figure 14: Multi-threading effectiveness: (a) performance improve-
ment for SIMDizable loops, (b) execution time distribution
at different logical lanes.

4.7. Power and Area Measurement

We measured the average power when the 32-PE Libra architecture
executes the H.264 benchmark at 500 MHz. A power and an area
consumption breakdown for various components that are part of the
architecture are shown in Figure 15(b). Compared to the normal
SIMD, the power consumption of the routing logic is larger due to its
dynamic configurability, but FU power is smaller due to the smaller
number of expensive units. A SIMD controller and four loop buffers,
and a thread controller are added to a cluster. The power consump-
tion of a SIMD controller and four loop buffers is substantial because
the loop buffer is implemented as 64-entry wide two-port SRAM and
the data is read every-cycle. In addition to this, the thread controller
also consumes 0.7% of total power because the sequence table is a
256 entry 8 bit two-port SRAM. The total area of the 32-PE Libra
architecture is 2.0 mm2.

Based on the power and performance data, we compared the ef-
ficiency of Libra to other architectures using data shown in [11].
Based on Figure 15(a), the Libra architecture achieves 11.18
MIPs/mW and most of the other well-known solutions show lower
efficiency. The Tensilica Diamond Core is slightly more efficient

than the Libra architecture, but the actual performance is not enough
to successfully execute compute-intensive media applications.

8�9

869

��	��
�" ���
�859 ��"��8)9 ��
�8�>�9 ��"��8)9
�=�#3�(, ���/� �*/�) ���'�' ��/�)
�=�#3��, �&�/� �*/*) ��7'*� ��/�)
�=�#3��	
���
3?3���"��%3
?3������3��	
���
 ��7/7 ��/7) ������ 7/')

=�,"���"���3���"���
8�=�#3���"����
�3?3$��	36���
�9 7*/� ��/�) ���'&� ��/*)

<-�
�+3���"����
� �/� �/�) ����� �/')
#4
 8*���9 7/' �/�) *�*77� ��/�)
<�"�� �'�/� ���/�) ����&�� ���/�)

�

����

����

����

����

7���

*���

� ��� ��� ��� ��� 7�� *�� ���

 �
�
	
�
�

��
���

(
'�

 	%����B�

<
�,�����
#����+
���

$�6��@
��/�&3�=��A5

<=3�*:

����� B����

Figure 15: (a) Power/Performance comparison, and (b) power and
area breakdown of the 32-PE Libra architecture.

5. Related Works

Many previous works have focused on accelerators to address the
challenges of improving computing efficiency. Some exploit only
one type of parallelism and others introduce some flexibility to sup-
port more than one type of parallelism. Figure 16 compares and
shows the major differences between Libra and prior works.

=$� #$� C
"
��%
��"�
�����%���6�

�
�������
 �����6���"�

���
�
;�����
���

�=�# !� C�%- !� !� C�%- C�%-
2�($�� C�%- $��"
+ !� C�%- $��

;6
++
+32�($�� C�%- $��"
+ !� C�%- C�%-
=$�3���
�
��"�� �#�;� C�%- !� D
, !� $�� C�%-

#$�3?3=$�3���
�
��"�� =�%��
 C�%- C�%- D
, !� C�%- $��
����� $�� C�%- !� $��"
+ C�%- C�%-

�=�#4���	- C�%- C�%- !� $��"
+ $�� C�%-
<�=��E3���$; C�%- C�%- D
, D
, C�%- �
+��

$�6�� C�%- C�%- D
, D
, C�%- C�%-

#$�3���
�
��"��

��
:�6�
3���
�
��"��

Figure 16: Comparison to prior work

Accelerators for multimedia usually focus on one type of paral-
lelism without adaptive configuration. Conventional SIMD [9, 15]
only supports DLP and misses the opportunity of improving perfor-
mance with other form of parallelism. By Amdahl’s law, low-DLP
regions quickly become the bottleneck of applications. Conven-
tional SIMD also wastes expensive resources due to imbalanced uti-
lization. While the latest GPUs [18, 17] support the limited level of
heterogeneity and embedded GPUs such as Qualcomm Adreno [4]
and ARM Mali [1] are power-efficient, GPUs have the same funda-
mental weakness as other data-parallel accelerators.

ILP accelerators, such as ADRES [16], tackle the problem in an-
other way by exploiting ILP with the help of modulo scheduling.
Even though it has high scalability by providing distributed archi-
tecture, the throughput quickly saturates as the number of resources
increases due to the scheduling difficulty as shown in PPA [21]. Hy-
brid accelerators such as the Stanford Imagine [7] use the VLIW-
SIMD scheme but the fixed configuration frequently incurs a lack or
waste of resources.

94

Recently, several architectures have tried to embrace flexibility in
a conventional SIMD accelerator in order to support multiple appli-
cation domains with different characteristics. AnySP [27] targets
mobile applications such as 4G wireless communication and high-
definition video coding. AnySP achieves the goal efficiently by sim-
ply chaining two SIMD lanes and supporting limited thread level par-
allelism, but underutilization in low-DLP loops is still inevitable due
to the lack of general policy to support ILP. SIMD-Morph [10] em-
ploys subgraph matching to accelerate sequential code region. De-
spite their fair performance gain, their simple ILP/DLP mode tran-
sition policy cannot adaptively adjust the degree of ILP and DLP
inside a specific code region. For example, it is impossible to fully
utilize the SIMD-Morph for a low-DLP code region since an insuf-
ficient degree of DLP cannot be supplemented by ILP exploitation,
while Libra can. In addition, they are still homogeneous SIMD, and
therefore, cannot improve utilization and power efficiency.

TRIPS [25] and SCALE [14] are also similar to this work. TRIPS
integrates ILP, DLP and TLP, and SCALE exploits both vector par-
allelism and TLP. They are targeting more the desktop/server space,
and therefore, need expensive architectural features such as inter-
cluster networks, additional multiple fetch units, and specialized
caches for generality. However, Libra focuses on more efficient exe-
cution of loops with minimal hardware modifications.

Avoiding resource contention of expensive instructions by
pipelined execution is also introduced in an instruction-systolic array
architecture [22]. However, systolic execution may incur severe per-
formance degradation on high number of PEs because of the pipelin-
ing delay, while Libra limits sharing only between two logical lanes
in full DLP mode.

6. Conclusion

The popularity of mobile computing platforms has led to the devel-
opment of feature-packed devices that support a wide range of soft-
ware applications with high single-thread performance and power ef-
ficiency requirements. To efficiently achieve both objectives, SIMD-
based architectures are currently proposed. However, the SIMD is
not able to efficiently support a wide range of mobile applications
due to several limiting factors: limited availability of high trip count
vector loops and the homogeneous nature of the hardware. To en-
hance the applicability of SIMD and improve its inherent energy
efficiency, we break two long-standing traditions of SIMD design:
identical lanes and static configuration. The Libra accelerator adapts
the SIMD lane resources to target application. The Libra archi-
tecture customizes the lane configuration based on the loop struc-
ture from many resource-constrained logical lanes for highly data-
parallel loops, to a modest number of lanes with moderate resources,
up to a single resource-rich logical lane that is effectively a multiclus-
ter VLIW. A 32-PE Libra system achieves an average 1.58x speedup
over the traditional SIMD system, and the gain becomes higher as
the number of PEs increases. Through a judicious mechanism to
share expensive resources, Libra also achieves a 29% reduction in
energy compared to the SIMD system. We believe that as industry
requires higher performance with high energy efficiency, the pro-
posed scalable architecture puts more resources to work in order to
meet this demand.

7. Acknowledgments

Thanks to Gaurav Chadha, Anoushe Jamshidi, Dongsuk Jeon and
Yoonmyung Lee for all their help and feedback. We also thank Krste

Asanovic for shepherding this paper. This research is supported by
Samsung Advanced Institute of Technology and the National Sci-
ence Foundation under grants CCF-0916689 and CNS-0964478.
References
[1] ARM Mali Graphics Hardware

- http://www.arm.com/products/multimedia/mali-graphics-hardware/.
[2] Cuda toolkit. - http://developer.nvidia.com/cuda-toolkit.
[3] Glbenchmark - http://www.glbenchmark.com/.
[4] Qualcomm Adreno

- http://www.qualcomm.com/solutions/multimedia/graphics/.
[5] Samsung advanced institute of technology

- http://www.sait.samsung.co.kr/.
[6] T. Adam, K. Chandy, and J. Dickson. A comparison of list schedules for

parallel processing systems. Communications of the ACM, 17(12):685–
690, Dec. 1974.

[7] J. H. Ahn et al. Evaluating the Imagine stream architecture. In Proc.
of the 31st Annual International Symposium on Computer Architecture,
pages 14–25, June 2004.

[8] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. A perfor-
mance characterization of high definition digital video decoding using
h.264/avc. In 2005 IEEE International Symposium on Workload Char-
acterization, pages 24–33, Oct. 2005.

[9] H. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher. A pro-
grammable platform for software-defined radio. In Intl. Symposium
on System-on-a-Chip, pages 15–20, Nov. 2003.

[10] G. Dasika, M. Woh, S. Seo, N. Clark, T. Mudge, and S. Mahlke.
Mighty-morphing power-simd. In Proc. of the 2010 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Sys-
tems, Oct. 2010.

[11] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the computa-
tion gap between programmable processors and hardwired accelerators.
In Proc. of the 15th International Symposium on High-Performance
Computer Architecture, pages 313–322, Feb. 2009.

[12] Intel. Intel compiler, 2009. software.intel.com/en-us/intel-compilers/.
[13] H. Kalva. The H.264 video coding standard. IEEE MultiMedia,

13(4):86–90, 2006.
[14] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,

J. Casper, and K. Asanovic. The vector-thread architecture. In Proc.
of the 31st Annual International Symposium on Computer Architecture,
2004.

[15] Y. Lin et al. Soda: A low-power architecture for software radio. In Proc.
of the 33rd Annual International Symposium on Computer Architecture,
pages 89–101, June 2006.

[16] B. Mei et al. ADRES: An architecture with tightly coupled vliw pro-
cessor and coarse-grained reconfigurable matrix. In Proc. of the 2003
International Conference on Field Programmable Logic and Applica-
tions, pages 61–70, Aug. 2003.

[17] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

[18] NVIDIA. GeForce GTX 200 GPU architectural overview, 2008.
http://www.nvidia.com/docs/IO/55506/
GeForce_GTX_200_GPU_Technical_Brief.pdf.

[19] OpenIMPACT. The OpenIMPACT IA-64 compiler, 2005.
http://gelato.uiuc.edu/.

[20] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. seok Kim. Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures. In Proc. of the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 166–176, Oct. 2008.

[21] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array: A flexible
multicore accelerator with virtualized execution for mobile multimedia
applications. In Proc. of the 42nd Annual International Symposium on
Microarchitecture, pages 370–380, Dec. 2009.

[22] J. Park, H. Yang, G. Park, S. Kim, and C. C. Weems. An instruction-
systolic programmable shader architecture for multi-threaded 3d graph-
ics processing. Journal of Parallel and Distributed Computing,
70(11):1110–1118, 2010.

[23] B. R. Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In Proc. of the 27th Annual International Symposium
on Microarchitecture, pages 63–74, Nov. 1994.

[24] R. M. Russell. The CRAY-1 computer system. Communications of the
ACM, 21(1):63–72, Jan. 1978.

[25] K. Sankaralingam et al. Exploiting ILP, TLP, and DLP using polymor-
phism in the TRIPS architecture. In Proc. of the 30th Annual Inter-
national Symposium on Computer Architecture, pages 422–433, June
2003.

[26] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. L. S. Garcia, S. Belongie,
and M. B. Taylor. SD-VBS: The san diego vision benchmark suite.
In 2009 IEEE International Symposium on Workload Characterization,
pages 55–64, Oct. 2009.

[27] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner.
AnySP: Anytime Anywhere Anyway Signal Processing. In Proc. of
the 36th Annual International Symposium on Computer Architecture,
pages 128–139, June 2009.

95

Unifying Primary Cache, Scratch, and Register File Memories in a Throughput Processor

Mark Gebhart1,2 Stephen W. Keckler1,2 Brucek Khailany1 Ronny Krashinsky1 William J. Dally1,3

1NVIDIA 2The University of Texas at Austin 3Stanford University

{mgebhart, skeckler, bkhailany, rkrashinsky, bdally}@nvidia.com

Abstract

Modern throughput processors such as GPUs employ thousands
of threads to drive high-bandwidth, long-latency memory systems.
These threads require substantial on-chip storage for registers, cache,
and scratchpad memory. Existing designs hard-partition this local
storage, fixing the capacities of these structures at design time. We
evaluate modern GPU workloads and find that they have widely
varying capacity needs across these different functions. Therefore,
we propose a unified local memory which can dynamically change
the partitioning among registers, cache, and scratchpad on a per-
application basis. The tuning that this flexibility enables improves
both performance and energy consumption, and broadens the scope
of applications that can be efficiently executed on GPUs. Compared
to a hard-partitioned design, we show that unified local memory
provides a performance benefit as high as 71% along with an energy
reduction up to 33%.

1. Introduction

Modern GPUs have emerged as an attractive platform for high per-

formance computing. Oriented to throughput processing, GPUs are

highly parallel with hundreds of cores and extremely high-bandwidth

external memory systems. GPUs employ thousands of chip-resident

threads to drive these parallel resources. With so many threads, reg-

ister files are the largest on-chip memory resource in current GPUs.

However, GPUs also provide both scratchpad memories and caches.

These local resources provide low latency and high bandwidth access,

as well as flexible scatter/gather addressing. In contrast to register

files, scratchpad and cache memories allow threads to share data on

chip, avoiding costly round trips through DRAM.

Although GPU architectures have traditionally focused primarily

on throughput and latency hiding, data locality and reuse are becom-

ing increasingly important with power-limited technology scaling.

The energy spent communicating data within a chip rivals the en-

ergy spent on actual computation, and an off-chip memory transfer

consumes orders of magnitude greater energy than an on-chip ac-

cess. These trends have made on-chip local memories one of the

most crucial resources for high performance throughput processing.

As a result, in addition to their large and growing register files, fu-

ture GPUs will likely benefit from even larger primary cache and

scratchpad memories. However, these resources can not all grow

arbitrarily large, as GPUs continue to be area-limited even as they

become power limited.

Unfortunately a one-size-fits-all approach to sizing register file,

scratchpad, and cache memories has proven difficult. To maximize

performance, programmers carefully tune their applications to fit

a given design, and many of these optimizations must be repeated

for each new processor. Even after careful optimization, different

This research was funded in part by the U.S. Government. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Government.

programs stress the GPU resources in different ways. This situation

is exacerbated as more applications are mapped to GPUs, especially

irregular ones with diverse memory requirements.

In this work, we evaluate unified local memory with flexible parti-

tioning of capacity across the register file, scratchpad (shared memory

in NVIDIA terminology), and cache. When resources are unified,

aggregate capacities can be allocated differently according to each

application’s needs. This design may at first seem fanciful, as register

files have typically had very different requirements than other local

memories, particularly in the context of CPUs. However in GPUs,

register files are already large, highly banked, and built out of dense

SRAM arrays, not unlike typical cache and scratchpad memories.

Still, a remaining challenge for unification is that even GPU register

files are very bandwidth constrained. For that reason, we build on

prior work that employs a two-level warp scheduler and a software-

controlled register file hierarchy [8, 9]. These techniques reduce

accesses to the main register file by 60%, mitigating the potential

overheads of moving to a unified design with shared bandwidth.

Unified memory potentially introduces several overheads. For

applications that are already tuned for a fixed partitioning, the main

overhead is greater bank access energy for the larger unified structure.

Another potential drawback is that with more sharing, unified memory

can lead to more bank conflicts. Our analysis shows that even for

benchmarks that do not benefit from the unified memory design, the

performance and energy overhead is less than 1%.

The unified memory design provides performance gains ranging

from 4–71% for benchmarks that benefit from increasing the amount

of one type of storage. In addition, DRAM accesses are reduced by

up to 32% by making better use of on-chip storage. The combination

of improved performance and fewer DRAM accesses reduces energy

by up to 33%.

The rest of this paper is organized as follows. Section 2 describes

our baseline GPU model. Section 3 characterizes the sensitivity to

register file, shared memory, and cache capacity of modern GPU

workloads. Section 4 proposes our unified memory microarchitecture.

Sections 5 and 6 discuss our methodology and results. Sections 7

and 8 describe related work and conclusions.

2. Background
While GPUs are increasingly being used for compute applications,

most design decisions were made to provide high graphics perfor-

mance. Graphics applications have inherent parallelism, with mem-

ory access patterns that are hard to capture in a typical CPU L1

cache [7]. To tolerate DRAM latency and provide high performance,

GPUs employ massive multithreading. Additionally, programmers

can explicitly manage data movement into and out of low-latency

on-chip scratchpad memory called shared memory.

Figure 1 shows the design of our baseline GPU, which is loosely

modeled after NVIDIA’s Fermi architecture. The figure represents

a generic design point similar to those discussed in the literature [2,

16, 25], but is not intended to correspond directly to any existing

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.18

96

Interconnect

SM

MemCtrl MemCtrl MemCtrl

MemCtrl MemCtrl MemCtrl

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

(a) Full chip

Warp Scheduler

SIMT Lanes

SFU TEX MEM ALU

ORF / LRF

Select

A AA A AA A AA A Active Warps

MRF

Shared Memory (32x2KB) Cache (32x2KB)

Pending Warps

(b) Streaming multiprocessor

S
F
U

M
E
M

T
E
X

Operand Routing

MRF
4x128-bit Banks (1R1W)

Operand Buffering

ORF 4x32-bit
(3R1W) Banks

ALU

LRF 4x32-bit

Shared Memory / Cache Crossbar

(c) 4-Wide SIMT lane detail

Figure 1: Baseline GPU architecture.

industrial product. The GPU consists of 32 streaming multiprocessors

(SMs) and 6 high-bandwidth DRAM channels for a total of 256

bytes/cycle of DRAM bandwidth. Figure 1b shows an SM containing

32 SIMT (single-instruction, multiple thread) lanes that each execute

up to one thread instruction per cycle. A group of 32 threads form an

execution unit called a warp. The SIMT model executes all threads in

a warp together using a common physical program counter. While the

hardware supports control-flow divergence of threads within a warp,

the SM operates most efficiently when all threads execute along a

common control-flow path. Warps are grouped into larger units called

co-operative thread arrays (CTAs) by the programmer. Threads in the

same CTA execute on the same SM and can communicate through

shared memory. A program may consist of one or more kernels, each

consisting of one or more CTAs.

2.1. Baseline SM Architecture
In this work, we focus on the design of the SM shown in Figures 1b

and 1c. The SM has up to 1024 resident threads, and a 32-entry,

single-issue, in-order warp scheduler selects one warp per cycle to

issue an instruction. Each SM provides 64KB of local scratchpad

storage known as shared memory, 64KB of cache, and a 256KB

register file. While these are large capacity structures compared

to a uniprocessor, the SM provides on average only 256 bytes of

registers, 64 bytes of data cache, and 64 bytes of shared memory per

thread. Figure 1c provides a detailed microarchitectural illustration

of a cluster of 4 SIMT lanes. A cluster is composed of 4 ALUs, 4

register banks, a special function unit (SFU), a memory unit (MEM),

and a texture unit (TEX) shared between two clusters. Eight clusters

form a complete 32-wide SM.

We leverage prior work which introduced a two-level warp sched-

uler and a software controlled register file hierarchy [8, 9]. The

two-level warp scheduler divides the 32 warps present on an SM into

an active set and an inactive set. Only warps in the active set are

allowed to issue instructions, and warps are moved to the inactive set

when they encounter a dependence on a long-latency operation. The

software controlled register file hierarchy introduces two additional

levels beyond the main register file (MRF): the operand register file

(ORF) with 4 entries per thread, and a last result file (LRF) with a

single entry per thread. Only active warps can allocate values in the

ORF and LRF. When an active warp is descheduled, all of its live

values must be in the MRF. The compiler controls all data move-

ment between the MRF, ORF, and LRF. The result of these prior

techniques is a reduction in the number of accesses to the MRF of

60%, without a performance loss, resulting in a significant savings in

register file energy and MRF bandwidth.

Each MRF bank is 16 bytes wide with 4 bytes allocated to the

same-named architectural register for threads in each of the 4 SIMT

lanes in the cluster. Each bank has a capacity of 8KB, providing

a total of 256KB of register file capacity per SM. Registers are

interleaved across the register file banks to minimize bank conflicts.

Instructions that access multiple values from the same bank incur a

cycle of delay for each access beyond the first. The operand buffering

between the MRF and the execution units represents interconnect

and pipeline storage for operands that may be fetched from the MRF

on different cycles. Stalls due to bank conflicts are rare and can be

minimized with compiler techniques [27].

Each SM contains 64KB of cache and 64KB of shared memory.

Each of these structures is composed of 32 2KB banks, and each bank

supports one 4-byte read and one 4-byte write per cycle. The cache

uses 128-byte cache lines which span all 32 banks, and only supports

aligned accesses with 1 tag lookup per cycle. Shared memory sup-

ports scatter/gather reads and writes, subject to the limitation of one

access per bank per cycle. Avoiding shared memory bank conflicts is

a common optimization employed by programmers. The cache and

shared memory banks are connected to the memory access units in

the SM clusters through a crossbar.

2.2. Unified Cache and Shared Memory

Fermi has a unified cache and shared memory, providing program-

mers a limited choice of either a 16KB cache and a 48KB shared

memory or a 48KB cache and a 16KB shared memory [16]. The

memory configuration is controlled through a CUDA library function.

Section 6.3 shows that a limited form of flexibility across shared

memory and cache, like that found in Fermi, has benefits. However,

a more flexible solution across all three types of storage (register file,

cache, and shared memory) further improves both performance and

energy consumption.

3. Application Characterization

In this section, we characterize modern GPU applications based on

their usage of registers, shared memory, and cache. We begin with

a large number of benchmarks and show that modern workloads

fall into several different categories. Next, we explain in detail why

some applications benefit from larger capacity in a given type of

storage. Finally, we study the performance sensitivity of applications

to storage capacity.

97

Table 1: Workload characteristics.

Workload Registers per Registers per Thread RF Size Shared Memory Cache Size
thread 18 24 32 40 64 full occupancy (bytes / thread) 0 64KB 256KB

(no spills) (normalized dynamic instructions) no spills (KB) (normalized DRAM Accesses)

Shared Memory Limited
Needle [3] 18 1.02 1 1 1 1 72 264.1 0.85 1 1
sto [2] 33 1.18 1.08 1 1 1 132 127 3.95 1 1
lu [3] 20 1 1 1 1 1 80 96 1.94 1.46 1

Cache Limited
GPU-mummer [3] 21 1.04 1 1 1 1 84 0 1.48 1.01 1
BFS [3] 9 1 1 1 1 1 36 0 1.46 1.13 1
Backprop [3] 17 1.02 1 1 1 1 68 2.125 1.56 1 1
MatrixMul [15] 17 1.04 1 1 1 1 68 8 4.77 1 1
Nbody [15] 23 1 1 1 1 1 92 0 3.52 1 1
VectorAdd [15] 9 1 1 1 1 1 36 0 3.88 1 1
srad [3] 18 1 1 1 1 1 72 24 1.22 1.20 1

Register Limited
DGEMM [11] 57 1.42 1.23 1.01 1 1 228 66.5 1 1 1
PCR [26] 33 1.39 1.18 1.03 1 1 132 20 2.88 1.29 1
BicubicTexture [15] 33 1.18 1.10 1.05 1 1 132 0 1 1 1
hwt [3] 35 1.04 1.04 1.04 1 1 140 23 1 1 1
ray [2] 42 1.18 1.11 1.08 1.05 1 168 0 1.02 1.07 1

Balanced / Minimal Capacity Requirements
Hotspot [3] 22 1.21 1 1 1 1 88 12 1.44 1 1
RecursiveGaussian [15] 23 1.02 1 1 1 1 92 2.125 1.04 1.03 1
Sad [17] 31 1.01 1 1 1 1 124 0 1.01 1.01 1
ScalarProd [15] 18 1.01 1 1 1 1 72 16 1 1 1
SGEMV [11] 14 1 1 1 1 1 56 4 1.01 1.01 1
SobolQRNG [15] 12 1 1 1 1 1 48 2 1 1 1
aes [2] 28 1.30 1.18 1 1 1 112 24 1 1 1
Dct8x8 [15] 26 1.16 1.10 1 1 1 104 0 1 1 1
DwtHaar1D [15] 14 1 1 1 1 1 56 8 1 1 1
lps [2] 15 1 1 1 1 1 60 19 1.48 1 1
nn [2] 13 1 1 1 1 1 52 0 20.81 1.07 1

3.1. Workload Characterization

We characterize these applications along three axes:

• Register usage: Two parameters are related to register file capac-

ity: registers per thread and number of threads. Each thread is

allocated registers for thread private values, with the same number

of registers allocated for every thread in a kernel. Modern GPUs

support a very large number of registers per thread. However,

using more registers per thread results in fewer threads per SM,

as the register file is shared across the SM. The compiler inserts

spill and fill code when there are not enough registers available.

We use the number of dynamic instructions executed as a metric

to measure the overhead of register spills.

• Shared memory usage: Shared memory tradeoffs are controlled

by the programmer, with each kernel specifying the total shared

memory required per CTA along with the number of threads

per CTA. The physical shared memory capacity available in an

SM then dictates the maximum number of CTAs that can be

mapped, if the register file capacity does not become a bottleneck

first. While the programmer can often adjust shared memory

requirements by changing an application’s blocking pattern, we

evaluate existing benchmarks that have fixed shared memory

requirements per thread. Section 6.5 discusses tuning the shared

memory requirements to exploit the unified design.

• Cacheable memory usage: The amount of spatial and temporal

locality varies from application to application. Streaming appli-

cations mainly have spatial locality, but often have some degree

of access redundancy which can be filtered by a small cache.

Applications with cache blocking or a large number of register

spills have higher temporal locality. The cache is a very scarce

resource, and our baseline configuration has only 64 bytes on a

per-thread basis. We use the number of DRAM accesses as a

metric for the cache’s effectiveness.

Table 1 presents an analysis of a range of CUDA applications accord-

ing to the above criteria. Columns 2–8 show the per-thread register

requirements, with column 2 showing the number of registers per

thread required to eliminate spills. Columns 3–7 show the increase in

dynamic instructions due to spill and fill code with different numbers

of registers per thread. All of our surveyed benchmarks experience

no spills when 64 registers per thread are available. Hand tuned pro-

grams tend to use more registers per thread than compiled programs

as the programmer can block data into the register file for higher

performance. DGEMM, PCR, and BicubicTexture all experience a

large number of spills with a small number of registers per thread.

Column 8 shows the register file capacity required to achieve full

occupancy without experiencing register spills. The capacity required

ranges from 36KB to 228KB. Column 9 shows the number of bytes

of shared memory required per thread. Many applications need less

than 20 bytes per thread, particularly when developed to fit the small

shared memory capacities of early GPUs. Needle on the other hand,

requires a large amount of shared memory. Columns 10–12 show

the number of DRAM accesses for different capacity primary data

caches. In general, as the cache capacity is increased, DRAM ac-

98

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Register File Capacity (KB)

18 32 40 64
Registers per Thread

(a) DGEMM

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Register File Capacity (KB)

18 32 40 64
Registers per Thread

(b) PCR

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Register File Capacity (KB)

18 32 40 64
Registers per Thread

(c) Needle

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Register File Capacity (KB)

18 32 40 64
Registers per Thread

(d) GPU-mummer

Figure 2: Performance as a function of register file capacity (with 64KB cache and unbounded shared memory), normalized to 64 registers per
thread and 1,024 threads per SM.

cesses decrease. This decrease in DRAM traffic is due to the cache’s

ability to filter traffic and amplify bandwidth. The DRAM bandwidth

demand can actually go up when using a cache, particularly when the

cache line size exceeds the minimum DRAM fetch size. For example,

Needle fetches unneeded data because only a fraction of the cache

line is used after fetch.

Table 1 demonstrates that different applications place different

stresses on the register file, shared memory, and cache structures.

Many of the benchmarks fall into the balanced / minimal capacity

requirements category as they were developed to fit the design of

existing GPUs. As new emerging applications are ported to GPUs and

applications are optimized to take advantage of our unified design,

we expect to see more diversity in the memory requirements.

3.2. Application Case Studies

To provide greater insight into the advantages of the unified design,

we discuss in detail the benchmarks which see a significant perfor-

mance benefit from higher capacity in a given type of storage.

Needle implements the Needleman-Wunsch algorithm for DNA

sequence alignment using dynamic programming [3]. The algorithm

constructs a large (2048 by 2048 entry) matrix where each entry

depends on its north, west, and north-west neighbor. The problem is

broken into subblocks to make use of shared memory. The size of

the subblock is a key parameter for this algorithm. Larger subblocks

improve performance, but increase the shared memory requirements

quadratically. Section 6.5 discusses the choice of blocking factor in

more detail.

LU performs LU decomposition to solve a set of linear equa-

tions [3]. The kernel requires a moderate amount of registers but a

high capacity shared memory. A large cache can exploit the reuse

patterns as values in the input matrix are accessed repeatedly.

GPU-mummer implements DNA sequence alignment using graph

traversal [3]. The algorithm consist of many parallel graph traversals

across a large reference suffix tree. Each thread processes a single

independent query. This workload does not use shared memory, as

the working set size depends on the input. If the reference suffix tree

is cached, a large performance gain is possible.

BFS is a breadth-first search of a graph with one million nodes [3].

It does not make use of shared memory and uses a small number of

registers per thread. The application benefits from caching as the

node and edge list is accessed repeatedly.

SRAD is an image processing application that relies on partial

differential equations [3]. It uses a moderate number of registers and

shared memory per thread, but benefits greatly from a large primary

cache. Each output element is computed based on its four neighbors,

allowing the cache to filter DRAM accesses.

DGEMM is an optimized double precision matrix multiplication ker-

nel from the MAGMA library [11]. Two temporary matrices in

shared memory capture subblock temporal locality. There is little

performance benefit from caching. Each thread requires 57 registers

per thread to eliminate spills, requiring a large register file.

PCR is a parallel cyclic reduction kernel that solves a tridiagonal

linear system [26]. The algorithm uses shared memory to store

temporary data and streams a large dataset from global memory.

The large amount of communication between steps of the algorithm

requires high bandwidth access to shared memory.

RAY performs ray-tracing with each thread responsible for ren-

dering a single pixel; several levels of reflections and shadows are

modeled. The kernel does not use shared memory but does require a

large number of registers. A larger data cache is able to capture the

environment, reducing the number of DRAM accesses.

3.3. Performance Sensitivity Study

Finally, we explore the performance sensitivity to the capacity of the

register file, shared memory, and cache. We present limit studies

which highlight the diverse memory requirements of modern work-

loads and the performance gains that can be achieved with larger

storage structures. The details of our evaluation methodology are

in Section 5. Because of the large number of benchmarks that we

characterize in Table 1, we only present results for a subset of bench-

marks which exhibit unique behaviors across the three different types

of on-chip storage.

3.3.1. Register File Capacity: Register file capacity is a function of

both the number of registers allocated to each thread and the number

of concurrent threads. Performance is penalized when the number of

registers per thread is small, which results in a large number of spills

and fills. Likewise, applications that must tolerate DRAM accesses

experience performance degradations when the number of concurrent

threads is small.

Figure 2 illustrates the relationship between performance and reg-

ister file capacity for four different types of applications. Each line in

the graph shows performance with a different number of registers per

thread. The performance penalty of spills can be seen by comparing

the four lines. The points on a given line show performance for 256,

512, 768, and 1024 threads per SM. DGEMM requires both a large

number of registers per thread and a large number of threads to max-

imize performance. These types of applications that require both a

large number of registers per thread and a large number of concurrent

threads stress the capacity of the register files found on current GPUs.

PCR experiences a large number of spills with 18 or 32 register per

thread and is less sensitive to thread count than DGEMM. There is no

advantage to using more registers per thread than is necessary to elim-

inate spills. Needle is an example of an application that eliminates

99

0

0.2

0.4

0.6

0.8

1

0 100 200 300

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Shared Memory Capacity (KB)

(a) Needle

0

0.2

0.4

0.6

0.8

1

0 50 100 150

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Shared Memory Capacity (KB)

(b) PCR

0

0.2

0.4

0.6

0.8

1

0 50 100 150

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Shared Memory Capacity (KB)

(c) LU

0

0.2

0.4

0.6

0.8

1

0 50 100 150

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Shared Memory Capacity (KB)

(d) STO

Figure 3: Performance versus shared memory capacity (with 64 registers per thread and 64KB of cache), normalized to 1,024 threads per SM.
Note the wider x-axis on Needle.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Cache Capacity (KB)

256 512 768 1024

Threads per SM

(a) GPU-mummer

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Cache Capacity (KB)

256 512 768 1024

Threads per SM

(b) BFS

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Cache Capacity (KB)

256 512 768 1024

Threads per SM

(c) PCR

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Cache Capacity (KB)

256 512 768 1024

Threads per SM

(d) Needle

Figure 4: Performance as a function of cache capacity (with 64 registers per thread and unbounded shared memory), normalized to 512KB
cache and 1,024 threads per SM.

spills even with as few as 18 registers per thread. Further, increas-

ing thread count beyond 512 threads does not increase performance.

DRAM latency tolerance is not important for this application, as it

operates mainly out of shared memory. The spikes in performance

in Figure 2d result from the interaction between the cache size and

thread count. Changing the thread count can change performance due

to interactions with the thread scheduler, especially when the larger

number of threads are not needed to tolerate DRAM latency.

3.3.2. Shared Memory Capacity: Figure 3 shows the tradeoff in

performance and shared memory capacity. Each point along a line

shows an increasing number of threads per SM ranging from 256 to

1,024 in increments of 256. To isolate the effects of shared memory,

these experiments use a large register file, eliminating register spills,

and a 64KB cache. The application with the largest shared memory

needs is Needle, which requires over 200KB. We discuss alternate

blocking factors that can be used for Needle in Section 6.5. The

shared memory usage of PCR is typical of today’s applications. There

is a large performance gain from maximizing thread count and even

with the maximum number of threads per SM only 20KB of shared

memory is required. LU is an example of an application that requires

more shared memory than is present on today’s GPUs and maximiz-

ing thread count improves performance. STO is an example where the

application operates primarily out of shared memory, reducing the

importance of running a large number of threads to tolerate DRAM

latency. A small number of threads can still achieve high performance

and minimizes the shared memory requirements.

3.3.3. Cache Capacity: Figure 4 shows the performance sensitivity

to cache capacity. In these graphs, each line shows a different number

of threads per SM (ranging from 256 to 1,024), and each point along

a line shows performance with a different cache capacity. To isolate

the effects of cache capacity, the register file is sized to eliminate

spills and shared memory is unbounded. Running more threads per

SM helps to tolerate latency from main memory access, but also

reduces the amount of cache available on a per-thread basis. BFS
and PCR benefit from having a large cache. In particular, PCR sees a

large performance benefit moving from a 256KB to 512KB cache.

GPU-mummer sees a performance benefit from caching, but it has

a small working set for the input datasets we used. We expect a

greater improvement with larger datasets. Needle is an example of

an application that sees little performance benefit from caching as it

operates mostly out of shared memory.

4. Microarchitecture

The characterization in Section 3 shows that modern GPU workloads

have diverse local storage requirements and a single resource is often

most critical to performance of a given application. We propose

a unified memory architecture that aggregates these three types of

storage and allows for a flexible allocation on a per-kernel basis.

4.1. Overview

Figures 5a and 6 compare the microarchitectures of the baseline

design and our proposed unified architecture. The baseline design is

structured as discussed in Section 2.1. In the unified design, all data

storage is moved into the SM clusters. Effectively, the unified design

merges together the 32 MRF banks, 32 shared memory banks, and 32

cache banks. Although we evaluate a range of capacities, the number

of unified banks is always 32 per SM, to keep bandwidth constant.

Each unified bank supports 1 read and 1 write per cycle, as do the

banks in the baseline design. Also similar to the baseline design,

the SM clusters in the unified design are connected by a crossbar to

transfer data between the memory access units and other SM clusters.

As with the partitioned design, the cache tags are stored outside the

SM clusters and 1 tag lookup can be processed per cycle. A 384KB

unified design requires up to 7.125KB of tag storage compared with

the baseline 64KB cache requiring 1.125KB. This overhead can be

reduced by limited the maximum cache size in the unified design.

100

Unified
(4 banks)

MEM
Unit

Shared Memory / Cache Crossbar
Cache
Tags

()
Unified

(4 banks)

MEM
Unit

()
Unified

(4 banks)

MEM
Unit

()

(a) Unified SM architecture, 3 of 8 SM clusters shown.

Shared Memory / Cache Crossbar

Cache Tags
19 bits wide,
3072 entries

Remaining
6 SM Clusters

(b) Detailed address mapping: RF: thread ID / register ID, Shared Memory/Cache: address (bytes).

Figure 5: Proposed unified memory microarchitecture.

MRF
(4 banks)

MEM
Unit

Shared Memory / Cache Crossbar

Shared Memory (32 banks) Cache (32 banks) (((())

Cache
Tags

()
MRF

(4 banks)

MEM
Unit

()
MRF

(4 banks)

MEM
Unit

()

Figure 6: Baseline SM architecture, 3 of 8 SM clusters shown.

4.2. Unified Memory Bank Design

Each unified memory bank is 16 bytes wide with byte-enable sup-

port. Figure 5b shows how registers, cache, and shared memory are

mapped across the banks. This figure shows 2 of the 8 SM clusters

found in one SM. Threads from a single warp are mapped evenly

across the 8 SM clusters, with 4 threads executing on each SM clus-

ter. As all of a thread’s register file entries are located in the same

SM cluster where it executes, register file values are not communi-

cated between SM clusters. The unified memory architecture does

not change the register file bank mapping, bank widths, or register

muxing in any way. The cache line size is 128 bytes in both the

partitioned and unified designs. As shown in Figure 5b, the cache

line is address-partitioned across 8 of the unified banks, 1 from each

of the SM clusters. The shared memory address space is mapped

across the banks in a similar manner. The unified memory design

uses a smaller number of larger memory banks. The banks are sized

such that the increase in bank size does not result in additional cycles

required for bank access. The bank access is not on the processor’s

critical path, allowing for a larger memory bank.

When accessing cache or shared memory, only a single bank is

used from each of the 8 clusters. This single bank routes its 16 bytes

of data onto the crossbar, providing a peak shared memory or cache

bandwidth of 128 bytes per cycle, identical to the baseline partitioned

design. Compared with the partitioned design, the unified design adds

one level of additional muxing for shared memory and cache accesses

across SM clusters. Section 5 describes how we account for the extra

wiring energy to access this multiplexor. This 4 to 1 mux is used to

select which bank should access the crossbar and is only traversed for

remote memory traffic, not for register file accesses. However, this

single bank per cluster design is more restrictive than the partitioned

design. To be bank-conflict free, a warp’s shared memory accesses

must coalesce to 8 banks rather than 32. A more aggressive design

allows multiple banks in a single cluster to be accessed to increase

the scatter / gather bandwidth. This enhanced design increases the

complexity of the data muxing in a cluster, but still only allows 16

bytes per cluster to enter the crossbar. We simulated this design

and found that it had an average performance improvement of 0.5%,

compared to the simpler design. Our results in Section 6 assume the

simpler design.

4.3. Arbitration Conflicts

In our baseline design, bank conflicts only occur within a single type

of storage. With the unified design, accesses to the register file and

cache or shared memory can conflict with each other. We refer to

these conflicts as arbitration conflicts. One of the key enablers of the

unified design is the software controlled register file hierarchy, which

fetches most operands from the ORF or LRF and greatly reduces the

required bandwidth to the MRF [9]. We model all conflicts and give

priority to register access before cache or shared memory, but find that

the performance impact of conflicts is small. Memory instructions

fetch a small number of register operands and these operands often

come from the LRF or ORF rather than the MRF, minimizing the

number of arbitration conflicts. Our design uses a write through

cache, eliminating bank accesses for evicting dirty data. The large

number of threads can also tolerate some additional latency from

conflicts without harming performance.

4.4. Managing Partitioning

Modern GPU workloads typically contain several different kernels,

each of which may have different memory requirements. Before

each kernel launch, the system can reconfigure the memory banks

to change the memory partitioning. Because the register file and

shared memory are not persistent across CTA boundaries, the only

state that must be considered when repartitioning is the cache. As we

use a write-through cache, the cache does not contain dirty data to

evict. In the applications that we evaluated, the memory requirements

across kernels were similar. Therefore, the results in Section 6 reflect

choosing a single memory partitioning at the start of each benchmark

and not reconfiguring the partitioning for each kernel.

101

4.5. Allocation Decisions

The unified memory architecture requires the programming system

and hardware to determine the capacity of the register file, shared

memory, and cache. We use the following automated algorithm to

calculate the storage partitioning evaluated in Section 6:

• Register File: The compiler calculates how many registers per

thread are required to avoid spills (Table 1, column 2).

• Shared Memory: The programmer specifies the amount of

shared memory required per thread when constructing each kernel

in the same manner as today’s partitioned designs.

• Thread count: The hardware scheduler takes as input the num-

ber of registers per thread to avoid spills, the number of bytes

of shared memory, and the overall capacity of the unified mem-

ory. The scheduler calculates the maximum number of threads

by dividing the unified memory capacity by the per-thread reg-

ister and shared memory requirements. Some applications see

higher performance with fewer than the maximum number of

threads, due to interactions with the thread scheduler and memory

system. This phenomenon occurs both for the partitioned and

unified design. Techniques like autotuning [24] can be used to

automatically optimize thread count.

• Cache: Any remaining storage is allocated to the primary data

cache.

5. Methodology

When possible, we used the default input sets and arguments dis-

tributed with the benchmarks described in Table 1, but we scaled

down some of the workloads to make the simulation time tractable.

5.1. Simulation

We used Ocelot, a PTX dynamic compilation framework, to create

execution and address traces [6]. We built a custom SM simulator

that takes these traces as input and measures performance. We simu-

late execution using the SM parameters shown in Table 2. Our SM

simulator runs the traces to completion, correctly modeling synchro-

nization between threads in a CTA. We model execution for the full

application running on a single SM and allocate 8 bytes per cycle of

DRAM bandwidth making the simplifying assumption that the global

DRAM bandwidth is evenly shared among all 32 SMs. Because the

applications run each kernel many times across a large number of

threads, modeling a single SM, rather than the full chip, simplifies

simulation without sacrificing accuracy.

5.2. Energy Model

We assume a 32nm technology node for our energy evaluation using

the parameters listed in Table 3 and focus on the following elements

which are affected by our unified design:

• Bank Access Energy: Compared with the baseline partitioned

design, the unified design uses a smaller number of larger banks,

resulting in more energy per access to the main register file,

shared memory, and cache. Table 4 shows dynamic read and

write energy for SRAM banks of various sizes. These numbers

are scaled using a combination of CACTI [13] and prior work

that used synthesis for memory structures [8]. While the uni-

fied design increases bank access energy, especially for shared

memory and cache accesses, Section 6 shows that this increase is

small in comparison to total system energy.

Table 2: Simulation parameters.

Parameter Value

SM Execution Width 32-wide SIMT
SM Execution Model In-order
SM Register File Capacity 256 KB
SM MRF Bank Capacity 8 KB
SM Shared Memory Capacity 64 KB
SM Shared Memory Bandwidth 128 bytes/cycle
SM Cache Associativity 4-way
SM DRAM Bandwidth 8 bytes/cycle
ALU Latency 8 cycles
Special Function Latency 20 cycles
Shared Memory Latency 20 cycles
Texture Instruction Latency 400 cycles
DRAM Latency 400 cycles

Table 3: Energy parameters.

Parameter Value

Technology node 32 nm
Frequency 1 GHz
Voltage 0.9 V
Wire capacitance 300 fF / mm
Wire energy 1.9 pJ / mm
Dynamic power per SM 1.9 W
Leakage power per SM 0.9 W
Leakage power per KB of SRAM 2.37 mW
DRAM energy 40 pJ / bit

• Wiring Energy: In the baseline design, the cache and shared

memory banks are 4 bytes wide. In the unified design, the banks

are 16 bytes wide. To simplify the crossbar, we stripe cache lines

across banks in different SM clusters as described in Section 4.

However, we still incur an overhead of a 4:1 multiplexer. Further-

more, for an equal capacity design, the area of an SM cluster will

increase as cache and shared memory storage is moved into the

clusters. This increase in area will increase the overhead of the

crossbar that connects the clusters. As we have not implemented

a detailed physical design, we model these overheads as 10%

additional energy relative to the bank access energy for cache and

shared memory reads and writes. We also account for an increase

in cache tag lookup energy with this factor.

• SRAM Leakage: Each of the unified and partitioned designs use

different amounts of SRAM for the main register file, shared

memory, and cache. We use an estimate of 2.37 mW per KB of

SRAM capacity from prior work to calculate leakage for each

design [10].

• DRAM Energy: Our architecture reduces DRAM accesses by

making better use of on-chip memory. We model each DRAM

access as consuming 40 pJ/bit [22].

We use a high-level GPU power model to account for the core dy-

namic and leakage energy. We assume a modern GPU in 32nm

process technology that consumes 130 watts and contains 32 SMs.

The SMs consume 70% of the chip-wide energy, with the remaining

30% consumed by the memory system. Assuming that leakage is

one third of the chip-wide power, each SM consumes 1.9 watts of dy-

namic power and 0.9 watts of leakage power. Except for bank access

and DRAM energy, we assume that dynamic power for the SM is

constant across the various configurations. We use the performance

of the baseline 256/64/64 configuration to calculate SM dynamic

power for each benchmark. We adjust leakage for each configuration

using the SRAM leakage data of 2.37mW per KB of capacity. On the

102

0.98

0.99

1

1.01

1.02
N

or
m

al
iz

ed
 to

 P
ar

tit
io

ne
d

De
si

gn

Performance Energy

Figure 7: Performance (higher is better) and energy (lower is better) of unified design (384KB) normalized to an equal-capacity partitioned
design for applications that do not benefit from unified storage (note the narrow range of the y-axis).

Table 4: Energy for 16-byte SRAM bank access (32nm) for unified and
partitioned designs.

Structure Bank Size Read (pJ) Write (pJ)
Partitioned

256KB RF 8 KB 9.8 11.8
64KB Shared Memory 2 KB 3.9 5.1

64KB Cache 2 KB 3.9 5.1

Unified
384KB Unified 12 KB 12.1 14.9

baseline design with 384KB of SRAM storage, 0.7 watts of leakage

is from the core and 0.2 watts is from the SRAM. The SM and

SRAM leakage energy is calculated for each design point based on

performance. Design points with higher performance experience less

leakage, since faster completion of the workload results in less time

for transistors to leak.

6. Results

In this section, we evaluate the overheads and advantages of the uni-

fied memory design. We divide the benchmarks that we characterized

in Section 3 into two sets: those that see no benefit from the unified

design (Section 6.1) and those that benefit (Section 6.2).

6.1. Applications With No Benefit From Unified Memory

First, we evaluate the set of benchmarks that do not benefit from

the unified design. These benchmarks are not able to make use of

the additional capacity provided by the unified design to improve

performance. However, the unified design does not harm performance

or energy. Many of these benchmarks were tuned for the small

capacity structures present on early GPUs and may benefit from the

unified design if they were tuned for larger capacity structures.

Figure 7 shows the performance and energy improvements of a

384KB unified design normalized to an equal-capacity partitioned

design. Each SM in this baseline partitioned design contains a 256KB

register file, a 64KB shared memory, and a 64KB primary data

cache as described in Section 2. The unified design only slightly

changes performance and energy for these benchmarks, with the

largest changes less than 1%. The slight changes in performance and

energy are mainly due to (1) changes in bank conflicts resulting from

changing the bank width from 4 bytes in the partitioned case to 16

bytes in the unified case, and (2) from bank conflicts associated with

combining the register file with shared memory and the cache. These

results show that the performance degradation due to an increase in

bank conflicts is negligible.

One of the potential overheads of the unified design is an increase

in memory bank conflicts, as each memory bank supports only one

read and one write operation per cycle. Bank conflicts are due to

accesses from the same instruction or different instructions mapped

to the same bank. The inter-instruction conflicts depend on the exact

scheduling policy and instruction pipeline used. To get an estimate

of the potential increase in bank conflicts from unified memory, we

rely on a simplified model where we only track conflicts within a

single warp instruction. For each warp instruction, we count the

bank accesses across the 32 threads in the warp. We then impose a

performance penalty of 1 cycle for each access beyond the first for

the bank that was accessed the most by that warp instruction. For

example, if one bank was accessed three times and another bank was

accessed twice the instruction would be delayed by 2 cycles. This

model is likely pessimistic, as accesses from a single warp instruction

can actually span different clock cycles due to the pipeline design.

In the partitioned design, bank conflicts occur (1) in the register file

when an instruction tries to read multiple registers mapped to the

same bank, and (2) in the cache and shared memory when threads

in the same warp access values that are mapped to the same bank.

In the unified design, additional arbitration conflicts occur when an

instruction tries to read or write a value from the cache or shared

memory that is mapped into the same bank as its register operands.

Table 5 quantifies the potential increase in bank conflicts by show-

ing how many accesses each warp instruction makes to the same

memory bank. In both designs, the vast majority of warp instruc-

tions make one or fewer accesses to each memory bank. The unified

design experiences a small increase (0.6 percentage points) in the

number of warp instructions that access a bank multiple times. How-

ever, Figure 7 shows this increase in accesses leads to a negligible

performance change. The key enabler that allows the unification of

on-chip memory without excessive numbers of arbitration conflicts

is the register file hierarchy, which dramatically reduces the number

of accesses to the main register file [9].

Relative to the partitioned architecture, the unified memory design

slightly increases bank access energy due to its smaller number of

banks, each with higher capacity. However, bank access energy

Table 5: Breakdown of warp instructions based on the maximum
number of accesses to a single bank for the unified and par-
titioned design, averaged across Figure 7 benchmarks.

Maximum accesses to a single bank per instruction
<= 1 2 3 4 >4

Partitioned 97.0% 2.7% 0.09% 0.14% 0.03%
Unified 96.4% 3.4% 0.01% 0.02% 0.21%

103

makes up a small component of overall system energy. Figure 7

shows that the overall changes in energy are negligible. The largest

increase in energy is 0.9% for nn and on average the energy of the

unified design is 0.06% lower than that of the partitioned design.

Much of the energy spent in the register file system, cache, and

shared memory is for control and wiring rather than actual bank

access. Additionally, the register file hierarchy reduces the number of

accesses to the main register file, minimizing register file bank access

energy for both the partitioned and unified designs. These results

show that even though these benchmarks do not benefit from the

unified design the overhead from our proposed design is negligible.

6.2. Applications That Benefit From Unified Memory

Next, we evaluate benchmarks that see significant improvements

from the unified memory architecture. We have made no source

code modifications to these benchmarks to tune them for the unified

memory architecture. As the analysis in Section 3 shows, modern ap-

plications have a variety of requirements in on-chip storage needs and

the unified memory architecture is able to adapt on a per-application

basis with the most efficient partitioning of on-chip storage.

As described in Section 4.5, the allocation decisions are managed

automatically by the compiler and hardware. Figure 8 shows how

the 384KB of unified memory was configured for each of these

benchmarks. The amount of storage devoted to the register file ranges

from 36KB on bfs to 228KB on dgemm. One of the applications,

needle, devotes 264KB to shared memory to allow a larger number

of concurrent threads to execute. The remaining applications that

make use of shared memory devote less than 100KB of their on-

chip storage to it. The unified memory design allows larger primary

caches, as any remaining storage not used for the register file or

shared memory serves as cache.

Figure 9 shows the performance, energy, and DRAM traffic im-

provements for eight benchmarks that see significant improvements.

The performance improvements range from 4.2% to 70.8% with an

average performance improvement of 16.2%. These performance im-

provements are the result of a combination of having a larger register

file, shared memory, or cache. In many cases, the larger capacity

register file or shared memory allows more concurrent threads to run,

which allows the SM to better tolerate DRAM latency.

All of the benchmarks, except for DGEMM, see a reduction in DRAM

traffic ranging from 1% to 32%. The reduction in DRAM accesses

is primarily the result of having higher capacity caches. As DRAM

bandwidth is and will continue to be a precious resource, minimizing

off-chip traffic is vital to improving efficiency. The performance

improvements along with the reduction in DRAM accesses lead to a

reduction in chip-wide energy. The energy savings range from 2.8%

to 33% across these eight applications. These savings are significant

for today’s power limited devices.

6.3. Comparison to Limited Unified Memory

As discussed in Section 2.2, Fermi has a limited form of unified

memory. The programmer can choose between either 16KB of shared

memory and 48KB of cache or 48KB of shared memory and 16KB

of cache per SM. Our unified design allows all three types of storage

found in the SM to be unified. We evaluate an equal-capacity Fermi-

like design which has a total of 384KB of storage divided into a

256KB register file and either 96KB of shared memory and 32KB

of cache or 32KB of shared memory and 96KB of cache. Figure 10

shows the improvement in performance, energy, and DRAM accesses

compared to the partitioned design.

Table 6: Performance and energy of three unified memory capacities
normalized to the the baseline partitioned design.

Performance Energy
(higher is better) (lower is better)

Benchmark 128KB 256KB 384KB 128KB 256KB 384KB

bfs 1.03 1.08 1.12 0.91 0.89 0.88
dgemm 0.77 1.01 1.08 1.13 0.95 0.94
lu 0.96 1.07 1.07 1.00 0.91 0.89
GPU-mummer 0.96 1.04 1.04 0.97 0.95 0.97
pcr 0.77 1.04 1.06 1.33 0.92 0.93
ray 0.94 1.03 1.13 1.01 0.95 0.89
srad 1.00 1.08 1.09 0.94 0.86 0.89
needle 1.29 1.75 1.71 0.76 0.64 0.67
Average 0.97 1.14 1.16 0.98 0.87 0.87

Figure 7
Benchmarks 0.99 1.00 1.00 0.93 0.96 1.00
(Average)

The Fermi-like design is able to improve performance for all of

the benchmarks between 1%–20%. However, comparing Figures 9

and 10 shows that the unified design achieves higher performance

for all but one benchmark. The Fermi-like design actually achieves

higher performance on GPU-mummer because this benchmark is ex-

tremely sensitive to cache size and thread scheduling. The smaller

capacity cache provided by the Fermi-like design results in slightly

different cache behaviors that interact differently with the thread

scheduler. Overall, the gains in energy-efficiency and DRAM traffic

reduction are higher for the unified architecture than the Fermi-like

limited flexibility design.

6.4. Capacity Sensitivity

Next, we explore the sensitivity of performance and energy to the

capacity of the unified memory. Larger unified memory designs im-

prove performance at the cost of increased SRAM leakage. Table 6

shows performance and energy for a range of different unified mem-

ory capacities. Performance is generally maximized with 384KB

of unified memory. Needle sees slightly higher performance with

256KB due to the choice of thread count and the resulting scheduling

decisions made by the thread scheduler. The performance of the

benchmarks from Figure 7 is flat across the range of capacities as

they do not see a speedup from the larger capacity designs.

As the capacity of unified memory is increased, SRAM leakage

increases. However, a larger capacity design can also reduce overall

leakage (higher performance reduces runtime) and DRAM energy.

The benchmarks that do not benefit from unified memory see the

lowest energy with the 128KB design, which minimizes SRAM leak-

age. The benchmarks that benefit from the unified design generally

see the lowest energy with either the 256KB or 384KB design. The

tradeoff between performance, area, and leakage must be carefully

considered when deciding how much storage should be allocated per

SM. Compared with the partitioned or limited flexibility designs, the

unified architecture gives designers more freedom as each memory

structure must be provisioned for the maximum requirements of any

workload. By dynamically partitioning storage, the unified design

allows the amount of storage to be set based on the aggregate storage

requirements of workloads.

6.5. Tuning Applications for Unified Architecture

Many applications are tuned to fit into the storage requirements of

either the register file, shared memory, or cache. A partitioned design

104

0
50

100
150
200
250
300
350
400

bfs dgemm lu mummergpu pcr ray srad needle

M
em

or
y

Ca
pa

ci
ty

 (K
B)

Cache

Shared
Memory

Register File

Figure 8: Partitioning of 384KB unified memory.

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

bfs dgemm lu mummergpu pcr ray srad needle

N
or

m
al

iz
ed

 to
 P

ar
tit

io
ne

d
De

si
gn

Performance
Energy
DRAM Traffic

1.71

Figure 9: Performance (higher is better), energy (lower is better), and DRAM traffic (lower is better) of unified design (384KB) normalized to an
equal-capacity partitioned design for applications that benefit from unified storage.

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

bfs dgemm lu mummergpu pcr ray srad needle

N
or

m
al

iz
ed

 to
 P

ar
tit

io
ne

d
De

si
gn

Performance
Energy
DRAM

Figure 10: Performance (higher is better), energy (lower is better), and DRAM traffic (lower is better) of Fermi-like limited flexibility design
(384KB) normalized to an equal-capacity partitioned design.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Shared Memory Capacity (KB)

16 32 64

Blocking Factor

Figure 11: Performance of various blocking factors and shared mem-
ory requirements for needle.

forces applications to be tuned across the narrow capacity range of

each structure. The unified architecture presents an opportunity to

tune applications across the entire range of performance and unified

memory capacity points. As a case study, Figure 11 shows perfor-

mance as a function of shared memory capacity for three different

shared memory blocking factors on Needle. Performance is normal-

ized to the maximum shared memory capacity tested of 520KB which

is required with a blocking factor of 64 and 1024 threads per SM.

As the blocking factor is increased, the amount of shared memory

required per thread increases. Each point along the lines represents

increasing the number of concurrent threads from 32 to 1024 in incre-

ments of 32. When the amount of shared memory available is small,

as found on prior generation GPUs, the blocking factor of 16 was

used. The results discussed so far in this paper have used a blocking

factor of 32, as this is the most efficient operating point when 64KB

of shared memory is available. When more than 300KB of shared

memory is available, a blocking factor of 64 provides slightly better

performance and requires fewer concurrent threads than a blocking

factor of 32. The unified design allows programmers the option of

optimizing their applications over wider ranges of performance points

and potentially utilizing more efficient algorithms.

7. Related Work
Several projects have considered reconfigurable memories that serve

as either cache or scratchpad for designs other than GPUs, includ-

ing Smart Memories [12], TRIPS [19], and the TI TMS320C62xx

DSP [21]. Ranganathan et al. proposed a reconfigurable cache that

could be divided into several partitions with each partition perform-

ing a different task [18]. Their work mainly focused on the cache

design required for reconfigurability and provided a case study for

using a cache partition for instruction reuse in a media processing

105

application. The ALP project proposed to reconfigure part of the L1

data cache to serve as a vector register file when performing vector

processing [20]. Cook et al. proposed mechanisms for flexible parti-

tioning between cache and shared memory in a multi-core CPU [4].

Albonesi proposed selective cache ways which allows a subset of the

ways in a set associative cache to be disabled to save power [1].

Volkov identified applications that achieve better performance by

using fewer threads as this allows more registers to be allocated

to each thread [23]. Recent work uses cyclic reduction as a case

study on the tradeoffs between allocating values to the register file

versus shared memory along with balancing the number of registers

per thread and the number of threads per SM [5]. Murthy et al.

developed a model for optimal loop unrolling for GPGPU programs

that considers the increase in register pressure versus the potential

improvements from unrolling [14]. Our flexible storage system can

relax the programming burden associated with the fixed capacity

storage structures and accommodate diverse workloads.

8. Conclusion
Modern applications have varying requirements in register file, cache,

and shared memory capacity. Traditional GPUs require the program-

mer to carefully tune their applications to account for the size of

each of these structures. In this work, we propose a unified on-chip

storage for the register file, cache, and shared memory. This flexible

structure can adjust the storage partitioning on a per application basis,

providing a performance improvement as high as 71% along with

an energy reduction up to 33%. The overhead of the flexibility is

small, with a minimal increase in bank conflicts and a small increase

in bank access energy. These overheads are negligible in terms of

system performance and energy, even for benchmarks that do not

benefit from the unified design. We explore the sensitivity to unified

memory capacity and find that many benchmarks achieve energy

savings with smaller capacity unified memory. Future systems could

exploit this fact by disabling unneeded memory. Our unified equal

capacity design provides meaningful energy efficiency improvements

for a significant number of today’s benchmarks, which are tuned for

partitioned designs. By making the processor’s storage more flexible,

we broaden the scope of applications that GPUs can efficiently exe-

cute. Future applications or application tuning can further improve

efficiency by taking advantage of this new flexibility.

Acknowledgments
We thank the anonymous reviewers, Trevor Mudge, and the members

of the NVIDIA Architecture Research Group for their comments.

This research was funded in part by DARPA contract HR0011-10-9-

0008 and NSF grant CCF-0936700.

References
[1] D. H. Albonesi, “Selective Cache Ways: On-Demand Cache Resource

Allocation,” in International Symposium on Microarchitecture, Novem-
ber 1999, pp. 248–259.

[2] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in Inter-
national Symposium on Performance Analysis of Systems and Software,
April 2009, pp. 163–174.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in International Symposium on Workload Characterization,
October 2009, pp. 44–54.

[4] H. Cook, K. Asanovic, and D. A. Patterson, “Virtual Local Stores:
Enabling Software-Managed Memory Hierarchies in Mainstream Com-
puting Environments,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-131, September 2009.

[5] A. Davidson and J. D. Owens, “Register Packing for Cyclic Reduc-
tion: A Case Study,” in Workshop on General Purpose Processing on
Graphics Processing Units, March 2011, pp. 1–6.

[6] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A Dy-
namic Compiler for Bulk-Synchronous Applications in Heterogeneous
Systems,” in International Conference on Parallel Architectures and
Compilation Techniques, September 2010, pp. 353 – 364.

[7] K. Fatahalian and M. Houston, “A Closer Look at GPUs,” Communica-
tions of the ACM, vol. 51, no. 10, pp. 50–57, October 2008.

[8] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient Mechanisms for Man-
aging Thread Context in Throughput Processors,” in International Sym-
posium on Computer Architecture, June 2011, pp. 235–246.

[9] M. Gebhart, S. W. Keckler, and W. J. Dally, “A Compile-Time Managed
Multi-Level Register File Hierarchy,” in International Symposium on
Microarchitecture, December 2011, pp. 465–476.

[10] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation: Avoiding
the Power Wall with Low-Leakage STT-MRAM Based Computing,”
in International Symposium on Computer Architecture, June 2010, pp.
371–382.

[11] “MAGMA: Matrix Algebra for GPU and Multicore Architectures,” http:
//icl.eecs.utk.edu/magma.

[12] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart Memories: A Modular Reconfigurable Architecture,” in Interna-
tional Symposium on Computer Architecture, June 2000, pp. 161–171.

[13] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A Tool to Model Large Caches,” HP Laboratories, Tech. Rep., April
2009.

[14] G. S. Murthy, M. Ravishankar, M. M. Baskaran, and P. Sadayappan,
“Optimal Loop Unrolling for GPGPU Programs,” in International Sym-
posium on Parallel and Distributed Processing, April 2010, pp. 1–11.

[15] NVIDIA, “Compute Unified Device Architecture Programming Guide
Version 2.0,” http://developer.download.nvidia.com/compute/cuda/2_0/
docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf, June 2008.

[16] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi,” http://nvidia.com/content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf, 2009.

[17] “Parboil Benchmark Suite,” http://impact.crhc.illinois.edu/parboil.php.
[18] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable Caches and

their Application to Media Processing,” in International Symposium on
Computer Architecture, June 2000, pp. 214–224.

[19] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with
the Polymorphous TRIPS Architecture,” in International Symposium on
Computer Architecture, June 2003, pp. 422–433.

[20] R. Sasanka, M.-L. Li, S. V. Adve, Y.-K. Chen, and E. Debes, “ALP:
Efficient Support for All Levels of Parallelism for Complex Media Ap-
plications,” ACM Transactions on Architecture and Code Optimization,
vol. 4, no. 1, March 2007.

[21] Texas Instruments, “TMS320C6202/C6211 Peripherals Addendum to
the TMS320C6201/C6701 Peripherals Reference Guide (SPRU290),”
Tech. Rep., August 1998.

[22] T. Vogelsang, “Understanding the Energy Consumption of Dynamic
Random Access Memories,” in International Symposium on Microar-
chitecture, December 2010, pp. 363–374.

[23] V. Volkov, “Better Performance at Lower Occupancy,” in GPU Technol-
ogy Conference, September 2010.

[24] R. C. Whaley and J. J. Dongarra, “Automatically Tuned Linear Al-
gebra Software,” in International Conference for High Performance
Computing, 1998, pp. 1–27.

[25] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU Microarchitecture through Mi-
crobenchmarking,” in International Symposium on Performance Analy-
sis of Systems and Software, March 2010, pp. 235–246.

[26] Y. Zhang, J. Cohen, and J. D. Owens, “Fast Tridiagonal Solvers on the
GPU,” in Symposium on Principles and Practice of Parallel Program-
ming, January 2010, pp. 127–136.

[27] X. Zhuang and S. Pande, “Resolving Register Bank Conflicts for a Net-
work Processor,” in International Conference on Parallel Architectures
and Compilation Techniques, September 2003, pp. 269–278.

106

Kernel Weaver: Automatically Fusing Database Primitives for Efficient GPU Computation

Haicheng Wu

Georgia Institute of Technology

hwu36@gatech.edu

Gregory Diamos

NVIDIA Research

gdiamos@nvidia.com

Srihari Cadambi

NEC Laboratories America

cadambi@nec-labs.com

Sudhakar Yalamanchili

Georgia Institute of Technology

sudha@ece.gatech.edu

Abstract

Data warehousing applications represent an emerging application

arena that requires the processing of relational queries and com-

putations over massive amounts of data. Modern general purpose

GPUs are high bandwidth architectures that potentially offer sub-

stantial improvements in throughput for these applications. However,

there are significant challenges that arise due to the overheads of

data movement through the memory hierarchy and between the GPU

and host CPU. This paper proposes data movement optimizations to

address these challenges.

Inspired in part by loop fusion optimizations in the scientific com-

puting community, we propose kernel fusion as a basis for data

movement optimizations. Kernel fusion fuses the code bodies of

two GPU kernels to i) reduce data footprint to cut down data move-

ment throughout GPU and CPU memory hierarchy, and ii) enlarge

compiler optimization scope. We classify producer consumer de-

pendences between compute kernels into three types, i) fine-grained

thread-to-thread dependences, ii) medium-grained thread block de-

pendences, and iii) coarse-grained kernel dependences. Based on

this classification, we propose a compiler framework, Kernel Weaver,

that can automatically fuse relational algebra operators thereby

eliminating redundant data movement.

The experiments on NVIDIA Fermi platforms demonstrate that

kernel fusion achieves 2.89x speedup in GPU computation and a

2.35x speedup in PCIe transfer time on average across the micro-

benchmarks tested. We present key insights, lessons learned, mea-

surements from our compiler implementation, and opportunities for

further improvements.

1. Introduction

The arrival of big data [20] has energized the search of architectural

and systems solutions to sift through massive volumes of data. The

use of programmable GPUs has appeared as a potential vehicle for

high throughput implementations of data warehousing applications

with an order of magnitude or more performance improvement over

traditional CPU-based implementations [36, 18]. This expectation

is motivated by the fact that GPUs have demonstrated significant

performance improvements for data intensive scientific applications

such as molecular dynamics [2], physical simulations in science [32],

options pricing in finance [34], and ray tracing in graphics [33]. It is

also reflected in the emergence of accelerated cloud infrastructures

for the Enterprise such as Amazon’s EC-2 with GPU instances [40].

However, the application of GPUs to the acceleration of data ware-

housing applications that perform relational queries and computations

over massive amounts of data is a relatively recent trend [14] and

there are fundamental differences between such applications and

compute-intensive high performance computing (HPC) applications.

Relational algebra (RA) queries form substantial components of data

warehousing applications and on the surface appear to exhibit sig-

nificant data parallelism. Unfortunately, this parallelism is generally

more unstructured and irregular than other domain specific opera-

tions, such as those common to dense linear algebra, complicating

CPU (Multi Core)
2-10 Cores

Main MEM
~128 GB

GPU
~1500 Cores

GPU MEM
~6 GB

5-20G
B

/s

PCIe

4-16GB/s

8-330G
B

/s

Figure 1: Memory hierarchy bottlenecks for GPU accelerators.

the design of efficient parallel implementations. RA operators also

exhibit low operator density (operations per byte) making them very

sensitive to and limited by the memory hierarchy and costs of data

movement.

Overall, the nature and structure of RA queries make different

demands on i) traversals through the memory hierarchy, ii) choice

of logical and arithmetic operators, iii) control flow structure, and

iv) data layouts. Consequently, there arise two fundamental issues.

First there is a need for the efficient GPU implementations of RA

primitives. Second, an issue that is fundamental to the current archi-

tecture of GPU-based systems is the set of limitations imposed by

the CPU-GPU memory hierarchy, as shown in Figure 1. Internal to

the GPU there exists a memory hierarchy that extends from GPU

core registers, through on-chip shared memory, to off-chip global

memory. However, the amount of memory directly attached to the

GPUs (the off-chip global memory) is limited, forcing transfers from

the next level which is the host memory that is accessed in most

systems via PCIe channels. The peak bandwidth across PCIe can be

up to an order of magnitude or more lower than GPU local memory

bandwidth. Data warehousing applications must stage and move data

throughout this hierarchy. He et al. observed that although GPU

can bring 2-27x speedup compared with CPU if only considering

computation time, 15-90% of the total execution time is spent on

moving data between CPU and GPU when accelerating database

applications [18]. Consequently there is a need for techniques to

optimize the implementations of data warehousing applications con-

sidering both the GPU computation capabilities and system memory

hierarchy limitations.

This paper addresses the challenge of optimizing data movement

through the CPU-GPU memory hierarchy in the context of data ware-

housing applications (and hence their dominant primitives). Specifi-

cally, we propose and demonstrate the utility of Kernel Weaver as

a framework for optimizing data movement. Kernel Weaver applies

a cross-kernel optimization, kernel fusion, to GPU kernels. Kernel

fusion is analogous to traditional loop fusion and its principal benefits

are that it i) reduces transfers of intermediate data through the CPU-

GPU memory hierarchy, ii) reduces the overall memory data footprint

of a sequence of kernels in each level of the memory hierarchy, and

iii) increases the textual scope, and hence benefits, of many existing

compiler optimizations.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.19

107

 Shared Memory

 L2 Cache

 Interconnect Network

 Memory Controller

��

�

��

� � �

��

��

��CUDA Kernel

barrier

Cooperative Thread Arrays (CTA)
Thread

Warp 1
Warp N

DRAM

 Row Buffer

Coalesced Access

0 4 8 C 10 14 18 1C

branch

End of
branch

Address

R R R R R R R R �� R R R R R R R R

A
L
U

��
A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

Streaming Multiprocessor (SM)

Figure 2: NVIDIA C2050 architecture and execution model.

This paper proposes the Kernel Weaver optimization framework

and demonstrates the impact of kernel fusion for optimizing data

movement in patterns of interacting operators found in the TPC-H

benchmark suite. The goal of this paper is to provide insight into how,

why, and when kernel fusion works with quantitative measurements

from implementations targeted to NVDIA GPUs. This paper makes

the following specific contributions:

• Introduction of the Kernel Weaver framework and algorithms for

automated kernel fusion;

• Definition of basic dependences and general criteria for kernel

fusion applicable across multiple application domains;

• Quantification of the impact of kernel fusion on different levels of

the CPU-GPU memory hierarchy for a range of RA operators;

• Proposes and demonstrates the utility of compile-time data move-

ment optimizations based on kernel fusion.

2. Background and Motivation

2.1. Programmable GPU

This paper uses NVIDIA devices and CUDA as the target platform.

Figure 2 shows an abstraction of NVIDIA’s GPU architecture and

execution model. A CUDA program is composed of a series of

multi-threaded kernels. Kernels are composed of a grid of parallel

work-units called Cooperative Thread Arrays (CTAs) [37], that are

mapped to Single Instruction Multiple Thread (SIMT) units called

stream multiprocessors (SMs) where each thread has support for

independent control flow. Different CTAs can execute in arbitrary

order and synchronization between threads only exists within a CTA.

Global memory is used to buffer data between CUDA kernels as

well as to communicate between the CPU and GPU. Each SM has a

shared scratch-pad memory with allocations for each CTA and can be

used as a software controlled cache. Registers are privately owned by

each thread to store immediately used values. CTAs execute in SIMD

chunks called warps; hardware warp and thread scheduling hide

memory and pipeline latencies. Effective utilization of the memory

subsystem is also critical to achieving good performance.

CUDA and OpenCL are the dominant programming models in

GPU computation. CUDA is dedicated to NVIDIA devices, and

OpenCL is supported by NVIDIA, AMD and Intel GPUs. Terms

used to describe GPU abstractions such as data parallel threads and

4 5 61 2 3

+
Kernel A

Kernel B

Fused Kernel

5 7 9 2 4 6

-

3 3 3

4 5 61 2 3

+/-

2 4 6

3 3 3

A1: A2:

A3:

A1: A2: A3:

(a) (b)

Figure 3: Example of kernel fusion.

shared scratch-pad memory typically vary depending on the specific

programming model being considered. CUDA typically uses the

terms thread and shared memory, and OpenCL typically uses work

item and local memory. The CUDA terminology is adopted in this

paper because Kernel Weaver is currently implemented based on it.

However, the same concept and technology can also be applied to

OpenCL and its supported devices.

2.2. Relational Algebra Operators

Relational algebra (RA) operators can express the high level seman-

tics of an application in terms of a series of bulk operations on rela-

tions [1]. They are the building blocks of modern relational database

systems. A relation is a set of tuples, each of which comprises of a

list of n attributes. Some attributes are keys that are considered by

the RA operator.

Table 1 lists the common RA operators and a few simple examples.

In general, these operators perform simple tasks on a large amount

of data. A typical data warehousing query consists of dozens of RA

operators over massive data sets.

In addition to these operators, data warehousing applications per-

form arithmetic computations ranging from simple operators such as

aggregation to more complex functions such as statistical operators

used for example in forecasting or retail analytics. Further, operators

such as SORT and UNIQUE are required to maintain certain order

amongst data elements and thereby can introduce certain ordering

constraints amongst relations.

2.3. Motivation

The idea of GPU kernel fusion comes from classic loop fusion op-

timization. Basically, kernel fusion reduces data flow between two

kernels (via the memory system) by merging them into one larger ker-

nel. Therefore, its benefits goes far beyond reduction in PCIe traffic.

Figure 3 depicts an example of kernel fusion. Figure 3(a) shows two

dependent kernels - one for addition and one for subtraction. After

fusion, a single functionally equivalent new kernel (Figure 3(b)) is

created. The new kernel directly reads in three inputs and produces

the same result without generating any intermediate data.

Kernel Fusion has six benefits as listed below. The first four

stem from creating a smaller data footprint through fusion since it is

unnecessary to store temporary intermediate data in global memory

after each kernel execution, while the other two relate to increasing

the compiler’s optimization scope.

Smaller Data Footprint results in the following benefits:

• Reduction in Memory Accesses: Fusing data dependent (producer-

consumer) kernels enables storage of intermediate data in registers

or GPU shared memory (or cache) instead of global memory.

• Temporal Data Locality: As in traditional loop fusion, access to

common data structures across kernels expose and increase tem-

poral data locality. For example, fusion can reduce array traversal

overhead when the array is accessed in both kernels.

108

RA Operator Description Example

SET A binary operator that consumed two relations to produce a new x = {(2,b),(3,a),(4,a)}, y = {(0,a),(2,b)}
UNION relation consisting of tuples with keys that are present in at UNION x y→ {(0,a),(2,b),(3,a),(4,a)}

least one of the input relations.

SET A binary operator that consumes two relations to produce a new x = {(2,b),(3,a),(4,a)}, y = {(0,a),(2,b)}
INTERSECTION relation consisting of tuples with keys that are present in both INTERSECT x y→ {(2,b)}

of the input relations.

SET A binary operator that consumes two relations to produce a new x = {(2,b),(3,a),(4,a)}, y = {(3,a),(4,a)}
DIFFERENCE relation of tuples with keys that exist in one input relation DIFFERENCE x y→ {(2,b)}

and do not exist in the other input relation.

CROSS A binary operator that combines the attribute spaces of two x = {(3,a),(4,a)}, y = {(True)}
PRODUCT relations to produce a new relation with tuples forming the PRODUCT x y→ {(3,a,True),(4,a,True)}

set of all possible ordered sequences of attribute values from
the input relations

JOIN A binary operator that intersects on the key attribute and cross x = {(2,b),(3,a),(4,a)}, y = {(2,f),(3,c),(3,d)}
product of value attributes. JOIN x y→ {(2,b,f),(3,a,c),(3,a,d)}

PROJECT A unary operator that consumes one input relation to produce a x = {(2,False,b),(3,True,a),(4,True,a)}
new output relation. The output relation is formed from tuples of PROJECT [0,2] x→ {(2,b),(3,a),(4,a)}
the input relation after removing a specific set of attributes.

SELECT A unary operator that consumes one input relation to produce a x = {(2,False,b),(3,True,a),(4,True,a)}
new output relation that consists of the set of tuples that SELECT (key==2) x→ {(2,False,b)}
satisfy a predicate equation. This equation is specified as a
series of comparison operations on tuple attributes.

Table 1: The set of relational algebra operations. In the example, the 1st attribute is the "key".
(Syntax: (x,y) – tuple of attributes; {(x1,y1),(x2,y2)} – relation; [0,2] – attribute index)

• Reduction in PCIe Traffic: Kernel fusion can cut down transfers

of inter-kernel data across the PCIe interconnect.

• Larger Input Data: Since kernel fusion reduces intermediate data

thereby freeing GPU memory, larger data sets can be processed on

the GPU increasing throughput.

Larger Optimization Scope brings two benefits:

• Common Computation Elimination: When two kernels are fused,

the common stages of computations are redundant and can be

avoided.

• Improved Compiler Optimization Benefits: When two kernels

are fused, the textual scope of many compiler optimizations are

increased bringing greater benefits than when applied to each

kernel individually.

These benefits are especially useful for data warehousing applica-

tions since RA operators are fine grained and exhibit low operation

density, ops per byte transferred from memory. Fusion naturally im-

proves operator density and hence performance. Figure 4 is a simple

example comparing the GPU computation throughput of back-to-

back SELECTs with and without kernel fusion. Inputs are randomly

generated 32-bit integers, the x-axis is the problem size which fits

GPU memory, and kernels were manually fused in this example.

On average, fusing two SELECTs achieves 1.80x larger throughput

while fusing three kernels achieves 2.35x. Fusing three SELECTs

is better since more redundant data movement is avoided and larger

code bodies are created for optimization.

Recently, Intel introduced the Sandy (and Ivy) Bridge architectures

and AMD brought Fusion APUs to the market. Both designs put

the CPU and GPU on the same die and remove the PCIe bus. In

these systems, four out of the six benefits listed above still apply

(excluding Reduction in PCIe Traffic and Larger Input Data). Thus,

kernel fusion is still valuable.

While a programmer could perform a fusion transformation manu-

ally, database queries are typically supplied in a high level language

like Datalog or SQL, from which lower-level operations are synthe-

sized using a query planner and compiler. Automating this process

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 E

le
m

en
ts

/s
)

Number of Elements (million)

Fusion 3 SELECTs
No fusion 3 SELECTs
Fusion 2 SELECTs
No Fusion 2 SELECTs

Figure 4: Performance Comparison between fused and independent
SELECTs.

as a compilation transformation is necessary to make GPUs acces-

sible and useful to the broader community of business analysts and

database experts. Moreover, running kernel fusion dynamically in a

just-in-time compiler (JIT) creates opportunities to leverage runtime

information for more effective optimizations.

3. System Overview

Kernel Weaver is implemented as part of a domain-specific com-

pilation and run-time system illustrated in Figure 5. The language

front-end is based on the Datalog language [21]. Datalog is a declar-

ative language used to express database queries and operations - in

this case over large data sets. The output of the language front-end is

a query plan that contains nodes corresponding to arithmetic, logical,

and relational operators and their dependences. These are translated

into an internal kernel intermediate representation which drives the

Kernel Weaver transformation engine. Kernel Weaver operates on

CUDA source implementations of RA operators stored in a primitive

library to produce fused CUDA implementations from which nvcc is

used to generate kernel code in NVIDIA’s parallel thread execution

(PTX) instruction set. The lightweight host runtime layer [10] picks

up the fused PTX kernels and drives the Ocelot dynamic compilation

and runtime infrastructure [11] which is responsible for the execution

on the NVIDIA GPUs. Note that each RA operator may be imple-

mented as several CUDA kernels so that fusing operators requires

coordinated fusion of several CUDA kernels. While we tested all of

109

Datalog
Queries

Datalog
Front-end

RA CUDA
PTX

RA to CUDA Compiler

Kernel
Weaver

RA Primitive CUDA
 Library

Runtime
Manager

Language
Front-End

Translation
Layer

GPU
Accelerator

CPU
Host

Figure 5: System diagram of Kernel Weaver

0 3 1 2 2 4 3 6
0 2 6 8 10 14 16 18 22 24 26 30 32

2-bit
key

4-bit
value

2-bit
padding zero

Figure 6: An example of a relation with four tuples, each compressed
into 8-bits and packed into a single 32-bit word.

the examples in this paper, the language front-end needs further work

before the full Datalog language can be executed on GPUs.

3.1. Kernel Representation

Kernel fusion is based on the multi-stage formulation of algorithms

for the RA operators. Multi-stage algorithms are common to sort-

ing [31], pattern matching [39], algebraic multi-grid solvers [5], or

compression [17]. This formulation is popular for GPU algorithms in

particular since it enables one to separate the structured components

of the algorithm from the irregular or unstructured components. This

can lead to good scaling and performance. Kernel fusion can now be

explained as a process of weaving (mixing, fusing, and reorganizing)

stages from different operators to generate new optimized operator

implementations.

The high level description of the order and functionality of the

stages will be referred as an algorithm skeleton. In this paper we use

the algorithm skeletons developed by Diamos et al. [12] which have

been evaluated to be 1.69-3.54x faster than those developed by He

et al. [18]. Diamos et al. store relations as a densely packed array of

tuples with strict weak-ordering. Figure 6 is an example of a 32-bit

relation containing 4 tuples sorted according to the key attributes. The

sorted form allows for efficient array partitioning and tuple lookup

operations. In our compilation environment, skeletons for all of the

RA operators are stored in the RA primitives library (see Figure 5)

with CUDA implementations of each stage. The remainder of this

section describes the basic structure, relevant details, and adaptations

we have made of their implementation.

All RA operator skeletons are comprised of three major stages,

partition, compute and gather. In the following we briefly describe

the functionality of each stage using the implementation of a simple

operator - SELECT (Figure 7) - as an example.

Partition: The input relations are partitioned into independent

sections that are processed in parallel by different CTAs. For unary

operators such as SELECT in Figure 7 the input relations can be

evenly partitioned to balance the workload across CTAs. Binary

operators such as JOIN and SET INTERSECTION are more complex

in this stage since they need to partition both inputs and partitioning

is based on a key value consequently producing unbalanced sizes of

inputs to CTAs and resulting in unbalanced compute loads.

Compute: A function for each RA operator is applied to its par-

tition of the inputs to generate independent results. Different RA

operators are specialized to effectively utilize fine-grained data paral-

lelism and the multi-level memory hierarchy of the GPU to maximize

CTA0

CTA1

CTA2

CTA3

CTA0

CTA1

CTA2

CTA3

GPU MEM

Unmatched
element

Matched
element

Partition Compute Gather

GPU CORE GPU MEM

1st CUDA Kernel: Filter 2nd CUDA Kernel: Gather

GPU MEM

Filter Compact

Figure 7: Example algorithm of SELECT

performance. For example, the SELECT in Figure 7 first filters ev-

ery element in parallel and then leverages the shared memory to

compact [6] the filtered result in preparation to create a contiguous

output.

Gather: The results computed in individual partitions are gathered

into a global dense sorted array of tuples by using a coalesced memory

to memory copy, a common CUDA programming pattern [30].

Multi-stage RA operators are implemented as multiple CUDA

kernels - typically one per stage. Kernel weaver fuses operators by

interleaving stages and then fusing interleaved stages (their respective

CUDA implementations) to produce a multi-stage implementation of

the fused operator. Thus, fusion of CUDA kernels is necessary to re-

alize operator fusion. A variety of alternative implementations can be

used for the implementation of each stage and can be accommodated

by the operator fusion process. Diamos et. al. [12], report perfor-

mance results that are significantly better than any reported results in

the literature. Consequently we use their multi-stage algorithms for

RA operators in the demonstration of kernel weaver.

4. Automating Fusion

This section introduces the process of kernel fusion employed in

Kernel Weaver. For simplicity, the initial description is based on

each operator being implemented as a single data parallel kernel.

Subsequently, we will describe higher performance multi-stage im-

plementations of the RA operators. This section describes three main

steps to fuse operators: (i) using compiler analysis to find all groups

of operators that can be fused, (ii) selecting candidates to fuse, and

(iii) performing fusion and generating code for the fused operators.

4.1. Criteria for Kernel Fusion

The simple idea is to take two kernels say with 4096 threads each,

and produce a single kernel with 4096 threads, where each thread

is the result of fusing two corresponding threads in the individual

kernels. Clearly, the data flow between the two fused threads must be

correctly preserved. The classification below can be understood from

the perspective of preserving this simple model of kernel fusion. The

first consideration is finding feasible combinations of data parallel

kernels to fuse via compiler analysis, followed by the selection of the

best options. Two types of criteria for fusion of candidate kernels are

that they possess i) same kernel configuration (CTA dimensions and

thread dimensions), and ii) producer-consumer dependence.

The first criteria is similar to loop fusion [23] that requires compat-

ible loop headers (same iteration number, may need loop peeling to

pre-transform the loop, etc.). Kernel fusion also requires compatibil-

ity between kernel parameters. The fused kernel will have the same

kernel configuration as the candidates. The data parallel nature of

RA operators make their implementation independent (with respect

to correctness) of the kernel configuration. Thus, while too many

110

0
T

1
T

2
F

PROJECT
Attribute 1

T T F

SELECT
Attribute0 == T

T T

t t t

t t t

2
F

t

0
T

1
T

2
F

CTA barrier

3
T

4
T

5
F

0
a

1
b

2
c

3
d

4
e

5
f

CTA0 CTA1

data0

data1

JOIN
(data0,data1)

0
T
a

1
T
b

2
F
c

3
T
d

4
T
e

5
F
f

temp

JOIN
(temp,data2)

0
A

1
B

2
C

3
D

4
E

5
F

data2

0
T
a
A

1
T
b
B

2
F
c
C

3
T
d
D

4
T
e
E

5
F
f
F

3
T

4
T

5
F

3
d

4
e

5
f

CTA1

3
T
d
D

4
T
e
E

5
F
f
F

JOIN

JOIN

CTA barrier

3
D

4
E

5
F

5 3 2

2 3 5

(a)

(b)

2 3

SORT

SELECT
 < 4

(c)

data0

data1

data2

Figure 8: Example of three kinds of dependence: (a) thread depen-
dence; (b) CTA dependence; (c) kernel dependence.

or too few CTAs or threads may lead to inefficient use of resources,

fusion can be performed correctly if the kernel configurations are

the same. This work tests a set of micro-benchmarks (see Section 5)

with a wide range of combination of CTA dimensions and thread

dimensions and picks one pair that works best in most cases.

The second criteria is due to the fact that the benefits listed in

Section 2.3 are derived primarily from exploiting producer-consumer

dependences. Data dependence analysis is necessary to find candidate

kernels. Producer-consumer dependence between two data parallel

kernels can be classified into three categories as shown in Figure 8:

thread, CTA and kernel dependence.

In the first category, each thread of the consumer kernel only con-

sumes data generated by a single thread from the producer kernel.

Figure 8(a) illustrates such an example with tuples containing two

attributes, e.g., (1,T). Dependences between producer and consumer

kernels corresponding to unary RA operators such as SELECT and

PROJECT, belong to this category because the operation on one input

tuple is independent of the operation performed on any neighboring

tuple. In this case, corresponding producer and consumer threads

from each kernel can be fused without having to insert synchroniza-

tion operations. This type of producer-consumer dependence between

kernels is referred to as thread dependence.

The second category is wherein every CTA of the consumer kernel

depends on the completion of a CTA of the producer kernel. Such

dependences are referred to as CTA dependences. For example,

this occurs between binary RA operators such as JOIN and SET

INTERSECT that have a producer-consumer dependence. Consider,

Figure 8(b) that illustrates a producer-consumer dependence between

two JOIN operators. The first operator performs a JOIN operation

across tuples from two input data sets, data0, and data1. Each CTA

is provided a partition of input tuples, corresponding to some range

of the key value used in the JOIN (in this example each tuple has a

Input: a list of operators op

Output: a list of fusion candidate groups c

i = 0;

length = size of list op;

Topologically sort op;

while i �= length do
class = classify dependence between op[i] and

its predecessors and successors;

if class == Kernel Dependence then
delete op[i];

end

i = i + 1;
end

c = all connected subgraphs of op;

Algorithm 1: Searching for fusing candidates.

unique key value which is an integer). Thus, a thread in a CTA must

compare the key values of tuples it is processing with the key values

of tuples being processed by every other thread in the CTA, and only

within the CTA. While such a partitioning of input tuples across CTAs

produces unbalanced loads between CTAs, data dependences between

threads are confined to remain within a CTA. The producer CTA

writes its tuples to shared memory where a CTA from the consumer

kernel can now pick it up. A barrier synchronization is necessary after

the first JOIN operation before the second JOIN operation can start.

The actual implementation is more involved, but for the purposes of

this paper, corresponding threads from producer-consumer CTAs can

be fused with appropriately placed barriers.

The third category is wherein the consumer kernel has to wait until

the completion of all threads in the kernel, i.e., kernel fusion is not

feasible. A typical example is where the producer kernel is a SORT

operator (Figure 8(c)) because it behaves like a global barrier. The

reasons are i) it cannot be launched until all inputs arrive; ii) SORT

shuffles all data and the following consumer operators need to wait

for its completion before being able to start streaming data. Such

dependence is referred to as kernel dependence.

Note the three categories of dependences are from the perspec-

tive of being able to fuse kernels by fusing corresponding threads

within producer-consumer kernels. Accordingly, the dependences

are implicitly associated with the level of the memory hierarchy used

to pass data. Fused threads across thread dependent kernels use the

register file which is allocated by the thread. Fused threads across

CTA dependent kernels use shared memory which is allocated by the

CTA. Finally, according to the above classification, the kernels in an

dependence graph that are candidates for kernel fusion only exhibit

thread or CTA dependences with other kernels, and are bounded

by operators with kernel dependences. Algorithm 1 formalizes the

steps to find kernel fusion candidates. Its main idea is first removing

operators causing kernel dependence from the graph and then finding

the rest connected operators.

The output of the language front-end consists of RA operators and

their associated variables. This information is used to construct an RA

dependence graph like the one shown in Figure 9(b). The nodes in the

graph represent RA operators and the directional edges identify nodes

with the producer-consumer dependences. The large circle bounded

by SORT operators contains operators satisfying the dependence

requirement and are candidates for fusion. Instances supporting

recursive queries (e.g. ancestor(a,c)←parent(a,b),ancestor(b,c)) may

generate a dependence graph with enclosed loops. This work only

111

SELECT SELECT

JOIN

(a)

SORT

SORT(data0)
SORT(data1)
SORT(data2)
data3 <- SELECT(data0)
data4 <- SELECT(data1)
data5 <- JOIN(data3,data4)
data6<-JOIN(data5,data2)
SORT(data6)

(b)

data0 data1

data3 data4

data5

SORT SORT

data2

SORT

JOIN

data6

Figure 9: Example of constructing dependence graph: (a) database
program; (b) dependence graph.

Input: a list of candidate operators op

Input: resource budget b

Output: a list of fusion groups f

i = 0;

j = 0;

length = size of list op;

Topologically sort op;

while i �= length do
add op[i] to f [j];

cost = resource usage estimation of f [j];

if cost > b then
delete op[i] from f [j];

j = j+1;

else
i = i + 1;

end

end

Algorithm 2: Choosing operators to fuse.

considers acyclic graphs although often loop unrolling and related

known optimizations can create acyclic dependence graphs.

4.2. Choosing Operators to Fuse

Fusing all the kernels meeting above criteria may not be practical.

The main constraint on fusion is resource constraints - pressure on

limited registers and limited amount of shared memory available

within each stream multiprocessor. Fusion choices must also be

ordered based on dependences and performance impact. Accordingly

we adopt the following heuristic and use Algorithm 2 to choose

operators to fuse.

Figure 10 is an example that shows how the greedy heuristic of Al-

gorithm 2 works. It starts from the candidates circled in Figure 9(b).

Figure 10(a) first performs a topological sorting on the dependence

graph to produce a list of operators. If operators execute in this order,

all dependences will be honored. Starting from the top of the list,

Figure 10(b) searches for the longest contiguous sequence of oper-

ators that can be fused, within resource constraints, i.e., fits within

the shared memory and registers budgeted for each CTA (data3 and

data4 become internal to the fused operator). In the example in

Figure 10(c) the second JOIN cannot be added since the estimated

shared memory resource usage is larger than the budget. The al-

gorithm repeats the above process for the next not fused operator,

the second JOIN, until no more operators can be fused. Resource

(a)

SELECT

SELECT

JOIN

JOIN

SELECT

SELECT

JOIN

JOIN

data1

data0

data5

Inputs

Outputs

128/0

128/0

16k/1

(b)

SELECT

SELECT

JOIN

JOIN

data1

data0

data6

Inputs

Outputs

128/0

128/0

16K/1

data3

Temp
128/1

data4 128/1

data2 128/0

data4

data3

Temp

128/1

128/1

data5 16K/1

SHARED MEM(Byte) / Reg

(c)

0/12 0/12

Budget: 16K / 20
Kernels to fuse

Figure 10: Example of choosing operators to fuse: (a) topologically
sorted operators; (b) choose the first three operators to
fuse; (c) refuse to fuse the fourth operator.

usage estimation is discussed in Section 4.3.3 after introducing code

generation.

The intuition underlying the above method is that it is more impor-

tant to fuse operators executed earlier than those executed later. The

reason is that data warehousing applications normally process large

amounts of data. After several filtering and reduction operators, the

data set is reduced significantly. Resource permitting, fusing the first

few operators in the dependency graph provides the most benefit.

4.3. Kernel Weaving and Fusion

Given the dependence graph and candidate operators to fuse, the

final step is performing the fusion. Recall that each operator is

implemented as a multi-stage algorithm with three stages - partition,

compute, and gather - each of which is implemented as a CUDA

data parallel kernel. The fused operator still has these three stages.

At a high level, fusion is achieved by two main steps: (i) grouping

the partition, compute, and gather stages of the operators together

(which we also refer to as interleaving); (ii) fusing the individual

stages. In other words, the partition stages of the candidate operators

are fused together into a single data parallel kernel, which could be

viewed as the partition stage for the newly fused operator. Similarly,

the compute and gather stages are fused into a single fused compute

and gather stage respectively. For example, when two operators are

fused, the fused operator will have the multi-stage structure shown

in Figure 11 where the two compute stages are fused into one data

parallel kernel (the fused partition and fused gather stages similarly

represent fusion of individual partition and gather stages). The fused

computation stage performs the computation stage of the original

operators in the order of their dependences. All intermediate data and

data sizes are stored in the shared memory or registers. The fused

operator may have multiple inputs and outputs.

The above fusion process includes code generation for the fused

operators. Code generation takes as input a description of a topologi-

cally sorted set of operators to be fused and their associated variables,

and produces CUDA code for the data parallel kernels that implement

the fused operator. The CUDA code is generated by concatenating

the instantiated algorithm skeleton code of each stage, and connect-

ing the outputs of one stage to the inputs of the next stage. How to

connect stages is discussed in the following sub sections. A variable

table, which records and tracks the use of variables between stages, is

needed to instantiate the skeleton. Figure 11 shows how the variable

table tracks the variables that hold result data and result size of each

computation stage.

112

Fused
Partition

Compute1

Compute2

Fused
Gather

F
u

sed
 C

o
m

p
u

te

V
ariab

le T
ab

le

data0_pointer

data0_size

data1_pointer
data1_size

data2_pointer

data2_size

data0

data1

data2

Partition1

Compute1

Gather1

Partition2

Compute2

Gather2

Operator 1

Operator 2

Figure 11: The structure of generated code (fusing two operators).

CTA0

CTA1

CTA2

CTA3

CTA0

CTA1

CTA2

CTA3

GPU MEM GPU MEM

CTA0

CTA1

CTA2

CTA3

Unmatched
element

Completely
Matched
element

Partially
matched
element

Partition

Filter1 Buffer

Gather

Filter2

GPU CORE

1st CUDA Kernel: Filter 2nd CUDA Kernel: Gather

GPU MEM

Compute

Figure 12: Example of fusing two SELECTs.

Fusing operators depends on whether thread dependence or CTA

dependence exists between operators. We now describe in more detail

how to fuse operators with thread and CTA dependences.

4.3.1. Fusing Thread Dependent Only Operators Unary operators

SELECT and PROJECT exhibit thread dependence. The kernel con-

figuration (threads/CTA and CTA grid dimensions) of both operators

are equal. Therefore each thread in the producer operator is fused

with a corresponding thread in the consumer operator.

The partition stage of the fused operator remains the same as that

of the producer operator. The compute stage of the fused operator is

a data parallel kernel with the same kernel configuration, where each

thread is created as follows. Every thread first loads a tuple from

its input partition into registers. The computation of corresponding

producer and consumer threads are performed using these registers,

i.e., SELECT or PROJECT in the correct order. These operators

either discard data (SELECT) or discard attributes (PROJECT). The

output of this sequence of operations is compacted into an output

array. The gather stage accumulates all of the data from different

threads in the fused compute stage into contiguous memory.

As shown in Figure 7, the computation stage of SELECT has

two parts, filter and stream compaction. After kernel fusion, stream

compaction is needed only when the SELECT result should be copied

to GPU memory. Figure 12 is an example of fusing two back-to-

back SELECTs together. Compared with Figure 7, only one filter

operation is added. Moreover, the fused kernel only needs to read

and write memory once rather than twice.

For PROJECT, its result tuple should be stored into a new register

with a different data type since it contains less attributes. Thus, the

operations after PROJECT have to use this new register instead.

4.3.2. Fusing CTA and Thread Dependent Operators Binary re-

lational operators are CTA dependent . This change increases the

SELECT
value == T

(c)

CTA0 CTA1

CTA0

Temp

(b)(a)

CTA0 CTA1

Global Mem

Shared Mem

CTA barrier

0
Tdata0 1

T
2
F

3
T

4
T

5
F

0
a

data1 1
b

2
c

2
d

3
e

4
f

0
T

1
T

2
F

0
a

1
b

2
c

0
T

1
T

2
F

0
a

1
b

2
c

data0 data1

0
T

1
T

SELECT
value !=c

0
a

1
b

2
d

JOIN

0
T
a

1
T
b

0
T
a

1
T
b

Temp

0
T
a

1
T
b

...
3
T
e

4
T
f

0
T
a

1
T
b

3
T
e

4
T
f

data5

2
d

2
d

...

Figure 13: Example of Generated Code of Figure 10(b): (a) Partition
two inputs; (b) Computation of one CTA; (c) Gather one
output.

number of inputs of the fused operators and necessitates the following

main distinction in code generation: (i) Use binary search to partition

inputs; (ii) Use shared memory to support CTA dependence; (iii)

Synchronize two operators having CTA dependence. Thus, code gen-

eration has to be extended to support the three differences. Figure 13

shows the generated code for the operators in Figure 9(b) and is used

as example to explain the extensions.

Our approach is to maintain the independent operation of each

CTA to be able to fuse corresponding CTAs from the producer and

consumer operators. This is achieved in the partition stage by par-

titioning the input set by key values. Each CTA then receives a set

of tuples corresponding to a specific range of key value pairs. This

is achieved using binary search [3] and both inputs of each binary

operator are partitioned across CTAs. For example, in Figure 13(a),

data0 is first evenly partitioned into two parts bounded by pivot tu-

ples. Then, a binary search is used to lookup the tuples in data1

corresponding to the key attributes of data0 pivot tuples. The parti-

tioned data sizes of the two inputs provided to each CTA thus may

differ (e.g. data1). However, when fusing two binary operators (e.g.,

two JOIN operators), three inputs need to be partitioned and each

operator may use different keys. For instance, one JOIN may use the

first 2 attributes as a key and the other JOIN may only use the first

attribute as key. In this case, the fused input stage will only use the

first attribute as key. This preserves the independence of operation

across CTAs.

Figure 13(b) is an example of the computation stage of one CTA.

The other CTA works in exactly the same way but upon different

data. In the beginning, each CTA first allocates a software controlled

cache in shared memory for each input and then loads data into

the cache (e.g. CTA0 loads in a portion of corresponding data0

and data1 divided as in Figure 13(a)) . Afterwards, a CTA-wise

fused computation performs fused operations upon those cached

data. Within a CTA, the generated code can perform all supported

operations such as SELECT and JOIN. If two connected operators

have CTA dependence (e.g. between SELECT and JOIN), the result

data of the producer operator should be stored in a cache allocated

in the shared memory, and the result size is stored in a register. To

guarantee all threads within a CTA finish updating the cache, a CTA

113

barrier synchronization is needed after the producer operation. If

two dependent operators only exhibit thread dependence, they only

need to use register(s) to pass value(s) and no synchronization is

necessary. For example, the first operator in Figure 13 to execute is

SELECT and it has CTA dependence relationship with its consumer

JOIN. Thus, SELECT has to store its result in shared memory rather

than the register. The second SELECT is handled in the same way.

Thus, the inputs of JOIN all reside in the shared memory before its

execution. After JOIN, the result is dumped to GPU memory.

The gather stage (Figure 13(c)) is the same as in the thread de-

pendent only cases which packs the useful results generated by two

CTAs into an output array.

4.3.3. Resource Usage Code generation decides how many resource

will be occupied. As shown in Figure 10(c), some resources are used

to store input, output, and intermediate temporary data. Others are

used inside the computation.

Fusing thread dependent operators stores intermediate data in the

registers. The number of needed registers depends on the data type

of the tuple which is provided by the database front-end. Fusing CTA

dependent operators stores temporary data in the shared memory and

temporary data size value in one register. Allocated shared memory

size is a function of data type, input data size and operator type. For

example, SET INTERSECT needs to allocate min(input1, input2)
tuples for its output. The data variable and data size variable stored

in registers are live until they are no longer needed.

Registers are also needed to perform partition, computation, and

gather. The partition result, the beginning and the end position of all

inputs, uses variables to pass to the computation stage. The liveness

of the variables used inside each stage is the same as the scope of the

stage. Thus, different variables of different stages can reuse the same

registers. So, the register usage of a fused operator is not larger than

the maximum of the register usage in each stage plus the registers

used to pass values between stages. The registers used by each stage

can be determined as long as the data types of all tuples are known.

4.4. Extensions

The preceding three sections discussed how code is generated for RA

operators having producer-consumer dependence. This method can

be extended to support other dependence or other operators.

The first extension is to support input dependence, i.e. operators

shares the same inputs. The benefits of fusing these operators is

that the input data shared by different operators only need to be

loaded once, which is not as important as the case of producer-

consumer dependence. Fusing operators having input dependence

also increases the resource pressure. The modification to the above

automation process is to detect input dependence when constructing

the dependence graph. The code generation part can remain the same.

The second extension is to support simple arithmetic operations

such as addition, subtraction, multiplication and division. These

arithmetic operators are much simpler than RA operators. They

have two inputs, but use even partitions to divide both inputs. The

dependence between them belongs to thread dependence and can use

registers to store computation results.

5. Experimental Evaluation

Table 2 shows our experimental infrastructure. We use TPC-H [9],

a widely-used decision support benchmark suite, to quantify the

speedups of kernel fusion in a practical situation. TPC-H comprises

22 queries with varying degrees of complexity. The queries analyze

CPU 2 quad-core Xeon E5520 @ 2.27GHz

Memory 48 GB

GPU 1 Tesla C2070 (6GB GDDR5 memory)

OS Ubuntu 10.04 Server

GCC 4.4.3

NVCC 4.0

Table 2: Experimental Environment.

A1

SELECT

SELECT

SELECT

A1

JOIN

JOIN

A2

A3
A1

SELECT SELECT

A1

SELECT

A2

SELECT

JOIN

(a) (b) (c) (d) (e)

PROJECT

PROJECT PROJECT

A3

SELECT

PROJECT

JOIN

PROJECT

1

+

X

A2

A3

1

-

A2

X

Figure 14: Common operator combinations to fuse.

relations between customers, orders, suppliers and products using

complex data types and multiple operators on large volumes of ran-

domly generated data sets. Before showing results for actual TPC-H

queries, we examine micro-benchmarks derived from the TPC-H

queries.

5.1. Micro-benchmarks

We analyze TPC-H queries and identify commonly occurring combi-

nations of operators that are potential candidates for fusion. From the

22 queries in TPC-H, Figure 14 illustrates some frequently occurring

patterns of operators corresponding to different cases discussed in

Section 4. In the figure, (a) is a sequence of back-to-back SELECT

operators that perform filtering, for instance, of a date range. It only

has thread dependence. (b) is a sequence of JOIN operations that

creates a large table with multiple attributes, and exhibits CTA depen-

dence. (c) corresponds to the JOIN of three small selected tables and

has both thread and CTA dependence. (d) represents the case when

different SELECT operators need to filter the same input data and

has input dependence. (e) performs arithmetic computations such as

price× (1−discount)× (1+ tax) which appears in several TPC-H

queries. The PROJECTs in the figure discard their sources and only

retain part of the result. The above patterns can be further combined

to form larger patterns that can be fused. For example, (a) and (b)

can be combined to form (c).

In the following experiments, the tuple used in patterns (a)–(d) are

16 bytes. (e) uses single precision floating point values.

5.1.1. Examples of Generated Code Figure 15 shows the generated

fused computation stage code of Figure 14(a) (only two SELECTs

shown for brevity). It performs two SELECTs and a PROJECT.

The first two filters operate on the value in data_reg, and store the

filter result in match, which is later used to determine if follow-up

operations are needed. The result of PROJECT is written to a new

register project_reg since its data type is smaller than data_reg. The

last step, stream compaction, dumps the value stored in this new

register to the GPU’s global memory. The generated code may be

less compact than manually written code, but compilers such as nvcc

can optimize it to produce high quality binary code.

5.1.2. Small Inputs The micro-benchmarks listed in Figure 14 are

first tested with small inputs that fit in GPU memory. The purpose of

this is to isolate the benefits of kernel fusion from the effects of PCIe

transfer. Figure 16 shows the speedup in the pure GPU execution time

(no PCIe transfer) with kernel fusion. The input data are randomly

114

 if(begin_input + id < end_input)
 {
 data_reg = begin_input[id];
 {
 unsigned char key = extract(data_reg);
 if(comp(key, 64))
 match = true;
 }
 {
 if(match)
 {
 unsigned char key =extract(data_reg);
 if(comp(key, 64))
 match = true;
 }
 }
 {
 if(match)
 {
 project_reg = project(data_reg, 0);
 }
 }
 }
 {
 unsigned int max = 0;
 unsigned int output_id = exclusiveScan(match, max, 0);
 if(match)
 buffer0[output_id] = project_reg;
 __syncthreads();
 if(threadIdx.x < max)
 begin_output0[outputIndex0 + threadIdx.x] = buffer0[threadIdx.x];
 outputIndex0 += max;
 }

Load Data To Reg

Filter0

Filter1

PROJECT

Stream
Compaction

Figure 15: Example of generated computation stage source code of
Figure 14(a).

generated and then fed into the automatically generated fused code

using the compilation flow of Figure 5. The baseline implementation

for comparison directly uses the implementation from the primitive

library without fusing. Similar to Figure 4, the performance data are

averaged over a wide set of problem size (from 64 MB to 1 GB).

On average, kernel fusion achieves a 2.89x speedup. Cases (a) and

(e) containing only thread dependence show the largest speedup,

because they do not insert new synchronizations, and threads execute

independently. Furthermore, (a) gets rid of three stream compaction

stages and three gather stages after fusion. The speedup of case (d)

is less than the rest because it has input dependences and can only

benefit from loading fewer inputs. (b) and (c) have CTA dependences

and need extra synchronizations which makes kernel fusion less

beneficial than the thread dependence only cases. The speedup in

case (c) is larger than (b) because (c) fuses some thread dependence

operators. Considering the reported CPU and GPU computation

performance difference [18, 12], the baseline GPU implementation

should be 4x–40x faster than CPU and kernel fusion can further

increase the GPU advantage.

����

����
��	�

����

���	

�

�

�

�

	

�

�

�

�

�

 � � � �

�
�
�
�
�
�
�

Figure 16: Speedup in execution
time (Small Inputs).

����

����

����

����

����

	��	

��	�

����

����

���

�

	

�

�

�

�

�

� � � �

�
�
�
�
�
�
�
	

��������� �����

Figure 17: GPU global memory
allocation reduction.

The next set of experiments examine the benefits claimed in Sec-

tion 2.3, specifically the improvement in GPU global memory usage,

total memory access cycles and compiler efficacy.

Figure 17 shows the GPU global memory allocated and used with

and without kernel fusion. The additional memory without fusion is

attributed to large intermediate results. In pattern (d) however, the

fused operator uses a little more memory because the fused compute

stage has to store two outputs in memory for future gather rather than

one. Similarly, Figure 18 shows the data for GPU memory access cy-

cles (collected using the clock() intrinsic). On average, fusion reduces

the GPU global memory access time by 59%. Finally, Figure 19 quan-

tifies the impact of the compiler. All micro-benchmarks are compiled

with -O3 and -O0 flags, both with and without kernel fusion. The

figure shows the speedups achieved by -O3 compared to -O0. Clearly,

kernel fusion enables the the compiler to perform better optimization.

������

����	�

�	�
��

�����

	��	��

��

��

���

���

���

���

	��

���

��

���

� � � � �

�
�
�
�
�
�
�
	

�
�
�
�
�
�

�

�
�
�
�

Figure 18: Reduced memory cy-
cles with kernel fu-
sion.

����

����

��	�

����

����

��
�

����

����

��	

����

�

���

�

���

�

���

	

	��

� � � �

�
�
�
�
�
�
�

���������

�����

Figure 19: Comparison of com-
piler optimization im-
pact.

When fusing two or three SELECTs together (e.g., pattern (a)), the

second or third SELECT might have some idle threads because some

data are not matched in the earlier SELECT. This might impact the

overall performance. Figure 20 examines the performance sensitivity

of kernel fusion to the selection ratio (percentage of data matching

selection condition) with randomly generated 32-bit integers. The

results shows fusing two 10% SELECTs produces (more idle threads)

1.28x speedup while fusing two 90% SELECTs (less idle threads)

produces 2.01x speedup. Thus, it is fair to say that idle threads

may impact the performance but do not negate the benefits of data

movement reduction.

5.1.3. Large Inputs In this experiment, the program inputs are en-

larged so that every operator has to move its result data back to host to

make room for the next operator when kernel fusion is not used. But

the problem size still fits the GPU memory when running fused ker-

nels. This set of tests examines the effect of kernel fusion on reducing

PCIe data traffic. The input data is generated on the CPU and the final

results are sent back to the CPU. Figure 21 compares the execution

time with and without kernel fusion over a wide range of problem

sizes. In this figure, the execution time comprises two parts: GPU

computation time and PCIe transfer time. On average, kernel fusion

achieves 2.91x speedup in the GPU computation time, 2.08x speedup

in PCIe data transfer, and 1.98x speedup overall. Computation time

speedup is similar to the small input case because performance scales

with data size. The speedup of PCIe transfer dominates the overall

speedup because it is the bottleneck for RA operators. The case (d)

0

5

10

15

20

0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

fusion (10%) no fusion (10%)
fusion (90%) no fusion (90%)

Figure 20: Sensitivity to selection ratio.

115

�

���

�

���

�

���

�

���

�

���

�
�
�
�
�
�
�
	

�
�
�
	

�
�
�
�
�
�
�
	

�
�
�
	

�
�
�
�
�
�
�
	

�
�
�
	

�
�
�
�
�
�
�
	

�
�
�
	

�
�
�
�
�
�
�
	

�
�
�
	

	
 � �

�
�
�
�
�
�
�
	

�
�

�
�

��� ������

Figure 21: GPU execution time with and without kernel fusion (Large
Inputs).

with input independence does not enjoy any benefit from reducing

PCIe transfer because the fused version has the same data footprint

as the baseline. Considering only the four producer-consumer cases,

kernel fusion has 2.35x speedup in PCIe and a 2.22x speedup overall.

If compared with CPU only systems, due to the large amount of time

spent in PCIe shown in Figure 21, the computation performance gap

between CPU and GPU would be reduced or GPU could even lag

behind of CPU for these simple micro-benchmarks even with the help

of kernel fusion. Other techniques discussed in the Related Work

section are needed for a complete GPU-assisted database system.

5.1.4. Resource Usage Table 3 lists the GPU resource usage and

occupancy (active warps / maximum active warps) of the individual

operators and the fused patterns. Since resources are finite, uti-

lizing too many resources per thread may decrease the occupancy.

We obtain resource information from ptxas and occupancy from

CUDA_Occupancy_calculator. The left four columns list the re-

sources used by individual operators (e.g. 1 PROJECT needs 11 PTX

registers and 0 byte shared memory), and the right four columns

show the usage of each pattern after kernel fusion (e.g. fused pattern

(a) uses 22 PTX registers and around 2.3K shared memory). The

statistics indicate that kernel fusion in most cases increases the re-

source usage which is the same as the impact of loop fusion, and

consequently may lower occupancy (pattern (b) – pattern(e)). Taking

pattern (b) as an example, it requires 55 PTX registers and about 23K

shared memory with fusion. However, if running two JOINs back-to-

back sequentially, each JOIN only needs 47 PTX registers and 13K

shared memory. Pattern (a) will use less shared memory after kernel

fusion than a single SELECT because i) thread dependence does not

use shared memory to store temporary results and ii) the data type of

fused results array buffered in shared memory uses smaller data type

since PROJECT removes some attributes.

5.2. Real Queries

In this section, we evaluate kernel fusion with two real queries from

TPC-H benchmark suites, Q1 and Q21. Q1 represents arithmetic

centric queries and Q21 represents relational centric queries. TPC-H

queries are very complex (e.g. the 15 operators of Q1 maps to 107

kernels to execute). While the microbenchmarks were compiled and

executed with the Datalog front-end, the query plans for the two

TPC-H queries presented here were created manually. The additional

language support required in the front-end to also automatically

compile all Datalog TPC-H queries is being completed for open

source distribution of the compiler.

Status Date1 Date2

Supplier

Nation

+

Date

Price

Tax

Discount

Quantity

Flag

Status

Select Join
Sort
Aggregate

+ Arithmetic
Unique

(a) (b)

-

x

Fusion

x

Figure 22: (a) Query plan for Q1; (b) Query plan for Q21.

Q1 calculates several price statistics for selected entries. Fig-

ure 22(a) is the query plan generated for Q1. There are (i) several

JOINs and one SELECT to generate a large table from seven columns,

ii) SORT by a different key, and iii) arithmetic calculations over sev-

eral fields of the table. The first part of the query including one

SELECT and six JOINs can be fused into one operator. All of the

arithmetic computations performed as the final part of the query can

be fused as well. The SORT operator causes kernel dependence

and cannot be fused because it has to wait for the completion of the

JOINs and arithmetic operations have to wait for the completion of

the SORT.

From the TPC-H database, query Q21 identifies suppliers who

were not able to ship required parts in a timely manner. Compared

with Q1, Q21 has less arithmetic computation but many more rela-

tional operations. Figure 22(b) is its simplified query plan (simple

operators such as PROJECTs are omitted for clarity). Just as with Q1,

SORTs form a boundary for the application of kernel fusion since

they can not be fused with their producers nor their consumers.

We tested two queries with 200 MB to 1 GB data and averaged

the performance. For Q1, the most time consuming part is the SORT

operator which takes around 71% of the total execution time, but

cannot be optimized. However, fusion dramatically speeds up the

other operators and contributes an overall 1.25x speedup. Further

study shows that when SORT is excluded, the remaining operators

can be fused and fusion achieves a 3.18x speedup due to the fusing

of 6 JOINS and 1 SELECTs into a single kernel. For Q21, kernel

fusion realizes a 1.22x overall speedup, which is significant given the

complexity of the operators.

The fused patterns for Q1 and Q21 are built based on JOIN oper-

ators (e.g. joining several columns together into a larger table and

then performing different cross-field computations). These patterns

appear very frequently in all 22 queries of TPC-H so that they can all

get similar speedup from kernel fusion.

6. Discussion

The proposed framework, Kernel Weaver, opens a door to a class of

new optimizations that can be applied in different situations. The

following discusses three possible opportunities.

Different Domain: Instead of database applications, kernel fusion

can also be used in other domains such as dense linear algebra. The

requirement is that the application should use multi-stage algorithms

and the stages are independent of each other so that they can be

weaved into a new format. The classification of dependences used in

this paper is still useful as a guide to fusion candidate selections.

Different Representation: In this paper, the optimization occurs

at the CUDA source code level. However, the same technology can

116

PTX Reg # Shared Mem (Byte) Occupancy (%) PTX Reg # Shared Mem (Byte) Occupancy (%)

PROJECT 11 0 100 (a) 22 2308 88

SELECT 22 3848 88 (b) 55 23560 33

JOIN 47 13580 38 (c) 62 23048 17

+/- 10 0 100 (d) 30 4612 67

Multiply 13 0 100 (e) 27 0 75

Table 3: Resource usage and occupancy of individual (left) and fused (right) operators.

be applied to different representations, such as OpenCL [24], CUDA

PTX or LLVM [25], as long as each stage of the operator can be

represented. Thus, kernel fusion can be implemented as a module of

a static compiler or a JIT compiler that optimizes the representations

online.

Different Platform: Furthermore, kernel fusion can be considered

as a general cross-kernel optimization that is not only restricted to

GPU devices. The benefits of smaller data footprints and larger

optimization scope still applies if the CPU program is optimized

using kernel fusion. Thus, if using an execution model translator

such as Ocelot [11], and a runtime manager such as Harmony [10]

it is possible to execute fused kernels on both the CPU and GPU to

fully utilize the available computation power.

Moreover, a more complicated fusion framework can use invariant

analysis to reschedule operators and to fuse those which are not

originally executed back-to-back. For example, if switching the order

of SORT and SELECT of Figure 9(c) does not alter the final result,

the switch brings more opportunity to optimize since SELECT can

thus fuse with the operators before SORT.

7. Related Work

For decades, academia and industry have invested a great deal of

effort in query optimization for traditional CPU-based relational

database management systems (RDMS) [22, 29]. These query opti-

mizations originated from different perspectives, considered different

factors, and made different tradeoffs. Take the CPU cache as an

example - the database system can choose among techniques such as

cache prefetching, cache partitioning, cache compression, and so on

to minimize cache misses and miss penalties [19]. This paper mainly

uses shared memory to apply kernel fusion. Compared with the CPU

cache, GPU shared memory is i) completely programmable which

provides more flexibility, ii) accessed by a large number of threads

which forces us to keep concurrency in mind. Thus, the optimization

here differs quite a bit.

The idea of kernel fusion arises from loop fusion [23], a well

studied loop optimization technique, which can reduce loop traversal

overhead and improve certain types of data locality. It is also used in

loop parallelization since it can aggregate a large loop body.

The most similar to our work is that of Sato et al. [35], who

built a system to run general primitives, map, reduce and zipwith

on GPUs with kernel fusion enabled. They fused the CPU code of

the primitives and then inserted CUDA runtime library calls and

other CUDA required language features to turn a C program into

a CUDA program. Thus, they did not exploit the advantageous

characteristics of GPUs, such as the multi-level memory hierarchy,

that can improve performance. There are also some domain specific

kernel fusion techniques targeting GPUs. Copperhead, developed by

Catanzaro et al. [7], attempted to fuse a subset of Python primitives

to reduce global synchronizations when accelerating them using

GPUs. They classified dependence into local and global which are

similar to the thread and kernel dependence of this paper, and fuse

primitives having local dependence. Thus, they can only fuse a few

simple primitives. Chakravarty et al. [8] noticed the benefits of kernel

fusion in accelerating Haskell array operations with GPUs and listed

it as their future work. On the CPU side, Lee et al. [27] propose

a runtime framework, Thread Tailor, which uses fusion techniques

albeit at a different level of granularity. Their framework partitions an

application into a large number of threads and use a greedy heuristic

to combine these small threads later based on their dependences.

There are also several ongoing projects using GPUs to acceler-

ate database applications. In particular, He et al. [18] implement a

complete GPU database system, GDB, which is also based on the

GPU implementation of relational algebra operators. Further, other

groups focus on designing algorithms to accelerate individual RA

primitives [36, 26, 38, 28, 15, 16]. Similarly, Bakkum et al. [4] mod-

ified the virtual machine infrastructure of SQLite to use GPUs to

execute SQLite opcodes (not RA primitives). All of these previous

works achieve several factors of speedup in comparison with their

CPU counterparts. However, none of them use any optimizations to

further improve the overall performance of the database system on

GPUs. Moreover, He et al. also point out that the PCIe transfer time

may outweigh the speedup enabled by the GPUs and suggest the use

of data compression techniques to reduce the amount of transfered

data [13]. Our work differs in that we are seeking to discover and

develop mainstream compiler passes that can automatically provide

inter-kernel optimizations.

To further boost the performance of a GPU assisted database sys-

tem, other techniques including but not limited to PCIe data compres-

sion [13], double buffer [41], and GPU aware query optimizer, are

also important to reduce the PCIe hazard. These techniques are or-

thogonal to kernel fusion because they are independent of the contents

transfered over PCIe and can be applied together with kernel fusion.

As to larger systems having multiple GPUs or even spanning over

multiple nodes, the runtime should have an intelligent scheduling

module that can balance the work load of each device (CPU and GPU)

and minimize the data movement over the interconnections [10].

8. Conclusion

This paper proposes a cross-kernel optimization framework, Kernel

Weaver, that can apply kernel fusion optimization to improve the

performance of relational algebra primitives used in data warehousing

applications on GPUs. Kernel fusion aggregates larger body of code

that can reuse as much data as possible. It can reduce the data traffic

through the memory hierarchy caused by the I/O bound nature of

database applications, and also enlarge the optimization scope.

To automate the process of kernel fusion, this paper first classi-

fies the producer-consumer dependence between RA operators into

three categories: thread, CTA and kernel dependence. Then, Kernel

Weaver leverages the multi-stage algorithm design to weave stages

from operators having thread and CTA dependence. The experiments

shows that kernel fusion optimization brings 2.89x speedup in GPU

computation, 2.35x speedup in PCI transfer on average across the

micro-benchmarks tested. The same technique can be applied to dif-

ferent domain, different representation format and different devices.

117

Acknowledgements

This research was supported in part by the National Science Foun-

dation under grants IIP-1032032 & CCF 0905459, by LogicBlox

Corporation, and by equipment grants from NVIDIA Corporation.

We also acknowledge the detailed and constructive comments of the

reviewers.

References

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases.
Addison-Wesley, 1995, vol. 8.

[2] J. Anderson, C. Lorenz, and A. Travesset, “General purpose molecular
dynamics simulations fully implemented on graphics processing units,”
Journal of Computational Physics, vol. 227, no. 10, pp. 5342–5359,
2008.

[3] R. Baeza-Yates, “A fast set intersection algorithm for sorted sequences,”
Lecture Notes in Computer Science, vol. 3109, pp. 400–408, 2004.
Available: http://www.springerlink.com/content/yth9h90y94n10l7e

[4] P. Bakkum and K. Skadron, “Accelerating SQL database operations on
a GPU with CUDA,” in Proceedings of the 3rd Workshop on General-

Purpose Computation on Graphics Processing Units. ACM, 2010, pp.
94–103.

[5] N. Bell, S. Dalton, and L. Olson, “Exposing fine-grained parallelism in
algebraic multigrid methods,” NVIDIA Corporation, NVIDIA Technical
Report NVR-2011-002, Jun. 2011.

[6] M. Billeter, O. Olsson, and U. Assarsson, “Efficient stream
compaction on wide simd many-core architectures,” in Proceedings

of the Conference on High Performance Graphics 2009, ser. HPG
’09. New York, NY, USA: ACM, 2009, pp. 159–166. Available:
http://doi.acm.org/10.1145/1572769.1572795

[7] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: compiling an
embedded data parallel language,” in Proceedings of the 16th ACM

symposium on Principles and practice of parallel programming, ser.
PPoPP ’11. New York, NY, USA: ACM, 2011, pp. 47–56. Available:
http://doi.acm.org/10.1145/1941553.1941562

[8] M. Chakravarty et al., “Accelerating haskell array codes with multicore
gpus,” in Proceedings of the Sixth Workshop on Declarative Aspects of

Multicore Programming. ACM, 2011, pp. 3–14.
[9] T. Council, “Tpc benchmark h, standard specification revision 1.3. 0,”

1999.
[10] G. Diamos and S. Yalamanchili, “Harmony: an execution model and run-

time for heterogeneous many core systems,” in Proceedings of the 17th

international symposium on High performance distributed computing.
ACM, 2008, pp. 197–200.

[11] G. Diamos et al., “Ocelot: A dynamic compiler for bulk-synchronous
applications in heterogeneous systems,” in Proceedings of PACT ’10.
ACM, 2010, pp. 353–364.

[12] G. Diamos et al., “Efficient relational algebra algorithms and data struc-
tures for gpu,” CERCS, Georgia Institute of Technology, Tech. Rep.
GIT-CERCS-12-01, Feb. 2012.

[13] W. Fang, B. He, and Q. Luo, “Database compression on graphics pro-
cessors,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
670–680, 2010.

[14] W. Fang et al., “Frequent itemset mining on graphics processors,” in
Proceedings of the Fifth International Workshop on Data Management

on New Hardware. ACM, 2009, pp. 34–42.
[15] N. Govindaraju et al., “Gputerasort: high performance graphics co-

processor sorting for large database management,” in Proceedings of

the 2006 ACM SIGMOD international conference on Management of

data. ACM, 2006, pp. 325–336.
[16] N. Govindaraju et al., “Fast computation of database operations us-

ing graphics processors,” in Proceedings of the 2004 ACM SIGMOD

international conference on Management of data. ACM, 2004, pp.
215–226.

[17] I. Grebnov, “libbsc: A high performance data compression library,”
http://libbsc.com/default.aspx, November 2011.

[18] B. He et al., “Relational query coprocessing on graphics processors,”
ACM Transactions on Database Systems (TODS), vol. 34, no. 4, p. 21,
2009.

[19] B. He and Q. Luo, “Cache-oblivious databases: Limitations and op-
portunities,” ACM Transactions on Database Systems (TODS), vol. 33,
no. 2, p. 8, 2008.

[20] T. Hetherington et al., “Characterizing and evaluating a key-value store
application on heterogeneous cpu-gpu systems,” in Proceedings of the

2012 IEEE International Symposium on Performance Analysis of Sys-

tems and Software, April 2012.
[21] S. Huang, T. Green, and B. Loo, “Datalog and emerging applications:

an interactive tutorial,” in Proceedings of the 2011 ACM SIGMOD

International Conference on Management of Data, 2011, pp. 1213–
1216.

[22] M. Jarke and J. Koch, “Query optimization in database systems,” ACM

Computing surveys (CsUR), vol. 16, no. 2, pp. 111–152, 1984.
[23] K. Kennedy and K. McKinley, “Maximizing loop parallelism and im-

proving data locality via loop fusion and distribution,” Languages and

Compilers for Parallel Computing, pp. 301–320, 1994.
[24] Khronos OpenCL Working Group, The OpenCL Specification, version

1.0.29, 8 December 2008.
[25] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong

Program Analysis and Transformation,” in Proc. of the 2004 Interna-

tional Symposium on Code Generation and Optimization, 2004, pp.
75–86.

[26] T. Lauer et al., “Exploring graphics processing units as parallel co-
processors for online aggregation,” in Proceedings of the ACM 13th

international workshop on Data warehousing and OLAP. ACM, 2010,
pp. 77–84.

[27] J. Lee et al., “Thread Tailor : Dynamically Weaving Threads Together
for Efficient , Adaptive Parallel Applications,” in Proc. of the 37th

Annual International Symposium on Computer Architecture, 2010.
[28] M. Lieberman, J. Sankaranarayanan, and H. Samet, “A fast similarity

join algorithm using graphics processing units,” in Data Engineering,

2008. ICDE 2008. IEEE 24th International Conference on. IEEE,
2008, pp. 1111–1120.

[29] M. Mannino, P. Chu, and T. Sager, “Statistical profile estimation in
database systems,” ACM Computing Surveys (CSUR), vol. 20, no. 3, pp.
191–221, 1988.

[30] W. mei W. Hwu and D. Kirk, “Proven al-
gorithmic techniques for many-core processors,”
http://impact.crhc.illinois.edu/gpucourses/courses/sslecture/lecture2-
gather-scatter-2010.pdf, 2011.

[31] D. Merrill and A. Grimshaw, “Revisiting sorting for gpgpu stream
architectures,” University of Virginia, Department of Computer Science,
Charlottesville, VA, USA, Tech. Rep. CS2010-03, 2010.

[32] J. Mosegaard and T. Sørensen, “Real-time deformation of detailed ge-
ometry based on mappings to a less detailed physical simulation on the
gpu,” in Proceedings of Eurographics Workshop on Virtual Environ-

ments, vol. 11, 2005, pp. 105–111.
[33] S. G. Parker et al., “Optix: a general purpose ray tracing engine,” ACM

Transactions on Graphics, vol. 29, pp. 66:1–66:13, July 2010.
[34] V. Podlozhnyuk, “Black-scholes option pricing,” Part of CUDA SDK

documentation, 2007.
[35] S. Sato and H. Iwasaki, “A skeletal parallel framework with fusion opti-

mizer for gpgpu programming,” Programming Languages and Systems,
pp. 79–94, 2009.

[36] P. Trancoso, D. Othonos, and A. Artemiou, “Data parallel acceleration
of decision support queries using cell/be and gpus,” in Proceedings of

the 6th ACM conference on Computing frontiers. ACM, 2009, pp.
117–126.

[37] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, pp. 103–111, 1990.
[38] P. Volk, D. Habich, and W. Lehner, “GPU-based speculative query pro-

cessing for database operations,” in Proceedings of the 1st International

Workshop on Accelerating Data Management Systems Using Modern

Processor and Storage Architectures, 2010.
[39] P. D. Vouzis and N. V. Sahinidis, “Gpu-blast: using graphics

processors to accelerate protein sequence alignment,” Bioin-

formatics, vol. 27, no. 2, pp. 182–8, 2010. Available:
http://www.ncbi.nlm.nih.gov/pubmed/21088027

[40] E. Walker, “Benchmarking amazon ec2 for high-performance scientific
computing,” Usenix Login, vol. 33, no. 5, pp. 18–23, 2008.

[41] H. Wu et al., “Optimizing data warehousing applications for gpus using
kernel fusion/fission,” in Parallel and Distributed Processing Sympo-

sium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th Interna-

tional. IEEE, 2012, pp. 2433–2442.

118

KnightShift: Scaling the Energy Proportionality Wall Through Server-Level Heterogeneity

Daniel Wong Murali Annavaram

Ming Hsieh Department of Electrical Engineering

University of Southern California

Los Angeles, CA

{wongdani,annavara}@usc.edu

Abstract

Server energy proportionality has been improving over the past sev-
eral years. Many components in a system, such as CPU, memory
and disk, have been achieving good energy proportionality behav-
ior. Using a wide range of server power data from the published
SPECpower data we show that the overall system energy proportion-
ality has reached 80%. We present two novel metrics, linear deviation
and proportionality gap, that provide insights into accurately quan-
tifying energy proportionality. Using these metrics we show that
energy proportionality improvements are not uniform across various
server utilization levels. In particular, the energy proportionality of
even a highly proportional server suffers significantly at non-zero
but low utilizations. We propose to tackle the lack of energy pro-
portionality at low utilization using server-level heterogeneity. We
present KnightShift, a server-level heterogenous server architecture
that introduces an active low power mode, through the addition
of a tightly-coupled compute node called the Knight, enabling two
energy-efficient operating regions. We evaluated KnightShift against
a variety of real-world datacenter workloads using a combination
of prototyping and simulation, showing up to 75% energy savings
with tail latency bounded by the latency of the Knight and up to 14%
improvement to Performance per TCO dollar spent.

1. Introduction

Energy consumption of datacenter servers are a critical concern.

Server operating energy costs comprise a significant fraction of the

total operating cost of datacenters. However, many servers operate at

low utilization and still consume significant energy due to the lack of

ideal energy proportionality [6].

Server consolidation [7, 8] can boost utilization on some servers

while allowing idle servers to be turned off, improving energy pro-

portionality at the datacenter level. Unfortunately, server shutdown

is not always possible due to data availability concerns and workload

migration overheads. When server shutdown is impractical, as is

the case in many industrial data centers [3, 26], system-level energy

proportionality approaches must be explored.

Energy proportionality improvements of various server compo-

nents [10, 30], such as CPUs and memory, has fueled the improve-

ments of overall system efficiency. Energy proportionality of current

systems has reached around 80%. While 80% seems reasonable, the

primary concern today is that energy proportionality improvements

have not been uniform across different utilizations. The problem of

disproportionality is particularly acute at non-zero but low server

utilization. Since no single component dominates server energy

usage [31], holistic system-level approaches must be developed to

improve energy proportionality particularly at low utilization regions.

Several system-level power saving approaches have focused on re-

ducing the power consumption during idle periods [24]. Researchers

then focused on increasing the length of idle periods by queueing

requests [26] or by shifting I/O burden directly to disk and mem-

ory [2, 3]. However, as multicore servers becomes dominant, idle

periods are virtually nonexistent [26, 34]. Even as idle periods be-

come rare, servers still spend a significant fraction of their execution

time operating at low utilization levels. Thus there is a critical need to

develop active low-power modes that exploits low-utilization periods

to continue improving server-level energy proportionality across the

entire utilization range.

This paper addresses this critical need by proposing KnightShift, a

server-level energy proportionality technique. This work makes the

following contributions:

Metrics to Identify Disproportionality(§2): We propose metrics

to evaluate energy proportionality and to identify sources of dispro-

portionality. Using data from historical SPECpower [35] results of

291 servers, we show that commonly used metrics such as dynamic

range are inappropriate due to the lack of linearity in energy consump-

tion across different utilizations. We present a metric for measuring

linearity of energy consumption across different utilizations. Using

the linearity metric we show that the proportionality gap is much

wider at lower utilization than at idle or higher utilization.

Energy Proportionality Trend Analysis(§3): From historical

SPECpower data we show the existence of an energy proportionality

wall due to the lack of improvements to the dynamic range and poor

energy efficiency at low server utilization periods. Previous work

(§4) only targeted improvements to the dynamic range by improving

idle power. In order to continue improving energy proportionality,

we must improve the linearity of the server’s energy proportional-

ity curve, especially at lower utilization where the majority of the

proportionality gap exists.

KnightShift(§5): We present KnightShift, a server-level heteroge-

neous server architecture that introduces an active low power mode

to exploit low-utilization periods. By fronting a high-power primary

server with a low-power compute node, called the Knight, we enable

two energy-efficient operating regions. We show that KnightShift

effectively improves energy proportionality and linear deviation of

servers in §6. We present evaluation results of KnightShift in §7 and

explore TCO impact in §8.

2. Measuring Energy Proportionality

In order to understand energy proportionality trends, we must first

quantify energy proportionality. Figure 1 illustrate the power us-

age of two servers over their operating utilization, called the energy
proportionality curve. The dotted line shows the ideal energy pro-

portionality curve of a server. The dashed line shows the linear
energy proportionality curve by interpolating idle and peak power.

The solid line shows the actual server energy proportionality curve.

The data presented in this figure are obtained from measurements

on real servers reported to SPECpower (more detailed analysis of

SPECpower data is provided later).

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.20

119

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

P
ea

k
po

w
er

Utilization

Actual
Linear
Ideal

(a) Superlinear EP

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

P
ea

k
po

w
er

Utilization

Actual
Linear
Ideal

(b) Sublinear EP

Figure 1: Energy Proportionality (EP) curve. The dotted, dashed, and solid lines shows the ideal, linear, and actual server EP curve, respec-
tively.

Dynamic Range: The dynamic range (DR) metric is commonly

used as a first order approximation for energy proportionality. The

dynamic range of a server is given by:

DR =
Powerpeak−Poweridle

Powerpeak
(1)

where Powerpeak is the peak power at 100% utilization and Poweridle
is the idle power at 0% utilization. In Figures 1a and 1b, the DR

for both servers are the same at 60% . An ideal energy proportional

system would have DR of 100%. DR only accounts for peak and

idle power usage and does not account for power usage variations

across different utilizations. Since most servers are rarely fully uti-

lized or fully idle, DR is a poor measurement of the server’s actual

proportionality. For example, assume that both servers in Figure 1

consume 100W at peak power. If each server experiences utilization

distribution similar to Google servers reported in [6], then Server A

(on the left) would consume on average 28% more power (68.6W vs

52.6W) compared to Server B (on the right), even though they both

have the same dynamic range.

Energy Proportionality: To accurately quantify energy propor-

tionality, we must account for intermediate utilization power usage.

The energy proportionality (EP) of a server (proposed in [29] and

adapted for this paper) is given by:

EP = 1− Areaactual −Areaideal

Areaideal
(2)

where Areaactual and Areaideal is the area under the server’s actual

and ideal energy proportionality curve, respectively. Note that if

Areaactual = Arealinear, then EP would equal DR. Therefore, DR is

a good measurement of energy proportionality only if a server is

linearly energy proportional, however, this is not the case in most

servers. For example, the EP of Server A and B is 53% and 74%,

respectively. Although the DR of both servers is 60%, their EP values

differ by over 20%. Compared to DR, EP provides a more accurate

metric in determining how energy efficient a server is. Energy pro-

portionality is a function of the dynamic range and the linearity of the

energy proportionality curve. Thus to accurately account for energy

proportionality, one has to account for the amount of deviation from

linearity within the server’s energy proportionality curve.

Linear Deviation: We define Linear Deviation (LD) as a measure

of the energy proportionality curve’s linearity. Linear Deviation is

given by:

LD =
Areaactual

Arealinear
−1 (3)

A server is considered linearly energy proportional if LD = 0, su-
perlinearly energy proportional if LD > 0, and sublinearly energy

proportional if LD < 0. Figure 1a and 1b shows a proportionality

curve with superlinear and sublinear energy proportional system, re-

spectively. Superlinear energy proportional servers have EP < DR ,

while sublinear energy proportional servers have EP > DR. This can

be proven by equation 2 where Area+LD > Arealinear > Area−LD,

therefore EP+LD < EPlinear < EP−LD, where EPlinear = DR.

Proportionality Gap: The Proportionality Gap (PG) is a mea-

sure of deviation between the server’s actual energy proportionality

and the ideal energy proportionality at individual utilization levels.

PG allows us to quantify the disproportionality of servers at a finer

granularity compared to EP to better pinpoint the causes of dispro-

portionality. PG at utilization level x% is given by:

PGx% =
Poweractual@x%−Powerideal@x%

Powerpeak
(4)

For an ideal energy proportional server, the PG for all utilization

levels is 0. For superlinearly proportional systems, like Server A,

PG is very large at zero utilization and it continues to grow for some

time before it starts to shrink. For sublinearly proportional systems,

like Server B, PG is very large at zero utilization but it continues to

decrease with utilization.

3. Energy Proportionality Trends

To understand trends in energy proportionality, we analyze the sub-

mitted results of SPECpower [35] for 291 servers from November

2007 to December 2011. These servers are a representative mix of

server configurations in current use. They feature servers with various

vendors, form factors, and processors. The SPECpower benchmark

evaluates the power and performance characteristics of servers by

measuring the performance and power consumption of servers at

each 10% utilization interval. These trends are shown in Figure 2 and

are discussed below.

Dynamic Range: Figure 2a plots the dynamic range of servers

along with the median trend line. Each data point corresponds to

one server whose SPECpower results were posted on a given date.

Overall, DR improved from about 50% to 80% from 2007 to 2009.

From 2009 onward, DR stagnated at 80%. Although the best DR is

80%, half of new servers today still have DR less than 70%. Even

in 2011, there are still new servers with DR less than 40%. We

can surmise that achieving 100% dynamic range is very difficult

due to energy disproportional and energy inefficient components

such as power supplies, voltage converters, fans, chipsets, network

components, memory, and disks.

Energy Proportionality: Figure 2b shows that EP trends are

similar, but not identical, to DR trends. Clearly, EP has also stalled

at around 80%. This energy proportionality wall is mainly due to the

lack of DR improvement. Each server’s EP data point is classified

120

0

0.2

0.4

0.6

0.8

1

Nov-07 Mar-09 Jul-10 Dec-11

D
yn

am
ic

 R
an

ge

Time

(a) Dynamic Range

0

0.2

0.4

0.6

0.8

1

Nov-07 Mar-09 Jul-10 Dec-11

E
ne

rg
y

P
ro

po
rti

on
at

liy

Time

"+LD"
"-LD"

(b) Energy Proportionality

0

0.2

0.4

0.6

0.8

1

-0.10 -0.05 0.00 0.05 0.10 0.15

E
ne

rg
y

P
ro

po
rti

on
al

ity

Linear Deviation

(c) Linear Deviation

0

0.2

0.4

0.6

0.8

0% 20% 40% 60% 80% 100%

P
ro

po
rti

on
at

liy
 G

ap

Utilization

LOW(<50)
MID(50-75)
HIGH(75+)

(d) Proportionality Gap

0

0.2

0.4

0.6

0.8

1

0% 20% 40% 60% 80% 100%

N
or

m
al

iz
ed

 s
sj

_o
ps

/W

Utilization

HIGH(75+)
MID(50-75)
LOW(<50)

(e) Energy Efficiency

0
1000
2000
3000
4000
5000
6000
7000

Nov-07 Mar-09 Jul-10 Dec-11

ss
j_

op
s/

w
at

t

Time

Efficiency @ 100%
Load
Efficiency @ 10%
Load

(f) Efficiency Growth

Figure 2: Energy Proportionality Trends

as either superlinear (+LD) or sublinear (-LD) proportional based on

their SPECpower data. It is important to draw attention to a few data

points where EP > 80%, although no servers have a DR above 80%.

Recall that the only way a server can have EP > DR is for that server

to have sublinear energy proportionality (-LD). A sublinearly energy

proportional server consumes less power than a linearly proportional

server. Hence, it can have higher EP than DR. Thus, those few servers

with EP > 80% in Figure 2b have sublinear energy proportionality.

Note that -LD does not always imply high EP. In particular, energy

proportionality is affected by two components: dynamic range and

the linear deviation. If DR can be improved, then LD improvements

have a secondary impact on overall EP. But as DR improvements hit

a wall, the only way to improve EP moving forward is to improve

LD.

Linear Deviation: Figure 2c shows the relationship between lin-

ear deviation and energy proportionality. Unfortunately, the data

shows that the majority of servers (at least 80%) are superlinearly

proportional (+LD). Hence, there lies potential to improve energy

proportionality in current servers by improving their linear deviation.

Proportionality Gap: Figure 2d shows the average proportion-

ality gap of servers at various utilization levels. The curves, from

top to bottom, represent servers with low EP (<50%), medium EP

(50-75%), and high EP (>75%). Irrespective of the EP level the

striking feature is that all servers suffer large proportionality gap at

low utilizations. Furthermore, as EP increases, it becomes clear that

the majority of the proportionality gap occurs at lower utilizations.

As EP improves, energy disproportionality at lower utilization will be
the main obstacle to achieving perfectly energy proportional systems.

Unfortunately, due to limited information reported in SPECpower

results, we cannot gain a clear insight as to the fundamental causes of

proportionality gap at lower utilization and thus this question remains

an open research problem.

Energy Efficiency: We defined energy efficiency as ssj_ops/Watt

from the SPECpower data. Figure 2e shows that energy efficiency is

strongly correlated with the proportionality gap. The curves, from

top to bottom, represents servers with high, medium, and low EP,

respectively. Due to the large proportionality gap at low utilization,

server energy efficiency is about 30% of the peak efficiency even for

servers with relatively high EP. Hence, even if the overall EP of a

server improves over time, the energy efficiency will still suffer at

low utilizations unless the proportionality gap at low utilizations is

reduced. Otherwise, even the highest EP servers can run efficiently

only at high utilizations. In order to improve energy efficiency, we

should improve efficiency at lower utilization. Unfortunately, as

Figure 2f shows, improvements to efficiency at higher utilization has

outpaced improvements at lower utilization.

Overcoming the EP wall: In order to improve the energy effi-

ciency of servers, we cannot solely rely on improvements to dynamic

range, as has been the case in the past. Therefore, we cannot con-

centrate on energy efficiency improvements at peak and idle only.

As dynamic range is now static, we must focus on improving the

linear deviation. As shown previously, servers operate in two distinct

energy proportional regions. Servers tend to be perfectly proportional

at high utilization (>50%), while disproportional at low utilization

(<50%). Therefore, in order to gain the most benefits, we must focus

our efforts in the low utilization region. Furthermore, processors are

no longer the major consumer of power in servers [31]. In order to

reduce energy consumption, new server-level solutions that tackle

proportionality gap at low utilizations are needed.

4. Related Work

Power and energy related issues in the context of large scale datacen-

ters have become a growing concern for both commercial industries

and the government. Barroso [6] showed that energy-proportionality

is a chief concern since most enterprise servers operate at low average

utilizations. These concerns have become the source of much active

research in the energy proportional computing space. Numerous

studies have examined energy efficiency approaches to servers in

datacenter settings. These approaches can be classified along three

dimensions: spatial granularity (Granularity), the period in which the

low power mode is active (Period), and the ability for the low power

mode to perform work (Active/Inactive). The granularity refers to

whether the low power mode work at the cluster, server, or compo-

nent level. The period in which the low power mode is active refers

to the region of operation that the low power mode exploits. Low

power modes can exploit either idle periods (0% utilization), or low

121

Granularity Cluster-level Server-level Component-level
Period Idle Low Utilization Idle Low Utilization Idle Low Utilization
Active Consolidation & Somniloquy [1] KnightShift DVFS
Low Dynamic Cluster Barely-alive MemScale [10]
power Resizing [7, 8] Servers [3] Heter. Cores [21,

14, 13, 5]
Inactive
Low power

Shutdown
PowerNap [24]

DRAM Self-refresh
Core Parking
Disk Spin down

Table 1: Classification of Server Low-power modes

utilization periods. The ability to perform work refers to whether the

low power mode allows the system to continue processing requests.

For inactive low power modes, the system cannot processes requests.

For active low power modes, the system can still process requests,

possibly with lower capability and performance. For example, if

a low power mode is an active low power mode and exploits low

utilization periods, it means that the low power mode is activated

during low utilization periods and can still perform work. Using the

three dimensional classification Table 1 bins the most relevant prior

work which we will briefly describe next .

Cluster-level techniques: Common techniques such as consoli-

dation and dynamic cluster resizing [7, 8] concentrate workload to

a group of servers to increase average server utilization and power

off idle machines, improving efficiency and lowering total power

usage. Although beneficial, these techniques are not suitable for

many emerging workloads in today’s datacenter settings. For direct-

attached storage architectures or workloads with large distributed

data sets, servers must remain powered on to keep data accessible.

Furthermore, due to the large temporal granularity of these tech-

niques, they cannot respond rapidly to unanticipated load as it could

take minutes to migrate tasks with very large working sets. Under

these circumstances, server consolidation is not a viable solution. Our

proposed solution will allow significant energy savings even when

servers are required to actively operate at low utilization.

Component-level techniques: Component-level energy saving

techniques for CPU, memory, and disk covers both active and in-

active low-power modes. Active low-power techniques improves

the energy-proportionality of components by providing multiple op-

erating efficiencies at different utilization levels. Heterogeneous

cores [5, 13, 14, 21], such as Tegra 3 and ARM big.LITTLE, can

switch to low-power efficient cores during low-utilization periods,

while DVFS and MemScale [10] scales the frequency and power of

components depending on utilization levels. Furthermore, inactive

low-power techniques, such as DRAM self-refresh, core parking and

disk spin down can improve idle power consumption of these com-

ponents. Most dynamic range improvements seen to date are driven

primarily by processor energy efficiency gains. But going forward,

no single component dominates overall power usage [31], which may

limit the potential of component-level techniques in the future.

Server-level techniques: Server-level techniques aim to put the

entire server into a low-power mode. Previous techniques aimed to

improve energy efficiency by increasing the dynamic range through

lowering the idle power usage and extending the time a system stays

in idle. PowerNap [24] exploits millisecond idle periods by rapidly

transitioning to an inactive low-power state. DreamWeaver [26] ex-

tends PowerNap to queue requests, artificially creating and extending

idle periods. Barely-alive servers [3] place the server in a low-power

state, but extends idle periods by keeping memory active to process

remote I/O requests. Similarly, Somniloquy [1] allows idle comput-

ers to supports certain application protocols, such as download and

instant messaging. As the number of processors in servers increase,

idle periods will become increasingly rare [26, 34]. Thus active
low-power modes that can efficiently operate at low-utilization levels
will be the only practical server-level energy saving technique in
the future. Current literature lacks work that exploit low-utilization

opportunities. As the data in Section 3 showed, it is critical to tackle

the lack of energy efficiency during low-utilization periods. Our

work, KnightShift, fills this important gap.

Low-power design: Wimpy nodes [4] aims to save power by run-

ning low-power energy-efficiency nodes. Wimpy clusters are limited

to workloads that can tolerate higher latency, but may degrade QoS

during traffic spikes, requiring over-provisioning [28, 15]. Heteroge-

neous clusters [9] of brawny and wimpy cores also suffers the same

issues as consolidation and task migration. In KnightShift, we can

dynamically switch modes to handle latency demands, without the

overhead of consolidation due to a tightly-coupled disk subsystem.

5. KnightShift

In this section we introduce KnightShift, a heterogenous server-level

architecture to reduce the proportionality gap of servers at low uti-

lization. KnightShift fronts a high-power primary server with a low-

power compute node, called the Knight, enabling two energy-efficient

operating regions. We define Knight capability as the fraction of

throughput that Knight can provide compared to the primary serve.

To the best of our knowledge, KnightShift is the first server-level ac-
tive low-power mode solution to exploit low-utilization periods. The

fundamental issues limiting energy proportionality have been lack

of improvement to dynamic range and linear deviation. While pre-

vious techniques only targeted dynamic range, KnightShift extends

previous techniques by also targeting linear deviation.

A KnightShift system consists of three components:

I KnightShift hardware: The KnightShift hardware consists of

a low-power low-performance compute node, called the Knight,

paired with a high-power high-performance server. Both the

Knight and primary server can be independently powered on

and off. Both the Knight and primary server share a common

data disk and are able to communicate with one another through

traditional network interface. In section 5.1, we will introduce

three possible implementations of KnightShift.

Due to low-power demands we assume the Knight has less

memory than the primary server. However, certain workloads

require large memory-resident datasets, such as scale-out work-

loads [12], and cannot tolerate smaller memory. These work-

loads can still benefit from KnightShift by alternatively using

low-power mobile memory [23], therefore still benefiting from

overall reduced energy savings. Current server motherboards

are typically not built to accommodate low-power mobile mem-

ory while a Knight can use such a memory type.

122

Server
Motherboard

 Power Disk Power

NIC

CPU

Chipset

LAN SATA

Memory

Chipset

LAN SATA

CPU CPU

MemoryMemoryMemory

(a) Board-level

Server
Motherboard

 Power Disk

NIC

CPU

Chipset

LAN SATA

Memory

Motherboard

 Power

Chipset

LAN SATA

CPU CPU

MemoryMemoryMemory

(b) Server-level

Server NodeKnight Node

Motherboard

 Power Disk

CPU

Chipset

LAN SATA

Memory

Motherboard

 Disk Power

Simple
Router

Chipset

LAN SATA

CPU CPU

MemoryMemoryMemory

(c) Ensemble-level (Prototype)

Figure 3: Three proposed implementations of KnightShift. In a board-level implementation the primary server and Knight are integrated into
the same motherboard. In a server-level implementation the Knight is a separate add-on board that attaches to SATA port, converting
commodity servers into KnightShift systems. In an ensemble-level implementation, only commodity parts are used.

II System software: The system software enables several key

functionalities required for KnightShift, such as disk sharing,

network configuration and remote wakeup of compute nodes.

Most operating systems already support the required system

software functionality. In section 5.1 we will describe the

specifics of system software required to support KnightShift.

III KnightShift runtime: The KnightShift runtime is the new

software layer that is built specifically for the purpose of operat-

ing KnightShift. This runtime layer monitors utilization, makes

mode switching decisions, redirect requests between the Knight

and the primary server, and coordinates disk access rights to

ensure data consistency. We will discuss this runtime in de-

tail in section 5.2 and present our prototype implementation in

section 7.1.1.

5.1. KnightShift Implementation Options

We propose three implementations of KnightShift as shown in Fig-

ure 3. The preferred choice for implementing KnightShift depends

on the usage scenario and level of integration supported by system

designers.

Board-level integrated KnightShift: Board-level integrated

KnightShift integrates the primary server and Knight onto the same

motherboard. Both Knight and primary server have independent

memory, CPU, and chipsets. To allow each node to power on/off

independently, the motherboard is separated into two power domains

(designated by the dotted box). The Knight’s power domain com-

prises of it’s memory, CPU, chipset, ethernet, and disks. The Knight’s

power domain is always on but the primary server’s power status is

controlled by the Knight. The Knight is capable of remotely waking

up the primary server. Existing technology such as wake-on-lan can

be used to support remote wakeup. Using wake-on-lan, when the

primary server is off, the Knight can send a "magic" packet to the

primary server’s network interface which in turn will wake up the

primary server. All three proposed implementations use wake-on-lan

for remote wakeup.

Networking is provided through sideband ethernet, allowing two

devices to be exposed through a single physical port to external

servers. Both the Knight and primary server would have their own

IP address, but only the Knight’s IP address would be publicly avail-

able. This allows the KnightShift server to appear as a single server

on the network, eliminating additional network overheads to adopt

KnightShift servers.

Disks are shared between the primary server and Knight through

a shared SATA connection. Since SATA currently supports hot-

plugging, the system designer can add switching logic to route SATA

requests between the primary server and Knight.

Server-level integrated KnightShift: In a server-level integrated

KnightShift configuration, the Knight resides on a separate indepen-

dently powered motherboard. The only shared components between

the Knight and primary server is the network and disk. We envision

that this approach can be implemented by intercepting the SATA

interface and building a Knight which can fit as a hard drive module

within the primary server. Hard drive mounts are designed to fit

various hard drive sizes. For example, 3.5inch drives comes in 19mm

or 25.4mm heights. By using 19mm height drives or 2.5inch drives,

we can integrate the Knight into the unused space on the 3.5inch

mount. This approach is feasible even today as some potential Knight

candidates are as small as credit cards [19].

Since the Knight remains on at all times, it is exposed to the outside

world as the only server. Thus, the primary ethernet connection will

be on the Knight board. The existing primary server’s ethernet is then

connected into the Knight board. Thus this approach requires one

extra internal ethernet connection compared to board-level integration.

This implementation allows us to convert any commodity server to a

KnightShift-enabled server without using additional space.

Ensemble-level KnightShift: The ensemble-level implementa-

tion uses only commodity parts with no changes to hardware. By

using a primary server and a Knight based on commodity computers

(such as nettops), a KnightShift system can be implemented. This is

the prototype that we will use to evaluate KnightShift in section 7.1.

Disk sharing is fulfilled through NFS, with the Knight acting as the

NFS server and the primary server mounting the NFS drive. This

allows data to persist when the primary server is off. Since the Knight

acts as the NFS server this approach requires the Knight to always be

on. A router is used to network the Knight and primary server. To the

outside world only the Knight’s IP address is exposed. The primary

123

10

100

1000

10000

100000

Mar-06 Sep-07 Mar-09 Sep-10 Apr-12

P
as

sm
ar

k
C

P
U

 M
ar

k

Release Dates

Atom
Xeon
Core-i3

Figure 4: Performance trends of commercial systems.

server communicates to the outside world through the Knight.

Board-level implementation requires the least amount of space,

but requires several modifications to the system design. The server-

level implementation allows commodity servers to be KnightShift-

enhanced, with minimal space requirements. The ensemble-level is

the simplest to implement with commodity parts. But this solution

can be expensive and may need additional rack space in a data center.

5.2. KnightShift Runtime
In the above section we presented three choices for implementing

KnightShift and the basic system software needed for remote wakeup,

disk and network sharing. The KnightShift functionality is imple-

mented in a special purpose runtime layer called the KnightShift

runtime. The runtime serves the following purposes: 1) Monitor

server utilization, 2) Decide on when to switch between Knight and

primary server using mode switching policies, 3) Ensure data consis-

tency on shared disk data, 4) Coordinate mode switching, 5) Redirect

requests to active node.

Monitoring server utilization and mode switching policies:
An essential part of KnightShift is the ability to monitor the uti-

lization of the primary server and Knight to make mode switching

decisions. Server utilization monitoring can be carried out simply

through the Linux kernel or through third-party libraries.

Whenever the primary server’s utilization is low, the Knight will

put the primary server to sleep and handle service requests. Whenever

the Knight’s utilization is too high, it does a remote wakeup of the

primary server which then handles service requests. In this paper, our

primary goal is to introduce the benefits of KnightShift and thus we

use a simple switching policy to determine when to switch modes. In

order to maximize power savings, we have to maximize the amount

of time that we spend in the Knight. To do so, our simple switching

policy aggressively switches into the Knight, and conservatively

switches to the primary server. For example, if the Knight is 20%

capable, the KnightShift runtime will switch to the Knight whenever

the primary server utilization falls below 20%. KnightShift switches

back to the primary server only when the Knight’s utilization exceeds

100% for at least the amount of time it takes to switch between Knight

and primary server, called the transition time.

By maximizing energy savings, we may negatively impact perfor-

mance as we may stay in the Knight mode during periods where the

Knight cannot handle the requests, causing increased response time.

Although it is outside the scope of this work, by using a more bal-

anced switching policy, through predicting high utilization periods or

carefully chosen timeouts, KnightShift may provide a better balance

between energy savings and performance [34].

Data consistency and coordinating mode switching: Recall

that in all three implementation the Knight and primary server share

the disk data needed for processing service requests. Hence, when-

ever mode switching is activated, the compute node that is shutting

down must flush any buffered disk writes that are cached in memory

back to disk and unmount the disk. This allows the complementary

node to mount the disk and operate on consistent data. The Knight-

Shift runtime enforces this consistency by coordinating disk access

sequence between the two nodes. In section 7.1 we detail our proto-

type KnightShift system where coordination is carried out through a

set of scripts communicating using message passing.

Redirecting requests: There are many ways to forward incom-

ing requests to the active compute node. One approach is to run a

simple load balancer software on the Knight, which would require the

Knight to remain always on. We take this approach in our prototype

KnightShift implementation in section 7.1. It would also be possible

to use a hardware component which redirects requests.

5.3. Choice of Knights

We originally considered three options for the Knight: ARM, Atom,

and Core i3-based systems. It is currently not feasible to use ARM

based systems as a Knight because its capability level (<10%) is

simply too low and does not provide ample opportunities to switch to

Knight mode. With the emergence of server-class ARM processors,

ARM may become a viable Knight option in the near future.

Figure 4 shows the performance growth of Atom and Core i3 as

potential Knights compared to a Xeon based server as the primary

server. The performance data was obtained from Passmark CPU

Mark [18]. Most Atom based systems have one order of magnitude

lower capability than a Xeon based server and in the best case they

have 20% capability. The performance of Core i3 on the other hand, is

within 50% of Xeon based server. Thus Atom and Core i3 can provide

Knight capability of up to 20% and 50%, respectively. Although Core

i3 based Knights use ~4x more power than Atom based Knights, Core

i3 offers more opportunity for the Knight to handle requests from the

primary server. In our prototype implementation we used only an

Atom based Knight due to limited hardware budget.

Mixed ISA: In our current prototype, all the Knight choices run

x86 ISA. Additionally, we ran a fully functional KnightShift proto-

type using x86+ARM and we didn’t encounter any functional diffi-

culties. Many popular applications, such as java, apache and mysql

already have ARM binaries. As ARM becomes more powerful and

prevalent, mixed ISA KnightShift systems may even become the

norm. While the ARM based Knight ran perfectly well in terms of

functionality, the latency overhead was too high. Hence we do not

consider mixed ISA implementation in the rest of the paper.

6. A Case for Server-level Heterogeneity
In this section we show the potential benefits of KnightShift on top

of current production systems. We selected all 291 servers from the

SPECpower results and studied how various energy proportionality

metrics are affected if that server was enhanced with a Knight. Recall

that we define Knight capability as the fraction of throughput that the

Knight can provide compared to the primary server. By assuming

the Knight was created with the same technology as the primary

server, the peak and idle power of the Knight, with capability C, can

be obtained by theoretically scaling the power using the equation

PowerKnight =C1.7 ∗PowerPrimary [5]. For example, if the primary

server operates between 100W (idle power)-200W (peak power at

100% utilization), then a 50% capable Knight will operate from 31-

62W. We assume the Knight is linearly proportional (LD=0) between

its idle and peak power.

Figure 5 shows the effect of KnightShift on the energy proportion-

ality curve, from Figure 1, with a 20% and 50% capable Knight. To

124

0%
20%
40%
60%
80%

100%
120%

0% 20% 40% 60% 80% 100%

P
ea

k
po

w
er

Utilization

Actual
Linear
Ideal
KnightShift

(a) 20% Capable

0%
20%
40%
60%
80%

100%
120%

0% 20% 40% 60% 80% 100%

P
ea

k
po

w
er

Utilization

Actual
Linear
Ideal
KnightShift

(b) 50% Capable

Figure 5: KnightShift enhanced energy proportionality curve

KS
Level

Proportionality Gap Energy Efficiency Linear Deviation

20%

-0.2

0

0.2

0.4

0.6

0% 20% 40% 60% 80% 100%

P
ro

po
rti

on
at

liy
 G

ap

Utilization

LOW(<50)
MID(50-75)
HIGH(75+)

0
0.5

1
1.5

2
2.5

3
3.5

0% 20% 40% 60% 80% 100%

N
or

m
al

iz
ed

 s
sj

_o
ps

/W
at

t

Utilization

HIGH(75+)
MID(50-75)
LOW(<50)

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

E
ne

rg
y

P
ro

po
rti

on
al

ity

Linear Deviation

50%

-0.2

0

0.2

0.4

0.6

0% 20% 40% 60% 80% 100%

P
ro

po
rti

on
at

liy
 G

ap

Utilization

LOW(<50)
MID(50-75)
HIGH(75+)

0
0.5

1
1.5

2
2.5

3
3.5

0% 20% 40% 60% 80% 100%

N
or

m
al

iz
ed

 s
sj

_o
ps

/W
at

t

Utilization

HIGH(75+)
MID(50-75)
LOW(<50)

0

0.2

0.4

0.6

0.8

1

1.2

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2
E

ne
rg

y
P

ro
po

rti
on

al
ity

Linear Deviation

Figure 6: Effect of KnightShift on SPECpower commercial servers

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00 0%

10%

20%

30%

40%

50%

60%

10% 20% 30% 40% 50%

LD
 Im

pr
ov

em
en

ts

E
ne

rg
y

an
d

E
P

Im
pr

ov
em

en
ts

Knight Capability

Energy
EP
LD

Figure 7: Server Energy, EP, LD improvement with KnightShift

generate this data, we assume that anytime the utilization is within

the Knight’s capability levels, the Knight will handle that requests.

Otherwise, the primary server will handle the request. Note that in

KnightShift, the Knight must remain on, which increases the peak

power consumption of the server. The reason for this requirement

was explained in the previous section. Even with the increase in peak

power consumption, we still experience significant power savings be-

cause the servers spend the majority of the time in the low utilization

regions. (more details will be presented in section 7). The primary

server is shut down at low utilizations, allowing the Knight to handle

all low utilization requests, significantly decreasing power consump-

tion. Depending on the capability, energy savings vary. But in all

cases, we shift the server to -LD domain, but with differing levels

of -LD. It is interesting to note that at specific utilization levels, a

KnightShift-enabled system can consume less power than an ideal en-

ergy proportional system, opening the possibility of servers operating

with better efficiency than ideal energy proportionality. For instance,

in Figure 5b when the server utilization is approximately between

20% and 50%, the overall power consumption is better than an ideal

energy proportional server because the Knight uses less power than

an ideal energy proportional server at that utilization.

Figure 6 shows the effect of KnightShift with a 20% and 50%

capable Knight on proportionality gap, energy efficiency, and linear

deviation (compare to Figure 2).

Proportionality Gap: At 20% capability, the proportionality gap

of the KnightShift server is essentially eliminated at utilization below

20%. While in Knight mode, the proportionality gap is negative,

meaning that the power used by the Knight at a specific utilization

is lower than that of an ideal energy proportional server, as shown

in Figure 5. At 50% capability, the proportionality gap is greatly

reduced in the 0%-25% utilization range as compared to Figure 2d,

while the proportionality gap is eliminated from 25%-50% utilization

range. The reason for non-zero proportionality gap at the lower range

is because of the power consumed by the Knight itself. As long as

the proportionality gap exists at low utilization, KnightShift should

benefit that server.

Energy Efficiency: The energy efficiency curves for the 20%

and 50% Knight capabilities are shown in Figure 6. KnightShift

enhances server’s energy efficiency and allows them to run at or

better than peak efficiency (great than 1 in the figure) even at lower

utilization. The improvement is directly correlated with the reduction

in proportionality gap. 20% capable Knights operate above peak

efficiency between 0-25% utilization range. 50% capable Knights

operate at above peak efficiency from 25%-50% utilization range, and

125

Power
Meter

Client
Node

Knight
Primary
Server

Power
Logger

Workload
Generator

KnightShiftd

Scheduler Web
App.

KnightShiftd

Web
Application

Power
Meter

er Workload

Sc

ent Poweowe

Wall Plug Wall Plugll P Power
Supply

Power Usage

Client Request

Request

Coordination
Message

Figure 8: KnightShift Prototype setup

just below peak efficiency below 25% utilization. This data shows

that KnightShift energy efficiency is substantially higher than the

baseline shown in Figure 2e.

Linear Deviation: KnightShift effectively shifts all servers from

+LD to -LD range. Improving LD is the only option to improve

energy proportionality when dynamic range improvements are not

feasible. With a 20% capable Knight, the lowest EP server amongst

the 291 servers jumped from 20% to 60%. Thus KnightShift is able to

improve the EP of servers by allowing commodity servers to exhibit

-LD. For 50% capable Knights, we even see servers with EP > 1,

indicating that KnightShift effectively closed the proportionality gap.

EP and Energy Savings: To evaluate energy savings, we assume

server utilization distribution similar to Google datacenter servers

in [6]. Figure 7 shows the average improvements to LD, EP and

potential energy savings. For 20% Knights, we experience average EP

improvements of 25%, average energy savings of 18% and average

LD decreased by .175. As Knight capability increases, energy savings

grows due to more opportunity to be in the Knight. For 50% capable

Knights, we experience average energy savings of 51% and average

EP improvement of 41%. By having KnightShift being configurable,

vendors may pick a KnightShift implementation that is best suited

for their performance and energy budget goals.

7. Evaluation

In this work we evaluate KnightShift using two approaches. First, we

present a KnightShift prototype and run a real-world workload, Wik-

iBench [20], to demonstrate feasibility and performance of Knight-

Shift under realistic conditions. A prototype implementation, how-

ever, provides limited flexibility to change the hardware configuration

parameters. Hence, we developed a queueing model based simulator

that is validated against the prototype implementation. We then use

the simulator to conduct a broad design space exploration using traces

collected from USC’s production datacenter.

7.1. Prototype Evaluation

7.1.1. Prototype Setup The KnightShift prototype is similar to Fig-

ure 3c. The exact experimental setup is shown in Figure 8 . In this

setup the Knight is a Shuttle XS35 slim PC with a 1.8GHz Intel

Atom D525, 1GB of ram, 500GB hard drive and operates from 15W-

16.7W. At idle, the CPU and memory consumes 9W, with the disk

and motherboard consuming 6W. The primary server is a Supermi-

cro server with dual 2.13GHz 4-core Intel Xeon L5630, 36GB of

ram, 500GB hard drive and consumes from 156W to 205W while

active. Recall that we assume that it is reasonable for the Knight to

have less memory than the primary server as the performance impact

due to less memory is accounted for in the capacity measurement

Sl
ee

p

W
ak

eu
p

A
w

ak
e

Sy
nc

Sl
ee

p
Sl

ee
p

Sl

����

W
ak

eu
p

W
a

���	�

�
 P

ow
er

 C
on

su
m

pt
io

n
�

� Time �

Primary:
Flush memory
state, send
sleep msg.,
enter low power
state

Knight: Begin
processing
requests Knight: Flush

memory and send
sync msg

Primary: Wakeup,
send awake msg,
wait for data sync,
process requests

Figure 9: Coordination of KnightShift servers

of the Knight. For our particular setup, our Knight is not capable of

supporting memory size larger than 1GB.

Using SPECpower results we determined that our primary server

has an EP of 24%. By enhancing the primary server with a Knight,

we improved the EP to 48%! Note that although our primary server

has a relatively low EP, if we use a significantly higher 70% EP server,

our prototype Knight can still provide EP improvements. KnightShift

is not meant to compete directly with servers that are already highly

proportional across all utilization levels. KnightShift improves EP of

servers that have large proportionality gap at low utilizations.

The primary server can turn on/off in 20/10 seconds, respectively.

During Knight mode, the primary server is placed in hibernate mode,

where the system is shutdown except for the network interface. It is

also possible to place the primary server in suspend mode quicker

than shutting down, but at the cost of higher idle power. Both nodes

run Ubuntu Linux with all power-saving features enabled (DVFS,

drive spin-down, etc). We determined that our Knight is 15% capable

compared to the primary server using throughput measurements from

apachebench [16]. In other words, the Knight’s throughput is 15% of

the peak throughput of the primary server. Request generation and

power measurement data collection are handled by a separate client

node which is not part of the prototype. The power consumption of

the primary server and Knight are measured using two Watts Up?
Pro power meters with data logged to the client node.

KnightShift Runtime: In our prototype setup, both nodes shares

data through NFS, with the Knight acting as the NFS server. In

order to force data consistency, we require coordination between

both nodes. Thus, we require runtime software for KnightShift

support. This software will handle both utilization monitoring and

coordination. While there are many options for implementation, here

we only present one particular implementation used in our prototype.

To support and enforce the KnightShift functionality, both nodes

run a daemon, called KnightShiftd, to support utilization monitoring

and coordination messages. KnightShiftd is implemented as a set

of scripts and acts as the control center for the KnightShift system.

KnightShiftd monitors the utilization of the node it’s running on and

makes mode switching decisions. To support redirection of requests,

the Knight runs a scheduler, which acts as a simple load balancer to

forward the requests to the active node.

Communication between both nodes takes place through messages.

Figure 9 highlights the processes of switching between nodes, which

also enforces data consistency. Upon entering a low utilization period,

the KnightShiftd daemon will detect the low utilization of the primary

server and initiates a mode switch. The primary server will flush

its memory state to ensure that the latest data is up to date in the

126

Response Time Energy
Average 95th Consumption(KWH)

Prototype
Baseline 144ms 249ms 23.27
KnightShift 150ms 296ms 15.35
Improvement -4% -19% 34%

Simulation
Baseline 1.00 1.66 23.27
KnightShift 1.12 2.00 15.11
Improvement -12% -21% 35%

Error 8% 2% 1%

Table 2: Energy consumption and response time of Wikibench using
our KnightShift prototype and simulator.

disk. When this completes, KnightShiftd will send a sleep message

to the Knight and begin to power down. The KnightShiftd daemon

on the Knight system receives the sleep message from the primary

server, which is an indication that the Knight should begin processing

requests. The Knight will process low utilization requests until it

reaches a high utilization region. At this point, the daemon on the

Knight will send a Wakeup message (through wake-on-lan) to wake

up the primary server. When the primary server has booted up, the

daemon on the primary server gets ready to process requests. It will

send an awake message to the Knight. At this point, the Knight will

flush its data and send a sync message, indicating to the primary

server that it can resume processing requests.

7.1.2. Prototype Results To verify the correctness of KnightShift

and to evaluate KnightShift under realistic workloads, we cloned

Wikipedia and benchmarked it using real-world Wikipedia request

traces. Wikipedia consists of two main components, Mediawiki,

the software wiki package written in PHP, and a backend mySQL

database. For our clone, we used a publicly available database dump

from January 2008, containing over 7 million articles. We replayed

a single-day Wikipedia access trace [32], which follows a diurnal

sinusoidal pattern, using WikiBench [20], a Wikipedia based web

application benchmark. Detailed WikiBench workload utilization

profile for this case study is presented in [33].

The first three rows of data of Table 2 show the energy consumption

and the 95th percentile response time of our KnightShift prototype

compared to the baseline primary server. Service Level Agreements

(SLA), which sets per-request latency targets, are typically based on

95th percentile latency [25].

We define the baseline as a system where all requests are always

handled by the primary server. KnightShift is able to achieve 34% en-

ergy savings with only 19% impact on 95th percentile response time.

This latency impact is mainly due to the single-threaded performance

of the Knight rather than penalties due to switching between the

Knight and primary server (Note that the average response time only

increased by 4%). When running Wikibench only on the Atom-based

Knight, we experience 95th percentile response time of 323ms for

successfully completed requests. Thus, KnightShift’s 95th percentile
response time is bounded by that of the Knight. By using higher

single-threaded performing processors, such as Intel Core i3, we

should expect to experience response time bounded by the response

time of the Core i3.

7.2. Trace-based Evaluation

7.2.1. Trace-based Setup While a prototype implementation pro-

vides great confidence regarding the functional viability and realistic

improvement results, it also limits our ability to alter some of the crit-

ical design space parameters, such as Knight capability level, Knight

Utilization Δ Utililization
Server Type x̄ σ x̄ σ
aludra stu. timeshare 3.87 3.12 0.59 0.84
email email store 3.26 1.74 0.78 1.20
girtab stu. timeshare 0.83 2.42 0.73 1.94
msg-mmp email services 32.62 13.60 2.64 2.76
msg-mx email services 19.23 7.41 1.69 2.30
msg-store email store 11.05 5.88 2.39 2.72
nunki stu. timeshare 4.86 10.85 1.98 4.50
scf file server 5.47 4.19 1.15 1.65

Table 3: Datacenter trace workload characteristics

performance, and Knight transition time. In order to fully explore

these variables, we present KnightSim, a trace-driven KnightShift

system simulator validated against our prototype system. During

simulation runs, KnightSim replays the utilization traces collected

from our production datacenter on a modeled KnightShift system.

KnightShift is modeled as a G/G/k queue, where the arrival rate is

time-varying based on the utilization trace, the service rate is expo-

nential with a mean of 1 second, and varying k servers modeling the

capacity of the Knight and primary server. Because we do not have

measured response time from out datacenter traces, we arbitrarily set

the service rate to 1 second and report relative performance impact.

Datacenter Utilization Traces: In order to rigorously evaluate

KnightShift under various workload patterns, we collected minute-

granularity CPU and I/O utilization traces from our production dat-

acenter over 9 days. The datacenter serves multiple tasks, such as

e-mail store(email, msg-store1), e-mail services (msg-mmp, msg-

mx), file server (scf), and student timeshare servers (aludra, nunki,

girtab). Each task is assigned to a dedicated cluster, with the data

spread across multiple servers. Selected servers within a cluster

exhibit a behavior representative of each server within that cluster.

Table 3 shows the properties of each server workload along with its

corresponding utilization and burstiness characteristics. Some of our

servers (aludra, email, girtab, nunki, scf) run at less than 20% CPU

utilization for nearly 90% of their total operational time [33]. These

traces reaffirms prior studies that CPU utilization reaches neither

100% nor 0% for extended periods of time [6, 11, 27]. We also

collected a second-granularity traces for a subset of these servers and

found that there is a high correlation to minute-granularity. Thus,

we use the minute-granularity data for the rest of the paper. The

burstiness of the workload is characterized by σutilization, the standard

deviation of the workload’s utilization, and Δutilization, the change

in utilization from sample to sample. σutilization tells us how varied

the utilization of the server is, while the Δutilization tells us how

drastic the utilization changes from sample to sample. For example,

nunki has a wide operating utilization range with large variation in

utilization from sample to sample. More details of our datacenter

traces are presented in [33].

Modeling Knight capability: Knight capability is modeled by

varying the system capacity, k. For example, if we have a 10% Knight,

then k = 10 in our G/G/k queueing model when operating in Knight

mode. When the primary server becomes active then k = 100.

Scaling Power Consumption: To faithfully scale the power of

the Knight as its capability changes, we assume simply that the power

consumption of the CPU scales quadratically with performance. The

quadratic assumption is based on historical data [5] which showed

that power consumption increased in proportions to per f ormance1.7.

We assume this is a reasonable assumption due to the fact that even

if the Knight and primary server require similar infrastructure (such

as same size memory), the Knight can tradeoff performance by us-

127

ing low-power components (such as low-power mobile memory),

therefore, most components can scale.

Modeling Power: Our power model is based on our prototype

system to allow us to compare and validate KnightSim. Through on-

line instrumentation, we collect the utilization vs power data for both

the Knight and primary server. We use this utilization-power data in

our simulations; whenever a Knight is active at a given utilization

we use the power consumption data collected from our prototype

Knight. Similarly whenever the primary server is operating at a given

utilization, we use the power consumption collected from the primary

server in our prototype. It is also possible to generalize the power

model and use a linear power model validated in [11].

In order to capture the energy penalty of transitioning to/from

Knight, we conservatively model the transition power as a constant

power during the entire wakeup period equal to the peak transition

power. We determined empirically that the peak transition power for

the primary server is 167W.

Arrival Rate and Latency Estimation: Our datacenter traces

only have CPU and I/O utilization per second without individual

request information. By assuming a mean service time of 1 second

for each request, we can estimate a time-varying arrival rate through

our utilization trace. For example, 50% utilization would correspond

to an arrival rate of 50 requests per second. Through the simulated

queueing model, we can obtain a relative average and 95th percentile

latency of a KnightShift system compared to a baseline system.

Modeling Single-threaded Performance: We vary the queue-

ing model’s service time to model the performance difference of the

Knight and primary server. We cannot infer single-threaded perfor-

mance directly from processor frequency because single-threaded

performance is based on frequency and the underlying architecture.

Instead, we compare the 95th percentile latency of the Knight and

primary server and scale the service time accordingly. For example,

our primary server has tail latency of 249ms while our Knight has tail

latency of 323ms as shown in section 7.1.2. As we do not have direct

access to the datacenter servers, nor can we replicate the proprietary

applications on our Knight, we cannot collect response times for the

primary server and Knight for each individual workload. Therefore,

in our model, we assume that all workloads experience similar per-

formance slowdown due to the Knight similar to WikiBench, where

the service time is increased by a factor of 1.3 compared to baseline.

Simulator Validation: We validated our trace-based emulation

by collecting utilization traces from our WikiBench run and replayed

the utilization traces through the trace emulator. In addition,

we validated our power results against our prototype system by

running a CPU and I/O load generator to match the utilization of

the traces. Table 2 shows the results of our validation run. 95th

percentile latency and energy consumption improvement results from

KnightSim are all within 2% of our prototype system.

7.2.2. Sensitivity Analysis In this section we explore KnightShift’s

sensitivity to various parameters such as workload utilization patterns,

Knight capability, and transition times.

Sensitivity to Workload patterns: We used KnightSim to simu-

late KnightShift running a variety of workload patterns by driving

the queueing model with traffic patterns from Table 3. The energy

and latency impact are shown in Table 4. Recall that our Atom-based

Knight has a 95% response time that is 30% greater than the primary

server, thus we consider any latency above 30% to be attributable to

the KnightShift mechanism overhead. For workloads with low bursti-

Trace Energy Savings 95% Latency Impact
aludra 87.9% 40%
email 85.5% 37%
girtab 87.2% 49%
msg-mmp -6.7% 7%
msg-mx 7.2% 254%
msg-store 34.5% 53%
nunki 67.7% 5989%
scf 77.5% 46%
wikibench 35.1% 21%

Table 4: Energy savings and latency impact wrt Baseline of a 15%
Capable KnightShift system

ness (aludra, email, msg-mmp, wikibench), we experience relatively

low response time impact (<10%).

For moderately bursty workloads (girtab, msg-store, scf), we ex-

perience latency impact within 25% of the Atom-based Knight. For

these workloads, the majority of the latency impact occurs during

the transition from the Knight to primary server when the Knight

is handling requests that it cannot handle until the primary server

is ready. These bursty behaviors tend to be periodic, thus it would

be possible for KnightShift to learn day-to-day utilization patterns

and proactively switch to the primary server to handle these high-

utilization bursty periods, negating the high latency impact. This

topic is outside the scope of the paper and will be explored in future

work.

For very bursty workloads with high utilization (msg-mx, nunki),

we experience the most latency impact, as expected. KnightShift does

not handle scenarios where the workload switches quickly between

very low and high utilization. In these scenarios, the workload may

benefit from a higher capacity Knight.

Almost all workloads experience energy saving benefits from

KnightShift with the exception of workloads with mostly high uti-

lization periods. There are no benefits from using KnightShift for

workloads that operate mostly at utilization above the capability of

the Knight, hence such workloads don’t need KnighShift support to

begin with. For these cases, this may even lead to an energy penalty

(msg-mmp) due to running the Knight alongside a heavily utilized

primary server.

For most other workloads (aludra, email, girtab, scf, wikibench),

we can experience an average of 75% energy savings with tail latency

within 9% of the Atom-based server.

Sensitivity to Knight Capability: Figure 10 shows the effect

of Knight capability levels on energy savings and 95th percentile

response time. As Knight capability increases up to 50%, so does

energy savings due to more opportunity for the system to stay in

the Knight mode. Although the Knight uses more power at higher

capability levels, increased energy savings from time spent in the

Knight offset the Knight’s higher power.

As Knight capability increases, up to a limit of around 50%, the

primary server spends more time sleeping, resulting in latency con-

verging to the 95th percentile latency of the Knight. At low Knight ca-

pability, especially for capability less than 20%, KnightShift thrashes;

Knight cannot handle the tasks when switched to the Knight mode

and these tasks endure long latency while waiting for the primary

server to wakeup. Some workloads (msg-mx and nunki) experience

latency penalties beginning at higher capability. These workloads do

not experience latency impact at lower capabilities since KnightShift

rarely switches to the Knight mode and hence the primary server

handles nearly all the requests due to the high utilization demands.

But when the Knight capability increases the system occasionally

128

0

1

2

3

4

5

10% 20% 30% 40% 50%

 N
or

m
. 9

5%
 L

at
en

cy

Knight Capability

-20%
0%

20%
40%
60%
80%

100%

10% 20% 30% 40% 50%

E
ne

rg
y

S
av

in
gs

Knight Capability

aludra
email
girtab
msg-mmp
msg-mx
msg-store
nunki
scf
wikibench

Figure 10: Effect of Capability on Latency and Energy

0

1

2

3

4

5

0 10 20 30 40 50 60

N
or

m
. 9

5%
 L

at
en

cy

Wakeup Transition Time (s)

-20%
0%

20%
40%
60%
80%

100%

0 10 20 30 40 50 60

E
ne

rg
y

S
av

in
gs

Wakeup Transition Time (s)

aludra
email
girtab
msg-mmp
msg-mx
msg-store
nunki
scf
wikibench

Figure 11: Effect of Wakeup transition time

switches to the Knight mode and the Knight is quickly saturated.

Hence, the workload switches back to the primary server leading

to latency penalties. KnightShift is in fact unnecessary for these

workloads. Thus, for certain workloads with stringent QoS bounds

KnightShift may not be an ideal solution.

Sensitivity to Transition Time: For brevity, we only present

wakeup transition time. The effect of sleep transition time is similar.

Figure 11 shows the effect of wakeup transition time on energy

savings and 95th percentile response time. In general, as transition

time increases, we experience less energy savings due to the primary

server using power but not doing work, while the Knight is still

handling requests it potentially cannot handle. This is reflected in an

increase in 95th percentile latency as transition time increases.

Sensitivity to single-threaded performance: The tail latency of

KnightShift is determined by the Knight. If the SLAs demand very

tight latency slack (less than 20%), then it is best to use low-power

processors, such as Core i3, as Knights instead of extremely low

power Atom boards.

8. TCO

To study the effect of KnightShift on TCO of an entire datacenter,

we use a publicly available cost model [17]. The model assumes an

8MW power budget where facility and IT capital costs are amortized

over 15 and 3 years, respectively. The model breaks down TCO

into server, networking, power distribution and cooling, power, and

other infrastructure costs. We assume that KnightShift has no impact

on rack density, with power budget as the sole limiting factor. In

Table 5, we present our cost breakdown for our primary server and

our Knight. We broke down cost into memory, storage, processor,

and other system components. Other system components includes

motherboard, chipset, network interface, fans, and other on-board

components. A significant portion of the energy savings derive from

other system components. This is due to the fact that many of these

components are energy-disproportional, such as chipset, network

interface, fans, and sensors. For example, the power consumption

of motherboard components, such as chipset and network interface,

are mostly constant with utilization. But with KnightShift, when we

switch to the Knight, we could use a low-power mobile chipset (such

as for Atom) rather than a higher power chipset (such as for Xeon) to

save power. Performance is based on the SPECpower benchmark. An

integrated version of KnightShift is expected to consume less power

and have lower cost but we assume our prototype implementation of

KnightShift to present worst-case TCO.

Primary Server Knight
Cost Power(W) Cost Power(W)

Memory $248 40 $20 3
Storage $130 20 $70 18
Processor $1102 70
Other $350 75 $69 12
System Components

Total $1830 205 $159 33
No. Servers 37361 34483

Table 5: Cost breakdown of primary server and Knight based on pro-
totype KnightShift system. Other system components in-
clude motherboard, chipset, network interface, fans, and
other on-board components.

1.5

1.4

1.3

1.2

1.1

1
$0.02 $0.06 $0.10 $0.14

Perf/$ Impact
-5%-0%
0%-5%
5%-10%
10%-15%

Electricity Cost per kWh

P
U

E

Figure 12: TCO breakdown across PUE and Energy Cost

We present TCO on a monthly basis as Performance per TCO

Dollar spent (Perf/$), an important metric in TCO-conscious data-

centers [22]. These results make the worst case assumption that both

the Knight and primary server are always ON. Figure 12 shows the

effect of PUE and electricity cost per kWh on Perf/$. There are two

distinct regions, one where Perf/$ is improved, and one where Perf/$

is impacted. Due to the increased peak power usage of Knightshift

and the fixed power budget of the datacenter, we suffer a decrease

in total datacenter performance. Although there is a reduction in the

number of servers due to peak power constraint, we do not always

suffer any loss in Perf/$. In regions of higher electricity prices and

higher PUE, it is easier to recoup the cost of KnightShift hardware

due to more monetary savings per watt. For cases with high PUE

and electricity cost, we experience up to 14% improvement to Perf/$.

Only at very low electricity prices do we see a negative impact in

Perf/$, due to the hardware cost outweighing the potential in energy

savings. Note that even with PUE of 1, KnightShift can still provide

Perf/$ advantages with electricity prices above $0.07 per kWh.

Figure 13 shows the TCO breakdown across server and infrastruc-

ture for PUE of 1.45 and electricity cost of $0.07. Although the total

cost of servers is higher with KnightShift (68% total cost vs 60% in

the baseline), the power budget improvements (from 14% to 4%),

more than makes up for the difference, resulting in TCO savings of

11% monthly. Even by accounting for the lower number of servers,

Perf/$/month improved by 4% compared to baseline.

9. Conclusion

Energy proportionality of computer systems has been increasing over

the past few years. We introduce several metrics to analyze energy

proportionality which shed light into why proportionality has not im-

proved uniformly across all utilization levels. We show that servers

exhibit significant proportionality gap at low utilizations. With the

pervasiveness of multicores, servers in future will be rarely idle and

hence energy saving techniques must now tackle the proportionality

gap at low server utilization levels. We introduce KnightShift, a

129

���

��
����

����

���

(a) baseline

� !�

	!�

�!�

�!�
�!�

���"����

��#���	
���

������
�#�
�������

�
����
���
�����

�#����

(b) knightshift

Figure 13: TCO breakdown across servers and infrastructure

server-level heterogeneous architecture that fronts a primary server

with a low-power compute node. By operating KnightShift at two

levels of efficiency, we convert any server to exhibit sublinear energy

proportionality, drastically improving energy proportionality. In our

prototype KnightShift implementation with a 15% capable Atom-

based Knight, we achieve a 2x improvement in energy proportionality

(from 24% to 48%) due to improvements to both dynamic range and

proportionality linearity. We demonstrated energy savings of 35%

with latency bounded by the latency of the Knight using a real-world

Wikipedia workload. In addition, we rigorously evaluated our proto-

type using various production datacenter traces and experience up to

75% energy savings with tail latency increase of about 9%. Through

publicly available cost models, we also showed that KnightShift can

improve performance per TCO dollar spent up to 14%. Our work

hopes to motive future work in system-level active low-power modes

that exploits low-utilization periods.

Acknowledgement

We would like to thank the anonymous reviewers for their valuable

comments. We also thank Sabyasachi Ghosh and Mark Redekopp

for their early contributions which inspired this work. This work

was supported by DARPA-PERFECT-HR0011-12-2-0020 and NSF

grants NSF-1219186, NSF-CAREER-0954211, NSF-0834798.

References

[1] Y. Agarwal et al., “Somniloquy: augmenting network interfaces to
reduce PC energy usage,” in NSDI’09: Proceedings of the 6th USENIX
symposium on Networked systems design and implementation, Apr.
2009.

[2] H. Amur and K. Schwan, “Achieving power-efficiency in clusters with-
out distributed file system complexity,” in ISCA’10: Proceedings of the
2010 International Conference conference on Computer Architecture,
Jun. 2010, pp. 222–232.

[3] V. Anagnostopoulou et al., “Energy conservation in datacenters through
cluster memory management and barely-alive memory servers.” in
WEED ’09: Workshop on Energy-Efficient Design, 2009.

[4] D. G. Andersen et al., “FAWN: a fast array of wimpy nodes,” in SOSP
’09: Proceedings of the 22nd Symposium on Operating Systems Princi-
ples, Oct. 2009.

[5] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating Amdahl’s law
through EPI throttling,” in ISCA’05: Proceedings of the 32nd interna-
tional symposium on Computer Architecture, 2005, pp. 298–309.

[6] L. A. Barroso and U. Holzle, “The case for energy-proportional comput-
ing,” Computer, vol. 40, no. 12, pp. 33–37, dec 2007.

[7] J. S. Chase et al., “Managing energy and server resources in hosting
centers,” in SOSP ’01: Proceedings of the 18th Symposium on Operating
Systems Principles, Dec. 2001.

[8] G. Chen et al., “Energy-aware server provisioning and load dispatching
for connection-intensive internet services,” in NSDI’08: Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Imple-
mentation, Apr. 2008.

[9] B.-G. Chun et al., “An energy case for hybrid datacenters,” SIGOPS
Operating Systems Review, vol. 44, no. 1, Mar. 2010.

[10] Q. Deng et al., “MemScale: active low-power modes for main memory,”
in ASPLOS ’11: Proceedings of the 16th International Conference
on Architectural support for programming languages and operating
systems, Mar. 2011.

[11] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for
a warehouse-sized computer,” in ISCA’07: Proceedings of the 34th
international symposium on Computer architecture, 2007, pp. 13–23.

[12] M. Ferdman et al., “Clearing the clouds: a study of emerging scale-out
workloads on modern hardware,” in ASPLOS ’12: Proceedings of the
17th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Mar. 2012, pp. 37–48.

[13] S. Ghiasi, “Aide de camp: asymmetric multi-core design for dynamic
thermal management,” Ph.D. dissertation, 2004.

[14] E. Grochowski et al., “Best of both latency and throughput,” in Pro-
ceedings of International Conference on Computer Design, 2004, pp.
236–243.

[15] U. Hölzle, “Brawny cores still beat wimpy cores, most of the time.”
IEEE Micro, 2010.

[16] http://httpd.apache.org/docs/2.0/programs/ab.html, “ab - apache http
server benchmarking tool.”

[17] http://perspectives.mvdirona.com, “Cost of power in large-scale data
centers.”

[18] http://www.cpubenchmark.net/, “Passmark cpu benchmark.”
[19] http://www.fit-pc.com/web/fit pc/, “fit-pc2.”
[20] http://www.wikibench.eu, “Wikibench.”
[21] R. Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures:

The Potential for Processor Power Reduction,” in MICRO 36: Proceed-
ings of the 36th International Symposium on Microarchitecture, Dec.
2003, pp. 81–92.

[22] P. Lotfi-Kamran et al., “Scale-out processors,” in ISCA ’12: Proceedings
of the 39th International Symposium on Computer Architecture, Jun.
2012, pp. 500–511.

[23] K. T. Malladi et al., “Towards energy-proportional datacenter memory
with mobile DRAM,” in ISCA ’12: Proceedings of the 39th International
Symposium on Computer Architecture, Jun. 2012, pp. 37–48.

[24] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: eliminating
server idle power,” in ASPLOS ’09: Proceeding of the 14th International
Conference on Architectural support for programming languages and
operating systems, Feb. 2009, pp. 205–216.

[25] D. Meisner et al., “Power management of online data-intensive ser-
vices,” in ISCA’11: Proceeding of the 38th international symposium on
Computer architecture, Jun. 2011, pp. 319–330.

[26] D. Meisner and T. F. Wenisch, “DreamWeaver: architectural support
for deep sleep,” in ASPLOS ’12: Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems, Mar. 2012, pp. 313–324.

[27] P. Ranganathan et al., “Ensemble-level Power Management for Dense
Blade Servers,” in ISCA ’06: Proceedings of the 33rd international
symposium on Computer Architecture, Jun. 2006, pp. 66–77.

[28] V. J. Reddi et al., “Web search using mobile cores: quantifying and
mitigating the price of efficiency,” in ISCA’10: Proceedings of the
37th international symposium on Computer architecture, Jun. 2010, pp.
314–325.

[29] F. Ryckbosch, S. Polfliet, and L. Eeckhout, “Trends in Server Energy
Proportionality,” Computer, vol. 44, no. 9, pp. 69–72, 2011.

[30] G. Semeraro et al., “Dynamic frequency and voltage control for a multi-
ple clock domain microarchitecture,” in MICRO 35: Proceedings of the
35th international symposium on Microarchitecture, Nov. 2002.

[31] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the
energy efficiency of a database server,” in SIGMOD ’10: Proceedings of
the 2010 International Conference on Management of Data, Jun. 2010.

[32] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks: The International Jour-
nal of Computer and Telecommunications Networking, vol. 53, no. 11,
Jul. 2009.

[33] D. Wong and M. Annavaram, “Evaluating a prototype knightshift-
enabled server,” in WEED ’12: Workshop on Energy-Efficient Design,
2012.

[34] D. Wong and M. Annavaram, “Scalable System-level Active Low-Power
Mode with Bounded Latency,” University of Southern California, Tech.
Rep. CENG-2012-5, 2012.

[35] www.spec.org/power_ssj2008/, “Spec power_ssj2008.”

130

Rethinking DRAM Power Modes for Energy Proportionality

Krishna T. Malladi† Ian Shaeffer‡ Liji Gopalakrishnan‡

David Lo† Benjamin C. Lee§ Mark Horowitz†

Stanford University † Rambus Inc‡ Duke University§

{ktej, davidlo, horowitz}@stanford.edu †, {ians, lijig}@rambus.com‡, {benjamin.c.lee}@duke.edu

Abstract
We re-think DRAM power modes by modeling and characterizing
inter-arrival times for memory requests to determine the properties
an ideal power mode should have. This analysis indicates that even
the most responsive of today’s power modes are rarely used. Up
to 88% of memory is spent idling in an active mode. This analysis
indicates that power modes must have much shorter exit latencies
than they have today. Wake-up latencies less than 100ns are ideal.

To address these challenges, we present MemBlaze, an architecture
with DRAMs and links that are capable of fast powerup, which
provides more opportunities to powerdown memories. By eliminating
DRAM chip timing circuitry, a key contributor to powerup latency,
and by shifting timing responsibility to the controller, MemBlaze
permits data transfers immediately after wake-up and reduces energy
per transfer by 50% with no performance impact.

Alternatively, in scenarios where DRAM timing circuitry must re-
main, we explore mechanisms to accommodate DRAMs that powerup
with less than perfect interface timing. We present MemCorrect
which detects timing errors while MemDrowsy lowers transfer rates
and widens sampling margins to accommodate timing uncertainty
in situations where the interface circuitry must recalibrate after exit
from powerdown state. Combined, MemCorrect and MemDrowsy
still reduce energy per transfer by 50% but incur modest (e.g., 10%)
performance penalties.

1. Introduction
In an era of big data and datacenter computing, memory efficiency is

imperative. More than 25% of datacenter energy can be attributed to

memory and this fraction will only grow with demands for memory

capacity [13, 24, 28].

Recent efforts to improve efficiency study memory that is active

and transferring data. The resulting architectures focus on reducing

energy per transfer. By tailoring DRAM page width, memory core

energy is made proportional to the amount of data requested [2, 37,

41]. However, none of these architectures address a different source

of inefficiency: idle memories kept in an active power mode.

One approach to address this problem is to use mobile-class

DRAM [27] which have much lower active idle power. But using

LPDDR2 requires a static decision to trade bandwidth for efficiency.

Alternatively, we could use dynamic powerdown modes but con-

trollers have difficulty invoking them. Transfers are separated by idle

periods but they are often too short to justify powerdown.

Indeed, witness the sophistication and complexity of efforts in the

compiler, operating system, and architecture to consolidate memory

activity to a small number of active ranks [14, 15, 23]. By attempting

to lengthen idle periods in other ranks, these approaches acknowledge

the unwieldy nature of today’s power modes and build systems to

accommodate them.

In this paper, we present a fundamentally different approach. In-

stead of shaping memory activity to produce idleness suited to exist-

ing power modes, we re-think the power modes themselves. In an

application-driven approach, we model and characterize inter-arrival

times for memory requests to determine the properties an ideal power

mode should have. This analysis indicates that power modes must

have much shorter exit latencies than they have today.

To architect power modes with fast exits, we identify the key

contributor to powerup latency: DRAM timing circuitry. The most

efficient modes turn off delay-locked loops (DLLs) and clocks. But

turning them on again requires expensive recalibration (e.g., 700+ns).

Few applications have idle periods long enough to justify this latency.

Thus, existing modes offer an unattractive energy-delay trade-off.

We improve this trade-off with a new I/O architecture that shifts

timing circuitry from DRAMs to the controller while preserving

high bandwidth. In this architecture, the first transfer after wake-up

completes in a few nanoseconds. Such responsiveness is orders of

magnitude faster than the exit latency of today’s most efficient power

mode, which must recalibrate timing after wake-up. We make the

following contributions:

• Understanding Power Mode Inefficiency. Even the most respon-

sive of today’s power modes are rarely used. Up to 88% of memory

time is spent idling in an active mode. Addressing limitations in

existing DRAMs could improve energy efficiency by 40-50%.

• Understanding Memory Activity. We study memory activity and

its implications for power mode design. A probabilistic analysis

establishes a clear path from fast wake-up to attractive energy-

delay trade-offs. A workload characterization indicates wake-up

in ≤100ns is ideal.

• Rethinking Power Modes. We present MemBlaze, a DRAM

I/O architecture that is capable of fast wake-up while ensuring

high bandwidth. Alternatively, we propose two new mechanisms:

MemCorrect, which detects timing errors, and MemDrowsy, which

lowers transfer rates to widen timing margins. These architectures

allow memory transfers immediately after wake-up.

• Saving Energy. MemBlaze reduces energy per transfer by up

to 50% with negligible performance penalty since data transfers

begin immediately after wake-up. If timing is less than perfect,

a combination of MemCorrect and MemDrowsy provide similar

energy savings with a 10% performance penalty incurred to correct

timing errors.

2. Background and Motivation

Today’s DRAM interfaces provide performance but dissipate high

idle power. Moreover, these interfaces include power modes which

are disconnected from architectural requirements. To address these

challenges, we architect new DRAM interfaces for fast transitions

between power modes.

2.1. DRAM Systems

Each DRAM device contains two-dimensional arrays of memory

cells. Multiple devices comprise a rank and multiple ranks share a

data bus. Figure 1 illustrates a memory system with four ranks that

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.21

131

Figure 1: DDR3 DRAM Memory System. Figure 2: DDR3 DRAM Timing.

share a x64 channel. The number of channels and the interface’s data

rate determine system bandwidth.

Each channel is attached to a memory controller, which is inte-

grated on the processor die. To activate a row, the controller issues

a row access strobe (RAS) to enable word lines and buffers a row’s

data. To read and write, a column access strobe (CAS) transfers

buffered data to IO interfaces. Prefetching 8 bits across a 64b wide

channel produces 64B to fill a processor cache line.

2.2. DRAM Interfaces
The controller and DRAMs are connected by CA and DQ buses

for control and data signals. To synchronize signals, the controller

generates and forwards a clock (CK) to the DRAMs. Controller

circuitry aligns this clock with command and enable signals. Because

these signals have lower bandwidth and experience the same loading

conditions and discontinuities en route to DRAMs, skew is not an

issue. Thus, commands and writes are synchronized.

However, synchronizing reads is more difficult. During a read,

data signals are generated by DRAMs (DQ) while clock signals

are generated by the controller (CK). Originating on different dies,

these signals are subject to different loading conditions and variations

in process, voltage, and temperature. Under these conditions, the

controller has difficulty using CK edges to sample DQ for arriving

read data, especially at high frequencies and narrow data windows.

To facilitate read synchronization, DRAMs explicitly communicate

data timing to the controller with a data strobe signal (DQS) that

is aligned with the clock (CK) and bus data (DQ). The controller

samples DQ on DQS edges as illustrated in Figure 2. Data is available

some latency after receiving a read command (RD on CA produces

Q on DQ after tRL).

DQS edges and data windows must align with the controller-

generated clock. DRAMs ensure alignment in two ways. First,

during initialization, DQS and CK are calibrated to eliminate any

skew due to wire length while the controller specifies worst-case

tolerance for timing differences (tDQSCK). Second, during opera-

tion, delay-locked loops (DLLs) dynamically adjust the DRAM clock

delays to compensate for voltage and temperature variations and keep

the position of the DQS at the controller constant to reduce timing

uncertainty when sampling data at high frequencies.

2.3. DRAM Power Mode Limitations
Consider two scenarios in which DLLs affect efficiency. In the first,

the DRAM is idling in an active power mode. In such an ’active-idle’

Power Mode DIMM Idle Exit Latency Mechanism
Power (W) (ns)

Active idle 5.36 0 none

Precharge-idle 4.66 14 pages closed

Active powerdown 3.28 6 clock, I/O buffers,
decode logic off

Fast exit powerdown 2.79 19.75 active powerdown
+ pages closed

Slow exit powerdown 1.60 24 fast exit powerdown
+ DLL frozen

Self Refresh 0.92 768 fast exit powerdown
+ DLL, CK off

Self Refresh 0.56 6700 self refresh
+ registers off + register PLLs off

Disabled 0 disk latency DIMMs off

Table 1: Power Modes for a 4GB DDR3-x4-1333 RDIMM [5, 30]

state, the DLL and clocking power are a large fraction of the total

power. For example, DDR3 active-idle current is 2× that of LPDDR2

and much of this difference is attributed to the interface [27].

In a second scenario, which we call ’idle-idle’, the DRAM is in

a powerdown mode. More efficient modes have higher powerup

latencies (e.g., self-refresh in Table 1). While this state seems energy-

efficient, the next reference pays the cost as the DRAM spends

tDLLK=512 active memory cycles (768ns) powering up the inter-

face. This is a lot of energy. In addition, applications slow down, as

indicated in Figure 3(a). Thus, existing DRAM interfaces impose

unattractive performance and power tradeoffs.

Static mechanisms to reduce interface power fare no better. We

can configure the memory mode registers (MR) in the BIOS [30],

eliminating DLLs but this imposes performance penalties. First,

the peak data rate is halved as channel frequency must be lowered

to ensure signal integrity. Furthermore, without DLLs, timing is

less certain and controllers must assume worst-case margins (i.e.,

tDQSCK=10ns [30]). Conservative timing increases critical word

latency, affecting application performance as shown in (Figure 3(b)).

Due to these punishing trade-offs, memory controllers invoke

power modes conservatively. Modern controllers recommend a pow-

erdown threshold no lower than 15 idle memory cycles [17]. Figure

4(a) shows the percent of time the DRAMs stay in each power state

for this aggressive threshold (A), a moderate (M) threshold 10×
larger, and a conservative (C) threshold 100 × larger. With such

thresholds, up to 88% of memory time is in active-idle.

Potential for Efficiency. Suppose we were to address limitations

in today’s interfaces and power modes so that the most efficient

132

Figure 3: Performance sensitivity to (a) dynamic power down modes
at different exit latencies and (b) static BIOS programming
to disable DLLs.

Figure 4: (a) Memory time breakdown with aggressive (A), moderate
(M), and conservative (C) thresholds; (b) Potential efficiency
from new power modes.

Figure 5: Probabilistic energy-delay trade-offs when powerup latency is exposed. E-D plots with different lines for different (a) memory request
inter-arrival times and (b) varying powerup times. Each line’s points sweep powerdown fraction f .

modes could be exploited. We would enter these modes aggressively

(A) and leave them instantaneously upon the next access. Efficiency

could improve by 40-50% (Figure 4(b)). Moreover, performance

penalties would be negligible.

In this paper, we re-think energy-delay trade-offs with new DRAM

architectures. We consider a high-performance system that requires

sustained bandwidth; we cannot simply eliminate DLLs and operate

at lower data rates. We present architectures that reduce power mode

exit latencies and interface power by replacing DLLs with another

synchronization mechanism or using existing DLLs differently.

3. Understanding Memory Activity

The precise benefits of fast exit power modes depend on the interac-

tion between memory activity and the exit latency, which we study in

two ways. First, we probabilistically model memory requests in order

to understand fundamental energy-delay trends. Then, we precisely

capture memory request inter-arrival times from emerging big data

applications.

3.1. Probabilistic Energy-Delay Analysis

We model a stream of memory requests as a Poisson process. This

analysis assumes that the time between requests follow an exponential

distribution and these inter-arrival times are statistically independent,

which roughly match our data. Histograms for memory inter-arrival

times resemble exponential probability densities and the autocorrela-

tion between inter-arrival times is nearly zero.

Let Ti be an exponentially distributed random variable for the idle

time between two memory requests. The exponential distribution

is parameterized by 1/Ta where Ta is the average inter-arrival time.

Let Pd and Pu denote power dissipated in powerdown and powerup

modes. The memory powers-down if idleness exceeds a threshold Tt .

And it incurs a latency Tu when powering-up again.

Power-down is invoked with probability f = P(Ti > Tt) = e−Tt/Ta .

In this scenario, DRAM dissipates Pd for Ti−Tt time while powered-

down and dissipates Pu for (Tt +Tu) time while powered-up. Ti is the

only random variable; E[Ti] = Ta.

E[E] = f×E [Pd(Ti−Tt)+PuTt +PuTu]+ (1− f)×E [PuTi]

= f× [Pd(Ta−Tt)+PuTt +PuTu]+ (1− f)× [PuTa]

= Pd [f (Ta−Tt)]+Pu [f (Tt +Tu)+(1− f)Ta]

With this probabilistic formulation, the expectation for memory

energy is given by E[E]. And the expected impact on delay is

E[ΔD] = f Tu, which conservatively assumes that powerup latency is

exposed on the critical path.

Clearly, we would prefer to frequently use an efficient powerdown

mode (i.e., large f and Pd << Pu). Energy falls as inter-arrival

time increases beyond the threshold. Conversely, energy increases if

powerup latency is large.

Energy-Delay Trade-offs. The relationship between E[E] and

E[ΔD] depends on average inter-arrival times (Ta), powerdown thresh-

old (Tt), and powerup latency (Tu).

First, consider various inter-arrival times and powerdown thresh-

olds. Each curve in Figure 5(a) plots trade-offs for a particular

inter-arrival time Ta at Tu = 1000ns and points along a curve repre-

sent varying thresholds Tt . Short inter-arrival times (Ta = 1000ns)

mean that the added energy costs to power back up are expensive

than the savings by invoking powerdown. Thus both the energy and

133

Figure 6: Activity graphs for (a-b) memcached at value sizes of 100B and 10KB. (c) SPECjbb2005 and YCSB.

delay increase with the powerdown fraction f . As inter-arrival times

increase (Ta→2000ns), the energy saving in powerdown offsets the

overhead of wakeups.

But by implementing different thresholds for powerdown, mem-

ory controllers can explore steep and interesting trade-offs between

energy and delay. Each curve in Figure 5(b) plots trade-offs for a par-

ticular powerup latency and clearly shows the cost of slow wakeups.

At one end of the spectrum, zero latency powerup reduces energy

with no delay penalty (Tu = 0ns). Waiting to go to powerdown only

costs more energy, as the energies are higher for low values of f . In

contrast, today’s approach to disabling DLLs and clocks is expensive,

producing a horizontal trend line (Tu = 1000ns).

Ideally, power modes reduce energy with little delay impact. This

scenario would manifest as instantaneous powerup and produce verti-

cal lines in Figure 5(b). In practice, today’s efficient power modes re-

quire nearly 1000ns to powerup, producing nearly horizontal energy-

delay trends in these figures. To close the gap between the ideal and

practice, we re-think memory architecture to reduce powerup latency

and accommodate practical inter-arrival statistics in real applications.

3.2. Characterizing Emerging Applications

The nature of computing has changed significantly in the last decade

[11] and many emerging datacenter applications have memory behav-

ior that is not well understood. While a prior study quantifies memory

idleness in websearch [29], it does so for coarse, 100ms, time peri-

ods. At this granularity, which is many orders of magnitude larger

than device access times (e.g., 100ns), understanding application

requirements for power modes is difficult.

To study memory behavior at fine granularity, we use a custom

simulation infrastructure with x86 instrumentation and a built-in

scheduler [33] to benchmark a spectrum of real applications. From

the spectrum of emerging data driven workloads, we characterize

three representative workloads: memcached for distributed memory

caching, Yahoo! Cloud Serving Benchmark (YCSB) for OLTP and

data serving, and SPECjbb2005 for conventional enterprise comput-

ing.

Applications. Distributed memory caching is used by many pop-

ular websites (e.g., Facebook and Twitter) to improve query times

while OLTP applications are popular in cloud computing. On the

other hand, Java-based middleware servers are still popular in many

enterprises.

Memcached is a popular open source distributed key-value store

that caches data in DRAM for fast retrieval [32]. As the cache fills,

evictions occur according to an LRU policy. Memcached hashes keys

to distribute load and data. Memcached activity is a function of data

popularity and query rate. We model popularity with a zipf distribu-

tion and use a large α parameter to create a long tail. We model query

inter-arrival times with an exponential distribution. Such models are

consistent with observed memcached queries in datacenters [34].

Yahoo! Cloud Serving Benchmark (YCSB) is a benchmark for

online transaction processing that interfaces to cloud databases, such

as Cassandra, BigTable, and HBase [4]. To characterize YCSB, we

first populate a 6.2GB database. Next, we use the YCSB client

model to generate a zipf distribution with operations that have a 95:5

read to write ratio, which is representative of modern, read-heavy

applications.

SPEC Java Server Benchmark emulates a three-tier client/server

system with an emphasis on the middle tier. SPECjbb performs work

that is representative of business logic and object manipulation to

simulate the middle tier. It exercises the Java Virtual Machine, Just-

In-Time compiler, garbage collection, threads and some aspects of

the OS [35].

Memory Activity. To help understand how applications will in-

teract with low power modes, we use rank-level activity graphs to

visualize memory behavior [29]. These graphs characterize bus activ-

ity using windows that define a period of time. We sweep a window

over the timeline of application execution and count the number of

completely idle windows for varying different window sizes. If ap-

plicable, this measurement is also taken across various application

loads, which is measured in queries per second (QPS) relative to the

system’s peak load (denoted as %QPS).

At small value sizes (100B), memcached is CPU-bound as the

CPU must cope with many small, incoming packets. At large value

sizes (10KB), memcached saturates the network connection. With

limited network bandwidth (e.g., 10Gb/s), memcached rarely stresses

memory bandwidth (e.g., 80Gb/s).

Although memcached does not saturate memory bandwidth, we

must determine whether the memory channel has uniformly low

utilization or has bursty traffic with many periods of idleness. The

former would make power mode design difficult but the latter would

benefit from many existing DRAM power modes, and even full-

system power modes.

Figure 6(a-b) shows rank-level activity graphs for memcached

configured at 100B and 10KB. A large percentage of short windows

(e.g., 100ns) are idle. At typical loads between 10-50%, 95% of the

windows encounter completely idle memory. Moreover, these idle

periods are long. Even as we increase window size towards microsec-

ond granularities, 80-90% of these windows encounter idle memory.

However, idleness is difficult to find as application load increases to

90-100% or when windows widen beyond μs granularities.

While memcached exhibits such idleness, conventional datacenter

workloads in data serving and online-transaction processing have

even fewer opportunities to exploit existing power-modes when run

134

at 100% QPS. Figure 6(c) illustrates few idle windows for SPECjbb

and YCSB even at small windows. At lower utilizations that are

typical in datacenters [29], the idle fractions could be higher but the

opportunities are scarce beyond 1μs.

Clearly, with idle windows at the order of 1μs or less for emerging

workloads, power modes that can transition in the order of 100ns are

necessary. However, today’s modes are insufficient to take advantage

of the memory idle times in many workloads like memcached. They

either have wakeup times of a few ns with consequently small energy

savings, or they require nearly a μs to wakeup. Such power modes

are not applicable to these applications and new modes are needed.

4. Architecting Effective Power Modes
Probabilistic analysis and workload characterization highlight the

importance of fast wake-up for memory efficiency. We review high-

speed interfaces to explain today’s long wake-up times. Then, we

propose several architectures with much shorter idle to active tran-

sitions but differ in how conservatively they enforce timing after

wake-up.

4.1. High-Speed Interfaces

A reliable, high-speed interface performs two critical tasks. First, the

interface converts a sequence of bits into a voltage waveform. Then,

it drives that waveform on a wire with enough margin so that the

receiver can distinguish between the voltages that represent ones and

zeros. For high data rates, we engineer the wires as transmission lines

and use termination to avoid reflections. Even so, loss in the wires

and process variations cause high and low voltage levels to become

distorted and mixed when they arrive at the receiver. Equalization

cleans up the waveforms.

But getting the signal to the receiver is only half the battle. The

other half is knowing when to sample the signal to get the correct

value of the bit. At a data rate of 1.6Gb/s, the time window for each

bit is only 625ps, and this time includes transitions from the previous

bit and to the next bit. To build a reliable link, the interface needs to

sample the bit in the middle of the stable region.

Analog circuits drive and receive the bits, and align the clock so

that bits are sampled at the right time. These circuits use voltage and

current references for their operation, and often use feedback to learn

the right corrections (e.g. sample time or equalization) that optimize

link operation.

Because they are turned off during powerdown, these circuits must

re-learn their connection settings before the link can be operated

again. Worse, this re-learning cannot begin until voltage and current

references stabilize after powerup. Because analog circuits have

lower bandwidth than digital ones, yet demand precision, μs settling

latencies are typical.

One of the critical circuits in high-speed links is a delay locked

loop (DLL), which uses feedback to align the phase (timing) of two

clocks. In links, DLLs align the sample clock to data, or align data

and strobes to the system clock. DLLs compensate for changes in

timing that would otherwise occur from variations in process, voltage,

and temperature (PVT). Since voltage and temperature are dynamic,

DLLs continue to run after initial calibration to track and remove

their effect [3, 21].

Interfaces that rapidly transition from idle to active mode apply

several strategies, such as digitally storing “analog” feedback state,

using simpler analog circuits that power off quickly, and designing

bias networks that power off and on quickly. Applying these strategies

allows DRAMs to wake-up quickly.

4.2. Fast Wake-up DRAMs

Existing link interfaces are generally symmetric: circuitry on both

sides of the link need to be the same. But, symmetry is not optimal

in a memory system that has a large number of DRAMs but usu-

ally a small number of controllers. Furthermore, because DRAM

process technology is optimized for density, the speed of its tran-

sistors is much worse than that of transistors in a comparable logic

process. Thus, we would rather shift link circuitry from DRAMs to

the controller.

MemBlaze DRAMs. We present a post-DDR4 DRAM archi-

tecture with an asymmetric link interface that removes clock delay

circuitry from DRAMs and places them on the memory controller. Be-

cause such circuitry determines wake-up latency in today’s DRAMs,

the system is capable of much faster power mode transitions. The

controller and memory interfaces, which we have implemented in

silicon, are shown in Figure 7.

Synchronization. In this architecture, DRAMs no longer have

DLLs for timing adjustment. For arriving commands and writes,

DRAMs simply sample inputs at the rising edge of link clocks, CK

and DCK received from the controller. But synchronizing reads (i.e.,

data from DRAM to controller) requires special treatment. DRAMs

no longer send data strobes along with data, which raises two new

issues. The first is how the controller can learn the correct timing,

and the second is that this timing may be different for each rank.

To address these challenges, the controller uses a clock and data

recovery (CDR) circuit to update its clock, and thus update its sam-

ple points for data reads, based on a timing reference signal (TRS)

received from DRAMs. The DRAMs time-multiplex the TRS on a

pin used for error detection and correction (EDC). For every read

and write, DRAMs calculate and transmit an 8-bit EDC to the con-

troller. The remainder of the 32-bit EDC burst transmits DRAM

clock information.

Thus, during normal rank operation, the EDC pin transmits correc-

tion codes interleaved with a toggling pattern that guarantees some

minimum edge density. The controller tracks timing variations for

each DRAM in a rank as long as that rank sees activity and commu-

nicates edges across the EDC pin. Activity on one rank provides no

timing for other ranks.

Accommodating Idle Ranks. With regular accesses to a rank, the

controller tracks rank timing. But gaps in activity produce gaps in

phase updates. Because our interfaces rely on these updates, DRAMs

specify the maximum amount between rank accesses. Ranks with

longer idle periods incur a recalibration latency before further data

transfers.

Alternatively, data-less pings can maintain timing when data is not

needed from the memory core but toggling patterns are needed on

the EDC pin for phase updates. The ping furnishes a toggling pattern

without page activation or column access strobe. In this scenario, the

system uses EDC signals for timing and ignores DQ signals.

Recalibration or data-less pings are small overheads that are rarely

incurred. But when pings do occur, they coincide with periods of low

channel utilization and thus do not interfere with normal traffic.

Fast Wake-up Protocol. Because MemBlaze DRAMs do not

have DLLs, the critical latency during wake-up shifts from clock

delay circuitry to the datapath. MemBlaze defines an extra control

pin (DCKE) to enable the data clock domain, quickly powering the

datapath, data clock buffering, and data I/O circuitry (shaded blocks

in Figure 7). DCKE observes timing constraints to avoid a latency

penalty.

135

Figure 7: Proposed architecture introduces clock data recovery (CDR) circuitry to the controller, which uses the timing reference signal (TRS)
transmitted across error detection and correction (EDC) pins.

Figure 8: Timing diagram illustrates separate power management for command (CA) and data (DQ) paths.

136

Figure 9: MemCorrect Error Detection with Digitally Controlled Delay
Lines (DCDL) to sample CKext using delayed versions of
nominal CKint .

Figure 8 illustrates operation in a two-rank MemBlaze system.

Initially, data and clock enables (DCKE, CKE) for both ranks are

de-asserted, which powers-down command and data blocks. At cycle

1, CKE0 for rank 0 is asserted and the command block powers-up;

the data block remains powered-down. Command receivers (CA) are

awake in time to receive a read for rank 0. At cycle 3, DCKE0 is

asserted and the data block powers-up to transmit read data. Exit

latency for command and data blocks are tXP and tXPD.

Similarly, the second rank exits command standby at cycle 10

and exits data standby at cycle 12. Reads arrive at cycles 13 and

17, satisfying constraints on consecutive reads, which is denoted by

tCC. Power-up does not affect read latency as long as DCKE is as-

serted early enough (i.e., tXPD before first read data). By separating

command and data block enable signals, the DQ interface circuitry

can remain powered-down even as precharge and refresh commands

arrive.

Hiding Datapath Wake-up Latency. By default, datapath wake-

up requires approximately 10ns. MemBlaze defines the DCKE pin

to enable the data block early enough to avoid affecting latency and

completely hide it under column access (CAS). Thus, we can quickly

power the datapath only when needed and separate the powerups for

command and data blocks. For fast DRAM interface wake-up, Mem-

Blaze exploits a number of circuit innovations including common-

mode logic (CML) clock trees and fast-bias circuitry to powerup

links quickly. Further, if we leverage more insights from a recently

implemented serial link interface that transitions from idle to active

well under 10ns [40], we could simply use read or write commands

to trigger datapath powerup eliminating the need for DCKE.

Timing, Datarate and Power. Both the MemBlaze Memory Con-

troller and DRAM PHYs were taped out in a 28nm process and

the chip was rigorously tested for functionality, correctness and

the proposed fast wakeup speed in an industry-strength, serial-links

laboratory[19]. In lieu of a DRAM core, the test chip pairs the new

PHY blocks with test pattern generation and checking logic for emu-

lating memory read and write transactions. The laboratory operation

of the timing is demonstrated in Appendix §A.

The transmit eye diagram at the DQ pins had clear eyes with

sufficient timing and voltage margins at 6.4Gbps. The architecture

also reduces power in both active-standby and precharge-standby

power modes. Compared to today’s power modes, this provides the

performance of fast-exit powerdown with the DLL-off efficiency.

Specifically, this matches deep power down mode’s power at a

reduced exit latency of 10ns making it useful for many different

applications including emerging ones that have short idle periods.

The power difference between the active idle mode and the most

efficient powerdown mode is attributed to DLLs, clock tree, and

Figure 10: MemDrowsy Architecture.

command pins. By powering down these components, MemBlaze

lowers power in all other states except during active reads/writes.

Although standby efficiency improves, dynamic burst power is

largely unchanged. During bursts, DLL power savings are offset

by new power costs in current-mode clock circuitry and injection

locked-oscillator power costs.

4.3. Imperfect Wake-up Timing

MemBlaze provides an ideal solution and perfect timing upon power-

mode wake-up. Alternatively, we propose two new mechanisms in

which DRAMs retain their DLLs and turn them on/off very aggres-

sively. Systems that would prefer not to modify the device interface

(as MemBlaze does) and can tolerate modest performance degra-

dation will benefit from such techniques. But such DRAMs face

synchronization challenges, and we propose mechanisms to mitigate

or avoid timing errors. Without changing the controller-device link

interface and operating speed these systems retain the DDRx memory

links. However, they greatly reduce DRAM idle power by simply

changing the sampling rate/decision inside the controller using a few

flops.

Reactive Memory Interfaces (MemCorrect). For interfaces that

track timing less precisely, we introduce speculative DRAM data

transfers immediately after waking up from deep powerdown modes.

To guarantee that each memory transaction completes correctly, we

architect error detectors. Our fast wake-up memory interface imple-

ments this error check on each transaction (Figure 9), which ensures

that the clock transition is within a window (±Δ) of its nominal lo-

cation. This check handles cases when variations and drift during

powerdown affect link operation. The error is communicated to the

controller through a dedicated pin, Correct. If an error occurs, it is

because the controller has issued a command too soon after powerup.

The controller could simply wait a longer period of time before re-

trying the command or could send a timing calibrate command to

expedite wake-up.

Errors are unlikely in systems with modest voltage and temperature

variations. Most memory systems fit this description since boards are

designed for tolerance against voltage fluctuations and temperatures

vary slowly. Moreover, these variations have a modest effect on

timing margins if ranks powerdown for short periods as drift is less

likely to have accumulated to affect timing margins.

Drowsy Memory Interfaces (MemDrowsy). Rather than wait

for calibration, a controller might begin transfers immediately but

mitigate timing errors by halving the data rate for a certain period

of time (Y) after wake-up. This slower rate more than doubles the

timing margin of the link, greatly improving tolerance to small timing

errors induced by VT variations.

Thus, MemDrowsy reduces the effective data rate and relaxes tim-

ing precision after wake-up, for reads that need a locked DLL. The

137

ACT

CK

CA[5:0]

DQ[31:0]

tRCD

DQ

CKE

t
XP

RD

DQ

Normal

tCL

Drowsy

DQ

Read
Write

Z * (BL/2) (BL/2) (BL/2)

Y

Deep

PD

Figure 11: MemDrowsy Timing Diagram.

clock speed is still maintained at the full rate but the link effectively

transmits each bit twice. This enables transmitting data while recali-

brating and results in lengthening the valid data window. Of course,

the controller must also shift the point at which data is sampled. After

recalibration, the link operates at nominal data rates.

Figure 10 illustrates extensions to the memory controller. A rank

is powered-down simply by disabling the clock (CKE low). Upon

powerup, the clock is enabled (CKE high) and a timer starts. The

clock operates at the nominal frequency f , providing a sufficient den-

sity of clock edges needed to facilitate timing feedback and recovery.

However, given timing uncertainty after wake-up, we use a fre-

quency divider to reduce the rate at which we sample the incoming

data; the drowsy rate is f/Z. A multiplexer chooses between sam-

pling at the nominal clock rate or at a divided rate. During drowsy

mode, the valid read window is lengthened by a factor of Z as illus-

trated in Figure 11.

Since the drowsy sampling period is an integral multiple of nomi-

nal sampling period, the controller clock is unchanged; it is simply

sampled every Z-th cycle.1 Sampling returns to the nominal fre-

quency only after timing recalibration.

5. Evaluation

We evaluate system implications from two types of memory archi-

tectures. The first type, MemBlaze, provides perfect timing and

synchronization after wake-up by eliminating expensive interface

circuitry from the DRAMs. The second type, exemplified by Mem-

Correct and MemDrowsy, provides imperfect timing and requires

corrective mechanisms.

MemBlaze provides the efficiency of powerdown without perfor-

mance trade-offs. But MemCorrect and MemDrowsy’s mechanisms

to ensure correct timing can negatively affect performance. We quan-

tify these effects.

5.1. Experimental Methodology

Simulators. We use an x86_64 execution-driven processor simulator

based on a Pin front-end [26, 33]. We use eight out-of-order (OOO)

cores at 3GHz matched with Intel’s Nehalem microarchitecture and

cache latencies as shown in Table 2.

The memory simulator is extended to model three architectures:

MemBlaze, MemCorrect, and MemDrowsy. MemBlaze is imple-

mented in silicon and chip measurements are used to configure the

1MemDrowsy clock rates are unchanged, differentiating it from work in channel
frequency scaling [5].

Processor Eight 3GHz x86 Out-of-Order cores

L1 cache private, 8-way 32KB, cycle time = 1, 64B cache-lines

L2 cache private, 8-way 256KB, cycle time = 7, 64B cache-lines

L3 cache shared, 16-way 16MB, cycle time = 27, 64B cache-lines

Memory controller Fast powerdown with threshold timer = 15 mem-cycles [17]
Closed-page, FCFS scheduling

Main memory 32GB capacity, 2Gb x4 1333MT/s parts,
single ranked 4GB-RDIMMs, four channels,
2DIMMs/channel [5, 16]

Table 2: Baseline System Simulation Parameters.

Classification Multi-Programmed (MP) Benchmarks
High B/W 433.milc, 436.cactusADM, 450.soplex, 459.GemsFDTD,
(MP-HB) 462.libquantum, 470.lbm, 471.omnetpp, 482.sphinx3

Med. B/W 401.bzip2, 403.gcc, 434.zeusmp,
(MP-MB) 454.calculix, 464.h264ref 473.astar

Low B/W 435.gromacs, 444.namd, 445.gobmk, 447.dealll,
(MP-LB) 456.hmmer, 458.sjeng, 465.tonto

Classification Multi-Threaded (MT) Benchmarks
High B/W (MT-HB) applu, art, canneal, streamcluster, swim, mgrid

Med. B/W (MT-MB) apsi, blackscholes, equake

Low B/W (MT-LB) ammp, fluidanimate, wupwise

Table 3: Benchmark Classification.

simulator. For the other memory architectures, the simulator draws

timing estimates from JEDEC specifications and energy estimates

from Intel’s analyses [5, 16]. In general, DDR3 systems dissipate

about 1-1.5W/GB on average [30] and about 2.5W/GB at peak [12].

We validate that our experiments produce numbers in this range.

Other memory simulator parameters are described in Table 2.

Workloads. We evaluate memory activity and the proposed ar-

chitectures on datacenter workloads like memcached. 2 During

evaluation, we fast-forward initialization phases and perform accu-

rate simulations during the measurement phase by running for fixed

number of instructions across power modes.

In addition, we evaluate a variety of multi-programmed (MP)

SPEC CPU2006 as well as multi-threaded (MT) SPEC OMP2001

and PARSEC benchmarks, following prior memory studies [2, 37, 22,

7, 18]. Each core runs a copy of the program/thread depending on the

benchmark and the number of application threads or processes are

matched to the cores. We fast-forward 10 to 20 billion instructions to

skip warm-up and initialization stages and focus on memory behavior

in steady state for weighted IPC calculations. We classify MP and

MT applications into 3 groups (HB, MB, LB) as shown in Table 3.

Metrics. For each memory architecture, we plot efficiency and

performance. Efficiency is measured in energy per bit (mW/Gbps).

In this metric, static and background power are amortized over useful

data transfers. Performance penalties measure the impact on cycles

2100b value denoted by a and 10KB by b

138

Figure 12: MemBlaze (fast-lock) energy savings relative to DDR3
DRAM baseline (fast-powerdown) and compared against
DDR3 DRAM baseline (slow-powerdown).

per instruction (CPI). In each workload group, worst case perfor-

mance penalty and best case energy savings are plotted on the top of

each bar.

Energy savings are measured relative to baseline DDR3 DRAM

that aggressively exploits fast-powerdown whenever encountering

15 idle memory cycles [17]. This low threshold gives an optimistic

baseline. Realistic, high-performance systems would set the threshold

an order of magnitude higher, which would only magnify both active-

idle energy costs and our architectures’ advantages.

5.2. MemBlaze

MemBlaze efficiency arises from two key features. First, it elimi-

nates DRAMs’ DLLs and clocks, thus eliminating long-latency DLL

recalibration, which is on the critical path for today’s mode exits.

Capable of fast exits, MemBlaze can spend more time in powerdown

and less time in active-idle.

Second, for any remaining time spent in active idle (i.e., neither

bursting data nor in powerdown), MemBlaze consumes very little

energy. With MemBlaze links that are capable of fast wake-up,

DRAMs’ data blocks are powered-on by DCKE precisely when they

are needed and no earlier. Only the command blocks remain active,

consuming a small fraction of the original active-idle power.

Given these advantages, MemBlaze energy savings are substan-

tial. Even though silicon results indicated feasibility at much larger

datarates, we conservatively use DDR3-1333 transfer rate in our sim-

ulations to make the comparison fair. Figure 12 compares savings

from MemBlaze (fast-lock) and the most efficient power-mode in

today’s DRAMs (slow-powerdown). When DLLs in today’s DRAMs

are kept in a quiescent state, slow-power down improves efficiency

by 22%. But this efficiency requires a performance trade-off. Exit

latency is 24ns, which affects the critical word latency.

MemBlaze fast-lock improves efficiency by 43%. Even memory-

intensive applications, like 433.milc and 471.omnetpp, dissipate 25-

36% less energy. Applications that demand little bandwidth (LB)

like 444.namd consume 63% less energy. With compared against a

baseline that uses power-modes more conservatively, these savings

would increase by 2×.

Moreover, efficiency comes with better performance than the base-

line since MemBlaze power mode exit latency is comparable to that

of fast-powerdown in today’s DRAMs; neither incur DLL-related

wake-up latencies. Fast links powerup the datapath in 10ns. Because

this latency is hidden by the command access, we reduce energy with

no performance impact.

With attractive energy savings and no delay trade-off, MemBlaze is

an order of magnitude better than approaches that aggressively power-

off DLLs at run-time or modify the BIOS to disable DLLs at boot-

time. These mechanisms all require large performance trade-offs

since today’s high-performance DRAMs rely on DLLs for timing.

5.3. MemCorrect

While MemBlaze provides perfect timing, other interfaces (including

today’s DRAMs with DLLs) may be susceptible to timing errors

when aggressively exploiting power modes. MemCorrect provides

circuitry to detect timing errors, allowing the system to speculate that

the timing was correct. We assess performance and energy relative to

the DDR3 DRAM baseline in Figure 13.

We evaluate MemCorrect based on the probability p of correct

timing. In the best-case, p=100% and timing is never affected when

using power-modes. And p=0% is the worst-case in which every

wake-up requires a long-latency recalibration. Smaller values for p
degrade performance. When p=50%, performance degrades by as

much as 100%.

In practice, systems are more likely to encounter correct timing.

Boards can be designed with decoupling capacitors to tolerate voltage

fluctuations and thermal effects have long time constants. If timing is

correct for 99% or 90% of transfers immediately following a wake-up,

we incur modest performance penalties of 1% and 10%, respectively.

In exchange for the occasional delay, MemCorrect can exploit

power-modes more aggressively. DRAMs with DLLs might bypass

recalibration, start transfers immediately after wake-up, and detect

errors as they occur. In such a system, MemCorrect energy savings

are 38% and 30% when timing is correct for p =99% and p =90%

of the transfers. However, if errors are too common, workloads

encounter large penalties and low, or even negative, energy savings.

To increase the likelihood of correct timing, we might characterize

phase sensitivity to temperature (T) and voltage (V) while the part

is operating. During powerdown, we could store the current phase,

voltage, and temperature. And changes in T and V during powerdown

could be used to calculate a small correction to the last phase. Upon

powerup, this correction is added to the phase. We draw lessons from

processors in which canaries predict critical path delay across PVT

corners and find frequencies that meet timing constraints [9].

5.4. MemDrowsy

If correct timing cannot be ensured at nominal data sampling rates, the

system could operate in drowsy mode and reduce its sampling rate by

a factor of Z for Y=768ns (tDLLk). In practice Z depends on timing

margins at the DRAM interface. Z = 2 is realistic because existing

LPDDR2 systems eliminate DLLs and transfer at half the data rate

to ensure timing. We also assess sensitivity to more conservative

margins (Z = 4, Z = 8).

Reducing the data sample rate more aggressively produces larger

penalties in Figure 14(a); latency-sensitive streamcluster sees a 32%

penalty when Z = 8. Less drowsy transfers have far more modest

penalties, ranging from 1-4%.

MemDrowsy is also parameterized by how long the DRAM must

operate in drowsy mode. In practice, this parameter is defined by the

nominal wake-up latency. In other words, transfers are drowsy until

the interface can ensure correct timing (e.g., current DRAM DLLs

require 768ns). Performance is insensitive to the duration of drowsy

operation as only the first few transfers after wake-up are slowed.

139

Figure 13: MemCorrect (a) performance as measured in Cycles per Instruction (CPI) and (b) energy relative to DDR3 DRAM baseline. The
probability p of correct timing for transfer immediately after wakeup is varied. Plotted for MP, MT, datacenter benchmarks. Error bars
represent ranges over mean value in the group.

Figure 14: MemDrowsy (a) performance as measured in Cycles per Instruction (CPI) and (b) energy relative to DDR3 DRAM baseline. The
drowsy rate reduction factor Z for transfer is varied by using Y=768ns. Plotted for MP, MT, datacenter benchmarks. Error bars
represent ranges over mean value in the group.

Figure 15: MemCorrect+MemDrowsy (a) performance as measured in Cycles per Instruction (CPI) and (b) energy relative to DDR3 DRAM base-
line. The probability p of correct timing for transfer immediately after wakeup with Z = 4 is varied. Plotted for MP, MT, datacenter
benchmarks. Error bars represent ranges over mean value in the group.

140

For these modest penalties, MemDrowsy achieves significant en-

ergy savings in Figure 14(b). Drowsy transfers allow applications to

enter power modes more often with fewer penalties. Clearly, appli-

cations that demand memory bandwidth (HB) are more sensitive to

drowsy operation. Indeed, average energy per transfer might increase

due to larger termination energy from higher bus utilization and also

the idle power during the extra cycles.

5.5. MemCorrect and MemDrowsy

Suppose MemCorrect detects a timing error for a transfer immediately

following a wake-up. Instead of delaying the transfer for the nominal

wake-up latency, the system invokes MemDrowsy and begins the

transfer immediately at a slower rate. Clearly, performance and

efficiency in MemCorrect+MemDrowsy will be better than either

approach applied individually. Immediately after wake-up, transfers

begin immediately either at the nominal or reduced data rate.

With MemCorrect+MemDrowsy, exploiting power modes and

transferring data immediately after wake-up has performance penal-

ties between 10-20%, as shown in Figure 15(a). In exchange, power

modes are more often exploited and energy savings are more consis-

tent.

When implemented alone, MemCorrect energy savings are very

sensitive to the probability of correct timing after wake-up. In combi-

nation, however, MemCorrect+MemDrowsy is insensitive to timing

risk, as shown in Figure 15(b). As MemDrowsy improves mem-

ory channel utilization, background power is amortized over more

transfers.

MemBlaze promises large energy savings with an architecture that

provides perfect timing information. Without such timing guarantees,

however, MemCorrect+MemDrowsy provide the next best thing:

comparable efficiency and modest (<10%) performance degradation

for many applications.

6. Related Work

Much prior work reduces power in conventional server memory.

Memory systems can statically set voltage and frequency at boot

time, typically in the BIOS [7]. Frequency scaling reduces power

but since the static power is amortized over few accesses at low

utilizations, the energy per memory access is still expensive. The

energy per access could also increase due to higher bus utilization

from scaling [5].

Malladi et al. studied LPDDR2 in servers to trade bandwidth

for reduced active-idle power [27]. In the current paper, we con-

vert DDR3 active-idle time to time in efficient powerdown without

affecting bandwidth. Lim et al. consider various grades of DDR

memory [25, 24] while Kgil et al. consider memory-processor stack-

ing [20]. In contrast, we propose changes to power-hungry DRAM

interfaces.

Prior work also manages DRAM data placement, increasing ac-

cess locality and creating opportunities to transition between power

states [10, 23, 36, 8, 31, 1]. Prior work studies compiler strategies

for cluster accesses by inserting NOPs or reordering to coalesce re-

quests [6]. Also, pages might be redirected to particular DRAM ranks

to create hot and cold memory spaces [14]. Memory controllers can

throttle requests to manage power [15]. In contrast, our work im-

proves powermode efficiency as multiple studies highlight increasing

difficulty of finding usable idle times [7, 29].

We build upon detailed studies of Meisner et al. about subsys-

tem characterization [29], and Ferdman et al. insights on scale out

workloads [11]. We study memory bus activity at finer granularities,

enabling the analysis and design of DRAM power modes.

Given wide accesses internal to DRAM, chips have been proposed

to reduce the number of parts activated. One approach reduces access

granularity through separately controlled parts (e.g.,chips, ranks,

banks, etc.) to create smaller, independent memory spaces [2, 37, 39,

41]. However, reducing the size of the DRAM activated increases the

number of peripheral circuits and degrades density [38].

7. Conclusion

In server memory, idle power can comprise 60-70% of the total. Mem-

ory ranks spend 45-60% of their time idle. The spectrum of memory

architectures presented in this paper demonstrate new interfaces and

architectures that address this problem. By eliminating or mitigat-

ing long-latency DLL wake-ups, these systems aggressively uses

efficient powerdown states during short idle periods with negligible

performance penalty.

Benefits are particularly pronounced for high-capacity, multi-rank

systems with frequent idleness. We demonstrate energy savings of up

to 68% in a four-rank memory system. While MemBlaze reduces idle

power with no performance impact on the system, MemDrowsy and

MemCorrect accomplish similar power savings with low penalties.

A MemBlaze test chip has also been fabricated and demonstrated to

function at a high datarate of 6.4Gbps while the exit latencies and idle

power are verified with hardware measurements. Overall, we demon-

strate possible techniques to build scalable, energy-proportional mem-

ory systems for the future.

8. Acknowledgments

We sincerely thank Yi Lu for helping us with lab measurements,

James Tringali, Hongzhong Zheng, Jared Zerbe for their useful dis-

cussion. This project is supported in part by a Google Focused Re-

search Award. Krishna Malladi is supported by Benchmark-Capital

Stanford Graduate Fellowship. Benjamin Lee is supported in part by

NSF grant CCF-1149252.

A. Laboratory Measurements

The fabricated test chip has been tested extensively and Figure 16

demonstrates the timing operation of the powermodes.

Figure 16: Timing operation for the MemBlaze test chip’s fast lock
link demonstrating DQ operation within 10ns from power-
mode wakeup.

141

References
[1] N. Aggarwal et al. Power-energycient DRAM speculation. In High

Performance Computer Architecture, 2008.
[2] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber.

Future scaling of processor-memory interfaces. In SC, 2009.
[3] Chih-Kong and K. Yang. Delay-locked loops - an overview. In Phase

Locking in High-Performance Systems. IEEE Press, 2003.
[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with YCSB. In ACM Symposium
on Cloud Computing, 2010.

[5] H. David, O. Mutlu, et al. Memory power management via dynamic
voltage/frequency scaling. In ICAC, 2011.

[6] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. Irwin. DRAM energy management using software & hardware
directed power mode control. In High Performance Computer Architec-
ture, 2001.

[7] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini.
Memscale: Active low-power modes for main memory. In International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2011.

[8] B. Diniz, D. Guedes, and R. Bianchini. Limiting the power consumption
of main memory. In International Symposium on Computer Architecture,
2007.

[9] D. Ernst, N. S. Kim, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,
and K. Flautner. Razor: A low-power pipeline based on circuit-level
timing speculation. In International Symposium on Microarchitecture,
2003.

[10] X. Fan, C. Ellis, and A. Lebeck. Memory controller policies for DRAM
power management. In International Symposium on Low Power Elec-
tronics and Design, 2001.

[11] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: a study of emerging scale-out workloads on modern hardware.
In International Conference on Architectural Support for Programming
Languages and Operating Systems, 2012.

[12] Hewlett-Packard. DDR3 memory technology. Technology brief
TC100202TB, Hewlett-Packard, 2010.

[13] U. Hoelzle and L. Barroso. The Datacenter as a Computer. Morgan
and Claypool, 2009.

[14] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. Improving energy
efficiency by making DRAM less randomly accessed. In International
Symposium on Low Power Electronics and Design, 2005.

[15] I. Hur and C. Lin. A comprehensive approach to DRAM power man-
agement. In High Performance Computer Architecture, 2008.

[16] Intel. Intel memory 3-sigma power analysis methodology. Data sheet,
Intel.

[17] Intel. Intel xeon processor e3-1200 family datasheet. Data sheet, Intel,
2011.

[18] A. Jaleel, K. B. Theobald, S. C. S. Jr, and J. Emer. High performance
cache replacement using re-reference interval prediction (RRRIP). In
International Symposium on Computer Architecture, 2010.

[19] K. Kaviani et al. A 6.4-Gb/s near-ground single-ended transceiver for
dual-rank dimm memory interface systems. In International Solid-State
Circuits Conference, February 2013.

[20] T. Kgil et al. PicoServer: Using 3D stacking technology to enable a com-
pact energy efficient chip multiprocessor. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2006.

[21] J. Kim, M. Horowitz, and G.-Y. Wei. Design of cmos adaptive-
bandwidth plls/dlls: A general approach. In IEEE Transactions on
Circuits and Systems-II: Analog and Digital Signal Processing, 2003.

[22] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. In International Symposium on Microarchitecture, 2010.

[23] A. Lebeck, X. Fan, H. Zeng, , and C. Ellis. Power aware page allocation.
In International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[24] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch. Disaggregated memory for expansion and sharing in blade
servers. In International Symposium on Computer Architecture, 2009.

[25] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt.
Understanding and designing new server architectures for emerging

warehouse-computing environments. In International Symposium on
Computer Architecture, 2008.

[26] C. Luk et al. Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

[27] K. Malladi, F. Nothaft, K. Periyathambi, B. Lee, C. Kozyrakis, and
M. Horowitz. Towards energy-proportional datacenter memory with
mobile DRAM. In International Symposium on Computer Architecture,
2012.

[28] D. Meisner, B. Gold, and T. Wensich. PowerNap: Eliminating server
idle power. In International Symposium on Computer Architecture,
2009.

[29] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.
Power management of online data-intensive services. In International
Symposium on Computer Architecture, 2011.

[30] Micron. Micron 2Gb: x4, x8, x16 DDR3 SDRAM. Data Sheet
MT41J128M16HA-125, Micron, 2010.

[31] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. DMA-aware memory
energy management. In High Performance Computer Architecture,
2006.

[32] P. Saab. Scaling memcached at Facebook. Facebook Engineering Note,
2008.

[33] D. Sanchez et al. The ZCache: Decoupling ways and associativity. In
International Symposium on Microarchitecture, 2011.

[34] N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink: Managing server
clusters on intermittent power. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2011.

[35] K. Shiv et al. SPECjvm2008 performance characterization. In SPEC
Benchmark Workshop on Computer Performance Evaluation and Bench-
marking, 2009.

[36] M. Tolentino et al. Memory MISER: Improving main memory energy
efficiency in servers. IEEE Trans, 2009.

[37] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi. Rethinking DRAM design and organization
for energy-constrained multi-cores. In International Symposium on
Computer Architecture, 2010.

[38] T. Vogelsang. Understanding the energy consumption of dynamic ran-
dom access memories. In International Symposium on Microarchitec-
ture, 2010.

[39] F. Ware and C. Hampel. Improving power and data efficiency with
threaded memory modules. In International Conference on Computer
Design, 2006.

[40] J. Zerbe, B. Daly, L. Luo, B. Stonecypher, W. D. Dettloff, J. C. Eble,
T. Stone, J. Ren, B. S. Leibowitz, M. Bucher, P. Satarzadeh, Q. Lin,
Y. Lu, and R. Kollipara. A 5gb/s link with matched source synchronous
and common-mode clocking techniques. In IEEE Journal of Solid-State
Circuits, 2011.

[41] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-
rank: Adaptive DRAM architecture for improving memory power effi-
ciency. In International Symposium on Microarchitecture, 2008.

142

CoScale: Coordinating CPU and Memory System DVFS in Server Systems

Qingyuan Deng David Meisner† Abhishek Bhattacharjee

Thomas F. Wenisch‡ Ricardo Bianchini

Rutgers University †Facebook Inc. ‡University of Michigan

{qdeng,abhib,ricardob}@cs.rutgers.edu meisner@fb.com twenisch@umich.edu

Abstract

Recent work has introduced memory system dynamic voltage and
frequency scaling (DVFS), and has suggested that balanced scal-
ing of both CPU and the memory system is the most promising ap-
proach for conserving energy in server systems. In this paper, we
first demonstrate that CPU and memory system DVFS often conflict
when performed independently by separate controllers. In response,
we propose CoScale, the first method for effectively coordinating
these mechanisms under performance constraints. CoScale relies on
execution profiling of each core via (existing and new) performance
counters, and models of core and memory performance and power
consumption. CoScale explores the set of possible frequency settings
in such a way that it efficiently minimizes the full-system energy con-
sumption within the performance bound. Our results demonstrate
that, by effectively coordinating CPU and memory power manage-
ment, CoScale conserves a significant amount of system energy com-
pared to existing approaches, while consistently remaining within the
prescribed performance bounds. The results also show that CoScale
conserves almost as much system energy as an offline, idealized
approach.

1. Introduction

The processor has historically consumed the bulk of system power

in servers, leading to a rich array of processor power management

techniques, e.g. [16, 20, 37]. However, due to their success, and be-

cause of increasing memory capacity and bandwidth requirements in

multicore servers, main memory energy consumption is increasing as

a fraction of the total server energy [2, 24, 29, 39]. In response, many

active and idle power management techniques have been proposed

for main memory as well, e.g. [8, 10, 11, 12, 22, 34]. In light of

these trends, servers are likely to provide separate power manage-

ment capabilities for individual system components, with distinct

control policies and actuation mechanisms. Our ability to maximize

energy efficiency will hinge on the coordinated use of these various

capabilities [31].

Prior work on the coordination of CPU power and thermal manage-

ment across servers, blades, and racks has demonstrated the difficulty

of coordinated management and the potential pitfalls of independent

control [36]. Existing studies seeking to coordinate CPU DVFS and

memory low-power modes have focused on idle low-power memory

states [6, 13, 27]. While effective, these works ignore the possibility

of using DVFS for the memory subsystem, which has recently been

shown to provide greater energy savings [10]. As such, the coor-

dination of active low-power modes for processors and memory in

tandem remains an open problem.

In this paper, we propose CoScale, the first method for effectively

coordinating CPU and memory subsystem DVFS under performance

constraints. As we show, simply supporting separate processor and

memory energy management techniques is insufficient, as indepen-

dent control policies often conflict, leading to oscillations, unstable

behavior, or sub-optimal power/performance trade-offs.

To see an example of such behavior, consider a scenario in which

a chip multiprocessor’s cores are stalled waiting for memory a signif-

icant fraction of the time. In this situation, the CPU power manager

might predict that lowering voltage/frequency will improve energy

efficiency while still keeping performance within a pre-selected per-

formance degradation bound and effect the change. The lower core

frequency would reduce traffic to the memory subsystem, which in

turn could cause its (independent) power manager to lower the mem-

ory frequency. After this latter frequency change, the performance

of the server as a whole may dip below the CPU power manager’s

projections, potentially violating the target performance bound. So,

at its next opportunity, the CPU manager might start increasing the

core frequency, inducing a similar response from the memory sub-

system manager. Such oscillations waste energy. These unintended

behaviors suggest that it is essential to coordinate power-performance

management techniques across system components to ensure that the

system is balanced to yield maximal energy savings.

To accomplish this coordinated control, we rely on execution

profiling of core and memory access performance, using existing and

new performance counters. Through counter readings and analytic

models of core and memory performance and power consumption,

we assess opportunities for per-core voltage and frequency scaling in

a chip multiprocessor (CMP), voltage and frequency scaling of the

on-chip memory controller (MC), and frequency scaling of memory

channels and DRAM devices.

The fundamental innovation of CoScale is the way it efficiently

searches the space of per-core and memory frequency settings (we

set voltages according to the selected frequencies) in software. Es-

sentially, our epoch-based policy estimates, via our performance

counters and online models, the energy and performance cost/benefit

of altering each component’s (or set of components’) DVFS state

by one step, and iterates to greedily select a new frequency com-

bination for cores and memory. The selected combination trades

off core and memory scaling to minimize full-system energy while

respecting a user-defined performance degradation bound. CoScale

is implemented in the operating system (OS), so an epoch typically

corresponds to an OS time quantum.

For comparison, we demonstrate the limitations of fully uncoor-

dinated and semi-coordinated control (i.e., independent controllers

that share a common estimate of target and achieved performance)

of processor and memory DVFS. These strategies either violate the

performance bound or oscillate wildly before settling into local min-

ima. CoScale circumvents these problems by assessing processor and

memory performance in tandem. In fact, CoScale provides energy

savings close to an offline scheme that considers an exponential space

of possible frequency combinations. We also quantify the benefits of

CoScale versus CPU-only and memory-only DVFS policies.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.22

143

Our results show that CoScale provides up to 24% full-system
energy savings (16% on average) over a baseline scheme without

DVFS, while staying within a 10% allowable performance degrada-

tion. Furthermore, we study CoScale’s sensitivity to several param-

eters, including its effectiveness across performance bounds of 1%,

5%, 15%, and 20%. Our results demonstrate that CoScale meets the

performance constraint while still saving energy in all cases.

2. Motivation and Related Work

Despite the advances in CPU power management, current servers

remain non-energy-proportional, consuming a substantial fraction of

peak power when completely idle [1]. To improve proportionality,

researchers have recently proposed active low-power modes for main

memory [7, 10]. CoScale takes a significant step in realizing effective

server-wide power-performance tradeoffs using active low-power

modes for both cores and memory. Next, we summarize some of the

work on CPU and memory power management.

2.1. CPU Power Management

A large body of work has addressed the power consumption of CPUs.

For example, studies have quantified the benefits of detecting periods

of server idleness and rapidly transitioning cores into idle low-power
states [30]. However, such states do not work well under moderate

or high utilization. In contrast, processor active low-power modes
provide better power-performance characteristics across a wide range

of utilizations. Here, DVFS provides substantial power savings for

small changes in voltage and frequency, in exchange for moderate

performance loss. Processor DVFS is a well-studied technique [16,

20, 37] that is effective for a variety of workloads.

Processor DVFS techniques typically either rely on modeling or

measurements (and feedback) to determine the next frequency to use.

Invariably, these techniques assume that the memory subsystem will

behave the same, regardless of the particular frequency chosen for

the processor(s).

2.2. Memory Power Management

While CPUs have long been a focus of power optimizations, memory

power management is now seeing renewed interest, e.g. [7, 9, 10,

38, 41]. As with processors, idle low-power states (e.g., precharge

powerdown, self-refresh) have been extensively studied, e.g. [11,

22, 27, 28, 34]. However, past work has shown that active low-

power modes are more successful at garnering energy savings for

server workloads [9, 10, 31]. In particular, the memory bus is often

underutilized for long periods, providing ample opportunities for

memory power management.

To harness these opportunities, we recently proposed MemScale, a

technique that leverages dynamic profiling, performance and power

modeling, DVFS of the MC, and DFS of the memory channels and

DRAM devices [10]. David et al. also studied memory DVFS [7]. In

both these works, memory system scaling was done in the absence of

core power management.

2.3. Integrated Approaches and CoScale

Researchers have only rarely considered coordinating management

across components [6, 5, 13, 28, 36]. Raghavendra et al. considered

how best to coordinate managers that operate at different granularities,

but focused solely on processor power [36]. Much as we find, they

showed that uncoordinated approaches can lead to destructive and

unpredictable interactions among the managers’ actions.

A few works have considered coordinated processor and memory

power management for energy conservation [13, 27]. However, un-

like these works, which assume only idle low-power states for mem-

ory, we concentrate on the more effective active low-power modes

for memory (and processors). This difference is significant for two

reasons: (1) Although the memory technology in these earlier studies

(RDRAM) allowed per-memory-chip power management, modern

technologies only allow management at a coarse grain (e.g., multi-

chip memory ranks), complicating the use of idle low-power states;

and (2) active memory low-power modes interact differently with the

cores than idle memory low-power states. Moreover, these earlier

works focused on single-core CPUs, which are easier to manage

than CMPs. In a different vein, Chen et al. considered coordinated

management of the processor and the memory for capping power

consumption (rather than conserving energy), again assuming only

idle low-power states [6]. Also assuming a power cap, Felter et
al. proposed coordinated power shifting between the CPU and the

memory by using a traffic throttling mechanism [14]. CoScale can

be readily extended to cap power with appropriate changes to its

decision algorithm and epoch length.

Perhaps the most similar work to CoScale is that of Li et al. [27],

which also seeks to conserve CPU and memory energy subject to

a performance bound. Their study investigates the combination of

CPU microarchitectural adaptations (but could easily be extended to

CPU DVFS) and memory idle low-power states, adapting the delay

threshold before a memory device is transitioned to sleep. However,

the study considers only a single-core CPU and a memory system

with few low-power states. As such, their design is able to em-

ploy a policy that experimentally profiles each processor low-power

configuration. The policy then profiles different combinations of

processor and memory idle threshold configurations. It uses phase

detection techniques and a history-based predictor to select the best

state combination based on past measurements. Such a profiling-

based approach is not viable for a large multicore with per-core and

memory DVFS settings, due to the combinatorial explosion of possi-

ble states. Moreover, it is unclear how to extend their phase-based

prediction for multi-programmed workloads; a proper configuration

must be learned for each phase combination across all programs that

may execute concurrently. CoScale’s most fundamental advance is

that it can optimize over a far larger combinatorial space. The large

space is tractable because CoScale profiles performance at current

settings and then uses simple models to predict power/performance

at other settings.

3. CoScale

CoScale leverages three key mechanisms: core and memory subsys-

tem DVFS, and a performance management scheme that keeps track

of how much energy conservation has slowed down applications.

Core DVFS. We assume that each core can be voltage and frequency

scaled independently of the other cores, as in [21, 40]. We also

assume the shared L2 cache sits in a separate voltage domain that does

not scale. A core DVFS transition takes a few 10’s of microseconds.

Memory DVFS. Our memory DVFS method is based on MemScale

[10], which dynamically adjusts MC, bus, and DIMM frequencies.

Although it adjusts these frequencies together, we shall simply refer

to adjusting the bus frequency. The DIMM clocks lock to the bus

frequency (or a multiple thereof), while the MC frequency is fixed at

double the bus frequency. Furthermore, MemScale adjusts the voltage

144

�������	
�������

������
��
���

�
������
��
���

�������	
�������

�
��������
�

�
��������
�

��������
�

�
���

��
��
��

�

�
��
��

���

��������

������
��
���

�
������
��
���

Figure 1: CoScale operation: Semi-coordinated oscillates, whereas CoScale
scales frequencies more accurately.

of the MC (independently of core/cache voltage) and PLL/register in

the DIMMs, based on the memory subsystem frequency.

Memory mode transition time is dominated by frequency re-

calibration of the memory channels and DIMMs. The DIMM op-

erating frequency may be reset while in the precharge powerdown

or self-refresh state. We use precharge powerdown because its over-

head is significantly lower than that of self-refresh. Most of the

re-calibration latency is due to the DLL synchronization time, tDLLK

[32]—approximately 500 memory cycles.

Performance management. Similar to the approach initially pro-

posed in [28] and later explored in [9, 10, 11, 34], our policy is based

on the notion of program slack: the difference between a baseline ex-

ecution and a target latency penalty that a system operator is willing

to incur on a program to save energy. The basic idea is that energy

management often necessitates running the target program with re-

duced core or memory subsystem performance. To constrain the

impact of this performance loss, CoScale dictates that each executing

program incurs no more than a pre-selected maximum slowdown

γ , relative to its execution without energy management (TMaxFreq).

Thus, Slack = TMaxFreq(1+ γ)−TActual .

Overall operation. CoScale uses fixed-size epochs, typically match-

ing an OS time quantum. Each epoch consists of a system profiling

phase followed by the selection of core and memory subsystem fre-

quencies that (1) minimize full system energy, while (2) maintaining

performance within the target given by the accumulated slack from

prior epochs.

In the system profiling phase, performance counters are read to

construct application performance and energy estimates. By default,

we profile for 300 μs, which we find to be sufficient to predict the

resource requirements for the remainder of the epoch. Our default

epoch length is 5 ms.

Based on the profiling phase, the OS selects and transitions to new

core and/or memory bus frequencies using the algorithm described

below. During a core transition, that core does not execute instruc-

tions; other cores can operate normally. To adjust the memory bus

frequency, all memory accesses are temporarily halted, and PLLs and

DLLs are resynchronized. Since the core and memory subsystem

transition overheads are small (tens of microseconds) compared to

our epoch size (milliseconds), the penalty is negligible.

The epoch executes to completion with the new voltages and fre-

quencies. At the end of the epoch, CoScale again estimates the

accumulated slack, by querying the performance counters and esti-

mating what performance would have been achieved had the cores

and the memory subsystem operated at maximum frequency. These

estimates are then compared to achieved performance, with the dif-

ference used to update the accumulated slack and carried forward to

calculate the target performance in the next epoch.

CoScale example. Figure 1 depicts an example of CoScale’s behav-

ior (bottom), compared to a policy that does not fully coordinate

the processor and memory frequency selections (top). We refer to

the latter policy as semi-coordinated, as it maintains a single perfor-

mance slack (a mild form of coordination) that is shared by separate

CPU and memory power state managers. As the figure illustrates,

under semi-coordinated control, the CPU manager and the memory

manager independently decide to scale down when they observe per-

formance slack (performance above target). Unfortunately, because

they are unaware of the cumulative effect of their decisions, they

over-correct by scaling frequency too far down. For the same reason,

in the following epoch, they over-react again by scaling frequency

too far up. Such over-reactions continue in an oscillating manner.

With CoScale, by modeling the joint effect of CPU and memory

scaling, the appropriate frequency combination can be chosen to

meet the precise performance target. Our control policy avoids both

over-correction and oscillation.

3.1. CoScale’s Frequency Selection Algorithm

When choosing a frequency for each core and a frequency for the

memory bus, we have two goals. First, we wish to select a fre-

quency combination that maximizes full-system energy savings. The

energy-minimal combination is not necessarily that with the lowest

frequencies; lowering frequency can increase energy consumption

if the slowdown is too high. Our models explicitly account for the

system-vs.-component energy balance. Fortunately, the cores and

memory subsystem consume a large fraction of total system power,

allowing CoScale to aggressively consume the performance slack.

Second, we seek to observe the bound on allowable cycles per in-

struction (CPI) degradation for each running program.

Dynamically selecting the optimal frequency settings is challeng-

ing, since there are M×CN possibilities, where M is the number of

memory frequencies, C is the number of possible core frequencies,

and N is the number of cores. M and C are typically on the order of

10, whereas N is in the range of 8-16 now but is growing fast. Thus,

CoScale uses the greedy heuristic policy described in Figure 2.

Our gradient-descent heuristic iteratively estimates, via our online

models, the marginal benefit (measured as Δpower/Δper f ormance)

of altering either the frequency of the memory subsystem or that of

various groups of cores by one step (we discuss core grouping in de-

tail below). Initially, the algorithm estimates performance assuming

all cores and memory are set to their highest possible frequencies

(line 1 in the figure). It then iteratively considers frequency reduc-

tions, as long as some frequency can still be lowered without violating

the performance slack (loop starting in line 2). When presented with

a choice between next scaling down memory or a group of cores,

the heuristic greedily selects the choice that will produce the highest

marginal benefit (lines 3-12). If only memory or only cores can be

scaled down, the available option is taken (line 13-19). Still in the

main loop, the algorithm computes and records the full-system energy

ratio (SER, Section 3.3) for the considered frequency configuration.

When no more frequency reductions can be tried without violating

the slack, the algorithm selects the configuration yielding the smallest

SER (i.e., the best full-system energy savings) (line 21) and directs

the hardware to transition frequencies (line 22).

145

1. Estimate performance with each core and the memory subsystem at their highest frequencies
2. While any component can be scaled down further without slack violation
3. If both memory and at least one core can still scale down by 1 step
4. If the memory frequency has changed since we last computed marginal_memory
5. Compute marginal utility of lowering memory frequency as marginal_memory
6. If any core frequency has changed since we last computed marginal_cores
7. Compute marginal utility of lowering the frequency of core groups (per algorithm in Figure 3)
8. Select the core group (group_best) with the largest utility (marginal_cores)
9. If marginal_memory is greater than marginal_cores
10. Scale down memory by 1 step
11. Else
12. Scale down cores in group_best by 1 step each
13. Else if only memory can scale down
14. Scale down memory by 1 step
15. Else if only core groups can scale down
16. If any core frequency has changed since we last computed marginal_cores
17. Compute marginal utility of lowering the frequency of core groups (per algorithm in Figure 3)
18. Select the core group (group_best) with largest marginal utility (marginal_cores)
19. Scale down cores in group_best by 1 step each
20. Compute and record the SER for the current combination of core and memory frequencies
21. Select the core and memory frequency combination with the smallest SER
22. Transition hardware to the new frequency combination

Figure 2: CoScale’s greedy gradient-descent frequency selection algorithm.

1. Scan the previous list of cores, removing any that may not scale down further or whose frequency has changed
2. Re-insert cores with changed frequency, maintaining an ascending sort order by delta performance
3. For group i from 1 to number of cores on the list
4. Let delta power of the i-th group be equal to the sum of delta power from first to the i-th core
5. Let delta performance be equal to delta performance of the i-th core
6. Let marginal utility of i-th group be equal to delta power over delta performance just calculated
7. Set the group with the largest marginal utility as the best group (group_best) and its utility as marginal_cores

Figure 3: Sub-algorithm to consider core frequency changes by group.

Changing the frequency of the memory subsystem impacts the

performance of all cores. Thus, when we compute the Δper f ormance
of lowering memory frequency, we choose the highest performance

loss of any core. Similarly, when computing the Δper f ormance of

lowering the frequencies of a group of cores, we consider the worst

performance loss in the group. The Δpower in these cases is the

power reduction that can be achieved by lowering the frequency of

each core in the group.

An important aspect of the CoScale heuristic is that it considers

lowering the frequency of cores in groups of 1, 2, 3, ..., N cores (lines

1-6 in Figure 3). The group formation algorithm maintains a list

of cores that are eligible to scale down in frequency (i.e., they can

be scaled down without slack violation), sorted in ascending order

of Δper f ormance. To avoid a potentially expensive sort operation

on each invocation, the algorithm updates the existing sorted list by

removing and then re-inserting only those cores whose frequency has

changed (lines 1-2). N possible core groups are considered, forming

groups greedily by first selecting the core that incurs the smallest

delta performance from scaling (i.e., just the head of the list), then

considering this core and the second core, then the third, and so on.

This greedy group formation avoids combinatorial state space explo-

sion, but, as we will show, it performs similarly to an offline method

that considers all combinations. Considering transitions by group is

needed to prevent CoScale from always lowering memory frequency

first, because the memory subsystem at first tends to provide greater

benefit than scaling any one core in isolation. Failing to consider

group transitions may cause the heuristic to get stuck in local minima.

Our algorithm is run at the end of the profiling phase of each epoch

(5ms by default). Because of core grouping, the complexity of our

heuristic is O(M+C×N2), which is exponentially better than that

of the brute-force approach. Given our default simulation settings for

M (10), C (10), and N (16), searching once per epoch has negligible

overhead. Specifically, in all our experiments, searching takes less

than 5 microseconds on a 2.4GHz Xeon machine. Our projections

for larger core counts suggest that the algorithm could take 83 and

360 microseconds for 64 and 128 cores, respectively, in the worst

case (4 microseconds in the best case). If one finds it necessary to

hide these higher overheads, one can either increase the epoch length

or dedicate a spare core to the algorithm.

3.2. Comparison with Other Policies

The key aspect of CoScale is the efficient way in which it searches

the space of possible CPU and memory frequency settings. For com-

parison, we study five alternatives. The first, called “MemScale”,

represents the scenario in which the system uses only memory sub-

system DVFS. The second alternative, called “CPUOnly”, represents

the scenario with CPU DVFS only. To be optimistic about this alter-

native, we assume that it considers all possible combinations of core

frequencies and selects the best. In both MemScale and CPUOnly,

the performance-aware energy management policy assumes that the

behavior of the components that are not being managed will stay the

same in the next epoch as in the profiling phase.

The third alternative, called “Uncoordinated”, applies both Mem-

Scale and CPU DVFS, but in a completely independent fashion. In

determining the performance slack available to it, the CPU power

manager assumes that the memory subsystem will remain at the

same frequency as in the previous epoch, and that it has accumulated

no CPI degradation; the memory power manager makes the same

assumptions about the cores. Hence, each manager believes that

it alone influences the slack in each epoch, which is not the case.

The fourth alternative, called “Semi-coordinated”, increases the level

of coordination slightly by allowing the CPU and memory power

managers to share the same overall slack, i.e. each manager is aware

of the past CPI degradation produced by the other. However, each

146

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
���

��
��
��
��

��
�

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
�

��
��
��

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
�

��
��

��
�

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
�

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
�

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
�

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
�

��
�
���

��
��
��
��
��

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
�

���������	
���
�
��

��

��
�	

�
��

��
���
�

���
	

��
�

���������	
���

�
��

��

��
�	

�
��

��
���
�

���
	

��
�

�������������������������

������� ������� ������

������� ������� ������

�������!�"����� �������!�"����� �������!�"����

Figure 4: Search differences: CoScale searches the parameter space efficiently. Uncoordinated violates the performance bound and Semi-coordinated gets
stuck in local minima.

manager still tries to consume the entire slack independently in each

epoch (i.e., the two managers account for one another’s past actions,

but do not coordinate their estimate of future performance).

Finally, the fifth alternative, called “Offline”, relies on a perfect

offline performance trace for every epoch, and then selects the best fre-

quency for each epoch by considering all possible core and memory

frequency settings. As the number of possible settings is exponential,

Offline is impractical and is studied simply as an upper bound on how

well CoScale can do. However, Offline is not necessarily optimal,

since it uses the same epoch-by-epoch greedy decision-making as

CoScale (i.e., a hypothetical oracle might choose to accumulate slack

in order to spend it in later epochs).

Figure 4 visualizes the difference between CoScale and other

policies in terms of their search behaviors. For clarity, the figure

considers only two cores (X and Y axes) and the memory (Z axis),

forming a 3-D frequency space. The origin point is the highest

frequency of each dimension; more distant points represent lower

per-component frequencies. CPUOnly and MemScale search subsets

of these three dimensions, so we do not illustrate them.

We can see from the figure that the Offline policy (top illustration)

examines the entire space, thus always finding the best configuration.

Under the Uncoordinated policy (second row), the CPU power man-

ager tries to consume as much of the slack as possible with cores 0

and 1, while the memory power manager gets to consume the same

slack. This repeats every epoch. Semi-coordinated (third row) be-

haves similarly in the first epoch. However, in the second epoch, to

correct for the overshoot in the first epoch, each manager is restricted

to a smaller search space. This restriction leads to over-correction in

the third epoch, resulting in a much larger search space. The result-

ing oscillation may continue across many epochs. Finally, CoScale

(bottom row) starts from the origin and greedily considers steps of

memory frequency or (groups of) core frequency, selecting the move

with the maximal marginal energy/performance benefit. From the

figure, we can see that in step 1, CoScale scaled core 0 down by one

frequency level; then it scaled the memory frequency down in step 2;

and finally scaled core 1 down by two frequency levels in step 3. The

search then terminates, because the performance model predicts that

any further moves will violate the performance bound of at least one

application. CoScale’s greedy walk is shorter and produces better

results than the other practical approaches.

Although CoScale provides no formal guarantees precluding os-

cillating behavior, this behavior is unlikely and occurs only when

the profiling phases are consistently poor predictions of the rest of

the epochs, or the performance models are inaccurate. On the other

hand, the Semi-coordinated and Uncoordinated policies exhibit poor

behavior due to their design limitations.

3.3. Implementation

We now describe the performance counters and performance/power

models used by CoScale.

Performance counters. CoScale extends the performance modeling

framework of MemScale [10] with additional performance counters

147

that allow it to estimate core power (in addition to memory power)

and assess the degree to which a workload is instruction throughput

vs. memory bound.

• Instruction counts – For each core, CoScale requires counters for

Total Instructions Committed (TIC), Total L1 Miss Stalls (TMS),

Total L2 Accesses (TLA), Total L2 Misses (TLM), and Total L2
Miss Stalls (TLS). CoScale uses these counters to estimate the

fraction of CPI attributable to the core and memory, respectively.

These counters allow the model to handle many core types (in-

order, out-of-order, with or without prefetching), whereas Mem-

Scale’s model (which required only TIC and TMS) supports only

in-order cores without prefetching.

• Memory subsystem performance – CoScale reuses the same

seven memory performance counters introduced by MemScale,

which track memory queuing statistics and row buffer performance.

We refer readers to [10] for details.

• Power modeling – To estimate core power, CoScale needs the L1

and L2 counters mentioned above and per-core sets of four Core
Activity Counters (CAC) that track committed ALU instructions,

FPU instructions, branch instructions, and load/store instructions.

We reuse the memory power model from MemScale, which re-

quires two counters per channel to track active vs. idle cycles and

the number of page open/close events (details in [10]).

In total, CoScale requires eight additional counters per core beyond

the requirements of MemScale (which requires two per core and nine

per memory channel, all but five of which already exist in current

Intel processors).

Performance model. Our model builds upon that proposed in [10],

with two key enhancements: (1) we extend it to account for vary-

ing CPU frequencies, and (2) we generalize it to apply to cores

with memory-level-parallelism (e.g., out-of-order cores or cores with

prefetchers).

The performance model predicts the relationship between CPI,

core frequency, and memory frequency, allowing it to determine the

runtime and power/energy implications of changing core and memory

performance. Given this model, the OS can set the frequencies to

both maximize energy-efficiency and stay within the predefined limit

for CPI loss.

CoScale models the rate of progress of an application in terms of

CPI. The average CPI of a program is defined as:

E[CPI] = (E[T PICPU]+α ·E[T PIL2]+β ·E[T PIMem]) ·FCPU (1)

where E[T PICPU] represents the average time that instructions spend

on the CPU (including L1 cache hits), α is the fraction of instructions

that access the L2 cache and stall the pipeline, E[T PIL2] is the average

time that an L1-missing instruction spends accessing the L2 cache

while the pipeline is stalled, β is the fraction of instructions that miss

the L2 cache and stall the pipeline, E[T PIMem] is the average time

that an L2-missing instruction spends in memory while the pipeline

is stalled, and FCPU is the operating frequency of the core. The value

of α can be calculated as the ratio of TMS and TIC, whereas β is the

ratio of TLS and TIC.

The expected CPU time of each instruction (E[T PICPU]) depends

on core frequency, but is insensitive to memory frequency. Since

we keep the frequency (and supply voltage) of the L2 cache fixed,

the expected time per L2 access that stalls the pipeline (E[T PIL2])
does not change with either core or memory frequency (we neglect

the secondary effect of small variations in L1 snoop time). The

expected time per L2 miss that stalls the pipeline (E[T PIMem]) varies

with memory frequency. We decompose the latter time as in [10]:

E[T PIMem] = ξbank ·(SBank +ξbus · SBus), where ξbus represents the

average number of requests waiting for the bus; ξbank are requests

waiting for the bank; SBank is the average time, excluding queueing

delays, to access a bank (including precharge, row access and column

read, etc); and SBus is the average data transfer (burst) time.

The above counters and model assume single-threaded applica-

tions, each running on a different core. To tackle multi-threaded

applications, CoScale would require additional counters and a more

sophisticated performance model (one that captures inter-thread in-

teractions). To deal with context switching, CoScale can maintain

the performance slack independently for each software thread.

Full-system energy model. Meeting the CPI loss target for a given

workload does not necessarily maximize energy-efficiency. In other

words, though additional performance degradation may be allowed, it

may save more energy to run faster. To determine the best operating

point, we construct a model to predict full-system energy usage as a

function of the frequencies of the cores and memory subsystem.

For frequency f i
core for core i and memory frequency fmem, we

define the system energy ratio (SER) as:

SER(f 1
core, ..., f n

core, fmem) =
Tf 1

core,..., f n
core, fMem

·Pf 1
core,..., f n

core, fMem

TBase ·PBase
(2)

Here, TBase and PBase are time and average power at a nominal fre-

quency (e.g., the maximum frequencies). Tf 1
core,..., f n

core,Mem is the time

estimate for an epoch at frequencies f 1
core, ..., f n

core for the n cores

and frequency fMem for the memory subsystem. This time estimate

corresponds to the core with the highest CPI degradation compared

to running at maximum frequency.

Pf 1
core,..., f n

core, fMem
= PNonCoreL2OrMem +PL2+

PMem(fMem)+
n

∑
i=1

Pi
Core(f i

core).
(3)

In this formula, PNonCoreL2OrMem accounts for all system components

other than the cores, the shared L2 cache, and the memory subsystem,

and is assumed to be fixed. PL2 is the average power of the L2 cache

and is computed from its leakage and number of accesses during the

epoch. PMem(f) is the average power of L2 misses and is calculated

according to the model for memory power in [33]. We find that

this average power does not vary significantly with core frequency

(roughly 1-2% in our simulations); workload and memory bus fre-

quency have a stronger impact. Thus, our power model assumes that

core frequency does not affect memory power. Pi
Core(f) is calculated

based on the cores’ activity factors using the same approach as prior

work [3, 18]. We also find that the power of the cores is essentially

insensitive to the memory frequency.

3.4. Hardware and Software Costs

We now consider CoScale’s implementation cost. Core DVFS is

widely available in commodity hardware, although each voltage

domain may currently contain several cores. Though CPUs with

multiple frequency domains are common, there have historically

been few voltage domains; however, research has shown this is likely

to change soon [21, 40].

Our design also may require enhancements to performance coun-

ters in some processors. Most processors already expose a set of

counters to observe processing, caching and memory-related per-

formance behaviors (e.g., row buffer hits/misses, row pre-charges).

148

Table 1: Workload descriptions.
Name MPKI WPKI Applications (x4 each)

ILP1 0.37 0.06 vortex gcc sixtrack mesa
ILP3 0.27 0.07 sixtrack mesa perlbmk crafty
ILP2 0.16 0.03 perlbmk crafty gzip eon
ILP4 0.25 0.04 vortex mesa perlbmk crafty
MID1 1.76 0.74 ammp gap wupwise vpr
MID3 1.00 0.60 apsi bzip2 ammp gap
MID2 2.61 0.89 astar parser twolf facerec
MID4 2.13 0.90 wupwise vpr astar parser
MEM1 18.2 7.92 swim applu galgel equake
MEM3 7.93 2.55 fma3d mgrid galgel equake
MEM2 7.75 2.53 art milc mgrid fma3d
MEM4 15.07 7.31 swim applu sphinx3 lucas
MIX1 2.93 2.56 applu hmmer gap gzip
MIX3 2.55 0.80 equake ammp sjeng crafty
MIX2 2.34 0.39 milc gobmk facerec perlbmk
MIX4 2.35 1.38 swim ammp twolf sixtrack

In fact, the latest Intel architecture exposes many MC counters for

queues [25]. However, the existing counters may not conform pre-

cisely to the specifications required for our models.

When CoScale adjusts the frequency of a component, the com-

ponent briefly suspends operation. However, as our policy operates

at the granularity of multiple milliseconds, and transition latencies

are in the tens of microseconds, the overheads are negligible. As

mentioned above, the execution time of the search algorithm is not a

major concern.

Existing DIMMs support multiple frequencies and can switch

among them by transitioning to powerdown or self-refresh states

[19], although this capability is typically not used by current servers.

Integrated CMOS MCs can leverage existing DVFS technology. One

needed change is for the MC to have separate voltage and frequency

control from other processor components. In recent Intel architec-

tures, this would require separating last-level cache and MC voltage

control [17]. Although changing the voltage of DIMMs and DRAM

peripheral circuitry is possible [23], there are no commercial devices

with this capability.

4. Evaluation

We now present our methodology and results.

4.1. Methodology

Workloads. Table 1 describes the workload mixes we use. We

construct the workloads by combining applications from the SPEC

2000 and SPEC 2006 suites. We use workloads exhibiting a range

of compute and memory behavior, and group them into the same

mixes as [10, 41]. The workload classes are: memory-intensive

(MEM), compute-intensive (ILP), compute-memory balanced (MID),

and mixed (MIX, one or two applications from each other class). The

rightmost column of Table 1 lists the application composition of each

workload; four copies of each application are executed to occupy all

16 cores.

We run the best 100M-instruction simulation point for each appli-

cation (selected using Simpoints 3.0 [35]). A workload terminates

when its slowest application has run 100M instructions. Table 1

lists the LLC misses per kilo-instruction (MPKI) and writebacks per

kilo-instruction (WPKI). In terms of the workloads’ running times,

the memory-intensive workloads tend to run more slowly than the

CPU-intensive ones. On average, the numbers of epochs are: 46 for

MEM workloads, 32 for MIX, 15 for MID, and 10 for ILP.

Simulation infrastructure. Our evaluation uses a two-step simula-

tion methodology. In the first step, we use M5 [4] to collect memory

Table 2: Main system settings.
Feature Value

CPU cores 16 in-order, single thread, 4GHz
Single IALU IMul FpALU FpMulDiv

L1 I/D cache (per core) 32KB, 4-way, 1 CPU cycle hit
L2 cache (shared) 16MB, 16-way, 30 CPU cycle hit
Cache block size 64 bytes

Memory configuration 4 DDR3 channels, 8 2GB ECC DIMMs

Time

tRCD, tRP, tCL 15ns, 15ns, 15ns
tFAW 20 cycles
tRTP 5 cycles
tRAS 28 cycles
tRRD 4 cycles

Refresh period 64ms

Current

Row buffer read, write 250 mA, 250 mA
Activation-precharge 120 mA

Active standby 67 mA
Active powerdown 45 mA
Precharge standby 70 mA

Precharge powerdown 45 mA
Refresh 240 mA

access traces (consisting of L1 cache misses and writebacks), and per-

core activity counter traces. In the second step, we feed the memory

traces into our detailed LLC/memory simulator of a 16-core CMP

with a shared L2 cache (LLC), on-chip MC, memory channels, and

DRAM devices. We also feed core activity traces, along with the

run-time statistics from the L2 module, into McPAT [26] to dynami-

cally estimate the CPU power. Overall, our infrastructure simulates

in detail the aspects of cores, caches, MC, and memory devices that

are relevant to our study, including memory device power and timing,

and row buffer management.

Table 2 lists our default simulation settings. We simulate in-order

cores with the Alpha ISA. Each core is allowed one outstanding LLC

miss at a time. Like [10], we compensate for the lower memory traffic

of these assumptions by simulating prefetching in Section 4.2.4. In

the same section, we investigate an optimistic out-of-order design.

Table 2 also details the memory subsystem we simulate: 4 DDR3

channels, each of which populated with two registered, dual-ranked

DIMMs with 18 DRAM chips each. Each DIMM also has a PLL

device and 8 banks. Timing and power parameters are taken from

Micron datasheets for 800 MHz devices [32].

Our simulated MC exploits bank interleaving and uses closed-

page row buffer management, which outperforms open-page policies

for multi-core CPUs [38]. Memory read requests (cache misses) are

scheduled using FCFS, with reads given priority over writebacks until

the writeback queue is half-full. More sophisticated memory schedul-

ing is unnecessary for our single-issue workloads, as opportunities to

increase bank hit rate via scheduling are rare.

We assume per-core DVFS, with 10 equally-spaced frequencies in

the range 2.2-4.0 GHz. We assume a voltage range matching Intel’s

Sandybridge, from 0.65 V to 1.2 V, with voltage and frequency

scaling proportionally, which matches the behavior we measured on

an i7 CPU. We assume uncore components, such as the shared LLC,

are always clocked at the nominal frequency and voltage.

As in [10], we scale MC frequency and voltage, but only frequency

for the memory bus and DRAM chips. The on-chip 4-channel MC

has the same voltage range as the cores, and its frequency is always

double that of the memory bus. We assume that the memory bus

and DRAM chips may be frequency-scaled from 800 MHz to 200

MHz, with steps of 66 MHz. We determine power at each frequency

using Micron’s calculator [32]. Transitions between bus frequencies

are assumed to take 512 memory cycles plus 28 ns, which accounts

for a DRAM state transition to fast-exit precharge powerdown and

149

����

��

���

���

���

���

	��

��

�
��

�
�
��

�
�
��

�
�
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
��

�
��

�
��

�
��

�
�
�

�
�
�

�
�
�

�
�
�

��
�

��
��
��
��
	

��
��
��

�
���������	
�	�	�� �	
����	�	�� ����	�	��

Figure 5: CoScale energy savings. CoScale conserves up to 24% of the
full-system energy.

��

��

��

��

��

���

���

	

	

�
	

	

�
	

	

�
	

	

�
	
�
�

	
�
�

	
�
�

	
�
�

��
��

��
��

��
��

��
��

	
��
�

	
��
�

	
��
�

	
��
�

��
�

��
��
���

�	
�

�

��
��
��

�

	�������������� ��� !��"�����������#���$

� �%&�' ���'����#�(��#'

Figure 6: CoScale performance. CoScale never violates the 10% perfor-
mance bound.

DLL re-locking [19, 10]. Some components’ power draws also vary

with utilization. Specifically, register and MC power scale linearly

with utilization, whereas PLL power scales only with frequency and

voltage. As a function of utilization, the PLL/register power ranges

from 0.1 W to 0.5 W [10, 15, 17], whereas the MC power ranges

from 4.5 W to 15 W.

We do not model power for non-CPU, non-memory system compo-

nents in detail; rather, we assume these components contribute a fixed

10% of the total system power in the absence of energy management

(we show the impact of varying this percentage in Section 4.2.4).

Under our baseline assumptions, at maximum frequencies, the

CPU accounts for roughly 60%, the memory subsystem 30%, and

other components 10% of system power.

4.2. Results
4.2.1. Energy and Performance We first evaluate CoScale with a

maximum allowable performance degradation of 10%. We consider

lower performance bounds in Section 4.2.4.

Figure 5 shows the full-system, memory, and CPU energy savings

CoScale achieves for each workload, compared to a baseline without

energy management (i.e., maximum frequencies). The memory en-

ergy savings range from -0.5% to 57% and the CPU energy savings

range from 16% to 40%. As one would expect, the ILP workloads

achieve the highest memory and lowest CPU energy savings, but still

save at least 21% system energy.

The memory energy savings in the MID and MIX workloads

are lower but still significant, whereas the CPU energy savings are

somewhat higher (system energy savings of at least 13% for both

workload classes). Note that CoScale is successful at picking the right

energy saving “knob” in the MIX workloads. Specifically, it more

aggressively conserves memory energy in MIX3, whereas it more

aggressively conserves CPU energy in MIX1, MIX2, and MIX4.

The MEM workloads achieve the smallest memory and largest

CPU energy savings (system energy savings of at least 12%), since

their greater memory channel traffic reduces the opportunities for

memory subsystem DVFS.

Figure 6 shows the average and maximum percent performance

losses relative to the maximum-frequency baseline. The figure shows

that CoScale never violates the performance bound. Moreover,

CoScale translates nearly all the performance slack into energy sav-

ings, with an average performance loss of 9.6%, quite near the 10%

target.

In summary, CoScale conserves between 13% and 24% full-system
energy for a wide range of workloads, always within the user-defined
performance bounds.

4.2.2. Dynamic Behavior To provide greater insight, we study an

example of the dynamic behavior of CoScale in detail. Figure 7

plots the memory subsystem and core frequency (for milc in MIX2)

selected by CoScale over time. For comparison, we also show the

behavior of the Uncoordinated and Semi-coordinated policies.

Figure 7(a) shows that, in epoch two, CoScale reduces the core and

memory frequencies to consume the available slack. In this phase,

milc has low memory traffic needs, but the other applications in the

mix preclude lowering the memory frequency further. Near epoch

10, another application’s traffic spike results in a memory frequency

increase, allowing a reduction of core frequency for milc. Near epoch

14, milc undergoes a phase change and becomes more memory-bound.

�

���

�

���

�

���

���
���
���
���
���
��	
��

���

� � � 	 � �� �� �� �	 �� �� �� ��

��
��
���
��

	�

�
��
�
��

�

�
��

���
��
�	

�

��
��

��
�

����������

�������������� ��������������

�

���

�

���

�

���

���
���
���
���
���
��	
��

���

� � � 	 � �� �� �� �	 �� �� �� ��

��
��
���
��

	�

�
��
�
��

�

�
��

���
��
�	

�

��
��

��
�

��������������
����

�

���

�

���

�

���

���
���
���
���
���
��	
��

���

� � � 	 � �� �� �� �	 �� �� �� ��

��
��
���
��

	�

�
��
�
��

�

�
��

���
��
�	

�

��
��

��
�

����
������
����

Figure 7: Timeline of the milc application in MIX2. Milc exhibits three
phases. CoScale adjusts core and memory subsystem frequency
precisely and rapidly in response to the phase changes. The other
techniques do not.

150

����

��

���

���

���
��

��
��
��

��
��
��

�
���������	
�	�	�� �	
��������	
�	�	�� ����	�	��

Figure 8: Energy savings. CoScale provides greater full-system energy
savings than the practical policies.

��

��

���

���

���

��
��
���

�	
�

�

��
��
���

�

��������	�
�����
	� ������������

��������	�
�
��� ����

Figure 9: Performance. Uncoordinated is incapable of limiting perfor-
mance degradation.

��

���

���

���

��
��
��
�	

�
��
�
���

�

�������� ��������
��������� ���������
���������

Figure 10: Impact of perfor-
mance bound. Higher
bound allows more sav-
ings without violations.

��

��

���

���

���

��
��
��
�	

�
��
�
���

�

�������� ���������
��������� ���������

Figure 11: Impact of rest-of-
system power. Savings
still high for higher
rest-of-system power.

As a result, CoScale increases the memory frequency, while reducing

the core frequency.

Figure 7(b) shows a similar timeline for Uncoordinated. On the

whole, the frequency transitions follow the same trend as in CoScale.

However, both frequencies are markedly lower. Because there is no

coordination, both CPU and memory power managers try to consume

the same slack. These lower frequencies result in a longer running

time (23 vs 25 epochs), violating the performance bound.

Figure 7(c) plots the timeline for Semi-coordinated. Initially, it

incurs frequency oscillations until the traffic spike at epoch 10 causes

memory frequency to become pegged at 800MHz. At that point, the

CPU frequency for milc is also lowered considerably to consume

all remaining slack. Unlike Uncoordinated, Semi-coordinated is

successful in meeting the performance bound as slack estimation

is coordinated among controllers. However, both the oscillations

and the local minima selected after epoch 12 result in lower energy

savings relative to CoScale. Altering the CPU and memory power

managers to make their decisions half an epoch out of phase reduces

oscillation, but the system gets stuck at local minima even sooner

(around the 7th epoch). Making decisions an entire epoch out of

phase produces similar behavior.

4.2.3. Energy and Performance Comparison Figure 8 contrasts av-

erage energy savings and Figure 9 contrasts average and worst-case

performance degradation across polices. These results demonstrate

that MemScale and CPUOnly are of limited use. Although they save

considerable energy in the component they manage (MemScale con-

serves 30% memory energy, whereas CPUOnly conserves 26% CPU

energy), gains are partially offset by higher energy consumption in the

other component (longer runtime leads to higher background/leakage

energy for the unmanaged component). These schemes save at most

10% full-system energy.

Uncoordinated conserves substantial memory and CPU energy,

achieving the highest full-system energy savings of any scheme. Un-

fortunately, it is incapable of keeping the performance loss under the

pre-defined 10% bound. In some cases, the performance degradation

reaches 19%, nearly twice the bound. On the other hand, Semi-

coordinated bounds performance well because the managers share

the slack estimate. However, because of frequent oscillations and

settling at sub-optimal local minima, Semi-coordinated consumes up

to 8% more system energy (2.6% on average) than CoScale. Reduc-

ing oscillations by having the power managers make decisions out of

phase does not improve results (0.3% lower savings with the same

performance).

CoScale is more stable and effective than the other practical poli-

cies at conserving both memory and CPU energy, while staying

within the performance bound. CoScale does almost as well as Of-

fline. These results show that our heuristic for selecting frequencies

is almost as effective as considering an exponential number of possi-

bilities with prior knowledge of each workload’s behavior.

4.2.4. Sensitivity Analysis To illustrate CoScale’s behavior across

different system and policy settings, we report on several sensitivity

studies. In every case, we vary a single parameter at a time, leaving

the others at their default values. Given the large number of potential

experiments, we usually present results only for the MID workloads,

which are sensitive to both memory and core performance.

Acceptable performance loss. In Figure 10, we vary the maximum

allowable performance degradation, showing energy savings. Recall

that our other experiments use a bound of 10%. As one would expect,

1% and 5% bounds produce lower energy savings, averaging 4%

and 9%, respectively. Allowing 15% and 20% degradations saves

more energy. In all cases, CoScale meets the configured bound, and

provides greater percent energy savings than performance loss, even

for tight performance bounds.

Rest-of-the-system power consumption. Figure 11 illustrates the

effect of doubling and halving our assumption for non-memory, non-

core power. When this power is doubled, CoScale still achieves 14%

average full-system energy savings, whereas the savings increase

to 17% when it is halved. In all cases performance remains within

bounds (not shown).

Ratio of memory subsystem and CPU power. We also consider

the effect of varying the ratio of memory subsystem to CPU power.

Recall that, under our baseline power assumptions, CPU accounts

for 60%, while memory accounts for 30% of total power at peak

frequency (a CPU:Mem ration of 2:1). In Figure 12, we consider

151

��

��

���

���

���

���

��
��
��
�	

�
��
�
���

�
�������	��

�������	
�

�������	
��

Figure 12: Impact of CPU:mem
power, MID. Savings in-
crease as memory power
increases.

��

�

��

�

��
��
��
��
��
	

��
��

�

�����������
�����������
�����������

Figure 13: Impact of CPU:mem
power, MEM. Savings
decrease as memory
power increases.

�

�

��

��

��

��
��
��
��
��
��
��
��

�

�������	�
��������
�������	�
��������

Figure 14: Impact of CPU volt-
age range. Smaller volt-
age ranges reduce en-
ergy savings.

��

��

���

���

���

��
��
��
��
��
��
��
���

�

������� 	������

�������

Figure 15: Impact of number of
frequencies. Savings de-
crease little when fewer
steps are avalaible.

1:1 and 1:2 ratios. CoScale achieves greater energy savings when

the fraction of memory power is higher for the MID workloads.

Interestingly, this trend is reversed for our MEM workloads (Figure

13), as most savings come from scaling the CPU.

CPU voltage range. We next consider the impact of a narrower

CPU (and MC) voltage range, which reduces CoScale’s ability to

conserve core energy. Figure 14 shows results for a half-width range

(0.95 1.2v) relative to our default assumption (0.65 1.2v). When

the marginal utility of lowering CPU frequency decreases, CoScale

scales the memory subsystem more aggressively and still achieves

11% full-system energy savings on average.

Number of available frequencies. By default, we assume 10 fre-

quencies for both the CPU and the memory subsystem. Figure 15

shows results for 4 and 7 frequencies as well. As expected, the en-

ergy savings decrease as the granularity becomes coarser. However,

CoScale adapts well, conserving only slightly less energy with fewer

frequencies. With 4 frequencies the maximum performance loss

is slightly lower than 10%, because the coarser granularity limits

CoScale’s ability to consume the slack precisely.

Prefetching. Next, we consider the impact of the increase in memory

traffic that arises from prefetching. We implement a simple next-line

prefetcher. This prefetcher is effective for these workloads, always

decreasing the LLC miss rate. However, the prefetcher is not perfect;

its accuracy ranges from 52% to 98% across our workloads. On

average, it improves performance by almost 20% on MEM workloads,

8% on MIX, 4% on MID, and 1% for ILP. At the same time, it

increases the memory traffic more than 33% on MEM, 20% on MID,

33% on MIX, and 13% on ILP. As one might expect, the higher

memory traffic and instruction throughput result in higher memory

and CPU power.

Figure 16 shows the full-system energy per instruction

of three designs (Base+prefetching, Base+CoScale, and

��

��

���

���

���

����

���

	
	 	�� ��� ���

��
	

��
�	
	

���
�

��
��
��
�
��

��	
 ��	
���
�
��	
�������
 ��	
���
��������

Figure 16: Impact of prefetching. CoScale works well with and without
prefetching.

Base+prefetching+CoScale) normalized to our baseline (Base). We

can see that the energy consumptions of Base+prefetching and

Base are almost the same, except for the MEM workloads, since

higher power and better performance roughly balance from an

energy-efficiency perspective. Again except for MEM, the energy

consumptions of Base+CoScale and Base+prefetching+CoScale

are almost exactly the same, since average memory frequency

is lower but CPU frequency is higher. For the MEM workloads,

the performance improvement due to prefetching dominates the

average power increase, so the average energy of Base+prefetching

is 7% lower than Base. In addition, Base+prefetching+CoScale

achieves 17% energy savings, compared to 12% from Base+CoScale.

These results show that CoScale works well both with and without

prefetching.

Out-of-Order. Although our trace-based methodology does not

allow detailed out-of-order (OoO) modeling, we can approximate

the latency hiding and additional memory pressure of OoO by em-

ulating an instruction window during trace replay. We make the

simplifying assumption that all memory operations within any 128-

instruction window are independent, thereby modeling an upper

bound on memory-level parallelism (MLP). Note that we still model a

single-issue pipeline, hence, our instruction window creates MLP, but

has no impact on instruction-level parallelism. Figure 17 compares

the average CPI of the in-order and OoO designs, with and without

CoScale, normalized to the in-order result. At one extreme, OoO

drastically improves MEM, as memory stalls can frequently over-

lap. At the other extreme, ILP gains no benefit, since the infrequent

L2 misses do not overlap frequently enough to impact performance.

Note that, in the OoO+CoScale cases, performance remains within

10% of the OoO case; that is, CoScale is still maintaining the target

degradation bound. Although we do not show these results in the

figure, similar to the in-order case, Semi-coordinated on OoO meets

the performance requirement, whereas Uncoordinated on OoO does

not – Uncoordinated on OoO degrades performance by up to 16%,

on a 10% performance loss bound.

Figure 18 shows average energy per instruction normalized to In-

order. As we do not model any power overhead for OoO hardware

structures (only the effects of higher instruction throughput and mem-

ory traffic), OoO always breaks even (ILP and MIX) or improves

(MEM and MID) energy efficiency over In-order. Across the work-

loads, CoScale provides similar percent energy-efficiency gains for

OoO as for In-order. The MEM case is the most interesting, as OoO

has the largest impact on this workload. OoO increases memory bus

utilization substantially (35% on average and up to 50%) and also

results in far more queueing in the memory system (43% on average).

The increased memory traffic balances with a reduced sensitivity

152

��

���

���

���

���

����

����

��� ��� ��� ���

��
��
�	
��

�

��
�
��
�
��

�������� ���
��	�����
������ ���
������

Figure 17: In-order vs OoO: performance. CoScale is within the perfor-
mance bound in both in-order and OoO.

��

���

���

���

���

����

����

��� ��� ��� ���

�	

�
��
�	

�
�	
��
���
��
��
�
��

��	����� ���
��	�����
������ ���
������

Figure 18: In-order vs OoO: energy. CoScale saves similar percent of
energy in in-order and OoO.

to memory latency, and CoScale selects roughly the same memory

frequencies under In-order and OoO. Interestingly, because of la-

tency hiding, the MEM workload is more CPU-bound under OoO,

and CoScale selects a slightly higher CPU frequency (5% higher on

average). Again, we do not show results for Semi-coordinated and

Uncoordinated on OoO in the figure, but their results are similar to

those on an in-order design. Semi-coordinated on OoO causes fre-

quency oscillation and leads to higher (up to 8%, and 4% on average)

energy consumption than CoScale. Uncoordinated on OoO saves a

little more energy (1% on average) than CoScale, but it violates the

performance target significantly as mentioned above.

Summary. These sensitivity studies demonstrate that CoScale’s

performance modeling and control frameworks are robust—across

the parameter space, CoScale always meets the target performance

bound, while energy savings vary in line with expectations. Although

the results in this subsection focused mostly on the MID workloads,

we observed similar trends with the other workloads as well.

5. Conclusion

We proposed CoScale, a hardware-software approach for managing

CPU and memory subsystem energy (via DVFS) in a coordinated

fashion, under performance constraints. Our evaluation showed that

CoScale conserves significant CPU, memory, and full-system energy,

while staying within the performance bounds; that it is superior to

four competing energy management techniques; and that it is robust

over a wide parameter space. We conclude that CoScale’s potential

benefits far outweigh its small hardware costs.

Acknowledgements

This research was partially supported by Google and the National

Science Foundation under grants #CCF-0916539, #CSR-0834403,

and #CCF-0811320.

References
[1] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Com-

puting. IEEE Computer, 40(12):33–37, 2007.
[2] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture, 2009.

[3] F. Bellosa. The Benefits of Event-Driven Energy Accounting in Power-
Sensitive Systems. In SIGOPS European Workshop ’00, 2000.

[4] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, G. Saidi, and S. Reinhardt.
The M5 Simulator: Modeling Networked Systems. IEEE Micro, 26(4),
July 2006.

[5] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach. In MICRO, 2008.

[6] M. Chen, X. Wang, and X. Li. Coordinating Processor and Main
Memory for Efficient Server Power Control. In ICS, 2011.

[7] H. David, C. Fallin, E. Gorbatov, U. Hanebutte, and O. Mutlu. Memory
Power Management via Dynamic Voltage/Frequency Scaling. In ICAC,
2011.

[8] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. J. Irwin. Hardware and Software Techniques for Controlling DRAM
Power Modes. IEEE Transactions on Computers, 50(11), 2001.

[9] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini.
MultiScale: Memory System DVFS with Multiple Memory Controllers.
In ISLPED, 2012.

[10] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini.
MemScale: Active Low-Power Modes for Main Memory. In ASPLOS,
2011.

[11] B. Diniz, D. Guedes, W. M. Jr, and R. Bianchini. Limiting the Power
Consumption of Main Memory. ISCA ’07: International Symposium on
Computer Architecture, 2007.

[12] X. Fan, C. Ellis, and A. Lebeck. Memory Controller Policies for DRAM
Power Management. In ISLPED, 2001.

[13] X. Fan, C. S. Ellis, and A. R. Lebeck. The Synergy between Power-
aware Memory Systems and Processor Voltage Scaling. In PACS, 2003.

[14] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A Performance-
Conserving Approach for Reducing Peak Power Consumption in Server
Systems. In ICS, 2005.

[15] E. Gorbatov, 2010. Personal communication.
[16] S. Herbert and D. Marculescu. Analysis of Dynamic Voltage/Frequency

Scaling in Chip-Multiprocessors. In ISLPED, 2007.
[17] Intel. Intel R© Xeon R© Processor 5600 Series, 2010.
[18] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End

Processors: Methodology and Empirical Data. In MICRO, 2003.
[19] JEDEC. DDR3 SDRAM Standard, 2009.
[20] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for

Power-Efficiency. Synthesis Lectures on Computer Architecture, 2009.
[21] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System Level Analysis

of Fast, Per-Core DVFS Using On-Chip Switching Regulators. In HPCA,
2008.

[22] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware Page
Allocation. In ASPLOS, 2000.

[23] H.-W. Lee, K.-H. Kim, Y.-K. Choi, J.-H. Shon, N.-K. Park, K.-W. Kim,
C. Kim, Y.-J. Choi, and B.-T. Chung. A 1.6V 1.4 Gb/s/pin Consumer
DRAM with Self-Dynamic Voltage-Scaling Technique in 44nm CMOS
Technology. In ISSCC, 2011.

[24] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller. Energy Management for Commercial Servers. IEEE Computer,
36(12), December 2003.

[25] D. Levinthal. Performance Analysis Guide for Intel R© Core TM i7
Processor and Intel R© Xeon TM 5500 processors, 2009.

[26] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. Mc-
PAT: An Integrated Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In MICRO, 2009.

[27] X. Li, R. Gupta, S. Adve, and Y. Zhou. Cross-component energy
management: Joint adaptation of processor and memory. In ACM Trans.
Archit. Code Optim., 2007.

[28] X. Li, Z. Li, F. M. David, P. Zhou, Y. Zhou, S. V. Adve, and S. Kumar.
Performance-directed energy management for main memory and disks.
In ASPLOS, 2004.

[29] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch. Disaggregated Memory for Expansion and Sharing in Blade

153

Servers. In ISCA, 2009.
[30] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating

Server Idle Power. In ASPLOS, 2009.
[31] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.

Power Management of Online Data-Intensive Services. In ISCA, 2011.
[32] Micron. 1Gb: x4, x8, x16 DDR3 SDRAM, 2006.
[33] Micron. Calculating Memory System Power for DDR3, July 2007.
[34] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. DMA-Aware Memory

Energy Management. In HPCA, 2006.
[35] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder.

Using SimPoint for Accurate and Efficient Simulation Erez Perelman.
In SIGMETRICS, 2003.

[36] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No
"Power" Struggles: Coordinated Multi-level Power Management for the
Data Center. In ASPLOS, 2011.

[37] D. Snowdon, S. Ruocco, and G. Heiser. Power Management and Dy-
namic Voltage Scaling: Myths and Facts. In Power Aware Real-time
Computing, 2005.

[38] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis. Micro-Pages: Increasing DRAM Efficiency with Locality-
Aware Data Placement. In ASPLOS, 2010.

[39] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio, F. Rawson, and
J. Carter. Architecting for Power Management: The IBM POWER7
Approach. In HPCA, 2010.

[40] G. Yan, Y. Li, Y. Han, X. Li, M. Guo, and X. Liang. AgileRegulator: A
Hybrid Voltage Regulator Scheme Redeeming Dark Silicon for Power
Efficiency in a Multicore Architecture. In HPCA, 2012.

[41] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled DIMM: Building
High-Bandwidth Memory System Using Low-Speed DRAM Devices.
In ISCA, 2009.

154

Predicting Performance Impact of DVFS for Realistic Memory Systems

Rustam Miftakhutdinov† Eiman Ebrahimi‡ Yale N. Patt†
†The University of Texas at Austin ‡Nvidia Corporation

{rustam,patt}@hps.utexas.edu ebrahimi@hps.utexas.edu

Abstract
Dynamic voltage and frequency scaling (DVFS) can make modern
processors more power and energy efficient if we can accurately
predict the effect of frequency scaling on processor performance.
State-of-the-art DVFS performance predictors, however, fail to accu-
rately predict performance when confronted with realistic memory
systems. We propose CRIT+BW, the first DVFS performance predic-
tor designed for realistic memory systems. In particular, CRIT+BW
takes into account both variable memory access latency and per-
formance effects of prefetching. When evaluated with a realistic
memory system, DVFS realizes 65% of potential energy savings when
using CRIT+BW, compared to less than 34% when using previously
proposed DVFS performance predictors.

1. Introduction
Dynamic voltage and frequency scaling (DVFS) [1, 15] enables sig-

nificant improvements in power and energy efficiency of modern

processors. With DVFS support, a processor can alter its perfor-

mance and power consumption on the fly by changing its frequency

and supply voltage. This ability allows the processor to continuously

adapt to dynamically changing application characteristics.

Exploiting the full potential of DVFS requires accurate perfor-

mance and power prediction. If the processor can accurately predict

what its performance and power consumption would be at any op-

erating point, it can switch to the optimal operating point for any

efficiency metric (e.g., energy or energy-delay-squared).

Existing DVFS performance predictors, however, fail to accurately

predict performance under frequency scaling due to their unrealistic

view of the off-chip memory system. Recently, two DVFS perfor-

mance predictors have been proposed: leading loads [12,20,34]1 and

stall time [12,20]. Both assume a linear DVFS performance model,

which, as we show in Section 3.2, does not model the performance

effects of prefetching. In addition, leading loads was inspired by a

simplified constant access latency view of memory and breaks down

when confronted with a more realistic variable latency memory sys-

tem. Figure 1 illustrates how the fraction of potential energy savings2

actually realized by leading loads and stall time on memory-intensive

workloads decreases as we increase the realism of the modeled mem-

ory system.

In this paper, we propose CRIT+BW, the first DVFS performance

predictor for an out-of-order processor with a realistic DRAM sys-

tem and a streaming prefetcher. We focus on the realism of the

memory system because the effect of chip frequency scaling on per-

formance depends largely on memory system behavior (as described

in Section 2.2). Therefore, any DVFS performance predictor must be

designed for and evaluated with a realistic memory system.

We develop CRIT+BW in two steps. First, we address variable

memory access latency—a key characteristic of modern DRAM sys-

tems ignored by leading loads. To this end, we design CRIT, a DVFS

1These three works propose very similar techniques. We use the name “leading loads”
from Rountree et al. [34] for all three proposals.

2Section 4.3 describes the dynamic optimal DVFS policy used to calculate potential
energy savings.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Constant Memory
Latency

Realistic DRAM Realistic DRAM +
Streaming Prefetcher

E
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

Leading loads Stall time Potential

<0.1%

Figure 1: Energy savings realized by leading loads and stall time
versus potential energy savings on 13 memory-intensive
SPEC 2006 benchmarks

performance predictor that accounts for variable memory access

latency. The key idea is to predict the memory component of execu-

tion time by measuring the critical path through memory requests

(hence the name “CRIT”). Second, we show that in the presence

of prefetching, performance may be limited by achievable DRAM

bandwidth—an effect ignored in the linear DVFS performance model

used by leading loads and stall time. We develop a new limited band-
width DVFS performance model that accounts for this effect and

extend CRIT to use this performance model; CRIT+BW is the result

(“BW” is shorthand for “bandwidth”).

We evaluate CRIT+BW on an out-of-order processor capable of

scaling the chip frequency from 1.5 GHz to 4.5 GHz, featuring

a streaming prefetcher and a modern 800 MHz DDR3 SDRAM

memory system. Across SPEC 2006, CRIT+BW realizes 65% of

potential energy savings, compared to 34% for stall time and 12%

for leading loads.

2. Background

2.1. Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) [1,15] helps increase

power and energy efficiency of modern processors. DVFS does

so by allowing the processor to switch between operating points
(voltage/frequency combinations) at runtime. This capability gives

rise to the problem of choosing the optimal operating point at runtime.

Traditionally, DVFS has been applied at the chip level only;

recently, however, other DVFS domains have been proposed.

David et al. [9] propose DVFS for off-chip memory and Intel’s West-

mere [23] supports multiple voltage/clock domains inside the chip.

In this work, we focus on chip level DVFS.

2.2. DVFS Performance and Power Prediction

Estimating the performance impact of changing the chip’s operating

point is critical to choosing the optimal operating point. Which

operating point is optimal depends on the chosen efficiency metric,

e.g., energy or energy-delay-squared. All commonly used efficiency

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.23

155

Chip Activity

Memory

Requests

Phase

Load A

Load B

Load C

Load D

Load E

Compute Memory Compute Memory Compute
Time

Figure 2: Two-phase abstract view of out-of-order execution used by leading loads

metrics are functions of execution time and power. Hence, choosing

an optimal operating point requires a prediction of both performance

and power at each of the available operating points. In this paper, we

focus on performance prediction.

Predicting performance at different chip frequencies is made par-

ticularly difficult by the interaction between frequency scaling and

the memory system’s effect on performance. While memory latencies

(as measured in seconds) are not affected by chip frequency scaling,

they do scale with chip frequency in terms of processor cycles. The

impact of these delay fluctuations on processor performance depends

on the application, which further complicates DVFS performance

prediction.

A DVFS performance predictor generally employs a performance
model that predicts performance across a range of frequencies based

on parameters measured at runtime. Specifically, the predictor mea-

sures these parameters during an execution interval and feeds them

into the performance model to produce a performance estimate for

every available frequency. These estimates, together with the cor-

responding power estimates, are then used to select the estimated

optimal operating point for the next execution interval. Once the next

execution interval ends, the process repeats.

Most published DVFS performance predictors [5–8, 10, 25, 29]

rely on existing performance counters as inputs to their performance

models. Many [5–8,25] use statistical regression analyses to correlate

measured parameters with observed performance. An alternative

approach is to design new hardware counters based on insight into

the microarchitectural effects of frequency scaling, as done by the

leading loads and stall time mechanisms described below.

2.2.1. Leading Loads. Leading loads [12, 20, 34] is a state-of-the-

art DVFS performance predictor for out-of-order processors. The

leading loads predictor was designed based on two simplifying as-

sumptions about the memory system:

1. all memory requests have the same latency, and

2. after an instruction fetch or a data load misses in the last level

cache and generates a memory request, the processor continues

to execute but eventually runs out of ready instructions and stalls

before the memory request returns.

Figure 2 shows the abstract view of execution implied by these

assumptions. In this view, the out-of-order processor splits its time be-

tween two alternating phases: compute and memory. In the compute
phase, the processor runs without generating any memory requests

due to instruction fetches or data loads. As soon as the processor

generates the first such memory request, the compute phase ends

and the memory phase begins. At first, the out-of-order processor

continues to execute instructions independent of the original memory

request and may generate more memory requests. Eventually, how-

ever, the processor runs out of ready instructions and stalls. Since the

processor generated the memory requests at roughly the same time,

execution time T

cycle time t0

Tmemory

Ccompute× t

Figure 3: Linear DVFS performance model

and the memory requests have the same latencies, they return data to

the chip at about the same time as well. As soon as the first memory

request returns, the memory phase ends and another compute phase

begins.

This two-phase view of execution predicts a linear relationship

between execution time T and chip cycle time t. To show this, we let

T = Tcompute +Tmemory,

where Tcompute denotes the total length of the compute phases and

Tmemory denotes the total length of the memory phases. As t changes

due to DVFS, the number of cycles Ccompute the chip spends in

compute phases stays constant; hence

Tcompute(t) = Ccompute× t.

Meanwhile, Tmemory remains constant for every frequency. Thus,

given measurements of Ccompute and Tmemory at any cycle time, we

can predict execution time at any other cycle time:

T (t) = Ccompute× t +Tmemory. (1)

Figure 3 illustrates this linear model.

Leading loads introduces a hardware counter that continually ac-

cumulates Tmemory. In each memory phase, the latency of the first

memory request generated by a load is added to the counter; hence the

name “leading loads.” To estimate Ccompute, leading loads employs

existing performance counters to measure T (t) and calculates

Ccompute =
T (t)−Tmemory

t
.

Note that, even though leading loads is derived from a simplified

constant access latency view of memory, the mechanism can still be

applied to more realistic memory systems.

2.2.2. Stall Time. Like leading loads, the stall time [12, 20] DVFS

predictor uses the linear DVFS performance model. The key idea is

156

Chip Activity

Memory

Requests

Load A

Load B

Load C

Writeback

Store

Load D

Load E

Time

Figure 4: Abstract view of out-of-order processor execution with a variable latency memory system

simple: the time the processor spends unable to retire instructions

due to an outstanding off-chip memory access should stay roughly

constant as chip frequency is scaled (since this time depends largely

on memory latency, which stays constant). The stall time predictor

uses this time as the memory component of execution time (Tmemory

in Equation 1).

Unlike leading loads, the stall time predictor is not based on an

abstract view of execution. The connection between retirement stalls

due to memory accesses and Tmemory is intuitive but not mathemati-

cally precise.

2.3. Realistic Memory System Architecture

Modern memory systems employ dynamic random access memory

(DRAM) and streaming prefetching.

2.3.1. DRAM. In modern DRAM systems, contrary to leading loads’

simplified constant access latency view of memory, memory request

latency varies based on the addresses of the access stream [28]. Every

memory address is statically mapped to one of several memory banks
and one of many rows within its bank. Requests that map to different

banks can be serviced in parallel, while those that map to the same

bank have to be serviced serially. Among requests mapped to the

same bank, requests that map to the same row, a 2–8 KB aligned block

of memory, can be serviced faster than those that map to different

rows. Memory request latencies also vary due to their wait time in

the memory controller’s queues.

2.3.2. Streaming Prefetcher. Streaming prefetchers are used in

many commercial processors [2, 16, 24] and can greatly improve

performance of memory intensive applications that stream through

contiguous data arrays. Streaming prefetchers do so by detecting

memory access streams and generating memory requests for data

the processor will request further down stream. A well-performing

streaming prefetcher significantly increases processor demand for

memory bandwidth.

3. DVFS Performance Prediction on Realistic Memory
Systems

We develop CRIT+BW, our DVFS performance predictor for realistic

memory systems, in two steps.

First, we design CRIT, a DVFS performance predictor for a pro-

cessor with a realistic DRAM system but no prefetcher. Like leading

loads and stall time, CRIT measures the memory component of ex-

ecution time within the confines of the linear DVFS performance

model.

Second, we extend CRIT to account for performance effects of

prefetching. We show that timely prefetching exposes the limiting

effect of memory bandwidth on performance and develop a new

DVFS performance model that accounts for this effect. The complete

CRIT+BW predictor consists of the limited bandwidth DVFS perfor-

mance model and hardware mechanisms that measure its parameters.

3.1. Realistic DRAM System with No Prefetching
Introducing a realistic DRAM system breaks the leading loads’ ab-

stract view of execution based on constant latency memory. Specifi-

cally, memory requests can now have very different latencies depend-

ing on whether they contend for DRAM banks and whether they map

to the same row. Hence, the abstract view of processor execution

relied on by leading loads becomes incorrect and, as we demonstrated

in Figure 1, the predictor becomes ineffective.

Still, in the absence of prefetching, the other premise of leading

loads (and stall time) still applies: after sending out a few instruction

fetch or data load memory requests the processor eventually stalls.

Figure 4 illustrates the abstract view of processor execution when

memory latency is allowed to vary. Note that the processor eventually

stalls under fetch and load memory requests.

This observation implies that execution time can still be modeled

as the sum of a memory component whose latency remains constant

under DVFS, and a compute component whose latency under DVFS

changes in proportion to cycle time. Hence, the linear DVFS per-

formance model (Equation 1) still applies in the case of a variable

access latency memory system.

The introduction of variable memory access latencies, however,

complicates the task of measuring the memory component Tmemory.

We must now calculate how execution time is affected by multiple

memory requests with very different behaviors. Some of these re-

quests are serialized (the first returns its data to the chip before the

second one enters the memory controller). This serialization may be

due to:

1. program dependencies (e.g., pointer chasing), or

2. limited core resources (e.g., if the out-of-order instruction win-

dow is too small to simultaneously contain both instructions

corresponding to the two memory requests).

Other requests, however, overlap freely.

To estimate Tmemory in this case, we recognize that in the linear

DVFS performance model, Tmemory is the limit of execution time as

chip frequency approaches infinity (or, equivalently, as chip cycle

time approaches zero). In that scenario, the execution time equals the

length of the longest chain of dependent memory requests that stall

the processor (i.e., data loads and instruction fetches). We refer to

this chain as the critical path through the memory requests.

To calculate the critical path, we must know which memory re-

quests are dependent (and remain serialized at all frequencies) and

which are not. We observe that independent memory requests al-

most never serialize; the memory controller schedules independent

requests as early as possible to overlap their latencies. Hence, we

make the following assumption:

If two memory requests are serialized (the first one com-

pletes before the second one starts), the second one de-

pends on the first one.

157

Pglobal

Chip Activity

Memory

Requests

Load A

Load B

Load C

Writeback

Store

Load D

Load E

0 A B A+C A+C+EA+C+D
Time

Figure 5: Critical path calculation example

3.1.1. Hardware Mechanism. We now describe CRIT, the hardware

mechanism that uses the above assumption to estimate the critical

path through load and fetch memory requests. CRIT maintains one

global critical path counter Pglobal and, for each outstanding DRAM

request i, a critical path timestamp Pi. Initially, the counter and

timestamps are set to zero. When a request i enters the memory

controller, the mechanism copies Pglobal into Pi. After some time ΔT
the request completes its data transfer over the DRAM bus. At that

time, if the request was generated by an instruction fetch or a data

load, CRIT sets Pglobal = max(Pglobal,Pi +ΔT). As such, after each

fetch or load request i, CRIT updates Pglobal if request i is at the end

of the new longest path through the memory requests.

Figure 5 illustrates how the mechanism works. We explain the

example step by step:

1. At the beginning of the example, Pglobal is zero and the chip is

in a compute phase.

2. Eventually, the chip incurs two load misses in the last level

cache and generates two memory requests, labeled Load A and

Load B. These misses make copies of Pglobal, which is still zero

at that time.

3. Load A completes and returns data to the chip. Our mechanism

adds the request’s latency, denoted as A, to the request’s copy

of Pglobal. The sum represents the length of the critical path

through Load A. Since the sum is greater than Pglobal, which is

still zero at that time, the mechanism sets Pglobal to A.

4. Load A’s data triggers more instructions in the chip, which gen-

erate the Load C request. Load C makes a copy of Pglobal, which

now has the value A (the latency of Load A). Initializing the

critical path timestamp of Load C with the value A captures the

dependence between Load A and Load C: the latency of Load C
will eventually be added to that of Load A.

5. Load B completes and ends up with B as its version of the critical

path length. Since B is greater than A, B replaces A as the length

of the global critical path.

6. Load C completes and computes its version of the critical path

length as A + C. Again, since A + C > B, CRIT sets Pglobal

to A + C. Note that A + C is indeed the length of the critical

path through Load A, Load B, and Load C.

7. We ignore the writeback and the store because they do not cause

a processor stall.

8. Finally, the chip generates requests Load D and Load E, which

add their latencies to A + C and eventually result in Pglobal =
A+C+E.

We can easily verify the example by tracing the longest path between

dependent loads, which indeed turns out to be the path through Load A,

Load C, and Load D. Note that, in this example, leading loads would

incorrectly estimate Tmemory as A+C+D.

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800

T
im

e
p

er
 i

n
st

ru
ct

io
n

 (
p

s)
Cycle time (ps)

Figure 6: Time per instruction versus cycle time for bwaves with a
streaming prefetcher enabled

3.2. Realistic DRAM System with Prefetching

Adding a prefetcher to the system changes the effect of DVFS on

performance. Figure 6 shows time per instruction (TPI) for 100K

retired instructions from bwaves at sixteen different cycle times

(666–222 ps or 1.5–4.5 GHz) with a streaming prefetcher enabled.

Note that these data points do not admit a linear approximation.

This example is one of many where the linear performance model

used by leading loads, stall time, and CRIT fails in the presence of

prefetching.

The linear performance model fails due to the special nature of

prefetching. Unlike demand memory requests, a prefetch request

is issued in advance of the instruction that consumes the request’s

data. A prefetch request is timely if it fills the cache before the

consumer instruction accesses the cache. Timely prefetches do not

cause processor stalls; hence, their latencies do not affect execution

time. Without stalls, however, the processor may generate prefetches

at a high rate, exposing another performance limiter: the rate at which

the memory system can satisfy memory requests (i.e., the memory

bandwidth).

3.2.1. Limited Bandwidth Performance Model. We now describe

a performance model, illustrated in Figure 7, that takes into account

the performance limiting effect of finite memory bandwidth exposed

by prefetching. This model splits the chip frequency range into two

parts:

1. the low frequency range where the DRAM system can service

memory requests at a higher rate than the chip generates them,

and

2. the high frequency range where the DRAM system cannot ser-

vice memory requests at the rate they are generated.

In the low frequency range, shown to the right of tcrossover in

Figure 7, the prefetcher runs ahead of the demand stream because the

DRAM system can satisfy prefetch requests at the rate the prefetcher

158

execution time T

cycle time t0

Tdemand

Ccompute× t

tcrossover

T min
memory

Tprefetch stall(t)

Figure 7: Limited bandwidth DVFS performance model

generates them. Hence, most prefetches are timely and instructions

that use prefetched data result in cache hits. Execution time in this

case is modeled by the original linear model, with only the non-

prefetchable demand memory requests contributing to the memory

component of the execution time, which we refer to as Tdemand.

In the high frequency range, shown to the left of tcrossover in Fig-

ure 7, the prefetcher fails to run ahead of the demand stream due

to insufficient DRAM bandwidth. As the demand stream catches

up to the prefetches, some demand requests stall the processor as

they demand data that the prefetch requests have not yet brought

into the cache. The delay due to these processor stalls is shown as

Tprefetch stall(t) in the figure.

Note that in the high frequency range the execution time is de-

termined solely by T min
memory: the minimum time the DRAM system

needs to satisfy all of the memory requests. Therefore, execution

time does not depend on chip frequency in this case.

The limited bandwidth DVFS performance model shown in Fig-

ure 7 has three parameters:

1. the critical path through non-prefetchable demand memory re-

quests Tdemand,

2. the number of cycles Ccompute that the chip spends in the com-

pute phase, and

3. the minimum time T min
memory required by the DRAM system to sat-

isfy the observed sequence of memory requests (both demands

and prefetches).

Given the values of these parameters, we can estimate the execution

time at any other cycle time t as follows:

T (t) = max
(

T min
memory, Ccompute× t +Tdemand

)
. (2)

3.2.2. Measuring Model Parameters. We now describe the hard-

ware mechanisms to measure the parameters of the limited bandwidth

DVFS performance model: Tdemand, Ccompute, and T min
memory. These

mechanisms, together with the limited bandwidth DVFS performance

model, comprise CRIT+BW—our complete DVFS performance pre-

dictor.

We measure Tdemand in almost the same way as we measure

Tmemory in CRIT (Section 3.1): by calculating the critical path

through memory requests. The only difference is that we exclude all

prefetch requests and prefetchable demand requests from this calcula-

tion (just like we exclude stores and writebacks in CRIT). As shown

in Figure 7, the extra chip stall time due to these prefetching-related

requests, Tprefetch stall(t), disappears at low frequencies. Therefore,

Storage Component Quantity Width Bits

Global critical path counter Pglobal 1 32 32
Copy of Pglobal per memory request 32 32 1024
Global DRAM slack counter 1 32 32
DRAM bus slack counter 1 32 32
Per DRAM bank slack counters 8 16 128
Prefetch stall counter 1 32 32

Total bits 1280

Table 1: Hardware storage cost of CRIT+BW

this time is not a part of Tdemand, which stays constant across frequen-

cies.

To calculate Ccompute we recognize that

T (t) = Tdemand +Ccompute× t +Tprefetch stall(t).

We can solve this equation for Ccompute if we can measure

Tprefetch stall(t). To this end, we introduce a new hardware counter

that tracks the time the processor is stalled while only prefetch re-

quests and prefetchable demand requests are outstanding. With

Tprefetch stall(t) now known, we have

Ccompute =
T (t)−Tdemand−Tprefetch stall(t)

t
.

Recall that T min
memory is defined as the minimum time the DRAM

system needs to satisfy all of the memory requests. We can calculate

T min
memory if we can measure the amount of slack Tmemory slack in the

memory system, because

T min
memory = T (t)−Tmemory slack(t). (3)

The description of the slack measurement hardware follows.

Whenever the memory controller schedules a DRAM command

(e.g., “precharge” or “column access”), it must ensure that the com-

mand does not violate DRAM timing constraints. Hence, the memory

controller can compute the slack of the DRAM command: how much

earlier could the DRAM command have been scheduled without

violating the DRAM timing constraints. The memory controller ac-

cumulates this slack separately for each DRAM bank and for the

DRAM bus.

The presence of DRAM slack, however, does not always imply

that the DRAM command could have been scheduled earlier. In fact,

the slack may be due to the inability of the memory controller to

schedule distant memory requests in parallel owing to the finite size

of its scheduling window.

We account for this limitation when measuring slack in order to not

overpredict the amount of reducible slack. To do this, we reset slack

measurement every slack measurement period, which ends whenever

the number of memory requests serviced within it reaches the size

of the scheduling window. At the end of each slack measurement

period, the memory controller finds the least slack among the banks

and the bus. The memory controller adds the least slack amount to

the global DRAM slack counter Tmemory slack and resets the bus and

bank slack counters, starting a new period. From any cycle time t we

can now calculate T min
memory using Equation 3.

3.3. Hardware Cost
Table 1 details the storage required by CRIT+BW. The additional

storage is only 1280 bits. The mechanism does not add any structures

or logic to the critical path of execution.

159

Frequency Front end OOO Core All Caches ICache DCache L2

Min 1.5 GHz Uops/cycle 4 Uops/cycle 4 Line size 64 B Size 32 KB 32 KB 1 MB
Max 4.5 GHz Branches/cycle 2 Pipe depth 14 MSHRs 32 Assoc. 4 4 8
Step 100 MHz BTB entries 4K ROB size 128 Repl. LRU Cycles 3 3 18

Predictor hybrida RS size 48 Ports 1R/1W 2R/1W 1

DRAM Controller Bus DDR3 SDRAM [28] Stream prefetcher [40]

Policy FR-FCFS [33] Freq. 800 MHz Chips 8×256 MB Row size 8 KB Streams 64 Distance 64

Window 32 requests Width 8 B Banks 8 CASb 13.75 ns Queue 128 Degree 4

a 64K-entry gshare + 64K-entry PAs + 64K-entry selector.
b CAS = tRP = tRCD = CL; other modeled DDR3 constraints: CWL, t{RC, RAS, RTP, BL, CCD, RRD, FAW, WTR, WR}.

Table 2: Simulated processor configuration

4. Methodology
We compare energy saved by CRIT+BW to that of the state-of-the-art

(leading loads and stall time) and to three kinds of potential energy

savings (computed using offline DVFS policies). Before presenting

the results, we justify our choice of energy as the efficiency met-

ric, describe our simulation methodology, explain how we compute

potential energy savings, and discuss our choice of benchmarks.

4.1. Efficiency Metric

Our choice of efficiency metric is driven solely by the need to evaluate

DVFS performance predictors. As such, the efficiency metric must

be implementable by a simple DVFS controller (so that most of the

benefit comes from DVFS performance prediction) and must allow

comparisons to optimal results. Note that we are not evaluating the

usefulness of DVFS itself.

We choose energy (or, equivalently,3performance per watt) by

eliminating the other metrics from the set of the four commonly used

ones: energy, energy delay product (EDP), energy delay-squared

product (ED2P), and execution time.

We eliminate EDP and ED2P because they complicate DVFS

performance predictor evaluation by 1) requiring another predictor

in the DVFS controller, and 2) precluding comparisons to optimal

results. Specifically, these metrics have the undesirable property

that the optimal frequency for an execution interval depends on the

behavior of the rest of execution. Therefore, the DVFS controller

must keep track of past long-term application behavior and predict

future long-term application behavior in addition to short-term DVFS

performance prediction we are evaluating. The necessity of this

additional prediction makes it hard to isolate the benefits of DVFS

performance prediction in the results. This undesirable property also

makes simulating an oracle DVFS controller infeasible, precluding

comparisons to optimal results. Sazeides et al. [35] discuss these

issues in greater detail.

We eliminate execution time as not applicable to chip-level DVFS.

In this scenario, optimizing execution time does not require a per-

formance prediction: the optimal frequency is simply the highest

frequency.

Therefore, of the four common efficiency metrics, only energy is

suitable for our evaluation.

4.2. Simulation Methodology

4.2.1. Timing Model. We use a cycle-accurate simulator of an x86

superscalar out-of-order processor. The simulator models port con-

tention, queuing effects, and bank conflicts throughout the cache

3Energy and performance per watt are equivalent in the sense that in any execution
interval, the same operating point is optimal for both metrics.

Component Parameter Value

Chip
@1.5 GHz @4.5 GHz

Static power (W) 9 28
Peak dynamic power (W) 2 58

DRAM

Static power (W) 1
Precharge energy (pJ) 79
Activate energy (pJ) 46
Read energy (pJ) 1063
Write energy (pJ) 1071

Other Static power (W) 40

Table 3: Power parameters

hierarchy and includes a detailed DDR3 SDRAM model. Table 2

lists the baseline processor configuration.

4.2.2. Power Model. We model three major system power compo-

nents: chip power, DRAM power, and other power (fan, disk, etc.).

We model chip power using McPAT 0.8 [26] extended to support

DVFS. Specifically, to generate power results for a specific chip

frequency f , we:

1. run McPAT with a reference voltage V0 and frequency f0,

2. scale voltage using V = max(Vmin,
f
f0

V0),

3. scale reported dynamic power using P = 1
2CV 2 f , and

4. scale reported static power linearly with voltage [3].

We model DRAM power using CACTI 6.5 [30] and use a constant

static power as a proxy for the rest of system power.

Table 3 details the power parameters of the system.

4.2.3. DVFS Controller. Every 100K retired instructions, the DVFS

controller chooses a chip frequency for the next 100K instructions.4

Specifically, the controller chooses the frequency estimated to cause

the least system energy consumption. To estimate energy consump-

tion at a candidate frequency f while running at f0, the controller:

1. obtains measurements of

• execution time T (f0),
• chip static power Pchip static(f0),
• chip dynamic power Pchip dynamic(f0),
• DRAM static power PDRAM static(f0),
• DRAM dynamic power PDRAM dynamic(f0), and

• other system power Pother(f0)

4We chose 100K instructions because it is the smallest quantum for which the time to
change chip voltage (as low as tens of nanoseconds [21, 22], translating to less than 1K
instructions) can be neglected.

160

for the previous 100K instructions from hardware performance

counters and power sensors,

2. obtains a prediction of execution time T (f) for the next 100K in-

structions from the performance predictor (either leading loads,

stall time, or CRIT+BW),

3. calculates chip dynamic energy Echip dynamic(f0) and DRAM

dynamic energy EDRAM dynamic(f0) for the previous interval

using E = PT ,

4. calculates Echip dynamic(f) by scaling Echip dynamic(f0) using

E = 1
2CV 2,

5. calculates Pchip static(f) = V
V0

Pchip static(f0) as in [3],

6. and finally calculates total estimated system energy

E(f) = Echip(f)+EDRAM(f)+Eother(f)

= Pchip static(f)×T (f)+Echip dynamic(f)+

PDRAM static(f0)×T (f)+EDRAM dynamic(f)+

Pother(f0)×T (f).

To isolate the effect of DVFS performance predictor accuracy on

energy savings, we do not simulate delays associated with switch-

ing between frequencies. Accounting for these delays requires an

additional prediction of whether the benefits of switching outweigh

the cost. If the accuracy of that prediction is low, it could hide the

benefits of high performance prediction accuracy, and vice versa.

4.3. Offline Policies

We model three offline DVFS controller policies: dynamic optimal,
static optimal, and perfect memoryless.

The dynamic optimal policy places a lower bound on energy con-

sumption. We compute this bound as follows:

1. run the benchmark under study at each chip frequency,

2. for each interval, find the minimum consumed energy across all

frequencies,

3. total the per-interval minimum energies.

The static optimal policy chooses the chip frequency that mini-

mizes energy consumed by the benchmark under study, subject to

the constraint that frequency must remain the same throughout the

run. The difference between dynamic and static optimal results yields

potential energy savings due to benchmark phase behavior.

The perfect memoryless policy simulates a perfect memoryless
performance predictor. We call a predictor memoryless if it assumes

that for each chip frequency, performance during the next interval

equals performance during the last interval. This assumption makes

sense for predictors that do not “remember” any state (other than the

measurements from the last interval); hence the name “memoryless.”

Note that all predictors discussed in this paper are memoryless. For

each execution interval, the perfect memoryless policy chooses the

chip frequency that would minimize energy consumption during the

previous interval.

The perfect memoryless policy provides a quasi-optimal5 bound on

energy saved by memoryless predictors. A large difference between

dynamic optimal and perfect memoryless results indicates that a

5We call this bound quasi-optimal because an imperfect memoryless predictor may
actually save more energy than the perfect memoryless predictor if the optimal frequency
for the previous interval does not remain optimal in the next interval.

memoryless predictor cannot handle the frequency of phase changes

in the benchmark under study. Getting the most energy savings out

of such benchmarks may require “memoryful” predictors that can

detect and predict application phases.6 We leave such predictors to

future work.

4.4. Benchmarks

We simulate SPEC 2006 benchmarks compiled using the GNU Com-

piler Collection version 4.3.6 with the -O3 option. We run each

benchmark with the reference input set for 200M retired instructions

selected using Pinpoints [32].

4.4.1. Benchmark Classification. To simplify the analysis of the

results, we classify the benchmarks based on their memory intensity

and the number of prefetch requests they trigger. We define a bench-

mark as memory-intensive if it generates more than 3 last level cache

misses per thousand instructions (with no prefetching). We define

a benchmark as prefetch-heavy if it triggers more than 5 prefetch

requests per thousand instructions. The resulting benchmark classes

are the same across all simulated frequencies.

5. Results

We show results for two configurations: with prefetching turned off

and with a streaming prefetcher. In both cases, we show normalized

energy reduction relative to the energy consumed at 3.7 GHz, the

most energy-efficient static frequency across SPEC 2006 (which

happens to be the same for both cases).

Before analyzing the results, we first explain their presentation

using Figure 8 as an example. Note that, for each benchmark, the

figure shows five bars within a wide box. The height of the box

represents dynamic optimal energy reduction. Since no other DVFS

policy can save more energy than dynamic optimal, we can use this

box to bound the other five bars. The five bars inside the box represent

energy reduction due to 1) leading loads, 2) stall time, 3) CRIT+BW,

4) optimal static DVFS policy, and 5) perfect memoryless DVFS

policy. This plot design allows for easy comparisons of realized and

potential gains for each benchmark and simplifies comparison of

potential gains across benchmarks at the same time.

5.1. Realistic DRAM with No Prefetching

Figure 8 shows realized and potential energy savings across thir-

teen memory-intensive workloads. On average, CRIT+BW and stall

time realize 5.5% and 5.1% out of potential 7.1% energy savings,

whereas leading loads only realizes 3%. For completeness, Figure 9

shows energy savings for low memory intensity benchmarks (note

the difference in scale).

The subpar energy savings by leading loads are due to its constant

memory access latency approximation. As described in Section 2.2.1,

leading loads accumulates the latency of the first load in each cluster

of simultaneous memory requests to compute the memory compo-

nent Tmemory of total execution time T . It turns out that in such

clusters, the leading load latency is usually less than that of the other

requests. In fact, this is the case in all memory-intensive benchmarks

except libquantum and lbm; in these eleven benchmarks the aver-

age leading load latency is only 74% of the average latency of the

other memory requests. This discrepancy is due to the fact that the

first memory request in a cluster is unlikely to contend with another

request for a DRAM bank, whereas the later requests in the cluster

6Section 6.3 describes related work on phase prediction.

161

-5

 0

 5

 10

 15

 20

mcf

lib
quantum

omnetpp

bwaves
milc

zeusm
p

cactusA
DM

lesli
e3d

soplex

GemsF
DTD lbm wrf

sphinx3
gmean

E
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

Leading loads Stall time CRIT+BW Static optimal Perfect memoryless Dynamic optimal

Figure 8: Realized and optimal energy savings for memory-intensive benchmarks (no prefetching)

-1

 0

 1

 2

 3

perlb
ench

bzip2 gcc

gobmk

hmmer
sje

ng

h264ref
asta

r

xalancbmk

gamess
namd

dealII

povray

calculix
tonto

gmean

E
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

Leading loads Stall time CRIT+BW Static optimal Perfect memoryless Dynamic optimal

Figure 9: Realized and optimal energy savings for non-memory-intensive benchmarks (no prefetching)

-5

 0

 5

 10

 15

 20

mcf

lib
quantum

omnetpp

bwaves
milc

lesli
e3d

soplex

GemsF
DTD lbm

sphinx3
gmean

E
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

-13.8% -11.1%

Leading loads Stall time CRIT+BW Static optimal Perfect memoryless Dynamic optimal

Figure 10: Realized and optimal energy savings for prefetch-heavy benchmarks

-3
-2
-1
 0
 1
 2
 3
 4
 5
 6

zeusm
p

cactusA
DM wrf

perlb
ench

bzip2 gcc

gobmk

hmmer
sje

ng

h264ref
asta

r

xalancbmk

gamess
namd

dealII

povray

calculix
tonto

gmean

E
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

Leading loads Stall time CRIT+BW Static optimal Perfect memoryless Dynamic optimal

Figure 11: Realized and optimal energy savings for prefetch-light benchmarks

162

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800

T
im

e
p

er
 i

n
st

ru
ct

io
n

 (
p

s)

Cycle time (ps)

Reference
point for
all three
predictors

Measured

Predicted by:

 CRIT+BW

 leading loads and stall time

Figure 12: Measured and predicted TPI on bwaves with streaming
prefetcher enabled

likely have to wait for the earlier ones to free up the DRAM banks.

This underestimate of Tmemory results in subpar energy savings, exem-

plified by bwaves and cactusADM on which leading loads actually

consumes more energy than the baseline.

The fact that stall time beats leading loads supports our original

argument that DVFS performance predictors must be designed for

and evaluated with a realistic memory system. Both our experiments

and prior work [12, 20] show that when evaluated with a constant

access latency memory, leading loads saves more energy than stall

time. Evaluation of the two predictors with a realistic DRAM system,

however, shows this conclusion to be incorrect.

Note that CRIT+BW, the mechanism we derived from an abstract

view of execution in Section 3, outperforms stall time, a mechanism

based on a less precise view of execution, by a relatively small margin

(5.5% vs. 5.1% energy saved). It is unclear, however, whether the

approximations that make stall time work will hold in all configura-

tions.

5.2. Realistic DRAM with Stream Prefetching

Figure 10 shows realized and potential energy reduction across ten

prefetch-heavy benchmarks with a streaming prefetcher enabled. On

average, CRIT+BW realizes 5% out of potential 7.6% energy savings,

whereas stall time and leading loads only realize 1.8% and less

than 0.1%, respectively. For completeness, Figure 11 shows energy

savings for prefetch-light benchmarks (note the difference in scale).

5.2.1. Prediction Example. To provide insight into why CRIT+BW

bests the competition on prefetch-heavy workloads, we analyze per-

formance predictions generated by all three predictors for an interval

of bwaves, the prefetch-heavy benchmark we use to motivate the

limited bandwidth DVFS performance model in Section 3.2. Fig-

ure 12 contrasts the performance predictions generated by CRIT+BW,

leading loads, and stall time. In particular, the figure shows:

1. sixteen thick dots representing measured time per instruction

(TPI) at sixteen frequencies,

2. a dashed line showing TPI predicted by both leading loads and

stall time while running at 1.9 GHz, and

3. a solid curve showing TPI predicted by CRIT+BW while run-

ning at 1.9 GHZ.

Note that all three predictions for low frequencies (right half of the

figure) are identical. The reason lies in the highly streaming nature

of bwaves that enables the prefetcher to eliminate all demand misses

in the interval. Therefore, all three predictors estimate the memory

-20

-10

 0

 10

 20

-20 -10 0 10 20

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

 Δ
 (

%
)

Normalized Power Δ (%)

mcf

libquantum

omnetpp

bwaves

milc

leslie3d

soplex

GemsFDTD

lbm

sphinx3

Figure 13: Performance delta versus power delta under DVFS with
CRIT+BW for prefetch-heavy benchmarks

component of execution time to be zero, predicting performance to

scale proportionately with frequency.

On the other hand, predictions for higher frequencies diverge;

CRIT+BW predicts that TPI saturates at 188 ps per instruction,

whereas leading loads and stall time still predict performance to

scale proportionally with frequency. Comparing the predictions to

measured TPI demonstrates that accounting for limited memory band-

width allows CRIT+BW to be more accurate than both leading loads

and stall time.

Due to this prediction inaccuracy, a DVFS controller using either

leading loads or stall time has to act on skewed estimates of energy

consumption at high frequencies. Specifically, the controller may

choose a high frequency and waste a lot of power for no performance

benefit, losing out on potential energy savings.

5.2.2. Power and Performance Tradeoff. Figure 13 details how

CRIT+BW trades off power and performance to reduce energy. The

figure plots performance delta versus power delta (normalized to

performance and power achieved at the baseline 3.7 GHz frequency).

The diagonal line consists of points where performance and power

deltas are equal, resulting in the same energy as the baseline.

CRIT+BW trades off power and performance differently across

workloads. On GemsFDTD, bwaves, and leslie, CRIT+BW spends

extra power for even more performance, while on lbm, mcf, milc,

omnetpp, soplex, and sphinx3 CRIT+BW allows performance to

dip to save more power.

Note that CRIT+BW improves performance and saves power on

libquantum. CRIT+BW does so by exploiting libquantum’s phase

behavior. In some phases, CRIT+BW spends extra power for more

performance; in others, it makes the opposite choice. On average,

both performance and power consumption improve.

5.3. Analysis of lbm

With and without prefetching, lbm stands out due to its large potential

energy savings which are not fully realized by CRIT+BW and the

other predictors. The reasons, however, are different for each case.

Without prefetching, the reason lies in the peculiar nature of the

benchmark. The majority (84%) of memory requests in lbm are stores

and writebacks, which do not stall the processor. At high frequencies,

however, the load memory requests are more likely to contend with

these stores and writebacks for DRAM banks, taking more time to

complete and thus violating the linear DVFS performance model

assumption that Tmemory stays the same across frequencies. This

leads CRIT+BW (and the other predictors) to underestimate the

performance effect of memory at high frequencies.

163

With prefetching, the reason lies in the details of memory request

scheduling. At high frequencies, lbm floods the memory system

with prefetches; this large number of memory requests allows the

memory controller to make better scheduling decisions and reduce

the number of row conflicts by up to 61%. The slack approach to

estimating T min
memory does not take this effect into account, resulting in

an overestimate of T min
memory.

5.4. Summary

When evaluated on an out-of-order processor featuring a streaming

prefetcher and a realistic DRAM system, CRIT+BW realizes 65%

of dynamically optimal energy savings (75% of perfect memory-

less energy savings) across all SPEC 2006 workloads, compared to

only 34% (40%) for stall time and 12% (14%) for leading loads.

6. Related Work

To our knowledge, this paper is the first to propose a DVFS perfor-

mance predictor designed to work with a realistic DRAM system.

Specifically, our predictor addresses two characteristics of realistic

DRAM systems which make DVFS performance prediction difficult:

varying memory request latencies and prefetching, neither of which

are considered by the state-of-the-art [12, 20, 34].

We have already compared our predictor to leading loads and stall

time. Here we briefly discuss three major areas of related work:

performance and power prediction for DVFS, analytical performance

models, and phase prediction.

6.1. Performance and Power Prediction for DVFS

Most prior papers on DVFS performance and power prediction [5–

8, 10, 25, 29] address the problem above the microarchitectural level

and do not explore hardware modification. Hence, these approaches

can only use already existing hardware performance counters as

inputs to their performance and power models. These counters were

not designed to predict the performance impact of DVFS and thus

do not work well for that purpose. Hence, these papers resort to

statistical [5–8, 25] and machine learning [10, 29] techniques.

In contrast, we design new hardware counters with the explicit goal

of aiding DVFS performance prediction. This approach was intro-

duced by leading loads [12, 20, 34] and stall time [12, 20] proposals

and extended to power prediction by Spiliopoulos et al. [38].

The tradeoff between these two general approaches is as follows:

statistical and machine learning techniques are easier to apply to

complex prediction scenarios (e.g., per-core DVFS); however, our

approach of designing new hardware counters builds on an under-

standing of the underlying microarchitectural effects that ensures

robust predictions even for applications never seen before.

6.2. Analytical Performance Models

Traditional analytical performance models [4,11,13,14,19,27,31,37,

39] have a different purpose than the commonly used linear DVFS

performance model and our limited bandwidth DVFS performance

model. Specifically, traditional analytical models are used to gain

insight into the performance bottlenecks of modeled architectures

and drive design space exploration. These models are evaluated off-

line and target only a first order performance estimate. A DVFS

performance model, on the other hand, is an analytical performance

model evaluated at runtime by the operating system or the hardware

power management unit and has to be accurate to be useful.

6.3. Phase Prediction

Phase detection and prediction mechanisms [17, 18, 36, 42] can help

improve DVFS performance prediction accuracy and hence the over-

all utility of DVFS. Specifically, a DVFS mechanism can benefit

from phase prediction by triggering re-training of the DVFS perfor-

mance predictor in the beginning of each phase, and switching to the

predicted optimal operating point for the rest of the phase.

7. Conclusions

We have shown that a DVFS performance predictor must be designed

with an accurate model of the memory system in mind.

We demonstrated quantitatively that previously proposed DVFS

performance predictors, designed with an over-simplified view of the

memory system (e.g., assuming a constant access latency or disregard-

ing prefetching), generate inaccurate performance predictions and

lose out on potential energy savings. In particular, we have shown

that the commonly used linear DVFS performance model breaks

down in the presence of prefetching because it does not account for

finite memory bandwidth.

To address these problems, we have 1) developed the limited

bandwidth DVFS performance model that takes memory bandwidth

into account, and 2) proposed CRIT+BW, a low cost mechanism

that accurately predicts the performance impact of frequency scaling

in the presence of a realistic memory system, realizing 65% of the

potential energy savings.

Acknowledgments

We thank Onur Mutlu, members of the HPS research group, our

shepherd Lieven Eeckhout, and the anonymous reviewers for their

comments and suggestions. We thank Rafael Ubal and other devel-

opers of Multi2Sim [41], from which we adapted the x86 functional

model that drives our performance simulator. We gratefully acknowl-

edge the support of the Cockrell Foundation and Intel Corporation.

References

[1] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS micropro-
cessor design,” in Proc. 28th Hawaii Int. Conf. Syst. Sci. (HICCS-28),
vol. 1, Jan. 1995, pp. 288–297.

[2] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas, “Bulldozer: An
approach to multithreaded compute performance,” IEEE Micro, vol. 31,
no. 2, pp. 6–15, Mar. 2011.

[3] J. A. Butts and G. S. Sohi, “A static power model for architects,” in Proc.
33rd ACM/IEEE Int. Symp. Microarchitecture (MICRO-33), Dec. 2000,
pp. 191–201.

[4] X. E. Chen and T. M. Aamodt, “Hybrid analytical modeling of pending
cache hits, data prefetching, and MSHRs,” in Proc. 41st ACM/IEEE Int.
Symp. Microarchitecture (MICRO-41), Nov. 2008, pp. 59–70.

[5] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance trade-off based
on the ratio of off-chip access to on-chip computation times,” in Proc.
Conf. Design, Automation, and Test in Europe (DATE 2004), vol. 1, Feb.
2004, pp. 4–9.

[6] G. Contreras and M. Martonosi, “Power prediction for Intel XScale
processors using performance monitoring unit events,” in Proc. 2005
Int. Symp. Low Power Electron. and Design (ISLPED’05), Aug. 2005,
pp. 221–226.

[7] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopou-
los, “Online power-performance adaptation of multithreaded programs
using hardware event-based prediction,” in Proc. 20th Int. Conf. Su-
percomputing (ICS’06), Cairns, Queensland, Australia, Jun. 2006, pp.
157–166.

164

[8] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
de Supinski, and M. Schulz, “Prediction models for multi-dimensional
power-performance optimization on many cores,” in Proc. 17th Int. Conf.
Parallel Arch. and Compilation Techniques (PACT’08), Oct. 2008, pp.
250–259.

[9] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Mem-
ory power management via dynamic voltage/frequency scaling,” in Proc.
8th ACM Int. Conf. Autonomic Computing (ICAC 2011), Jun. 2011, pp.
31–40.

[10] G. Dhiman and T. S. Rosing, “Dynamic voltage frequency scaling for
multi-tasking systems using online learning,” in Proc. 2007 Int. Symp.
Low Power Electron. and Design (ISLPED’07), Aug. 2007, pp. 207–212.

[11] P. G. Emma and E. S. Davidson, “Characterization of branch and data
dependencies in programs for evaluating pipeline performance,” IEEE
Trans. Comput. (TOC), vol. C-36, no. 7, pp. 859–875, Jul. 1987.

[12] S. Eyerman and L. Eeckhout, “A counter architecture for online DVFS
profitability estimation,” IEEE Trans. Comput. (TOC), vol. 59, pp. 1576–
1583, Nov. 2010.

[13] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst. (TOCS), vol. 27, pp. 3:1–3:37, May 2009.

[14] A. Hartstein and T. R. Puzak, “The optimum pipeline depth considering
both power and performance,” ACM Trans. Arch. and Code Optimiz.
(TACO), vol. 1, pp. 369–388, Dec. 2004.

[15] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital de-
sign,” in IEEE Symp. Low Power Electron. (ISLPE’94) Digest of Tech.
Papers, Oct. 1994, pp. 8–11.

[16] Intel 64 and IA-32 Architectures Optimization Reference Manual Ver-
sion 026, Intel Corporation, April 2012.

[17] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitor-
ing and prediction on real systems with application to dynamic power
management,” in Proc. 39th ACM/IEEE Int. Symp. Microarchitecture
(MICRO-39), Dec. 2006, pp. 359–370.

[18] C. Isci and M. Martonosi, “Phase characterization for power: Evaluating
control-flow-based and event-counter-based techniques,” in Proc. 12th
IEEE Int. Symp. High Perf. Comput. Arch. (HPCA-12), Feb. 2006, pp.
121–132.

[19] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proc. 31th Int. Symp. Comput. Arch. (ISCA 2004), Jun. 2004,
pp. 338–349.

[20] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-based models
for run-time DVFS orchestration in superscalar processors,” in Proc.
ACM Int. Conf. Computing Frontiers (CF’10), May 2010, pp. 287–296.

[21] W. Kim, D. Brooks, and G.-Y. Wei, “A fully-integrated 3-level DC-DC
converter for nanosecond-scale DVFS,” IEEE J. Solid-State Circuits
(JSSC), vol. 47, no. 1, pp. 206–219, Jan. 2012.

[22] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core DVFS using on-chip switching regulators,” in Proc.
14th IEEE Int. Symp. High Perf. Comput. Arch. (HPCA-14), Feb. 2008,
pp. 123–134.

[23] R. Kumar and G. Hinton, “A family of 45nm IA processors,” in 2009
IEEE Int. Solid-State Circuits Conf. (ISSCC 2009) Digest Tech. Papers,
Feb. 2009, pp. 58–59.

[24] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “IBM
POWER6 microarchitecture,” IBM J. of Research and Develop., vol. 51,
no. 6, pp. 639–662, Nov. 2007.

[25] S. J. Lee, H.-K. Lee, and P.-C. Yew, “Runtime performance projection
model for dynamic power management,” in Advances in Comput. Syst.
Arch. 12th Asia-Pacific Conf. (ACSAC 2007) Proc., ser. Lecture Notes
in Computer Science, Aug. 2007, vol. 4697, pp. 186–197.

[26] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
ACM/IEEE Int. Symp. Microarchitecture (MICRO-42), Dec. 2009, pp.
469–480.

[27] P. Michaud, A. Seznec, and S. Jourdan, “Exploring instruction-fetch
bandwidth requirement in wide-issue superscalar processors,” in Proc.
1999 Int. Conf. Parallel Arch. and Compilation Techniques (PACT’99),
Oct. 1999, pp. 2–10.

[28] MT41J512M4 DDR3 SDRAM Datasheet Rev. K, Micron Technology,
Inc., Apr. 2010, http://download.micron.com/pdf/datasheets/dram/ddr3/
2Gb_DDR3_SDRAM.pdf.

[29] M. Moeng and R. Melhem, “Applying statistical machine learning to
multicore voltage and frequency scaling,” in Proc. ACM Int. Conf. Com-
puting Frontiers (CF’10), May 2010, pp. 277–286.

[30] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP Laboratories, Tech. Rep. HPL-2009-
85, Apr. 2009.

[31] D. B. Noonburg and J. P. Shen, “Theoretical modeling of superscalar
processor performance,” in Proc. 27th ACM/IEEE Int. Symp. Microar-
chitecture (MICRO-27), Nov. 1994, pp. 52–62.

[32] H. Patil, R. S. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing representative portions of large Intel Ita-
nium programs with dynamic instrumentation,” in Proc. 37th ACM/IEEE
Int. Symp. Microarchitecture (MICRO-37), Dec. 2004, pp. 81–92.

[33] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens,
“Memory access scheduling,” in Proc. 27th Int. Symp. Comput. Arch.
(ISCA 2000), Jun. 2000, pp. 128–138.

[34] B. Rountree, D. K. Lowenthal, M. Schulz, and B. R. de Supinski, “Prac-
tical performance prediction under dynamic voltage frequency scaling,”
in 2011 Int. Green Computing Conf. and Workshops (IGCC’11), Jul.
2011.

[35] Y. Sazeides, R. Kumar, D. M. Tullsen, and T. Constantinou, “The danger
of interval-based power efficiency metrics: When worst is best,” Comp.
Arch. Lett. (CAL), vol. 4, no. 1, Jan. 2005.

[36] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in
Proc. 30th Int. Symp. Comput. Arch. (ISCA 2003), San Diego, California,
Jun. 2003, pp. 336–347.

[37] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vemon, and D. A. Wood,
“Analytic evaluation of shared-memory systems with ILP processors,”
in Proc. 25th Int. Symp. Comput. Arch. (ISCA 1998), Jun. 1998, pp.
380–391.

[38] V. Spiliopoulos, S. Kaxiras, and G. Keramidas, “Green governors:
A framework for continuously adaptive DVFS,” in 2011 Int. Green
Computing Conf. and Workshops (IGCC’11), Jul. 2011.

[39] E. Sprangle and D. Carmean, “Increasing processor performance by
implementing deeper pipelines,” in Proc. 29th Int. Symp. Comput. Arch.
(ISCA 2002), Jun. 2002, pp. 25–34.

[40] J. Tendler, J. S. Dodson, J. S. Fields Jr., L. Hung, and B. Sinharoy,
“POWER4 system microarchitecture,” IBM J. of Research and Develop.,
vol. 46, pp. 5–25, Oct. 2001.

[41] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A sim-
ulation framework for CPU-GPU computing,” in Proc. 21st Int. Conf.
Parallel Arch. and Compilation Techniques (PACT’12), Sep. 2012, pp.
335–344.

[42] F. Vandeputte, L. Eeckhout, and K. De Bosschere, “A detailed study on
phase predictors,” in Proc. 11th Int. Euro-Par Conf. Parallel Process.
(Euro-Par 2005), Aug. 2005, pp. 571–581.

165

Vector Extensions for Decision Support DBMS Acceleration

Timothy Hayes Oscar Palomar Osman Unsal Adrian Cristal Mateo Valero

Barcelona Supercomputing Center

{first}.{last}@bsc.es

Abstract

Database management systems (DBMS) have become an essential
tool for industry and research and are often a significant component
of data centres. As a result of this criticality, efficient execution of
DBMS engines has become an important area of investigation. This
work takes a top-down approach to accelerating decision support
systems (DSS) on x86-64 microprocessors using vector ISA exten-
sions. In the first step, a leading DSS DBMS is analysed for potential
data-level parallelism. We discuss why the existing multimedia SIMD
extensions (SSE/AVX) are not suitable for capturing this parallelism
and propose a complementary instruction set reminiscent of classical
vector architectures. The instruction set is implemented using unin-
trusive modifications to a modern x86-64 microarchitecture tailored
for DSS DBMS. The ISA and microarchitecture are evaluated using
a cycle-accurate x86-64 microarchitectural simulator coupled with
a highly-detailed memory simulator. We have found a single oper-
ator is responsible for 41% of total execution time for the TPC-H
DSS benchmark. Our results show performance speedups between
1.94x and 4.56x for an implementation of this operator run with our
proposed hardware modifications.

1. Introduction

Database management systems (DBMS) have become an essential

tool for industry and research and are often a significant component

of data centres. They can be used in a multitude of scenarios in-

cluding online analytical processing, data mining, e-commerce and

scientific analysis. As the amount of information to manage grows

exponentially each year, there is a pressure on software and hardware

developers to create data centres that can cope with the increasing

requirements. At the same time, there is now also an additional

demand to provide greener and more power-efficient data centres

without compromising their performance [17].

Modern microprocessors often include SIMD multimedia ex-

tensions that can be used to exploit data-level parallelism (DLP)

[31, 35, 10]. There has been some prior work [42, 40] using these

features to accelerate database software, however these multimedia

extensions tend to be very limited. They often lack the flexibility to

describe non-trivial DLP found in DBMS software. There is gener-

ally an upper threshold of four to eight elements that can be operated

on in parallel and code must be restructured and recompiled if this

threshold should increase in the future. The extensions are typically

targeted at multimedia and scientific applications with the bulk of

support geared towards floating point operations. In contrast, integer

code, e.g. DBMS software, has different characteristics and require-

ments from an ISA and this can be a limiting factor in exploiting the

available parallelism. Furthermore, in typical SIMD implementations

the data is expected to have high spatial locality which is typically

found in multimedia applications but not as much in business-domain

applications [5].

Vector architectures [13] are highly scalable and overcome the

limitations imposed by superscalar designs [23] as well as SIMD

multimedia extensions. They have the flexibility to represent complex

DLP which the multimedia extensions lack. More importantly, they

are energy-efficient [25, 24] and can be implemented in microproces-

sors using simple and efficient hardware [4]. DBMS architectures are

known to be bottlenecked by memory access [6]; vector processors

were traditionally used to tolerate long latencies to main memory and

could be instrumental in optimising database software and reducing

their bottlenecks. Vector architectures have traditionally been used

for scientific applications abundant with floating-point code, however

their applicability to business-domain, i.e. integer, applications has

yet to be analysed. This paper makes this contribution as well as

a study on how to optimise a vector architecture for this class of

application.

Vectorwise [3] is a block at a time query engine based on Mon-

etDB/x100 [7]. It is hardware-conscientious and highly optimised for

modern superscalar microprocessors. Vectorwise researchers have

identified the bottlenecks of previous database solutions and struc-

tured their own software to exploit the full capabilities of modern

commodity hardware. Vectorwise algorithms are designed to take

advantage of the instruction cache as well as to reduce branch mis-

prediction penalties. Where possible, it uses blocking to optimise

its algorithms for the data cache. Its functions are designed to be

data-level parallel in order to expose independent loop iterations to

the underlying microarchitecture. Vectorwise can store tables in a

columnar fashion [9] meaning that columns of a table are stored

as arrays in memory. When the algorithms access data like this, it

can help to expose DLP and generate more regular memory access

patterns.

Vectorwise has transformed a lot of potential DLP into instruction-

level parallelism (ILP) in order to keep the processor fully utilised.

While the performance is much better, optimising software by ex-

pressing DLP as ILP is not the most efficient nor scalable solu-

tion. Modern microprocessors found in servers are generally super-

scalar/out of order and can cope to some extent; the problem is that

the hardware complexity and power consumption of finding more in-

dependent instructions this way increases quadratically [29] making

this an unscalable solution and not suitable in the long term.

This work takes a top-down methodology and profiles Vectorwise

looking for opportunities to use vector technology. From this, soft-

ware bottlenecks caused by unscalable superscalar hardware struc-

tures are identified. A discussion is given as to why multimedia

instruction sets such as SSE and AVX are insufficient to express the

potential DLP in this application; consequently, new vector ISA ex-

tensions for x86-64 are proposed as a solution. These ISA extensions

can be implemented using simple scalable hardware which has been

evaluated using a cycle-accurate microprocessor simulator fused with

a highly-detailed memory simulator. The major design decisions are

compared against alternative options and evaluated quantitatively.

Our experiments show that increasing the superscalar/out of order

resources offers very little benefit to the existing scalar application

and that the vector implementation achieves performance speedups

between 1.94x and 4.56x for the most significant part of the DBMS.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.24

166

This paper is structured as follows: Section 2 characterises the

application domain and provides motivation for this work. Section

3 discusses the design and implementation of the vector extensions.

Section 4 describes the experimental setup. Section 5 presents the

results of various experiments related to the design space and perfor-

mance. Section 6 compares and contrasts related work. Section 7

concludes this work and proposes research for the future.

2. Software Characterisation

Vectorwise v1.0 was used in conjunction with the TPC-H [39] bench-

mark to look for areas of interest. TPC-H is the standard benchmark

to evaluate decision support systems. The benchmark defines the

database tables and their relations (schemas); the values contained

in the database; and the queries to be evaluated over the database.

Unlike the SPEC CPU benchmark suite, it is not a set of individual

applications but rather a set of queries that stress different aspects of

a DSS DBMS implementation. The DBMS software has the freedom

to store the database in its preferred way and evaluate the queries in

a manner that it sees fit, therefore what is presented is one particular
evaluation of Vectorwise.

Figure 1 shows the CPU time of 22 1 queries executed on a

database of 100 GB on an Intel Nehalem system with 16 GB of

DDR3-1333 memory. The results show that a significant amount of

time is spent in the hash join operation. If all the queries are evaluated

together and their total execution time is accumulated, the hash joins

account for 61% of this time. This has motivated us to focus our

work on this operation, in particular the probe phase of the join which

constitutes 67% of the time spent in hash joins and 41% of the total

execution time. Although this work focuses on a particular algorithm,

we expect many of our findings to be applicable to other aspects of the

DBMS. This is due to the way that Vectorwise has been implemented

as a column-oriented DBMS: blocking their algorithms and exposing

DLP in their functions. The hash join algorithm of a row-oriented

DBMS could be vectorised in a similar fashion, however this would

entail transforming several unit-stride memory accesses to strided

ones.

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

tpc-h query

other hash join

Figure 1: TPC-H 100 GB Breakdown

2.1. Hash Join Probing

Vectorwise’s hash join probe works in several stages and rounds,

illustrated in Figure 2. The ultimate goal is to match and join the

keys from the left hand side (LHS) with those on the right hand side

1Query 21 was not run due to a larger memory requirement than what was available.

(RHS). A portion of the LHS, called a block, is processed together

as a compromise between cache locality and function call overhead.

First, the keys of the block are hashed to create indices into the

hash table (HT) structure. The corresponding value in the HT is in

turn an index into RHS. The values must be retrieved and compared

against the keys from the LHS for matches. It is possible to hash to

the same index leading to bucket collisions which must be handled

appropriately; it can be seen in the example that keys 133 and 379

cause a collision. If the match fails, an auxiliary structure named

collisions is checked. If there was a bucket collision, the entry will

chain to the next colliding key otherwise the entry is empty implying

there are no collisions and potentially no possible matches. For a

more detailed explanation of the Vectorwise hash join implementation

the reader is referred to [43, 37].

133
239
86
379

1
5
2
1

86
133
239
379

x
3
x
x

LHS HASHES HT RHS COLLISIONS

x
1
0
x
x
2

Figure 2: Hash Join Probe Phase

Vectorwise’s hash probing also uses blocking to expose more

independent operations to the compiler/microprocessor and amortise

function-call overheads. Unlike other operations, it is harder to

achieve data locality and cache residency. It is necessary that the

hash table is fully built before it can be probed thus the entire right

hand side must be evaluated before any work on the left hand side can

begin. If the right hand side has many values, the hash table becomes

large and reduces the opportunity to effectively use the cache. For

example, the structures used in one hash join found in query 9 amount

to 86 MB which is queried by over 600 M keys.

Each row of the join is independent with respect to another thus

making the algorithm potentially data-level parallel. The structures

are stored contiguously as arrays in memory, however due to the

random access nature of the algorithm indexed memory operations

are necessary i.e. gather/scatter. Mask registers can be used to

optimise many of the operations. When keys from the LHS are

matched with the RHS, they can be masked out of subsequent rounds

and needn’t proceed with further checks in the collisions table. A

reordering instruction, e.g. compress, coupled with a programmable

vector length can be used to reduce the amount of time resolving

bucket collisions. Each round will reduce the number of candidates

to check for collisions thus decreasing the time spent per pass.

3. Design and Implementation

x86-64 was chosen as the base ISA to build upon for several reasons.

It is the leading ISA in the server market having roughly 60% of

the market share. It is a very universal ISA with mature optimis-

ing compilers and toolchains. Vectorwise, although not exclusively

written for x86-64, has several optimisations made for x86-64 and

the Intel Xeon 5500 series [18]. x86-64 is also a large improvement

over the archaic IA32 ISA; many improvements have been made e.g.

the number of general purpose registers is doubled, and some legacy

features have been removed such as memory segmenting.

167

The baseline microarchitecture is not taken from any specific in-

carnation of x86-64. Instead, the features available from PTLsim

[41], a cycle-accurate x86-64 simulator, are used. PTLsim models an

aggressive superscalar out of order microarchitecture with instruction

to μop translation; multistage pipelines; speculation and recovery;

and a multi-tiered cache hierarchy. Values from Intel’s Nehalem

microarchitecture [19] are used as configuration parameters.

3.1. Instruction Set Proposal
We have designed the vector instruction set based on our analysis of

the hash join probe algorithm discussed in Section 2. Instructions are

classified and listed in Table 1.

class instructions

memory unit stride, indexed, prefetching

arithmetic integer mul, add, sub

bitwise logical and, or, not, xor, shift

comparison not equal

initialisation set all, clear all, iota

mask set, clear, and, or, not, xor, popcount

permutative compress

vector length set, set MVL, get

memory fence scalar-vector, vector-scalar, vector-vector

Table 1: Vector Instruction Listing

The ISA offers eight vector registers, although the vectorised

functions utilise a maximum of six of these. Each vector register

stores the same number of elements defined by the maximum vector

length (MVL) constant. The actual number of elements that a given

instruction operates on depends on the value of the vector length (VL)

control register which is managed explicitly by get/set instructions.

The ISA also provides an instruction that sets the VL to the MVL.

Retrieving the MVL at runtime allows for transparent scaling of the

microarchitecture; if the vectorised functions are written using loop

strip mining, they may be able to take advantage of larger vector

register lengths without the need of rewriting nor recompiling.

The ISA includes vectorised integer arithmetic and bitwise logical

instructions. One of the source operands must be a vector register and

the other may be another vector register or a scalar register. There is

a class of initialisation instructions which can set a specified vector

register to a scalar value. A very useful variant of this, known as

iota [36], is also included which generates a vector of consecutive

integers starting from a specified value; this is useful for dynamically

generating indices into the hash join structures.

The majority of instructions can take an optional vector mask

specified by one of the four available mask registers. Vector masks

are updated in three ways: 1) with initialisation instructions (set

all/clear all); 2) with comparison instructions that write their boolean

results to mask registers; and 3) with mask-mask logical instructions.

The ISA also includes a position manipulation instruction called

compress; this condenses non-masked elements from one vector

register contiguously into another vector register. To complement

this, a mask population instruction is included which counts the

number of set bits in a mask register. These instructions are useful for

eliminating rows that have no potential entry in the hash table as well

as shortening the vector length when checking candidate matches.

Both unit-stride and indexed memory access instructions are

needed. Strided memory instructions are not necessary and are omit-

ted from the ISA, however these would be useful if the baseline

DBMS were row-oriented instead of column-oriented. Individual

elements that comprise a vector load operation are assumed to be

independent of one another; stores/scatters always write to unique

locations and scatters with conflicting indices are left semantically

undefined.

A major decision was choosing a weak consistency model between

the vector memory instructions themselves. This way the execution

order of vector loads/stores is not deterministic and ordering must be

achieved through explicit fence instructions. Although this puts more

pressure on the programmer, the vast majority of memory accesses

are independent of one another and this allows for more aggressive

scheduling in the microarchitecture as well as reduced hardware

complexity due to the absence of memory aliasing checks. Weak

ordering guarantees can also be found in Cray’s NV-2 ISA [2].

The proposed ISA is reminiscent of classic vector ISAs used in

supercomputers. This type of ISA is already known to be useful for

scientific computing and multimedia processing [4, 13] as well as

other areas [11] thus broadening the scope of applicability of our

work. Additionally there has been related work [15, 27, 42] that

shows DLP opportunities in DBMS software beyond hash join that

could also be exploited with an ISA like this.

3.2. Design Decisions

3.2.1. Out of Order Execution One of the biggest design decisions

made was to allow vector instructions to issue out of order. The

work of [12] showed that by using register renaming and out of

order execution additional performance can be gained. An out of

order execution engine can begin memory operations early and utilise

the memory ports much more efficiently hence hiding long memory

latencies. Vectors are already tolerant of long memory latencies in

their own right; combining them with an out of order core can further

enhance this quality.

There are also drawbacks to an out of order microarchitecture. The

structures used to achieve out of order execution don’t scale well

and are very power-hungry [29]. Fortunately a single vector instruc-

tion can represent a lot of work and reduce the need to scale these

structures more than what already exists in current commodity out of

order microprocessors. The decision to allow issuing vector instruc-

tions out of order affects many of the subsequent design decisions.

In Section 5.1.1 the benefit of using the out of order mechanism is

evaluated against a simpler decoupled design.

3.2.2. Cache Integration The block at a time processing technique

used by Vectorwise is very conscientious of the cache hierarchy. As

mentioned in Section 2, large structures like the hash tables often have

trouble fitting in the cache hierarchy however many other structures

can reside there comfortably. Of particular importance are the blocks

which flow through various data operators storing intermediate results

in cache-resident arrays. For this reason it is highly desirable to take

advantage of the cache hierarchy when possible.

A solution to integrating vector support into an existing superscalar

processor was proposed in [30]. Part of the work was integrating the

vector units with the cache hierarchy. Their novel solution involved

bypassing the level 1 data (L1D) cache altogether and going directly

to the level 2 (L2) cache. The main motivation behind this was that

adding the logic necessary to support vector loads at the L1D cache

could compromise its access time as seen by the scalar units.

The L2 cache is always larger than the L1D cache so there is

also the additional benefit of potentially having a larger working

set. Because unit-stride loads and cache lines match quite well,

168

this solution could pull many elements from the cache at once and

hide the additional latency incurred by the L2. Accessing the L2

directly introduces potential coherency problems with the L1D cache,

a simple approach described in [30] is used in our design to resolve

this. This involves adding an extra bit to each line to mark if its data

is exclusively owned by the scalar units or the vector units. L1D

bypassing was later used in Tarantula [11] which had a 4 MB banked

L2 cache directly accessible by its vector memory units. For these

reasons, this design is used in our experiments. In Section 5.1.3

the L2 bypassing is evaluated against an alternative approach that

accesses the L1D cache directly instead.

3.3. Microarchitecture Implementation

It was desirable to reuse as much as possible from the base microar-

chitecture so the additions necessary to implement the vector ISA

would be minimal. One of the key design decisions made was inte-

grating the vector units into the core itself. The decode units had to

be modified to incorporate the new vector ISA. The changes were

minimal as the new instructions all have a fixed length and begin

with the same prefix. The register rename tables had to be changed

to accommodate the new vector/mask/vector length architectural reg-

isters. Two new physical register files were added in order to support

vectors and masks; the vector length register is part of the existing

integer register file.

New functional units and issue queues have been added. The

original issue queues can handle up to four operands which are suffi-

cient for the existing x86-64 instructions; the new vector instructions

needed two extra operands on top of the existing four. This is due to

two reasons: 1) the vector length register is allowed to be renamed

and thus it is necessary to have it as an operand in the issue queue. 2)

The destination register is also a source register. It is possible for the

vector instruction to overwrite part, but not all, of the its destination

register. This occurs when the VL is shorter than the MVL or the

instruction masks out operations on some of the vector’s elements.

The scalar issue queues using four operands can coexist with the

vector issue queues using six operands.

Misspeculation recovery piggybacks on the existing infrastructure

of the out of order core. Vector registers are renamed using the

same mechanism as scalar register and on a branch misprediction the

register rename table is restored to a stable state before fetching from

the correct path. This is similar to the approach used in [12]. Vector

stores can generate their addresses when issued but don’t modify the

memory state until they are the oldest instruction ready to commit.

3.3.1. Fence Mechanism For vector memory fences it is necessary

to mark the reorder buffer entry of the youngest store instruction, this

way when a fence instruction is decoded it can be made dependent

on this store provided it has not already committed. The fence should

only proceed when the store instruction writes to the memory state,

therefore it would be necessary to add a path from the commit stage

of the pipeline to the issue queues. To simplify this, the fences are

given their own issue queue which has a dedicated path from the

commit logic. Memory instructions younger than the fence will in

turn use this fence as a dependency. In Section 5.1.1 the custom fence

mechanism is compared against a completely fenceless approach and

in Section 5.1.2 against a more a naïve implementation.

3.3.2. Vector Memory Request File Vector memory requests had

to be handled differently from all other operations. Scalar memory

loads can be executed out of order but to achieve this a complex

associative hardware structure called the load/store queue (LSQ)

must be used. The LSQ detects memory aliases, i.e. loads and

stores that go to the same address and may have incorrect behaviour

when issued out of order. Vector memory operations are known

to be data independent at the element level and in most cases are

also data independent with respect to one another; vector memory

aliasing is handled explicitly using fence instructions and therefore

does not need transparent resolution in hardware. Using the LSQ

would limit the number of in-flight vector memory operations in the

microprocessor; additionally, such a structure would present a huge

design problem for handling indexed memory operations which may

have irregular access patterns.

It is also important to take advantage of the regular patterns found

in vector memory operations. Unit-stride loads/stores access consec-

utive locations in memory and thus have a lot of spatial locality; it is

therefore preferable to work with whole cache lines when possible.

The LSQ as it exists does not take advantage of this locality and each

entry refers to a single scalar value. For indexed memory operations

with less spatial locality, it is important to reduce the penalties that

may be incurred from transferring unnecessary data.

A structure called the Vector Memory Request File (VMRF) has

been designed to manage vector memory instructions while avoiding

the complex associative hardware found in the LSQ. Every vector

memory instruction takes an entry in this structure. The VMRF

translates vector memory operations into L2 cache accesses at the

line level. It tracks all accesses that comprise a single vector memory

instruction until these accesses complete and keeps enough metadata

about the vector memory instructions to be able to recover from

misspeculation. It also ensures that the writes to memory of a vector

store will not start until it is the oldest instruction in the pipeline and

can commit safely.

The VMRF has two structures to service vector load operations.

The Load Table (LT) and the Cache Line Table (CLT). When a vector

load (unit-stride or indexed) is issued, it takes a single entry in the

LT. As the address generation unit generates cache line addresses,

these are given individual entries in the CLT. An entry also includes

metadata such as the physical registers used as well as a bit-field

that denotes which bytes of the register/cache line are relevant. Each

cycle the CLT selects a pending entry (round robin) to be sent to the

L2. When the request completes, the CLT is freed and a bitmap inside

the corresponding LT is updated. When the bitmap is all set, the LT

can notify the reorder buffer entry of the load and be freed. We use

indices to access each table and thus don’t need associativity. The

VMRF does not track RAWs and relies on explicit fence instructions

to avoid hazards.

Two buses were added that connect the physical register file to the

L2 cache: one for load requests and another for store requests. As an

optimisation, the structure can handle partial cache line transfers. The

cache line is broken into discrete sectors: the size of an L2 cache line

divided by the width of the bus. To save bus cycles, only necessary

sectors need to be sent. The VMRF tracks which bytes within the

cache line are actually needed. Indexed operations benefit from this

especially if the number of required bytes per cache line is small.

Reorder buffer entries must contain an identifier into the VMRF;

both loads and stores require this information when misspeculation

recovery occurs. In these cases, the entry in the VMRF must be

annulled and recycled.

It is quite controversial to add index memory instructions to an out

of order microprocessor. There are often reservations about doing this,

especially about compromising the latency of scalar memory instruc-

169

tion which could affect the performance of existing non-vectorised

applications. We have made two important design choices to cir-

cumvent this from happening: 1) the LSQ is untouched by vector

instructions and more importantly avoids the complexities that would

arise when detecting aliasing between indexed memory operations.

2) We leave the interface between the functional units and the L1D

cache untouched and instead bypass this structure and access the L2

cache directly instead.

4. Experimental Setup

4.1. Simulators

Experiments have been evaluated using PTLsim [41], a cycle-

accurate x86-64 simulator. The experiments were conducted using

the classic mode PTLsim i.e. where system calls are emulated. The

simulator has been extended extensively to incorporate the new in-

struction set and additional microarchitectural changes. PTLsim uses

a fixed latency memory model by default which does not model

bandwidth and contention issues at all. It was felt that for a memory-

intensive algorithm like hash join it is paramount to model the mem-

ory accurately. Consequently we have integrated DRAMSim2 [32], a

cycle accurate memory system simulator, into PTLsim and replaced

the default memory model. This also allows us to experiment with

multiple memory controllers. Our results show large discrepancies

between the default simplified model and more accurate model using

DRAMSim2.

4.2. Default Parameters

This section lists the parameters of the baseline setup. In all the

experiments that follow these parameters are used unless explicitly

stated otherwise. The parameters of the scalar baseline are based on

the Intel Nehalem microarchitecture [19], the same used to profile

Vectorwise in Section 2.

parameter value

fetch width 4

fetch queue 28

frontend width 4

frontend stages 7

dispatch width 4

writeback width 4

commit width 4

issue width per cluster/total 1/6

reorder buffer 128

issue queue 8 (per cluster)

load queue 48

store queue 32

outstanding l1d misses 10

outstanding l2 misses 16

Table 2: Superscalar and Out of Order Parameters

Table 2 lists the superscalar parameters as well as the sizes of

various structures in the microarchitecture. Here frontend refers to

decoding, renaming and structure allocation. In Nehalem the equiv-

alent to an issue queue is the reservation station, a single structure

with 36 entries shared by all the clusters. It is not possible to model

clusters as well as a shared issue queue in PTLsim. To solve this, the

reservation station is divided into six parts (there are six clusters) and

each is given an extra two entries to compensate. We have measured

the impact of larger issue queues with up to 32 entries per cluster

and have found a difference in performance of only 3%. There is one

cluster for loads; two clusters for stores; and three general purpose

clusters. All functional units are fully pipelined as in Nehalem. For

further details, the reader is referred to [19].

cache level size latency line size ways sets

l1 instruction 32 KB 1 64 4 128

l1 data 32 KB 4 64 8 64

l2 unified 256 KB 10 64 8 512

Table 3: Cache Hierarchy Parameters

Table 3 shows the cache parameters. The hierarchy is inclusive

and write through with respect to L1D → L2, but writeback with

respect to L2 → memory. Although the Nehalem has a larger shared

L3 cache, this is not included as the effects of a multiple cores are

not modelled here.

parameter value

type DDR3-1333

clock 1.5 ns

transaction queue 64

command queue 256

policy open page

row accesses 8

data bus 64 bits (JEDEC standard)

queue per rank per bank

scheme row:rank:bank:chan:col:burst

scheduling policy rank then bank

banks 8

ranks 4

rows 32768

columns 2048

device width 4

burst length 64 bytes

Table 4: Memory System Parameters

Table 4 contains the parameters of the memory system. We model

a memory system with both one and two memory controllers. The

memory modules are DDR3-1333 (cycle time of 1.5 ns) and the CPU

frequency is taken to be 2.67 GHz therefore the memory controllers

are clocked once every four CPU cycles. The burst length is taken as

64 bytes as this coincides with the line sizes of the cache hierarchy.

An open page policy is used, however using a closed page policy

results in only marginally less overall performance. This may be

important when considering energy consumption where the closed

page policy can be more beneficial [21].

Table 5 shows the default configuration of the vector parameters.

The number of physical vector registers has been made twice the

amount of architectural vector registers. This is based on [12] that

states for register renaming to be effective, there should be at mini-

mum twice as many physical registers to architectural registers. We

have noted that eight architectural vector registers is excessive for our

workload. Six architectural registers would be more than sufficient

meaning that the physical register file could be reduced to 12 entries.

All experiments presented in the next section use a single vector lane

(i.e. parallel lockedstepped pipelines used to operate on elements

170

parameter value

maximum vector length (MVL) 64

physical vector registers 16

physical mask registers 8

vector load requests 12

vector store requests 8

L2 → vector register bus width 32 bytes

vector cache line requests 256

maximum datatype width 64 bits

Table 5: Vector Parameters

within a single vector instruction). Our experiments have shown that

adding more lanes improves performance marginally as the algorithm

is dominated by memory requests. Additionally, chaining (i.e. allow-

ing some vector instructions to issue as soon as the first elements of

an input operand are ready rather than waiting for all of the elements

to be calculated first) does not exhibit any significant performance

changes and has thus been disabled.

The L2 cache to vector register file bus width was chosen to be

32 bytes; the same as the bus width that connects the L1D cache

to the L2 cache in Nehalem. The number of cache lines requests

tracked by the VMRF has been made 256 entries; this number was

chosen to allow at least two indexed memory operations in flight

when the MVL is 128, however this structure can be reduced when

the MVL is shorter. We measure that reducing the VMRF to 64

entries decreases performance at most by 0.5%. Three additional

clusters have been added for vector support. One cluster is designated

for vector memory operations and the remaining two can execute

non-memory vector instructions. Each cluster requires one write and

two read ports to the vector register file. A vector instruction must

complete fully before another one can occupy the same functional

unit.

4.3. Workload

The DBMS has been configured to use blocks of 1,024 elements. The

relevant functions have been vectorised by hand using the proposed

ISA extensions. The vectorised functions retain their semantics and

minimal transformations are needed. This way a comparison against

the original/scalar implementation is fair and representative. Both

the scalar and vector versions have been compiled with GCC using

the best measured optimisation level.

The proposed changes are evaluated using a partial run of a hash

join probe found in query 9 of TPC-H labelled tpch. This join

uses two keys to query a hash table of 32 MB, a conflict table of 18

MB and RHS indices of 36 MB (total of 86 MB). The LHS input

is originally 600 M rows but reduced to 12 M in order to shorten

the simulation times. This will be just as representative as the LHS

input data is distributed in such a way that the selectivity of the query

will remain fixed whether the LHS is complete or partial. We have

observed that useful performance metrics such as the instructions per

cycle and the cache miss ratio are invariant to the size of the LHS

input.

Four extra synthetic datasets have been added in order to evaluate

the algorithm in different scenarios. l1r and l2r are built such that

the hash table, conflict table and RHS indices can be resident in

the L1D and L2 caches respectively. The LHS input does not have

temporal locality and is therefore not considered in this measurement.

2mb is eight times the size of l2r thus allowing for a mixture of

cache hits and misses in the experiment. huge has structures of an

equal size to tpch but with a different selectivity (the LHS finds

more matches in the RHS) leading to more work. In order to compare

against tpch the LHS input is fixed at 12 M rows for all the datasets.

5. Results

This section presents the results of several key experiments used to

evaluate the impact our vector extensions have on the hash join probe

algorithm. We have chosen to present our results in terms of pro-

cessor cycles or speedup in order to fairly compare the purely scalar

simulations with the vector simulations. CPI/IPC metrics are not used

because they don’t translate well to something comparable with the

baseline architecture. A single vector instruction is not comparable

to a single scalar instruction. For example, l1r run with the scalar

baseline commits 1,163 M instructions whereas the vectorised ver-

sion run with a MVL of 64 commits only 51 M instructions of which

16 M are vector instructions. Even treating a single vector instruction

as the number of scalar instructions equivalent to the MVL is not fair

due to 1) the decrease in structural pressure and 2) the reduction of

related bookkeeping scalar instructions such as loop constructs and

conditionals.

5.1. Design Exploration

Figure 3 displays the results of various experiments related to the

design and implementation space. These experiments are run with

the vectorised binary with the parameters described in Section 4.

default refers to the default configuration with out of order logic,

customised fences and L1D cache bypassing. decoupled restricts the

out of order capabilities of the vector issue queues and permits only

the oldest instruction, i.e. at the head, in each queue to issue. The

scalar issue queues are still fully out of order to isolate the impact of

dynamic scheduling applied to vector instructions. Vector memory

instructions can still issue speculatively thus the explicit fences are

still necessary. fenceless restricts the out of order capabilities in the

same way as decoupled and additionally limits the in-flight vector

memory instructions to remove the necessity of fences entirely. flush
replaces the custom fence mechanism with a less efficient alternative.

l1 forces vector memory instructions to go directly to the L1D cache

instead of the default bypass mechanism. For clarity these results are

presented with absolute numbers using simulated processor cycles of

execution; accordingly the lower the value the better the result.

design exploration

0.0E+00
2.0E+08
4.0E+08
6.0E+08
8.0E+08
1.0E+09
1.2E+09
1.4E+09
1.6E+09
1.8E+09

l1r l2r 2mb huge tpch

pr
oc

es
so

r c
yc

le
s

dataset

default decoupled fenceless flush l1

Figure 3: Design Space Exploration

5.1.1. Out of Order Logic Here the benefit of the out of order vector

issue queues is quantified. It is immediately apparent that the out of

order capabilities of default outperform both of the more restricted

171

configurations: decoupled and fenceless. Taking into account all the

datasets, default takes 75% of the number of cycles of decoupled
and 72% of fenceless or alternatively gives 1.34x and 1.39x speedups

respectively. Although restricting the scheduling policy simplifies

the processor, the out of order logic allows the instruction stream to

execute more aggressively and start independent vector instructions

earlier thus utilising the available execution units more efficiently. It

must be restated that out of order support does add a lot of complexity

to the microarchitecture however the proposed design attempts to

piggyback on the existing out of order support and reuse as much as

possible from the scalar core.

5.1.2. Custom Fences Next the benefit of the custom fence logic is

evaluated. flush uses PTLsim’s internal mechanism for creating a true

instruction stream barrier. This is typically used to service hardware

assists, i.e. special x86-64 instructions that cannot be decoded into

μops. When the decoder encounters one of these instructions the

processor stops fetching new instructions, it waits for the pipeline to

drain completely (thus establishing a correct hardware state) before

servicing the instruction. The semantics of our fence instructions are

changed to evoke this behaviour.

The difference in performance is not as significant as we originally

anticipated. On average the custom fence mechanism outperforms

a full pipeline flush by 1.03x. This may be explained by the fact

that each phase of the algorithm typically ends by storing the same

data that will be used by a subsequent phase; this implies each phase

begins with load instructions and finishes with store instructions.

These loads are generally at the head of a dependency chain; if they

stall then the rest of the instruction stream is stalled as well. The true

difference between flush and default in this scenario is that the latter

allows instructions to decode and dispatch but the former does not,

however in both cases nothing will be able to issue until the fence has

committed. The penalty of using flush may become more apparent

with a longer frontend pipeline.

5.1.3. Level 1 Data Cache Bypass Here the benefit of L1D cache

bypassing is measured. For the l1 design, the VMRF goes directly

to the L1D cache instead of the L2 cache in default. The benefit is

that any data resident in the L1D cache can be transferred to a vector

register in fewer cycles; the disadvantage is that on a cache miss an

extra cycle is needed to request the missing data from the L2 cache.

It also must be stated that in this evaluation the scalar access time to

the L1D cache remains unchanged. A vector access takes the same

latency as a scalar one although transfers to the vector register file

are still restricted to 32 bytes per cycle. The reality is that a direct

vector access to the L1D cache could compromise the overall cycle

time as discussed in [30]; the l1 design is thus more optimistic than it

could be.

The results show that on average l1 has a negligible speedup

over default. This can be explained by the fact that, internally, the

VMRF still needs to generate the same number of requests to the

caches. When accessing the L2 cache, these are pipelined and the

penalty is amortised. Additionally the majority of the workloads don’t

comfortably fit in the L1D cache which in turn has less outstanding

misses available than its L2 parent. It can be concluded that going

to the L2 cache in lieu of the L1D cache adds very little penalty and

ensures that the existing scalar performance is not compromised.

5.2. Vector Scalability

It is desirable to have a large average vector length (AVL) as it is

directly related to the scalability of the code. Figure 4 shows the trend

of the AVL of tpch when increasing the MVL. The horizontal axis

varies the MVL i.e. the number of elements that can be contained in

a vector register. The vertical axis shows the AVL normalised to the

MVL; this way the scalability of the algorithm is clearer.

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

4 8 16 32 64

av
er

ag
e

ve
ct

or
 le

ng
th

maximum vector length

inc.masked

ex.masked

Figure 4: Average Vector Length Using tpch

The AVL is calculated by dividing the total number of elements

processed by vector operations divided by the total number of vector

instructions. It has two variants, the AVL including masked out

elements (inc.masked) and another excluding these (ex.masked). The

results show that the AVL degrades gradually with larger MVLs,

however not too rapidly, therefore it is worth experimenting with

large MVLs such as 64.

Figure 5 shows the performance benefits of increasing the MVL

for all of the datasets. The horizontal axis doubles the MVL at each

increment and is shown on a logarithmic scale. The vertical axis

shows the speedup of the vectorised code over the scalar equivalent.

The speedup shown for each line is relative to the scalar baseline run

with that particular dataset. The vector solution is particularly good

at describing the independence of individual operations, expressing

them in a compact manner and scheduling them back to back. The

scalar implementation still suffers from inter-instruction dependen-

cies and stifles the potential of faster scheduling, especially with

respect to memory instructions. The vector implementation reduces

the number of instructions fetched, decoded, renamed, issued and

committed as well as their occupancy in structures such as the fetch

queue, issue queues and reorder buffer.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

4 8 16 32 64

sp
ee

du
p

maximum vector length

l1r

l2r

2mb

huge

tpch

Figure 5: Vector Scalability

l1r and l2r, the two cache-resident datasets, see the greatest

benefit of a larger MVL with speedups of ~4x in the best case. 2mb,

huge and tpch, the noncache-resident datasets, also scale with the

MVL albeit more slowly. When increasing the MVL from 32 ele-

ments to 64, the average performance increase of the cache-resident

datasets is 1.2x whereas for the noncache-resident datasets it is 1.11x.

172

Depending on the expected input size, it may be more economical to

have a smaller MVL.

It is interesting to note that the noncache-resident datasets run

with a MVL of four perform worse than their scalar equivalents. It

is known in vector research that there is a break-even vector length

below which the vectorised operation needs more time than the equiv-

alent scalar operation [33]. This can be explained by the penalty of

going directly to the L2 cache which isn’t yet amortised with such a

low MVL.

Increasing the size of the MVL is very significant to the perfor-

mance speedups even while keeping the number of vector lanes the

same. For the l1r experiments a MVL of four yields a speedup

of 1.5x over the scalar baseline, however changing the MVL to 64

increases the performance to 4x with an equivalent number of lanes.

We observe that the number of cycles reduced in l1r with a MVL

of 64 is very close to the number of cycles that the frontend cannot

dispatch due to full clusters with a MVL of four. With a larger MVL

there are fewer instructions and although an instruction with a MVL

of 64 has a higher latency than an instruction with a MVL of 8, the

aggregate time is lower due to the vector startup penalty being paid

less frequently. In general there are less structural hazards leading to

higher throughput.

5.3. Memory Controller Saturation
Figure 6 shows the results of the vectorised code run with different

memory configurations. Here the tpch dataset is measured and

the vectorised algorithm’s speedup is shown relative to its scalar

baseline. The diagram plots three trends: inf. bw, mc1 and mc2.

inf. bw shows the relative performance when using PTLsim’s default

fixed latency memory model. This is configured at 150 cycles per

memory request which is the average load memory latency of the

scalar version reported by DRAMSim2. This model is considered

to be infinite in bandwidth as it does not model contention, variable

latencies, bandwidth nor any of the quirks found in a realistic memory

system.

0
0.5

1
1.5

2
2.5

3
3.5

4

4 8 16 32 64

sp
ee

du
p

maximum vector length

inf. bw

mc2

mc1

Figure 6: Impact of Available Bandwidth Using tpch

Comparatively, mc1 shows the same experiment run using an accu-

rate DRAM model. For a MVL of 64 mc1 reports 1.84x performance

over the scalar baseline whereas inf. bw discloses 3.4x, a massive

discrepancy. The vector unit had been saturating the memory system

with requests which in turn did not have enough bandwidth to sustain

the requirements. mc2 shows the same experiment run with an addi-

tional memory controller used to increase the available bandwidth;

although it still falls short of the controversial inf. bw trend, it allows

the speedup to increase to 2.61x.

It must be made clear that the effectiveness of the vector support

comes from its ability to saturate the memory controller with requests.

Figure 7 shows the effects of increasing the maximum number of

outstanding last level cache misses by increasing the number of miss

status holding registers (MSHRs). The results are shown as the

speedup over the scalar version with one memory controller and the

default number of MSHRs using the tpch dataset. Here s- and v-
refer to the scalar and vector experiments respectively.

0

1

2

3

4

5

6

s-mc1 s-mc2 s-inf.bw v-mc1 v-mc2 v-inf.bw

sp
ee

du
p

experiment

mshr1x

mshr2x

mshr4x

Figure 7: Memory Bandwidth and MSHRs Variation Using tpch

It can be seen that the scalar version does not show any speedup

with the addition of a second memory controller nor with the infinite

bandwidth memory model; s-mc1, s-mc2 and s-inf.bw do not exceed

1.0x even when extra MSHRs are offered. The scalar version of the

algorithm may be able take advantage of the available bandwidth in

the system if it were able to generate its requests quicker. We have

found that the scalar code uses about 3.5 GB/s of effective bandwidth

out of DDR3-1333’s maximum theoretical of 10 GB/s.

In contrast, it can be seen there is no performance gain for the

vector version when the number of MSHRs is increased, but for

different reasons. Clearly the vector version can generate a sufficient

number of requests to main memory otherwise there would be no

speedup shown for the infinite bandwidth memory model v-inf.bw.

The simulations that model detailed memory controllers don’t exhibit

additional speedup with more MSHRs because the memory resources

are already strained. The vector code with a single memory controller

achieves 6.2 GB/s of effective bandwidth, however it is normal for

an application to peak at around 70% of the maximum theoretical

bandwidth. When operating close to the application’s maximum

sustainable bandwidth, latencies tend to increase exponentially, this

is described in detail in [21, 38]. Seeing this plateau of available

bandwidth motivated us to experiment with an additional memory

controller.

5.4. Scalar Scalability

To illustrate that vectors are an appropriate solution to this problem,

Figure 8 shows the effects of increasing the superscalar/out of order

structures listed in Table 6. All the datasets are measured on the

four configurations and the results are presented as the speedup over

the baseline ss1 configuration. It must stated that it is extremely

unrealistic to presume these parameters can be scaled in such a way,

however it makes for an interesting experiment and exposes the

limitations of a purely scalar approach.

It can be seen that doubling the parameters once increases the

performance 1.16x on average, which is a minor gain considering the

resources required to achieve this speedup. Increasing the hardware

structures 8x will increase the performance between 1.22x (for l1r)

and 1.4x (for 2mb and huge). This means in the best case, a huge

out of order superscalar design can yield an extra 40% of benefit at

173

parameter ss1 ss2 ss4 ss8

fetch queue 28 56 112 224

load queue 48 96 192 384

store queue 32 64 128 256

reorder buffer 128 256 512 1024

issue queue 48 96 192 384

outstanding l1d 10 20 40 80

outstanding l2 16 32 64 128

fetch width 4 8 16 32

frontend width 4 8 16 32

dispatch width 4 8 16 32

writeback width 4 8 16 32

commit width 4 8 16 32

Table 6: Scaled Superscalar and Out of Order Parameters

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

1.5

l1r l2r 2mb huge tpch

sp
ee

du
p

dataset

ss2

ss4

ss8

Figure 8: Scalar Scalability

best whereas the simpler vector model can increase performance past

400%, an order of magnitude in difference.

5.5. Software Prefetching

The work of [8] showed the potential of increasing hash join perfor-

mance using software prefetching. This is a particularly appealing

solution as it takes advantage of existing hardware found in com-

modity processors. x86-64, the baseline ISA in these experiments,

includes a set of software prefetching instructions defined by the SSE

standard. The scalar version of the hash join was modified using

the group prefetching technique described in [8]. The vector code

was also modified to use prefetching. To achieve this, a new instruc-

tion was added that allows the indexed load (gather) operation to be

prefetched into the L2 cache.

Figure 9 shows the results of the experiments made with each

dataset. s-pre is the scalar code with software prefetching enabled.

v-no-pre is the default vectorised code without software prefetching

modifications. v-pre is the vectorised code with software prefetching

additions. All experiments are presented as the relative speedup over

the scalar baseline without software prefetching for the particular

dataset. It can be seen that s-pre improves the performance of the

algorithm run with all datasets with an average speedup of 1.34x; this

is quite a good speedup considering it requires no additional hardware.

In contrast, v-no-pre achieves much better speedups (between 1.8x

for tpch and 4.0x for l1r and l2r) hence showing that the vector

approach has higher returns than a scalar version with prefetching.

v-pre shows that for all of the datasets, prefetching combined with

the vectorised code pushes the performance even more. In the case

of l2r, performance exceeds 4.5x which helps illustrate that the

performance gains of software prefetching can be complementary to

the proposed vector additions. It is important to note that for l1r and

l2r it is only the RHS that is cache-resident; the LHS is larger than

the cache and prefetching helps reduce the effect of cold misses.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

l1r l2r 2mb huge tpch

sp
ee

du
p

dataset

s-pre

v-no-pre

v-pre

Figure 9: Software Prefetching Speedup

5.6. Existing SIMD Solutions

So far different aspects of the proposed hardware have been eval-

uated and compared against a scalar baseline. What is missing is

a comparison against a hash join implementation that utilises the

existing multimedia extensions found in commodity processors such

as SSE and AVX. The problem is that no version can exist given the

limitations of these instruction set extensions. Nevertheless we mea-

sured the difference in execution time between a purely scalar (but

optimised) version of the code and a version with GCC’s autovectori-

sation enabled. The functions were altered to expose alignment and

absence of aliasing to help the autovectorisation algorithm. GCC was

able to transform a small portion of the code to use SSE instructions,

namely the part that hashes the LHS input. When both versions were

run, the difference in execution time was less than 1%. This is mainly

due to the fact that this particular part of the code is not the most

dominant in the overall algorithm.

The work of [22] made extensive optimisations to, and an evalu-

ation of, the hash join algorithm and concluded that for DLP to be

attained effectively there must be efficient support for indexed mem-

ory operations. Intel introduced the LRBni instruction set [1] which

was originally intended for the Larrabee [34] architecture. LRBni

introduced SIMD registers wider than existing SSE/AVX registers

that can contain eight 64-bit elements; it additionally offers gather

and scatter support to and from these new registers. The catch is that

the hardware was developed with graphical processing in mind and

the indexed support was geared towards data structures with high

spatial locality e.g. in-cache lookup tables.

0
5

10
15
20
25
30
35

l1r l2r 2mb huge tpch

ca
ch

e
lin

es
 a

cc
es

se
d

dataset

mvl4

mvl8

mvl16

mvl32

mvl64

Figure 10: Average Number of Cache Lines Accessed

The hash join algorithm offers no such luxury to the hardware and

the gather operations generally don’t pull elements resident from the

174

same cache line. To help illustrate this, Figure 10 shows the average

number of cache lines touched per indexed load. Each dataset is run

with a different MVL. The average is quite high and furthermore

many gathers from the larger software structures access as many

cache lines as the MVL i.e. the worst case scenario. Consequently

it appears that an architecture like Larrabee doesn’t seem to be an

optimal fit for an algorithm like this.

Intel has publicly released a list of new instructions that will part

of the AVX2 standard [20]. AVX2 will include an indexed load

instruction although doesn’t include a complementary indexed store.

The new indexed load could be useful when applied to the hash

join algorithm however this also depends on how this instruction

is implemented. The first microarchitecture set to use AVX2 is

codenamed Haswell and expected to be released in 2013. So far, no

details have been released on how AVX2 will be implemented on

Haswell so a comparison with our work would be entirely speculative.

6. Related Work
This section details several works that have attempted to accelerate

DBMS software through available DLP. We compare and contrast

our own research with those mentioned.

[26] is the earliest work found looking at database operator im-

plementations on vector processors. The report looks specifically

at the hash join operator and implements a vectorised version for

the Cray C90 [28]. The methodology of this work takes a different

approach to ours. We profile an existing full-featured DBMS that

has been optimised for modern out of order microarchitectures to

find bottlenecks due to scalar inefficiencies. In contrast, this work

proposes its own algorithm for hash joins with no reference to a real

DBMS. Additionally, we are proposing vector extensions to an ISA

that already dominates the server marker whereas this work is done

exclusively on a supercomputer. In a similar vein to [26], [27] also

looks at the vectorisation of database operators. This time the list

is expanded to selection, projection and join operators however the

methodology is still the same. Naïve scalar implementations are

run against vectorised versions on a supercomputer and so the same

arguments still apply.

[42] is a broad study accelerating various database operators using

the existing SSE instruction extensions for x86. The work investi-

gates the benefits of DLP and reduction of conditional branches in

implementations of scans, aggregations, indexed operations and joins.

Since our work is primarily focused on joins, a comparison of this

feature is given.

The principal difference between our vectorised join and their

SIMDised join is that their work looks at a simple nested loop im-

plementation whereas our work looks at an optimised hash join

implementation. A nested loop join compares every row from the left

hand side table with every row from the right hand side table. This is

not a problem when the tables are small, but if they are large this is

a very inefficient join algorithm. In contrast, we look at a hash join

implementation which is suitable for large tables typically found in

decision support systems.

[16] is a study that ports a DBMS to the Cell Broadband Engine

[14], an architecture abundant with DLP capabilities. What is inter-

esting is that the query engine used in the study is MonetDB/X100

[7] which is an earlier version of the query engine used in Vector-

wise. The work mostly discusses the challenges that arise from using

this esoteric architecture. Furthermore, the work is evaluated using

TPC-H query number one which lacks a join operation. Our work is

primarily focused on joins so it is difficult to make a comparison.

[15] is a very comprehensive work investigating the performance

benefits of running DBMS operations on graphics processing units

(GPUs). The study includes a hash join implementation that runs on

a GPGPU coprocessor. There are some performance benefits but the

study concludes that the necessity to transfer data between the global

memory and the GPU’s local memory can be a large bottleneck. Our

approach adds vector processing capabilities into the CPU’s execution

core so this penalty is never encountered. This is important when

treating the DBMS software as a whole since it can have complex

control flow mixed with segments more suitable for DLP-oriented

hardware. Additionally, [24] discusses the merits of using vector-

based architectures over GPGPU with respect to performance, area

and energy efficiency.

7. Conclusions

In this work we have examined a leading decision support DBMS,

Vectorwise, and found that hash joins can form a significant propor-

tion of its execution- 61% of the total execution time. It was found

that the probe phase of hash joins contains an abundance of DLP

that isn’t expressible using the multimedia SIMD extensions found in

commodity processors. We have proposed instruction set extensions

to the x86-64 ISA that are suitable for capturing the algorithm com-

pactly and efficiently. These instructions have been introduced into a

modern microarchitecture taking advantage of existing scalar struc-

tures where possible and without compromising their performance.

This work explored various trade-offs in the design space. The

decision to use out of order logic coupled with the vector additions

has been quantitatively evaluated and shown to give an extra 1.34x

performance speedup on average. The benefit of using manually pro-

grammed memory fences was shown to give 1.39x extra performance

although comparing our custom fence implementation against a naïve

version yielded only a small speedup of 1.03x. This small gain makes

it hard to justify the extra hardware used to implement fences in this

manner. Finally the penalty incurred when bypassing the L1D cache

was measured and found to be negligible.

Our results show that the new vectorised implementation of hash

probe, accounting for 41% of total execution time, can get speedups

between 1.94x and 4.56x over the scalar baseline. We have shown

the benefits of using two memory controllers in conjunction with the

vector hardware and also demonstrated that the scalar code cannot

take advantage of the extra available bandwidth. Furthermore we

show that increasing the out of order structures and superscalar widths

gives disproportional returns whereas the vector approach achieves

an order of magnitude greater speedup. Finally we confirm that

software prefetching techniques described in [8] can accelerate the

algorithm, albeit not as much as our solution using vectorisation. We

also demonstrate that this strategy is complementary to our work and

can be used in conjunction with vectorisation for an even greater

speedup.

The performance gains observed don’t come without a cost; an out

of order vector unit is a major addition to a microprocessor. Future

work will focus on measuring the area overhead and power consump-

tion introduced with the new vector support. Additionally we will

investigate build, the other phase of the hash join algorithm. Al-

though less significant than the probe phase in overall execution time,

it presents an interesting dilemma of updating a common structure

and may violate the necessity of scatter stores being independent and

conflict free at the element level.

175

8. Acknowledgements

The authors would like to thank Peter Boncz, Marcin Żukowski

and Paul Rosenfeld for their helpful advice and feedback. This

work was partially supported by the cooperation agreement between

the Barcelona Supercomputing Center and Microsoft Research, by

the Ministry of Science and Technology of Spain and the European

Union (FEDER funds) under contracts TIN2007-60625 and TIN2008-

02055-E, and by the European Network of Excellence on High-

Performance Embedded Architecture and Compilation (HiPEAC).

References

[1] M. Abrash, “A First Look at the Larrabee New Instructions (LRBni),”
http://drdobbs.com/high-performance-computing/216402188, 2009, ac-
cessed on 2011-09-08.

[2] D. Abts et al., “The Cray BlackWidow: A Highly Scalable Vector
Multiprocessor,” in Proceedings of the ACM/IEEE Conference on Su-
percomputing, 2007, pp. 17:1–17:12.

[3] Actian, “Vectorwise. Record Breaking Action Engine for Big Data,”
http://www.actian.com/products/vectorwise.

[4] K. Asanović, “Vector Microprocessors,” Ph.D. dissertation, EECS De-
partment, University of California, Berkeley, 1998.

[5] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory System
Characterization of Commercial Workloads,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture, 1998, pp.
3–14.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten, “Database Architecture
Optimized for the New Bottleneck: Memory Access,” in Proceedings of
the 25th International Conference on Very Large Data Bases, 1999, pp.
54–65.

[7] P. A. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-
Pipelining Query Execution,” in Proceedings of the 2nd Biennial Con-
ference on Innovative Data Systems Research, 2005, pp. 225–237.

[8] S. Chen et al., “Improving Hash Join Performance through Prefetching,”
in Proceedings of the 20th International Conference on Data Engineer-
ing, 2004, pp. 116–127.

[9] G. P. Copeland and S. N. Khoshafian, “A Decomposition Storage Model,”
in Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, 1985, pp. 268–279.

[10] J. Corbal, M. Valero, and R. Espasa, “Exploiting a New Level of
DLP in Multimedia Applications,” in Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture, 1999, pp.
72–79.

[11] R. Espasa et al., “Tarantula: A Vector Extension to the Alpha Architec-
ture,” in Proceedings of the 29th Annual International Symposium on
Computer Architecture, 2002, pp. 281–292.

[12] R. Espasa, M. Valero, and J. E. Smith, “Out-of-Order Vector Archi-
tectures,” in Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, 1997, pp. 160–170.

[13] R. Espasa, M. Valero, and J. E. Smith, “Vector Architectures: Past,
Present and Future,” in Proceedings of the 12th International Conference
on Supercomputing, 1998, pp. 425–432.

[14] M. Gschwind et al., “Synergistic Processing in Cell’s Multicore Archi-
tecture,” IEEE Micro, vol. 26, no. 2, pp. 10–24, 2006.

[15] B. He et al., “Relational Query Coprocessing on Graphics Processors,”
ACM Transactions on Database Systems, vol. 34, no. 4, pp. 21:1–21:39,
2009.

[16] S. Héman et al., “Vectorized Data Processing on the Cell Broadband
Engine,” in Proceedings of the 3rd International Workshop on Data
Management on New Hardware, 2007, pp. 4:1–4:6.

[17] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines, 1st ed. Morgan
and Claypool Publishers, 2009.

[18] Ingres, “Ingres/VectorWise sneak Preview on the Intel Xeon Processor
5500 series-based platform,” white paper, 2009.

[19] Intel R©64 and IA-32 Architectures Optimization Reference Manual,
Intel, June 2011.

[20] Intel R©Advanced Vector Extensions Programming Reference, Intel, June
2011.

[21] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk,
1st ed. Morgan Kaufmann Publishers Inc., 2007.

[22] C. Kim et al., “Sort vs. Hash Revisited: Fast Join Implementation on
Modern Multi-Core CPUs,” Proceedings of The VLDB Endowment,
vol. 2, no. 2, pp. 1378–1389, 2009.

[23] C. Kozyrakis and D. Patterson, “Vector Vs. Superscalar and VLIW Ar-
chitectures for Embedded Multimedia Benchmarks,” in Proceedings of
the 35th Annual ACM/IEEE International Symposium on Microarchitec-
ture, 2002, pp. 283–293.

[24] Y. Lee et al., “Exploring the Tradeoffs between Programmability and
Efficiency in Data-Parallel Accelerators,” in Proceedings of the 38th
Annual International Symposium on Computer Architecture, 2011, pp.
129–140.

[25] C. Lemuet et al., “The Potential Energy Efficiency of Vector Accelera-
tion,” in Proceedings of the 2006 ACM/IEEE Conference on Supercom-
puting, 2006.

[26] R. Martin, “A Vectorized Hash-Join,” 1996, iRAM technical report,
University of California at Berkeley.

[27] S. Meki and Y. Kambayashi, “Acceleration of Relational Database
Operations on Vector Processors,” Systems and Computers in Japan,
vol. 31, no. 8, pp. 79–88, 2000.

[28] W. Oed and M. Walker, “An Overview of Cray Research Computers
including the Y-MP/C90 and the new MPP T3D,” in Proceedings of the
5th Annual ACM Symposium on Parallel Algorithms and Architectures,
1993, pp. 271–272.

[29] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-Effective
Superscalar Processors,” in Proceedings of the 24th Annual International
Symposium on Computer Architecture, 1997, pp. 206–218.

[30] F. Quintana et al., “Adding a Vector Unit to a Superscalar Processor,” in
Proceedings of the 13th International Conference on Supercomputing,
1999, pp. 1–10.

[31] S. K. Raman, V. Pentkovski, and J. Keshava, “Implementing Streaming
SIMD Extensions on the Pentium III Processor ,” IEEE Micro, vol. 20,
no. 4, pp. 47–57, 2000.

[32] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Computer Architecture
Letters, vol. 10, no. 1, pp. 16–19, 2011.

[33] W. Schönauer, Scientific Computing on Vector Computers. Elsevier
Science Publisher B.V., 1987.

[34] L. Seiler et al., “Larrabee: A Many-Core x86 Architecture for Visual
Computing,” ACM Transactions on Graphics, vol. 27, no. 3, pp. 18:1–
18:15, 2008.

[35] N. T. Slingerland and A. J. Smith, “Multimedia Extensions for General
Purpose Microprocessors: A Survey,” Microprocessors and Microsys-
tems, vol. 29, no. 5, pp. 225–246, 2005.

[36] J. E. Smith, G. Faanes, and R. Sugumar, “Vector Instruction Set Sup-
port for Conditional Operations,” in Proceedings of the 27th Annual
International Symposium on Computer Architecture, 2000, pp. 260–269.

[37] J. Sompolski, M. Zukowski, and P. Boncz, “Vectorization vs. Com-
pilation in Query Execution,” in Proceedings of the 7th International
Workshop on Data Management on New Hardware, 2011, pp. 33–40.

[38] S. Srinivasan et al., “CMP Memory Modeling: How Much Does Accu-
racy Matter?” in Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation, 2009, pp. 24–33.

[39] Transaction Processing Performance Council, “TPC-H Standard Speci-
fication v2.14.2,” http://www.tpc.org/tpch/, 2011.

[40] T. Willhalm et al., “SIMD-Scan: Ultra Fast in-Memory Table Scan
using on-Chip Vector Processing Units,” Proceedings of The VLDB
Endowment, vol. 2, no. 1, pp. 385–394, 2009.

[41] M. T. Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Mi-
croarchitectural Simulator,” in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software, 2007, pp.
23–34.

[42] J. Zhou and K. A. Ross, “Implementing Database Operations Using
SIMD Instructions,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2002, pp. 145–156.

[43] M. Żukowski, “Balancing Vectorized Query Execution with Bandwidth-
Optimized Storage,” Ph.D. dissertation, Universiteit van Amsterdam,
2009.

176

NOC-Out: Microarchitecting a Scale-Out Processor

Pejman Lotfi-Kamran Boris Grot Babak Falsafi
EcoCloud, EPFL

{pejman.lotfikamran,boris.grot,babak.falsafi}@epfl.ch

Abstract

Scale-out server workloads benefit from many-core proces-

sor organizations that enable high throughput thanks to abun-

dant request-level parallelism. A key characteristic of these

workloads is the large instruction footprint that exceeds the

capacity of private caches. While a shared last-level cache

(LLC) can capture the instruction working set, it necessitates

a low-latency interconnect fabric to minimize the core stall

time on instruction fetches serviced by the LLC. Many-core

processors with a mesh interconnect sacrifice performance

on scale-out workloads due to NOC-induced delays. Low-

diameter topologies can overcome the performance limita-

tions of meshes through rich inter-node connectivity, but at

a high area expense.

To address the drawbacks of existing designs, this work in-

troduces NOC-Out – a many-core processor organization that

affords low LLC access delays at a small area cost. NOC-

Out is tuned to accommodate the bilateral core-to-cache ac-

cess pattern, characterized by minimal coherence activity and

lack of inter-core communication, that is dominant in scale-

out workloads. Optimizing for the bilateral access pattern,

NOC-Out segregates cores and LLC banks into distinct net-

work regions and reduces costly network connectivity by elim-

inating the majority of inter-core links. NOC-Out further sim-

plifies the interconnect through the use of low-complexity tree-

based topologies. A detailed evaluation targeting a 64-core

CMP and a set of scale-out workloads reveals that NOC-Out

improves system performance by 17% and reduces network

area by 28% over a tiled mesh-based design. Compared to

a design with a richly-connected flattened butterfly topology,

NOC-Out reduces network area by 9x while matching the per-

formance.

1. Introduction

Today’s information-centric world is powered by servers. A

recent report estimates the server hardware market to exceed

$57 billion in 2014 [5], with various online services pro-

pelling the growth. The size of the market has motivated both

established and start-up hardware makers to develop special-

ized processors for server workloads, as evidenced by designs

such as Oracle’s T-series and IBM’s POWER.

Recent research examining scale-out workloads behind

many of today’s online services has shown that, as a class,

these workloads have a set of common characteristics that

differentiate them from desktop, media processing, and sci-

entific domains [4]. A typical scale-out workload, be it a

streaming service or web search, handles a stream of mostly

independent client requests that require accessing pieces of

data from a vast dataset. Processing a diversity of requests,

scale-out workloads have large active instruction footprints,

typically in the order of several megabytes.

The presence of common traits – namely, (a) request inde-

pendence, (b) large instruction footprints, and (c) vast dataset

sizes – indicates that processors can readily be specialized for

this workload class. The abundant request-level parallelism

argues for processor designs with a large number of cores to

maximize throughput. The independent nature of requests vir-

tually eliminates inter-thread communication activity; how-

ever, large instruction footprints require a fast communica-

tion path between the individual cores and the last-level cache

(LLC) containing the applications’ instructions. Finally, the

vast dataset dwarfs on-die storage capacities and offers few

opportunities for caching due to limited reuse [4].

Taking advantage of common workload features, and

driven by the need to increase server efficiency, the indus-

try has introduced processors, which we broadly refer to as

scale-out processors, that are specialized to scale-out work-

loads. An example of an existing scale-out processor design

is the Oracle T-series, which features up to 16 cores, 3-6 MB

LLC capacities, and a low-latency crossbar interconnect. Ex-

tending and formalizing the space of scale-out processors, re-

searchers introduced the Scale-Out Processor (SOP) design

methodology [15]. The SOP methodology, which provides

an optimization framework for deriving optimal core counts

and LLC capacities based on microarchitectural and technol-

ogy parameters, advocates many cores, modestly-sized LLCs,

and low interconnect delays.

With both industry and researchers calling for many-core

scale-out processor designs, an open question is how should

the cores and LLC be arranged and interconnected for maxi-

mum efficiency. In light of known scalability limitations for

crossbar-based designs, existing many-core chip multiproces-

sors (CMPs), such as Tilera’s Tile series [19], have featured a

mesh-based interconnect fabric and a tiled organization. Each

tile integrates a core, a slice of the shared LLC with directory,

and a router. The resulting organization enables cost-effective

scalability to high core counts; however, the mesh-based de-

sign sacrifices performance on scale-out workloads due to its

large average hop count [15]. Each hop involves a router

traversal, which adds delay that prolongs the core stall time

on instruction fetches serviced by the LLC.

To reduce NOC latency, researchers have proposed low-

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.25

177

diameter NOC topologies, such as the flattened butterfly [13],

that leverage the abundant on-chip wire budget to achieve

rich inter-node connectivity. By minimizing the number of

router traversals, a low-diameter network improves perfor-

mance over a mesh-based design by accelerating accesses to

the LLC. However, the performance gain comes at consid-

erable area overhead stemming from the use of many-ported

routers and a multitude of repeater-intensive long-range links.

In this work, we address the scalability challenge for scale-

out processors through NOC-Out – a core, cache, and inter-

connect organization specialized for the target workload do-

main. We identify the direct communication between cores

and LLC banks, which we term bilateral, as the dominant per-

mutation in scale-out workloads and show that other forms of

communication, including coherence activity, is rare. Based

on this insight, NOC-Out decouples LLC tiles from the cores

and localizes them in a central portion of the die. The segre-

gated organization naturally accommodates the bilateral core-

to-cache access pattern. More importantly, with the traffic

flowing between spatially distinct regions (cores to caches

and back to the cores), NOC-Out virtually eliminates the need

for direct inter-core connectivity, affording a significant re-

duction in network cost.

To further optimize interconnect cost and performance,

NOC-Out deploys simple reduction trees to carry messages

from the cores to the centrally-located LLC banks. Each re-

duction tree is shared by a small number of cores. A node

in a tree is just a buffered 2-input mux that merges packets

from a local port with those already in the network. This sim-

ple design reduces cost and delay by eliminating the need for

routing, multi-port arbitration, complex switches, and deep

buffers. Similarly, NOC-Out uses low-complexity dispersion

trees to carry the data from the cache banks to the cores. A

node in a dispersion tree is a logical opposite of that in a re-

duction tree, allowing packets to either exit the network or

advancing them up the tree at minimal cost and delay.

We use a full-system simulation infrastructure, along with

detailed area and energy models for a 32nm technology node,

to evaluate NOC-Out in the context of a 64-core CMP on a

set of scale-out workloads. Our results show that NOC-Out

matches the performance of a conventional tiled organization

with a flattened butterfly interconnect while reducing the net-

work area by a factor of 9, from a prohibitive 23mm2 to an

affordable 2.5mm2. Compared to a mesh-based design, NOC-

Out improves system performance by 17% while requiring

28% less network area.

2. Background

In this section, we examine scale-out workloads and the de-

mands they place on processor designs.

2.1. Scale-Out Workloads

Research analyzing the scale-out workload domain has

shown that a key set of traits holds across a wide range

���

���

���

���

���

���

���

� � � � �� 	� ��

��
��

��
��

��
��

	�
�

��
�

�
�

��

��
���

��
��

��
�

��
�

���	�����

�����������������

����������������

������� �!"�������

������� �!"������

Figure 1: Effect of distance (which grows with core count) on
per-core performance for ideal and mesh-based in-
terconnects on two scale-out workloads.

of workloads, including web search, media streaming, and

web serving. These traits can be summarized as (a) request

independence, (b) large instruction footprint, and (c) vast

dataset [4]. We next examine each of these traits to under-

stand their effect on processor design.

Request Independence: Scale-out workloads handle a

stream of requests that are, to an overwhelming extent, mu-

tually independent. Fundamentally, request independence is

the feature that makes scale-out workloads inherently parallel

and attractive for execution on many-core chips. Another im-

plication of request independence is the lack of inter-thread

communication. Write sharing among cores working on sep-

arate requests is rare due to the vast data working set size;

nonetheless, the shared memory programming model is val-

ued in the scale-out domain as it simplifies software develop-

ment and facilitates the use of existing software stacks.

Large instruction footprint: Active instruction work-

ing sets in scale-out workloads are typically measured in

megabytes and are characterized by complex control flow.

As a result, private last-level caches tend to lack the requi-

site capacity for capturing the instruction footprint. Shared

last-level caches, on the other hand, have the capacity and re-

duce replication when compared to private caches as different

cores are often executing the same workload and can share in-

structions [8].

One challenge with large, LLC-resident instruction work-

ing sets is that the on-die distance between the cores and

the LLC adds delay to the cache access time. Because L1-

I misses stall the processor, scale-out workloads are partic-

ularly sensitive to the on-die communication delays due to

frequent instruction fetches from the LLC.

Figure 1 shows the effect of distance on per-core perfor-

mance for two representative scale-out workloads. In this

experiment, an 8MB LLC is shared by all cores on the die.

The number of cores is indicated on the x-axis; more cores re-

sult in a larger die size and a longer average distance between

each core and the target LLC bank. The figure compares the

178

(a) Mesh-based CMP with 64 tiles.

#
$$%#&'()*#+,-#

%./*#

�(/*)0./1##

&'()*# 2.30*/#
(b) Tile organization.

��4#

�#

�#

�#

�#

�#

�5�6	
#

��78�#
���976��8#

#

��#����	�6�:#

(c) Mesh router.

Figure 2: Elements of tiled CMPs.

performance of an idealized interconnect (labeled "Ideal") in

which only the wire delay is exposed (i.e., routing, arbitra-

tion, switching, and buffering all take zero time) to a realistic

mesh-based interconnect with a 3-cycle per-hop delay (router

and wire delay). To focus the study, we do not model con-

tention in either network. As the figure shows, interconnect

delay has a significant effect on performance that increases

with core count. At 64 cores, the average difference in per-

formance between an ideal and mesh-based interconnect is

22%.

Vast dataset: Scale-out workloads operate on vast

amounts of data that is frequently kept in DRAM to reduce

the access latency. The data working set of these workloads

dwarfs the capacity of on-die caches. Moreover, there is es-

sentially no temporal reuse in the data stream. The combi-

nation of these features renders on-die caches ineffective for

capturing the data working set, indicating that committing

large swaths of the die real-estate to cache is not useful.

To recap, scale-out workloads are best served by many-core

chips featuring a modestly-sized LLC for capturing the in-

struction working set and an on-die interconnect optimized

for low cache access latency.

2.2. Scale-Out Processors

The observations captured in the previous section are re-

flected in several contemporary processors targeted at the

scale-out market. A representative example is the Oracle

T-series (formerly, Sun Niagara) family of processors. De-

pending on the model, the T-series features up to 16 cores, a

banked LLC with 3-6 MB of storage capacity, and a delay-

optimized crossbar switch connecting the cores to the cache

banks.

Extending and formalizing the space of existing scale-

out processor designs, researchers have proposed the SOP

methodology – a framework for performing cost-benefit anal-

ysis at the chip level in the context of scale-out work-

loads [15]. Given a set of microarchitectural and technol-

ogy parameters, the SOP methodology uses the metric of per-

formance density to derive optimal resource configurations,

Figure 3: Flattened butterfly topology (links from only one
node shown for clarity).

such as the number of cores and LLC capacity. An impor-

tant conclusion of the work is that, indeed, scale-out proces-

sors benefit from many cores with a modestly-sized LLC and

a fast interconnect. Subsequent work has demonstrated that

many-core processor configurations derived using the SOP

methodology improve performance and TCO at the datacen-

ter level [6]. However, a key limitation of these earlier efforts

has been their reliance on crossbar interconnects whose poor

scalability forced suboptimal design choices.

2.3. Existing Many-Core Organizations

To overcome the scalability limitations of crossbar-based de-

signs, emerging many-core processors, such as Tilera’s Tile

series, employ a tiled organization with a fully distributed last-

level cache. Figure 2(a) shows an overview of a generic CMP

based on a tiled design. Each tile, pictured in Figure 2(b),

consists of a core, a slice of the distributed last-level cache, a

directory slice, and a router. The tiles are linked via a routed,

packet-based, multi-hop interconnect in a mesh topology.

The tiled organization and a structured interconnect fabric

allow mesh-based designs to scale to large core counts. Un-

fortunately, the regularity of the mesh topology works to its

disadvantage when it comes to performance scalability. Each

hop in a mesh network involves the traversal of a multi-ported

179

�

�

�

	

�

;

���������� ������� �!� ������� �!" ��<�=���� "�>?�=����� "�>���� � ����

�
��

	��
��

��

��
��

���
���

��
���

��
��

��
��

��
�

�
��

Figure 4: Percentage of LLC accesses causing a snoop message to be sent to a core.

router, shown in Figure 2(c), which adds delay due to the need

to access the packet buffers, arbitrate for resources, and navi-

gate the switch. As Figure 1 shows, in a 64-core CMP, these

delays diminish the performance of a mesh-based tiled CMP

by 22% compared to an ideal fabric in which only the wire

delay is exposed.

To overcome the performance drawbacks of mesh-based in-

terconnects, researchers developed low-diameter topologies

suitable for on-die implementation. These topologies use

rich inter-node connectivity to bypass intermediate routers

between a packet’s source and destination nodes. A state-of-

the-art low-diameter topology is the flattened butterfly [13],

shown in Figure 3. The flattened butterfly uses a set of dedi-

cated channels to fully connect a given node to others along

the row and column. The resulting network requires, at most,

two hops (one in each of the X and Y dimensions) to deliver

the packet to the destination. In doing so, the flattened but-

terfly greatly reduces the contribution of routers to the end-to-

end delay, allowing performance to approach that of an ideal

interconnect.

Problematically, the performance advantages of the flat-

tened butterfly, or another richly-connected NOC, come at

considerable area expense stemming from the use of many-

ported routers and a multitude of links. For instance, in the

flattened butterfly in Figure 3, each router necessitates 14 net-

work ports (7 in each of the two dimensions) plus a local

port. The network ports are costly due to the presence of deep

packet buffers necessary to cover the flight time of the long-

range links. Meanwhile, the routers’ internal switch fabric

is area-intensive due the need to interconnect a large number

of ports. Finally, links consume valuable on-die real-estate

due to the need for frequent repeater placement1, even though

wires themselves can be routed over tiles.

To summarize, existing NOC architectures require an uneasy

choice between performance and area-efficiency. Meanwhile,

scale-out processors demand both – good performance and

good area-efficiency.

1Repeaters are necessary to overcome poor RC characteristics of wires in

current and future technologies.

3. Memory Traffic in Scale-Out Workloads

In order to maximize the efficiency of scale-out processors,

we examine the memory traffic in scale-out workloads to iden-

tify opportunities for specialization.

As noted earlier, scale-out workloads have large instruction

footprints and vast datasets. Cores executing these workloads

frequently access the LLC because neither the instructions

nor the datasets fit in L1 caches. The multi-megabyte instruc-

tion footprints of scale-out workloads can be readily accom-

modated in the LLC while the vast datasets dwarf the LLC

capacity and reside in memory. Consequently, the majority of

accesses to the instruction blocks hit in the LLC while many

dataset accesses miss and are filled from main memory.

On an L1 miss, the directory controller and the LLC check

if the block is available on chip. If so, and if LLC’s copy is the

most recent, the LLC will service the miss and send the data

to the requesting core. If the requesting core signals that it

needs to modify the block, the directory will also send snoop

messages to the set of sharers, instructing them to invalidate

their copy. Conversely, if the directory indicates that another

core has the block, it will send a snoop message to the appro-

priate core, instructing it to forward the block to the requester.

Finally, in the case of a miss, the LLC fetches the block from

main memory and returns it to the requesting core.

Importantly, coherence activity and core-to-core communi-

cation (i.e., L1-to-L1 forwarding) is triggered only as a result

of data sharing at the L1 level. However, due to the high-level

behavior of scale-out workloads, this type of data sharing is

rare. Instructions are actively shared, but are read-only and

served from the LLC; dataset is vast, and the likelihood of

two independent requests sharing a piece of data is low.

Figure 4 shows the fraction of accesses to the LLC that

cause a snoop message to be sent to an L1 cache across six

scale-out workloads. As expected, coherence activity is neg-

ligible in these workloads, with an average of two out of 100

LLC accesses triggering a snoop. Earlier work made similar

observations for both scale-out [4] and server [14] workloads.

The lack of coherence activity in scale-out workloads im-

plies that the dominant traffic flow is from the cores to the

LLC and back to the cores. We refer to this phenomenon as

core-to-cache bilateral access pattern. In tiled processors, the

coupled nature of core and LLC slices means that accesses

180

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�A

=�B��������
�

�A
=�B�������	

�
�A

=�B��������
�

�A
=�B��������

���������	
�������

Figure 5: NOC-Out organization.

to the last-level cache from each individual core, over time,

target all of the tiles, resulting in an all-to-all traffic pattern at

the chip level. Achieving low latency under all-to-all traffic

requires a richly connected topology, necessarily resulting in

high area and wire cost.

4. NOC-Out

NOC-Out is a processor organization optimized for the bilat-

eral access pattern dominant in scale-out workloads. NOC-

Out leverages two insights to minimize interconnect delays at

a small area footprint. First, NOC-Out segregates the LLC

slices from the cores into separate cache-only tiles and con-

centrates the cache tiles in the center of the die. The segrega-

tion of cores and the LLC breaks the all-to-all traffic pattern

characteristic of tiled CMPs and establishes a bilateral traf-

fic flow between core and cache regions. Second, NOC-Out

takes advantage of the bilateral traffic to limit network con-

nectivity, enabling a reduction in network cost. Specifically,

NOC-Out eliminates the bulk of the core-to-core links and the

supporting router structures, preserving a minimum degree of

connectivity to enable each core to reach the LLC region.

Figure 5 shows a high-level view of the proposed organiza-

tion, featuring LLC slices in the center of the die and core tiles

on both sides of the LLC. NOC-Out uses simple, routing-free

reduction trees to guide packets toward the centralized cache

banks, and dispersion trees, which are logical opposites of re-

duction trees, to propagate response data and snoop traffic out

to the cores. Every reduction and dispersion tree connects a

small number of cores to exactly one cache bank. The LLC

banks are linked in a flattened butterfly topology forming a

low-latency NUCA cache. Notably, NOC-Out does not sup-

port direct core-to-core connectivity, requiring all traffic to

flow through the LLC region.

In the rest of the section, we detail the organization of the

reduction, dispersion, and LLC networks.

4.1. Reduction Network

The reduction network is designed for a low-latency delivery

of packets from the cores to the centralized cache banks. Fig-

ure 6(a) shows key features of a reduction tree, which spans

�����# ��	
���

#

%#

%#

%#

%#

(a) Reduction tree.

�����# ��	
���

#

%#

%#

%#

%#

(b) Dispersion tree.

Figure 6: Details of NOC-Out networks.

a column of cores and terminates at the LLC bank at the end

of the column. Effectively, a reduction tree is a many-to-one

interconnect, with all packets that enter a reduction tree flow-

ing to the same destination cache bank. A node in the tree is a

buffered, flow-controlled, two-input multiplexer that merges

packets from the local port with those already in the network.

Compared to a conventional packet-based NOC, the reduc-

tion network does not require routing, as all packets flow to a

common destination. The switch, typically implemented as a

crossbar or a mux tree in conventional NOCs, is reduced to a

simple two-input mux in a reduction tree. The reduction net-

work is similar to conventional NOCs in that it benefits from

the use of virtual channels for protocol deadlock avoidance,

and as such requires a virtual channel allocation mechanism.

However, with just two ports (local and network), the VC allo-

cator is trivially simple. In fact, given the low memory-level

parallelism of scale-out workloads [4], static-priority arbitra-

tion policies that always prioritize the network over the local

port (or vice-versa) tend to work well and afford further sim-

plification of the arbitration logic.

NOC-Out distinguishes three message classes – data re-

quests, snoop requests, and responses (both data and snoop)

– to guarantee network-level deadlock freedom for its coher-

ence protocol. Of these, only data requests and responses

travel through the reduction trees, as snoop requests can only

originate at the directory nodes at the LLC. As a result, each

port in a reduction tree has two virtual channels, one per mes-

sage class.

Upon arrival at a router in a reduction tree, a packet is

buffered in the appropriate VC (determined by the packet’s

message class). With a total of four VCs in a router (two

ports with two VCs per port), a 4:1 arbiter selects a winning

VC based on priority and downstream buffer availability. In

this work, we assume the following fixed priority ordering of

VCs (highest to lowest): network responses, local responses,

network requests, local requests. By prioritizing the network

over the local port, we seek to mitigate the latency disadvan-

tage of cores that are more distant from the LLC. Because a

reduction tree router has exactly one output port, routing and

output port selection logic is unnecessary, and just one arbiter

is required per node.

4.2. Dispersion Network

The dispersion network carries packets (data responses and

snoop requests) from the LLC to the cores. Figure 6(b) shows

181

a logical view of a dispersion tree. A dispersion tree is a log-

ical opposite of the reduction tree, with a single source (a

cache bank) and multiple destinations (cores). Each node in

a tree is a buffered, flow-controlled demultiplexer that selects

a local output port for packets that have reached their desti-

nation or propagates them farther up the tree toward the next

node.

As is the case with the reduction network, virtual channels

are necessary for deadlock avoidance to guarantee that snoop

requests do not block data responses from reaching their des-

tination. With two VCs per node (one per message class), on

each clock cycle, simple control logic (1) uses message pri-

ority and buffer availability to select a winning VC, and (2)

sets up demux control to forward a flit from the selected VC

to the local or network output. Again, we use a static priority

assignment to prioritize reply messages over snoop requests,

subject to buffer availability.

4.3. LLC Network

As described above, NOC-Out segregates core and LLC

slices2 into separate tiles. Because each core connects to just

one LLC tile through its reduction and dispersion trees, NOC-

Out relies on a richly-connected flattened butterfly network

to route traffic between LLC tiles. The choice of the network

is motivated by the need to minimize delay and reduce con-

tention in the LLC region.

In order to reduce the area and channel expense of the

flattened butterfly, NOC-Out takes advantage of the fact that

the number of LLC tiles need not match the number of core

tiles. The number of LLC tiles can be reduced because low

instruction- and memory-level parallelism in scale-out work-

loads naturally dampen the bandwidth pressure on the LLC.

Our empirical data shows that a design with four cores per

one LLC bank achieves a level of performance that is within

2% of a system with an equal number of cores and banks.

Moreover, each LLC tile can house multiple banks that share

the router. A reduction in the number of the LLC tiles di-

minishes the cost and extent of the richly-connected LLC net-

work.

4.4. Additional Considerations

Before concluding the description of NOC-Out, we highlight

several additional aspects of the proposed design; namely, its

flow control architecture, connectivity to off-die interfaces,

and support for shared memory.

Flow control: All three NOC-Out networks (reduction,

dispersion, and LLC) rely on conventional virtual channel

credit-based flow control. The amount of buffering per port

in both reduction and dispersion trees is insignificant (a few

flits per VC) thanks to a short round-trip credit time resulting

from a trivial pipeline. The flattened butterfly LLC network

requires more buffering per port to cover the multi-cycle de-

lays of long-range links and multi-stage routers; however, this

cost is restricted to just a fraction of the nodes.

2An LLC slice is composed of data, tags, and directory.

Off-die interfaces: Contemporary server chips integrate a

number of off-die interfaces, such as memory controllers, to

improve performance and reduce system cost. In the NOC-

Out design, these are accessed through dedicated ports in the

edge routers of the LLC network, as shown in Figure 5.

Shared memory: Shared memory is a prominent fea-

ture of today’s software stacks. Despite being optimized for

the bilateral core-to-cache communication, NOC-Out fully

supports the shared memory paradigm through conventional

hardware coherence mechanisms, preserving full compati-

bility with existing software. What NOC-Out sacrifices by

eliminating direct core-to-core connectivity is the support for

locality-optimized communication. Instead, NOC-Out spe-

cializes for cost and performance on scale-out server work-

loads that do not benefit from locality optimizations.

5. Methodology

Table 1 summarizes the key elements of our methodology,

with the following sections detailing the specifics of the eval-

uated designs, technology parameters, workloads, and simu-

lation infrastructure.

5.1. CMP Parameters

Our target is a many-core CMP implemented in 32nm tech-

nology. We use the Scale-Out Processor methodology [15] to

derive the optimal core count, number of memory controllers,

and LLC capacity for the assumed technology and microar-

chitectural parameters. The resulting processor features 64

cores, 8MB of last-level cache, and four DDR3-1667 memory

channels. Core microarchitecture is modeled after an ARM

Cortex-A15, a three-way out-of-order design with 32KB L1-I

and L1-D caches. Cache line size is 64B.

We consider three system organizations, as follows:

Mesh: Our baseline for the evaluation is a mesh-based

tiled CMP, as shown in Figure 2. The 64 tiles are organized

as an 8-by-8 grid, with each tile containing a core, a slice of

the LLC and a directory node.

At the network level, a mesh hop consists of a single-cycle

link traversal followed by a two-stage router pipeline for a

total of three cycles per hop at zero load. The router per-

forms routing, VC allocation, and speculative crossbar (XB)

allocation in the first cycle, followed by XB traversal in the

next cycle. Each router port has 3 VCs to guarantee deadlock

freedom across three message classes: data requests, snoop

requests, and responses. Each VC is 5 flits deep, which is the

minimum necessary to cover the round-trip credit time.

Flattened Butterfly (FBfly): The FBfly-based CMP has

the same tiled organization as the mesh baseline, but enjoys

rich connectivity afforded by the flattened butterfly organi-

zation as shown in Figure 3. Each FBfly router has 14 net-

work ports (7 per dimension) plus a local port. Due to high

arbitration complexity, the router does not employ specula-

tion, resulting in a three-stage pipeline. Each router port has

182

Table 1: Evaluation parameters.

Parameter Value

Technology 32nm, 0.9V, 2GHz

CMP features 64 cores, 8MB NUCA LLC, 4 DDR3-1667 memory channels

Core ARM Cortex-A15-like: 3-way out-of-order, 64-entry ROB, 16-entry LSQ, 2.9mm2, 1W

Cache per MB: 3.2mm2, 500mW

NOC Organizations:

Mesh Router: 5 ports, 3 VCs/port, 5 flits/VC, 2-stage speculative pipeline. Link: 1 cycle

Flattened Butterfly Router: 15 ports, 3 VCs/port, variable flits/VC, 3 stage pipeline. Link: up to 2 tiles per cycle

NOC-Out
Reduction/Dispersion networks: 2 ports/router, 2 VCs/port, 1 cycle/hop (inc. link)

LLC network: flattened butterfly

three VCs to guarantee deadlock freedom. The number of flit

buffers per VC is optimized based on the location of the router

in the network to minimize buffer requirements. Finally, the

link delay is proportional to the distance spanned by the link.

Given our technology parameters (detailed below) and tile di-

mensions, a flit in the channel can cover up to two tiles in a

single clock cycle.

NOC-Out: Our proposed design, described in Section 4,

segregates core and LLC tiles, and localizes the LLC in the

center of the die. To connect cores to the LLC, NOC-Out

uses specialized reduction and dispersion networks. Direct

inter-core connectivity is not supported and all traffic must

flow through the LLC region.

Both the reduction and dispersion networks require just

two VCs per port. In the reduction network, only data re-

quests and responses flow from the cores to the cache, as

snoop requests cannot originate at the core tiles. Similarly,

the response network only needs to segregate snoop requests

and data responses, as data requests cannot originate at the

LLC. In the absence of contention, both networks have a

single-cycle per-hop delay, which includes traversal of both

the link and the arbitrated mux (in the reduction tree) or de-

mux (in the dispersion tree). This delay is derived based on

the technology parameters and tile dimensions.

The LLC is organized as a single row of tiles, with each

tile containing 1 MB of cache and a directory slice. The as-

pect ratio of the LLC tiles roughly matches that of the core

tiles, allowing for a regular layout across the die, as shown

in Figure 5. LLC tiles are internally banked to maximize

throughput. For the evaluation, we model two banks per tile

(16 LLC banks, in total), as our simulations show that this

configuration achieves similar throughput at lower area cost

as compared to designs with higher degrees of banking. The

eight LLC tiles are fully connected via a one-dimensional flat-

tened butterfly. LLC routers feature a 3-stage non-speculative

pipeline, with three VCs per input port.

5.2. Technology Parameters

We use publicly available tools and data to estimate the area

and energy of the various network organizations. Our study

targets a 32nm technology node with an on-die voltage of

0.9V and a 2GHz operating frequency.

We use custom wire models, derived from a combination

of sources [2, 10], to model links and router switch fabrics.

For links, we model semi-global wires with a pitch of 200nm

and power-delay-optimized repeaters that yield a link latency

of 125ps/mm. On random data, links dissipate 50fJ/bit/mm,

with repeaters responsible for 19% of link energy. For area

estimates, we assume that link wires are routed over logic

or SRAM and do not contribute to network area; however,

repeater area is accounted for in the evaluation.

Our buffer models are taken from ORION 2.0 [11]. We

model flip-flop based buffers for mesh and NOC-Out, as both

have relatively few buffers per port. For the flattened butter-

fly, we assume SRAM buffers that are more area- and energy-

efficient than flip-flops for large buffer configurations.

Cache area, energy, and delay parameters are derived via

CACTI 6.5 [18]. A 1MB slice of the LLC has an area of

3.2mm2 and dissipates on the order of 500mW of power,

mostly due to leakage.

Finally, parameters for the ARM Cortex-A15 core are bor-

rowed from Microprocessor Report and scaled down from the

40nm technology node to the 32nm target. Core area, includ-

ing L1 caches, is estimated at 2.9mm2. Core power is 1.05W

at 2GHz. Core features include 3-way decode/issue/commit,

64-entry ROB, and 16-entry LSQ.

5.3. Workloads

We use scale-out workloads from CloudSuite [3]. The work-

loads include Data Serving, MapReduce, Web Frontend, SAT

Solver, and Web Search. We consider two MapReduce work-

loads – text classification (MapReduce-C) and word count

(MapReduce-W). For the Web Frontend workload, we use the

e-banking option from SPECweb2009 in place of its open-

source counterpart from CloudSuite, as SPECweb2009 ex-

hibits better performance scalability at high core counts. Two

of the workloads – SAT Solver and MapReduce – are batch,

while the rest are latency-sensitive and are tuned to meet the

response time objectives. Prior work [4] has shown that these

workloads have characteristics representative of the broad

class of server workloads as described in Section 2.1.

Four out of six workloads scale to 64 cores. The other two,

namely Web Serving and Web Search, only scale to 16 cores

183

���

���

���

���

���

���

���

���

���������� ������� �!� ������� �!" ��<�=���� "�>?�=����� "�>���� � C����

�
��

��

���
��

��
�	

��

��
�

����

?��������������D�B

EF�!F��

Figure 7: System performance, normalized to a mesh-based design.

due to various software bottlenecks. For these two workloads,

we choose the 16 tiles in the center of the die for the mesh and

flattened butterfly designs, and the 16 core tiles adjacent to the

LLC in the NOC-Out design.

5.4. Simulation Infrastructure

We estimate the performance of the various processor designs

using Flexus full-system simulation [22]. Flexus extends the

Virtutech Simics functional simulator with timing models of

cores, caches, on-chip protocol controllers, and interconnect.

Flexus models the SPARC v9 ISA and is able to run unmodi-

fied operating systems and applications.

We use the SimFlex multiprocessor sampling methodol-

ogy [22]. Our samples are drawn over an interval of 10

seconds of simulated time. For each measurement, we

launch simulations from checkpoints with warmed caches

and branch predictors, and run 100K cycles (2M cycles for

Data Serving) to achieve a steady state of detailed cycle-

accurate simulation before collecting measurements for the

subsequent 50K cycles. We use the ratio of the number of ap-

plication instructions to the total number of cycles (including

the cycles spent executing operating system code) to measure

performance; this metric has been shown to accurately reflect

overall system throughput [22]. Performance measurements

are computed with 95% confidence with an average error of

less than 4%.

6. Evaluation

We first examine system performance and area efficiency of

mesh, flattened butterfly, and NOC-Out designs given a fixed

128-bit link bandwidth. We then present an area-normalized

performance comparison, followed by a discussion of power

trends.

6.1. System Performance

Figure 7 shows full system performance, normalized to the

mesh, under the various NOC organizations. Compared to

the mesh, the richly-connected flattened butterfly topology

improves performance by 7-31%, with a geomean of 17%.

The highest performance gain is registered on the Data Serv-

ing workload, which is characterized by very low ILP and

MLP, making it particularly sensitive to the LLC access la-

tency.

�

;

��

�;

��

�;

���� ?��������������D�B EF�!F��

��
��

��

�

��=��>��

��DD���

G��H�

Figure 8: NOC area breakdown.

On average, the proposed NOC-Out design matches the

performance of the flattened butterfly. On Data Serving, bank

contention is responsible for a small performance degradation

in NOC-Out, resulting in lower performance as compared to

the flattened butterfly. On the other hand, on Web Search (a

16-core workload), NOC-Out enjoys a smaller average com-

munication distance between the cores and the LLC, resulting

in higher performance. The bottom line is that NOC-Out im-

proves system performance by 17% over the mesh, and, on

average, matches the performance of the flattened butterfly.

We conclude the performance assessment by noting that

while the bisection bandwidths of the various topologies are

different, the networks are not congested. Differences in la-

tency, not bandwidth, across the topologies are responsible

for the performance variations.

6.2. NOC Area

Figure 8 breaks down the NOC area of the three organizations

by links, buffers, and crossbars. Only repeaters are accounted

for in link area, as wires are assumed to be routed over tiles.

At over 23mm2, the flattened butterfly has the highest NOC

area, exceeding that of the mesh by nearly a factor of 7. The

large footprint of the flattened butterfly is due to its large link

budget and the use of buffer-intensive many-ported routers.

NOC-Out’s interconnect footprint of 2.5mm2 is the lowest

among the evaluated designs, requiring 28% less area than

a mesh and over 9 times less area than a flattened butterfly.

NOC-Out’s area advantage stems from minimal connectivity

among the majority of the nodes (i.e., cores) and from the

184

���

���

���

���

���

���

���

���

���������� ������� �!� ������� �!" ��<�=���� "�>?�=����� "�>���� � C����

�
��

��

���
��

��
�	

��

��
�

����

?��������������D�B

EF�!F��

Figure 9: System performance, normalized to a mesh-based design, under a fixed NOC area budget.

use of low-complexity network trees (reduction and disper-

sion) that minimize router costs. Each of the two tree net-

works contributes just 18% to the total NOC footprint. In con-

trast, the flattened butterfly interconnecting NOC-Out’s LLC

region constitutes 64% of the total network area while linking

just 11% of the tiles.

6.3. Area-Normalized Comparison

The performance and area analysis in the previous two sec-

tions assumed a fixed link width of 128 bits, resulting in vastly

different NOC area costs and bisection bandwidths. To better

understand how the various designs compare given a fixed

NOC budget, we assess the performance of the mesh and flat-

tened butterfly using NOC-Out’s area of 2.5mm2 as a limiting

constraint. We reduce the width of both mesh and flattened

butterfly NOCs until each of their respective areas (links +

routers) equals that of NOC-Out and then measure the perfor-

mance of the resulting designs.

Figure 9 summarizes the results of the study, with perfor-

mance of the three organizations normalized to that of the

mesh. Given a smaller area budget, the performance of both

mesh and flattened butterfly degrades. The degradation is

small in the mesh network, as the increase in the serializa-

tion latency continues to be dwarfed by the header delay. In

contrast, the richly-connected flattened butterfly sees its link

bandwidth shrink by a factor of 7, significantly impacting end-

to-end latency through a spike in the serialization delay. Com-

pared to the flattened butterfly at the same area budget, NOC-

Out enjoys a 65% performance advantage. Compared to the

mesh, NOC-Out’s performance edge is 19%.

6.4. Power Analysis

Our analysis shows that the NOC is not a significant con-

sumer of power at the chip level. For all three organizations,

NOC power is below 2W. In contrast, cores alone consume in

excess of 60W. Low ILP and MLP of scale-out workloads is

the main reason for the low power consumption at the NOC

level. Another factor is the near-absence of snoop traffic in

these workloads.

NOC-Out results in the most energy-efficient NOC design,

dissipating 1.3W of power, on average. Mesh and flattened

butterfly average 1.8W and 1.6W, respectively. In all organi-

zations, most of the energy is dissipated in the links. NOC-

Out’s higher efficiency stems from the lower average distance

between the cores and the LLC, resulting in less energy spent

in the wires. Meanwhile, the flattened butterfly’s rich connec-

tivity gives it an advantage over the mesh.

6.5. Summary

The evaluation results show that NOC-Out offers the perfor-

mance of the richly-connected flattened butterfly topology at

a fraction of the network area. Whereas the flattened butter-

fly requires a prohibitive 23mm2 of die real-estate, NOC-Out

necessitates just 2.5mm2 for the interconnect. When con-

strained to NOC-Out’s area budget, the performance of the

flattened butterfly diminishes, giving NOC-Out a 65% perfor-

mance advantage. In comparison to a mesh, NOC-Out im-

proves performance by 17% and reduces the network area

footprint by 28%.

7. Discussion

7.1. Scalability of NOC-Out

So far, our description and evaluation of NOC-Out has been

in the context of a 64-core CMP. NOC-Out can be readily

scaled to support larger numbers of cores through the use

of concentration and, in configurations featuring hundreds of

cores, through judicious use of express channels in reduction

and dispersion networks. If necessary, the LLC network can

be scaled up by extending its flattened butterfly interconnect

from one to two dimensions. We now briefly discuss each of

these options.

Concentration: Concentration can be used to reduce the

network diameter by aggregating multiple terminals (e.g.,

cores) at each router node [2]. In the case of reduction and

dispersion networks, a factor of two concentration at each

node (i.e., two adjacent cores sharing a local port of the

mux/demux) could be used to support twice the number of

cores of the baseline design at nearly the same network area

cost. With four times more nodes in the network and a con-

centration factor of four, we find that the 16B links in the tree

networks are bottlenecked by insufficient bandwidth, necessi-

tating either additional or wider links.

Express links: In future CMPs with hundreds of cores,

the height of the reduction and dispersion trees may become

a concern from a performance perspective. To mitigate the

tree delay, express links can be judiciously inserted into the

185

tree to bypass some number of intermediate nodes, allowing

performance to approach that of an "ideal" wire-only network.

While express links increase the cost of the network due to

greater channel expense, they are compatible with the simple

node architectures described in Sections 4.1 and 4.2 and do

not necessitate the use of complex routers.

Flattened butterfly in LLC: When executing scale-out

workloads, much of the useful LLC content is the instruc-

tion footprint and OS data. Because this content is highly

amenable to sharing by all the cores executing the same bi-

nary, adding cores to a scale-out processor does not mandate

additional LLC capacity [15]. Should the need arise, how-

ever, to expand the LLC beyond a single row of tiles, the flat-

tened butterfly network interconnecting the tiles can be read-

ily scaled from one to two dimensions. While an expanded

flattened butterfly increases the cost of NOC-Out, the expense

is confined to the fraction of the die occupied by the LLC.

7.2. Comparison to Prior Work

NOC-Out is not the first attempt to specialize the on-chip in-

terconnect to a specific application domain. Bakhoda et al.

proposed a NOC design optimized for GPU-based throughput

accelerators [1]. Significant similarities and differences exist

between the two efforts. Both designs address the needs of

thread-rich architectures characterized by a memory-resident

data working set and a many-to-few-to-many traffic pattern.

But whereas workloads running on throughput accelerators

are shown to be insensitive to NOC latency, we show scale-

out workloads to be highly sensitivity to interconnect delays

due to frequent instruction fetches from the LLC. As a result,

NOC-Out innovates in the space of delay-optimized on-chip

topologies, whereas prior work has focused on throughput

and cost in the context of meshes.

One effort aimed at boosting NOC efficiency specifically in

the context of server processors was CCNoC, which proposed

a dual-mesh interconnect with better cost-performance char-

acteristics than existing multi-network alternatives [20]. Our

work shows that mesh-based designs are sub-optimal from a

performance perspective in many-core server processors.

A number of earlier studies sought to reduce NOC area

cost and complexity through microarchitectural optimizations

in crossbars [12, 21], buffers [17], and links [16]. A recent

study examined challenges of NOC scalability in kilo-node

chips and proposed an interconnect design that co-optimized

buffering, topology, and flow control to reduce NOC area and

energy [7]. All of these efforts assume a conventional tiled

organization. In contrast, our NOC-Out design lowers NOC

area overheads by limiting the extent of on-die connectivity.

However, NOC-Out’s efficiency can be further improved by

leveraging many of the previously proposed optimizations.

Finally, Huh et al. preceded NOC-Out in proposing a seg-

regated NUCA CMP architecture in which core and LLC tiles

are disjoint [9]. Our design is different from Huh’s in that it

seeks to reduce the number of cache tiles to lower network

cost, whereas Huh relied on a sea of cache tiles to optimize

data placement and partitioning.

8. Conclusion

Server processors for scale-out workloads require many cores

to maximize performance per die by exploiting request-level

parallelism abundant in these workloads. Standing in the way

of seamless performance scale-up resulting from additional

cores is the on-die interconnect that adds delay on instruc-

tion fetches serviced by the last-level cache. The performance

penalty is particularly acute in mesh-based networks that re-

quire a large number of router traversals on a typical LLC

access. While a low-diameter flattened butterfly topology

overcomes the performance bottleneck of meshes, it incurs

a high area overhead through the use of many-ported routers

and repeater-intensive long-range links.

This work introduced NOC-Out, a processor organization

tuned to the demands of scale-out workloads. NOC-Out seg-

regates LLC banks from core tiles and places the cache in the

center of the die, naturally accommodating the bilateral core-

to-cache data access pattern characteristic of scale-out work-

loads. With the bulk of the traffic flowing to the LLC and

directly back to the cores, NOC-Out simplifies the intercon-

nect by restricting direct connectivity among the cores. NOC-

Out farther improves network cost and latency characteristics

through the use of simple tree topologies that take advantage

of the bilateral traffic pattern between the cores and the LLC.

Finally, NOC-Out optimizes the intra-LLC interconnect by

reducing the number of LLC tiles for a fixed cache capacity

with respect to the conventional tiled design. The combina-

tion of these optimizations enable a low-cost low-latency in-

terconnect fabric that matches the performances of a flattened

butterfly at the cost of a mesh.

9. Acknowledgments

This work was partially supported by EuroCloud, Project No

247779 of the European Commission 7th RTD Framework

Programme – Information and Communication Technologies:

Computing Systems.

References

[1] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-

Effective On-Chip Networks for Manycore Accelerators,” in

International Symposium on Microarchitecture, December

2010, pp. 421–432.

[2] J. D. Balfour and W. J. Dally, “Design Tradeoffs for Tiled

CMP On-Chip Networks,” in International Conference on Su-

percomputing, June 2006, pp. 187–198.

[3] “CloudSuite 1.0,” 2012. [Online]. Available: http://parsa.epfl.

ch/cloudsuite

[4] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,

D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Fal-

safi, “Clearing the Clouds: A Study of Emerging Scale-Out

Workloads on Modern Hardware,” in International Conference

on Architectural Support for Programming Languages and Op-

erating Systems, March 2012, pp. 37–48.

186

[5] “Global Server Hardware Market 2010-2014,” March

2011. [Online]. Available: http://www.technavio.com/content/

global-server-hardware-market-2010-2014

[6] B. Grot, D. Hardy, P. Lotfi-Kamran, B. Falsafi, C. Nicopou-

los, and Y. Sazeides, “Optimizing Data-Center TCO with

Scale-Out Processors,” IEEE Micro, vol. 32, no. 5, pp. 52–63,

September/October 2012.

[7] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-NOC:

A Heterogeneous Network-on-Chip Architecture for Scalabil-

ity and Service Guarantees,” in International Symposium on

Computer Architecture, June 2011, pp. 268–279.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Re-

active NUCA: Near-Optimal Block Placement and Replication

in Distributed Caches,” in International Symposium on Com-

puter Architecture, June 2009, pp. 184–195.

[9] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keck-

ler, “A NUCA Substrate for Flexible CMP Cache Sharing,” in

International Conference on Supercomputing, June 2005, pp.

31–40.

[10] “International Technology Roadmap for Semiconductors

(ITRS), 2011 Edition.” [Online]. Available: http://www.itrs.

net/Links/2011ITRS/Home2011.htm

[11] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A

Fast and Accurate NoC Power and Area Model for Early-Stage

Design Space Exploration,” in Design, Automation, and Test in

Europe, April 2009, pp. 423–428.

[12] J. Kim, “Low-Cost Router Microarchitecture for On-Chip Net-

works,” in International Symposium on Microarchitecture, De-

cember 2009, pp. 255–266.

[13] J. Kim, J. Balfour, and W. Dally, “Flattened Butterfly Topol-

ogy for On-Chip Networks,” in International Symposium on

Microarchitecture, December 2007, pp. 172–182.

[14] P. Lotfi-Kamran, M. Ferdman, D. Crisan, and B. Falsafi,

“TurboTag: Lookup Filtering to Reduce Coherence Directory

Power,” in International Symposium on Low Power Electron-

ics and Design, August 2010, pp. 377–382.

[15] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber,

J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Fal-

safi, “Scale-Out Processors,” in International Symposium on

Computer Architecture, June 2012, pp. 500–511.

[16] G. Michelogiannakis, J. Balfour, and W. Dally, “Elastic-Buffer

Flow Control for On-Chip Networks,” in International Sympo-

sium on High-Performance Computer Architecture, February

2009, pp. 151–162.

[17] T. Moscibroda and O. Mutlu, “A Case for Bufferless Routing

in On-Chip Networks,” in International Symposium on Com-

puter Architecture, June 2009, pp. 196–207.

[18] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Op-

timizing NUCA Organizations and Wiring Alternatives for

Large Caches with CACTI 6.0,” in International Symposium

on Microarchitecture, December 2007, pp. 3–14.

[19] “Tilera TILE-Gx.” [Online]. Available: http://www.tilera.com/

products/TILE-Gx.php

[20] S. Volos, C. Seiculescu, B. Grot, N. Khosro Pour, B. Falsafi,

and G. De Micheli, “CCNoC: Specializing On-Chip Intercon-

nects for Energy Efficiency Cache-Coherent Servers,” in In-

ternational Symposium on Networks-on-Chips, May 2012, pp.

67–74.

[21] H. Wang, L.-S. Peh, and S. Malik, “Power-driven Design of

Router Microarchitectures in On-chip Networks,” in Interna-

tional Symposium on Microarchitecture, December 2003, pp.

105–116.

[22] T. Wenisch, R. Wunderlich, M. Ferdman, A. Ailamaki, B. Fal-

safi, and J. Hoe, “SimFlex: Statistical Sampling of Computer

System Simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31,

July/August 2006.

187

SLICC: Self-Assembly of Instruction Cache Collectives for OLTP Workloads

Islam Atta† Pınar Tözün‡ Anastasia Ailamaki‡ Andreas Moshovos†

‡École Polytechnique Fédérale de Lausanne †University of Toronto

{pinar.tozun, anastasia.ailamaki}@epfl.ch {iatta, moshovos}@eecg.toronto.edu

Abstract

Online transaction processing (OLTP) is at the core of many data
center applications. OLTP workloads are known to have large in-
struction footprints that foil existing L1 instruction caches resulting
in poor overall performance. Prefetching can reduce the impact of
such instruction cache miss stalls; however, state-of-the-art solutions
require large dedicated hardware tables on the order of 40KB in size.

SLICC is a programmer transparent, low cost technique to min-
imize instruction cache misses when executing OLTP workloads.
SLICC migrates threads, spreading their instruction footprint over
several L1 caches. It exploits repetition within and across transac-
tions, where a transaction’s first iteration prefetches the instructions
for subsequent iterations or similar subsequent transactions. SLICC
reduces instruction misses by 58% on average for TPC-C and TPC-
E, thereby improving performance by 68%. When compared to a
state-of-the-art prefetcher, and notwithstanding the increased storage
overheads (42× as compared to SLICC), performance using SLICC
is 21% higher for TPC-E and within 2% for TPC-C.

1. Introduction

Online transaction processing (OLTP) is a multi-billion dollar indus-

try that increases 10% annually [7]. OLTP needs have been driving

innovations by both database management system and hardware ven-

dors, and OLTP performance has been a major metric of comparison

across vendors [11, 31, 32]. Unfortunately, modern cloud and server

infrastructures are not tailored well for the characteristics of OLTP

applications [4]. Literature shows that OLTP workloads are memory

bound; memory access stalls account for 80% of execution time, most

of which are due to first-level instruction cache misses [15, 4, 28].

Software [9] and hardware [14, 26, 3, 5] efforts are trying to alleviate

stall time related to instruction misses.

Transactions of canonical OLTP systems are randomly assigned

to worker threads, each of which usually runs on one core of a

modern multi-core system. The instruction footprint of a typical

transaction does not fit into a single L1-I cache, thus thrashing the

cache and incurring a high instruction miss rate. Although L2 and

L3 caches are growing in size, today’s technology and CPU clock

cycle constraints prevent deploying L1-I caches larger than 32KB. As

this work demonstrates, the instruction footprint of a typical OLTP

transaction fits comfortably in the aggregate L1-I cache capacity of

modern many-core chips. Provided that there is sufficient code reuse,

spreading the footprint of transactions over multiple L1-I caches

would reduce instruction cache misses. Fortunately, as corroborated

by our experimental results, OLTP workloads exhibit a high-degree

of instruction reuse both within a transaction and across concurrently

running transactions [3, 9].

This paper proposes SLICC (Self-Assembly of Instruction Cache

Collectives), a hardware technique that utilizes thread migration to

minimize instruction misses for OLTP workloads. SLICC divides the

instruction footprint of a transaction into smaller code segments and

spreads them over multiple cores, so that each L1-I cache holds part

of the instruction footprint. As part of this process the L1-I caches

self-assemble to form a collective that reduces the instruction misses

for this transaction and other similar ones. SLICC exploits intra- and

inter-thread instruction locality in two orthogonal ways: (1) A thread

looping over multiple code segments spread over multiple caches

observes a lower miss rate (as opposed to a conventional system in

which each segment would evict the others from the cache), thereby

avoiding thrashing. (2) A preamble thread effectively prefetches and

distributes common code segments for subsequent threads, thereby

reducing the total miss rate. As execution progresses, old cache

collectives are naturally disassembled and new ones are formed to

hold the footprints of new transactions.

As opposed to previous OLTP instruction miss reduction tech-

niques, SLICC is a hardware solution, that avoids undesirable in-

strumentation, utilizes available core and cache capacity resources,

covers user as well as system-level code, and requires no changes to

the existing user code or software system. SLICC incurs overheads

due to thread migration; thus, context switching and increases in

data misses must be amortized to improve performance. A hardware

thread migration mechanism provides a programmer transparent so-

lution that has low context switching overheads, and the positive

impact of the reduction in instruction misses outpaces the extra data

misses.

To evaluate SLICC, we execute two popular transactional bench-

marks, TPC-C [29] and TPC-E [30], as well as a MapReduce [4]

cloud workload. Our experiments show that, on average, thread mi-

gration eliminates 56% of the L1 instruction misses resulting in a

68% overall performance improvement over the baseline (described

in Section 5.1). Compared to PIF [5], a state-of-the-art instruction

prefetcher, SLICC improves performance by 21% for TPC-E and

comes within 2% for TPC-C, with only 2.4% of relative storage area

overhead. SLICC is also robust as it does not affect the performance

of MapReduce [4], a cloud workload, which has a relatively small

instruction footprint. In summary, this paper makes the following

contributions:

- It characterizes the memory behavior of TPC-C [29] and

TPC-E [30] showing that transactions suffer from instruction

misses, and that their instruction streams exhibit intra- and inter-

transaction recurring patterns leading to eviction of useful blocks

that are re-accessed (96% of capacity misses are for instructions).

- It demonstrates that recently proposed cache replacement poli-

cies [24, 12] reduce instruction misses by 8% on average for the

best policy, but leave ample room for improvement.

- It presents SLICC, a hardware thread migration algorithm, and

shows that it reduces instruction misses by 56% on average with

an overall 68% performance improvement for OLTP.

The remaining of this document is organized as follows. Section 2

analyzes the nature of the problem and Section 3 sets the require-

ments for an ideal solution. Section 4 describes the automated thread

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.26

188

�

�

���

���

���

���

	

	��

	��

�

	�

��

�

��

��

��
	�
� �� 	�

�
��

�
�	

� 	�
� �� 	�
�

��
�

�	
� 	�
� �� 	�
�

��
�

�	
� 	�
� �� 	�
�

��
�

�	
� 	�
� �� 	�
�

��
�

�	
� 	�
� �� 	�
�

��
�

�	
�

�������	
�����

��
��
��
�

�
��
�

������� ��������
�������� �������

�	� �	�!
"#��� "#��$

�	� �	�! �	�!�	�

%��&�����

Figure 1: Instruction and data L1 misses and relative performance as
a function of cache size.

migration algorithm SLICC. Section 5 demonstrates experimentally

the performance benefits of SLICC. Sections 6 reviews related work,

while Section 7 presents our conclusions.

2. Instruction MISS Analysis
This section examines the OLTP memory behavior that motivates

thread migration for instruction cache miss reduction. The analysis

targets TPC-C [29] and TPC-E [30], which resemble state-of-the-

art commercial OLTP applications. We contrast their behavior with

MapReduce [4], a data center workload which has a smaller instruc-

tion footprint. We find that for OLTP transactions:

1. Most instruction misses are due to limited cache capacity, whereas

most data misses are compulsory.

2. The instruction footprint of most transactions would fit in the

aggregate L1 instruction cache capacity of even small scale chip

multiprocessors (eight cores). The same is not true for data foot-

prints.

3. Existing non-LRU cache replacement policies reduce the instruc-

tion miss rate, but only by a fraction of what would be possible

with larger caches.

4. There is intra-thread locality, but over code regions that are larger

than a typical L1 cache size.

5. There is significant inter-thread locality, particularly across threads

of the same transaction type.

2.1. OLTP Instructions and Data Misses

In typical multi-threaded OLTP systems, a transaction is assigned to

a worker thread. Thus multiple similar transactions (threads) usually

run concurrently. Individual threads, whose memory footprints do not

fit in the L1 cache, suffer from high miss rates. Ferdman et al. show

that in OLTP, memory stalls account for up to 80% of the execution

time [4], while Tözün et al. show that instruction stalls account for

70–85% of the overall stall cycles [28].

2.1.1. L1 Miss Breakdown We further analyze instruction and data

L1 misses. Figure 1 shows the number of misses per kilo-instructions

(MPKI) for a range of L1 instruction (L1-I) and data (L1-D) cache

sizes. Section 5 details the experimental methodology. We first vary

the L1-I cache size (16KB–512KB) while keeping the L1-D cache

size at 32KB (our baseline), and then we vary the L1-D cache size

while keeping the L1-I at 32KB. CACTI 6 [20] is used to model the

access latencies of different cache sizes. Figure 1 shows a breakdown

of instruction and data L1 misses into three categories: capacity,

conflict and compulsory [10]. By identifying where most misses

come from, we highlight the reasons behind the memory stalls; is it

cache size, associativity, or cold misses?

�
�

�

	�

	�

��

��

�

�

��

"#��� "#��$ %��&�����

��
���
��
��
��
	�
��
�
��
�

�&' � # (# ! # �&& # (&& # !&& #

Figure 2: MPKI with different cache replacement policies.

Figure 1 shows that for OLTP workloads, capacity misses dominate

instruction misses. This implies that the instruction footprint does

not fit in the cache and has lots of reuse; cache blocks are evicted

from the cache before they are re-referenced. Hence larger L1-I

caches, which can hold cache blocks for longer periods, can reduce

instruction misses. To keep up with the CPU clock speeds, technology

constraints have limited the sizes of L1 instruction caches to about

32KB today. With 32KB caches, instruction capacity misses are

an order of magnitude more than data capacity misses. Compulsory

misses, which occur for the first reference to each unique cache block,

dominate data misses. Thus, larger data caches can do little to reduce

data misses. For 32KB caches, compulsory data misses are an order

of magnitude more than compulsory instruction misses. Unless data

is prefetched, data misses cannot be reduced.

MapReduce is a cloud workload featuring a relatively smaller

instruction footprint [4]. Since 71% of the total L1 misses are com-

pulsory for 32KB caches, larger L1 instructions or data caches are

not as beneficial.

Figure 1 also shows overall performance improvement normalized

to the 32KB baseline. Performance improvements with larger L1-D

caches are negligible at 1%, but can be as high as 16% with larger L1-I

caches (MapReduce shows less than 3% improvement). If increasing

cache size did not also increase latency, performance improvements

would be higher; for example, a 512KB L1-I with the latency of

a 32KB L1-I would result in a 61% performance improvement for

TPC-C.

We conclude that (a) OLTP transactions have instruction footprints

that, while larger than typical L1-I caches, could fit in the aggregate

L1-I capacity of modern multi-cores. (b) OLTP data footprints are

much larger and cannot fit onto the aggregate L1-D capacity of

modern multi-cores. Additionally, (c) OLTP instruction streams

exhibit a significant reuse over regions that exceed typical L1-I cache

sizes leading to the eviction of useful blocks that are re-accessed.

2.1.2. Replacement Policies Conventional caches often use some

approximation of LRU replacement. Qureshi et al. show that some

workloads, including those that have long-term reuse, are not LRU-

friendly [24]. For such workloads, LRU cycles through a large

footprint while it would be best to keep at least some part of the

footprint cache resident. They modify LRU by introducing new

static (LIP, BIP) and dynamic (DIP) insertion policies where newly

accessed blocks are not necessarily inserted at the most-recently-used

position of the LRU stack. Jaleel et al. propose the SRRIP, BRRIP,

and DRRIP re-reference interval based insertion policies [12]. Their

Re-reference Insertion Prediction (RRIP) chain represents the order

in which blocks are predicted to be re-referenced. The block at the

189

�

�)

��)

��)

��)

��)

	��)

*�+�� #���"��������� *�+�� #���"���������

"#��� "#��$

��
��
��
��
	�
��
��
�	�

���,�� -�. %��

Figure 3: Breakdown of accesses accordingly to instruction block
reuse.

head of the RRIP chain is predicted to have a near-immediate re-

reference interval, while the block at the tail of the RRIP chain is

predicted to have a distant re-reference interval. On a cache miss,

a distant block is replaced. Re-references to a block promote its

position towards the head of the chain.

Figure 2 reports the MPKI for these replacement policies for the

baseline 32KB L1-I cache. BRRIP and DRRIP perform best reducing

misses by an average of 8% over LRU. This reduction is only a

fraction of what is possible with larger caches as Figure 1 showed.

Thrashing applications favor Bimodal RRIP (BRRIP), which pre-

dicts a distant re-reference interval for most blocks [12]. Dynamic

RRIP (DRRIP) selects the best policy from Static RRIP (SRRIP)

and BRRIP at runtime. Figure 2 shows that DRRIP chose BRRIP

most of the time. Contrary to the Least Insertion Policy (LIP), which

promotes a referenced block to the MRU position, BRRIP uses access

frequency to promote cache blocks gradually towards the head of the

chain.

Thus, we see that the recurring patterns exhibited by OLTP instruc-

tion streams have relatively long periods that cannot be fully captured

by existing insertion/replacement policies. Nevertheless, replacement

policies are orthogonal to thread migration.

2.1.3. Redundancy Across Threads Chakraborty et al. profile

OLTP instruction accesses and report an 80% redundancy across

multiple cores for user and OS code [3]. Figure 3 corroborates these

results and further shows that 98% of the instruction cache blocks

are common among threads executing the same transaction type;

although similar transactions do not follow the exact same control

flow path, they have common code segments at a coarser granularity.

Figure 3 shows a breakdown of all instruction cache accesses classi-

fied according to the reuse experienced by the accessed block over

the duration of the application. The figure presents three coarse reuse

categories: single, few and most that correspond to blocks accessed by

only one thread, at most, or more than 60% of all the threads, respec-

tively. This behavior highlights an opportunity to reduce instruction

misses by exploiting temporal locality across multiple threads, partic-

ularly threads of the same transaction type.

3. Thread Migration for OLTP

SLICC exploits the aggregate L1-I cache capacity of many cores and

the availability of multiple concurrent threads with inherent code

commonality. It is a hardware transaction scheduling algorithm that

spreads the instruction code footprint across multiple L1-I caches.

SLICC dynamically pipelines and migrates threads to cores that are

predicted to hold the code blocks to be accessed next. By migrating

Figure 4: Thread migration common code segment reuse example.
Left: T1-3 and T4-5 are threads running similar transactions.
Right: 8-core system. The shaded area is the cache activity
(thick border = warm-up phase).

threads, SLICC virtually increases the cache capacity observed by

a thread, and thus, the reuse of instruction blocks brought in to the

cache, avoiding thrashing.

The observations of Section 2.1 support SLICC’s approach: (a) it

can avoid many instruction misses by virtually increasing the L1-I

cache size per thread; and (b) it can effectively increase locality by

grouping similar transactions together. SLICC tends to increase intra-

and inter-thread instruction locality.

3.1. Example Scenario

Figure 4 exemplifies how thread migration can reduce instruction

misses. Threads T1-T5 are scheduled to run on an 8-core system,

where T1-T3 and T4-T5 execute respectively transactions of the same

type. The transactions’ footprints are divided into code segments,

where each segment fits in the L1-I cache of a single core, but two

segments would not fit together. T1 executes the following code

segments in order: A-B-C-A. Thus, its instruction footprint is 3×
larger than the L1-I cache size. Since T2 and T3 are of the same

type as T1, they share common segments with T1, but their execution

paths are not identical. A conventional system would schedule T1,

T2, and T3 on separate cores, and since their footprints are larger than

the L1-I cache size, each thread would suffer all instruction misses.

Figure 4 (right) demonstrates an ideal scenario for thread migration.

Initially (at time t0), T1 runs on core-0. When it is done with code

segment A, and so all cache blocks for A have been brought in to

the cache, T1 migrates to core-1 (at t1), where it continues execution

fetching cache blocks of segment B. At the same time, T2 can be

scheduled to start execution on core-0 (at t1), ideally reusing all

blocks in A (miss rate close to zero). We refer to this as inter-thread

reuse. The process continues and T1 warms-up caches 1 and 2 with

B and C, respectively. At t3, when T1 goes back to A, it migrates to

core-0 benefiting from intra-thread reuse.

Migration is beneficial even if T1-T3 do not follow identical paths,

as segment D illustrates. Since T1 did not touch segment D, T2 will

suffer due to the corresponding misses while executing on core-3. If

T3 follows suit on core-3, it will not suffer any instruction misses for

segment D.

T4-T5 that access different code segments benefit as well if they

get assigned to a different set of cores, avoiding conflicts with T1-

T3. This process applies to all subsequent threads: if they touch a

code segment that exists in some L1-I cache, they migrate to the

corresponding core and avoid missing for these segments.

190

Without thread migration multiple requests would be repeatedly

sent out for the same cache block from multiple cores. With thread

migration, an instruction cache block is, under the ideal scenario,

requested only once, and reused multiple times.

3.2. SLICC Requirements

Based on our preceding discussion we identify three requirements for

SLICC. SLICC should dynamically detect: (a) When a thread should

migrate, i.e., when is the current cache full; and (b) where the thread

should migrate to, i.e., which remote cache, if any, holds the code

segment the thread will touch next. Since transactions vary in their

control flow, SLICC should (c) not impose any specific pipelining,

i.e., it should not restrict similar threads to follow the exact same

path.

In order to meet these requirements, SLICC needs to maintain

runtime information about caches and individual threads to be able to

make judicious migration decisions. First, SLICC needs a mechanism

to determine whether the cache is filled-up with useful cache blocks

or not. In addition, with respect to a given core, SLICC should be

able to predict which remote core holds the cache blocks that will be

touched next.

The basic SLICC design is a type-oblivious algorithm, i.e., no infor-

mation is provided about which threads resemble the same transaction

type. Information about thread types could enhance SLICC’s process.

Thus, there are several alternatives. On one extreme, the hardware

can dynamically migrate threads to cores irrespective of their types.

On the other extreme, the software layer can transfer knowledge

about thread types. In between, threads can be pre-processed to de-

tect threads with similar starting address ranges. We detail the three

alternatives in Section 4.

3.3. Effect on Data Misses

When a thread migrates, it leaves data that might be reused behind.

This may increase the data miss rate. Section 5 shows that while

SLICC does increase the data miss rate, the benefit from reducing

instruction misses outpaces the performance loss due to data miss

increase.

Intuitively, depending on the workload, instruction misses can

impact performance more than data misses. For example, modern

architectures use instruction level parallelism (ILP) to hide data miss

latencies. Instruction misses restrict instruction supply, rendering

such ILP techniques less effective. Existing core architectures make

no effort to balance the relative cost of the two types of misses.

SLICC provides a way of balancing the relative costs of data vs.

instruction misses. In Section 5 we show that SLICC reduces the

overall L1 miss rate.

4. SLICC Design

SLICC exploits intra- and inter-thread locality. (1) It virtually in-

creases the L1-I cache capacity observed by a thread; thus, it improves

locality within a thread. (2) It pipelines similar threads, such that

one thread fetches instruction cache blocks that are reused by many

threads.

This work presents three different SLICC designs. The first design

(SLICC) is transaction-type-oblivious, while the other two exploit

transaction type information. Given that threads of the same trans-

action type tend to have similar footprints, knowing each thread’s

transaction type can lead to better migration decisions. The transac-

tion type information is either provided by the software (SLICC-SW),

or detected at runtime by the hardware based on the initial instruction

sequence each thread executes (SLICC-Pp). These implementations

represent the two extremes and an in-between solution in terms of

hardware/software co-operation. Future work may look at other

alternatives.

4.1. Transaction-Type-Oblivious SLICC

SLICC is a dynamic hardware thread scheduling and migration algo-

rithm that is programmer transparent. SLICC attempts to partition

on-the-fly the instruction footprint of transactions into several seg-

ments where each segment fits in the L1-I cache, but two segments

do not fit together. Ideally: (1) a thread will migrate to another core

when it starts touching a different segment, and (2) the destination

core will already have the segment cached.

Figure 5 shows the sequence of events that lead to thread migration.

In the steady state, each core has a running thread and a hardware

queue of waiting threads. Using a naïve load-balancing strategy,

newly arrived threads are scheduled to the least congested core (i.e.,

the core with the least number of waiting threads). A SLICC agent

at each core continuously monitors execution locally in order to

determine whether (Q.1) the local cache is filled-up with useful

instruction blocks, if so, (Q.2) whether these blocks are useful to the

current thread and for how long, and (Q.3) where to migrate to if

needed.

(Q.1) Is the cache full with useful blocks? As a thread starts

executing on a core it may experience many misses. If the cache

contains a segment that may be useful for other threads, it is best to

migrate the current thread to another core. Otherwise, it is best to

allow the current thread to load a new segment in the cache. SLICC

uses a “cache full” detection heuristic to make this decision. Initially,

all caches are “empty”. To detect whether a cache has been filled

up with a segment, SLICC counts the number of misses using a

resettable, saturating miss counter (MC) local to each core. When

the number of misses exceeds the threshold, fill-up_t, the cache is

considered full. In the long run, all MCs will saturate, preventing

new segments from being cached effectively due to premature thread

migration. To create opportunities for loading new segments, SLICC

resets the MC when the core’s thread queue becomes empty. The

currently cached blocks are not flushed, so if a subsequent thread

requires the same segment it will still find it there. However, a thread

touching a new segment will be given the opportunity to cache it.

(Q.2) Are the current cache contents useful to this thread and
for how long? When running a thread on a full cache, SLICC tries

to determine whether the thread is going over the cached segment,

or whether it is about to move to a new segment. For this purpose

SLICC measures miss dilution, that is, the recent frequency of misses

(detailed in Section 4.2.2). If miss dilution is low, then SLICC

predicts that thread is only temporarily diverting away from the

cached segment. Since the thread will converge again soon, it is best

to not migrate to benefit from the forthcoming instruction reuse. If

miss dilution is high, then SLICC predicts that the thread is moving

to a different segment. If it continues execution on this core it will

evict useful cache blocks, which could be reused by other threads.

SLICC predicts that it might be better to migrate the thread elsewhere.

The question at this point becomes where to go?

(Q.3) Where to migrate to? Ideally, SLICC would migrate a

thread to a cache that has the thread’s next segment. SLICC attempts

the following in order: (1) If the thread is going to touch a code

segment that is available on another core, the thread migrates there.

191

Figure 5: Thread Migration Algorithm.

Figure 6: SLICC Architecture.

(2) Otherwise, the thread migrates to an idle core, if any. (3) The

thread stays put. In the last case, migrating the thread would incur

overheads and would evict remotely cached segments that may be

useful for other threads. SLICC opts for incurring the instruction

misses locally avoiding the migration overhead.

To detect which, if any, remote cache has the next segment, SLICC

uses a short sequence of matched_t number of tags of recent misses,

predicting that they form the preamble of the next segment. Concep-

tually, once SLICC decides to try to migrate a thread, it searches all

remote L1-I caches for these recently missed tags. Section 4.2.3 ex-

plains how this search can be implemented including an incremental

method that uses the existing coherence protocol responses.

Figure 5 summarizes the execution stages of a thread on a core

until it migrates, or completes execution.

4.2. Implementation Requirements

Figure 6 shows that SLICC’s implementation comprises: (a) a cache

full detector, (b) a miss dilution tracker, and (c) a remote cache

segment search unit. SLICC uses hardware thread migration, and

thus, interacts with the OS as Section 4.4 explains in more detail. The

three aforementioned units, described subsequently, track all cache

accesses, including speculative ones.

4.2.1. Cache Full Detection A log2(L1I cache blocks) wide satu-

rating miss counter (MC) continuously counts the number of misses.

When MC saturates at a value of fill-up_t SLICC assumes that the

cache has now captured a full segment and may trigger migrations

accordingly. We experimentally found that using a value in the order

of cache size
2 for the fill-up_t threshold works reasonably well, with

little sensitivity to the exact value of this parameter. Other fill-up

detection mechanisms may be possible but are beyond the scope of

this paper.

4.2.2. Miss Dilution Tracking It is not always beneficial to migrate

threads immediately after a cache becomes full or when a thread

incurs a few misses. SLICC must predict whether the thread is only

temporarily diverging due to conditional control flow or whether it

is moving to a completely different segment. Furthermore, since

threads have to miss for a few blocks before migrating (matched_t
tags must be located on a remote cache), a few useful cache blocks

may be evicted, creating gaps in the exiting segment and causing a

corresponding number of misses for subsequent threads. Finally, a

thread may immediately loop back to the same code segment or may

temporarily follow a somewhat different path after being selected for

migration.

SLICC handles these cases by considering the frequency of instruc-

tion misses; it restricts migration to the cases when a thread starts to

miss more frequently. If the thread is moving to a new segment, it

will incur more misses than hits. SLICC counts the number of misses

in a window of recent accesses. When this count is above the dilution

threshold, dilution_t, migration is enabled. The miss shift-vector

(MSV) is a 100-bit FIFO shift vector recording the hit/miss history

for the last 100 cache accesses (enabled when cache is filled-up). A

logic-0 and logic-1 represent a cache hit and miss, respectively. When

the number of logic-1 bits reaches a threshold (dilution_t), SLICC

enables migration. SLICC resets the MSV with every migration.

4.2.3. Remote Cache Segment Search When SLICC decides to

migrate a thread it has to determine which cache, if any, contains the

segment the thread is executing. To do so, SLICC records recently

missed tags in the Missed Tag Queue (MTQ), which is a matched_t
entry FIFO of n-bit entries, where n is the number of cores. A

logic-1 on bit index C for MTQ entry i indicates that the ith recently

missed cache block was cached at core C. Thus, by ANDing all bits

at index C we know whether core C holds all the recently missed

cache blocks. This information does not have to be exact or accurate,

since it is used by a prediction mechanism. SLICC gathers this

information incrementally as misses occur and stores it in the MTQ.

The remote cache segment search is distributed and the decision is

made locally by the core we migrate from. A directory coherence

protocol could report the complete or partial sharing vector for misses

that are tracked by the MTQ.

Alternatively, or if the coherence protocol is snoop-based, SLICC

could broadcast the missed tags as they occur and explicitly request

that remote cores identify themselves. On snoop coherence systems,

these requests can piggyback on the existing snoop requests. Search-

ing remote L1-I caches requires extra bandwidth on the remote caches

that is proportional to the number of missed tags and cores.

To avoid this bandwidth overhead, we use an approximate cache

signature in the form of a partial-address bloom filter that supports

evictions [23]. When the index size of the bloom filter is larger than

the cache set index, collisions occur only within sets. Hence on

evictions, only the set of the evicted block is checked for collisions.

Every core maintains such a filter, representing a superset of the

192

currently cached blocks. In this design, once migration is triggered,

remote-cache search requests are answered by the approximate sig-

nature, avoiding contention with the original cache references of the

remote core. In Section 5.3, we evaluate the tradeoff of the bloom

filter’s accuracy versus its size. We find that for a 32KB cache, a

256B bloom filter is sufficient.

If no matching remote cache is found, SLICC will attempt to find

an idle core. SLICC either broadcasts a request for idle cores to

report, or piggy-backs this information on the responses received

during the miss tag search phase. Thread migrations are relatively

infrequent (every 3.2K instructions on average), reducing the relative

overhead of remote cache segment and idle core searching.

4.3. Exploiting Transaction Type Information

Section 2.1.3 showed that the instruction footprint overlap is higher

among threads of the same transaction type. The basic SLICC does

not directly exploit this phenomenon. It tries to detect, on-the-fly,

whether a thread matches the segment on the core it is currently

executing. Thus, a thread of type X may partially kick-out cache

blocks used by threads of type Y. If the transaction type for each

thread were known, SLICC could schedule similar threads on the

same set of cores to reduce conflicts. We propose two SLICC variants

that exploit such thread transaction type information.

4.3.1. Assigning Transaction Types SLICC-SW relies on the OLTP

software layer to annotate each thread upon launch with a transaction

type. This guarantees correctness, but requires some modifications to

the software/hardware interface.

Alternatively, SLICC-Pp uses a hardware preprocessing phase to

assign types to threads as they launch. SLICC-Pp exploits the obser-

vation that in OLTP the first few instructions executed are the same

for same-type threads, while they differ across different-type threads.

SLICC-Pp only needs to know when a new thread is launched. A

middle-ware layer assigns threads in groups to a core devoted for

this purpose (scout core). There, each thread executes a few tens

of instructions, while the instruction addresses are hashed. The re-

sulting values are used as thread type identifiers. Experiments show

that SLICC-Pp is 100% accurate when executing a small number of

instructions. SLICC-Pp dedicates one core for pre-processing.

4.3.2. Type-Aware Migration Using thread type information,

SLICC groups similar threads into teams. Creating teams is use-

ful for two reasons: (1) it groups similar transactions to improve

opportunities for co-scheduling and overlap, and (2) it helps schedul-

ing reduce waiting times. For each thread SLICC records a unique

numerical ID, a type ID, and an arrival timestamp. The timestamp

of a team is that of its oldest thread. The oldest team is scheduled,

without pre-emption if possible.

We intuitively design a scheduling algorithm that maximizes the

core utilization and reduces the queuing delay of threads. Team sizes

differ and for an N-core architecture we categorize them into large
(1.5× to 2× N threads), medium (0.5× to 1.5× N threads), and small
(less than 0.5×N threads) teams. Cores are time-multiplexed among

teams. When large teams are scheduled, they are allowed to execute

on all cores. Medium size teams are limited to half the resources

(0.5×N cores). Threads of a small team are treated as stray threads,

and are not grouped. Rather, stray threads are scheduled, individually,

to idle cores, or in parallel with a medium team. For SLICC-SW

and SLICC-Pp, when a team of threads completes execution, SLICC

resets all MCs, MTQs and MSVs.

Table 1: Workload Parameters.

TPC-C-1 1 warehouse, 84 MB

Wholesale supplier

TPC-C-10 10 warehouses, 1 GB

Wholesale supplier

TPC-E 1000 customers, 20 GB

Brokerage house

MapReduce Hadoop 0.20.2, Mahout 0.4 library

Wikipedia page articles (12 GB)

4.4. Support for Thread Migration

To allow for queuing threads, the thread migration performed in

SLICC transfers architectural register files as in Thread Motion [25].

The thread’s context is saved in the L2 cache closest to the target core

and is then retrieved at the target core. This minimizes the set-up

time for the thread. Since modern commercial processor technologies

(e.g., Intel Virtualization (VT) [33] and AMD Secure Virtual Machine

(SVM) [1]) provide hardware support for thread migration, minimal

modifications are required to make the migration process transparent

to higher software layers.

Canonical OS kernels are responsible for assigning threads to cores.

Hardware support for thread migration that is transparent to higher

layers avoids any software overhead. Otherwise, the OS scheduler

must be informed about these migrations. An alternative is a hybrid

system in which hardware mechanisms provide counters and migra-

tion acceleration, while leaving the policy choice to software. This

enables easier integration between existing schedulers and platforms

with virtualization support.

5. Evaluation

Our evaluation: (1) Studies the configuration thresholds for SLICC

(Section 5.2). (2) Determines the trade-off between bloom filter size

and remote cache segment search accuracy (Section 5.3). (3) Demon-

strates SLICC’s effect on instruction (Section 5.4) and data misses

(Section 5.5), compared to the baseline. (4) Reports the performance

improvement with the different flavors of SLICC compared to the

baseline and to a state-of-the-art instruction prefetcher, PIF [5] (Sec-

tion 5.6). (5) Estimates the HW cost for SLICC’s components (Sec-

tion 5.7). (6) Reports statistics about remote cache segment search

activity (Section 5.8).

5.1. Methodology

Current operating systems do not support thread migration at the

hardware level. The OS kernel assumes full control over thread as-

signment in multicore environments. To work around this limitation,

we extract x86 execution traces using PIN [18], which are annotated

to identify transactions. We then replay traces, modeling the tim-

ing of all events and maintaining the original thread sequence. We

modify the Zesto x86 multicore architecture simulator [17]. Previ-

ous work shows that migrating threads to a set of dedicated cores

to execute system level code improves performance [3]. While this

work studies migration of user-level code, SLICC is generic and can

apply to system level code as well. We model thread migrations by

injecting writes and reads for all architectural state and thread context

information.

We examine one scale-out workload and two server workloads as

described in Table 1 [4]. TPC-C [29] and TPC-E [30] run on top

193

�

�
���
���
���
���
	
	��
	��
	��

�

	�

��

�

��

��

��

/�

(�
��

	�
�

��
�

�
�

�	
�

	�
�

��
�

�
�

�	
�

	�
�

��
�

�
�

�	
�

	�
�

��
�

�
�

�	
�

	�
�

��
�

�
�

�	
�

(�
��

	�
�

��
�

�
�

�	
�

	�
�

��
�

�
�

�	
�

	�
�

��
�

�
�

�	
�

	�
�

��
�

�
�

�	
�

	�
�

��
�

�
�

�	
�

� � � � 	� � � � � 	�

"#��� "#��$

��
��
��
�

�
��
�

�������	
��	����		����� ��������
������� ��������

!�%#0 �%#0 �������

Figure 7: MPKI and relative performance as a function of fill-up_t and matched_t thresholds.

Table 2: System Parameters.

Processing 16 OoO cores, 2.5GHz

Cores 6-wide Fetch/Decode/Issue

128-entry ROB, 80-entry LSQ

BTAC (4-way, 512-entry)

TAGE (5-tables, 512-entry, 2K-bimod)

Private L1 32KB, 64B blocks, 8-way

Caches 3-cycle load-to-use, 32 MSHRs

MESI-coherence for L1-D

L2 NUCA Shared, 1MB per core, 16-way

Cache 64B blocks, 16 banks

16-cycle hit latency, 64 MSHRs

Interconnect 4×4 2D Torus, 1-cycle hop latency

Memory DDR3 1.6GHz, 800MHz Bus, 42ns latency

2 Channels / 1 Rank / 8 Banks

8B Bus Width, Open Page Policy

tCAS-10, tRCD-10, tRP-10, tRAS-35

tRC47.5, tWR-15, tWTR-7.5

tRTRS-1, tCCD-4, tCWD-9.5

of the scalable open-source storage manager Shore-MT [13]. The

client-driver and the database are kept on the same machine, the

buffer-pool is set big-enough to keep the whole database in memory,

and due to the unavailability of a sufficiently fast I/O subsystem

we flush the log to RAM. We simulate 1K tasks or approximately

1.1B instructions. We use two different databases in TPC-C-1 and

TPC-C-10 to demonstrate that SLICC remains effective even with a

larger database. TPC-C and TPC-E have larger instruction and data

footprints compared to other scale-out workloads [4]. To demon-

strate SLICC’s robustness, we study the MapReduce CloudSuite

workload [22], which does not have a large instruction footprint [4].

MapReduce divides the full input dataset across 300 threads, each per-

forming a single map/reduce task. We focus most of our evaluation

on TPC-C-1 (referred as TPC-C) and TPC-E.

Table 2 details the baseline architecture. We use misses per kilo

instructions (MPKI) as our metric for instruction (I-MPKI) and data

(D-MPKI) misses. We measure performance by counting the number

of cycles it takes to execute all transactions. With N-core, our baseline

architecture can run up to N concurrent threads with the OS making

thread scheduling decisions. SLICC manages a thread pool of up to

2N threads. Unless otherwise indicated, all SLICC results are for the

SLICC-SW configuration – i.e., the SW layer transfers knowledge

about thread types to the HW layer.

5.2. Exploring SLICC’s Parameter Space

SLICC utilizes three thresholds to make thread migration decisions:

fill-up_t, matched_t and dilution_t. This section explores their effect

on L1 cache misses and overall performance. As defined in Section 4,

fill-up_t sets the threshold for the initial fill-up period for an L1-I

cache, during which instructions are brought in until the cache is

almost full. When the miss counter (MC) is lower than fill-up_t,
a thread is not allowed to migrate. Matched_t sets the minimum

number of tags that should be found on a remote cache before a thread

migrates to it. Larger matched_t limits migration, while smaller

values trigger too frequent migrations. Dilution_t is the minimum

number of misses in the last 100 accesses to allow migration. It

tends to restrict migration to the cases when more frequent misses

are observed by a thread. The parameter choices could be thought of

as a 3D space. To simplify, we first keep dilution_t value at zero, and

explore the parameter space of fill-up_t and matched_t. In addition,

we assume zero-overhead to search for remote tags. We later model

an actual search mechanism.

Figure 7 reports I-MPKI, D-MPKI and performance relative to the

baseline as a function of fill-up_t and matched_t. The fill-up_t values

shown correspond to fractions of the L1-I cache capacity (512 cache

blocks): 1⁄4, 1⁄2, 3⁄4, and one. The matched_t range shown is 2− 10;

larger matched_t values further degrade performance. SLICC reduces

instruction misses and increases data misses. Since instruction stalls,

for OLTP workloads, account for 70% of overall cycle stalls [28],

reducing instruction misses has a major effect on performance.

The results show that SLICC is not sensitive to different values of

fill-up_t. Fill-up_t is actually a proxy for warming-up the caches; it af-

fects only the first migration from a core. Thus with more migrations,

the effect of fill-up_t diminishes. TPC-C and TPC-E transactions

have large instruction counts and migrations. Figure 7 demonstrates

that for matched_t values larger than four, performance benefits drop.

On the other hand, although the overall MPKI at two is lower, per-

formance at four is higher due to fewer migrations, and thus, lower

overhead.

Next, we explore the parameter space of dilution_t. Using a small

value for dilution_t triggers more frequent migrations. Using too

large a value for dilution_t reduces migration overhead, but with a

possible I-MPKI increase since it results in partial cache thrashing.

Figure 8 shows L1 MPKI and relative to the baseline performance for

dilution_t values 1 through 30 when fill-up_t = 256 and matched_t =
4 (best configuration from Figure 7). As dilution_t increases, instruc-

tion misses are reduced improving performance up to a point. After-

wards, larger dilution_t leads to fewer migrations, lesser overhead,

but higher I-MPKI. There is a tradeoff between reducing instruction

194

�

�

���
���

���

���

	
	��

	��

	��

	��
�

�

	�

��

�

��

��

��
� � � � 	� 	� 	� 	� 	� �� �� �� �� ��
� � � � � 	� 	� 	� 	� 	� �� �� �� �� ��
�

��
��
��
�

�
��
�

��	�������

!�%#0 �%#0 �������

"#��� "#��$

Figure 8: MPKI and relative performance as a function of dilution_t.

�

1���

1/

1/��

1�

1���

11

11��

	��

�	
� 	0 �0 �0 �0 �	
� 	0 �0 �0 �0

"#��� "#��$

 �
��
��
�!
��"

�

#����$	#�����	
����	���

Figure 9: Partial-address bloom filter accuracy.

misses, and reducing migration overhead. Beyond dilution_t val-

ues of 28 (TPC-C) and 24 (TPC-E), although the overall MKPI is

reduced, the performance degrades due to more limited migration.

At even higher dilution_t values, migrations seize and performance

drops below the baseline (for SLICC-SW, teams of transactions are

injected to start on the same initial core, thus when migration stops

some cores are underutilized).

In the remaining parts of this evaluation, we use dilution_t = 10,

fill-up_t = 256 and matched_t = 4. The last parameter means that

the MTQ needs to keep track of only the four most recent misses,

and that remote cache segment searching only requires finding where

those four blocks are cached.

5.3. Cache Signature Accuracy

Section 4.2.3 explained that using a partial-address bloom filter re-

duces the overhead of remote cache segment searching. Figure 9

shows the accuracy of bloom filters of different sizes. The smallest

bloom filter requires 512 bits to support evictions for a 32KB cache,

with 64B blocks, and 512-sets. Accuracy is measured for all cache

accesses and an access is accurate if the bloom filter and the cache

agree on whether this is a hit or a miss. The trend is similar for

TPC-C and TPC-E. In the rest of this paper, we experiment with

2K-bits filters as their effect on performance is less than 0.5% (99.3%

accuracy).

5.4. Instruction Miss Change

Having determined a good SLICC configuration, this section shows

that the three SLICC variants are able to reduce instruction misses

much more than they increase data misses. Figure 10 shows the L1

I-MPKI for the baseline, SLICC, SLICC-SW, and SLICC-Pp. For

MapReduce, since the instruction footprint fits in a 32KB cache,

SLICC does not affect instruction or data misses.

Focusing on the other workloads, SLICC-SW reduces I-MPKI

more than SLICC or SLICC-Pp. Compared to the baseline, SLICC-

SW reduces I-MPKI by 56% and 61% for TPC-C and TPC-E, respec-

tively. I-MPKI reductions are slightly lower with SLICC-Pp, more so

for TPC-E than TPC-C, for the following reason: SLICC-Pp devotes

one core to preprocessing. Given the transaction mix and transaction

footprint sizes, having that extra core can be more important. All

three variants of SLICC are sometimes forced to overcommit the

caches by concurrently running transactions whose aggregate foot-

print does not fit on the total available L1 cache capacity. When

overcommitting the caches, it is best to use stray threads since little

opportunity for instruction reuse is lost when overcommitting with

stray threads (a stray thread by definition is one that has few, if any,

other ready threads sharing the same footprint). Overcommitting

with non-stray threads happens more often for TPC-E than TPC-C

partly because only 3% of TPC-E threads are stray compared to 12%

of TPC-C threads. Furthermore, the need for stray threads is higher

for TPC-E than TPC-C; SLICC spreads the transactions of TPC-E

across 8−10 cores, while TPC-C’s transactions are spread across up

to 14 cores.

SLICC improves I-MPKI less than the thread-type-aware alterna-

tives, as it has to predict which is the next segment a thread will exe-

cute and where that segment currently is, using only a small preamble

of the segment. The difference in reduction is more pronounced for

TPC-C than TPC-E. TPC-C’s overall instruction footprint is larger,

resulting in higher variability in the instruction stream. Nevertheless,

SLICC reduces instruction misses by 40.5%, on average.

As a comparison of the results for TPC-C-10 to those for TPC-C-1

shows, I-MPKI reductions persist mostly unaffected with the larger

database.

5.5. Data Miss Change

During thread migration from core-A to core-B, three possible scenar-

ios lead to extra data misses that would not have occurred otherwise:

(1) a thread may read data on core-B that it fetched on core-A (extra

misses on core-B for the same data blocks), (2) data writes on core-B

to blocks fetched on core-A lead to invalidations that would not have

occurred without migration (extra misses on core-B and invalidations

on core-A), and (3) when a thread returns to core-A, it may find that

data it originally fetched has since been evicted by another thread, or

invalidated by itself (extra miss on core-A). Section 5.6 shows that

instruction misses are more expensive than data misses performance-

wise. Most data misses that result from migrations are served on-chip,

allowing out-of-order execution to mostly absorb their latency.

Figure 10 reports the D-MPKI for all three SLICC variants and

shows that SLICC-SW incurs an increase in D-MPKI of 11%, 1%

and 4% over the baseline for TPC-C-1, TPC-C-10 and TPC-E, re-

spectively. The other two variants exhibit a similar trend in D-MPKI

increase. There is less locality and sharing in the larger data set of

TPC-C-10, reducing the D-MPKI overhead when migrating.

Most of the increase in D-MPKI is for stores, which form 45%

of total memory accesses, while loads are nearly unaffected. Due

to slightly fewer migrations, SLICC-Pp increases D-MPKI less than

SLICC-SW. As expected, SLICC is worse with an average D-MPKI

increase of 9%.

We examined data prefetching to mitigate the increase in data

misses. For each thread, we recorded the tags of the last n-referenced

data blocks and then prefetched those blocks to the core the thread

migrated to. This prefetcher did not improve performance, and past a

195

�

�

�

	�

	�

��

��

�

�

��

(�
��

��
 �

�
��

 �
��

#�
��

 �
��

�2 (�
��

��
 �

�
��

 �
��

#�
��

 �
��

�2 (�
��

��
 �

�
��

 �
��

#�
��

 �
��

�2 (�
��

��
 �

�
��

 �
��

#�
��

 �
��

�2

"#���	 "#����	� "#�$�	 %��&�����

�
��
�

 �%#0 !�%#0

Figure 10: L1 I- and D-MPKI.

value of n, it hurts performance. There are several reasons why this

prefetching proved ineffective. (1) The prefetched data increased the

bandwidth on lower cache levels, which affects overall performance

when n is high. (2) When n is low, there was not enough reuse. (3)

Not all prefetched blocks are referenced again. (4) Finally, since 45%

of the data accesses are stores, prefetching causes invalidations that

would not have occurred otherwise.

This section showed that all SLICC variants improve I-MPKI

significantly with a minor increase in D-MPKI, which is negligible

with the larger database for TPC-C. These results suggest that SLICC

can improve performance if, as expected, instruction cache misses

degrade performance more than data cache misses; data misses can

be partially overlapped with out-of-order execution. If this is the case,

SLICC has the potential to offer a better balance of instruction vs.
data cache misses over a conventional architecture.

Similar to D-MPKI, D-TLB misses increase on average by 11%

and 8% with SLICC and SLICC-SW, respectively. I-TLB misses are

within +/- 0.5% of the baseline.

5.6. Performance
This section reports the overall performance of SLICC relative to

the baseline, a next-line instruction prefetcher, and a state-of-the-art

prefetcher, PIF [5]. Figure 11 shows a 1.6× and 1.79× performance

improvement over the baseline for SLICC-SW, on TPC-C-1 and

TPC-E, respectively. On average, SLICC-SW and SLICC improve

performance by 1.64× and 1.52× over the baseline, and 1.43× and

1.29× over a next-line instruction prefetcher.

Ferdman et al. report that PIF has nearly perfect coverage of L1-I

misses [5]. Thus, we model an upper bound for PIF using a 512KB

cache, with the delay of a 32KB cache. PIF’s storage requirements

are ∼40 KB per core. For TPC-C, SLICC-SW is within 2% of PIF’s

performance, with only 2.4% of PIF’s storage requirements (see next

section) per core. For TPC-E, SLICC-SW outperforms PIF by 21%.

SLICC’s speedup compared to PIF (and also the baseline) is a result

of intelligent thread scheduling. Current schedulers assign threads

to cores irrespective of their inherent-locality. Thus, even for larger

caches, multiple similar threads run concurrently on different cores,

each observing its own set of misses, for the same cache blocks. By

pipelining similar threads, SLICC increases temporal inter-thread

locality, hence it decreases overall miss rate observed by multiple

threads.

MapReduce, which has an instruction footprint that fits in the L1-I

cache, remains practically unaffected with SLICC.

5.7. Hardware Cost
Table 3 details the cost of all SLICC’s hardware components. Sec-

tion 4.2 described some of the components. In addition, SLICC

Table 3: Hardware Component Storage Costs.

Cache Monitor Unit
Missed-Tag Queue 60-bits

(MTQ) (16-core, matched_t = 4)

Miss Shift-Vector 100-bits

(MSV)

Cache Signature 2K-bits

(Bloom Filter)

Total 2208 bits (276 Bytes)

Thread Scheduler
Thread Queue 30-entries (12-bits numerical ID,

48-bits pointer to thread context

4-bits core ID)

Total 1920 bits (240 Bytes)

Team Formation (SLICC-SW & SLICC-Pp)
Team Management 60-entries (12-bits numerical ID,

table 32-bits timestamp, 4-bits type ID,

4-bits team ID, 8-bits team index)

Total 3600 bits (450 Bytes)

Grand Total 7728 bits (966 Bytes)

requires a thread queue that holds threads waiting for cores. Each

entry contains a unique numerical ID, a pointer to the threads’ con-

text, and a core ID. The thread queues can be local to each core, or

centralized to one core. The table shows the cost for a centralized

queue. Fewer entries are required when the queues are local to each

core. The team management table is responsible for forming teams

of similar threads (not required by SLICC). Each entry consists of:

a unique numerical ID, a type ID, a team ID, index within a team,

and a timestamp. The team management table is best thought of as

being centralized, since every core needs to know which cores are

assigned to which teams. We can either have one centralized copy, or

per core copies that are kept coherent. For this work we simulated

a centralized copy at one of the cores and modeled the necessary

traffic.

On each core, a SLICC agent is responsible for managing the

thread queue. The thread queue is a circular FIFO buffer and the first

entry is executed until it migrates, completes, or gets blocked for I/O.

On the latter case, the thread is moved to the end of the queue. With

an over-provisioned thread queue of 30 threads, and a copy of the

team management table, per core, SLICC requires a maximum of

966 bytes in addition to logic. All logic operations for SLICC are not

on the critical path.

5.8. Remote Cache Segment Search Activity

As per the description of Section 4.2.3, a thread that wants to migrate

has to find which cache, if any, holds the next code segment. Our

results, thus, far modeled this searching by including separate mes-

sages for the corresponding miss messages using separate broadcasts.

We do so to obtain an upper limit of the overhead these messages may

induce. We report the frequency of these messages as Broadcasts

per Kilo Instructions (BPKI) and find that it is very low. For TPC-C,

BPKI is 2.204 for SLICC and 0.28 for SLICC-SW and SLICC-Pp.

For TPC-E, BPKI is 1.328 for SLICC and 0.367 for SLICC-SW and

SLICC-Pp. As Section 4.2.3 explained these requests are required

196

�
��1

	

	�	

	��

	�

	��

	��

	��

	�/

	��

	�1

"#����	 "#����	� "#��$ %��&�����

��
��
��
�

(��� 3�4������ �� �� �� ���#� �� ����2 # -

Figure 11: Performance.

anyhow for normal miss processing. The ownership information

required by SLICC is either already available or should be possible

to piggyback on existing responses.

6. Related Work
Instruction prefetching solutions have evolved from simple stream

buffers [14, 26] to highly accurate, sophisticated stream predic-

tors [6, 5]. Accurate prefetchers for OLTP are expensive, requiring

∼40KB of extra storage per L1 cache. Since these prefetchers track

execution sequences, their storage requirements should increase with

the instruction footprint. In addition, they neglect the possible pres-

ence of idle cores, and do not avoid code and prediction redundancy,

under-utilizing on-chip resources. In this work we compared SLICC

to PIF [5], a state-of-the art prefetcher that achieves near optimal in-

struction miss coverage. We showed that SLICC was able to achieve

98% of PIF’s performance for TPC-C, using only 2.4% of the storage

area overhead, while outperforming it by 21% for TPC-E.

Chakraborty et al. show a high-degree of redundancy in instruction

fragments across threads concurrently running on multiple cores [3].

They propose CSP, which employs thread migration to distribute

the dissimilar instruction code segments and group the similar ones

together. For system code, which is commonly used by multiple

threads, CSP fragments and distributes the code across a group of

dedicated cores. CSP then migrates threads to these dedicated cores

to execute system code. When threads are done, they return back

to their original cores to resume execution for the user-level code.

Thus CSP is limited to fragmenting OS code, losing opportunities of

fragmentation within user code. SLICC generalizes thread migration

to include interleaved user-OS code fragmentation points. In addition,

thread migration in SLICC is managed by the hardware, while with

CSP, the OS performs the migrations.

Atta et al. suggested using thread migration for reducing instruc-

tion misses in OLTP and demonstrated its potential to reduce I-MPKI

without presenting a solution [2]. No performance analysis was con-

ducted. This work presents a working solution and demonstrates its

performance benefits.

STEPS [9] aims to minimize instruction misses from the software

side. Like SLICC, it groups threads executing similar transactions

into teams. It, either manually or by using a profiling tool, breaks each

transaction’s instruction footprint into smaller instruction chunks in a

way that each chunk can fit in the L1-I cache. Then, all the threads in

the same team execute the first chunk, rather than executing the whole

transaction without any interruption, on the same core by context

switching to the other thread when one completes the execution of

the chunk. STEPS repeats this process for all the chunks, allowing in-

struction re-use across many threads for each chunk. SLICC exploits

the same way of re-using the instructions already brought into the

cache by previous threads. However, rather than context-switching

on the same core, SLICC migrates threads to another core so that

they can continue their execution. Moreover, SLICC dynamically

detects the synchronization points in a transaction rather than using

a priori manual or profiling based software instrumentation. Future

work may look at combining the time-domain pipelining of STEPS

with the space-domain pipelining of SLICC.

Data-oriented transaction execution (DORA) indirectly affects the

instruction footprint of a transaction [21]. It divides a transaction

into smaller actions based on the data being accessed at a particular

transaction part. Then, each of those actions are sent to their corre-

sponding worker threads, reducing the overall number instructions

executed by a single thread per transaction. Such a design might not

necessarily break a transaction into instruction parts that can fit in

L1-I. However, if combined with SLICC, it can give better hints on

where to migrate or reduce the total number of migrations needed to

be done per worker thread.

Hardavellas et al. [8] observe that more than 60% of a distributed

shared L2 accesses are for instructions. They adapt a NUCA block

placement policy according to workload categorization, and allow

replication of (read-only) instructions, which shortens the distance

between L1-I caches and L2s. This reduces the L1-I miss penalty,

but does not reduce the miss rate.

Other recent thread migration proposals target power management,

data cache, or memory coherence [19, 25, 16, 27].

7. Conclusions
Literature showed that memory stalls for OLTP workloads account

for 80% of their execution time, and L1 instruction misses account for

70-85% of overall stall cycles. We corroborate these results and show

that 94% of L1 capacity misses are for instructions. Additionally,

we show that recently proposed replacement policies, which reduce

miss rates for some workloads, leave a lot of room for improvement

compared to using larger L1-I caches. Previous works tackle this

problem in software or hardware, but they are either impractical

(require code instrumentation) or relatively expensive (large on-chip

data structures).

This work presented a solution based on thread migration, SLICC.

Similar to CSP [3] and STEPS [9], we exploit the code commonality

observed across multiple concurrent threads. Unlike CSP, we do

not limit code reuse to OS code segments. Unlike STEPS, instead

of context switching on the same core, we distribute the instruction

footprint across multiple cores and migrate execution. SLICC is a

low-level hardware algorithm that requires no code instrumentation

and efficiently utilizes available cache capacity, by improving intra-

and inter-thread locality.

SLICC reduces the instruction misses for OLTP by 56% on average

at the expense of an 5% average increase in data misses. SLICC im-

proves the overall performance by 68% on average over the baseline

and performs better when the input database is larger. Compared to a

state-of-the-art instruction prefetcher (PIF), SLICC improves perfor-

mance by 21% for TPC-E and comes within 2% for TPC-C, with only

2.4% of relative area overhead. When tested on MapReduce, a cloud

workload that has a relatively small instruction footprint, SLICC was

robust and did not affect the L1 miss rates or performance.

8. Acknowledgments
We thank the members of the AENAO and DIAS laboratories, Adrian

Popescu, the reviewers, and Jared Smolens for their comments and

197

help. We thank Sudhakar Yalamanchili, Jun Wang, and the whole

Georgia Tech development team for providing us with the Zesto sim-

ulator. This work was partially supported by an NSERC Discovery

grant, an NSERC CRD with IBM, a Sloan research fellowship, NSF

grants CCR-0205544, IIS-0133686, and IIS-0713409, an ESF EurYI

award, and Swiss National Foundation funds.

References

[1] Advanced Micro Devices, “Secure virtual machine architecture refer-
ence manual,” May 2005.

[2] I. Atta, P. Tözün, A. Ailamaki, and A. Moshovos, “Reducing OLTP
instruction misses with thread migration,” in Proceedings of the Eighth
International Workshop on Data Management on New Hardware, 2012,
pp. 9–15.

[3] K. Chakraborty, P. M. Wells, and G. S. Sohi, “Computation spreading:
employing hardware migration to specialize CMP cores on-the-fly,”
in Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2006, pp.
283–292.

[4] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
in Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012, pp.
37–48.

[5] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, 2011, pp. 152–162.

[6] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in Proceedings of the 41st An-
nual IEEE/ACM International Symposium on Microarchitecture, 2008,
pp. 1–10.

[7] Gartner, “Market share: Database management sys-
tem software, worldwide, 2008,” 2009, available at
http://www.gartner.com/DisplayDocument?id=1044912.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 184–195.

[9] S. Harizopoulos and A. Ailamaki, “Improving instruction cache per-
formance in OLTP,” ACM Transactions on Database Systems, vol. 31,
no. 3, pp. 887–920, Sep. 2006.

[10] M. D. Hill and A. J. Smith, “Evaluating associativity in CPU caches,”
IEEE Transactions on Computers, vol. 38, no. 12, pp. 1612–1630, Dec.
1989.

[11] IBM, “IBM breaks double digit performance barrier with 10
million transactions per minute,” 2010, available at http://www-
03.ibm.com/press/us/en/pressrelease/32328.wss.

[12] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High perfor-
mance cache replacement using re-reference interval prediction (RRIP),”
in Proceedings of the 37th Annual International Symposium on Com-
puter Architecture, 2010, pp. 60–71.

[13] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi,
“Shore-MT: a scalable storage manager for the multicore era,” in Pro-
ceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, 2009, pp. 24–35.

[14] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Proceedings of the 17th Annual International Symposium on Computer
Architecture, 1990, pp. 364–373.

[15] K. Keeton, D. Patterson, Y. Q. He, R. Raphael, and W. Baker, “Per-
formance characterization of a Quad Pentium Pro SMP using OLTP
workloads,” in Proceedings of the 25th Annual International Symposium
on Computer Architecture, 1998, pp. 15–26.

[16] M. Lis, K. S. Shim, M. H. Cho, O. Khan, and S. Devadas, “Directoryless
shared memory coherence using execution migration,” in Proceedings of
the 24th IASTED International Conference on Parallel and Distributed
Computing and Systems, 2011.

[17] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator
for highly detailed microarchitecture exploration,” in Proceedings of
the International Symposium on Performance Analysis of Systems and
Software, 2009, pp. 53–64.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming language design and
implementation, 2005, pp. 190–200.

[19] P. Michaud, “Exploiting the cache capacity of a single-chip multi-core
processor with execution migration,” in Proceedings of the 10th Interna-
tional Symposium on High Performance Computer Architecture, 2004,
pp. 186–.

[20] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP, Tech. Rep., 2009.

[21] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki, “Data-oriented
transaction execution,” Proceedings of the VLDB Endowment, vol. 3, no.
1-2, pp. 928–939, Sep. 2010.

[22] PARSA, “Data analytics benchmark with hadoop mapreduce frame-
work,” 2012, available at http://parsa.epfl.ch/cloudsuite/analytics.html.

[23] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai, “Bloom filtering
cache misses for accurate data speculation and prefetching,” in Proceed-
ings of the 16th International Conference on Supercomputing, 2002, pp.
189–198.

[24] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” in Proceedings of the
34th Annual International Symposium on Computer Architecture, 2007,
pp. 381–391.

[25] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture, 2009, pp.
302–313.

[26] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso, “Per-
formance of database workloads on shared-memory systems with out-of-
order processors,” in Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 1998, pp. 307–318.

[27] K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Judicious thread migra-
tion when accessing distributed shared caches,” in Proccedings of the
Third Computer Architecture and Operating System Co-design, 2012.

[28] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki, “From A to
E: Analyzing TPC’s OLTP Benchmarks – The obsolete, the ubiquitous,
the unexplored?” EPFL, Tech. Rep., 2012.

[29] TPC, “TPC benchmark C (OLTP) standard specification, revision 5.11,”
2010, available at http://www.tpc.org/tpcc.

[30] TPC, “TPC benchmark E standard specification, revision 1.12.0,” 2010,
available at http://www.tpc.org/tpce.

[31] TPC, “TPC-C ten most recently published results,” 2012, available at
http://www.tpc.org/tpcc/results/tpcc_last_ten_results.asp.

[32] TPC, “TPC-E ten most recently published results,” 2012, available at
http://www.tpc.org/tpce/results/tpce_last_ten_results.asp.

[33] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
Virtualization Technology,” IEEE Computer, pp. 48–56, 2005.

198

Systematic Energy Characterization of CMP/SMT Processor Systems via Automated
Micro-Benchmarks

Ramon Bertran*† Alper Buyuktosunoglu† Meeta S. Gupta† Marc Gonzàlez* Pradip Bose†

*Barcelona Supercomputing Center
C. Jordi Girona 29, Barcelona, Spain

{ramon.bertran,marc.gonzalez}@bsc.es

†IBM T.J. Watson Research Center
Yorktown Heights, NY, USA

{rbertra,alperb,mgupta,pbose}@us.ibm.com

Abstract

Microprocessor-based systems today are composed of multi-core,
multi-threaded processors with complex cache hierarchies and gi-
gabytes of main memory. Accurate characterization of such a sys-
tem, through predictive pre-silicon modeling and/or diagnostic post-
silicon measurement based analysis are increasingly cumbersome
and error prone. This is especially true of energy-related character-
ization studies. In this paper, we take the position that automated
micro-benchmarks generated with particular objectives in mind hold
the key to obtaining accurate energy-related characterization. As
such, we first present a flexible micro-benchmark generation frame-
work (MicroProbe) that is used to probe complex multi-core/multi-
threaded systems with a variety and range of energy-related queries
in mind. We then present experimental results centered around an
IBM POWER7 CMP/SMT system to demonstrate how the systemat-
ically generated micro-benchmarks can be used to answer three
specific queries: (a) How to project application-specific (and if
needed, phase-specific) power consumption with component-wise
breakdowns? (b) How to measure energy-per-instruction (EPI) val-
ues for the target machine? (c) How to bound the worst-case (maxi-
mum) power consumption in order to determine safe, but practical
(i.e. affordable) packaging or cooling solutions? The solution ap-
proaches to the above problems are all new. Hardware measurement
based analysis shows superior power projection accuracy (with error
margins of less than 2.3% across SPEC CPU2006) as well as max-
power stressing capability (with 10.7% increase in processor power
over the very worst-case power seen during the execution of SPEC
CPU2006 applications).

1. Introduction

The power wall has proven to be a major obstacle in the quest to

sustain the historical rates of performance growth in computing sys-

tems. The multi-core/multi-threaded design paradigm (CMP/SMT)

has enabled the growth of throughput performance despite the dra-

matic slowdown in clock speed growth. However, power dissipation

and current delivery limits make it hard to keep scaling indefinitely

along the dimension of on-chip thread count. As such, it is important

to understand the limits and sensitivities of energy-related metrics as-

sociated with current generation processors —so that future systems

can invest into appropriate levels of power management in the right

regions of the micro-architectural design space.

Microprocessor systems today are composed of multi-core, multi-

threaded processors with complex cache hierarchies and gigabytes

of memory. Predictive pre-silicon modeling and diagnostic post-

silicon measurement studies are increasingly cumbersome and error

prone. When it comes to power or energy-related metrics, the chal-

lenge is especially steep, since fine-grained power measurements

or predictions across a complex, highly-threaded multi-core system

are quite difficult. In this paper, we take the position that micro-

benchmarks, generated with particular objectives in mind hold the

key to obtaining accurate energy-related characterization. Specially

crafted micro-benchmarks may be run on simulators (pre-silicon

stage) or real machines (post-silicon stage) to help understand, diag-

nose and fix deficiencies systematically. However, manual generation

of such ‘stressmarks’ is tedious, and requires intimate knowledge

of the underlying micro-architecture pipeline semantics. Automated

micro-benchmark generation is therefore crucial in this regard. More-

over, the automated generation facility must be flexible enough to

generate different classes of micro-benchmarks that are useful in

answering a range of different questions.

In this paper, we present a flexible micro-benchmark generation

framework (MicroProbe) that is used to probe complex processor

systems with a variety and range of energy-related queries in mind.

In particular, three different characterization queries are illustrated

in this paper. MicroProbe’s automated generation facility is used

to derive: (a) an accurate and decomposable power model that is

used to project the power consumption for arbitrary CMP/SMT work-

loads; (b) energy-per-instruction (EPI) ratings for different instruction

classes supported by the system; and (c) a systematically generated

synthetic stress test that maximizes power consumption for the tar-

geted system1. Experimental results are measured on a POWER7-

based 8-core/32-thread system [42] in order to validate the efficacy

of MicroProbe.

This is quite different from prior work [13,20,33,34,39,40], where

‘black-box’ automatic test case generators are focused on stressing or

validating only a single metric: e.g. IPC, power or some utilization-

based index of performance or power. MicroProbe presents the

following unique features: Detailed knowledge of low-level micro-
architecture semantics to assist the micro-benchmark generation

process (‘white-box’ approach), a compiler-like pass-based code
generator to provide flexibility and full control over the code being

generated, and highly integrated design space exploration support to

search for optimal micro-benchmarks. Overall, MicroProbe increases

the productivity of the investigative micro-architect as he/she stresses

the system to understand the fundamental trade-offs across power

and performance metrics.

The main contributions of this paper are the following:

• We present the software architecture of MicroProbe: a framework

for automated generation of micro-benchmarks that a user can

adapt towards exercising a complex multi-core, multi-threaded

computing system in a variety of redundant ways for answering a

range of questions related to energy and performance. The illustra-

tive use of MicroProbe in this paper is limited to three low-level

energy-related case studies as stated below.

• We show how targeted micro-benchmarks generated by Micro-

Probe can be used to form a bottom-up power model that is able

to predict general CMP/SMT workload power very accurately. To

the best of our knowledge, this is the first bottom-up counter-based

power model for a CMP/SMT processor. This type of models are

1From now on, we refer to it as max-power stressmark. This type of test cases are
also known synthetic TDP workloads.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.27

199

known to perform better [7–9] than those derived from common

modeling approaches. However, they had limited applicability

due to the lack of frameworks for automating the generation of

the micro-architecture aware training data that they need. We

show, through real measurements, that the model is able to pre-

dict POWER7 processor power consumption with average error

of only 2.3% across the SPEC CPU2006 benchmarks. We com-

pare the model against a set of models generated using existing

approaches to show that the generated model outperforms exist-

ing approaches, even on extreme power situations. Finally, we

use the extra information provided by the model to present the

average SPEC CPU2006 processor power breakdown for different

POWER7 SMT/CMP modes.

• We develop a taxonomy of the POWER7 instructions based on en-

ergy per instruction (EPI) and processor activity characteristics. As

far as we know, this is the first EPI-based taxonomy at instruction

level for a CMP/SMT processor such as the POWER7. We report

up to 78% variations on EPI values across instructions, even when

they stress the same functional unit at the same rate. These findings

highlight the importance of such taxonomies in understanding the

instruction-level power-performance trade-offs.

• We use EPI and IPC based formalisms to generate max-power

synthetic stress test programs using the MicroProbe facility. Prior

methods [20, 21, 33, 40] use abstract workload models to make the

design space tractable, losing therefore opportunities during the

instruction type selection pass. We exploit the rich information

implemented in MicroProbe to use the instructions with higher

EPI and IPC per functional unit as the building blocks of the max-

power stressmark. Exhaustive exploration performed on that small

subset of selected instructions was able to find a stress test that

exceeds the maximum power seen during the full-suite SPEC 2006

benchmark execution by 10.7%. We also report that stressmarks

with the same instruction type distribution and activity rate but

different instruction order can show up to 17% difference in power

consumption. The fact that the systematically generated stressmark

slightly outperformed the hand-crafted stress tests generated by an

expert confirms the utility of the proposed approach.

The rest of the paper is organized as follows. Section 2 explains the

software architecture of the micro-benchmark generation framework.

The hardware evaluation and experimental measurement platform

is described in Section 3. Sections 4, 5 and 6 discuss the case stud-

ies. Section 7 summarizes the related research work and Section 8

provides concluding remarks.

2. MicroProbe framework

An overview of the design of MicroProbe and its usage flowchart is

shown in Figure 1. MicroProbe provides a Python scripting interface

to access to a rich set of mechanisms and features. The interface

allows the users to identify the architecture components and their

parameters in order to accommodate the micro-benchmark design

to a target architecture. We show some examples highlighting the

variety of possible user-defined micro-benchmark generation policies

above the dotted horizontal line in Figure 1.

In MicroProbe, the micro-benchmarks are represented by a specific

internal representation within the Code generation module. This

representation can be transformed by a sequence of passes driven by

the micro-benchmark synthesizer. The micro-benchmark synthesizer

is in charge of generating the final code by applying the passes

ordered in accordance to user-specified ordering rules. MicroProbe

Figure 1: MicroProbe usage flowchart (top) and its design overview
(bottom). The modular design provides flexibility in all the
steps of the micro-benchmark generation process.

is therefore a framework that operates like a compiler infrastructure,

achieving a high degree of flexibility and adaptability.

MicroProbe makes the whole micro-benchmark design process

portable to different architectures. This feature is achieved by separat-

ing the architecture dependencies from the process itself (Architecture
module in Figure 1). MicroProbe allows the user to describe the ar-

chitecture through a set of readable text files where the architecture

components and their parameters are set (the Instruction Set Archi-

tecture (ISA) and Micro-architecture definitions in Figure 1). All this

information, in conjunction with micro-architecture analytical mod-

els, can be used (queried) to guide the micro-benchmark generation

process. The generated micro-benchmarks are therefore bound to a

specific architecture, but not the generation process.

Automated design space explorations (DSE) are required to as-

sist the generation of micro-benchmarks with dynamic properties

that cannot be ensured statically. MicroProbe integrates support for

performing automatized DSEs within the Design space exploration
module (See Figure 1). This module defines the mechanisms and

features required to allow the user to define the design space and the

search algorithm. Thus, MicroProbe is seen to provide full flexibility

to perform any kind of DSE.

The modular design with standardized interfaces between the mod-

ules (as shown in Figure 1) makes the framework adaptable. In

addition to this virtue, the following novel functionalities incorpo-

rated in MicroProbe advance the state of the art significantly:

MicroProbe is guided by low-level microarchitecture semantics.

This is an important feature that was missing in previous work. This

information is crucial to assist the generation of micro-architecture

aware micro-benchmarks. It provides a ‘white-box’ solution to

the users to define micro-benchmarks with very specific micro-

architecture properties, avoiding the need to master every detail of

the complex underlying architectures. We explain the Architecture

module in detail in Section 2.1.

MicroProbe also presents novelty in the flexible code generation

support (Code generation module) and in the integrated design space

exploration (DSE) module. These functionalities, not available in

previous work, improve the productivity and range of applicability

of the micro-benchmark generation framework. In Section 2.2, we

discuss the benefits of the compiler-like pass-based design of the

Micro-benchmark synthesizer and in Section 2.3, we present the

advantages of the integrated generic DSE support.

The rest of the section details the novel aspects within the three

200

1 import MicroProbe as MP
2 # Get the architecture object
3 arch = MP.arch. get_architecture (" POWER7 ")
4 # Create the micro - benchmark synthesizer
5 synth = MP.code. Synthesizer (arch)
6 # Add the passes to be used
7 # to synthesize micro - benchmarks .
8 # Pass 1: Define the program skeleton
9 synth . add_pass (" Single end - less loop

10 of 4096 instructions ")
11 # Pass 2: Define the instruction distribution
12 # Pass 2.1: Select the loads from the ISA
13 loads = [Select ins in arch.isa() if ins.load()]
14 # Pass 2.2: Select the VSU Unit loads
15 loads_vsu = [Select ins in loads
16 if ins.stress(arch.comps["VSU"])]
17 synth . add_pass (" Distribution using ‘loads_vsu ’")
18 # Pass 3: Model the memory behavior
19 # Pass 3.1 Define the memory model
20 model = "L1 = 33% ", "L2 = 33% ", "L3 = 34% "
21 synth . add_pass (" Generate addresses
22 according to ‘model ’")
23 # Pass 4: Init registers
24 synth . add_pass (" Init registers to 0 b01010101 ")
25 # Pass 5: Init immediate operands
26 synth . add_pass (" Init immediates to 0 b01010101 ")
27 # Pass 6: Model instruction level parallelism
28 synth . add_pass (" Set instruction dependency
29 distance randomly ")
30 # Generate the 10 micro - benchmarks and save them
31 for idx in range from 1 to 10:
32 ubench = synth . synthesize () # Apply the passes
33 ubench .save("./ example -%s.c"%(idx)) # Save

Figure 2: MicroProbe pseudo-code script that generates 10 micro-
benchmarks consisting of an end-less loop with 4K load
vector instructions that hit equally the three levels of the
cache hierarchy. The highlighted parts in gray show how
the micro-architecture information is queried to assist the
micro-benchmark generation process.

improved features that we identified above. We focus the discussion

on the features that are used in the case studies presented in Sections 4,

5 and 6. Other features implemented in MicroProbe are not included

due to space limitations.

We guide the discussion using the MicroProbe script exam-

ple shown in Figure 2. In this example, the user defines a

policy to generate micro-benchmarks for the POWER7 micro-

architecture (lines 2–3). The micro-benchmarks generated will be

composed by an end-less loop of 4K instructions (lines 9–10). The

instructions will be load vector instructions (lines 11–17) that hit

equally to the three levels of the cache hierarchy (lines 18–22). The

registers and immediate operands of the instructions will be initial-

ized to a constant value (lines 23–26) and the dependency distance

between the instructions will be assigned randomly (lines 27–29).

Finally, the benchmarks synthesizer is invoked 10 times to generate

10 different micro-benchmarks (lines 31–33).

2.1. The Architecture module

The three main functionalities implemented in the Architecture mod-
ule are the following: the PowerPC ISA definition, the POWER7

Micro-architecture definition and the set-associative cache model (a

Micro-architecture analytical model).
The first functionality, the description of the PowerPC ISA,

is used in the example to filter the load instructions of the

ISA (lines 12–13 in Figure 2). The second, the POWER7 micro-

architecture definition that provides the mapping between instructions

and micro-architecture components stressed, is used in lines 14–16

of the example to select only the loads that stress the Vector Scalar

Unit (VSU). The last functionality, the analytical set-associative

cache model, is used to statically ensure a specific distribution among

the memory hierarchy levels (lines 18–22). The following sections

present the details of these three main modules of the Architecture
module.

2.1.1. ISA definition module: This module implements the capa-

bility to generate assembly code for the target ISA. It leverages the

format and the valid operands for each instruction of the ISA plus

a rich set of semantic information for each of them. This includes

the instruction type (e.g. load, store, vector, int, float or branch), the

length of the operands of the instruction, if the instruction is exe-

cuted conditionally, the privilege level required for the instruction, if

the instruction is a data pre-fetch instruction, the registers used/de-

fined by the instruction, the binary codification of the instruction, etc.

This information is extensible and accessible by the user to perform

any action based on it. For instance, one can select only the load

instructions as shown in line 13 of Figure 2.

The ISA definitions are supplied to MicroProbe using readable text

files. These definition text files are constructed using the information

from ISA definition manuals. For this work, we implemented the

definition text files for the Power ISA v2.06B [36]. This text-file

based ISA definition approach provides an extra level of flexibility

and adaptability. For instance, the user can add/remove instructions

from the ISA and re-execute the very same MicroProbe script without

requiring the modification of the MicroProbe internals.

2.1.2. Micro-architecture definition module: This module pro-

vides the information related to the specific micro-architecture im-

plementation. From the architecture implementation point of view,

this refers to the micro-architecture components and their hierarchy

(functional units/sub-units), the cache hierarchy characteristics, the

layout of the micro-architecture units (area, floor-plan information,

etc.), the performance counters related to each micro-architecture

component, etc. From the ISA point of view, this information in-

cludes the latency, throughput, power or EPI (energy-per-instruction)

of the instructions. Moreover, the mapping between the instructions

and the micro-architecture components they stress is also provided.

For instance, the lines 14–16 of Figure 2 show how this information

is used to select the instructions stressing the VSU unit. This rich set

of low-level information, which simplifies the micro-benchmark gen-

eration task, is one of the new features that differentiates MicroProbe

from all previous work.

Automatic bootstrap support. Similar to the ISA definition, the

micro-architecture definition is supplied to MicroProbe using text

files. This increases the portability of the framework. However, the

process of setting up a complete micro-architecture definition is a

time-consuming task that can still limit the portability of the frame-

work. The reason is that all the details in the micro-architecture

definition must be re-defined for each micro-architecture implemen-

tation. MicroProbe avoids this problem by implementing a bootstrap

process that automatically completes a partial micro-architecture

definition.

The following information is required to start the bootstrap process:

(a) the micro-architecture functional units within the system. This

includes their basic information (e.g. name) and their associated

performance counters; (b) the definition of the ‘IPC’ property of the

system (the performance counter-based formula); and (c) the ISA

implemented in the micro-architecture.

The bootstrap process then generates two micro-benchmarks for

each instruction of the ISA. The first micro-benchmark is an end-less

201

loop consisting of 4K instances of the instruction with a chain of

dependencies across any two consecutive instructions. The second

micro-benchmark is similar to the first one except that there are

no dependencies. Both micro-benchmarks are executed and the

performance counters related to the functional units and IPC are read.

From these readings, MicroProbe derives the instruction latency and

the units that are stressed. MicroProbe proceeds similarly with the

second micro-benchmark to derive the throughput and confirm the

functional units stressed.

In order to bootstrap the EPI or the average sustained power met-

rics, MicroProbe also reads the power sensors. MicroProbe uses the

micro-benchmark version without dependencies to bootstrap these

metrics. The micro-benchmarks generated use random values to

initialize registers, immediate values and memory regions. This mini-

mizes the possible data switching effects, allowing fair comparison

between instructions [44]. The case study presented in Section 5

provides more insights about the automatically bootstrapped per-

instruction EPI information.

2.1.3. Micro-architecture analytical models: Dynamic micro-

benchmark properties are usually ensured by performing time-

consuming design space explorations (DSEs). This process looks for

the correct micro-benchmark generator input parameters to generate

a micro-benchmark that satisfies the target dynamic properties. This

process needs to evaluate each possible solution generated; therefore,

it can be a practical limitation in real execution environments. How-

ever, it is known that under constrained conditions and detailed micro-

architecture information, one can define analytical models to stati-

cally ensure dynamic properties of micro-benchmarks [14]. There-

fore, the use of analytical models speeds up the micro-benchmark

generation process, avoiding the time-consuming DSEs.

The level of detail provided in the Micro-architecture definition
module enables the implementation of micro-architecture analytical

models within MicroProbe. For instance, MicroProbe implements

an analytical memory model for traditional set-associative cache

hierarchies. We use it to generate in one step the micro-benchmarks

with specific memory activities used in Section 4. The following

section provides an overview of the rationale of this novel analytical

memory model.

Set-Associative cache model: Previous work on micro-benchmark

generation models the memory behavior by generating particular

stride patterns that walk through pre-allocated memory [33]. It as-

sumes that different stride values lead to different hit/miss ratios.

Then, if a particular hit/miss ratio is required, a design space explo-

ration (DSE) can be done to find the number of patterns, including

their distribution and their strides. This would generate a targeted

memory activity. Our modeling method avoids the need to perform

a DSE and statically ensures the requested activity in each level

of the cache hierarchy. The method is based on the following two

observations:

First, with appropriate information —provided by the Micro-
architecture definition (See Section 2.1.2)— it is possible to know

and control the set used on each cache level when a memory opera-

tion is executed. For instance, Figure 3a shows how main memory

blocks are mapped into a 4-way set associative cache. If we generate

addresses within blocks 0, 128 or 256, we know that the data will be

placed in Set 0.

Second, it is possible to ensure a hit or a miss in a particular cache

level if enough accesses are generated. Taking into account the same

example shown in Figure 3a, if we generate more than 4 consecutive

(a)

(b)

Figure 3: (a) Set-associative cache diagram. (b) Address fields at
each level of the cache hierarchy and at the operating sys-
tem level on a POWER7 platform.

memory requests hitting the set 0 within an end-less loop, we can

ensure that the loop will enter a steady state where all accesses will

miss. The memory requests should be randomized to minimize the

interferences of the hardware pre-fetchers. On the contrary, if we

generate 4 or less accesses hitting the set 0, the loop will always hit.

From these observations we can derive that it is possible to generate

a sequence of memory accesses to ensure a particular distribution of

the requests among the different levels of the cache hierarchy. For

that purpose, we assign disjoint sets —sets that do not conflict— to

each memory hierarchy level. We then generate the adequate number

of accesses for each cache level. This is possible because: (a) Micro-

Probe provides to the user full control on the code being generated,

and (b) the micro-architecture definition contains the required infor-

mation to infer the set fields of each cache level. Figure 3b shows the

set fields of each cache hierarchy level on our experimental platform.

This memory modeling method is used to apply the power mod-

eling methodology presented in Section 4. This power modeling

methodology requires several micro-benchmarks covering a wide

range of memory activities. In this situation, being able to statically

ensure memory activity rates reduces the time required to generate

the micro-benchmarks.

2.2. The code generation module

The code generation module contains the micro-benchmark synthe-

sizer. The micro-benchmark synthesizer is the core component of any

micro-benchmark generation framework because it is in charge of

driving the code generation process. Previous work [4, 33] identified

that the code generation process requires a minimum number of steps

to define the final behavior of the micro-benchmarks generated. These

steps are the following: (1) define the program skeleton (e.g. the size

of basic blocks; number of threads, etc.); (2) define the instruction

distribution; (3) model the memory behavior (i.e. define how the

memory is accessed); (4) model the branch behavior (i.e. control the

level of speculation); (5) model the instruction level parallelism (ILP)

202

via register allocation (i.e. define the dependency distance between

instructions). This step wise approach has been observed to be the

common method to define the properties of the micro-benchmarks

generated.

We designed the micro-benchmark synthesizer of MicroProbe

to work in a compiler-like fashion. The rationale is that this de-

sign provides the flexibility and extensibility required to adapt the

micro-benchmark generation process to the user’s requirements. This

differs from prior work, where the transformations and the sequence

of steps are fixed and tailored to solve specific problems. The exam-

ple script of Figure 2 shows how the user defines the sequence of

transformations (i.e. their type and their order) required to generate

the micro-benchmarks. We call these transformation steps passes.

Within MicroProbe, new passes can be added and sorted at user’s

will, making the framework extensible and adaptable. Many basic

passes, like the ones in the example in Figure 2, are already available

in our framework. This forms a general repository of passes for

designing complex micro-benchmark generation policies. To name a

few, we have implemented a pass to set up an end-less loop with n
instructions (line 8 of Figure 2), a pass to generate a given instruction

distribution (line 17 of Figure 2) and a memory pass that ensures a

given memory activity (See Section 2.1.3). Several other passes to

model branch behavior, initialize values, etc. are also implemented.

We refer the reader to previous work on micro-benchmark synthe-

sizers [18, 20, 21, 33, 40] to read about other possible transformation

passes that can be implemented on top of MicroProbe.

We show the importance of having a compiler-like design explain-

ing a possible real world example. Let’s suppose that we have a

computational kernel and we want to test the effect of certain trans-

formations on it. We set up a MicroProbe script to generate the

baseline code —i.e. the initial sequence of instructions comprising

the kernel. We may then want to evaluate the effect on performance

of unrolling the loop or the effect on power of using a load immediate
and an add instruction instead of two add immediate instructions.

For that purpose, we simply copy the original MicroProbe script that

generates the computational kernel and then add the extra passes to

apply the transformations. This level of adaptability is enabled by

the pass-based design of the micro-benchmark synthesizer.

2.3. Design space exploration module

Design space explorations (DSE) have become mandatory to un-

derstand the performance of computer architectures due to their in-

crease in complexity. In addition, DSE are required to find micro-

benchmarks that fulfill a set of dynamic properties that cannot be

ensured statically. DSE support is therefore a basic functionality that

any productive micro-benchmark generation framework should have.

MicroProbe provides generic DSE support to be able to imple-

ment different customizable search strategies within the design space.

For instance, MicroProbe currently supports exhaustive searches,

genetic algorithm (GA) searches and user-defined searches. This

is in contrast to previous work, which only provided GA search

support [20, 21, 33, 40]. Thus, MicroProbe provides an adaptive

framework for performing DSEs.

Moreover, the fact that DSE support is integrated within the same

framework is also beneficial. Previous work decoupled the micro-

benchmark synthesizer component from the search driver component,

thus losing possible synergies between these components. Micro-

Probe integrates both functionalities into the same framework. This al-

lows, for instance, the definition of user-guided drivers that query the

Feature Micro- Previous
Probe Work

ISA queries
- instruction type � �
- operand length � Manual1

Micro-architecture queries �
- functional unit � Manual1

- latency � Manual1

- throughput � Manual1

- energy per instruction (EPI) � Manual1

- average instruction power � Manual1

Micro-architecture models
- Set associative cache model � No

Code generation
- Skeleton definition pass � �
- Instruction definition pass � �
- Basic memory modeling pass � �
- Branch modeling pass � �
- ILP definition pass � �
- Configurable passes � No

Design space exploration
- Integrated � No

- GA-based search � �(External tool)

- Exhaustive search � �(Manually)
1The user manually or using an external tool has to obtain the information

to pass the appropriate inputs to the code generator.

Table 1: Summary of the novel MicroProbe features and their imple-
mentation in previous work.

micro-architecture information in order to guide the search. In Sec-

tion 6 we use the integrated DSE support of MicroProbe to generate

a max-power stressmark. The search driver we define uses the per-

instruction EPI information and the mapping between instructions

and the functional units to focus the search on certain parts of the

design space.

2.4. Summary of MicroProbe features
Table 1 summarizes the micro-benchmark generation features in-

cluded in MicroProbe and their implementation in prior work. Micro-

Probe provides detailed architecture related information such as

queries about ISA and micro-architecture information. This depth

of architecture-related information is not offered in previous micro-

benchmark generation frameworks. Some prior work includes limited

instruction type semantics. However, simple queries like functional

unit information (lines 15–16 in Figure 2) or instruction latency in-

formation require the user to obtain the information manually. In the

end, the lack of this integrated low-level micro-architecture seman-

tics diminishes the benefits of having an automatic micro-benchmark

generator.

MicroProbe implements micro-architecture models such as the

set associative cache model. As far as we know, this feature is

not found in previous work. MicroProbe does provide the basic

support for code generation, as in prior work. In other words, it

supports at least the minimum set of transformation passes that define

the behavior of the micro-benchmark generated. MicroProbe goes

one step further by improving the flexibility of the code generation

support by allowing the passes to be configured. Finally, regarding

the DSE support, MicroProbe integrates such support within the same

framework whereas previous work uses external tools or manual set-

ups to perform DSEs.

203

3. Experimental Framework
The experimental platform is an IBM BladeCenter PS701 system.

The system has one POWER7 processor running at 3.0 GHz and

32 GB of DDR3 SDRAM running at 800 MHz. The IBM POWER7

processor is an eight-core chip where each core can run up to four

threads. Each core has 32KB first level, 256KB second level and 4MB

third level data cache. A detailed specification of the architecture

is available elsewhere [42]. The platform runs RHEL 5.7 OS with

linux kernel version 3.0.1. This version provides the standard PCL

API [17] to access hardware performance counters.

The platform implements the EnergyScale architecture [19] that

allows the users to gather the power consumption of the processor via

the Flexible Support Processor (FSP). The FSP accesses the micro-

controller called Thermal and Power Management Device (TPMD)

to perform the sensor readings. Both devices, the FSP and the TPMD,

are managed by the BladeCenter chassis Management Module (MM).

We use an in-house software to monitor all the sensors required for

the experiments. The software can sample sensors at 1-ms granularity.

Power measurements are in the granularity of milliwatts, whereas

the temperature measurements are in degrees celsius. We also gather

performance monitoring counter (PMC) traces to account for dif-

ferent activity of the micro-benchmarks and the SPEC CPU2006

benchmarks that are executed. Power and performance counter traces

are then analyzed and plotted using the POTRA framework [6].

Micro-benchmarks are deployed as one copy per hardware thread

context that is available on the configuration. For example, in a

2-way SMT 6-core configuration, we deploy 12 copies of the micro-

benchmark. We pin each copy to a logical CPU to avoid thread

migrations. We run the micro-benchmarks for 10 seconds which

helps us to shorten the data gathering process while still providing

valid —and stable— power and performance counter values. Simi-

larly, we also execute the SPEC CPU2006 [25] benchmark suite for

model validation purposes. The SPEC CPU2006 benchmarks are

run to completion. All power results presented in this work are in

normalized form to avoid disclosure of absolute values.

4. Bottom-up CMP/SMT aware counter-based processor
power model

One important area where MicroProbe provides special value is in

the task of generating empirical counter-based power models. Such

power models are of key interest because they provide a quick path

to estimate run-time power consumption without the need to rely on

direct measurement devices [5, 27]. Counter-based power models

have not only been used to model the power consumption of the

processor [5, 29, 35, 43], they also have been useful to predict the

consumption of the rest of the components in the system [10, 11].

In particular, bottom-up counter-based power modeling method-

ologies have been shown to be a competitive approach [7]. Besides

accuracy and generality [8, 9], these types of models provide a fine-

grained granularity, sometimes allowing per functional unit break-

downs [27]. Although we do not focus this work to reach such low

level of decomposability, we present a method to generate bottom-up

counter-based power models for SMT/CMP processors such as the

POWER7.

Bottom-up processor power models predict the overall power con-

sumption of the processor as the sum of the power consumption of

different power components. These power components are usually

associated with micro-architecture components [8,9,27]. This allows

the users to derive the power breakdown across these components.

This adds insight on power behavior across workloads and individual

components within the processor. In a CMP/SMT system, this capa-

bility is useful in discerning the power consumption of each core or

hardware thread. In addition, the power-related effects of enabling

the SMT logic or enabling/disabling cores can be easily quantified.

Previous methods of bottom-up processor power modeling were

applied to processors that lack the level of parallelism and complexity

of the POWER7. In [27], a bottom-up power model of a Pentium 4 is

presented. In [7–9], the authors model a dual-core processor without

SMT. In contrast, we model a highly parallel processor such as the

POWER7, with 8 cores and up to 4-way SMT capabilities.

Bottom-up counter-based modeling methods require micro-

benchmarks that stress different micro-architecture functional units

at different levels. This is needed to estimate individual contributions

to the overall power consumption [8, 9, 27]. In this context, a com-

mon rule of thumb is to use a very broad range of power contexts

for training the model. This is known to result in a more general

and accurate model. This implies a rather time-consuming task of

generating a huge set of micro-architecture aware micro-benchmarks.

This requirement delayed the application of bottom-up modeling

methods on current architectures. The main reason was the lack of

micro-benchmark generation frameworks like MicroProbe that have

micro-architecture semantics.

We use MicroProbe to generate the rich set of micro-benchmarks

shown in Table 2. We generate micro-benchmarks that stress different

combinations of functional units at different levels (IPCs) by using

the micro-architecture information and the DSE GA-based support

implemented in MicroProbe. The functional units of the POWER7

processor that we stress are: the fixed point unit (FXU), the load

store unit (LSU) and the vector scalar unit (VSU). We also generate

micro-benchmarks stressing the memory hierarchy at different levels.

We stress the four levels of the memory hierarchy: the first-level

cache (L1), the second-level cache (L2), the third-level cache (L3)

and the main memory (MEM). In this process, the analytical micro-

architecture memory model of MicroProbe (See Section 2.1.3) re-

moves the necessity to perform a DSE for each memory activity we

target. Finally, micro-benchmarks with random activities are also

generated in order to enrich the training set.

Notice that hand-crafting —and verifying— this micro-benchmark

suite is normally a very time-consuming effort. With MicroProbe

we are able to do it in a few hours without any human intervention.

The next section explains the modeling methodology that uses these

micro-benchmarks to produce a SMT/CMP aware bottom-up counter-

baser processor power model.

4.1. SMT/CMP aware bottom-up modeling methodology

We apply the bottom-up methodology shown in Figure 4 to model

the processor. This methodology ensures the decomposability of

the model because it models the power consumption of the different

processor power components defined separately. We define the fol-

lowing four power components: (a) the dynamic power consumption,

i.e. the power related to the activity of the hardware contexts running

on the system; (b) the SMT effect, i.e. the power contribution of en-

abling the SMT logic of the cores; (c) the CMP effect, i.e. the power

contribution of enabling multiple cores on the system; and (d) the

uncore power contribution, i.e. the constant power contribution of

having activity on the processor. Moreover, there is the workload

independent power consumption, which is the power consumption of

the processor when there is no activity.

204

Name Units stressed1 # Description MicroProbe features
Simple FXU or LSU 35 Mix of simple integer instructions (can be executed by the LSU or FXU units) ISA & uarch queries

Integer with IPCs from 0.5 to 4 in steps of 0.1. & DSE GA support

Complex FXU 11 Mix of complex integer instructions (only can be executed by the FXU unit) "

Integer with IPCs from 0.1 to 1.1 steps of 0.1.

Integer FXU, LSU 12 Mix of integer instructions with IPCs from 0.10 to 1.20 in steps of 0.1. "

Float/Vector VSU 14 Mix of vector, float and decimal instructions with IPCs from 0.1 to 1.4 "

in steps of 0.1.

Unit VSU, FXU, LSU 20 Mix of all kind of instructions (non memory, no branch) with IPCs 0.1 to 2 "

Mix in steps of 0.1. "

L1 ld LSU, L1 10 Random mix of load instructions hitting the L1. ISA queries

& uarch model

L1 ld/st LSU, L1, L2 10 Random mix of load/store instructions hitting the L1. "

L1L2a LSU, L1, L2 10 Random mix of load/store instructions 75% hitting the L1 and 25% hitting the L2. "

L1L2b LSU, L1, L2 10 Random mix of load/store instructions 50% hitting the L1 and 50% hitting the L2. "

L1L2c LSU, L1, L2 10 Random mix of load/store instructions 25% hitting the L1 and 75% hitting the L2. "

L1L3a LSU, L1, L2, L3 10 Random mix of load/store instructions 75% hitting the L1 and 25% hitting the L3. "

L1L3b LSU, L1, L2, L3 10 Random mix of load/store instructions 50% hitting the L1 and 50% hitting the L3. "

L1L3c LSU, L1, L2, L3 10 Random mix of load/store instructions 25% hitting the L1 and 75% hitting the L3. "

L2 LSU, L1, L2 10 Random mix of load/store instructions hitting the L2. "

L2L3a LSU, L1, L2, L3 10 Random mix of load/store instructions 75% hitting the L2 and 25% hitting the L3. "

L2L3b LSU, L1, L2, L3 10 Random mix of load/store instructions 50% hitting the L2 and 50% hitting the L3. "

L2L3c LSU, L1, L2, L3 10 Random mix of load/store instructions 25% hitting the L2 and 75% hitting the L3. "

L3 LSU, L1, L2, L3 10 Random mix of load/store instructions hitting the L3. "

Caches LSU, L1, L2, L3 10 Random mix of load/store instructions 33% hitting the L1, 33% hitting the L2 "

and 34% hitting the L3.

Memory LSU, L1, L2, L3, 20 Random mix of load/store instructions missing in all levels "

MEM of the cache hierarchy.

Random Unknown 331 Random micro-benchmarks. ISA queries

1FXU: fixed point unit (integer), LSU: load store unit (memory operations) and VSU: vector scalar unit (vector, float and decimal operations).

L1: L1 cache, L2: L2 cache, L3: L3 cache, MEM: Main memory

Table 2: Micro-benchmarks automatically generated using MicroProbe. They cover a broader scope of possible processor activities in order to
increase the accuracy of the models generated. They share a common skeleton: a 4K endless loop with the required instructions to
stress particular functional units.

The bottom-up modeling methodology used, introduces two new

components when compared to previous bottom-up modeling meth-

ods [8, 27]. The new components are the SMT effect and the CMP

effect components.

The SMT effect component models the extra power required when

SMT is enabled. We observed empirically that two workloads exhibit-

ing the very same overall core activity consume a different amount

of power depending on whether SMT is enabled or disabled. The

reason is that the extra control logic that in operation when SMT is

enabled consumes additional power. This effect is independent of

whether 2-way SMT or 4-way SMT is enabled.

The second new component, the CMP effect, models the change

of uncore power consumption depending on the number of cores

enabled. This power consumption changes due to the different usage

of the shared components when different number of cores are used.

For instance, the 32MB last level cache of the POWER7 is partitioned

into eight equally sized slices, one for each core. When a core is not

used, the last level cache slice of that core is used only as a victim

cache of the other slices, changing its usual power behavior. The

CMP effect captures the specific conditions in power consumption

that depend on the number of cores enabled.

The addition of these two variables is crucial to increasing the

accuracy of the models. They are not directly related to the actual

activity in the processor like performance counters. However, they

affect how the activity is being performed as well as the power

status of different micro-architecture components. Models without

these two input variables —the SMT enabled and the number of

cores enabled (#cores)— exhibit large errors in the predictions and

show inconsistencies across the different SMT and CMP modes of

operation. The rest of the section explains the details of each of the

four modeling steps shown in in Figure 4.

Step 1: Model a Single Hardware Context: We model a single

core in single-threaded (SMT-1) configuration using the bottom-up

modeling method detailed in [8]. In brief, we define the FXU, VSU,

LSU, L1, L2, L3 and MEM as the power components of the processor

cores. We assign a performance monitoring counter (PMC) based for-

mula for each of these components. A sequence of linear regressions

is then performed to model separately the power contribution of each

of these power components. This is possible because the specifically

designed training set covers a wide set of scenarios that stress dif-

ferent units at different utilization rates [8]. The model intercept is

then calibrated using the random micro-benchmarks to avoid under-

estimating the power when only particular units are stressed [8,49].

The result of this process is a bottom-up power model for a single core

in SMT-1 configuration. The dynamic component of the model, the

part that it is dependent on the PMCs (Dynamic Power in Figure 4),

is defined as:

Pdyn = FXUpmcs×Wf xu +V SUpmcs×Wvsu

+ LSUpmcs×Wlsu +L1pmcs×Wl1 +L2pmcs×Wl2

+ L3pmcs×Wl3 +MEMpmcs×Wmem

205

Figure 4: Proposed SMT/CMP aware bottom-up modeling methodology. (1) A single core —a single hardware context— is modeled; (2) the
effect of enabling SMT is estimated; (3) the effect of enabling cores —the CMP effect— and the uncore power consumption are
estimated; (4) the final model is defined as the sum of the power consumption of each hardware context, the SMT effect of each core
with SMT enabled, the CMP effect and the uncore power consumption.

The non-dynamic component (intercept SMT-1 in Figure 4) is used

in the next step to compute the SMT effect.

Step 2: Model the SMT Effect: As stated previously, we observed

that the power consumption is higher when SMT is on. We simplify

the modeling of this behavior by assuming that the power consump-

tion increases by a fixed value when SMT is activated. We therefore

model the SMT effect as a constant value, which is defined as:

SMTe f f ect = InterceptSMT 2−4− InterceptSMT 1

where the SMT effect value is the difference of the uncore

power consumption between a model trained using SMT enabled

data (intercept SMT-2–4) and the model trained using SMT disabled

data (intercept SMT-1).

Step 3: Model the CMP Effect and the uncore power: To

model the CMP effect and the uncore power, we apply the dynamic

and the SMT effect models defined in steps 1 and 2 to the ran-

dom micro-benchmarks executed in all SMT and CMP configura-

tions (See step 3 of Figure 4). After applying the model, we obtain

the residuals of the predictions. These residuals, which exhibit a

positive correlation with the number of cores enabled, can be inter-

preted as the power consumption related to the change in the number

of cores plus the uncore power. We therefore model the residuals

as a function of the number of cores enabled (#cores) using a lin-

ear regression of the form a× x + b. The intercept of the obtained

regression (i.e. b) is assumed to be the uncore power consumption

(PUncore) whereas the a× x component is assumed to be the CMP

effect (CMPe f f ect ×#cores).

Step 4: Combine the models: We combine all the modeled power

components to obtain the final bottom-up power model. The model

is therefore defined as:

Pcpu =
#threads

∑
k=1

Pdynk +
#cores

∑
k=1

SMTe f f ect ×SMT _enabledk

+ CMPe f f ect ×#cores+PUncore

which is the addition of the power consumption of each hardware

thread enabled on the platform (step 1), the SMT effect of the cores

with SMT enabled (step 2), the CMP effect as a function of the

number of cores enabled and the uncore power consumption (step 3).

4.1.1. Model Validation: Figure 5a shows how the model is able

to track the power consumption of the SPEC CPU2006 on a 4 core,

4-way SMT configuration. The dynamic power consumption varies

with the workload whereas the rest of components remain constant

because they depend on the processor SMT/CMP configuration.

This power consumption breakdown is only possible because of

the bottom-up modeling methodology. Top-down modeling meth-

ods [5, 11, 23, 41] model the processor as a black box. They are able

to perform per-core power estimations by gathering per core perfor-

mance counters. However, they do not provide the same insights [7].

Figure 5b shows the percentage average absolute prediction error

(PAAE) [10] of the proposed bottom-up (BU) model when compared

to actual measured power of the SPEC CPU2006 workloads for all

the configurations studied. The maximum PAAE is around 4% and

most of the values are below 2.3%, which is the average PAAE.

These results validate that the novel SMT/CMP aware bottom-up

modeling method is able to model different SMT/CMP configurations

accurately.

There is, however, a small trend that shows higher errors for higher

number of cores. This might be related to the CMP and SMT at-

tributes, which we modeled assuming a linear relation. This linear

approximation is necessary to help us to create the bottom-up hierar-

chical CMP/SMT power model. The implicit assumption of linear

dependence of these attributes on power is an approximation of what

is most likely a non-linear model. For example, if the real values

follow a monotonic convex/concave curve, a linear approximation

will yield an error function that causes absolute error to first increase

and then decrease, as seen in Figure 5b.

4.1.2. Comparison to other Models: We compare our bottom-up

(BU) model against a set of top-down (TD) models [7] in order to

bring out the benefits of the bottom-up modeling approach. TD mod-

eling methodologies use parameter selection techniques to select the

model inputs and then they apply a single multiple linear regression to

model the entire processor. These models do not require specifically

designed micro-benchmarks. They are therefore a popular solution

due to their simple generation. However, they do not provide the

same accuracy and generality as the bottom-up models.

We generate three TD models using the same inputs of our bottom-

up (BU) model for fairness: namely, the functional unit performance

counters, the numbers of cores enabled and the SMT mode. The

models are named after the training set used to generate them: the

206

p
er
lb
en
ch

b
zi
p
2

g
cc

b
w
av
es

g
am

es
s

m
cf

m
il
c

ze
u
sm

p

g
ro
m
ac
s

ca
ct
u
sA

D
M

le
sl
ie
3
d

n
am

d
g
o
b
m
k

d
ea
lI
I

so
p
le
x

p
o
v
ra
y

ca
lc
u
li
x

h
m
m
er

sj
en
g

G
em

sF
D
T
D

li
b
q
u
an
tu
m

h
2
6
4
re
f

to
n
to

lb
m

o
m
n
et
p
p

as
ta
r

sp
h
in
x
3

x
al
an
cb
m
k

Benchmark

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
rm

al
iz
ed

P
o
w
er

Processor Power Consumption Break-down
Real vs Predicted - Configuration CMP-SMT: 4-4

Power component
Real
Workload_Independent
Uncore

CMP_effect
SMT_effect
Dynamic

(a)

1
-1

1
-2

1
-4

2
-1

2
-2

2
-4 3
-1

3
-2

3
-4 4
-1

4
-2

4
-4 5
-1

5
-2

5
-4 6
-1

6
-2

6
-4 7
-1

7
-2

7
-4 8
-1

8
-2

8
-4

M
ea
n

CMP-SMT Configuration

0%

1%

2%

3%

4%

5%

P
A
A
E

Percentage Average Absolute Prediction Error

(b)

Figure 5: (a) Processor power consumption breakdown of the SPEC
CPU2006 on a 4 core, 4-way SMT configuration. (b) Percent-
age average absolute prediction error (PAAE) of the model
for all the configurations analyzed.

micro-architecture aware micro-benchmarks (TD_Micro), the ran-

dom micro-benchmarks (TD_Random), and the SPEC benchmarks

(TD_SPEC). TD_SPEC is therefore the optimistic model because it

has been trained using the validation set. As explained previously,

the BU model is trained using all the micro-benchmarks, namely the

micro-architecture aware micro-benchmarks and the random micro-

benchmarks.

Figure 6 shows the average PAAEs on the SPEC CPU2006 with

respect to the models generated for each configuration studied. All

the models show similar trends confirming that each training set

covers enough power contexts to model the SPEC CPU2006 suite

accurately. In general, the models are consistent across the different

SMT/CMP configurations. Only the TD_Micro shows a consistently

higher error for 2-way SMT configurations. In any case, all the

models show acceptable results on average.

The last columns of Figure 6 show mean PAAEs around the 2–4%

range. When compared to the optimistic model (TD_SPEC), the rest

of the models show less than 2 percentage points of difference. These

accurate predictions are enabled by the inclusion of the SMT and

CMP variables to the models. The proposed BU model outperforms

the rest, being the one closer to the optimistic TD_SPEC model.

4.1.3. Model Validation on Extreme Cases: Although there is not a

clear difference in accuracy between the different modeling methods

for general workloads, there is a significant difference when extreme

cases are considered. We consider different extreme cases such as

high and low integer (FXU) or vector activity (VSU), only L1 loads

or only memory activity. Although we call these cases extreme, these

types of activities are actually quite common in applications over

short periods of time. For instance, consider the case of a highly

optimized vector loop accessing only the first level cache. In such

a case, the processor will show a period with only high IPC vector

activity. Similarly, when the processor copies data from main memory

to a local array, only main memory activity will be exhibited.

Figure 7 shows the PAAEs of the models for the extreme activity

cases considered. The models trained using micro-architecture aware

micro-benchmarks (i.e. the TD_Micro and the BU models) are ca-

pable of modeling these situations accurately, whereas the models

trained using general workloads exhibit high errors. For instance, the

TD_Random model shows a 62% PAAE for the FXU High case. This

is because the models trained using general workloads are biased

towards the normal activities they exhibit. In contrast, the models

trained using micro-architecture aware training sets show similar

accuracy levels across general and extreme workloads.

This observation highlights the benefits of generating micro-

architecture-centric models like the bottom-up model instead of the

workload-centric models like the top-down models. A framework like

MicroProbe, capable of generating micro-architecture aware micro-

benchmarks, is therefore essential for facilitating the generation of

micro-architecture aware training sets.

4.1.4. SMT/CMP Effects on Power Consumption: In this section,

we use the decomposability capability provided by the bottom-up

model to analyze how the SMT/CMP configuration affects the dis-

tribution of power consumption. Notice that this level of insight is

not possible using top-down models [7]. Figure 8 shows the average

percentage power consumption breakdown for the SPEC CPU2006

for each configuration analyzed.

From the SMT point of view, changing the SMT configuration

increases the percentage of dynamic power consumption of the pro-

cessor by about 10 points. At the same time, it decreases the workload

independent power component by an identical amount. The reason

is twofold: (a) the more hardware contexts are enabled, the more

dynamic power is consumed due to the increase of ILP within the

cores; (b) this increase in dynamic activity exceeds the overhead of

enabling the SMT feature (SMT_effect in Figure 8), which we found

to be minimal (<3% in all the cases).

The components that do not depend on the CMP parameter —the

workload independent and the uncore components— account for up

to 85% of the overall power consumption in the lowest configuration

(i.e. 1 core, 1-way SMT configuration). This percentage is reduced

to 50% as we increase the number of hardware contexts (8 cores,

4-way SMT configuration). This is mainly due to the increase of

the dynamic component. We also observe that the power breakdown

remains comparable when a minimum of 4-cores are enabled. Be-

yond that point, adding extra cores results in a similar increase of

dynamic and non-dynamic power consumption, suggesting that the

shared resources are already fully utilized. For instance, in Figure 8,

going from 1–1 to 2–1 CMP–SMT configuration reduces the work-

load independent and uncore power consumption from 85% to 77%.

However, going from 7–1 to 8–1 only reduces these components by 1

percentage point, from 62% to 61%.

In summary, we present a novel bottom-up power modeling

methodology capable of modeling the SMT/CMP features of current

architectures. We show how the model generated using this method-

ology outperforms existing approaches for normal and extreme work-

loads. The basis of the model is a complete micro-architecture aware

207

1
-1

1
-2

1
-4

2
-1

2
-2

2
-4 3
-1

3
-2

3
-4 4
-1

4
-2

4
-4 5
-1

5
-2

5
-4 6
-1

6
-2

6
-4 7
-1

7
-2

7
-4 8
-1

8
-2

8
-4

M
ea
n

CMP-SMT Configuration

0%

2%

4%

6%

8%

10%

P
A
A
E

Percentage Average Absolute Prediction Error

Model
TD_Micro TD_Random TD_SPEC BU

Figure 6: Percentage average absolute prediction errors of the models generated when compared to actual measured power of the SPEC
CPU2006 workloads for all the configurations analyzed.

FXU
High

FXU
Low

L1
Loads

Main
memory

VSU
High

VSU
Low

Mean

Extreme benchmark

0%

5%

10%

15%

20%

25%

P
A
A
E

Percentage Average Absolute Prediction Error

Model
TD_Micro TD_Random TD_SPEC BU

62%

Figure 7: Percentage average absolute errors of the models
generated for all configurations on the extreme situations
analyzed.

1
-1

1
-2

1
-4

2
-1

2
-2

2
-4 3
-1

3
-2

3
-4 4
-1

4
-2

4
-4 5
-1

5
-2

5
-4 6
-1

6
-2

6
-4 7
-1

7
-2

7
-4 8
-1

8
-2

8
-4

CMP-SMT Configuration

0%

20%

40%

60%

80%

100%

P
o
w
er
C
o
n
su
m
p
ti
o
n
(%

)

Processor Power Consumption Break-down

Power component
Workload_Independent
Uncore
CMP_effect

SMT_effect
Dynamic

Figure 8: Average per component power consumption breakdown of
the SPEC CPU2006 benchmarks for all the configurations
of the processor.

training set systematically generated using MicroProbe. Finally,

we use the extra information provided by the model to study the

SMT/CMP effects on power consumption.

5. POWER7 energy-based instruction taxonomy

Another important area where MicroProbe is useful is in the low-level

characterization of architectures. MicroProbe’s bootstrap process

explained in Section 2.1.2 automatically gathers per instruction micro-

architecture information such as latency, throughput or energy per

instruction (EPI). This information can be analyzed to generate, for

instance, an instruction level EPI characterization.

An instruction-level EPI characterization is beneficial in a wide

set of situations. For example, this is necessary for understanding

tuning opportunities for hardware implementation of instructions or

for improving compiler instruction selection algorithms. This char-

acterization is also useful for guiding micro-benchmark generation

policies when searching for max-power stressmarks as described in

Section 6.

This section develops a taxonomy of the POWER7 instructions

based on energy per instruction (EPI) and processor activity charac-

teristics. We use the unit-stressing information that is implemented

in MicroProbe to classify the instructions in categories based on the

functional units that the instructions stress.

The results presented are for the 1-way SMT 8 core configuration.

Notice that the EPI values are derived from the overall dynamic pro-

cessor power consumption. Therefore, they depend on the processor

configuration (i.e. number of cores and SMT mode) used. EPI val-

ues also depend on the input data used, which we randomized. We

do not observe any significant variations in EPI when we randomly

change the input values. This agrees with prior published results [44].

However, zero input data values sometimes result in a significant

reduction in EPI, up to 40% in some cases.

Table 3 shows the core IPC and normalized EPIs of three instruc-

tions for each category defined. Categories are named after the func-

tional units that they stress2. We group these categories to simplify

the explanation. Category EPI column is normalized to the minimum

EPI within the category, whereas global EPI column is normalized to

the minimum EPI among all the categories. This simplifies the com-

parisons between instructions and categories of instructions. The top

instruction in each category is the one with higher IPC*EPI product

within the category. The other two instructions are selected examples

with the same IPC but notable differences in EPI.

Analyzing by categories, we can see that the memory operations

with side-effects (i.e. those that stress other units apart from the

LSU) are the ones with higher EPI. The reason is twofold: (a) these

types of instructions activate more functional units. For instance,

the vector store operations use the LSU unit (address generation)

and the VSU (data propagation of the stored value); and (b) these

instructions exhibit a lower IPC —each instruction takes more time

to be executed— and as a result, they are less efficient.

Overall, the simple integer operations are the most efficient. The

reason is that this type of operations is the most common and there-

fore the execution is highly optimized. For instance, the load store

unit (LSU) of the POWER7 is able to execute these simple integer op-

erations. This allows the program to obtain a high IPC, thus lowering

the EPI metric.

Analyzing each category, there are important EPI differences be-

tween instructions within the same category. This is observed even

in the case where the instructions exhibit the same IPC. For instance,

in the VSU category, the xvmaddadp instruction has a 75% higher

2FXU: fixed point unit (integer), LSU: load store unit (memory operations) and VSU:
vector scalar unit (vector, float and decimal operations).

208

Category Instr. Core Normalized EPI
IPC Global Category

Functional units
mulldo 1.40 2.60 2.60

FXU subf 2.00 1.69 1.69

addic 2.00 1.00 1.00

lxvw4x 1.68 2.88 1.35

LSU lvewx 1.68 2.81 1.31

lbz 1.68 2.14 1.00

xvnmsubmdp 2.00 2.35 1.78

VSU xvmaddadp 2.00 2.31 1.75

xstsqrtdp 2.00 1.32 1.00

Simple integer operations
FXU or add 3.50 1.73 1.49

LSU nor 3.50 1.58 1.36

and 3.50 1.16 1.00

Integer memory operations
LSU and ldux 1.00 5.12 1.21

FXU lwax 1.00 5.01 1.18

lfsu 1.00 4.24 1.00

LSU and lhaux 1.00 5.51 1.15

2FXU lwaux 1.00 5.29 1.10

lhau 1.00 4.80 1.00

Vector/Float/Decimal memory operations
LSU and stxvw4x 0.48 8.36 1.40

VSU stxsdx 0.48 7.16 1.20

stfd 0.48 5.97 1.00

LSU and stfsux 0.48 10.00 1.19

VSU and stfdux 0.48 9.49 1.13

FXU stfdu 0.48 8.40 1.00

Table 3: Taxonomy of POWER7 instructions based on energy per in-
struction (EPI) and functional unit usage. Core IPC, cate-
gory EPI normalized to minimum EPI within the category and
global EPI, normalized to addic EPI, the minimum shown in
the table. The top instruction within each category is the one
with higher IPC*EPI product. The other two instructions have
the same core IPC but notably different EPI which demon-
strates the high power consumption variability between in-
struction types, even in the same category.

EPI than the xstsqrtdp instruction. Similar observations can be seen

in the rest of categories. These observations confirm the differences

in energy consumption across various instruction types.

In summary, we use MicroProbe to generate an instruction-level

EPI characterization of a POWER7 platform. The characterization

helps us to understand better the energy trade-offs of the under-

lying architecture. In particular, the variability seen in the EPI

results —even across instructions that use the same functional unit at

the same utilization level— highlights the importance of taking into

account such variations when generating power/energy aware code.

6. Max-power stressmark generation

Max-power stressmarks are very important for computer architects to

make early-stage design decisions such as the design of the package

and the power delivery network. Existing systematic max-power

stressmarks generators rely on time-consuming genetic algorithm

based design space explorations [20, 21, 33, 40]. These solutions

use abstract workload models (e.g. %integer, %loads, %stores, etc.)

and expert-defined design spaces to make the search of the solution

tractable. They therefore provide a ‘black-box’ solution where in-

timate knowledge of the architecture is not required. This benefit

comes at the expense of losing some discriminating opportunities.

DAXPY Expert
manual

Expert
DSE

MicroProbe

Benchmark set

0.6

0.7

0.8

0.9

1.0

1.1

N
o
rm

a
li
z
e
d
P
o
w
e
r Max-power results

Min
Mean
Max

Figure 9: Max, Mean and Min power results for each stressmark set
executed. Results are normalized to the maximum power
exhibited by one of the SPEC CPU2006 benchmarks during
its execution.

For instance, during the selection of instructions, they do not take

into account the important differences in power consumption that we

have shown in Section 5.

In this section, we show how MicroProbe is used as a ‘white-box’

framework to help an expert in the process of generating a max-

power stressmark in a real measurement context, where the number

of design points to explore is a practical limiting factor. In the end,

we show that with proper heuristics, the entire process can be fully

automated.

We focus this case study on finding the sequence of 6 instructions

that when replicated within an endless loop of 4K instructions and

executed concurrently on all the available hardware threads maximize

the power consumption. The rationale is that basic knowledge in the

field suggests that in order to generate a max-power stressmark one

should maximize the activity (i.e. maximize the IPC) and maximize

the number of functional units used, avoiding pipeline stalls and

resource contention (i.e. no dependencies and no memory misses).

Previous work [21] suggests that it would be possible to achieve

higher power consumption by executing heterogeneous workloads

that stress the different parts of the processor (caches, interconnection

network, etc.). We leave the exploration of these options to our future

work. We focus this case study on the benefits of using the micro-

architecture semantics when generating max-power stressmarks. The

fact that we are consistently able to exceed expert level manually

generated max-power stressmarks is reassuring.

First, we hand-craft some micro-benchmarks using the mullw, xv-
maddadp, lxvd2x instructions. The rationale behind the selection of

these instructions is to stress the FXU, the VSU and LSU units using

the instructions with a wider data-path (or more complexity) and

higher throughput (maximize IPC). This procedure is what a stress-

mark developer with some expertise in the target micro-architecture

would do without support frameworks like MicroProbe. We call this

micro-benchmark set as the Expert Manual set.

Second, since it is not practical to generate manually all the 540

possible combinations, we use the DSE support of MicroProbe to

generate all the combinations of the expert selected instructions au-

tomatically. We call this micro-benchmark set as the Expert DSE
set.

Lastly, instead of relying in our expert to select the instructions, we

rely on MicroProbe to select the instruction candidates. We instruct

MicroProbe to select the instructions with the highest IPC*EPI prod-

uct within each functional unit category. This heuristic selects the

instructions with a balanced trade-off between EPI and IPC, penal-

izing instructions with high IPC but low EPI and vice versa. The

automatically selected instructions are the top ones shown in the FXU,

LSU and VSU categories of Table 3. We call this micro-benchmark

set as the MicroProbe set.

209

We execute the three micro-benchmark sets in the three available

SMT modes. In addition, various DAXPY kernels with different

L1 contained memory foot-prints are also executed. This compu-

tational kernel is commonly used as a stressmark. Figure 9 shows

the maximum, minimum and average power consumption of each

micro-benchmark set. Results are normalized to the maximum power

exhibited by one of the SPEC CPU2006 benchmark during its execu-

tion.

We observe that with a bit of intuition the expert is able to conceive

hand-crafted stressmarks (Expert manual) that are as good as the

max-power of SPEC CPU2006. However, these stressmarks are still

around 10% below the one achieved by the Expert DSE set —even

though they use the same instruction types and exhibit the same IPC.

Examining closely, we find 181 different stressmarks within the

Expert DSE set that achieve the maximum core IPC. The minimum

and the maximum power exhibited by them is 7% below and 9.6%

above the baseline, respectively. These results depict how difficult it

is to search for the optimal power stressmark. Even while achieving

the same maximum IPC with the very same instruction types, the

actual instruction sequence can affect the power consumption quite

considerably.

The MicroProbe stressmark set, automatically defined using the

functional unit, IPC and EPI information as heuristics, achieves

similar results as the Expert DSE. In fact, it improves the max-power

stressmark Expert DSE by approximately 1 percentage point. Also,

this exceeds the maximum power observed during the execution of the

entire SPEC CPU2006 suite by a 10.7%. These results confirm that

EPI, IPC plus functional unit information provide good heuristics

to constrain the DSE and systematize the max-power stressmark

generation process without requiring expert knowledge.

Finally, the fact that systematically generated stressmarks slightly

outperform the hand-crafted stress tests generated by an expert, con-

firms the utility of the proposed approach. Moreover, in a real mea-

surement context, being able to constrain the search space to the

actual points of interest is crucial in avoiding practical limitations

posed by design space explosion.

7. Related work

Benchmarks and Micro-benchmarks: From the pioneering

Whetstone [16] and Dhrystone [46] to current benchmark suites such

as the SPEC CPU2006 [25], benchmarks are used for both academic

research and comparative evaluation of existing solutions. Moreover,

specifically designed benchmarks, named micro-benchmarks, are

needed in several situations. For instance, they have been used to re-

verse engineer structure latencies [24] or branch organization [37,45],

to evaluate performance, power or thermal efficiency [15, 22, 28, 38]

or to generate and calibrate models [8, 9, 12].

Micro-benchmark Generation Frameworks: The need of a sys-

tematic method to generate micro-benchmarks was identified back in

the 1980’s [47, 48]. The number of frameworks proposed since then

has been growing continuously corroborating their importance for

the community. In contrast to our adaptive framework, particular so-

lutions —without the micro-architecture semantics of MicroProbe—

were developed for different purposes: to generate synthetic micro-

benchmarks [2–4, 26], to be able to reproduce proprietary applica-

tion behavior [30, 32], to perform architecture explorations [31], to

generate power or reliability stress tests [20, 21, 33, 39], to evaluate

energy efficiency of systems [13], or to model cache behavior [1].

Counter-Based Processor Power Models: Most of the previous

work on counter-based power modeling uses top-down approaches

to model processor power consumption [5, 10, 11, 23, 41]. As a

result, they lose the level of decomposability provided by bottom-

up approaches. Moreover, we only found the work of Jimenez et
al. [29] proposing a top-down model for a SMT/CMP processor, the

POWER6.

Regarding bottom-up modeling methods, Isci et al. [27] was the

first to propose a heuristic-based bottom-up modeling method us-

ing as heuristic the area size of the functional units. Bertran et
al. [7–9] then proposed a bottom-up modeling method, entirely based

on micro-benchmarks. Nevertheless, none of these bottom-up meth-

ods modeled a CMP/SMT system such as the POWER7. Finally,

Bircher et al. [10, 11] present a system-level bottom-up method to

derive the power breakdown of the entire system (cpu, memory, disks,

etc.).

Max-Power Stressmark Generation: The systematization of the

generation of max-power stressmarks has been investigated for dif-

ferent environments. In [33], the authors present a micro-benchmark

generation framework and show its utility for generating processor

max-power stressmarks. In that work, the design space is defined by

an abstract workload model. Then, genetic algorithms are used to find

an optimal solution. Ganesan et al. [20] present a similar approach

but targeting overall system power consumption, including processor

and memory. The same authors extended the work to multi-cores [21]

showing that when taking into account processor and memory power

consumption, simple parallel execution of single core max-power

stressmarks, do not exhibit the maximum power consumption. Our

work in max-power stressmark case study is orthogonal to these

works, since we focus on the importance of using micro-architecture

semantics to constrain the search within the design space. We believe

that these prior ‘black-box’ proposals are significantly improved by

taking into account the extra information provided by MicroProbe.

8. Conclusion
In this paper, we present an adaptive micro-benchmark generation

framework (MicroProbe), with three salient features that distinguish it

from prior work: detailed knowledge of low-level micro-architecture

semantics, flexible code generation support and integrated design

space exploration support. To highlight these features of MicroProbe,

we present experimental results centered around an IBM POWER7

CMP/SMT system. First, we produce a MicroProbe-driven empirical

power model that estimates the power consumption of the SPEC

CPU2006 benchmarks with average errors that are below 2.3%. Then,

we conclude that micro-benchmark trained power models are more

reliable across a broader range of contexts (normal and extreme

power activities). We also use the framework to derive a taxonomy

of POWER7 instructions based on energy-per-instruction (EPI). The

characterization highlights the differences in energy consumption

between instructions. Finally, we propose a method —based on EPI,

IPC and functional unit information— to systematize the generation

of power stress tests. The method is used to derive a stress test that

exhibits a 10.7% increase in processor power over the maximum

power seen during the execution of the SPEC CPU2006 benchmarks.

210

Acknowledgements

From the Barcelona Supercomputing Center (BSC) and

the Universitat Politècnica de Catalunya (UPC) side, this

work was supported by the Spanish Ministry of Education

[Contracts #TIN-2007-60625 and #CSD2007-00050]; the Gen-

eralitat de Catalunya [Contract #2009-SGR-980]; the European

Commission in the context of the HiPEAC Network of Excellence

[Contracts EU FP7/ICT #217068 and #287759]; and the BSC-IBM

collaboration agreement. From the International Business Machines

(IBM) Corporation side, this work was supported by DARPA under

the Computational Reliability Project [Contract #N66001-11-C-

4027] and by the Lawrence Livermore National Laboratory (LLNS)

under the BlueGene/Q Project [Subcontract #B554331]. Finally, we

would like to thank Srilatha Manne and the anonymous reviewers for

their comments and feedback.

References
[1] G. Balakrishnan et al., “WEST: Cloning data cache behavior using

stochastic traces,” in Proc. of HPCA’12, pp. 1–12, Feb 2012.
[2] R. H. Bell Jr. et al., “Efficient power analysis using synthetic testcases,”

in Proc. of IISWC’05, pp. 110–118, Oct 2005.
[3] R. H. Bell Jr. et al., “Automatic testcase synthesis and performance

model validation for high performance PowerPC processors,” in Proc.
of IISWC’06, pp. 154–165, Mar 2006.

[4] R. H. Bell Jr. et al., “Improved automatic testcase synthesis for perfor-
mance model validation,” in Proc. of ICS’05, pp. 111–120, Jun 2005.

[5] F. Bellosa, “The benefits of event-driven energy accounting in power-
sensitive systems,” in Proc. of EW’00, pp. 37–42, Sep 2000.

[6] R. Bertran et al., “POTRA: A framework for building power models for
next generation multicore architectures,” in Proc. of SIGMETRICS’12,
pp. 427–428, Jun 2012.

[7] R. Bertran et al., “Counter-based power modeling methods: Top-down
vs bottom-up,” The Computer Journal, vol. 99, pp. 1–16, Aug 2012.

[8] R. Bertran et al., “A systematic methodology to generate decomposable
and responsive power models for CMPs,” IEEE Trans. on Comp., vol. 99,
pp. 1–14, Apr 2012.

[9] R. Bertran et al., “Decomposable and responsive power models for
multicore processors using performance counters,” in Proc. of ICS’10,
pp. 147–158, Jun 2010.

[10] W. Bircher et al., “Complete system power estimation: A trickle-down
approach based on performance events,” in Proc. of ISPASS’07, pp.
158–168, Apr 2007.

[11] W. Bircher et al., “Complete system power estimation using processor
performance events,” IEEE Trans. on Comp., vol. 61, no. 4, pp. 563–577,
Apr 2011.

[12] B. Black et al., “Calibration of microprocessor performance models,”
Computer, vol. 31, no. 5, pp. 59–65, May 1998.

[13] K. D. Bois et al., “SWEEP: Evaluating computer system energy effi-
ciency using synthetic workloads,” in Proc. of HIPEAC’11, pp. 159–166,
Jan 2011.

[14] P. Bose et al., “Bounds modelling and compiler optimizations for su-
perscalar performance tuning,” J. Syst. Archit., vol. 45, no. 12–13, pp.
1111–1137, Jun 1999.

[15] D. Bull et al., “A power-efficient 32b ARM ISA processor using timing-
error detection and correction for transient-error tolerance and adaptation
to PVT variation,” in Proc. of ISSCC’10, pp. 284–285, Feb 2010.

[16] H. J. Curnow et al., “A synthetic benchmark,” The Computer Journal,
vol. 19, no. 1, pp. 43–49, Feb 1976.

[17] S. Eranian, “Linux has a generic performance monitoring API!” in Proc.
of CSCADS’09, p. 1, Jul 2009.

[18] L. V. Ertvelde et al., “Benchmark synthesis for architecture and compiler
exploration,” in Proc. of IISWC’10, pp. 1–11, Dec 2010.

[19] M. Floyd et al., “Adaptive energy-management features of the IBM
POWER7 chip,” IBM J. Res. & Dev., vol. 55, no. 3, pp. 276–293, May
2011.

[20] K. Ganesan et al., “SYstem-level Max POwer (SYMPO): A systematic
approach for escalating system-level power consumption using synthetic
benchmarks,” in Proc. of PACT’10, pp. 19–28, Sep 2010.

[21] K. Ganesan et al., “MAximum Multicore POwer (MAMPO): an auto-
matic multithreaded synthetic power virus generation framework for
multicore systems,” in Proc. of SC’11, pp. 1–12, Nov 2011.

[22] G. Gerosa et al., “A sub-2W low power IA processor for mobile internet
devices in 45nm high-k metal gate CMOS,” J. of Solid-State Circ., 2009.

[23] B. Goel et al., “Portable, scalable, per-core power estimation for intelli-
gent resource management,” in Proc. of GREEN’10, pp. 135–146, Aug
2010.

[24] J. Gonzalez-Dominguez et al., “Servet: A benchmark suite for autotun-
ing on multicore clusters,” in Proc. of IPDPS’10, pp. 1–9, Apr 2010.

[25] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH News, vol. 34, no. Sep, pp. 1–17, 4 2006.

[26] C. Hsieh et al., “Microprocessor power estimation using profile-driven
program synthesis,” IEEE Trans. on Comp.-Aided Design. of Integ. Cir.
& Sys., vol. 17, no. 11, pp. 1080–1089, Nov 1998.

[27] C. Isci et al., “Runtime power monitoring in high-end processors:
methodology and empirical data,” in Proc. of MICRO’03, pp. 96–108,
Dec 2003.

[28] R. Iyer et al., “Comparing the memory system performance of the HP
V-class and SGI Origin 2000 multiprocessors using microbenchmarks
and scientific applications,” in Proc. of ICS’99, pp. 339–347, Jun 1999.

[29] V. Jiménez et al., “Power and thermal characterization of POWER6
system,” in Proc. of PACT’10, pp. 7–18, Sep 2010.

[30] A. Joshi et al., “Performance cloning: A technique for disseminating
proprietary applications as benchmarks,” in Proc. of IISWC’06, pp.
105–115, Oct 2006.

[31] A. Joshi et al., “The return of synthetic benchmarks,” in Proc. of SPEC
Benchmark Workshop, pp. 1–11, Jan 2008.

[32] A. Joshi et al., “Distilling the essence of proprietary workloads into
miniature benchmarks,” ACM Trans. on Arch. & Code Opt., vol. 5, no. 2,
pp. 1–33, Sep 2008.

[33] A. Joshi et al., “Automated microprocessor stressmark generation,” in
Proc. of HPCA’08, pp. 229–239, Feb 2008.

[34] Y. Kim et al., “Automated di/dt stressmark generation for microproces-
sor power delivery networks,” in Proc. of ISLPED’11, pp. 253–258, Aug
2011.

[35] T. Li et al., “Run-time modeling and estimation of operating system
power consumption,” pp. 160–171, Jun 2003.

[36] IBM staff, “Power ISA™. Version 2.06 Revision B,” Jul 2010, [Online]
http://www.power.org/resources/reading/.

[37] M. Milenkovic et al., “Microbenchmarks for determining branch predic-
tor organization,” Softw. Pract. Exper., vol. 34, no. 5, pp. 465–487, Apr
2004.

[38] S. Naffziger et al., “The implementation of a 2-core, multi-threaded
itanium family processor,” J. of Solid-State Circ., vol. 41, no. 1, pp.
197–209, Jan 2006.

[39] A. Nair et al., “AVF stressmark: Towards an automated methodology
for bounding the worst-case vulnerability to soft errors,” in Proc. of
MICRO’10, pp. 125–136, Dec 2010.

[40] S. Polfliet et al., “Automated full-system power characterization,” IEEE
Micro, vol. 31, no. 3, pp. 46–59, May 2011.

[41] K. Singh et al., “Real time power estimation and thread scheduling via
performance counters,” ACM SIGARCH News, vol. 37, no. 2, pp. 46–55,
Jul 2008.

[42] B. Sinharoy et al., “IBM POWER7 multicore server processor,” IBM J.
Res. & Dev., vol. 55, no. 3, pp. 1–29, May 2011.

[43] D. C. Snowdon et al., “Accurate on-line prediction of processor and
memory energy usage under voltage scaling,” in Proc. of EMSOFT’07,
pp. 84–93, Oct 2007.

[44] V. Tiwari et al., “Instruction level power analysis and optimization of
software,” in Proc. of VLSI’96, pp. 326–328, Jan 1996.

[45] V. Uzelac et al., “Experiment flows and microbenchmarks for reverse
engineering of branch predictor structures,” in Proc. of ISPASS’09, pp.
207–217, Apr 2009.

[46] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-
mark,” Comm. of ACM, vol. 27, no. 10, pp. 1013–1030, Oct 1984.

[47] W. S. Wong et al., “Synthesizing benchmarks with appropriate instruc-
tion mix and locality,” in Proc. of ICCA’87, pp. 1–12, Jun 1987.

[48] W. S. Wong et al., “Benchmark Synthesis Using the LRU Cache Hit
Function,” IEEE Trans. on Comp., vol. 37, no. 6, pp. 637–645, Jun 1988.

[49] W. Wu et al., “A systematic method for functional unit power estimation
in microprocessors,” in Proc. of DAC’06, pp. 554–557, Jul 2006.

211

Figure 1. Voltage margins to manage fluctuations.

AUDIT: Stress Testing the Automatic Way

Youngtaek Kim Lizy Kurian John
Department of Electrical & Computer Engineering

The University of Texas at Austin
Austin, TX, USA

young.kim@utexas.edu ljohn@ece.utexas.edu

Sanjay Pant1 Srilatha Manne2 Michael Schulte3
W. Lloyd Bircher3 Madhu S. Sibi Govindan3

Advanced Micro Devices, Inc.
1Fort Collins,CO, 2Portland,OR, and 3Austin,TX, USA

{sanjay.pant, srilatha.manne, michael.schulte,
lloyd.bircher, sibi.govindan}@amd.com

Abstract—Sudden variations in current (large di/dt) can lead to
significant power supply voltage droops and timing errors in
modern microprocessors. Several papers discuss the
complexity involved with developing test programs, also
known as stressmarks, to stress the system. Authors of these
papers produced tools and methodologies to generate
stressmarks automatically using techniques such as integer
linear programming or genetic algorithms. However, nearly all
of the previous work took place in the context of single-core
systems, and results were collected and analyzed using cycle-
level simulators.

In this paper, we measure and analyze di/dt issues on state-
of-the-art multi-core x86 systems using real hardware rather
than simulators. We build on an existing single-core
stressmark generation tool to develop an AUtomated DI/dT
stressmark generation framework, referred to as AUDIT, to
generate di/dt stressmarks quickly and effectively for multi-
core systems. We showcase AUDIT's capabilities to adjust to
microarchitectural and architectural changes. We also present
a dithering algorithm to address thread alignment issues on
multi-core processors. We compare standard benchmarks,
existing di/dt stressmarks, and AUDIT-generated stressmarks
executing on multi-threaded, multi-core systems with complex
out-of-order pipelines. Finally, we show how stress analysis
using simulators may lead to flawed insights about di/dt issues.

Keywords- di/dt; inductive noise; stressmark generation;
voltage droop; power distribution network; low power; genetic
algorithm; hardware measurement

I. INTRODUCTION
Reliable operation is a fundamental requirement of

processor design. The processor must work correctly across a
range of applications regardless of process variations,
voltage variations, environmental noise, and the aging of the
system. Voltage margins are introduced to compensate for
potential supply voltage fluctuations in the system.
Fluctuations caused during program execution must stay
within allowed margins, as shown in Fig. 1. These margins
need to be designed carefully to be power-efficient and
prevent malfunctions from program-induced voltage
fluctuations.

Specialized benchmarks, referred to as stressmarks, are
used to study the susceptibility of processors to voltage
fluctuations. Stressmarks may or may not be used to set the
voltage margins; however, they are necessary to develop an
understanding of the susceptibilities of the system being

analyzed. Stressmarks are either collected from benchmarks
that have produced high di/dt stresses in the past, or they are
specially designed to induce voltage fluctuations in
microprocessors.

Stressmarks are difficult to generate manually; past work
addressed the complexities involved with stressmark
generation and developed tools and methodologies to
generate stressmarks automatically [11][12][13]. Other work
addressed mitigating droops that occur due to various
architectural events [3][5][8][9][10][16][21] or leveraging
the margin between typical benchmarks and stressmarks to
operate with reduced voltage margins [7][15][22]. In these
papers, many of the results were collected and/or analyzed
using cycle-level simulators enhanced with power models. In
addition, except for a few papers [6][16][23], the authors did
not consider or investigate the complexities of multi-core
processors with multi-threaded resources or operating system
interactions.

In this paper, we address di/dt analysis and stressmark
generation using hardware rather than simulators. We use
state-of-the-art, multi-threaded, multi-core x86 hardware
with complex out-of-order pipelines to produce a detailed
analysis of voltage droops and failure points for standard
benchmarks and stressmarks. We expand the single-core
di/dt stressmark generation tool by Kim and John [13] to
develop an AUtomated DI/dT stressmark generation
framework, referred to as AUDIT, that efficiently generates
stressmarks for multi-core x86 systems using simulators or
hardware. We compare the effectiveness of AUDIT
stressmarks against other manually generated stressmarks
using state-of-the-art hardware. We also show the impact of
mitigation mechanisms in hardware and AUDIT's flexibility

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.28

212

Figure 2. Simplified model of a power distribution network.

in handling microarchitectural and architectural changes.
Finally, we show how simulators fail to capture the nuances
of di/dt stresses and their behavior by demonstrating that (1)
droop measurements do not always correlate to failure points
in real hardware, (2) OS interference can influence how
loops align in multi-core systems, and (3) alignment and
synchronization that occur in simulators may not be
repeatable in real hardware due to natural perturbations in
how the system operates.

In the rest of this paper, Section 2 discusses voltage
droops, droop management techniques, and manual di/dt
stressmark generation. Section 3 presents the AUDIT
stressmark generation framework and the dithering algorithm
for multi-core stressmark alignment. Section 4 details our
experimental set-up. Section 5 presents results and analysis
of droop and failure characteristics of standard benchmarks,
manual stressmarks, and AUDIT stressmarks. Section 6
discusses related work, and Section 7 concludes the paper.

II. BACKGROUND
The power distribution network (PDN) of a typical

microprocessor consists of inductive and resistive elements
on the motherboard (MB), package, and die. The parasitic
resistance of the network causes a droop (IR drop) in the
power supply proportional to the current drawn from the
network. In addition, the inductance in the network causes
undershoots and overshoots in the power supply (referred to
as the di/dt droop), which depend on the rate of change of the
load-current.

To mitigate the inductive noise in the power supply,
decoupling capacitance (decap) is added at different
locations in the PDN (Fig. 2). The series combination of
parasitic inductance (L) and decap (C) results in various
resonance frequencies (LCπ2/1) in the network, as shown
in the frequency and time domains in Fig. 3. While single
voltage droops caused by non-repeating di/dt events may be
harmful, droops that repeat at the resonance frequency of the
system grow to high amplitudes and are much more likely to
cause catastrophic failures.

The prominent resonance frequencies shown in Fig. 3 are
the first droop resonance due to the interaction of package
and on-die inductance (Lpkg2 + Ldie) with on-die decap (Cdie),
the second droop resonance due to the interaction of socket
and package inductance (Lpkg1) with package decap (Cpkg),
and the third droop resonance due to the interaction of board
inductance (LMB) with decap on the board (CMB). A
periodically varying load can induce one or more of these
resonances and cause excessive undershoots and overshoots.
Although second and third droop resonances can also affect
the reliability of the system, they are typically smaller in
magnitude than first droop resonance [14] and are not
evaluated in this work.

The first droop resonance is a strong function of package
inductance (Lpkg2) and Cdie, and is typically in the range of
50–200MHz. First droops can be mitigated by explicitly

adding decap on the die [19]. However, there are limits to the
feasibility of this approach due to area constraints and the
leakage of the decap. Several techniques that limit the rate of
change of activity in the processor are effective in
suppressing first droops [8][9][10][21], but they may have a
negative impact on performance.

If a single high-di/dt event occurs due to the machine
executing a pattern of low-power instructions followed by a
pattern of high-power instructions, there will be a droop in
supply voltage, but the droop will taper off quickly, as shown
on the left side of Fig. 4. However, a pattern that repeats
periodically at the resonant frequency of the PDN (right side
of Fig. 4) will build in amplitude and generate a larger droop
than a single event, thereby increasing the risk of system
failure. We cover first droop excitation and first droop
resonance in our analysis.

III. AUTOMATIC STRESSMARK GENERATION
Stressmarks are common in both academia and industry.

Several methods for automation have been proposed because
generating stressmarks is a tedious and time-consuming
process for designers [11][12][13]. Although such
stressmarks may be representative of worst-case behavior,
understanding this behavior is important when determining
voltage and frequency margins and developing droop
mitigation mechanisms to ensure reliable operation. They
expose sensitivities and critical paths in the pipeline, as we
will show in Section 5.

Automatic stressmark generation using a genetic
algorithm (GA) was first proposed in [11] and expanded to
cover di/dt resonance issues explicitly by Kim and John in
[13]. This paper expands upon that work by:

• generating di/dt stressmarks for complex, multi-core x86

processors rather than single-core Alpha processors,
• utilizing real hardware rather than simulation to analyze

full applications under realistic conditions,
• presenting a dithering algorithm to produce alignment

across threads in a multi-core environment,
• extending AUDIT to automatically detect the resonant

frequency of the system and generate both first droop
excitation and first droop resonance stressmarks, and

• generating AUDIT stressmarks for varying processors,
processor configurations, and operating conditions.

213

Figure 3. First, second, and third resonance droops in the frequency and time domains.

Figure 4. First droop excitation and first droop resonance generated using the
AUDIT framework.

Fig. 5 shows the basic framework for AUDIT. AUDIT
takes as input the instructions used to generate the stressmark
and some control parameters such as the cost function and
exit conditions. This information is fed to a code generator to
produce a population of potential stressmarks. The initial
population of stressmarks either can be generated randomly
or seeded with existing benchmarks or stressmarks to
improve the convergence rate.

Fig. 5 includes two possible paths for stressmark
generation, simulation and hardware. With the simulation
path, the voltage droops of generated instruction sequences
are evaluated using a cycle-accurate simulator that produces
current draw information followed by SPICE simulation.
This path is most appropriate when hardware for performing
di/dt stressmark generation is not available. With this
approach, the assembly code instruction sequence is
compiled into a simulator-friendly format (e.g., x86
binaries). The compiled code is executed on the cycle-
accurate simulator and every cycle the simulator calculates
the current draw of the processor based on the activity of
internal modules of the processor. This methodology is
similar to that used in [5][10][21]. AUDIT converts the
per-cycle current profile into a current sink in HSPICE
simulation using a lumped RLC model of the PDN. The
HSPICE simulation produces a series of voltage droops over

time from which the maximum voltage droop can be
obtained.

With the hardware path, the stressmarks are run on a
processor board and measurement tools capture voltage
droops, power dissipation, and any other information
necessary to evaluate the cost function of the stressmark. The
stressmarks and their associated cost values are fed to the
GA for further refinement until the exit conditions are met
(e.g., the maximum voltage droop produced by AUDIT does
not increase for several generations1). In prior research [13],
we used the simulation-based path, whereas in this paper, the
hardware-based path is used.

We use the same methodology as in [13] to generate the
opcode sequence. However, there are some additional
complexities because we are using x86 hardware and
generating stressmarks for multi-core systems. First, we
observe that data values used for the stressmark have a
measureable impact on the final droop values, on the order of
10%. To take data values into account, we use an alternating
set of values that guarantee maximum toggling between one
instruction and the next executing on the same functional
unit. Second, the resonance frequencies of the system can
vary across different boards or even within the same board if
the components of the board change (e.g., using a different
processor on the same board, as is done later in the paper).
Therefore, we extend AUDIT to do a sweep for the
resonance frequency before attempting to generate a first-
order resonant droop.

To determine the resonance frequency, AUDIT
constructs a trivial stressmark consisting of a loop of high-
power instructions and NOP instructions. It varies the
number of cycles in the loop to determine the length that
produces the worst-case droop. The number of cycles in the
loop that produces the worst-case droop exercises the

1 The cost function provided to AUDIT can vary. Although we focus on
maximizing voltage droops in this paper, other, more complex cost
functions such as maximizing the droop while minimizing the average
power or maximizing the droop while exercising sensitive paths in the
microarchitecture are also feasible and easy to implement.

214

Figure 6. Scope shot of natural dithering due to OS interactions for resonant

stressmark over a period of 100 ms.
Figure 7. Periodic activity waveform for inducing power supply resonance

and large voltage droops.

resonant frequency of the processor. Finally, we have to deal
with the complexities of multi-core stressmark generation.

A. Thread alignment in multi-core systems
As noted in other papers [3][6][16][23], multiple threads

running simultaneously can have a constructive or
destructive impact on droops. If the threads align correctly,
they produce significantly larger droops than without
alignment. At first glance, thread alignment would seem to
be a low-probability event in multi-core machines with
complex, out-of-order cores and shared and non-shared
resources. However, our analysis shows that alignment
occurs relatively often when the stressmark consists of short
loops due to natural perturbations in the threads caused by
OS thread scheduling. We refer to this phenomenon as
natural dithering.

Fig. 6 shows an example of natural dithering over the
course of 100 ms when running a four-threaded resonant
stressmark in which the threads are the same and consist of
short loops. Each major grid point represents 10 ms and the y
axis shows measured processor voltage (Vdd) values using a
100 megasamples/second (MS/s) sampling rate.

Approximately every 16 ms, which corresponds to the OS
timer tick on Windows systems, Vdd variability changes.
When the threads align constructively, as is the case near the
center point of the scope shot, the droop is maximized.

This data shows that small, repetitive loops occurring
across multiple threads at the same time can result in
significant di/dt stresses in the system due to natural
dithering resulting from OS interaction. This phenomenon
would have been difficult, if not impossible, to observe in a
simulation environment. This type of behavior is more likely
to occur in certain high-performance computing applications
that consist of short, repeated loops.

Relying on OS behavior to align threads is not a reliable
method to determine the worst-case droop. Hence, we
propose a dithering algorithm that guarantees a worst-case
droop within a fixed amount of time once OS interrupts are
disabled.

B. Dithering algorithm for guaranteed alignment
Fig. 7 shows a periodic stress pattern with high- and low-

power portions of duration H and L cycles, respectively. This
waveform meets the requirements of an ideal di/dt-inducing
resonant pattern described in Section 2. This periodic pattern
is repeated for M cycles to produce a large resonant droop.
The goal of the dithering algorithm is to guarantee that for C
cores, the stressmarks running on each core align across all C
cores for at least M cycles. Note that a first droop excitation
is different in that it requires a low region followed by a high
region where the sum of the regions is not necessarily
periodic at the resonance frequency.

Code
Gen.

Genetic
Algorithm

Simulator

Control
Params

Opcode
List

Opcode
Seq

(no regs)

x86
Assembly

HSPICE
Current

Trace
Cost

Function

PDN

Initial
Seed

Entries

POPULATION

Measure
HW

Met
Exit

Cond?

End

No

Yes

Figure 5. AUDIT framework for di/dt stressmark generation using simulators and hardware.

215

For a high-low sequence of length H+L cycles running
on C cores, the misalignment in cores 1 through C-1 can be
represented as a C-1 dimensional variable x = (x1, x2,…,xC-1),
where xi {0,1,…,L+H-1}. Core 0 is considered the
reference core. The search space for perfect alignment of all
cores is therefore (L+H)(C-1) possible alignments. This search
space can be fully traversed in M×(L+H)(C-1) cycles, where
M is the number of cycles required to cause and sustain
supply droop resonance.

The dithering algorithm uses the following NOP padding
procedure to align the threads and achieve resonance in a
processor with C cores:

• Core 0: Apply no dithering and no extra padding of

NOPs. Core 0 simply executes the periodic low-high
activity sequence shown in Fig. 7 repetitively.

• Core c, where 1 � c � C-1: Apply one cycle worth of
NOP padding every M×(L+H)(c-1) cycles.

The maximum number of cycles to guarantee alignment

is M×(L+H)(C-1).
As long as the number of processors is reasonably small,

the alignment algorithm works well. However, the time
required for alignment becomes prohibitively large for more
than four cores. For example, on a 4-GHz system with
L+H=24 and M=24×40=960, the time required to align four
cores is 3.3 ms, but eight cores require 18.35 minutes. The
alignment must be done for each candidate stressmark in
each generation of the GA.

To expand dithering to many-core systems, we use an
approximate algorithm that sets a bound on the maximum
misalignment between threads. Assume that the maximum
mismatch allowed among the activities of different cores is �
cycles. Then, L+H is chosen such that it is a multiple of (� +
1) and (L+H)×f is close to the resonance frequency of the
PDN, where f is the operating frequency of the system.

The search space for alignment of all cores within the
maximum allowed mismatch of � cycles then becomes
[(L+H)/(δ + 1)](C-1), which can be fully traversed in
M×[(L+H)/(δ + 1)](C-1) cycles. The dithering algorithm
proceeds as before; however, for core c, where 1 � c � C-1,
(δ +1) cycles worth of NOP padding is applied every M×k(c-

1) cycles, where k = (L+H)/(δ + 1). If we use a δ of 3 in the
previous example of eight cores, the maximum time required
to reach alignment with the approximate algorithm shrinks
from 18.35 minutes to 67 ms per candidate stressmark.

C. Expanding AUDIT for multi-core hardware
The stressmark solution space for AUDIT is a function of

the number of cycles in the repeated loop (the loop length),
the issue width of the processor, and the number of
instructions being evaluated for code generation. The
combination of loop length, issue width, and the number of
instructions can result in a large solution space. The loop
length for first droop resonance is determined by the
resonance frequency, which can result in a large solution
space. For example, a 3-GHz processor with a resonance
frequency of 50 MHz has a loop length of 60 cycles.
Assuming a four-wide processor, this results in 240

instruction slots for AUDIT to schedule. In addition,
dithering increases AUDIT's run time by requiring a sweep
through a large number of alignments for each stressmark, as
discussed in Section 3.B.

To converge in a reasonable time (we define reasonable
time as being a few hours), we modified AUDIT to use a
hierarchical generation policy. First, AUDIT separates each
member of the population into a high-power (HP) and low-
power (LP) region. Initially, the LP region consists of NOPs.
Second, AUDIT breaks the HP region into S replicated sub-
blocks of length K. For example, a 24-cycle HP loop can be
composed of four (S = 4) sub-blocks of length six cycles (K
= 6). The GA algorithm in AUDIT generates the instructions
for each subsection, and the full stressmark -- composed of
an HP region of S sub-blocks of length K and an LP region
of NOPs -- is evaluated in hardware using the dithering
algorithm.

At the end of the AUDIT run for the HP region, we have
a stressmark that has been synthesized to produce high
power for the HP region of the stressmark. We also
evaluated using AUDIT to generate the LP region of the
stressmark using long-latency operations with dependencies
as proposed in [10]. However, for the system we evaluated, a
sequence of NOPs produced comparable power values to a
sequence of long-latency, dependent operations. NOPs are
designed to be very low-power instructions in our
experimental processor, so the rest of the evaluation uses
NOPs for the LP portion of the stressmark.

We compared the hierarchical AUDIT implementation to
that proposed in [13] and found sub-blocking provided faster
convergence as well as better results -- 19% higher droop in
less than five hours compared to a 30-hour run without
hierarchical generation.

IV. EXPERIMENTAL SET-UP
The work in this paper targets the latest multi-core x86-

64 processors due to their widespread use. The primary
processor utilized for this study consists of four AMD
Bulldozer modules with 2 MB of dedicated L2 cache per
module and an 8 MB shared L3 cache [4][25].

Each Bulldozer module can execute two threads via a
combination of shared and dedicated resources [2]. The
front-end and floating-point logic is shared between two
threads on the same module; however, the rest of the core

Figure 8. Experimental set-up.

216

Figure 9. Hardware measurements of droop (relative to 4T SM1) for SPEC CPU2006, PARSEC, and stressmarks.

components (integer and retire logic, load/store unit, first-
level TLB, and first-level cache) are separate. Each thread
can issue four integer instructions per cycle, however, the
two threads together can only issue four floating point
instructions per cycle due to the sharing of the floating point
units. A thread can have a maximum IPC of four. A more
detailed description of the Bulldozer module and
architectural features is given in [2]. In later experiments, we
also replace the Bulldozer-based processor with an older-
generation 45-nm AMD Phenom™ II X4 Model 925
processor to showcase AUDIT's ability to adapt to different
systems and requirements.

AUDIT's code generation methodology is able to utilize
all x86 instruction types, including integer, floating-point,
and SIMD. General-purpose registers and 64-bit and 128-bit
media registers are used for source and destination operands.
Assembly code instructions are generated in NASM format
and are compiled with NASM 2.09.08 [24].

Our experimental set-up is shown in Fig. 8. We measure
voltage droops on hardware with a Tektronix TDS5104B
oscilloscope and a 1.7-GHz Tektronix P6248 differential
probe for triggering on large voltage droops. The probing
points for the power supply voltage are attached to the
package and on-die connection to enable accurate voltage
droop measurements. The oscilloscope triggers and records
the di/dt events at a sampling rate of 5 gigasamples/second
(GS/s). We used Windows® 7 OS for SPEC CPU2006

benchmarks and stressmarks, and Red Hat Enterprise 6 for
PARSEC [1] benchmarks.

V. RESULTS AND ANALYSIS
This section covers the results obtained for multi-core

stressmark generation. We compare and analyze standard
benchmarks, existing stressmarks, and AUDIT-generated
stressmarks. For each benchmark (stressmark), we present its
maximum voltage droop and analyze the processor's ability
to operate under degraded voltage conditions. We also
present results showing AUDIT's ability to adapt to
microarchitectural and architectural changes.

A. Droop and failure analysis
Fig. 9 shows the maximum droop measured from running

SPEC CPU2006 benchmarks, PARSEC multi-threaded
benchmarks, and a set of existing and AUDIT-generated
stressmarks in configurations of one-, two-, four-, and eight-
thread runs (1T, 2T, 4T, and 8T). For SPEC CPU2006 and
stressmark runs with multiple threads, the program is
replicated and executed on multiple cores, similar to
SPECrate. Given the shared nature of the cores in the
Bulldozer module, higher voltage droops occur for a given
number of threads when threads are spatially distributed
across modules. The evaluation processor has four Bulldozer
modules, each with two cores. Hence, for the 1T, 2T, and 4T
runs, each thread is assigned to a different module. For the

217

8T runs, there are two threads assigned to each module. All
droop results are shown relative to the 4T SM1 stressmark,
and higher numbers indicate larger droops. The values are
measured with the load line of the voltage regulator module
(VRM) disabled to remove any load-line droop effects [15].
Hence, the results show the droop due to di/dt stresses only.

The multi-threaded AUDIT stressmarks (A-Ex and A-
Res) and the hand-generated resonant stressmark SM-Res use
the dithering methodology described in Section 3.B to align
the threads for a worst-case voltage droop. The 2T and 4T
configurations use the exact algorithm, and the 8T
configuration uses the approximate algorithm with a � of 3.

Unfortunately, the dithering methodology is not easily
applicable to SPEC CPU2006 benchmarks or the PARSEC
suite because they do not consist of a regular, repeatable loop
that can be shifted to produce alignment between the threads.
Although the lack of dithering for SPEC CPU2006 results in
a smaller droop than is theoretically possible with ideal
alignment [23], it also reflects the reality of multi-processor
execution in which the natural misalignment between threads
may counteract some worst-case stress generating behavior.
Prior work shows that multithreaded programs such as those
in the PARSEC suite have synchronization points that could
align the threads and produce opportunities for high di/dt
stresses [16].

1) Standard benchmarks
Fig. 9 shows that, in general, the magnitudes of the

voltage droops increase with the number of threads for 1T,
2T, and 4T configurations. The 8T configurations do not
always follow this trend due to multi-threading in the
Bulldozer module (explained further in Section 5.A.2).

As noted in Section 2, one way to generate a significant
droop is to have a large change in activity from idle to full
execution. For high-performance pipelines, such a change in
activity occurs naturally with certain pipeline events, such as
pipeline recovery after a branch misprediction stall or high
execution activity after a load miss resolves [22]. These
events are commonplace in complicated pipelines, and how
they interact with each other in a multi-threaded scenario
dictates how large a droop they produce. Destructive
interference may occur between threads in a multi-core
system such that when one thread is in a high-power state
others are in a low-power state. Reddi et al. describe the
issue of thread misalignment for SPEC CPU2006
benchmarks, examine constructive and destructive
interference in a dual-core system, and discuss co-scheduling
threads to reduce voltage droops [23].

The PARSEC multi-threaded benchmark suite could
have alignment between threads through its use of
synchronization primitives. The expectation was that we
would see higher droops due to the natural alignment
resulting from barrier operations in benchmarks such as
fluidanimate and streamcluster as discussed in [16].
However, our results show no significant difference in
droops between PARSEC and the SPEC CPU2006 suite.

To evaluate further, we designed a barrier stressmark that
repeatedly synchronizes on a barrier operation and then runs
the high-power virus in a 4T configuration. We expected this

to result in a large voltage droop due to all cores being
aligned and idle at the barrier operation followed by high
activity on the cores. The resulting droop, however, was not
significant. On further examination, we noticed that a natural
misalignment occurs between the cores when released from a
barrier. On the Bulldozer module, there is no explicit
mechanism to synchronize the barrier release signal, and the
signal naturally reaches each core at different times based on
from where in the memory hierarchy the core receives its
data. This perturbs the start of activity across the cores by
enough cycles to dampen the first droop excitation resulting
from the synchronization operation.

The authors in [16] examined a different x86 processor
that may have different characteristics. In addition, they use
fluctuations in average power estimated at intervals of 1 ms
on hardware as a proxy for expected di/dt variations. This
may capture third droop excitations, but not first droop
excitations that occur over the course of nanoseconds. Our
measurement technique is capable of identifying the high-
frequency first droop variations in voltage. Hence, the worst-
case droops in PARSEC are most likely the result of the
same microarchitectural events that align across multiple
threads in the SPEC CPU2006 suite. The authors in [16] also
note that barriers are not the only cause of high power
swings and point to microarchitectural events such as long-
latency cache misses followed by bursts of activity as other
potential inducers of high droop. Furthermore, the effect in
[16] is pronounced for cases with 32 threads, whereas our
experiments did not include such configurations.

2) Stressmarks
Fig. 9(b) also shows the results for various stressmarks,

either manually collected or hand-generated (SM1, SM2, and
SM-Res) or automatically generated by AUDIT (A-Ex and A-
Res). A-Ex is a first-droop excitation stressmark, and A-Res
is a first-droop resonant stressmark. SM1 and SM2 contain
both single-droop and resonant excitations, and SM-Res is a
hand-generated resonant stressmark. The manual stressmarks
are the result either of past di/dt issues or a non-trivial design
effort (on the order of a week per stressmark) from a highly
skilled engineer with detailed knowledge of the pipeline
architecture. The goal of AUDIT is to generate similar or
better stressmarks without detailed knowledge of the pipeline
in question.

To produce the A-Ex and A-Res stressmarks in Fig. 9(b),
we instructed AUDIT to generate a homogeneous stressmark
with four identical threads, one assigned to each module. For
the resonant stressmark, we use a high-power sub-block of
length six cycles and repeat as many times as necessary to
produce the high-power region. The low-power region of the
stressmark, for the reasons noted in Section 3.C, consists of
NOPs. The stressmark generation takes less than five hours
to complete without human intervention.

With the exception of SM2, all stressmarks produce
significantly greater droops than the standard benchmarks.
As will be shown in Section 5.A.4, SM2 is still a viable
stressmark because it exercises the sensitive paths on the
processor. The two resonant stressmarks (SM-Res and A-Res)
produce significantly larger droops than all other stressmarks

218

Fr
eq

 o
f d

ro
op

 e
ve

nt
s

Fr
eq

 o
f d

ro
op

 e
ve

nt
s

Fr
eq

 o
f d

ro
op

 e
ve

nt
s

Figure 10. Frequency of droop events.

for the reasons described in Section 2. Both AUDIT-
generated stressmarks (A-Ex and A-Res) produce droops that
are either comparable or greater than that of the existing
stressmarks. This highlights AUDIT's ability to produce
results that are comparable to well-engineered stressmarks
that require significantly more effort and knowledge to
generate.

The stressmarks produce larger droops for the 4T case
than for the 8T case. All stressmarks contain some amount of
floating-point instructions, and the FPU is shared between
the two threads in each Bulldozer module in the 8T runs.
This results in interference between the threads; this shifts
the loop lengths, making it difficult to align the first droop
excitation across the threads or to oscillate at the resonant
frequency. The same interference may not exist in the
standard benchmarks depending on the density of floating-
point operations and how the threads align.

The A-Ex and A-Res stressmarks are generated using four
homogeneous threads assigned one to each module. Hence,
the GA in AUDIT is not trained to deal with the shared FPU
in the 8T run. To test our hypothesis, we ran AUDIT again to
use eight homogeneous threads, with two threads per
module, to generate a new stressmark (A-Res-8T). The
resulting data is shown in Fig. 9(b). The 8T results for A-
Res-8T are significantly better than the 8T results for A-Res
or SM-Res. However, the 1T, 2T, and 4T results suffer for
the same reason that the 8T run suffers for the other
stressmarks -- because the characteristics assumed for the
stressmark generation are not valid in some of the multi-
threaded configurations. These results show that (1) system
characteristics (such as shared resources) must be considered
when generating stressmarks, (2) one type of stressmark may
not apply to all configurations in a multi-core system, and (3)
AUDIT is robust and flexible enough to find patterns that
can exercise the characteristics of the system being evaluated
with minimal manual intervention.

3) Droop probability
Fig. 9 shows the worst-case droop for the benchmarks

and stressmarks. However, it does not show how often the
droop occurs. The more frequently a large voltage droop
occurs, the more likely it is to result in a catastrophic failure.

Not only does first droop resonance produce larger droops
than first droop excitation (see Fig. 4), it also produces more
such events.

In Fig. 10, we use our hardware measurement tools to
produce a histogram of voltage droops for zeusmp, SM1, and
A-Res. Each plot contains 8 million samples. The x axis
shows the measured Vdd and the x axis range is the same for
all figures. The y axis shows the number of samples for the
given Vdd. Values to the left (right) of center indicate voltage
droops (overshoots).

The zeusmp benchmark has the least variation in voltage,
as expected from the results in Fig. 9. SM1 has a larger range
of measured Vdd, yet the largest number of samples is
centered at the nominal Vdd with a sharp reduction for lower
voltages. There are spikes along the way, most likely due to
code regions with resonant behavior, but the application has
a long tail for both droops and overshoots. The resonance
stressmark has the opposite characteristic with the highest
number of events occurring near the worst-case droop
values. Both stressmarks have a tail of low-probability droop
events, but what dictates the failure point of these
benchmarks is the higher-probability droop events near the
tail. With hardware measurement, we can evaluate these
characteristics across the entire run of the program, which is
not possible in simulation. In the next section, we evaluate
how these droop characteristics translate into failure points
for each application.

4) Droop vs. voltage at failure
The size of the maximum voltage droop is an indirect

indicator of the voltage operating margin of the program.
The ultimate test is to determine the point at which failure
occurs for each configuration. In the next experiment,
running 4T configurations for two standard benchmarks with
the largest droop (swaptions and zeusmp) and the
stressmarks, we reduce the operating voltage in decrements
of 12.5 mV until failure occurs. The higher the voltage at
failure, the better the program is at stressing the system.

Table 1 shows the results relative to A-Res, which fails at
the highest voltage (VF). The other resonant stressmark, SM-
Res, fails at a value 12 mV lower. The next to fail are the

219

other stressmarks, with zeusmp and swaptions failing last as
Vdd is reduced.

As discussed earlier, the largest droops in the standard
benchmarks are the result of a first droop excitation that
tapers off quickly, as shown in the left side of Fig. 4. Hence,
they may or may not cause system failure depending on
whether the droop occurs when critical paths are being
exercised. A-Ex also generates a first droop excitation, but it
is large enough to cause a failure at higher voltages. SM1 and
SM2 have both first droop excitation and first droop
resonance, and they fail at a higher voltage than the standard
benchmarks. This is expected for SM1 due to its large droop.
SM2, however, has a droop that is comparable to the
standard benchmarks yet is more sensitive to the voltage
levels. This is because SM2, unlike the benchmarks, is
designed to exercise sensitive paths in the architecture.

What these results show is that the voltage droop is one
indicator of potential failure, but not the only one. This
insight would be difficult to gather from a cycle-accurate
simulator that does not detect droop-induced system failures,
and benchmarks such as SM2 would be discarded as
potential stressmarks.

As currently implemented, AUDIT's cost function for
selecting successful populations is based on the measured
droop in the system. However, it is trivial to adjust the cost
function to reward the use of certain types of instructions that
exercise critical paths if they are known. The key is that
AUDIT is agile enough to manage these changes with little
effort.

TABLE I. VOLTAGE AT FAILURE RELATIVE TO A-RES 4T FAILURE
POINT.

A-Res SM-Res SM1 A-Ex SM2 zeusmp swaptions

VF
VF – 12

mV
VF – 62

mV
VF – 75

mV
VF – 87

mV
VF – 125

mV
VF – 125

mV

5) AUDIT loop analysis
To determine how AUDIT is able to produce large

droops, we analyzed the main loop of the resonant
stressmarks SM-Res and A-Res. SM-Res is hand-designed
and regular in using floating-point and SIMD instructions
during the high-power phase of the loop. A-Res uses a
combination of integer and floating-point operations and
high- and low-power instructions, including some NOPs in
the high-power phase.

By mixing integer and floating-point operations, it is able
to exercise multiple schedulers and execution clusters in the
pipeline. What is more difficult to assess is why sprinkling
NOPs in the code increases the droop.

To further understand the effect of the NOPs, we
replaced the NOPs in the high-power region with
independent, integer ADD operations and measured the
resulting droop. If the pipeline flow remains the same, the
ADDs should produce a higher droop than the NOPs since
they are a higher power operation than NOPs. The modified
A-Res stressmark generated a smaller droop (by 40 mV) than

the original stressmark. In addition, the frequency of the di/dt
pattern shifted lower than the ideal resonant frequency,
indicating that the duration of the loop increased due to the
inclusion of the ADD operations. Unlike ADDs, NOPs
consume fetch and decode resources but do not affect other
structures in the pipeline such as the schedulers, physical
registers, or result busses. The use of the NOPs enabled the
stressmark to attain resonance. Although the pipeline and the
modified A-Res stressmark are constructed to attain a
throughput of four instructions per cycle, resource hazards
such as physical register availability, decode width
capabilities, token-based scheduling restrictions, and result
bus utilization impact the final outcome. AUDIT with its
GA-based algorithm was able to construct a stressmark that
worked around the pipeline hazards to produce a large droop.
AUDIT's ability to accommodate pipeline restrictions is
examined further in Section 5.B.

One valid concern is that AUDIT stressmarks are
unrealistic because the droops generated by them are much
worse than normal benchmarks or other stressmarks. As
noted earlier, instead of using the stressmarks to set voltage
margins, they can be used to understand the bounds of the
problem and sensitivities of the pipeline. For example, the A-
Res stressmark shows that it is possible to generate large
droops by selecting both the floating-point and integer
execution clusters in the pipeline rather than just focusing on
the floating-point pipeline. Additionally, as will be shown in
Section 5.B, when one di/dt stress path is blocked through
droop mitigation mechanisms, AUDIT can find other high-
stress paths in the pipeline. As noted by Patel [20], there are
many sensitive paths on cores that can lead to catastrophic
failures when the system is stressed by reduced noise
margins, and it is imperative that we have the tools necessary
to identify these paths.

6) Observations and summary
There are some key observations from the results and

discussion so far:

• Benchmarks do not produce the same levels of first-
order droop as the stressmarks. On our processor, this
is true even for benchmarks that have global
synchronization resulting from barriers.

• There are many different ways to construct a
stressmark in a multi-core system depending on what
structures and types of configurations one is trying to
exercise. Therefore, a stressmark that works well for
one configuration (such as A-Res for 4T runs) may not
produce the best results for other configurations.
AUDIT's flexibility and ease of use can be leveraged to
develop a suite of stressmarks that can effectively
exercise all significant usage scenarios in the system.

• The measured droop is not the only indicator of
sensitivity to failure. The paths exercised by the
stressmark and the number of times the droop event
occurs also have an impact on overall program
susceptibility.

220

• AUDIT is able to match or exceed the droops produced
by benchmarks and other stressmarks by exercising a
richer set of paths in the pipeline.

The rest of the results section presents ways in which

AUDIT can accommodate microarchitectural and
architectural changes.

B. Impact of FPU throttling
Floating-point and SIMD instructions are generally the

highest-power instructions available in the execution pipeline
and they are used extensively in the high-power portion of
the stressmark. A number of papers have noted that hardware
and software architectural throttling schemes reduce di/dt
stresses by limiting the rate of change in the execution of
high-power instructions [3][5][7][9][10][18][21][22][23].
We utilize a FPU throttling scheme that statically limits the
maximum number of FPU instructions executed in a cycle.

We measured the droop on some of the stressmarks with
FPU throttling enabled to determine the maximum droop and
maximum voltage at failure. The results are shown in Table
2. As before, all droop data are relative to the 4T SM1
stressmark with FPU throttling disabled. FPU throttling is
highly effective for A-Res and SM-Res, but less so for SM1.
SM1 is composed of multiple high-stress code sequences,
and FPU throttling does not affect all stress paths in SM1.
Although the results vary, the droop and voltage at failure
improve with FPU throttling. These results show that FPU
throttling functions as expected by limiting di/dt stresses;
however, the results so far do not show whether AUDIT can
find another stressmark that can produce a significant droop
with FPU throttling enabled.

TABLE II. IMPACT OF FPU THROTTLING ON RELATIVE DROOP
(RELATIVE TO 4T SM1) AND FAILURE POINT (RELATIVE TO 4T A-RES).

 Stressmark Rel. Droop Failure Point

No
Throttling

SM1 1 VF – 62 mV
A-Res 1.39 VF
SM-Res 1.25 VF – 12 mV

FPU
Throttling

SM1 0.93 VF – 75 mV
A-Res 0.86 VF – 100 mV
SM-Res 0.78 VF – 113 mV
A-Res-Th 0.98 VF – 75 mV

We used AUDIT to generate a new stressmark (A-Res-

Th) to determine if there are other opportunities to generate a
large droop in conjunction with FPU throttling. We repeated
the AUDIT stressmark generation using four threads, but
with FPU throttling enabled. Table 2 shows the droop and
failure levels for the new stressmark A-Res-Th. AUDIT was
able to generate a stressmark that works around the FPU
throttling restrictions to increase the size of the droop.
However, it is not able to match the droops seen without
FPU throttling because it is now limited to using fewer high-
power floating-point and SIMD operations. With FPU
throttling enabled, A-Res-Th exceeds the SM1 stressmark for
droop and matches it for sensitivity to voltage. It also
highlights another stress path through the processor for
engineers to evaluate.

The results show the experimental FPU throttling scheme
works well for reducing voltage droops in the system, and
AUDIT, in a relatively short time (~5 hours) has identified
another path that can still produce significant voltage droops
with FPU throttling enabled.

C. AUDIT on a different processor
To present AUDIT's ability to adjust to microarchitecture

and system changes, we replaced the Bulldozer-based
processor in the experimental system with an older-
generation 45-nm AMD Phenom II X4 Model 925. The rest
of the board remained unchanged. Each core in the AMD
Phenom processor has local L1 and L2 caches, no multi-
threading, and less variation between high- and low-power
regions because it does not manage power as aggressively as
the Bulldozer-based system. We generated new resonant
stressmarks for the AMD Phenom processor using AUDIT
and the results are shown in Table 3. We were unable to run
SM1 on the older processor due to incompatible instructions.
As with the Bulldozer-based system, AUDIT was able to
generate stressmarks that were comparable or better than
hand-tuned stressmarks, highlighting the capabilities of
automatic stressmark generation tools such as AUDIT.

TABLE III. DROOP AND FAILURE RESULTS FOR A 45-NM AMD
PHENOM II PROCESSOR. DROOP AND FAILURE POINT ARE SHOWN RELATIVE

TO SM2.

 zeusmp SM2 A-Res
Rel. Droop 0.82 1 1.10

Failure Point VF – 50 mV VF VF

VI. PREVIOUS WORK
There has been some previous work on hardware analysis

of production systems. In [23], Reddi et al. measured and
analyzed droops on a two-core Intel system and discussed
constructive and destructive interference between processors
and the difference in droops between average and worst-case
scenarios. This information was used to design a noise-aware
thread scheduler to mitigate some of the di/dt stresses in the
system. To date, the work by Reddi is the most detailed
hardware analysis of droops.

We expand on that work by analyzing a more complex
system with multi-threading and up to eight logical
processors. In addition, we show that constructive
interference occurs more often than expected due to OS
effects, and use this knowledge to design effective
stressmarks.

More recently, Miller et al. examined voltage
emergencies in multi-core processors [16] with increasing
numbers of cores, and showed how global synchronization
points create large stresses in the system. This work used
power variability as a proxy for di/dt stresses and examined
the hardware at a coarse granularity of 1-ms intervals. In our
work, we use true voltage droop measurements and fine-
grained sampling to detect first-order droops and discuss
droop values as well as voltage failure points in hardware.

The second major contribution of our work is automatic
stressmark generation using real hardware. Joseph, Brooks,

221

and Martonosi presented a hand-coded di/dt stressmark [10].
Their basic idea was to create a sequence in which a high-
current instruction follows a low-current instruction. The
high-current component typically consisted of a memory
load/store instruction and the low-current component
consisted of a divide instruction followed by a dependent
instruction, resulting in a long pipeline stall. However, their
di/dt stressmark was manually crafted for a specific
microarchitecture based on the knowledge of the current
draw of various instructions. Furthermore, they focused only
on memory-intensive behavior such as loads and stores and
increased current draw by accessing L1 and L2 data caches.
In contrast, our approach does not require microarchitectural
knowledge and relies on measured voltage droops in a
closed-loop measurement infrastructure.

Ketkar and Chiprout proposed a di/dt stressmark
generation methodology using integer linear programming
(ILP) [12]. They extracted current draw for certain
instructions from a register transfer language (RTL) model
for the hardware. Linear programming with constraints was
used to maximize voltage droop. However, they focused
only on the ALU. It is difficult to make ILP relationships of
instructions for all the pipeline stages and the caches; hence,
it is difficult to apply their technique to an entire processor,
especially one with out-of-order processing, multiple cores,
and complex shared resource structures.

Joshi et al. [11] presented a methodology for generating
maximum-power viruses and mentioned in passing that high-
power and low-power instruction sequences from two
different power optimizations can be interleaved to generate
a di/dt stressmark. This was only a suggestion, without
implementation details or results. Also, they did not talk
about the importance of repeating the sequence at the PDN's
resonant frequency. Neither di/dt effects nor voltage droops
were the focus of Joshi's work.

Kim and John [13] presented a methodology for
automatic generation of a di/dt stressmark for a single-core
processor. However, no methodology was presented for
multi-core or multi-threaded processors. Furthermore, that
was a simulation-based study using SimpleScalar with the
Alpha instruction set; they did not use hardware to generate
or validate the stressmarks. As discussed in Section 3, we
have expanded on their work by introducing dithering and
sub-blocking to produce better stressmarks, analyzing the
results on hardware, comparing AUDIT's performance to
existing stressmarks, and showing AUDIT's flexibility in
handling microarchitectural and architectural constraints.

A significant number of other studies have focused on
preventing, reducing, or recovering from di/dt effects or
voltage droops [3][5][6][7][8][9][10][15][17][18][21][22]
[23]. However, none of these focus on automatically
generating stressmarks for di/dt.

VII. CONCLUSION
This paper addressed the issue of di/dt stress generation

and analysis in state-of-the-art multi-core x86 processors.
We discussed the complexities involved with designing a
stressmark, especially for multi-core systems. We presented

the dithering algorithm to aid in multi-core stressmark
generation and evaluated an automatic stressmark generation
tool, AUDIT, that uses sub-blocking and dithering to
produce stressmarks using hardware. We showed how
AUDIT stressmarks compare to existing stressmarks and
standard benchmarks, and presented results showing
AUDIT's ability to adjust to different processor
characteristics such as shared resources, FPU throttling, and
different processors.

ACKNOWLEDGMENT
Lizy John and Youngtaek Kim are partially supported by

NSF grant 1117895 and by AMD unrestricted research
funding. Views and opinions expressed in this paper are that
of the authors and not that of the National Science
Foundation. This work was conducted when Youngtaek Kim
was an intern at AMD Research. The authors thank Tom
Snodgrass for helping set-up and run all the laboratory
equipment, and thank other AMDers for giving great help
and invaluable comments during this research.

REFERENCES
[1] C. Bienia, Benchmarking Modern Multiprocessors, Ph.D.

Thesis. Princeton University, 2011.
[2] M. Butler, L. Barnes, D. Sarma, and B. Gelinas, "Bulldozer:

an approach to multithreaded compute performance," IEEE
Micro, vol. 31, no. 2, pp. 6-15, 2011.

[3] W. El-Essawy and D. Albonesi, "Mitigating inductive noise in
SMT processors," in Proceedings of International Symposium
on Low Power Electronics and Design (ISLPED), 2004.

[4] T. Fischer et al., "Design solutions for the Bulldozer 32nm
SOI 2-core processor module in an 8-core CPU," in
Proceedings of IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2011.

[5] E. Grochowski, D. Ayers, and V. Tiwari, "Microarchitectural
simulation and control of di/dt-induced power supply voltage
variation," in Proceedings of International Symposium on
High-Performance Computer Architecture (HPCA-8), 2002.

[6] M. Gupta, J. Oatley, R. Joseph, G. Wei, and D. Brooks,
"Understanding voltage variations in chip multiprocessors
using a distributed power-delivery network," in Proceedings
of Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2007.

[7] M. Gupta, K. Rangan, M. Smith, G. Wei, and D. Brooks,
"DeCoR: a delayed commit and rollback mechanism for
handling inductive noise in processors," in Proceedings of
International Symposium on High-Performance Computer
Architecture (HPCA-14), 2008.

[8] M. Gupta, K. Rangan, M. Smith, G. Wei, and D. Brooks,
"Towards a software approach to mitigate voltage
emergencies," in Proceedings of International Symposium on
Low Power Electronics and Design (ISLPED), 2007.

[9] K. Hazelwood and D. Brooks, "Eliminating voltage
emergencies via microarchitectural voltage control feedback
and dynamic optimization," in Proceedings of International
Symposium on Low Power Electronics and Design (ISLPED),
2004.

222

[10] R. Joseph, D. Brooks, and M. Martonosi, "Control techniques
to eliminate voltage emergencies in high performance
processors," in Proceedings of International Symposium on
High-Performance Computer Architecture (HPCA-9), 2003.

[11] A. Joshi, L. Eeckhout, L. John, and C. Isen, "Automated
microprocessor stressmark generation," in Proceedings of
International Symposium on High-Performance Computer
Architecture (HPCA-14), 2008.

[12] M. Ketkar and E. Chiprout, "A microarchitecture-based
framework for pre- and post-silicon power delivery analysis,"
in Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-42), 2009.

[13] Y. Kim and L. John, "Automated di/dt stressmark generation
for microprocessor power delivery networks," in Proceedings
of International Symposium on Low Power Electronics and
Design (ISLPED), 2011.

[14] N. Kurd, J. Douglas, P. Mosalikanti, and R. Kumar, "Next
generation Intel® Core micro-architecture (Nehalem) clocking
architecture," IEEE Journal of Solid-state Circuits, vol. 44,
iss. 4, pp. 1121-1129, 2009.

[15] C. Lefurgy, A. Drake, M. Floyd, M. Allen-Ware, B. Brock, J.
Tiemo, and J. Carter, "Active management of timing
guardband to save energy in POWER7," in Proceedings of the
44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-44), 2011.

[16] T. Miller, R. Thomas, X. Pan, and R. Teodorescu, "VRSync:
characterizing and eliminating synchronization-induced
voltage emergencies in many-core processors," in
Proceedings of the 39th International Symposium on
Computer Architecture (ISCA-39), 2012.

[17] F. Mohamood, M. Healy, S. Lim and H. Lee, "A floorplan-
aware dynamic inductive noise controller for reliable 2D and

3D microprocessors," in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO-39), 2006.

[18] M. Pant, P. Pant, D. Willis, and V. Tiwari, "Architectural
solution for the inductive noise problem due to clock-gating,"
in Proceedings of International Symposium on Low Power
Electronics and Design (ISLPED), 1999.

[19] S. Pant and E. Chiprout, "Power grid physics and implications
for CAD," in Proceedings of the 43rd Annual Design
Automation Conference (DAC-43), 2006.

[20] J. Patel, "CMOS process variations: a critical operation point
hypothesis," Online Presentation, 2008.

[21] M. Powell and T. Vijaykumar, "Exploiting resonant behavior
to reduce inductive noise," in Proceedings of the 31st
International Symposium on Computer Architecture (ISCA-
31), 2004.

[22] V. Reddi, M. Gupta, G. Halloway, G. Wei, M. Smith, and D.
Brooks, "Voltage emergency prediction: using signatures to
reduce operating margins," in Proceedings of International
Symposium on High-Performance Computer Architecture
(HPCA-15), 2009.

[23] V. Reddi, S. Kanev, W. Kim, S. Campanoni, M. Smith, G.
Wei, and D. Brooks. "Voltage noise in production
processors," IEEE Micro, vol. 31, no. 1, pp. 20-28, 2011.

[24] The NASM Development Team, "NASM - The Netwide
Assembler," Available: http://www.nasm.us.

[25] D. Weiss et al., "An 8MB Level-3 cache in 32nm SOI with
column-select aliasing," in Proceedings of IEEE International
Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2011.

223

Accurate Fine-Grained Processor Power Proxies

Wei Huang† Charles Lefurgy∗ William Kuk∗∗,‡ Alper Buyuktosunoglu∗
Michael Floyd∗∗ Karthick Rajamani∗ Malcolm Allen-Ware∗ Bishop Brock∗∗

†AMD, ∗IBM Research, ‡Purdue University, ∗∗IBM System and Technology Group

WeiN.Huang@amd.com, {lefurgy,wwkuk,alperb,mfloyd,karthick,mware,bcbrock}@us.ibm.com ∗

Abstract

There are not yet practical and accurate ways to directly measure
core power in a microprocessor. This limits the granularity of mea-
surement and control for computer power management. We over-
come this limitation by presenting an accurate runtime per-core
power proxy which closely estimates true core power. This enables
new fine-grained microprocessor power management techniques at
the core level. For example, cloud environments could manage and
bill virtual machines for energy consumption associated with the
core. The power model underlying our power proxy also enables
energy-efficiency controllers to perform what-if analysis, instead of
merely reacting to current conditions.

We develop and validate a methodology for accurate power proxy
training at both chip and core levels. Our implementation of power
proxies uses on-chip logic in a high-performance multi-core proces-
sor and associated platform firmware. The power proxies account
for full voltage and frequency ranges, as well as chip-to-chip process
variations. For fixed clock frequency operation, a mean unsigned
error of 1.8% for fine-grained 32ms samples across all workloads
was achieved. For an interval of an entire workload, we achieve an
average error of -0.2%. Similar results were achieved for voltage-
scaling scenarios, too. We also present two sample applications of
the power proxy: (1) per-core power billing for cloud computing
services; and (2) simultaneous runtime energy saving comparisons
among different power management policies without running each
policy separately.

1. Introduction

In the last several years, direct measurement of power consump-

tion has been widely deployed in servers [20]. At a system-level,

bulk power supply measurement has enabled energy-efficiency op-

timizations, power capping and shifting, and cost-of-operation anal-

ysis. Power measurement of the microprocessor is becoming com-

mon as well and allows for more fine-grained power management.

For example, Intel Node Manager 2.0, to be introduced this year,

will use direct processor and memory power measurements to im-

plement power capping by shifting power allocations between pro-

cessor and memory subsystems [7]. Core-level management, on the

other hand, has languished because there are still no accurate and

practical ways to directly measure the power consumption associ-

ated with each core.

A viable alternative is to implement core power proxies, which

are estimates of true core power consumption. They are constructed

from real-time measurements of microarchitecture counters and

physical sensors. Many previously published power proxy imple-

mentations made use of existing processor performance monitoring

and analysis signals which were originally put into the hardware to

∗This work was done while Wei Huang was a researcher with IBM Research, and
William Kuk was an intern with IBM System and Technology Group.

assist in tuning compilers and operating mode settings. While these

events are related to the activity of the processor, they typically track

performance-sensitive events rather than events that contribute most

to power consumption. This can lead to significant error across a

wide variety of workloads. More recent work, including ours, lever-

age activity signals in the microarchitecture that correlate better with

power. However, the prior studies have serious limitations. First,

they typically model power at fixed voltage and frequencies, which

ignores how the power proxy error tracks with dynamic frequency

and voltage scaling processors. Second, they focus on active power

and give only simplistic treatments of leakage power and do not con-

sider the impact of process variations. This reduces the effectiveness

of the proxy since conventional high-performance microprocessors

have considerable leakage power consumption and the power con-

sumption of processors of the same type and model can vary widely

due to manufacturing-based variation. Without a strategy for cover-

ing the entire power of the core, the power proxy cannot be used for

applications requiring high accuracy.

The value of accurate power proxies depends on how they are

used. For billing applications, a 1% inaccuracy in energy consump-

tion directly translates to an additional 1% cost to either the user

or supplier. For power capping applications, reduced accuracy in

power estimations means that additional margins added to the re-

quested capping value must be taken to ensure the real power limit

is maintained. In our system, we measure that every 1% of Vdd

power accuracy translates into 1.2% throughput on the SPECpower

workload. For example, the value of power capping with a power

proxy that is 1% accurate compared to a power proxy that is 5%

accurate is about 4.8% in performance. For energy-efficiency con-

trollers that maximize operations per Watt, the inaccuracy may not

matter when optimizing a single component if the power estimation

is monotonic with true power. However, when optimizing across

many processors that each provide a power estimate, suboptimal de-

cisions could be made if the estimates reverse the true sense of which

component draws the most power. Therefore, we believe that con-

tinuing to improve accuracy by even small amounts is meaningful.

Additionally, shortening the time for estimation enables fine-grain

power management. A review of prior work shows our power prox-

ies achieve accuracy comparable to the best known solutions, but do

so at a 30x smaller time resolution (32 ms estimations vs. 1 sec-

ond estimations). Additionally, we validate the power proxies work

across full frequency and voltage ranges, and account for process

variation.

In this paper, we propose a methodology of constructing highly

accurate power proxies, first at the chip level, then at the core level.

Our architecture accounts for active power by utilizing specialized

activity counters in the chip hardware. Firmware computes the final

power proxy by using the measured activity values and incorporating

real-time physical sensor measurements. In addition it calculates

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.29

224

leakage power using manufacturing-time characterization data.

We implement our power proxy architecture on a IBM

POWER7+ R© high-performance system and run many workloads

to evaluate its accuracy over full voltage and frequency operating

ranges. The power proxies also take into account chip-to-chip varia-

tions. We additionally show that the power proxy is flexible enough

to account for power even when voltage and frequency pairings are

not fixed, but can vary for undervolting and overclocking.

Similar power proxy on-chip circuits in AMD and Intel chips ex-

ist. However, implementation details and thorough accuracy eval-

uations of them have not been published. This paper also signif-

icantly extends previous IBM POWER7 power proxy publications

by adding accurate models for both clock and leakage power, and

for the first time presents a complete full-chip and per-core power

proxy development methodology with better accuracy than pub-

lished work.

After demonstrating an accurate power proxy, we illustrate two

use scenarios: billing and predictive management.

First, power has become a precious resource in the data center as

it has a growing impact in the cost of server ownership. In response,

the idea of billing users for energy use in addition to time-based or

MIPS-based accounting is gaining traction. Per-core power proxies

open the opportunity for energy-based billing in cloud computing

services.

Second, a plethora of runtime energy and power management

techniques have been invented and implemented to achieve en-

ergy proportionality for servers and data centers to boost energy

efficiency and reduce operational cost. Typically a trial-and-error

method is used to determine which management policy is the most

effective for a given workload. It is impractical to run the same work-

loads multiple times, each time with a different power management

technique or policy enabled. Having power proxies that are accurate

across voltage and frequency ranges solves this problem. The power

consumption model that underlies the proxy can estimate the instan-

taneous power consumption for each power management technique

simultaneously at run time according to its decision on operating

voltage, frequency, temperature, as well as activity counts of the run-

ning workload, thus providing a direct comparison across all power

management policies. The energy manager can then dynamically

and intelligently select a policy in response to changing workload

characteristics.

We summarize our contributions as follows:

• We develop a methodology to construct core-level and chip-level

power proxies, which are implemented in hardware and system

firmware.

• The power proxies take into account full voltage and frequency

ranges. It is also adjustable to chip-to-chip process variations.

• We present the first power proxy that works accurately even when

chip voltage and frequency settings do not have fixed pairings.

This is useful for systems that dynamically undervolt (with fixed

frequency) or overclock (with fixed voltage).

• The power proxy values are updated every 32 ms to enable fine-

grain energy management which is 30x faster than prior work with

comparable accuracy. The power proxies are based on activity

counters and sensors for frequency, voltage and temperature that

are gathered out-of-band so as not to disturb the running work-

load.

• We illustrate how to achieve per-core power accounting, which

may be incorporated into existing proposals for per-VM power

accounting for cloud computing services.

• We discuss the usefulness of power proxies for evaluating differ-

ent energy management techniques simultaneously at run time.

Because of hardware differences (e.g. on-chip activity counter

architecture, data collection rates, voltage rail power measurement

availability, frequency range, process variation distribution, etc.), it

is nearly impossible for us to conduct a direct comparison with exist-

ing methodologies using hardware measurements. However, we do

cite and try our best to quantitatively compare with the claimed ac-

curacy from existing work. In addition, we only solve one (probably

the most complicated) part of the full-system power model, namely

the power consumption of the processor. The methodology needs

to be extended with additional techniques to account for power con-

sumption of other system components.

The paper is organized as follows. An overview of power proxies

in POWER7+ and discussion of design considerations is covered

in Section 2. Next, Section 3 shows how we develop chip power

models and incorporate core-based activity measurement with chip-

based characterization. We report experimental results to determine

their accuracy. Section 4 illustrates use cases for accurate core power

estimates. In Section 5 we review related work. Finally, we conclude

with Section 6.

2. Background

2.1. Power modeling

The power consumed by a microprocessor can be described by

Eqn. (1).

Pchip = Pactive +Pidle

= Pactive +Pclock +Pleak (1)

Pidle represents the idle power consumed when the processor is

on, but not executing instructions and Pactive is the additional active
power consumed due to instruction execution. The idle power can be

further separated into clock grid power and temperature-dependent

leakage power.

Prior work on power proxies has focused mainly on accurate ac-

tive power estimations and given simplistic treatment of the idle

power - often assuming a constant value or one that varied linearly

with clock frequency. While this may be valid for steady-state work-

loads, it is not sufficient for dynamic workloads that induce chang-

ing voltages (voltage scaling) and temperatures in the chip since idle

power depends strongly on voltage and temperature.

We describe our power model in more detail in Section 3.

2.2. POWER7 chip proxy logic

The POWER7 chip power proxy circuits have been disclosed before

in prior publications [4][5][20]. The circuitry in POWER7+ is identi-

cal. These circuits are used to estimate core active power and alone

cannot accurately account for idle power. Our work complements

the prior publications by demonstrating how firmware can be used

to accurately account for idle power and for voltage-scaling in the

active power component.

The methodology to estimate on-chip active power is to accumu-

late a weighted sum of activity counters each measurement inter-

val. We use the term activity proxy to denote this aggregated activity

count. Each chiplet (combination of a single core with its L2 and L3

225

Figure 1: Activity counters in a POWER7 chiplet [4]. POWER7+
chiplet floorplan is slightly different.

caches) in POWER7+ contains activity proxy logic so that per-core

active power can be separately accounted. Firmware then adjusts

the core activity proxies for the effects of leakage, temperature, pro-

cess variations and voltage to form the chip and core power proxies,

which are the final estimations of true power consumption. A discus-

sion of the firmware is in Section 3. The remainder of this section

overviews the POWER7 chip power proxy circuit.

Figure 1, reproduced from Floyd et al. [4], shows a diagram of ac-

tivity proxy event collection in the POWER7 processor chiplet. The

activity signals were selected during the initial POWER7 microar-

chitecture design phase. The top events that caused the majority of

the power consumption in each functional unit (e.g. Dispatch, Fixed

point, Load-Store) were considered. Example events include: the

deactivation of dynamic clock gating, data switching, and register

file or array accesses. Relevant signals were added directly from

those units to the on-chip proxy logic which adds a per-event pro-

grammable weight to an accumulation register whenever that event

occurs. Care was taken to avoid redundant counting whenever pos-

sible. For example, counting Load-Store issue already covers data

cache and D-ERAT (effective-to-real data address translation) reads

and Load Miss Queues so both were not included. For some frequent

events, such as General Purpose Register File access, a pre-count is

performed on the activity before sending a summary signal out of the

unit. Other events, such as instruction pipe issue or floating point op-

eration type, are sent as encoded values and a multiplier is applied

accordingly based on its anticipated power relative to the other types

in that encode group. The L2 and L3 cache units also provide active

power events based on cache lookup and types of access. All these

activity count accumulators are then scaled and summed to form an

aggregate activity proxy per core which can be converted into an

estimate of active power consumed over the previous time period.

There are several challenges in such weighted counter-based

proxy architecture, including:

• How to choose the minimal set of key activity counts to architect;

• Correctly sizing the counter and weight registers and the final scal-

ing logic; and

• How to decompose the weighted aggregation step so as to mini-

mize hardware complexity and calculation time.

To address these challenges, the methodology relies on system-

atic, linear-regression based formalism in conjunction with designer

intuition and experience. A genetic algorithm (GA) optimization

tool further refined the design under hardware constraints. Specif-

ically, the reference (RTL-validated) performance simulator-driven

power simulator projects the core power consumption across a care-

fully selected range of workloads. In each case, hundreds of activ-

ity count events were also collected over a pre-selected execution

time window. The resulting matrix of several data elements (con-

sisting of power values and activity counts) was fed into the GA-

driven regression solver, to deduce the right set of activity counts

as well as the size of weights to form the architecture. At the end,

activity count events are carefully selected to capture those that cor-

relate maximally with active power consumption as well as those

that are the fundamental (pseudo-independent) positive correlators

of power. The final design has an affordable number of hardware

counters and weight bits which led to an accurate, yet flexible proxy

architecture with reasonable cost. The final design measures close

to 50 activity counts which include instructions dispatched, instruc-

tions completed, execution register file accesses, execution pipeline

issue types, instruction fetch unit activity, load-store unit cache activ-

ity, load-store unit D-ERAT activity, load-store unit prefetch activity,

L2 cache reads/writes and L3 cache reads/writes.

3. Power Proxies
In this section, we demonstrate our methodology and verify its ac-

curacy by creating a proxy that replicates the physical power sensor

for the chip Vdd power rail.

3.1. Experimental setup

We have implemented the power proxy in a prototype high-

performance POWER7+ server. It has four microprocessors (P0-P3)

with 6-cores each, 256 GB of main memory, and runs AIX 7.1. The

maximum core clock frequency is 4228MHz. Voltage is controlled

independently for each microprocessor with all cores on a chip shar-

ing the same voltage level. A per-core digital phase-lock loop allows

clock frequency to be set independently for each core. We purpose-

fully selected the four microprocessors from different process cor-

ners and they are distinct in terms of leakage current, nominal sup-

ply voltage, and ring-oscillator delay measurements. This allows us

to confirm that the power proxy accounts for manufacturing-based

variation. We pick P1 as the reference chip because it has a more rep-

resentative nominal voltage than other three chips. In the following

text, for results that are related to a single chip, we show the results

on P1.

The power proxies are implemented in two parts in a POWER7+

system. First, activity counters and the calculation of the activity

proxies are implemented in hardware logic of the processor. The

weights to different activity events are programmable by writing to

special on-chip registers. Second, a service coprocessor receives

measurements of activity proxies, chip supply voltage, core clock

frequencies, and core temperatures from the POWER7+. The mea-

surements are sent over a special out-of-band management interface

that does not disrupt running workloads. The chip-level and core-

level power proxies are calculated in firmware that runs on the ser-

vice coprocessor. The firmware performs this computation every 32

milliseconds, which is constrained by the narrow bandwidth of the

management interface.

226

3.1.1. Power delivery path The POWER7+ processor has four inde-

pendent voltage rails, each fed by a voltage regulator module (VRM).

Two of the voltage rails (Vio and Vmem) require fixed voltages, es-

tablished at chip manufacturing, and are unique for each chip. The

other two voltage rails (Vdd and Vcs) have voltages that can be dy-

namically changed to implement DVFS policies.

The power proxy hardware does not cover circuitry on the Vio

and Vmem rails. This design choice was driven by the fact that

the current drawn on these rails varies only a small amount and be-

cause the load is largely constant. During chip manufacturing, the

current associated with Vio and Vmem is measured during a cali-

bration workload and stored in the chip’s Vital Product Data (VPD)

non-volatile memory along with the associated voltage.

The Vdd and Vcs rails do have circuitry associated with the power

proxy hardware. The Vdd rail feeds the cache and core logic and the

Vcs rail feeds the L3 cache (embedded DRAM) on the chip. For both

rails, chip manufacturing also measures current and voltages, but in-

stead of the single point characterization done for Vio and Vmem,

there are four unique points measured for each of the Vdd and Vcs

rails. The four unique points cover four standard operating points

across the full range of voltages and the associated frequencies that

the chip can operate at safely, and these values are written into the

chip’s VPD. The VPD values are used by product firmware to pro-

gram the Vdd and Vcs VRMs so that the output voltages from the

VRM will be sufficient to establish the characterized chip voltage

under worst-case conditions considering load line and other losses

in the power delivery system.

The Vdd rail is the most interesting power rail in terms of dynamic

power management, as it carries significantly more current than Vcs.

The Vdd and Vcs voltages can be varied over a very wide range

along with the frequency, with Vcs scaling proportionally to Vdd.

At the low end of the voltage range, the minimum Vdd voltage or

Vmin is typically only 70% of the maximum Vdd voltage or Vmax

used. To go with this, the frequency range varies from a minimum

frequency that is only 54.5% of the maximum frequency used.

Roughly 95% of the activity that the activity proxy measures is

associated with the Vdd rail. For this reason the paper focuses exclu-

sively around precise characterization of the Vdd rail. The method-

ology we present in this paper can be easily extended to the Vcs rail,

and we leave this as future work.

3.1.2. Sensing In our test system, the power on the input side (12V

rail) of the chip Vdd voltage regulator is directly measured with

an accuracy of 2%. Therefore, our measurement includes loss due

to voltage regulator conversion inefficiency. The firmware reads

analog-to-digital converters to measure the average power during

each 32 millisecond interval. We use this as the ground truth in

all experiments and accuracy claims. The goal of our power proxy

is to replicate as closely as possible the measured chip Vdd power

for each 32 ms interval. We measure the per-core temperature by

averaging the 5 digital thermal sensors located in each core. They

provide temperature in units of 1 degree Celsius and are accurate to

within 4 degrees of the true temperature.

3.2. Kernels and Benchmarks

We use two sets of workloads for building our runtime power prox-

ies. First, kernels from a variety of available system characterization

sources are used for training the activity proxy weights and power

model coefficients. Second, testing and validation are done with a

separate set of benchmarks.

The majority of our training workloads are kernels constructed

from simple array-based loops such as in the popular lmbench [14]

and STREAM [13] benchmarks. A desired size array is allocated

and kernel-specific operations are performed in a sequential or ran-

dom order over the array elements. By varying the nature of opera-

tions, number of distinct arrays and sizes of arrays a variety of work-

load instruction and storage access patterns are emulated. This gives

us a reasonably rich set of power exercisers for the cores, on-chip

caches and logic for accessing the different memory layers including

off-chip DRAM. We additionally vary the workloads by selecting

the multithreading mode of the chip. In all, we use 762 unique work-

loads for training. This simple kernel-based characterization also

helps us set up very steady workloads in terms of activity and power

to enable truly representative power measurements to be taken for

the training phases. We complement these loops with a set of sys-

tem stress-test workloads which are targeted at specific components

of the system. This set also includes a maximum power workload

developed for the POWER7 processor.

For testing and validation we use two sets of popular benchmarks

from SPEC—SPECPower_ssj2008 [18] and SPEC CPU2006 [17].

The former provides workloads of different intensities helping us

evaluate our models across the full range of system loads and the lat-

ter provides a rich variety of processor and memory hierarchy usage

examples.

3.3. Activity proxy training

We use a procedure similar to [4] to train weights in the activ-

ity proxy calculation. All cores in all chips use the same learned

weights. First, we measure the power consumption and tempera-

ture of the chip when it is idle. When running the training set of

benchmarks, we set the processor (P1) to its nominal frequency and

supply voltages. All cores run the same workload. We then sample

power and temperature measurements as well as activity counts for

each event. Per-core active power is calculated by subtracting the es-

timated idle power, which includes a temperature-based adjustment

(Section 3.4), from total measured power and dividing by the number

of cores. For each activity event, we also average across all the cores

to reach a per-core count for that event. The IBM SNAP genetic al-

gorithm optimization tool takes per-core active power and activity

counts as inputs to derive a linear regression model for active power,

in the form of

ActivityProxy = Σ(Wg×Σ(Wig×Aig)) (2)

where Wg is an activity group weight, Wig is the weight for activ-

ity event i in group g, and Aig is the count for event i in group g.

The POWER7+ hardware overhead is minimized by splitting the ac-

tivity weights into an event weight and a group weight. We use a

genetic algorithm to optimize the weights rather than a simple lin-

ear least-square fit due to the limited scaling ranges and the fact that

only Wg is signed. Once the set of weights is determined, the same

weights are programmed into all the cores across all the processors.

POWER7+ implements the activity proxy, Eqn. (2), in hardware.

Aside from the temperature effects previously mentioned, other

sources of correctable errors and biases need to be considered in

designing training experiments. One type of potentially correctable

error is due to Simultaneous Multi-Threading (SMT) mode, which

is effectively the number of active threads per core. We observe sys-

tematic variations of up to 5% in estimated power in the training sets

based on whether the workload is running with 1, 2 or 4 threads per

227

core. Consequently, our training kernels are run in all SMT modes.

Even after correctable errors are considered, systematic errors ex-

ist that will always bound the maximum accuracy of an active power

model based simply on event counting. One important example, to

be addressed by future work, is the dependency of processor power

on the actual data being processed, as the number of nodes switching

at each cycle is data dependent. Cache and register file access power

may also vary based on the data stored in the arrays. Using some sim-

ple cache-contained integer loops running on a POWER7 processor,

we observed variations in total active power of up to 5% depending

on the randomness of the data being processed, with power increas-

ing with increasing randomness.

3.4. Chip-level power model

Activity proxy only accounts for active power at the nominal oper-

ating point, which is a specific frequency, and associated voltage

values set defined in the chip VPD and identified as the default fre-

quency for the processor. In order to achieve a true power proxy,

we also must consider other factors, namely the whole supply volt-

age range and temperature-dependent leakage power. The impact

of frequency on power consumption is largely captured by activity

counters, since higher frequency results in proportionally more event

counts for the same workload.

Chip power consumption can be further divided into idle power

and active power, both of which are dependent on supply voltage.

Idle power in turn can be divided into leakage power and clock grid

power. Leakage power is also dependent on temperature. We model

chip-level power consumption in the following format:

Pchip = Pactive +Pclock +Pleak

=
AP
R

(
V

Vnom

)α
+

Freq
S0

(
V

Vnom0

)β

+Pleak_nom

(
V

Vnom

)γ
(1+m0(T −T0))

(3)

where AP is the activity proxy; R is the ratio between activity proxy

and active power for the reference processor at nominal frequency;

V is the supply voltage at the VRM output; Vnom is the nominal

voltage for each chip at the VRM output; Freq is the chip frequency;

S0 is a constant scaling factor across all chips and is derived during

chip characterization; Vnom0 is the nominal voltage at VRM output

for the characterized chip; Pleak_nom is the idle leakage power of the

chip at nominal voltage; m0 is a linear scaling factor for temperature-

dependency of leakage power; T and T0 are the actual temperature

and characterization temperature of the chip, respectively; α, β and

γ are constant exponents derived from characterizing the reference

chip.

Among all these parameters in the model, S0, T0, m0, Vnom0, α,

β and γ are constants, regardless of chip-to-chip variations. R, Vnom
and Pleak_nom are unique per chip, and R can be calculated based

on VPD data (more details in Section 3.6). AP, Freq, V and T are

runtime measurements at the chip level.

It is interesting to note that the active power term in Eqn. (3)

does not include chip frequency. This is because changes to core

frequency are reflected in the rate at which the activity proxy to accu-

mulate events. Therefore, AP naturally incorporates core frequency.

Through a series of experiments we found the dependence of

leakage power on temperature is approximately linear for a fixed

voltage. This is the reason we include a linear dependence on tem-

perature in the leakage power term in Eqn. (3). We ran different

steady-state workloads such as the kernel loops and the maximum

power workload with constant inputs at nominal voltage and fre-

quency, each starting from a cool temperature and gradually reach-

ing a warmer steady temperature. The only factor that causes power

change for each workload is temperature-dependent leakage power.

We found this power component is linearly proportional to tempera-

ture change.

We used the IBM SNAP genetic algorithm optimizer to determine

the parameters for Eqn. (3). First, we measured the idle power and

temperature of each chip across 22 voltage settings and 22 frequency

settings, for a combination of 253 unique voltage-frequency points.

Then we programmed SNAP to find the parameters that minimized

the error for the idle power across all chips every voltage-frequency

points. We obtained S0 = 159.634, m0≈0.031W/◦C, β = 1.584, γ =
4.070, and a unique Pleak_nom value for each chip.

We verified Pleak_nom for all the chips by measuring leakage power

at nominal Vdd (when the chip is idle and before clock grid is en-

abled). After that, we repeat the same procedure for different volt-

ages, to verify γ = 4.070 across all the chips. We verified S0 by

measuring chip idle power (including both leakage power and clock

grid power) at nominal frequency, and subtracting leakage power

calculated above from idle power.

With the total chip power measurement and the idle power model,

we can calculate active power. From multiple training workloads

and we find that R = 2450 for the reference chip, and α = 2.2 for

active power. The validation of total chip power is shown in Fig. 5

in Section 3.6, as we also show the total power for each of the four

processors with manufacture-based variations.

3.5. Total chip power and idle power estimation results
We now present our main results for the total chip power model and

idle power model. Additionally, we show that our models are accu-

rate even when the chips are undervolted.

Fig. 2 shows results for total chip power for training kernels, test-

ing kernels/SPECpower, and SPEC CPU2006. We report two met-

rics here. The first one is the absolute (i.e. unsigned) average per-

centage error among 32 ms samples of each workload, see Fig. 2(a)-

(c). This metric helps evaluate instantaneous power proxy errors and

is useful for what-if scenarios for runtime power management poli-

cies that need to make many decisions every second. The second

metric is the average percentage error for each entire workload run,

see Fig. 2(d)-(f). This is useful for evaluating energy consumption

over a relatively longer time, such as a minute or longer.

We achieve 1.8% (std. dev. 2.0%) unsigned percentage errors for

32 ms samples of total chip power across all workloads (the last bar

in Fig. 2(a)-(c)). The low standard deviation means the errors from

a vast majority of activity proxy samples are close to each other. For

mean percentage errors for each entire workload (Fig. 2(d)-(f)), on

average, we achieve -0.2% (std. dev. 2.6%). This indicates the set

of weights from the training is especially useful for long-term en-

ergy estimation. The worst case error across all testing workloads

is under 9.5% (vector copy kernel). For SPEC CPU2006, the worst

case workload error is 8.1% for calculix. This compares well to

prior work [6] that achieved a median error of 1-5% (maximum er-

ror 7-10.7%) for SPEC CPU2006 workloads across multiple chip

architectures, but used 1-second samples for validation.

Our idle power model (Pleak + Pclock) has a maximum error of

2 W across all chips and voltage-frequency points. The maximum

228

(a) (d)

(b) (e)

(c) (f)

Figure 2: (a)-(c): Chip power (at nominal frequency) absolute (unsigned) percentage errors across all samples for training kernels,
testing kernels/SPECpower, and SPEC CPU2006, respectively. (d)-(f): Chip power (at nominal frequency) average relative
errors for each workload run.

Figure 3: Idle power model validation at four different frequen-
cies.

percent error was 3% which occurs near the lowest idle power mea-

sured. Fig. 3 shows the normalized idle power (i.e. leakage power

and clock power) at different voltage-frequency pairs for all four

chips.

So far, we have derived and verified the chip-level power proxy

for a wide range of voltage-frequency pairs. An interesting experi-

ment would be to test the power proxy’s accuracy when voltage and

frequency pairs are not fixed. Recently, Lefurgy et al. [12] proposed

a method of safely undervolting a microprocessor while maintaining

the same frequency. Voltage is dynamically selected to maintain a

preset guardband level as chip activity changes, resulting in reduced

chip power without performance loss. We apply this technique when

running the maximum power workload, and allow undervolting up

to 112.5 mV (about 9.5% of supply voltage) at the fixed frequency of

4228MHz. The first half of Fig. 4 is for the case where frequency is

fixed at 4228 MHz and voltage is set to the traditional corresponding

value, whereas the second half of the figure shows the case where dy-

namic undervolting is enabled such as frequency is fixed while volt-

age changes with available timing margin. This results in about 25%

power reduction for dealII in the second half. Comparing the two

halves, we see that for decoupled voltages and frequencies, our chip-

level power proxy still achieves about the same level of accuracy

when frequency and voltage are decoupled from each other. That is,

9.5% variations of supply voltage do not lead to worse power proxy

estimation.

3.6. Chip-to-chip variations
The chip-level power proxy (or model) presented above is character-

ized from a single reference chip and does not consider chip-to-chip

variations due to uncertainties in the manufacturing process. There-

fore, Eqn. (3) must be adjusted to take variations into account. As

mentioned before, to maximize the process variations among the

tested chip, we intentionally evaluate four chips from distinct pro-

cess corners. For example, when considering Performance Sort Ring

Oscillator (PSRO) measurements, one chip is 2.6 standard deviation

slow, one chip is 1.1 standard deviation fast and the other two chips

229

Figure 4: Chip power proxy validation for dealII with decoupled
voltage and frequency.

are within 0.5 standard deviation of the mean PSRO value. More

simply, the PSRO spread of our 4 chips covers 88% of all chips

from a sample size of thousands of chips passing module test. Data

in the paper also show significant leakage power variations.

For clock power (Pclock), Freq can be measured at run time, S0

and β are constant across all chips. Vnom0 is also a constant, which is

the nominal Vdd for the reference chip. The only variance in clock

power from one chip to another is from its supply voltage V that can

be measured at run time. For the same operating frequency, different

chips have their different characterized supply voltages. Therefore,

variations among chips for the clock power component can be ac-

counted for by the different settings of supply voltages.

For the leakage power component (Pleak), although each chip’s

leakage power at nominal voltage (the characterized voltage for this

chip to run at nominal frequency) can be measured during system

start up, it is also possible to calculate it by subtracting the clock

power from the measured idle power for each chip. Both methods

achieve almost the same accuracy. The variation among leakage

power can be easily calculated from measurements. The assump-

tions of a constant γ and a constant m0 for all chips are also valid

according to Fig. 3.

For active power, there are two ways to adjust for chip-to-chip

variations. The first approach is to utilize the characterized variation

information in the VPD data. As mentioned in Section 3.1.1, each

chip has VPD data that is established during chip manufacturing test

that is unique to that chip. The uniqueness addresses manufacturing

variability, and system specific information for the target system it is

going into including load line effects between the VRM and the chip

package and the losses associated with the unique package being

used for that die in the system.

In Eqn. (3), for Pactive, we can derive a chip-specific value for R
based on VPD, load-line equation, and VRM efficiency. Specifically,

as mentioned before, R= (AP)nom/Pactive_nom. We denote R0 for the

reference chip, and R1 for an un-characterized chip that we want to

adjust the active power. If both chips run the same workload, at the

same frequency, in the same environment, we know that (AP)nom =
R0Pactive_nom0 = R1Pactive_nom1 because both chips have the same

amount of activities. Therefore,

Figure 5: Chip power model validation at four different frequen-
cies for the maximum power workload. Chip-to-chip
variation is also accurately accounted for.

R1 = R0

(
Pactive_nom0

Pactive_nom1

)
(4)

where

Pactive_i = PVRM_i−Pidle_i ...(i = 0,1) (5)

We are able to calculate R1 for any processors that are not char-

acterized since 1) R0 is known, 2) Pidle_i can be calculated for each

chip, and 3) PVRM_i can be calculated from the VPD data of chip

i together with knowledge of the load-line equation and VRM effi-

ciency.

However, VRM efficiency is quite sensitive to the load current

and the number of phases, and can vary as much as 10%, causing

a noticeable error in the resulting Ri calculation. Instead, we found

that modifying the active power to the following format results in

better accuracy for all the chips:

Pactive =
AP
R0

(
V

Vnom0

)α
(6)

Where R0 is a constant value from the reference chip, and Vnom0

is the nominal Vdd for the reference chip, too. The underlying rea-

son is similar to the clock power component—chip-to-chip variation

is largely captured by the different characterized supply voltage set-

tings for different chips at the same operating frequency.

Therefore, the final format of the chip-level power proxy adjusted

for chip-to-chip variations is:

Pchip = Pactive +Pclock +Pleak

=
AP
R0

(
V

Vnom0

)α
+

Freq
S0

(
V

Vnom0

)β

+Pleak_nom

(
V

Vnom

)γ
(1+m0(T −T0))

(7)

Fig. 5 compares the modeled total power and measured total

power for the maximum power workload for different voltage-

frequency pairs, across all four chips. It shows that our proposed

chip-level power proxy works accurately despite the large manufac-

ture process variations among the chips. Similar results are achieved

for other workloads, too.

230

3.7. Core-level power proxy

For POWER7+, in order to reach power consumption estimation as-

sociated with each core, we take the following steps.

• Active power: We begin with the per-core activity proxy value

APi calculated by the core. R and V are the same for all the cores

in one processor, since all cores share the same voltage rails in

POWER7+. Specifically,

Pactive_core_i =
APi

R0

(
V

Vnom0

)α
(8)

• Clock grid power: first use average frequency across all the cores

to calculate chip-level clock power. Then divide it to each core’s

contribution by proportionally scaling to the core’s frequency.

Specifically,

Pclock_core_i =
Freqi

NcoresFreqavg

Freqavg

S0

(
V

Vnom0

)β

=
Freqi

S0 ·Ncores

(
V

Vnom0

)β
(9)

• Leakage power: first use Eqn 3 to calculate chip-level leakage

power. Then divide it to each core’s contribution by proportion-

ally scaling to the core’s temperature change. Specifically,

Pleak_core_i =
Pleak_nom

Ncores

(
V

Vnom

)γ
(1+m0(Ti−Ti0)) (10)

where Ti is the core temperature at run time, and Ti0 is the core

temperature during characterization.

• Final adjustment: each core’s power proxy now becomes

Proxyi = Pactive_core_i + Pclock_core_i + Pleak_core_i. To ac-

count for the difference between power proxies and power mea-

surement, we can adjust the sum of all power proxies from all the

cores to be equal to total measured chip power, by multiplying

with scaling factor that equals to Pmeasured/ΣProxyi.

Although POWER7+ does not have individual voltage rails at the

granularity of cores, the above approach can be easily extended to

such situations by using V from each core. Use of core-level power

proxies is shown in Section 4.1.

4. Use Cases of Power Proxies

The chip-level and core-level power proxies that incorporate volt-

age, frequency and process variations allow the implementation of

many novel ideas that are otherwise impractical or impossible. One

interesting usage scenario of per-core power proxies is in a power

capping environment with a power constraint at the processor socket

level. Our per-core power proxies enable a better judgment for bal-

ancing power among cores. Prior work [11] shows that every 1%

improvement in power estimation accuracy can lead to roughly 1%

performance improvement in a power-capped scenario, due to less

guardbanding.

In general, this work provides the means of using core-level power

proxies for both power-based accounting/billing of virtual machines

and more fine-grained power management. This section provides

two such example applications.

4.1. Fine-grained power accounting

Power proxies, especially per-core power proxies enable power-

based billing for cloud computing services. Our power proxy will

Figure 6: Stacked core power proxy for an estimate of total chip
power for a multiprogram workload. Top solid line is
the measured chip power.

Figure 7: Validation of core power proxy for three kernel bench-
marks running on individual cores.

work with different assignments of cores to virtual machine and with

the virtual machines operating the cores using different partition-

level power management techniques. For virtual machines at the

sub-core level (i.e. a subset of threads out of a SMT core), further

extensions to per-thread power proxies are necessary, which is be-

yond the scope of this paper.

We construct a case to show core-level power estimations on a

6-core processor. Each core runs an independent workload from our

kernel benchmarks and each workload has been configured with dif-

ferent memory footprints and different number of threads (1, 2 or

4). The variations among workloads cause power consumption dif-

ference among cores. Fig. 6 shows the normalized power over time.

We stack the six core power proxies together to get an estimated to-

tal chip power, each core power proxy is represented by one pattern

in the plot. The top-most solid line is the measured chip Vdd power.

As we can see, all the workloads start at the same time. But the ker-

nel on core 2 ends earlier than the others. The sum of the core power

proxies is about 3.0% less than the measured chip power.

In order to validate each core power proxy’s accuracy, we pick

three of the kernels that have memory footprint contained within

per-core L2 cache from previous experiment, and run each alone

on its associated core with all other cores idle. We calculate the

“measured” core power by

Pcore_measured =
Pidle

Ncores
+(Pchip−Pidle) (11)

and compare it with the temperature adjusted core power proxy

for those cores in Fig. 6. The results in Fig. 7 show the core power

proxies are quite accurate (0.6%, -6.2% and -8.2%, respectively).

231

Figure 8: Chip power proxy comparison among three power
management policies: Fixed nominal frequency, Dy-
namic Power Saving (DPS), Dynamic Power Saving
with undervolting (DPS, UV).

4.2. Run-time power saving estimation

In this section, we evaluate different power management poli-

cies for a workload. Fig. 8 shows runtime power comparison

of a SPECpower run under three power management policies.

SPECpower requires each load level run for fixed amounts of time,

regardless of operating mode. That is why the total run times in all

cases are the same in the figure. Additionally, Fig. 8 shows DPS

and DPS/UV have better "power proportionality” to load levels than

Nominal. This results in significantly improved SPECpower scores

for DPS and DPS/UV.

We show three calibration phases, one 100% load level, one 40%

level and one 20% load level. The Nominal policy uses a fixed fre-

quency and a fixed voltage throughout the run; The Dynamic Power

Saving (DPS) policy dynamically adjusts voltage and frequency to

keep processor at a relatively constant high utilization level. The

DPS/UV (undervolting) policy allows dynamically lowering voltage

for high load levels without changing frequencies, in order to reduce

static margins and achieve higher power efficiency. Both chip power

measurements and chip power proxy are shown. As can be seen, the

chip power proxies match well with the power measurements in all

cases.

It is also interesting to compare the three policies. The fixed fre-

quency mode has relatively flat chip power consumption, despite

the significant change in load levels and processor utilization lev-

els. The DPS and DPS/UV modes achieve higher frequency, hence

higher performance at high load levels, and significantly reduced

power consumption at lower load levels and idle state. Thus these

modes are more “power proportional” in that they respond to perfor-

mance demand. In addition, the benefit of DPS/UV is evident that

it consumes 15% less power at full load levels, while keeping the

same peak performance.

We expect that a chip-level power proxy allows on-the-fly and

accurate evaluation of such power management policies. Tradition-

ally, each power management technique is implemented separately

in hardware, firmware or software. The same set of workloads must

be executed multiple times, once for each technique. Great care

must be taken to ensure each run has the same architectural, environ-

mental and initial conditions. This process is time consuming and

not rigorous. With an accurate chip-level power proxy, processor

power consumptions of different power management policies can be

calculated simultaneously for different voltage, frequency and tem-

perature scenarios.

5. Related Work

Bellosa [1] developed some of the first microprocessor power mod-

els based on performance counter measurement.

Contreras and Martonosi [2] augment the performance counter-

based linear regression model of CPU power for a Intel PXA255

unicore processor to account for voltage scaling by using different

weights for the performance counters for each voltage and frequency

pairs. In modern server chips, voltages are tuned for each chip so

that chips running at the same frequency in the same system likely

use different voltages. As undervolting and overclocking become

common place in commercial computers, the voltage and frequency

pairs are not stable at run time and instead depend on the running

workload and the electrical guardbands within the processor. Our

methodology can account for both different chip voltages as well as

dynamic undervolting and overclocking.

Intel’s Common Activity-based Model for Power (CAMP) [15]

uses just 9 micro-architectural events in the processor to create mod-

els of activity factor for 180 physical structures in the processor. The

activity factors are used to generate per-structure power models that

can be combined to provide core-level dynamic power estimates at

run time. They show an 8% average error for the core-level dynamic

power and a maximum error of up to 12% for entire workloads. The

comparison is against a detailed power simulator which itself is esti-

mated to be 5% to 10% accurate. Additionally, the authors provide

an excellent summary of prior work in the area. A limitation of

the work is that it does not provide a methodology for dealing with

run-time voltage scaling or manufacturing variation. Our work is

distinguished from Intel’s CAMP work in that 1) we implement our

solution in a real chip (not a simulator), 2) we account for manu-

facturing variation, and 3) variation in voltage and frequency. For

example, two cores at different clock frequencies (due to utilization-

based frequency selection), but operating on a shared voltage rail set

for the higher frequency.

Jacobson et al. [8] improves on Powell et al. by providing a

methodology for selecting the best architectural events. The authors

use abstracted microarchitectural scaling models that are useful in

early-stage power modeling of future generation designs.

Goel et al. [6] derives performance-counter based core-power

models and tunes them using real system power measurement using

linear regression. One difference from prior work is the inclusion of

core-level temperature sensors. Another novel feature is using linear,

inverse, exponential, logarithmic, or square-root transformations to

scale the performance counters before the linear regression step to

correlate better with power consumption. They achieve median er-

rors per benchmark suite of 1-5% across six different CPU models,

which demonstrates a portable methodology. Error in average power

for individual workloads was measured up to 11%. This work has

some of the best error reporting of prior work and an extensive re-

view of prior work.

There are two recent papers that account system power to virtual

machines (VMs). They both attempt to account CPU, memory, and

device power to VMs running on the system. We limit discussion to

the CPU power, which is the sole focus of our work.

Stoess et al. [19] account for processor power by recording CPU

performance counters at VM context switches, weighting and ac-

cumulating the counters to form a power proxy, and assigning the

power to the associated VM. Power during idle periods is equally di-

232

vided among the running VMs. A limitation of the work is its imple-

mentation on a uniprocessor system running a single core. The work

does not consider how power could be allocated to virtual machines

running on each core, or how voltage scaling or CPU temperature

affect power consumption. We address these limitations in our work

by architecting a power proxy for each processor core and account-

ing for voltage and temperature variation across cores and chips in

the system.

Kansal et al. [10] take another approach to account for CPU power

by tracking the logical CPU utilization of each VM. A simple, linear

relationship is used to relate the utilization to a power consumption.

The system-level power accuracy is measured to be within 5%. How-

ever, such models cannot accurately account power at a core-level

due to manufacturing variation between cores, workload variation,

or temperature variation. Our modeling uses fabrication-time test-

ing to account for manufacturing variation and run-time sensing to

account for workload variation and temperature.

Much of the prior work does not provide error estimates based on

measured CPU power. Often system power measurement is used and

discounted by power measurements for various system devices to

arrive at the CPU power measurement. We base our error estimates

on a highly accurate Vdd-rail current sensor for the CPU socket.

Do, Rawshdeh, and Shi [3] propose an application-level program-

ming interface to allow processes to monitor their energy consump-

tion. Their CPU power model relies on assigning a fixed power con-

sumption to each processor frequency state and a fixed energy to

frequency transitions. It does not deal with nuances of how instruc-

tions actually use the processor or manufacturing variation. Their

reported results for an estimated system power of a laptop appear to

have over 11% mean error. Our work could be used as a replacement

(with higher accuracy) for their CPU power modeling.

AMD includes power-monitoring circuit in its processor cores [9].

95 activity signals per core are monitored and weighted to form a dy-

namic power estimate that is considered to be 2% accurate. Since the

purpose is for long-term thermal and power control, the circuitry is

optimized to eliminate high-speed routing by not sampling every sig-

nal every cycle. It takes hundreds of time-based samples to achieve

accurate dynamic power estimations.

Intel’s Tukwila chip, an Itanium family processor, tracks approx-

imately 120 architectural event per core to estimate switched capac-

itance every 8 microseconds and compare this to threshold values

to select a maximum voltage-frequency pair to stay within a power

envelope [16]. The application of power proxy sensors in Tukwila

is guardbanding worst-case power, not attempting to replicate real

power on a voltage rail. Since all processors must select the same

frequency for identical instruction sequences despite manufacturing

variation (leakage and circuit speed), it is not actual power that the

sensors are responding to, but an estimation of power in a worst-

case chip. The accuracy of these sensors compared to real power

measurement is unpublished.

Our work complements the work of AMD and Intel in that we dif-

ferentiate our power model across processors to calculate chip power

as accurately as possible for charge-back purposes. Our power proxy

has additional novel properties addressing real-world implementa-

tion challenges. First, it deals with significant chip-to-chip varia-

tions in an accurate yet concise way. Second, it is accurate for under-

volting (UV) where voltage adjustment is independent of frequency.

Prior work only evaluates with a fixed workset of voltage-frequency

pairs. In addition, prior work on real systems [6] estimates power

at 1-second intervals. Our estimates are for 32-millisecond inter-

vals, which is more relevant for dynamic power capping and energy-

efficiency controllers.

6. Conclusion
In this paper, we present accurate chip-level and core-level power

proxies for the IBM POWER7+ processor. We validate the power

proxies by accurately replicating an existing Vdd power rail sensor.

For a fixed frequency run, we achieve a mean unsigned error of 1.8%

for fine-grained 32 ms samples across all workloads. For an interval

of an entire workload, we achieve a mean error of -0.2%. The worst-

case workload error was under 9.5%. This accuracy is similar to the

prior work with the highest accuracy, but is attained at a 30x smaller

timescale which is more appropriate for fine-grain power manage-

ment applications. We also show that the power proxies hold their

accuracy across a range of frequency and voltage settings. Addition-

ally, we demonstrate the first power proxies that work on a system

that undervolts processors, whereas prior studies only show results

for conventional voltage-and-frequency scaling with fixed voltage-

frequency pairs.

Our demonstration in a real system shows the technique is sound

for deployment in commercial multi-core servers. The power prox-

ies account for full voltage and frequency ranges and also for chip-to-

chip manufacturing variations. Such proxies are useful for a number

of applications, such as power-based billing strategy for cloud-based

services. They also enable powerful runtime what-if evaluations of

different power management techniques.

Acknowledgement
We thank Jason F. Cantin for providing the IBM SNAP genetic algo-

rithm optimizer used in this work.

References
[1] F. Bellosa, “The benefits of event-driven energy accounting in power-

sensitive systems,” in Proceedings of the 9th Workshop on ACM
SIGOPS European Workshop, 2000.

[2] G. Contreras and M. Martonosi, “Power prediction for intel XScale
processors using performance monitoring unit events,” in Proceedings
of the International Symposium on Low Power Electronics and Design
(ISLPED), 2005.

[3] T. Do, S. Rawshdeh, and W. Shi, “pTop: A process-level power profil-
ing tool,” in Proceedings of the Workshop on Power Aware Computing
and Systems, HotPower, 2009.

[4] M. Floyd et al., “Introducing the adaptive energy management fea-
tures of the POWER7 chip,” Micro, IEEE, vol. 31, no. 2, pp. 60–75,
March/April 2011.

[5] M. Floyd et al., “Adaptive energy-management features of the IBM
POWER7 chip,” IBM Journal of Research and Development, vol. 55,
no. 3, pp. 8:1–8:18, May/June 2011.

[6] B. Goel et al., “Portable, scalable, per-core power estimation for intel-
ligent resource management,” in Proceedings of International Green
Computing Conference (IGCC), 2010.

[7] Intel Corporation, Intel Server Board S1200BT, February 2012.
[8] H. Jacobson et al., “Abstraction and microarchitecture scaling in early-

stage power modeling,” in Proceedings of International Symposium on
High Performance Computer Architecture (HPCA), 2011.

[9] R. Jotwani et al., “An x86-64 core implemented in 32nm SOI
CMOS,” in Proceedings of International Solid-State Circuits Confer-
ence(ISSCC), 2010.

[10] A. Kansal et al., “Virtual machine power metering and provisioning,”
in Proceedings of the ACM Symposium on Cloud Computing (SOCC),
2010.

[11] C. Lefurgy, X. Wang, and M. Ware, “Power capping: A prelude to
power shifting,” Cluster Computing, vol. 11, no. 2, pp. 183–195, June
2008.

233

[12] C. R. Lefurgy et al., “Active management of timing guardband to save
energy in POWER7,” in Proceedings of International Symposium on
Microarchitecture (MICRO), 2011.

[13] J. McCalpin, “The STREAM2 Home Page,”
http://www.cs.virginia.edu/stream/stream2.

[14] L. W. McVoy and C. Staelin, “lmbench: Portable tools for performance
analysis,” in Proceedings of the USENIX Annual Technical Conference
(USENIX), 1996.

[15] M. Powell et al., “CAMP: A technique to estimate per-structure power
at run-time using a few simple parameters,” in Proceedings of In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 2009.

[16] B. Stackhouse et al., “A 65 nm 2-billion transistor quad-core Itanium
processor,” IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 18–
31, January 2009.

[17] “SPEC CPU2006,” http://www.spec.org/cpu2006.
[18] “SPECpower_ssj2008,” http://www.spec.org/power_ssj2008.
[19] J. Stoess, C. Lang, and F. Bellosa, “Energy management for hypervisor-

based virtual machines,” in Proceedings of the USENIX Annual Techni-
cal Conference (USENIX), 2007.

[20] M. Ware et al., “Architecting for power management: The IBM
POWER7 approach,” in Proceedings of International Symposium on
High Performance Computer Architecture (HPCA), 2010.

234

Fundamental Latency Trade-offs in Architecting DRAM Caches∗

Outperforming Impractical SRAM-Tags with a Simple and Practical Design

Moinuddin K. Qureshi Gabriel H. Loh
Dept. of Electrical and Computer Engineering AMD Research

Georgia Institute of Technology Advanced Micro Devices, Inc.

moin@gatech.edu gabe.loh@amd.com

Abstract

This paper analyzes the design trade-offs in architecting
large-scale DRAM caches. Prior research, including the re-
cent work from Loh and Hill, have organized DRAM caches
similar to conventional caches. In this paper, we contend that
some of the basic design decisions typically made for con-
ventional caches (such as serialization of tag and data ac-
cess, large associativity, and update of replacement state) are
detrimental to the performance of DRAM caches, as they ex-
acerbate the already high hit latency. We show that higher
performance can be obtained by optimizing the DRAM cache
architecture first for latency, and then for hit rate.

We propose a latency-optimized cache architecture, called
Alloy Cache, that eliminates the delay due to tag serializa-
tion by streaming tag and data together in a single burst. We
also propose a simple and highly effective Memory Access
Predictor that incurs a storage overhead of 96 bytes per core
and a latency of 1 cycle. It helps service cache misses faster
without the need to wait for a cache miss detection in the com-
mon case. Our evaluations show that our latency-optimized
cache design significantly outperforms both the recent pro-
posal from Loh and Hill, as well as an impractical SRAM
Tag-Store design that incurs an unacceptable overhead of
several tens of megabytes. On average, the proposal from
Loh and Hill provides 8.7% performance improvement, the

“idealized” SRAM Tag design provides 24%, and our simple
latency-optimized design provides 35%.

1. Introduction

Emerging 3D-stacked memory technology has the potential
to provide a step function in memory performance. It can
provide caches of hundreds of megabytes (or a few gigabytes)
at almost an order of magnitude higher bandwidth compared
to traditional DRAM; as such, it has been a very active re-
search area [2, 4, 7, 12, 13, 19]. However, to get performance
benefit from such large caches, one must first handle several
key challenges, such as architecting the tag store, optimizing
hit latency, and handling misses efficiently. The prohibitive
overhead of storing tags in SRAM can be avoided by placing
the tags in DRAM, but naively doing so doubles the latency

∗The work on Memory Access Prediction (Section 5) was done in 2009
while the first author was a research scientist at IBM Research [15].

of DRAM cache (one access each for tag and data). A recent
work from Loh and Hill [10, 11] makes the tags-in-DRAM ap-
proach efficient by co-locating the tags and data in the same
row. However, similar to prior work on DRAM caches, the
recent work also architects DRAM caches in largely the same
way as traditional SRAM caches. For example by having a se-
rialized tag-and-data access and employing typical optimiza-
tions such as high associativity and intelligent replacement.

We observe that the effectiveness of cache optimizations
depends on technology constraints and parameters. What
may be regarded as indispensable in one set of constraints,
may be rendered ineffective when the parameters and con-
straints change. Given that the latency and size parameters
of a DRAM cache are so widely different from traditional
caches, and the technology constraints are disparate, we must
be careful about the implicit optimizations that get incorpo-
rated in the architecture of the DRAM cache. In particular,
we point out that DRAM caches are much slower than tra-
ditional caches, so optimizations that exacerbate the already
high hit latency may degrade overall performance even if they
provide a marginal improvement in hit rate. While this may
seem to be a fairly simple and straight-forward concept, it
has a deep impact (and often counter-intuitive implications)
on the design of DRAM cache architectures. We explain the
need for reexamining conventional cache optimizations for
DRAM caches with a simple example.

Consider a system with a cache and a memory. Memory
accesses incur a latency of 1 unit, and cache accesses incur 0.1
unit. Increasing the cache hit rate from 0% to 100% reduces
the average latency linearly from 1 to 0.1, shown as “Base
Cache” in Figure 1(a). Assuming the base cache has a hit rate
of 50%, then the average memory access time for the base
cache is 0.55. Now consider an optimization A that eliminates
40% of the misses (hit rate with A: 70%) but increases hit
latency to 1.4x (hit latency with A: 0.14 unit). We want to
implement A only if it reduces average latency. We may begin
by examining the target hit-rate for A given the higher hit-
latency, such that the average latency is equal to the base case,
which we call the Break-Even Hit Rate (BEHR). If the hit-rate
with A is higher than the BEHR, then A will reduce average
latency. For our example, the BEHR for A is 52%. So, we
deem A to be a highly effective optimization, and indeed it
reduces average latency from 0.55 to 0.40.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.30

235

Opt−A

A
ve

ra
ge

 L
at

en
cy

(a) Fast Cache [Hit Latency 0.1] (b) Slow Cache [Hit Latency 0.5]

Break−Even HitRate=52%

HitRate with A=70%

Break−Even HitRate=83%

HitRate with A=70%

Base Cache

10 20 30 40 50 60 70 80 90 100

0.8

1.0

0.6

0.4

0.2

0

Cache Hit Rate (H%)

10 20 30 40 50 60 70 80 90 100

0.8

1.0

0.6

0.4

0.2

0

Cache Hit Rate (H%)

A
ve

ra
ge

 L
at

en
cy

Figure 1: Effectiveness of cache optimizations depend on cache hit latency. Option A increases hit latency by 1.4x and hit-rate
from 50% to 70%. (a) For a fast cache, A is highly effective at reducing average latency from 0.55 to 0.4 (b) For a slow cache, A
increases average latency from 0.75 to 0.79.

Now, consider the same “highly effective” optimization A,
but now the cache has a latency of 0.5 units, much like the
relative latency of a DRAM cache. The revised hit latency
with A will now be 1.4x0.5=0.7 units. Consider again that
our base cache has a hit-rate of 50%. Then the average la-
tency for the base cache would be 0.75 units, as shown in
Figure 1(b). To achieve this average latency, A must have a
hit rate of 83%. Thus optimization A, which was regarded as
highly effective in the prior case, ends up increasing average
latency (from 0.75 to 0.79). The Break Even Hit Rate depends
also on the hit rate of the base cache. If the base cache had a
hit rate of 60%, then A would need a 100% hit-rate simply to
break even! Thus, seemingly indispensable and traditionally
effective cache optimizations may be rendered ineffective if
they have a significant impact on cache hit latency for DRAM
caches. Note that typical cache optimizations, such as higher
associativity and better replacement, do not usually provide
a miss reduction as high as 40%, which we have considered
for A. However, our detailed analysis (Section 2) shows that
to support these optimizations, previously analyzed DRAM
cache architectures do incur a hit latency overhead of more
than 1.4x as considered for A.

It is our contention that DRAM caches should be designed
from the ground-up keeping hit latency as a first priority for
optimization. Design choices that increase hit latency by
more than a negligible amount must be carefully analyzed
to see if it indeed provides an overall improvement. We find
that previously proposed designs for DRAM caches that try
to maximize hit-rate are not well suited for optimizing over-
all performance. For example, they continue to serialize the
tag and data access (similar to traditional caches), which in-
creases hit latency significantly. They provide high associativ-
ity (several tens of ways) at the expense of hit latency. We can
significantly improve the performance of DRAM caches by
optimizing them for latency first, and then for hit rate. With
this insight, this paper makes following contributions:

1. We analyze the latency of three designs: SRAM-Tags,
the proposal from Loh and Hill, and an ideal latency-
optimized DRAM cache. We find that the Loh-Hill pro-
posal suffers from significant latency overheads due to
tag serialization and due to the MissMap predictor. For
SRAM-Tags, tag serialization latency limits performance.
Both designs leave significant room for performance im-
provement compared to the latency-optimized design.

2. We show that de-optimizing the DRAM cache from a
highly-associative structure to direct-mapped improves
performance by reducing the hit latency, even if it de-
grades cache hit rate. For example, simply configuring
the design of Loh and Hill from 29-way to direct-mapped
enhances performance improvement from 8.7% to 15%.
However, this design still suffers from tag serialization due
to separate accesses to the “tag-store” and “data-store.”

3. We propose the Alloy Cache, a highly-effective latency-
optimized cache architecture. Rather than splitting cache
space into “tag store” and “data store,” it tightly integrates
or alloys the tag and data into one unit (Tag and Data,
TAD). Alloy Cache streams out a TAD unit on each cache
access, thus avoiding the tag serialization penalty.

4. We present a simple and effective Memory Access Pre-
dictor [15] to avoid the cache access penalty in the path
of servicing cache miss. Unlike MissMap, which incurs
multi-megabyte storage and L3 access delay, our proposal
requires a storage overhead of 96 bytes per core and incurs
a latency of 1 cycle. Our predictor provides a performance
improvement within 2% of a perfect predictor.

Our evaluations with a 256MB DRAM cache show that,
on average, our latency-optimized design (35%) significantly
outperforms both the proposal from Loh and Hill (8.7%) as
well as the impractical SRAM-Tag design (24%). Thus, our
simple design with less than 1KB overhead (due to predictor)
provides 1.5x the performance benefits of the SRAM design
that requires several tens of megabytes of overhead.

236

SRAM TAG−STORE

? ?

MISS
MAP

DATAOUT

DATAOUT

T T T

29 ways of data

DATAOUT

ROW BUFFER

DRAM ARRAY

(c) IDEAL Latency−Optimized DRAM Cache

32 x 64 byte cache lines = 2048 bytes (size of row buffer)

Tag−Store

(b) DRAM Cache Organization as Proposed by Loh−Hill

ADDR

ADDR

ADDR

(a) DRAM Cache with SRAM Tag−Store (Impractical)

Figure 2: DRAM Cache organization and flow for a typical access for (a) SRAM Tag-store, (b) the organization proposed by Loh
and Hill, and (c) an IDEAL latency-optimized cache.

2. Background and Motivation

While stacked memory can enable giga-scale DRAM caches,
several challenges must be overcome before such caches can
be deployed. An effective design of DRAM cache must
balance (at-least) four goals. First, it should minimize the
non-DRAM storage required for cache management (using
a small fraction of DRAM space is acceptable). Second, it
should minimize hit latency. Third, it should minimize miss
latency, so that misses can be sent to memory quickly. Fourth,
it should provide a good hit-rate. These requirements are of-
ten conflicting with each other, and a good design must bal-
ance these appropriately to maximize performance.

It is desirable to organize DRAM caches at the granularity
of a cache line in order to efficiently use cache capacity, and to
minimize the consumption of main memory bandwidth [10].
One of the main challenges in architecting a DRAM cache at
a line granularity is the design of the tag store. A per-line tag
overhead of 5-6 bytes quickly translates into a total tag-store
overhead of a few tens of megabytes for a cache size in the
regime of a few hundred megabytes. We discuss the options
to architect the tag store, and how it impacts cache latency.

2.1. SRAM-Tag Design

This approach stores tags in a separate SRAM structure, as
shown in Figure 2(a). For the cache sizes we consider, this de-
sign incurs an unacceptably high overhead (24MB for 256MB
DRAM cache). We can configure the DRAM cache as a
32-way cache and store the entire set in one row of the
cache [2, 10]. To obtain data, the access must first go through
the tag-store. We call the latency due to serialization of tag
access as “Tag Serialization Latency” (TSL). TSL directly im-
pacts the cache hit latency, and hence must be minimized.

2.2. Tags-in-DRAM: The LH-Cache

We can place the tags in DRAM to avoid the SRAM overhead.
However, naively doing so would require that each DRAM
cache access incurs a latency of two accesses, one for tag and
the other for data, further exacerbating the already high hit
latency. A recent work from Loh and Hill [10, 11] reduces
the access penalty of DRAM tags by co-locating the tags and
data for the entire set in the same row, as shown in Figure 2(b).
It reserves three lines in a row for tag store, and makes the
other 29 lines available as data lines, thus providing a 29-way
cache. A cache access must first obtain the tags, and then the
data line. The authors propose Compound Access Scheduling
so that the second access (for data) is guaranteed to get a row
buffer hit. However, the second access still incurs approxi-
mately half the latency of the first, so this design still incurs
significant TSL overhead.

Given that the tag check incurs a full DRAM access, the la-
tency for servicing a cache miss is increased significantly. To
service cache misses quickly, the authors propose a MissMap
structure that keeps track of the lines in the DRAM cache.
If a miss is detected in the MissMap, then the access can
go directly to memory without the need to wait for a tag
check. Unfortunately, the MissMap structure requires multi-
megabyte storage overhead. To implement this efficiently, the
authors propose to embed the MissMap in the L3 cache. The
MissMap is queried on each L3 miss, which means that the
extra latency of the MissMap, which we call Predictor Seri-
alization Latency (PSL), is added to the latency of both cache
hit and cache miss. Thus, the hit latency suffers from both
TSL and PSL. Throughout this paper, we will assume that the
design from Loh and Hill [10] is always implemented with
the MissMap, and we will refer to it simply as the LH-Cache.

237

TAG−STORE [24]

X

Y

(b) DRAM−CACHE WITH SRAM TAG−STORE (IMPRACTICAL)

(c) DRAM CACHE AS PROPOSED BY LOH−HILL

Hit X

Hit Y

MISS X

MISS Y

MISS X

MISS Y

MISS X

MISS Y

Hit X/Y

24 32 40 48 56 64 72 80 88 96 104 112

(a) BASELINE MEMORY (NO DRAM CACHE)

[88]

[64]

[76]

[76]

[52]

[88]

[112]

[112]

[96]

8 160

[22]

[40]

[52]

Hit X/Y CAS (DATA)CAS (TAGS)

MEMORY

CACHE

ACT CAS BUS

[36] [36] [16]

[18] [18] [4]

TAG−CHECK

(d) IDEAL LATENCY−OPTIMIZED DRAM CACHE

MISS−MAP [24]

Figure 3: Latency breakdown for two classes of isolated accesses X and Y. X has good row buffer locality and Y needs to activate
the memory row to get serviced. The latency incurred in an activity is marked as [N] processor cycles.

2.3. IDEAL Latency-Optimized Design

Both SRAM-Tags and LH-Cache have hit latency due to TSL.
To reduce conflict misses, both designs are configured sim-
ilar to conventional set-associative caches. They place the
entire set in a row for conflict miss reduction, sacrificing
the row-buffer hits for cache accesses (sequentially-addressed
lines map to different sets, and the probability of temporally-
close accesses going to same set is � 1%). Furthermore,
for LH-Cache, supporting high associativity incurs higher la-
tency due to streaming a large number of tag lines, and the
bandwidth consumed due to replacement update and victim
selection further worsens the already high hit latency.

We argue that DRAM caches must be architected to mini-
mize hit latency. This can be done by a suitable cache struc-
ture that avoids extraneous latency overheads and supports
row buffer locality. Ideally, such a structure would have zero
TSL and PSL, and would stream out exactly one cache line af-
ter a latency equal to the raw latency of the DRAM structure
(ACT+CAS for accesses that open the row, and only CAS for
row-buffer hits). Also, it would know a priori if the access
would hit in cache or go to memory. We call such a design as
IDEAL-LO (Latency Optimized). As shown in Figure 2(c), it
does not incur any latency overheads.

2.4. Raw Latency Breakdown

In this section, we quantitatively analyze the latency effective-
ness of different designs. While there are several alternative
implementations of both SRAM-Tags and LH-Cache, we will
restrict the analysis in this section to the exact implementa-
tion of SRAM-Tags and LH-Cache as previously described,
including identical latency numbers for all parameters [10],
which are summarized in Table 2. We report latency in terms
of processor cycles. Off-chip memory memory has tACT and
tCAS of 36 cycles each, and needs 16 cycles to transfer one
line on the bus. Stacked DRAM has tACT and tCAS of 18
cycles each, and needs 4 cycles to transfer one line on the
bus. The latency for accessing the L3 cache as well as the
SRAM-Tag store is assumed to be 24 cycles.

To keep the analysis tractable, we will initially consider
only isolated accesses of two types, X and Y. Type X has a
high row buffer hit-rate for off-chip memory and is serviced
by memory with a latency equal to a row buffer hit. Type Y
needs to open the row in order to get serviced. The baseline
memory system would service X in 52 cycles (36 for CAS,
and 16 for Bus), and Y in 88 cycles (36 for ACT, 36 for CAS,
and 16 for Bus). Figure 3 shows the latency incurred by dif-
ferent designs to service X and Y.

238

As both SRAM-Tags and LH-Cache map the entire set to
a single DRAM row, they get poor row buffer hit-rates in the
DRAM cache. Therefore for both X and Y, neither cache
design will give a row buffer hit. Therefore, a hit for both X
and Y will incur a latency of ACT. However, with IDEAL-LO,
X gets a row buffer hit and Y will need a latency of ACT.

The SRAM-Tag suffers a Tag Serialization Latency of 24
cycles for both cache hits and misses. A cache hit needs an-
other 40 cycles (18 ACT + 18 CAS + 4 burst), for a total of 64
cycles. Thus SRAM-Tag increases latency for hits on X, de-
creases latency for hits on Y, and increases latency for misses
on both X and Y due to the inherent latency of tag-lookup.

LH-Cache first probes the MissMap, which incurs a latency
of 24 cycles.1 For a hit, LH-Cache then issues a read for
tag information (ACT+CAS, 36 cycles), then it streams out
the three tag lines (12 cycles), followed by one DRAM cycle
for tag check. This is followed by access to the data line
(CAS+burst). Thus a hit in LH-Cache incurs a latency of 96
cycles, almost doubling the latency for X on hit, degrading the
latency for Y on hit, and adding MissMap latency to miss.

An IDEAL-LO organization would service X with a row
buffer hit, reducing the latency to 22 cycles. A hit for Y would
incur 40 cycles. IDEAL-LO does not increase miss latency.

To summarize, we assumed that the raw latency of the
stacked DRAM cache is half that of the off-chip memory.
However, due to the inherent serialization latencies, LH-
Cache (and in most cases SRAM-Tag) has a higher raw la-
tency than off-chip memory. Whereas, IDEAL-LO continues
to provide a reduction in hit latency on cache hits.

2.5. Bandwidth Benefits of DRAM Cache

Even with a higher raw hit latency than main memory, both
LH-Cache and SRAM-Tag can still improve performance by
providing two indirect benefits. First, stacked DRAM has
∼8x more bandwidth than off-chip DRAM, which means
cache requests wait less. Second, contention for off-chip
memory is reduced as DRAM cache hits are filtered. The
performance benefit of LH-Cache and SRAM-Tags comes
largely from these two indirect benefits and not due to raw
latency. The first benefit relies on having a cache that has
high-bandwidth. Although stacked DRAM has 8x raw band-
width compared to off-chip, LH-Cache uses more than 4x line
transfers on each cache access (3 for tag, 1 for data, and some
for update), so the effective bandwidth becomes < 2x. Both
SRAM-Tag and IDEAL-LO maintains 8x bandwidth by ef-
ficiently using the bandwidth. Therefore, they are more ef-
fective than LH-Cache at reducing waiting time for cache re-
quests. We found that the latency for servicing requests from
off-chip memory is similar for all three designs.

1The MissMap serialization latency can be avoided by probing the
MissMap in parallel with L3 access. However, this would double the L3
accesses, as MissMap would be probed on L3 hits as well, causing bank/port
contention and increasing L3 latency and power consumption. Hence, prior
work [10] used serial access for MissMap, and so did we.

2.6. Performance Potential

Figure 4 compares the performance of three designs: SRAM-
Tag, LH-Cache, and IDEAL-LO. The numbers are speedups
with respect to a baseline that does not have a DRAM cache,
and are reported for a DRAM cache of size 256MB (method-
ology in Section 3).

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

LH-Cache
SRAM-Tag
IDEAL-LO

mcf_
r

lbm
_r

so
ple

x_
r

milc
_r

om
ne

t_r

gc
c_

r

bw
av

es
_r

sp
hin

x_
r

ge
ms_

r

lib
qn

tm
_r

Gmea
n

Figure 4: Performance potential of IDEAL-LO design.

Validation with Prior Work: On average, SRAM-Tags pro-
vide a performance improvement of 24% and LH-Cache
8.7%. Thus, LH-Cache obtains only one-third of the perfor-
mance benefit of SRAM-Tags which is inconsistent with the
original LH-Cache study [10], which reported that the LH-
Cache obtains performance very close to SRAM-Tag. Given
the difference in raw hit latencies between the two designs
(see Figure 3) and 4x bandwidth consumption of LH-Cache
compared to SRAM-Tags, it is highly unlikely that LH-Cache
would perform close to SRAM-Tags. A significant part of
this research study was to resolve this inconsistency with
previously reported results. The authors of the LH-Cache
study [10] have subsequently published an errata [9] that
shows revised evaluations after correcting deficiencies in their
evaluation infrastructure. The revised evaluations for 256MB
show on average ≈10% improvement for LH-Cache and ≈

25% for SRAM-Tag, consistent with our evaluations.
Note that IDEAL-LO outperforms both SRAM-Tags and

LH-Cache, and provides an average of 38%. For libquan-
tum, the memory access patterns has very high row-buffer
hit rates in the off-chip DRAM resulting in mostly type X re-
quests. Therefore, both SRAM-Tag and LH-Cache show per-
formance degradations due to their inabilities to exploit the
spatial locality of sequential access streams.

2.7. De-Optimizing for Performance

We now present simple de-optimizations that improve the
overall performance of LH-Cache, at the expense of hit-rate.
The first is using a replacement scheme that does not re-
quire update (random replacement, instead of LRU-based
DIP): This avoids LRU-update and victim selection over-
heads, which improves hit latency due to the reduced bank
contention. The second converts LH-Cache from 29-way to
direct mapped. This has two advantages: direct, in that we
do not need to stream out three tag lines on each access, and
indirect, employing open page mode for lower latency. For

239

SRAM-Tag and LH-cache, sequentially addressed cachelines
are mapped to different sets, and because each set is mapped
to a unique row, the probability of a row-buffer hit is very
low. With a direct-mapped organization, several consecutive
sets map to the same physical DRAM row, and so accesses
with spatial locality result in row buffer hits. The row-buffer
hit rate for the direct-mapped configuration was measured to
be 56% on average, compared to less than 0.1% when the
entire set (29-way or 32-way) is mapped to the same row.

Table 1: Impact of De-Optimizing LH-Cache.

Configuration Speedup Hit-Rate Hit Latency
(cycles)

LH-Cache 8.7% 55.2% 107
LH-Cache + Rand Repl 10.2% 51.5% 98
LH-Cache (1-way) 15.2% 49.0% 82

SRAM-Tag (32-way) 23.8% 56.8% 67
SRAM-Tag (1-way) 24.3% 51.5% 59
IDEAL-LO (1-way) 38.4% 48.2% 35

Table 1 shows the speedup, hit-rate, and average hit latency
for various flavors of LH-Cache. We also compare them with
SRAM-Tag and IDEAL-LO. LH-Cache has hit latency of 107
cycles, almost 3x compared to IDEAL-LO. De-optimizing
LH-Cache reduces the latency to 98 cycles (random replace-
ment) and 82 cycles (direct mapped). These optimizations
reduce hit-rate and increase misses significantly (a reduction
in hit-rate from 55% to 49% represents almost 15% more
misses). However, this still improves performance signifi-
cantly. For SRAM-Tag, converting from 32-way to 1-way
had little benefit (≈ 0.5%), as the reduction in hit latency is
offset by reduction in hit-rate.

While a direct-mapped implementation of LH-cache is
more effective than the set-associative implementation, it still
suffers from Tag Serialization Latency, as well as the Pre-
dictor Serialization Latency, resulting in a significant per-
formance gap between LH-Cache and IDEAL-LO (15% vs.
38%). Our proposal removes these serialization latencies and
obtains performance close to IDEAL-LO. We describe our
experimental methodology before describing our solution.

3. Experimental Methodology

3.1. Configuration

We use a Pin-based x86 simulator with a detailed memory
model. Table 2 shows the configuration used in our study.
The parameters for the L3 cache and DRAM (off-chip and
stacked) are identical to the original LH-Cache study [10], in-
cluding a 24-cycle latency for the SRAM-Tag. For LH-Cache,
we model an idealized unlimited-size Miss Map that resides
in the L3 cache but does not consume any L3 cache capac-
ity. For both LH-Cache and SRAM-Tag we use LRU-based
DIP [16] replacement. We will perform detailed studies for a
256MB DRAM cache. In Section 6.1, we will analyze cache
sizes ranging from 64MB to 1GB.

Table 2: Baseline Configuration

Processors
Number of cores 8
Frequency 3.2GHz
Width 1 IPC

Last Level Cache
L3 (shared) 8MB, 16-way 24 cycles

Off-Chip DRAM
Bus frequency 800 MHz (DDR 1.6 GHz)
Channels 2
Ranks 1 Rank per channel
Banks 8 Banks per rank
Row buffer size 2048 bytes
Bus width 64 bits per channel
tCAS-tRCD-tRP-tRAS 9-9-9-36

Stacked DRAM
Bus frequency 1.6GHz (DDR 3.2GHz)
Channels 4
Banks 16 Banks per rank
Bus width 128 bits per channel

3.2. Workloads

We use a single SimPoint [14] slice of 1 billion instructions
for each benchmark from the SPEC2006 suite. We perform
evaluations by executing 8 copies of each benchmark in rate
mode. Given that our study is about large caches, we perform
detailed studies only for the 10 workloads that have a speedup
of more than 2 with a perfect L3 cache (100% hit-rate). Other
workloads are analyzed in Section 6.4.

Table 3 shows the workloads sorted based on perfect L3
speedup, the Misses Per 1000 Instructions (MPKI), and foot-
print (the number of unique lines multiplied by linesize). We
model a virtual-to-physical mapping to ensure two bench-
marks do not map to the same physical address. We use a suf-
fix _r with the name of the benchmark to indicate rate mode.

We perform timing simulation until all benchmarks in the
workload finish execution and measure the execution time of
the workload as the average execution time across all 8 cores.

Table 3: Benchmark Characteristics.

Workload Perfect-L3 MPKI Footprint
Name Speedup

mcf_r 4.9x 74.0 10.4 GB
lbm_r 3.8x 31.8 3.3 GB
soplex_r 3.5x 27.0 1.9 GB
milc_r 3.5x 25.7 4.1 GB
omnetpp_r 3.1x 20.9 259 MB
gcc_r 2.8x 16.5 458 MB
bwaves_r 2.8x 18.7 1.5 GB
sphinx_r 2.4x 12.3 80 MB
gems_r 2.2x 9.7 3.6 GB
libquantum_r 2.1x 25.4 262 MB

240

ROW BUFFER

DRAM ARRAY

80B = IGNORE [8B] + TAG [8B] + DATA [64B]

(8B)
2KB Row Buffer = 28 x 72 byte TAD = 28 data lines (32 bytes unused)

80B = TAG [8B] + DATA [64B] + IGNORE [8B]

OR

Alloy CacheTAG−AND−DATA (TAD)

ADDR

DATA(64B)TAG

Figure 5: Architecture and Operation of Alloy Cache that integrates Tag and Data (TAD) into a single entity called TAD. The size
of data transfers is determined by a 16-byte wide data-bus, hence minimum transfer of 80 bytes for obtaining one TAD.

4. Latency-Optimized Cache Architecture

While configuring the LH-Cache from a 29-way structure to
a direct-mapped structure improved performance (from 8%
to 15%), it still left significant room for improvement com-
pared to a latency-optimized solution (38%). One of the
main sources of this gap is the serialization latency due to
tag lookup. We note that LH-Cache created a separate “tag-
store” and “data-store” in the DRAM cache, similar to con-
ventional caches. A separate tag-store and data-store makes
sense for a conventional cache, because they are indeed phys-
ically separate structures. The tag-store is optimized for la-
tency to support quick-lookups and can have multiple ports,
whereas the data-store is optimized for density. We make an
important observation that creating a separate contiguous tag-
store (similar to conventional caches) is not necessary when
tags and data co-exist in the same DRAM array.

4.1. Alloy Cache

Obviating the separation of tag-store and data-store can help
us avoid the TSL overhead. This is the key insight in our pro-
posed cache structure, which we call the Alloy Cache. The
Alloy Cache tightly integrates or alloys tag and data into a
single entity called TAD (Tag and Data). On an access to
the Alloy Cache, it provides one TAD. If the tag obtained
from the TAD matches with the given line address, it indi-
cates a cache hit and the data line in the TAD is supplied. A
tag mismatch indicates cache miss. Thus, instead of having
two separate accesses (one to the “tag-store” and the other to
the “data-store”), Alloy Cache tightly integrates those two ac-
cesses into a single unified access, as shown in Figure 5. On
a cache miss, there is a minor cost in that bandwidth is con-
sumed transferring a data line that is not used. Note that this
overhead is still substantially less than the three tag lines that
must be transferred for both hits and misses in the LH-Cache.

Each TAD represents one set of the direct-mapped Alloy
Cache. Given that the Alloy Cache has a non-power-of-two
number of sets, we cannot simply use the address bits to iden-
tify the set. We assume that a modulo operation on the line ad-

dress is used to determine the set index of the Alloy Cache.2

A non-power-of-two number of sets also means that the tag
entry needs to store full tags, which increases the size of the
tag entry. We estimate that a tag entry of 8 bytes is more than
sufficient for the Alloy Cache (for a physical address space
of 48-bits, we need 42 tag bits, 1 valid bit, 1 dirty bit, and
the remaining 20 bits for coherence support and other opti-
mizations). The minimum size of a TAD is thus 72 bytes (64
bytes for data line and 8 bytes for tag). The Alloy Cache can
store 28 lines in a row, reaching close to the 29-lines per row
storage efficiency of the LH-Cache.

The size of data transfer from the Alloy Cache is also af-
fected by the physical constraints of the DRAM cache. For
example, the size of the databus assumed for our stacked
DRAM configuration is 16 bytes, which means transfers to-
and-from the cache occur at the granularity of 16 bytes. Thus,
it will take a burst of five transfers to obtain one TAD of 72
bytes. To keep our design simple, we restrict the transfers to
be aligned at the granularity of the data-bus size. This require-
ment means that for odd sets of the Alloy Cache, the first 8
bytes are ignored and for even sets the last 8 bytes are ignored.
The tag-check logic checks either the first eight bytes or the
next eight bytes depending on the low bit of the set index.

4.2. Impact on Effective Bandwidth

Table 4 compares the effective bandwidth of servicing one
cache line from various structures. The raw bandwidths and
effective bandwidths are normalized to off-chip memory. On
a cache hit, LH-Cache transfers (3 lines of tag + 1 data +
replacement update) reducing raw bandwidth of 8x into an
effective bandwidth of less than 2x. Whereas, Alloy Cache
can provide an effective bandwidth of up-to 6.4x.

2Designing a general purpose modulo-computing unit incurs high area
and latency overheads. However, here we compute modulo with respect to
a constant, so it is much simpler and faster compared to a general-purpose
solution. In fact, modulo with respect to 28 (number of sets in one row of
Alloy Cache) can be computed easily with eight 5-bit adders using residue
arithmetic (28=32-4). This value can then be removed from the line address
to get row-id of DRAM cache. We estimate the calculation to take two cycles
and only a few hundred logic gates. We assume that the index calculation of
the Alloy Cache happens in parallel with the L3 cache access (thus, we have
up to 24 cycles to calculate the set index of the Alloy Cache).

241

Table 4: Bandwidth comparison (relative to off-chip memory).

Structure Raw Transfer per Effective
Bandwidth access (hit) Bandwidth

Off-chip Memory 1x 64 byte 1x

SRAM-Tag 8x 64 byte 8x
LH-Cache 8x (256+16) byte 1.8x
IDEAL-LO 8x 64 byte 8x
Alloy Cache 8x 80 byte 6.4x

4.3. Latency and Performance Impact

The Alloy Cache avoids tag serialization. Instead of two seri-
alized accesses, one each for tag and data, it provides tag and
data in a single burst of five transfers on the data-bus. Com-
paratively, a transfer of only the data line would take four
transfers, so the latency overhead of transferring TAD instead
of only the data line is 1 bus cycle. However, this overhead is
negligible compared to the TSL overhead incurred by SRAM-
Tag (24 cycles) and LH-Cache (32-50 cycles). Because of the
avoidance of TSL, the average hit latency for Alloy Cache is
significantly better (42 cycles), compared to both SRAM-Tag
(69 cycles) and LH-Cache (107 cycles).

The Alloy Cache reduces the TSL but not the PSL, so the
overall performance depends on how misses are handled. We
consider three scenarios: First, no prediction (wait for tag ac-
cess until cache miss is detected). Second, use the MissMap
(PSL of 24 cycles). Third, perfect predictor (100% accuracy,
0 latency). Figure 6 compares the speedup of these to the
impractical SRAM-Tag design configured as 32-way.

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Alloy+NoPred Alloy+MissMap Alloy+Perfect SRAM-Tags

mcf_
r

lbm
_r

so
ple

x_
r

milc
_r

om
ne

t_r

bw
av

es
_r

gc
c_

r

lib
qn

tm
_r

sp
hin

x_
r

ge
ms_

r

Gmea
n

Figure 6: Speedup with Alloy Cache.

Even without any predictor, the Alloy Cache provides a
21% performance improvement, much closer to the imprac-
tical SRAM-Tag. This is primarily due to the lower hit la-
tency. A MissMap provides better miss handling, but the
24-cycle PSL is incurred on both hits and misses, so the per-
formance is actually worse than not using a predictor. With
a perfect predictor (100% accuracy and zero-cycle latency),
the Alloy Cache’s performance increases to 37%. The next
section describes effective single-cycle predictors that obtain
performance close to that with a perfect predictor.

5. Low-Latency Memory Access Prediction

The MissMap approach focuses on getting perfect informa-
tion about the presence of the line in the DRAM cache. There-
fore, it needs to keep track of information on a per-line basis.
Even if this incurred a storage of one-bit per line, given that
a large cache can have many millions of lines, the size of the
MissMap quickly gets into the megabyte regime. Given the
large size of the MissMap, it is better to avoid dedicated stor-
age and store it in an already existing on-chip structure such
as the L3 cache. Hence, it incurs a significant latency of L3
cache access (24 cycles). In this section, we will describe ac-
curate predictors that incur negligible storage and delay. We
lay the background for operating such a predictor before de-
scribing the predictor. The ideas described in this Section are
derived from the prior work from Qureshi [15].

5.1. Serial Access vs. Parallel Access

The implicit assumption made in the LH-Cache study was
that the system needs to ensure that there is a DRAM cache
miss before accessing memory. This assumption is similar
to how conventional caches operate. We call this the Serial
Access Model (SAM), as the cache access and memory access
get serialized. The SAM model is bandwidth-efficient as it
sends only the cache misses to main memory, as shown in
Figure 7.

MISS

SAM

CHIP

PAM

MEMORY

CACHE

CHIP CACHE MEMORY

Figure 7: Cache Access Models: Serial vs Parallel

Alternatively, we may choose to use a less bandwidth ef-
ficient model, which probes both the cache and memory in
parallel. We call this the Parallel Access Model (PAM), as
shown in Figure 7. The advantage of PAM is that it removes
the serialization of the cache-miss detection latency from the
memory access path. To implement PAM correctly though,
we should give priority to cache content rather than the mem-
ory content, as cache content can be dirty. Also, if the mem-
ory system returns data before the cache returns the outcome
of the tag check, then we must wait before using the data as
the line could still be present in a dirty state in the cache.

At first blush, it may seem wasteful to access the DRAM
cache in case of a DRAM cache miss. However, for both LH-
Cache and Alloy Cache, the tags are located in DRAM. So,
even on a DRAM cache miss, we still need to read the tags
anyway to select a victim line and check if the victim is dirty
(to schedule writeback). So, PAM does not have a significant
impact on cache utilization compared to a perfect predictor.

242

5.2. To Wait or Not to Wait

We can get the best of both SAM and PAM by dynamically
choosing between the two, based on an estimate of whether
the line is likely to be present in the cache or not. We call
this Dynamic Access Model (DAM). If the line is likely to
be present in the cache, DAM uses SAM to save on memory
bandwidth. And if the line is unlikely to be present, DAM
uses PAM to reduce latency. Note that DAM does not require
perfect information for deciding between SAM and PAM, but
simply a good estimate. To help with this estimate, we pro-
pose a hardware-based Memory Access Predictor (MAP). To
keep the latency of our predictor to a bare minimum, we con-
sider only simple predictors.

5.3. Memory Access Predictor

The latency savings of PAM and the bandwidth savings of
SAM depend on the cache hit rate. If the cache hit rate is very
high, then SAM can reduce bandwidth. If the cache hit-rate
is very low, then PAM can reduce latency. So, we can simply
use cache hit rate for memory-access prediction. However,
it is well known that both cache misses and hits show good
correlation with previous outcomes [5] and exploiting such
correlation results in more effective prediction than simply
using the hit-rate. For example, if H is hit and M is miss,
and the last eight outcomes are MMMMHHHH, then using
the hit-rate would give an accuracy of 50%, but a simple last-
time predictor would give an accuracy of 87.5% (assuming
the first M was predicted correctly). Based on this insight, we
propose to use History-Based Memory-Access Predictors.

5.3.1. Global-History Based MAP (MAP-G)
Our basic implementation, called MAP Global or MAP-G,

uses a single saturating counter called the Memory Access
Counter (MAC) that keeps track if the recent L3 misses re-
sulted in a memory access or a hit in the DRAM cache. If
the L3 miss results in a memory access, then the MAC is in-
cremented, otherwise MAC is decremented (both operations
are done using saturating arithmetic). For prediction, MAP-
G simply uses the MSB of the MAC to decide if the L3 miss
should employ SAM (MSB=0) or PAM (MSB=1). We em-
ploy MAP-G on a per-core basis and use a 3-bit counter for
the MAC. Our results show that MAP-G bridges more than
half the performance gap between SAM and perfect predic-
tion. Note that because writes are not on the critical path
(at this level, writes are mainly due to dirty evictions from
on-chip caches), we do not make predictions for writes and
simply employ SAM.

5.3.2. Instruction-Based MAP (MAP-I)
We can improve the effectiveness of MAP-G by exploiting

the well-known observation that the cache hit/miss informa-
tion is heavily correlated with the instruction address that
caused the cache access [3, 8, 18]. We call this implemen-
tation Instruction-Based MAP or simply MAP-I. Instead of
using a single MAC, MAP-I uses a table of MACs, called the

Memory Access Counter Table (MACT). The address of the
L3 miss causing instruction is hashed (using folded-xor [17])
into the MACT to obtain the desired MAC. All predictions
and updates happen based on this MAC. We found that sim-
ply using 256 entries (8-bit index) in the MACT is sufficient.
The storage overhead for this implementation of MAP-I is
256*3-bit=96 bytes. We keep the MACT on a per-core basis
to avoid interference between the cores (for eight cores, to-
tal overhead is only 96*8=768 bytes). Like MAP-G, MAP-I
does not make predictions for write requests.

Note that our predictors do not require that the instruction
address be stored in the cache. For read misses, the instruc-
tion address of miss causing load is forwarded with the miss
request. As writeback misses are serviced with SAM, we do
not need instruction addresses for writebacks.

5.4. Performance Results

Figure 8 shows the speedup from the Alloy Cache with dif-
ferent memory access predictors. If we use a prediction of
always-cache-hit the system behaves like SAM, and if we use
a prediction of never-cache-hit the system behaves like PAM.
The perfect predictor assumes 100% accuracy at zero latency.

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Sp
ee

du
p

SAM PAM MAP-G MAP-I Perfect

mcf_
r

lbm
_r

so
ple

x_
r

milc
_r

om
ne

t_r

bw
av

es
_r

gc
c_

r

lib
qn

tm
_r

sp
hin

x_
r

ge
ms_

r

Gmea
n

Figure 8: Performance improvement of Alloy Cache for differ-
ent Memory Access Predictors

On average, there is a 14% gap between SAM (22.6%)
and perfect prediction (36.6%). PAM provides 29.6% per-
formance improvement but results in almost twice as many
memory accesses as perfect prediction. MAP-G provides
30.9% performance, bridging half the performance difference
between SAM and the perfect predictor. It thus performs sim-
ilar to PAM but without doubling the memory traffic. MAP-I
provides an average of 35%, coming within 1.6% of the per-
formance of a perfect predictor. Thus, even though our pre-
dictors are simple (< 100 bytes per core) and low latency (1
cycle), they get almost all of the potential performance.

For libquantum, MAP-G performs 3% better than the per-
fect predictor. This happens because some of the mispredic-
tions avoid the row buffer penalty for later demand misses.
For example, consider four lines A, B, C, D that map to the
same DRAM row. Only A and B are present in the DRAM
cache. A, B, C, D are accessed in a sequence. If A and B
are predicted correctly, C would incur a row opening penalty

243

when it goes to memory. If, on the other hand, A is mispre-
dicted it would avoid the row opening penalty for C.

5.5. Prediction Accuracy Analysis

To provide insights into the effectiveness of the predictors,
we analyzed different outcome-prediction scenarios. There
are four cases: 1) L3 miss is serviced by memory and our
predictor predicts it as such, 2) L3 miss is serviced by mem-
ory and our predictor predicts that it will be serviced by the
DRAM cache, 3) L3 miss is serviced by the DRAM cache
and our predictor predicts memory access, and 4) L3 miss is
serviced by the DRAM-cache and our predictor predicts it to
be so. Scenarios 2 and 3 denote mispredictions. However,
note that the cost of mispredictions are quite different in the
two scenarios (scenario 2 incurs higher latency and scenario
3 extra bandwidth). Table 5 shows the scenario distribution
for different predictors averaged across all workloads.

Table 5: Accuracy for Different Predictors

Serviced by Memory Serviced by Cache Overall
Prediction Memory Cache Memory Cache Accuracy

SAM 0 51.8% 0 48.1% 48.1%
PAM 51.8% 0 48.2% 0 51.8%
MAP-G 45.1% 6.7% 10.8% 37.4% 82.5%
MAP-I 48.3% 3.5% 1.9% 46.2% 94.5%
Perfect 51.8% 0% 0% 48.2% 100%

PAM almost doubles the memory traffic compared to other
approaches (48% of L3 misses are wastefully deemed to ac-
cess memory when they are in-fact serviced by the DRAM-
cache). Compared to a perfect predictor, MAP-I has higher
latency for 3.5% of the L3 misses, and extraneous band-
width consumption for 1.9% of the L3 misses. For the re-
maining 94.5% of the L3 misses, MAP-I prediction is cor-
rect. Thus, even though our predictors are quite simple, low-
cost, and low-latency, they are still highly-effective, provide
high accuracy, and obtain almost all of the potential for per-
formance improvement from memory access prediction. Un-
less stated otherwise, the Alloy Cache is always implemented
with MAP-I in the remainder of this paper.

5.6. Implications on Memory Power and Energy

Accessing memory in parallel with the cache, as done in PAM
and conditionally in DAM, increases power in memory sys-
tem due to wasteful memory accesses. For PAM, all of the
L3 misses would be sent to off-chip memory. Whereas with
SAM, only the misses in the DRAM cache would get sent to
memory. From Table 5, it can be concluded that PAM would
almost double the memory activity compared to SAM. Hence,
we do not recommend unregulated use of PAM (except as
a reference point). For DAM, our MAP-I predictor is quite
accurate which means wasteful parallel accesses account for
only 1.9% of L3 misses, compared to 48% with PAM.

6. Analysis and Discussions

6.1. Sensitivity to Cache Size

The default DRAM cache size for all of our studies is 256MB.
In this section, we study the impact of different schemes as
the cache size is varied from 64MB to 1GB. Figure 9 shows
the average speedup with LH-Cache (29-way), SRAM-Tag
(32-way), Alloy Cache, and IDEAL-LO. IDEAL-LO is the la-
tency optimized theoretical design that transfers only 64 byte
on a cache hit and has perfect zero-latency predictor.

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

Sp
ee

du
p

LH-Cache SRAM-Tag Alloy-Cache IDEAL-LO

64MB 128MB 256MB 512MB 1GB

Figure 9: Performance impact across various cache size.
Alloy-Cache continues to significantly outperform impractical
SRAM-Tag and reaches close to the upperbound of IDEAL-LO.

The SRAM-Tag design suffers from Tag Serialization La-
tency (TSL). LH-Cache suffers from both TSL and PSL due
to the MissMap. Alloy Cache avoids both TSL and PSL,
hence it outperforms both the LH-Cache and SRAM-Tag
across all studied cache sizes. For the 1GB cache size, LH-
Cache provides an average improvement of 11.1%, SRAM-
Tag provides 29.3%, and Alloy Cache provides 46.1%. Thus,
Alloy Cache provides approximately 1.5 times the improve-
ment of the SRAM-Tag design. Note that the SRAM-Tag im-
plementation incurs an impractical storage overhead of 6MB,
12MB, 24MB, 48MB, and 96MB for DRAM cache sizes of
64MB, 128MB, 256MB, 512MB and 1GB, respectively. Our
proposal, on the other hand, requires less than one kilobyte of
storage, and still outperforms SRAM-Tag significantly, con-
sistently reaching close to the performance of IDEAL-LO.

6.2. Impact on Hit Latency

The primary reason why the Alloy Cache performs so well
is because it is designed from the ground-up to have lower
latency. Figure 10 compares the average read latency of LH-
Cache, SRAM-Tags, and Alloy Cache. Note that SRAM-
Tags incur a tag serialization latency of 24 cycles, and LH-
Cache incurs MissMap delay of 24 cycles in addition to the
tag serialization latency (32-50 cycles). For the Alloy Cache,
there is no tag serialization, except for the one additional bus
cycle for obtaining the tag with dataline. The average hit la-
tency for LH-Cache is 107 cycles. The Alloy Cache cuts this
latency by 60%, bringing it to 43 cycles. This significant re-
duction causes Alloy Cache to outperform LH-Cache despite
the lower hit rate. The SRAM-Tag incurs an average latency
of 67 cycles, hence lower performance than the Alloy Cache.

244

0

20

40

60

80

100

120

A
vg

 H
it

 L
at

en
cy

 (
C

yc
le

s) LH-Cache SRAM-Tag Alloy Cache

mcf_
r

lbm
_r

so
ple

x_
r

milc
_r

om
ne

t_r

bw
av

es
_r

gc
c_

r

lib
qn

tm
_r

sp
hin

x_
r

ge
ms_

r

Ave
rag

e

Figure 10: Average Hit-Latency: LH-Cache 107 cycles, SRAM-
Tag 67 cycles, and Alloy Cache 43 cycles.

6.3. Impact on Hit-Rate

Our design de-optimizes the cache architecture from a highly-
associative structure to a direct-mapped structure in order
to reduce hit latency. We compare the hit rate of a highly-
associative 29-way LH-cache with the direct-mapped Alloy
Cache. Table 6 shows the average hit rate for different cache
sizes. For a 256MB cache, the absolute difference in hit
rates between the 29-way LH-Cache and direct-mapped Al-
loy Caches is 7%. Thus, the Alloy Cache increases misses
by 15% compared to LH-Cache. However, we show that the
60% reduction in hit latency compared to LH-Cache provides
much more performance benefit than a slight performance
degradation from the reduced hit rate. Table 6 also shows that
the hit-rate difference between a highly-associative cache and
a direct-mapped cache reduces as the cache size is increased
(at 1GB it is 2.5%, i.e., 5% more misses). The reducing gap
between the hit rate of a highly-associative cache and direct-
mapped cache as the cache size is increased is well known [6].

Table 6: Hit Rate: Highly associative vs. direct mapped

Cache LH-Cache Alloy-Cache Delta
Size (29-way) (1-way) Hit Rate

256 MB 55.2% 48.2% 7.0%
512 MB 59.6% 55.2% 4.4%

1 GB 62.6% 59.1% 2.5%

6.4. Other Workloads

In our detailed studies, we only considered memory-intensive
workloads that have a speedup of at least 2x if L3 cache
is made perfect (100% hit rate). Figure 11 shows the per-
formance improvement from LH-Cache, SRAM-Tags, and
Alloy-Cache for the remaining workloads that spend at least
1% of time in memory. These benchmarks were executed in
rate mode as well. The bar labeled Gmean represents the ge-
ometric mean improvement over these fourteen workloads.

As the potential is low, the improvements from all designs
are lowered compared to the detailed study. However, the
broad trend remains the same. On average, LH-Cache im-
proves performance by 3%, SRAM-Tag by 7.3%, and Alloy
Cache by 11%. Thus, the Alloy Cache continues to outper-
form both LH-Cache and SRAM-Tag.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
ee

du
p

LH-Cache SRAM-Tag Alloy Cache

les
lie

3d
_r

wrf_
r

ca
ctu

s_
r

ze
us

mp_
r

de
alI

I_
r

bz
ip2

_r

xa
lan

c_
r

pe
rlb

_r

hm
mer_

r

gr
om

ac
s_

r

as
tar

_r

h2
64

_r

sje
ng

_r

go
bm

k_
r

Gmea
n

Figure 11: Performance impact for other SPEC workloads

6.5. Impact of Odd Size Burst Length

Our proposal assumes a burst length of five for the Alloy
Cache, transferring 80 bytes on each DRAM cache access.
However, conventional DDR specifications may restrict the
burst length to a power-of-two even for stacked DRAM. If
such a restriction exists, then the Alloy Cache can stream out
burst of eight transfers (total 128 bytes per access). Our eval-
uation shows that a design with a burst of 8 provides 33%
performance improvement on average, compared to 35% if
the burst length can be set to five. Thus, our assumption of
odd-size burst length has minimal impact on the performance
benefit of Alloy Cache. Note that die-stacked DRAMs will
likely use different interfaces than conventional DDR. The
larger number of through-silicon vias could make it easier to
provide additional control signals to, for example, dynami-
cally specify the amount of data to be transferred.

6.6. Potential Room for Improvement

Our proposal is a simple and practical design that signifi-
cantly outperforms the impractical SRAM-Tag design, but
there is still room for improvement. Table 7 compares the
average performance of Alloy Cache + MAP-I, with (a) per-
fect Memory Address Prediction (Perf-Pred) (b) IDEAL-LO,
a configuration that incurs minimum latency and bandwidth
and has Perf-Pred and (c) IDEAL-LO with no tag overhead,
so all of the 256MB space is available to store data.

Table 7: Room for improvement

Design Performance
Improvement

Alloy Cache + MAP-I 35.0%
Alloy Cache + PerfPred 36.6%

IDEAL-LO 38.4%
IDEAL-LO + NoTagOverhead 41.0%

We observe that for our design we would get 1.6% addi-
tional performance improvement from a perfect predictor and
another 1.8% from an IDEAL-LO cache. Thus, our practi-
cal solution is within 3% of the performance of an idealized
design that places tags in DRAM. If we can come up with
a way to avoid the storage overhead of tags in DRAM, then
there is another 2.6% improvement possible. While all of the
three optimizations show small opportunity for improvement,

245

we must be mindful that solutions to obtain these improve-
ments must incur minimal latency overheads, otherwise the
marginal improvements may be quickly negated.

6.7. How About Two-Way Alloy Caches?

We also evaluated two-way Alloy Caches that stream out two
TAD entries on each access. While this improved the hit-rate
from 48.2% to 49.7%, we found that the hit latency increased
from 43 cycles to 48 cycles. This was due to increased burst
length (≈2x), associated bandwidth consumption (≈2x), and
the reduction in row buffer hit rate. Overall, the performance
impact of degraded hit latency outweighs the marginal im-
provement from hit-rate. We envision that future researchers
will look at reducing conflict misses in DRAM caches (and
we encourage them to do so); however, we advise them to
pay close attention to the impact on hit latency.

7. Conclusion

This paper analyzed the trade-offs in architecting DRAM
caches. We compared the performance of a recently-proposed
design (LH-Cache) and an impractical SRAM-based Tag-
Store (SRAM-Tags) with a latency-optimized design, and
show that optimizing for latency provides a much more ef-
fective DRAM cache than optimizing simply for hit-rate. To
obtain a practical and effective latency-optimized design, this
paper went through a three-step process:

1. We showed that simply converting the DRAM cache from
high associativity to direct mapped can itself provide good
performance improvement. For example, configuring LH-
Cache from 29-way to 1-way enhances the performance
improvement from 8.7% to 15%. This happens because of
the lower latency of a direct-mapped cache as well as the
ability to exploit row buffer hits.

2. Simply having a direct-mapped structure is not enough.
A cache design that creates a separate “tag-store” and
“data-store” still incurs the tag-serialization latency even
for direct-mapped caches. To avoid this tag serialization
latency, we propose a cache architecture called the Alloy
Cache that fuses the data and tag together into one storage
entity, thus converting two serialized accesses for tag and
data into a single unified access. We show that a direct-
mapped Alloy Cache improves performance by 21%.

3. The performance of the Alloy Cache can be improved by
handling misses faster, i.e., sending them to memory be-
fore completing the tag check in the DRAM cache. How-
ever, doing so with a MissMap incurs megabytes of stor-
age overhead and tens of cycles of latency, which negated
much of the performance benefit of handling misses early.
Instead, we present a low-latency (single cycle), low stor-
age overhead (96 bytes per core), highly accurate (95%
accuracy) hardware-based Memory Access Predictor that
enhances the performance benefit of Alloy Cache to 35%.

Optimizing for latency enabled our proposed design to pro-
vide better performance than even an impractical option of
having the tag store in an SRAM array (24% improvement),
which would require tens of megabytes of storage. Thus, we
showed that simple designs can be highly effective if they can
exploit the constraints of the given technology.

While the technology and constraints of today are quite dif-
ferent from the 1980’s, in spirit, the initial part of our work is
similar to that of Mark Hill [6] from twenty-five years ago,
making a case for direct-mapped caches and showing that
they can outperform set-associative caches. Indeed, some-
times “Big and Dumb is Better” [1].

Acknowledgments

Thanks to André Seznec and Mark Hill for comments on ear-
lier versions of this paper. Moinuddin Qureshi is supported by
NetApp Faculty Fellowship and Intel Early CAREER award.

References
[1] Quote from Mark Hill’s Bio (short link http://tinyurl.com/hillbio):.

https://www.cs.wisc.edu/event/mark-hill-efficiently-enabling-
conventional-block-sizes-very-large-die-stacked-dram-caches.

[2] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Simple but
Effective Heterogeneous Main Memory with On-Chip Memory Con-
troller Support. In Supercomputing, 2010.

[3] M. Farrens, G. Tyson, J. Matthews, and A. R. Pleszkun. A modified
approach to data cache management. In MICRO-28, 1995.

[4] M. Ghosh and H.-H. S. Lee. Smart Refresh: An Enhanced Memory
Controller Design for Reducing Energy in Conventional and 3D Die-
Stacked DRAMs. In MICRO-40, 2007.

[5] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma. Cache miss
behavior: is it sqrt(2)? In Computing Frontiers, 2006.

[6] M. D. Hill. A case for direct-mapped caches. IEEE Computer, Dec
1988.

[7] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian. CHOP: Adaptive
filter-based dram caching for CMP server platforms. In HPCA-16,
2010.

[8] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi. Using dead
blocks as a virtual victim cache. In PACT-19, 2010.

[9] G. H. Loh and M. D. Hill. Addendum for “Efficiently
enabling conventional block sizes for very large die-stacked
DRAM caches”. http://www.cs.wisc.edu/multifacet/papers/micro11_
missmap_addendum.pdf.

[10] G. H. Loh and M. D. Hill. Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches. In MICRO-44, 2011.

[11] G. H. Loh and M. D. Hill. Supporting very large DRAM caches with
compound access scheduling and missmaps. In IEEE Micro TopPicks,
2012.

[12] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian,
R. Iyer, S. Makineni, and D. Newell. Optimizing Communication and
Capacity in a 3D Stacked Reconfigurable Cache Hierarchy. In HPCA-
15, 2009.

[13] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan. En-
abling efficient and scalable hybrid memories using fine-granularity
dram cache management. Computer Architecture Letters, Feb 2012.

[14] E. Perelman et al. Using SimPoint for accurate and efficient simulation.
ACM SIGMETRICS Performance Evaluation Review, 2003.

[15] M. K. Qureshi. Memory access prediction. U.S. Patent Application
Number 12700043, Filed Feb 2010, Publication Aug 2011.

[16] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and J. Emer.
Adaptive insertion policies for high-performance caching. In ISCA-34,
pages 167–178, 2007.

[17] A. Seznec and P. Michaud. A case for (partially) tagged geometric
history length branch prediction. In Journal of Instruction Level Par-
allelism, 2006.

[18] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr.,
and J. Emer. Ship: signature-based hit predictor for high performance
caching. In MICRO-44, 2011.

[19] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring DRAM cache
architectures for CMP server platforms. In ICCD, 2007.

246

A Mostly-Clean DRAM Cache for Effective Hit Speculation and Self-Balancing Dispatch

Jaewoong Sim∗ Gabriel H. Loh† Hyesoon Kim� Mike O’Connor† Mithuna Thottethodi‡

∗
School of ECE

�
College of Computing

†
AMD Research

‡
School of ECE

Georgia Institute of Technology Advanced Micro Devices, Inc. Purdue University

{jaewoong.sim,hyesoon.kim}@gatech.edu {gabe.loh,mike.oconnor}@amd.com mithuna@purdue.edu

Abstract

Die-stacking technology allows conventional DRAM to be integrated
with processors. While numerous opportunities to make use of such
stacked DRAM exist, one promising way is to use it as a large cache.
Although previous studies show that DRAM caches can deliver per-
formance benefits, there remain inefficiencies as well as significant
hardware costs for auxiliary structures. This paper presents two
innovations that exploit the bursty nature of memory requests to
streamline the DRAM cache. The first is a low-cost Hit-Miss Pre-

dictor (HMP) that virtually eliminates the hardware overhead of
the previously proposed multi-megabyte MissMap structure. The
second is a Self-Balancing Dispatch (SBD) mechanism that dynam-
ically sends some requests to the off-chip memory even though the
request may have hit in the die-stacked DRAM cache. This makes
effective use of otherwise idle off-chip bandwidth when the DRAM
cache is servicing a burst of cache hits. These techniques, however,
are hampered by dirty (modified) data in the DRAM cache. To en-
sure correctness in the presence of dirty data in the cache, the HMP
must verify that a block predicted as a miss is not actually present,
otherwise the dirty block must be provided. This verification pro-
cess can add latency, especially when DRAM cache banks are busy.
In a similar vein, SBD cannot redirect requests to off-chip memory
when a dirty copy of the block exists in the DRAM cache. To relax
these constraints, we introduce a hybrid write policy for the cache
that simultaneously supports write-through and write-back policies
for different pages. Only a limited number of pages are permitted
to operate in a write-back mode at one time, thereby bounding the
amount of dirty data in the DRAM cache. By keeping the majority
of the DRAM cache clean, most HMP predictions do not need to be
verified, and the self-balancing dispatch has more opportunities to
redistribute requests (i.e., only requests to the limited number of dirty
pages must go to the DRAM cache to maintain correctness). Our
proposed techniques improve performance compared to the MissMap-
based DRAM cache approach while simultaneously eliminating the
costly MissMap structure.

1. Introduction

Advances in die-stacking technologies have made it possible to inte-

grate hundreds of megabytes, or even several gigabytes, of DRAM

within the same package as a multi-core processor [1, 8, 11, 20] or

a GPU [19]. To avoid dependencies on operating system vendors,

maintain software transparency, and provide benefit to legacy soft-

ware, recent papers have suggested that using die-stacked DRAM as

a large cache is a compelling approach [11, 12].

To reduce the overhead of supporting the tags in large, die-stacked

DRAM caches, recent work has considered embedding the tags di-

rectly alongside the data within the DRAM array, which avoids the

need for a dedicated external SRAM tag array (e.g., 96MB for a 1GB

DRAM cache) [4, 11]. Placement of the tags within the die-stacked

DRAM itself incurs a costly DRAM access even in the case where

the request eventually misses in the cache. Loh and Hill proposed

the MissMap, a multi-megabyte structure (much less overhead than a

dedicated SRAM tag array) that allows the DRAM cache controller

to skip the DRAM cache access when there is a cache miss [11].

While the MissMap provides a far more practical approach than

using a massive SRAM tag array, its implementation cost is still likely

to be prohibitively high to allow it to be deployed in commercial

products (e.g., 4MB for a 1GB DRAM cache). Furthermore, the

access latency of the MissMap is not trivial (the original paper used

a latency of 24 cycles, which is added to all DRAM cache hits and
misses). In this work, we point out that the MissMap approach

is overly conservative (i.e., maintaining precise information about

the DRAM cache’s contents is not necessary) and that it is actually

possible to speculate on whether a request can be served by the

DRAM cache or main memory. We introduce a light-weight, low-

latency Hit-Miss Predictor (HMP) that provides 97% accuracy on

average, with a hardware cost of less than 1KB.

We also propose a self-balancing dispatch (SBD) mechanism that

dynamically steers memory requests to either the die-stacked DRAM

cache or to the off-chip main memory depending on the instantaneous

queuing delays at the two memories. While the stacked DRAM can

provide higher bandwidth than the off-chip memory, overall system

bandwidth would be greater yet if both die-stacked and off-chip

memories could be efficiently exploited at the same time.

While the HMP and SBD techniques can potentially streamline

the design of a DRAM cache, these approaches are only useful

if they can still ensure correct execution. The source of potential

complication comes from dirty/modified data in the DRAM cache.

Both the HMP and SBD can potentially send a request to main

memory when the DRAM cache contains the most-recent, modified

value. Returning the stale value from off-chip memory could then

lead to incorrect program execution. Beyond a basic mechanism

to validate predictions, we also introduce a hybrid write policy that

forces the majority of the DRAM cache to operate in a write-through

mode, and only enables write-back for a limited set of pages that

have high write traffic. This results in a DRAM cache that is mostly

clean, thereby allowing the DRAM cache to avoid waiting on HMP

prediction verification and creates more opportunities for SBD to

freely send requests off-chip.

2. Background

2.1. DRAM Architectures

Most conventional caches are implemented with SRAM technology,

whereas this work considers die-stacked DRAM. DRAM consists of

arrays of bit-cells, where each bit-cell is comprised of a capacitor

to store charge and an access transistor to enable reading/writing of

the cell. Accessing bit-cells in a DRAM requires storing the bit-cell

values in a row buffer, and all read and write operations effectively

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.31

247

operate directly on the row buffer (rather than the actual bit-cells).

When, the row is no longer needed (or often when a different row is

requested), the contents of the row buffer are written back into the

original row of bit-cells and then a new row may be accessed.

The DRAM access mechanism is quite different from SRAM

arrays. In the case of DRAM, an entire bank is occupied while the

row is open, and therefore any requests to other rows in this bank will

be delayed until the current operations complete (although operations

in independent banks may proceed concurrently subject to DRAM

timing and bus constraints). In an SRAM, the access paths are more

easily pipelined, and so even if a request has been sent to a particular

bank, subsequent requests need only wait a few cycles before they

can proceed.

2.2. Die-stacked DRAM Caches

Caches store two types of information: tags and data. In conventional

SRAM-based caches, these are stored in two physically distinct

structures (the tag and data arrays, respectively). For a DRAM cache,

one could consider an SRAM-based tag array, as shown in Figure 1(a),

but previous estimates have shown that such a structure would require

tens of megabytes of SRAM, and therefore this approach is not

practical considering that current L3 cache sizes are typically only

around 8 MB [2, 3].

… …

DRAM
(data)

SRAM
(tags)

…

DRAM
(data)

32 tags 32 data blocks

29 data blocks

…
29 tags (stored in 3 blocks)

…

DRAM
(data)

29 data blocks

…
29 tags (stored in 3 blocks)

96MB
(for 1GB DRAM$)

SRAM
(MissMap)

…

4MB
(for 1GB DRAM$)

(a)

(b)

(c)

Figure 1: DRAM cache organizations using (a) an SRAM tag array, (b)
tags embedded in the DRAM, and (c) tags in DRAM with a MissMap.

Instead, recent research has considered organizations where the

tags and data are directly co-located within the die-stacked DRAM,

as shown in Figure 1(b) [4, 11]. While this eliminates the unwieldy

SRAM tag array, it introduces two more problems. First, naively

accessing the cache could double the DRAM cache latency: one

access to read the tags, followed by another access to read the data

(on a hit). Second, for cache misses, the cost of the DRAM cache tag

access is added to the overall load-to-use latency.

Loh and Hill observed that the tags and data reside in the same

DRAM row, and so the actual latency of a cache hit can be less than

two full accesses by exploiting row buffer locality [11]. That is, the

DRAM row is opened or activated into the row buffer only once, and

then tag and data requests can be served directly out of the row buffer

at a lower latency compared to two back-to-back accesses to different

rows. They also proposed a hardware data structure called a MissMap

that precisely tracks the contents of the DRAM cache, as shown in

Figure 1(c). Before accessing the DRAM cache, the MissMap is first

consulted to determine whether the requested cache block is even

resident in the cache. If the block is not in the cache (i.e., miss), the

request can be sent directly to main memory without incurring the

tag-check cost of the DRAM cache. For a 512MB DRAM cache, the

MissMap needs to be about 2MB in size (which provides tracking of

up to 640MB of data), and a 1GB cache would need a 4MB MissMap.

While Loh and Hill argue that part of the L3 cache could be carved

out to implement the MissMap, using the AMD OpteronTM processor

that consumes 1MB of its L3 to implement a “Probe Filter” as an

example [2], it seems unlikely that designers would be willing to

sacrifice half of their L3 to implement the MissMap.1

3. Motivation
In this section, we identify inefficiencies with the previously proposed

DRAM cache organizations. First, we explain why the MissMap is

overly conservative, which ultimately leads us to consider more

speculative techniques with significantly lower overheads (both in

terms of hardware cost and latency). Second, we describe scenarios

where a conventional cache organization under-utilizes the available

aggregate system bandwidth, which motivates our proposal for a Self-
Balancing Dispatch mechanism. Third, we discuss how the presence

of dirty/modified data in the DRAM cache can potentially limit how

aggressively we can speculate on or rebalance DRAM cache requests.

3.1. The Overkill of the MissMap

The MissMap tracks memory at page (or other coarse-grain) granu-

larity. Each MissMap entry consists of a tag that stores the physical

page number, and a bit-vector that records which cache blocks from

this page are currently resident in the DRAM cache. The bit vector

is precisely maintained such that each time a new cache block is

inserted, its corresponding bit in the vector will be set; conversely,

when a cache block is evicted, its bit will be cleared. Furthermore, if a

MissMap entry is evicted, then all dirty lines from the corresponding

victim page must also be evicted and written back.

Loh and Hill mentioned that it is possible to allow the MissMap to

have false positives [11]. That is, if the MissMap says that a block is

present in the DRAM cache when in fact it is not, then there is only

a performance impact as the system needlessly pays for the latency

of the DRAM cache before going to main memory. However, if the

MissMap reports that a line is not present when in fact it is (false

negative), the request would be sent to main memory and returned to

the processor. If the DRAM cache contains this block in a dirty state,

then this can lead to incorrect program execution.

On a DRAM cache miss (whether the MissMap said so or not),

the system sends the request to main memory. When the response

1Assuming a 4MB MissMap to support a 1GB DRAM cache and a baseline L3 cache
size of 8MB. If such a system employed a Probe Filter as well, then only 3MB out of the
original 8MB L3 would actually be available as a cache!

248

��������	
��	
��	����	��	����	

����������	
��	�����	
��	�����	��	����	

���!	"��	����	�	�	�����	��	���	���#�%��	�!	���	����	�	
��������	���	��#�	

�������	��
����������������
���������

�� �� �� �� �� �� �� �� ��

��������	
��	
��	&�'���������	��*��	

����������	
��	�����	
�+	&�'����������	��*��	

���!	"��	����	�	+	&�'����������	��*�	�!	���	����	�	
��������	���	��#�	

����������
������������������������

�	&�'����	,	
-	��.	/	�	����	

���	

�0�	

Figure 2: Example scenario illustrating under-utilized off-chip mem-
ory bandwidth in the presence of very high DRAM cache hit rates
when considering (a) raw bandwidth in Gbps, and (b) in terms of re-
quest service bandwidth.

returns, the data are sent back to the L3 and the processor, and the

data are also installed into the DRAM cache.2 Prior to the installation

of a new cache block, a victim must be selected. Furthermore, if the

victim has been modified, then it must also be written back to main

memory.

Note that when selecting a victim, the DRAM tags are checked.

Therefore, if the system issued a request to main memory even though

a modified copy of the block is in the DRAM cache, this can still be

detected at the time of victim selection. Given this observation, the

constraint that the MissMap must not allow false negatives is overly

conservative. False negatives are tolerable so long as responses from

memory are not sent back to the processor before having verified that

a dirty copy does not exist in the DRAM cache.

Based on these observations, we propose a DRAM cache organi-

zation that can speculatively issue requests directly to main memory

regardless of whether the decisions are “correct” or not. Section 4

describes a predictor design that exploits spatial correlation and the

bursty nature of cache traffic to provide a light-weight yet highly

accurate DRAM cache hit-miss predictor.

3.2. Under-utilization of Aggregate System Bandwidth

Die-stacked DRAM can potentially provide a substantial increase in

memory bandwidth. Previous studies have assumed improvements

in latency of 2×, 3× and as much as 4× compared to conventional

off-chip DRAM [8, 11, 20]. At the same time, the clock speed can be

faster, bus widths wider, and independent channels more numerous [9,

11]. Even with a rough estimate of half the latency, twice the channels,

and double-width buses (compared to conventional off-chip memory

interfaces), the stacked DRAM would provide an 8× improvement in

bandwidth. In an “ideal” case of a DRAM cache with a 100% hit rate,

the memory system could provide an eight-fold increase in delivered

bandwidth, as shown in Figure 2(a). However, the off-chip memory

is completely idle in this scenario, and that represents 11% (1

1+8) of

the overall system bandwidth that is being wasted.

Figure 2(b) shows the same scenario again, but instead of raw

bandwidth (in terms of Gbps), we show the effective bandwidth in

2For this study, we assume that all misses are installed into the DRAM cache. Other
policies are possible (e.g., write-no-allocate, victim-caching organizations), but these are
not considered here.

terms of requests serviced per unit time. Note that a request to

main memory only requires transferring a single 64B cache block,

whereas a request to a tags-in-DRAM cache requires transferring

three tag blocks (64B each) and finally the data block. Therefore, the

sustainable effective bandwidth of the DRAM cache is only twice

that of the off-chip memory (8× the raw bandwidth, but 4× the

bandwidth-consumption per request). In this case, a 100%-hit rate

DRAM cache would leave 33% of the overall effective bandwidth

unused (1
1+2). While the DRAM cache typically does not provide a

100% hit rate, hits often come in bursts that can lead to substantial

queuing delays from bank and bus contention.

Apart from the available bandwidth, bank and bus conflicts at the

DRAM cache can lead to increased queuing delays, some of which

could potentially be mitigated if some of these requests could be

diverted to the off-chip memory. In practice, other timing constraints,

resource conflicts, and specific access patterns and arrival rates would

affect the exact amount of bandwidth available for both the DRAM

cache and the off-chip memory. However, this simple example high-

lights that there will be times where the system will have some idle

resources, and we propose a Self-Balancing Dispatch technique to

capitalize on these resources.

3.3. Obstacles Imposed by Dirty Data

Dirty data in the DRAM cache can severely restrict the aggressiveness

of speculatively sending requests to main memory, as the copy in

main memory is stale and its usage can result in incorrect executions.

Likewise, dirty data prevents the system from exploiting idle main-

memory bandwidth because accesses to dirty data must be sent to the

DRAM cache regardless of how busy the DRAM cache or how idle

the off-chip memory is. This also raises the question as to how the

system can know ahead of time that a request targets a dirty cache

line without having first looked up in the cache to see if the line is

present and dirty. A key contribution of this work is a new way to

operate the DRAM cache (which could be applied to other types of

caches) such that most of the cache will be clean, and for the majority

of the cache, we can guarantee its cleanliness without having to check

the cache’s tags. This removes major limitations for both cache hit

speculation and Self-Balancing Dispatch.

4. DRAM Cache Hit Speculation

The previously proposed MissMap provides precise tracking of

DRAM cache contents, but as a result, the size (2-4MB) and la-

tency (tens of cycles) of the structure introduce significant overheads.

Section 3 explained how the DRAM cache can check for the existence

of a dirty block at the time of a cache fill, and how this allows the

DRAM cache to speculatively send requests to main memory so long

as we ensure that the data are not returned to the processor until it

has been verified that a modified copy is not also in the DRAM cache.

In this section, we present the designs for lightweight and accurate

region-based predictors that exploit the bursty nature of cache hits

and misses [10].

4.1. Region-based Hit/Miss Prediction

Our region-based Hit/Miss Predictor (HMPregion) is structurally sim-

ilar to a classic bimodal branch predictor [15]. The predictor itself

consists of a table of two-bit saturating counters. For a DRAM cache

with millions of cache blocks, it is not practical to directly index

into the HMPregion table with a hash of the raw physical address;

the aliasing and interference would render the predictor table nearly

249

��	
��	
��	
��	

5�7	 +0�	

����������������

��	
��	
��	
��	

+0�	
���������!����

��	
��	
��	
��	

��	

��	

��	
��	
��	
��	

��'������	���&���	

��	

��	 ��	
��	

��	
��	

���	 �0�	

�������	�
��	��
�	��	�+	8:	

��

��'������	���&���	

�+	8:	
�:	

+�	
8:	
8:	

�����

�������

�����
����������������

�:
�+

5�7	 +0�	 5�7	 +0�	 5�7	 +0�	

+�

;&��������	

���<	

���<	

+0�	

Figure 3: Hit-Miss Predictor designs: (a) one-level HMPregion, (b) multi-granular HMPMG.

useless, or a gigantic table would be needed. Instead, we break up the

memory space into coarser-grained regions (e.g., 4KB), and index

into the HMPregion with a hash of the region’s base address as shown

in Figure 3(a). This allows the HMPregion table to be much smaller,

but it also means that all accesses within a region will follow the same

prediction. The operation of the HMPregion is otherwise analogous to

the bimodal predictor: DRAM cache hits increment the predictor, and

misses decrement the predictor (saturating at 3 or 0, respectively).

The coarse-grained predictor organization of HMPregion is actually

a benefit rather than a shortcoming. Accesses tend to exhibit signifi-

cant spatial locality, especially at lower-level caches such as a large

DRAM cache. Figure 4(a) shows the number of cache blocks present

in the DRAM cache for one particular 4KB page of leslie3d (from the

WL-6 workload) with respect to the number of accesses to this page

(our methodology is explained in Section 7). Initially, nothing from

this page is in the DRAM cache, but as the page is used, more and

more lines are installed. During this installation phase, most accesses

result in cache misses, and a simple 2-bit counter corresponding to

this region would mostly predict that these requests result in misses.

After this “warm up” phase, the footprint from this region is stable,

and all subsequent accesses to this region result in hits. Again, a

simple 2-bit counter would quickly switch over to predicting “cache

hit” for this region and achieve high accuracy. When the application

is finished with using this region, the contents will gradually get

evicted from the cache, as shown by the drop back down to zero.

At some future point,3 the page becomes hot again and the process

repeats.

Figure 4(b) shows another 4KB region taken from leslie3d (from

the same workload WL-6). This is just to illustrate that different

regions and different applications may show different types of pat-

terns, but so long as there exist sustained intervals where the curve is

consistently increasing (mostly misses) or is consistently flat (mostly

hits), then the simple 2-bit counter approach will be effective for

making hit-miss predictions for the region.

The HMPregion approach is different from other previously pro-

posed history-based hit-miss predictors. Past work has considered

hit-miss predictors for L1 caches based on PC-indexed predictor

3The figure’s x-axis is based on accesses to the page. The time that elapses from the
last access in the hit phase until the first access in the miss phase could easily span many
thousands or even millions of cycles, but this all gets compressed here.

organizations [18]; such an approach may not be as easy as to im-

plement for a DRAM cache because PC information is not typically

passed down the cache hierarchy, may not exist for some types of

requests (e.g., those originating from a hardware prefetcher), or may

not be well defined (e.g., a dirty cache block being written back to

the DRAM cache that was modified by two or more store instructions

may have multiple PCs associated with it).

4.2. Multi-Granular Hit-Miss Predictor

The HMPregion predictor requires approximately one two-bit counter

per region. For example, assuming a system with 8GB of physical

memory and a region size of 4KB, the HMPregion would still need

221 two-bit counters for a total cost of 512KB of storage. While this

is already less than a 2-4MB MissMap, there is still room to further

optimize.

We observed that even across large contiguous regions of memory

spanning multiple physical pages, the hit-miss patterns generally

remained fairly stable (that is, sub-regions often have the same hit-

miss bias as other nearby sub-regions). While, in theory, different

nearby physical pages may have nothing to do with each other (e.g.,

they may be allocated to completely independent applications), in

practice memory allocation techniques such as page-coloring [17]

tend to increase the spatial correlation across nearby physical pages.

In our experiments, we found that memory would often contain large

regions with mostly homogeneous hit/miss behavior, but smaller

pockets within the larger regions would behave differently.

We propose a Multi-Granular Hit/Miss Predictor (HMPMG) that is

structurally inspired by the TAGE branch predictor [13], but operates

on the base addresses of different memory regions (as opposed to

branch addresses) and the different tables capture hit-miss patterns

corresponding to different region sizes (as opposed to branch history

lengths). Figure 3(b) shows the hardware organization of HMPMG.

The first-level predictor is similar to HMPregion, except that it makes

predictions over very large 4MB regions. The second and third-level

tables consist of set-associative tagged-structures that make predic-

tions on finer-grained 256KB and 4KB region sizes, respectively.

Each entry in the tagged tables consists of a (partial) tag and a two-bit

counter for prediction. Tag hits in the tagged HMPMG tables will

override predictions from larger-granularity predictor tables.

The overall structure of the HMPMG provides a more efficient

250

(a) (b)

0
10
20
30
40
50
60
70

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0#L
in

es
 in

st
al

le
d

in
 th

e
ca

ch
e

fo
r

th
e

pa
ge

#Accesses to the page

0
10
20
30
40
50
60
70

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9#L
in

es
 in

st
al

le
d

in
 th

e
ca

ch
e

fo
r

th
e

pa
ge

#Accesses to the page

Miss Phase Hit Phase

Figure 4: Hit and miss phases for two example pages from leslie3d (when run as part of the multi-programmed workload WL-6).

and compact predictor organization. A single two-bit counter in the

first-level table covers a memory range of 4MB. In the single-level

HMPregion predictor, this would require 1024 counters to cover the

same amount of memory.

4.3. Predictor Operation

The entries in the HMPMG’s base predictor are initially set to weakly

miss or “1”. To make a hit/miss prediction for a request, the base

and tagged components are all looked up simultaneously. The base

component makes a default prediction, while tagged components

provide an overriding prediction on a tag hit.

The HMPMG is updated when it has been determined whether there

was a DRAM cache hit or not. The 2-bit counter of the “provider”

component is always updated.4 On a misprediction, an entry from

the “next” table is allocated (a victim is chosen based on LRU). For

example, if the prediction came from the first-level table, then a

new entry will be allocated in the second-level table. Mispredictions

provided by the third table simply result in the corresponding counter

being updated without any other allocations. The newly allocated

entry’s 2-bit counter is initialized to the weak state corresponding to

the actual outcome (e.g., if there was a DRAM cache hit, then the

counter is set to “weakly hit” or 2).

4.4. Implementation Cost

Table 1 shows the storage overhead of the HMPMG configuration

used in this paper. Compared to a MissMap that requires 2-4MB of

storage, the HMPMG only requires 624 bytes of total storage. A single

predictor is shared among all cores. At this size, the entire L3 cache

can once again be used for caching (as opposed to implementing a

MissMap). Also important, the small size of the HMPMG allows

it to be accessed in a single cycle as it is smaller than even many

branch predictors. Compared to the 24-cycle latency assumed for the

MissMap [11], this provides significant benefits both for performance

and implementability.

Hardware Size
Base Predictor (4MB region) 1024 entries * 2-bit counter = 256B

2nd-level Table (256KB region) 32 sets * 4-way * (2-bit LRU + 9-bit tag + 2-bit counter) = 208B

3rd-level Table (4KB region) 16 sets * 4-way * (2-bit LRU + 16-bit tag + 2-bit counter) = 160B

Total 624B

Table 1: Hardware cost of the Multi-Granular Hit-Miss Predictor.

4The “provider” is the terminology used for the TAGE predictor to indicate the table
from which the final prediction came from.

5. Exploiting Unused Bandwidth
As described in Section 3, there are scenarios where a burst of DRAM

cache hits (or predicted hits for that matter) can induce significant

DRAM cache bank contention while the off-chip memory remains

largely idle. In this section, we describe a Self-Balancing Dispatch
(SBD) mechanism that allows the system to dynamically choose

whether (some) requests should be serviced by the DRAM cache or

by the off-chip memory.

In an ideal case, every request could be routed to either the DRAM

cache or to off-chip memory. If both memories had the same latency

per access, then the system could simply look at the number of

requests already enqueued for each and send the request to the one

with fewer requests. However, the different memories have different

latencies, and so the request should be routed to the source that has

the lowest expected latency or queuing time. The expected latency

for each memory can be estimated by taking the number of requests

already “in line” and then multiplying by the average or typical

access latency for a single request at that memory. Overall, if one

memory source is being under-utilized, then it will tend to have a

lower expected latency and the SBD mechanism will start directing

requests to this resource. In the steady-state, the bandwidth from

both sources will be effectively put to use.

Complications arise due to the fact that not every request can or

should be freely routed to whichever memory has the lowest expected

latency. If a request is for a dirty block in the DRAM cache, then

routing the request to the off-chip memory is of no use (in fact, it

just wastes bandwidth) because the data must ultimately come from

the DRAM cache. If the HMP predicts that a request will miss in

the DRAM cache, then there is likely little benefit in routing it to the

DRAM cache (even if it has a lower expected latency), because if

the prediction is correct, there will be a cache miss which in the end

simply adds more latency to the request’s overall service time.

The above constraints mean that SBD can only be gainfully em-

ployed for requests that would have hit in the DRAM cache where

the corresponding cache block is not dirty. To determine whether

a request will (likely) hit in the DRAM cache, we simply rely on

the HMP. While the HMP is not perfectly accurate, mispredictions

simply result in lost opportunities for SBD to make better use of the

available bandwidth. To deal with dirty data, we will first simply

assume that the DRAM cache makes use of a write-through policy to

ensure that all blocks are always clean. Algorithm 1 below describes

the basic SBD algorithm assuming a write-through cache. In the

next section, we will show how to remove the strict write-through

requirement to avoid the unnecessary write traffic to main memory.

Note in Algorithm 1, we do not count all of the requests that are

251

Algorithm 1 Self-Balancing Dispatch

0) Self-balancing dispatch operates only on (predicted) hit re-

quests.

1) NOff-Chip := Number of requests already waiting for the same
bank in the off-chip memory.

2) LOff-Chip := Typical latency of one off-chip memory request,

excluding queuing delays.

3) EOff-Chip := NOff-Chip * LOff-Chip. (Total expected queuing delay

if this request went off-chip.)

4-6) NDRAM_Cache, LDRAM_Cache, EDRAM_Cache are similarly de-

fined, but for the die-stacked DRAM cache.

7) If EOff-Chip < EDRAM_Cache, then send the request to off-chip

memory; else send to DRAM cache.

waiting to access off-chip memory, but we limit the count to those

waiting on the same bank as the current request that is under SBD

consideration (similar for the number of requests to the target off-chip

DRAM cache bank). The above description uses the “typical” latency

(e.g., for main memory we assume the latency for a row activation,

a read delay (tCAS), the data transfer, and off-chip interconnect

overheads; for the DRAM cache we assume a row activation, a

read delay, three tag transfers, another read delay, and then the final

data transfer). Other values could be used, such as dynamically

monitoring the actual average latency of requests, but we found that

simple constant weights worked well enough. Note also that these

latency estimates only need to be close enough relative to each other;

slight differences in the estimated expected latency and the actual

observed latency do not matter if they do not lead to different SBD

outcomes (i.e., an error of a few cycles will in most cases not cause

the SBD mechanism to change its decision).

6. Maintaining a Mostly-Clean Cache
When a request is for a cached dirty block, the SBD mechanism has

no choice but to send the request to the DRAM cache (it is possible

that the HMP mispredicted it as a miss, but this would ultimately

be detected and requires reading the data from the DRAM cache

anyway). If the system could guarantee that a requested block is

not cached and dirty, then SBD could more freely make bandwidth-

balancing decisions with its effectiveness only constrained by the

accuracy of the HMP.

6.1. Write-Through vs. Write-Back

We earlier discussed how employing a write-through policy for the

DRAM cache can in fact ensure that all requests that hit in the cache

are not for dirty blocks, but applying a write-through policy whole-

sale to the entire DRAM cache can result in significant increases in

write-through traffic to main memory. Figure 5(a) shows the top most-

written-to pages in the DRAM cache for the SPEC2006 benchmark

soplex. The upper curve (dotted) shows the write traffic for a write-

through policy, and the lower curve (solid) shows the write traffic for

a write-back policy. The large differences between the curves indi-

cate that the write-back policy achieves significant write-combining,

and therefore employing a write-through policy could significantly

increase write traffic to main memory. There are other scenarios, such

as that shown in 5(b), where, even in a write-back cache, dirty lines

are usually only written to once before they are subsequently evicted.

However, on average across all of our workloads, we observed that a

write-through DRAM cache results in ∼3.7× greater write traffic to

main memory than a write-back policy (although the amount varies

significantly based on the exact workloads).

C

ECC

FCC

HCC

ICC

E
HC

J
KE

L
JF

N
EF

HH
EN

IE
EO

IJ
FE

NL
FI

KN
FL

LH
HC

OE
HH

OJ
HK

JL
IC

CN
IH

EH
IK

FE
IJ

FJ
NF

HL
NN

IN

��
���
��
	�

	�
	�
�
�	 PQSTUVTWQXYZW

PQSTUV[\]^

_\`hjXmqUuh

_[`hqUjqSUHvh

C

NCC

ECCC

ENCC

FCCC

FNCC

E LI EI
L

FF
C

FJ
H

HK
K

IH
J

NE
F

NO
N

KN
O

LH
E

OC
I

OL
L

JN
C

EC
FH

EC
JK

EE
KJ

EF
IF

��
���
��
	�

	�
	�
�
�	 PQSTUVTWQXYZW

PQSTUV[\]^

Figure 5: Number of writes for each page with write-through and
write-back policy. The x-axis is sorted by top most-written-to pages.

Another important statistic is that, on average for our experiments,

only about 5% of an application’s pages ever get written to. This

indicates that in typical scenarios, the vast majority of the DRAM

cache’s blocks are in fact clean. A write-through cache ensures

cleanliness, but costs significantly more main-memory write traffic.

A write-back cache minimizes off-chip write traffic, but then cannot

provide any guarantees of cleanliness despite the fact that most blocks

will in fact be clean.

6.2. The Dirty Region Tracker

We propose a hybrid write-policy for the DRAM cache where, by

default, pages employ a write-through policy (to handle the common

case of clean pages), but a limited subset of the most write-intensive

pages are operated in write-back mode to keep the main-memory

write traffic under control. To support this hybrid policy, we introduce

the Dirty Region Tracker (DiRT). The DiRT consists of two primary

components as shown in Figure 6. The first structure is a counting

Bloom filter (CBF) that is used to approximately track the number of

writes to different pages. On each write, the page address is hashed

differently for each of the CBF tables, and the corresponding counters

are incremented.5 When a page’s counters in all three CBFs exceed

a threshold, then it is determined to be a write-intensive page (and

each indexed CBF counter is reduced by half).

At this point, we introduce the second structure that is a Dirty
List of all pages that are currently operated with a write-back policy.

The Dirty List is a set-associative tagged structure where each entry

consists of a tag to store a physical page number and 1 bit of storage

to implement a not-recently-used (NRU) replacement policy. A page

not currently in the Dirty List, but whose counters have exceeded

the threshold, gets inserted into the Dirty List (and the NRU entry

from the Dirty List is evicted). Note that when a page is evicted from

the Dirty List, its write policy is switched back to write-through; at

5We use three CBFs with different hash functions, which increases the efficacy of
identifying the most write-intensive pages due to the reduction in aliasing.

252

w����##	��	
�&�x	y���	

5�7	
�*�&x	&�'����		

"������$�������%������ &���'�����

z�{	
()��*�

5�7	z�{	
()����

Figure 6: Dirty Region Tracker (DiRT).

this point, the system must ensure that any remaining dirty blocks

from this page are written back to main memory. At first blush, this

may seem like a high overhead, but a 4KB page only contains 64

cache blocks. Current die-stacked DRAMs already support 32 banks

(e.g., 4 channels at 8 banks each [9]), and so the latency overhead

is only two activations per bank (and the activations across banks

can be parallelized) plus the time to stream out the data back to main

memory. Note that all of these cache blocks will have very high

spatial locality because they are all from the same page, so practically

all of the writeback traffic will experience row buffer hits in main

memory. Also, any clean blocks of course need not be written back.

The detailed algorithm for DiRT management is listed in Algorithm 2.

Algorithm 2 DiRT Management

1) Check Dirty List for the written-to page; if it’s there, update

NRU replacement meta-data.

2) If not, increment each indexed counter in all three CBFs.

3) If all indexed counters are greater than threshold:

a) Evict the NRU entry from the Dirty List;

writeback any associated dirty blocks.

b) Allocate the new page to the Dirty List.

c) Reduce each indexed CBF counter by half.

6.3. Putting the DiRT to Work

6.3.1. Streamlining HMP: The DiRT works synergistically with

Hit-Miss Prediction. In parallel with the HMP lookup, a request can

also check the DiRT to see if it accesses a guaranteed clean page. If

the page is clean (i.e., not currently in the Dirty List), then requests

that are predicted misses can be issued directly to main memory.

When the value is returned, this data can be forwarded directly back

to the processor without having to verify whether there was actually

a dirty copy of the block in the DRAM cache because the DiRT

has already guaranteed the block to be clean. Without the DiRT,

all returned predicted-miss requests must stall at the DRAM cache

controller until the fill-time speculation has been verified. During

times of high bank contention, this prediction-verification latency

can be quite substantial.

6.3.2. Streamlining SBD: When combining the DiRT with the SBD

mechanism, the DiRT can guarantee that accesses to certain (most)

pages will be clean, and so SBD can freely choose the best memory

source to route the request to. When the HMP predicts a hit, the

system first consults the DiRT’s Dirty List. If the requested page is

found in the Dirty List, then we do not know if the requested block
is dirty or not (e.g., it could be one of the few clean blocks in a

mostly-dirty page). In this case, SBD always routes the request to the

DRAM cache. However, if the requested page is not in the Dirty List,

then the page (and therefore the requested block) is guaranteed to be

clean, and therefore SBD can do as it wishes. Note that clean pages

are the overwhelming common case (expect for a few benchmarks),

and so using the DiRT provides SBD with many more opportunities

to make use of otherwise under-utilized off-chip bandwidth.

6.4. Putting It All Together

Figure 7 shows the decision flow chart for memory requests with

all of the proposed mechanisms. One should note that Hit-Miss

Prediction, SBD, and the DiRT can all be accessed in parallel (SBD

can speculatively make a decision assuming an access to a clean,

predicted-hit block). Furthermore, HMP and DiRT lookups could

even be initiated early before the L2 hit/miss status is known as these

components only require the requested physical address.

Dirty
Request? DRAM$ Queue

DRAM Queue

Predicted
Hit?

E(DRAM$)
< E(DRAM)

YES

NO

NO

YES

NO

YES

DiRT HMP SBD
Mechanism START

Figure 7: Decision flow chart for memory requests.

6.5. DiRT Implementation Cost

The DiRT is a slightly larger structure compared to the simple hit-miss

predictors, but the overall hardware cost is still quite manageable

(6.5KB, just 0.16% of our L2 data array size). Each of the three

CBF tables has 1024 entries, and each entry consists of a five-bit

saturating counter. We use a threshold of 16 writes to consider a page

as write-intensive. For Dirty List, we use a 4-way set associative

structure with 256 sets, so it supports up to 1024 pages operating in

write-back mode at a time. Each entry of the Dirty List consists of

1-bit reference information for NRU replacement policy and a tag for

the page. Other approximations (e.g., pseudo-LRU, SRRIP [7]) or

even true LRU (this only requires 2-bit for a 4-way set associative

structure) could also be used for the replacement policy, but a simple

NRU policy worked well enough for our evaluations. In Section 8.7,

we provide additional results while comparing our implementation

with different DiRT organizations and management policies. For

these estimates, we also conservatively assumed a 48-bit physical

address (12 bits used for 4KB page offset), which increases our tag

size. The total overheads are summarized in Table 2.

Hardware Size
Counting Bloom Filters 3 * 1024 entries * 5-bit counter = 1920B

Dirty List 256 sets * 4-way * (1-bit NRU + 36-bit tag) = 4736B

Total 6656B = 6.5KB

Table 2: Hardware cost of the Dirty-Region Tracker.

253

7. Experimental Results

7.1. Methodology

Simulation Infrastructure: We use MacSim [6], a cycle-level x86

simulator, for performance evaluations. We model a quad-core pro-

cessor with two-level SRAM caches (private L1 and shared L2) and

an L3 DRAM cache. The stacked DRAM is expected to support

more channels, banks, and wider buses per channel [9]. In this study,

the DRAM cache has four channels with 128-bit buses, and each

channel has eight banks, while the conventional off-chip DRAM has

2 channels, each with 8 banks and a 64-bit bus. Also, key DDR3

timing parameters with bank conflicts and data bus contention are

modeled in our DRAM timing module. Table 3 shows the system

configurations used in this study.

CPU
Core 4 cores, 3.2GHz out-of-order, 4 issue width, 256 ROB
L1 cache 4-way, 32KB I-Cache + 32KB D-Cache (2-cycle)
L2 cache 16-way, shared 4MB (4 tiles, 24-cycle)

Stacked DRAM cache
Cache size 128MB
Bus frequency 1.0GHz (DDR 2.0GHz), 128 bits per channel
Channels/Ranks/Banks 4/1/8, 2KB row buffer
tCAS-tRCD-tRP 8-8-15
tRAS-tRC 26-41

Off-chip DRAM
Bus frequency 800MHz (DDR 1.6GHz), 64 bits per channel
Channels/Ranks/Banks 2/1/8, 16KB row buffer
tCAS-tRCD-tRP 11-11-11
tRAS-tRC 28-39

Table 3: System parameters used in this study.

Workloads: We use the SPEC CPU2006 benchmarks and sam-

ple 200M instructions using SimPoint [14]. Then we categorize

the applications into two different groups based on the misses per

kilo instructions (MPKI) in the L2 cache. We restrict the study to

workloads with high memory traffic; applications with low memory

demands have very little performance sensitivity to memory-system

optimizations and therefore expose very little insight (we did verify

that our techniques do not negatively impact these benchmarks). Out

of the memory-intensive benchmarks, those with average MPKI rates

greater than 25 are in Group H (for High intensity), and of the re-

maining, those with 15 MPKI or more are in Group M (for Medium).

Table 4 shows MPKI values of the benchmarks and their group.

Group M MPKI Group H MPKI
GemsFDTD 19.11 leslie3d 25.85

astar 19.85 libquantum 29.30

soplex 20.12 milc 33.17

wrf 20.29 lbm 36.22

bwaves 23.41 mcf 53.37

Table 4: L2 misses per kilo instructions (L2 MPKI).

We select benchmarks to form rate-mode (all cores running sepa-

rate instances of the same application) and multi-programmed work-

loads. Table 5 shows the primary workloads evaluated for this study.

Section 8 also includes additional results covering a much larger

number of workloads.

For each workload, we simulate 500 million cycles of execution.

We verified that the DRAM cache is sufficiently warmed up: the

Mix Workloads Group
WL-1 4 × mcf 4×H

WL-2 4 × lbm 4×H

WL-3 4 × leslie3d 4×H

WL-4 mcf-lbm-milc-libquantum 4×H

WL-5 mcf-lbm-libquantum-leslie3d 4×H

WL-6 libquantum-mcf-milc-leslie3d 4×H

WL-7 mcf-milc-wrf-soplex 2×H + 2×M

WL-8 milc-leslie3d-GemsFDTD-astar 2×H + 2×M

WL-9 libquantum-bwaves-wrf-astar 1×H + 3×M

WL-10 bwaves-wrf-soplex-GemsFDTD 4×M

Table 5: Multi-programmed workloads.

DRAM cache access statistics at the end of the simulation show that

the number of valid cache lines is equal to the total capacity of the

cache, and the total number of evictions is 5×-6× greater than the

total cache capacity.

Performance Metric: We report performance using weighted

speedup [5, 16], which is computed as:

Weighted Speedup = ∑
i

IPCshared
i

IPC
single
i

.

The geometric mean is also used to report average values.

7.2. Performance

Figure 8 shows the performance of the proposed hit-miss predic-

tor (HMP), self-balancing dispatch (SBD), and dirty region tracker

(DiRT) mechanisms for multi-programmed workloads. For compari-

son, we use a baseline where the DRAM cache is not employed. We

also compare our mechanisms with the previously proposed MissMap

structure (denoted as MM in the figure). We model a MissMap with

zero storage overhead; i.e., no L2 cache capacity is sacrificed for the

MissMap, but the L2 latency is still incurred for the lookup.

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

Sp
ee

du
p

ov
er

 n
o

DR
AM

 ca
ch

e

MM HMP HMP + DiRT HMP + DiRT + SBD

Figure 8: Performance normalized to no DRAM cache for MissMap
(MM), and combinations of HMP, SBD, and DiRT.

We first evaluate the impact of hit-miss prediction (HMP) without

DiRT. In this usage scenario, every predicted miss request serviced

from off-chip memory must wait to be verified as safe (i.e., no dirty

data in the DRAM cache). As a result, for most benchmarks, HMP

without DiRT performs worse than MissMap. This is not necessarily

a negative result when one considers that the HMP approach sacri-

fices the multi-megabyte MissMap for a much smaller sub-kilobyte

predictor. Achieving even close to similar performance while remov-

ing such a large hardware overhead is still a desirable result. However,

with DiRT support, HMP+DiRT performs even better than MissMap

254

0%

20%

40%

60%

80%

100%

Pr
ed

ic
tio

n
Ac

cu
ra

cy

static globalpht gshare HMP

Figure 9: Prediction accuracy of HMP and its comparison with other
types of predictors.

due to the elimination of fill-time prediction verifications for clean

blocks (which are the common case). At this point, the performance

benefit over MissMap is primarily due to the replacement of the

24-cycle MissMap latency with a 1-cycle HMP lookup.

Next, we apply the SBD mechanism on top of HMP+DiRT. As

shown in the results, SBD further improves performance (often sig-

nificant, depending on the workload). Compared to HMP+DiRT,

SBD provides an additional 8.3% performance benefit on average.

In summary, the proposed mechanisms (HMP+DiRT+SBD) provide

a 20.3% performance improvement over the baseline. Also, com-

pared to MissMap, they deliver an additional 15.4% performance

over the baseline. On a last remark, one should note that the evaluated

MissMap does not sacrifice the L2 cache (i.e., ideal), so our mech-

anisms would perform even better when compared to a non-ideal

MissMap that reduces the effective SRAM cache size.

8. Analysis
In this section, we provide additional analysis on the proposed hit-

miss predictor, self-balancing dispatch, and the dirty region tracker.

8.1. HMP: Prediction Accuracy

Figure 9 shows the prediction accuracy of the proposed predictor

with comparison to some other types of predictors. static indicates

the best of either static-hit or static-miss predictors, so the value is

always great than 0.5. A reasonable predictor at least should be better

than static. globalpht is the implementation of only one 2-bit counter

for all memory requests, where it is incremented/decremented on

a hit/miss. gshare is a gshare-like cache predictor (i.e., using the

XOR of a requested 64B block address with a global history of recent

hit/miss outcomes to index into a pattern history table).

First, the results show that our predictor provides more than 95%

prediction accuracy on the evaluated workloads (average of 97%),

which implies that the spatial locality-based hit/miss prediction is

highly effective. Next, compared to static, we can see that the other

predictors actually do not improve prediction accuracy much. For

WL-1, all of the predictors perform well because the workload has

a high hit rate and is simply easy to predict. But, if the hit ratio

is around 50% as in other workloads, the other predictors perform

poorly. For globalpht, one core may be consistently hitting while the

other is consistently missing, and as a result the simple counter could

ping-pong back and forth generating mispredictions. For gshare, the

hit/miss history register provides poor information, and its inclusion

often introduces more noise than useful correlations, resulting in

overall lower prediction rates. In summary, HMP outperforms other

predictors that use the individual 64B request address and/or history

information of the actual outcomes.

0%

20%

40%

60%

80%

100%
PH (To DRAM$) PH (To DRAM) Predicted Miss

Figure 10: Issue direction breakdown. PH indicates predicted hit re-
quests.

0%

20%

40%

60%

80%

100%

DiRT
CLEAN

Figure 11: Percentage distribution of memory requests captured in
DiRT.

8.2. SBD: Percentage of Balanced Hit Requests

Figure 10 shows the distribution of SBD’s issue decisions (i.e.,

DRAM or DRAM cache). The black bar (PH: To DRAM$) rep-

resents the percentage of requests that are predicted hits and are

actually issued to the DRAM cache, while the white bar (PH: To

DRAM) represents the predicted-hit requests that were diverted to

off-chip memory. Note that SBD does not work on the predicted-miss

requests; thus, the requests in the (Predicted Miss) portion are always

issued to off-chip memory.

At first thought, one might think that SBD does not operate on the

benchmarks whose hit ratios are low (e.g., below 50%) because the

amount of traffic to off-chip DRAM would be greater than that to the

DRAM cache. Due to the bursty nature of memory requests, however,

the instantaneous hit ratio and/or bandwidth requirements vary from

the average values; thus, the balancing mechanism provided by SBD

can still be beneficial even for the low hit-ratio workloads. In fact,

as shown in the results, SBD was able to redistribute some of the hit

requests for all of the benchmarks.

8.3. DiRT: Benefit and Traffic

Figure 11 shows the percentage distribution of write-through mode

(CLEAN) and write-back mode (DiRT) memory requests. The

“CLEAN” portion indicates the number of requests that are not found

in the DiRT; thus, they are free to be predicted or self-balanced. The

results show that DiRT allows a significant amount of memory re-

quests to be handled without fear of returning a stale value. Note that

without DiRT, every request that is a predicted miss (or a predicted

hit but diverted to DRAM) needs to wait until it has been verified that

the DRAM cache does not contain a dirty copy.

Figure 12 illustrates the amount of write-back traffic to off-chip

DRAM for write-through, write-back, and the DiRT-enabled hybrid

255

0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

 o
f w

rit
eb

ac
ks

to

 D
RA

M

DiRT WB WT

Figure 12: Write-back traffic to off-chip DRAM between write-through,
write-back, and DiRT (WL-1 does not generate WB traffic), all normal-
ized to the write-through case.

0.9

1.0

1.1

1.2

1.3

MM HMP+DiRT HMP+DiRT+SBD

Sp
ee

du
p

 o
ve

r n
o

DR
AM

ca

ch
e

Figure 13: Average performance of MissMap and our proposed mech-
anisms over no DRAM cache baseline with +/-1 std. deviation for 210
workloads.

policy, all normalized to the write-through case. As shown in the

results, a write-back policy performs a significant amount of write-

combining and thereby greatly reduces the amount of write traffic

to main memory as compared to a write-through policy. DiRT is

not perfect and it does increase write traffic slightly compared to a

true write-back policy, but the total write traffic from a DiRT-enabled

DRAM cache is much closer to that of the write-back case than it is to

write-through. The relatively small increase in write traffic due to the

DiRT is more than compensated by the streamlined HMP speculation

and increased opportunities for SBD.

8.4. Sensitivity to Different Workloads
To ensure that our mechanisms work for a broader set of scenarios

beyond the ten primary workloads used thus far in this paper, we

simulated all 210 combinations (10C4) of the ten Group H and Group

M benchmarks. Figure 13 shows the performance results averaged

over all of the 210 workloads, along with error-bars to mark one

standard deviation. As shown in the figure, our mechanisms combine

to deliver strong performance over the previously proposed MissMap-

based DRAM cache approach.

8.5. Sensitivity to DRAM Cache Sizes
Figure 14 shows the performance of the proposed mechanisms with

different sizes of DRAM caches. The results show that the benefit of

MissMap, HMP+DiRT, and HMP+DiRT+SBD increases as the cache

size grows. For all cache sizes, HMP+DiRT+SBD still performs best.

In addition, the benefit of SBD increases as the DRAM cache size

increases because the higher hit rate provides more opportunities for

SBD to dispatch requests to main memory.

8.6. Sensitivity to DRAM Cache Bandwidth
In our evaluation, the ratio of peak DRAM cache bandwidth to main

memory is 5:1 (2GHz vs. 1.6GHz, 4 channels vs. 2 channels, and

0.9

1.0

1.1

1.2

1.3

32MB 64MB 128MB 256MB

Sp
ee

du
p

ov
er

 n
o

DR
AM

ca

ch
e

MM HMP+DiRT HMP+DiRT+SBD

Figure 14: Performance sensitivity of the proposed mechanisms to
different DRAM cache sizes.

1.0

1.1

1.2

1.3

MM HMP+DiRT HMP+DiRT+SBD
Sp

ee
du

p
ov

er
 n

o
DR

AM

ca
ch

e

2.0GHz (5:1)
2.4GHz (6:1)
2.8GHz (7:1)
3.2GHz (8:1)

Figure 15: Performance sensitivity to different ratios of DRAM cache
bandwidth to off-chip memory.

128-bit bus per channel vs. 64-bit bus per channel). While we

believe that this is reasonable for plausible near-term systems,6 it

is also interesting to see how the effectiveness of HMP and SBD

scales under different bandwidth assumptions. Figure 15 shows

the performance sensitivity when we increase the DRAM cache

frequency from 2.0GHz (what was used so far in this paper) up to

3.2GHz. First, as shown in the results, the benefit of HMP does

not decrease if future die-stacked DRAMs provide more bandwidth

(relative to off-chip). As the DRAM-cache frequency increases,

the cost of the 24-cycle MissMap increases relative to the DRAM-

cache latency, and therefore HMP provides a small but increasing

relative performance benefit as well. On the other hand, increasing

the DRAM cache frequency reduces the relative additional bandwidth

provided by the off-chip DRAM, thereby potentially decreasing the

effectiveness of SBD. In our experiments, we do observe that the

relative benefit of SBD over HMP reduces as the DRAM cache

bandwidth increases, but overall, SBD still provides non-negligible

benefits even with higher-frequency DRAM caches. Note that the die-

stacked DRAM bandwidth may not grow too rapidly (such as 32:1),

as adding more TSVs requires die area on the memory chips (which

directly impacts cost), and increasing bandwidth via higher-frequency

interfaces has power implications.

8.7. Sensitivity to DiRT Structures

Figure 16 shows the performance results as we vary the number of

Dirty List entries (first four bars), assuming a fully-associative struc-

ture with LRU replacement. Note that such a structure would be

difficult to implement for these sizes (e.g., true LRU on 1K entries).

6For example, current x86 processors tend to have two DDR3 memory channels
(some have three or four, which would provide even more opportunities for SBD). The
JEDEC Wide-IO standard provides four channels at 128 bits each, which is the same as
our stacked DRAM configuration.

256

0.97

0.98

0.99

1.00

1024 512 256 128 LRU NRU

Fully Associative (LRU) 4-way SA

Sp
ee

du
p

Figure 16: Performance sensitivity to different DiRT structures and
management policies.

Overall, there is very little performance degradation even when re-

ducing the size of the DiRT to only 128 entries, but we still chose to

employ a 1K-entry table to reduce the performance variance across

workloads.

The right side of Figure 16 also shows the results for 4-way set-

associative implementations, each with 1K entries. The right-most

bar (1K entry, 4-way, NRU) is the configuration used thus far in

the paper and has the lowest implementation complexity and cost.

Overall, the results show that even with our simplified DiRT organi-

zation, we lose very little performance compared to an impractical

fully-associative, true-LRU solution.

9. Conclusion
The prior work by Loh and Hill provided an important step toward

the realization of a more practical die-stacked DRAM cache solution.

However in this paper, we have shown that there still exist inefficien-

cies in the prior solution. In particular, the assumption that precise

cache-content tracking was needed led to a MissMap structure that

was over-designed for the DRAM cache. By taking advantage of the

simple observation that on a miss, tag reads for victim selection need

to occur anyway, false-negative mispredictions can be verified to pre-

vent returning stale data from main memory back to the processors.

The ability to freely speculate enables our DRAM cache organization

that avoids the hardware overheads of the MissMap.

We also observed that while the die-stacked DRAM may provide

significant bandwidth, the off-chip memory bandwidth is still a valu-

able resource that should not be disregarded. Our Self-Balancing

Dispatch approach allows our DRAM cache design to make better

use of the system’s aggregate bandwidth. For both the HMP and SBD

approaches, we found that life is significantly easier when we do not

need to worry about dirty data. Completely abolishing dirty data from

the DRAM cache with a write-through policy causes write traffic to

increase tremendously. However, by bounding (and tracking) a lim-

ited number of pages in write-back mode, we could greatly amplify

the effectiveness of both HMP and SBD techniques. Overall, we have

proposed a significantly streamlined DRAM cache organization that

improves performance over the state of the art while eliminating the

large MissMap structure.

Beyond the ideas presented in this paper, there likely remain other

research opportunities to further improve the performance and/or

practicality of die-stacked DRAM caches. For instance, the moti-

vational example showing under-utilized off-chip bandwidth also

illustrates the high cost of placing the tags in the DRAM cache in

terms of bandwidth. In particular, the raw 8× higher bandwidth of

the die-stacked DRAM (compared to off-chip) is reduced to only

a 2× increase in the effective bandwidth in terms of serviceable

requests per unit time. DRAM cache organizations that can make

more efficient use of the DRAM cache’s raw bandwidth would likely

provide further performance benefits. Studies on further improving

the practicality of die-stacked DRAM caches, such as the interaction

with cache coherence, are also good directions for future research.

Acknowledgments

We would like to thank Andreas Moshovos, the Georgia Tech HPArch

members, and the anonymous reviewers for their suggestions and

feedback. Part of this work was conducted while Jaewoong Sim

was on an internship and Mithuna Thottethodi was on sabbatical

leave at AMD Research. We gratefully acknowledge the support of

the NSF CCF-0644183 (Thottethodi); and AMD, Sandia National

Laboratories, and NSF CAREER award 1139083 (Kim).

References

[1] B. Black, M. M. Annavaram, E. Brekelbaum, J. DeVale, L. Jiang, G. H.
Loh, D. McCauley, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. P. Shen, and C. Webb, “Die Stacking (3D)
Microarchitecture,” in MICRO-39, 2006.

[2] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes,
“Cache Hierarchy and Memory Subsystem of the AMD Opteron Proces-
sor,” IEEE Micro, March–April 2010.

[3] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey,
S. Sarkar, S. Siers, I. Stolero, and A. Subbiah1, “A 22nm IA Multi-
CPU and GPU System-on-Chip,” in ISSCC, 2012.

[4] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Simple but Ef-
fective Heterogeneous Main Memory with On-Chip Memory Controller
Support,” in SC, 2010.

[5] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for
Multiprogram Workloads,” IEEE Micro, May–June 2008.

[6] “Macsim simulator,” http://code.google.com/p/macsim/, HPArch.
[7] A. Jaleel, K. Theobald, S. C. Steely, and J. Emer, “High Performance

Cache Replacement Using Re-Reference Interval Prediction (RRIP),” in
ISCA-32, 2010.

[8] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,
Y. Solihin, and R. Balasubramonian, “CHOP: Adaptive Filter-Based
DRAM Caching for CMP Server Platforms,” in HPCA-16, 2010.

[9] J.-S. Kim, C. Oh, H. Lee, D. Lee, H.-R. Hwang, S. Hwang, B. Na,
J. Moon, J.-G. Kim, H. Park, J.-W. Ryu, K. Park, S.-K. Kang, S.-Y. Kim,
H. Kim, J.-M. Bang, H. Cho, M. Jang, C. Han, J.-B. Lee, K. Kyung, J.-S.
Choi, and Y.-H. Jun, “A 1.2V 12.8GB/s 2Gb Mobile Wide-I/O DRAM
with 4x128 I/Os Using TSV-Based Stacking,” in ISSCC, 2011.

[10] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache Bursts: A New
Approach for Eliminating Dead Blocks and Increasing Cache Efficiency,”
in MICRO-41, 2008.

[11] G. H. Loh and M. D. Hill, “Efficiently Enabling Conventional Block
Sizes for Very Large Die-Stacked DRAM Caches,” in MICRO-44, 2011.

[12] G. H. Loh, N. Jayasena, K. McGrath, M. O’Connor, S. Reinhardt, and
J. Chung, “Challenges in Heterogeneous Die-Stacked and Off-Chip
Memory Systems,” in SHAW-3, 2012.

[13] A. Seznec and P. Michaud, “A Case for (Partially) TAgged GEomet-
ric History Length Branch Prediction,” Journal of Instruction-Level
Parallelism, 2006.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS-X, 2002.

[15] J. E. Smith, “A Study of Branch Prediction Strategies,” in ISCA-3, 1981.
[16] A. Snavely and D. Tullsen, “Symbiotic Job Scheduling for a Simultane-

ous Multithreading Processor,” in ASPLOS-IX, 2000.
[17] G. Taylor, P. Davies, and M. Farmwald, “The TLB Slice – A Low-Cost

High-Speed Address Translation Mechanism,” in ISCA-12, 1990.
[18] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation Techniques

for Improving Load Related Instruction Scheduling,” in ISCA-21, 1999.
[19] J. Zhao, G. Sun, Y. Xie, and G. H. Loh, “Energy-Efficient GPU Design

with Reconfigurable In-Package Graphics Memory,” in ISLPED, 2012.
[20] L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring DRAM Cache

Architectures for CMP Server Platforms,” in ICCD-25, 2007.

257

CoLT: Coalesced Large-Reach TLBs

Binh Pham∗ Viswanathan Vaidyanathan∗ Aamer Jaleel† Abhishek Bhattacharjee∗
∗ Dept. of Computer Science, Rutgers University † Intel Corporation, VSSAD

{binhpham, viswav, abhib}@cs.rutgers.edu aamer.jaleel@intel.com

Abstract

Translation Lookaside Buffers (TLBs) are critical to system perfor-
mance, particularly as applications demand larger working sets and
with the adoption of virtualization. Architectural support for super-
pages has previously been proposed to improve TLB performance.
By allocating contiguous physical pages to contiguous virtual pages,
the operating system (OS) constructs superpages which need just
one TLB entry rather than the hundreds required for the constituent
base pages. While this greatly reduces TLB misses, these gains are
often offset by the implementation difficulties of generating and man-
aging ample contiguity for superpages.

We show, however, that basic OS memory allocation mechanisms
such as buddy allocators and memory compaction naturally assign
contiguous physical pages to contiguous virtual pages. Our real-
system experiments show that while usually insufficient for super-
pages, these intermediate levels of contiguity exist under various
system conditions and even under high load. In response, we pro-
pose Coalesced Large-Reach TLBs (CoLT), which leverage this in-
termediate contiguity to coalesce multiple virtual-to-physical page
translations into single TLB entries. We show that CoLT implemen-
tations eliminate 40% to 58% of TLB misses on average, improving
performance by 14%.

Overall, we demonstrate that the OS naturally generates page al-
location contiguity. CoLT exploits this contiguity to eliminate TLB
misses for next-generation, big-data applications with low-overhead
implementations.

1. Introduction

Translation Lookaside Buffers (TLBs) are crucial to system perfor-
mance due to their long miss penalties [5, 11, 14, 19, 22, 26]. Past
work has shown that TLB misses degrade performance by 5% to
14% for even nominally-sized applications. This number worsens to
50% in virtualized environments or when the application’s memory
footprint increases [8, 21].

Superpages have previously been proposed to increase TLB cov-
erage [15, 16, 23, 25, 28, 29]. A superpage is a memory page that
is sized as a multiple of a base page and is typically in the megabyte
or gigabyte range. Each TLB superpage entry can thus replace hun-
dreds of baseline TLB entries, boosting TLB coverage.

By construction, superpages target situations where the OS can
seamlessly generate vast amounts of contiguity. Unfortunately, a
number of issues may preclude this. For example, superpages may
magnify an application’s memory footprint, increasing paging traffic.
Superpages also require specialized and high-overhead algorithms
to assign aligned and contiguous physical page frames to contigu-
ous virtual pages [25, 28, 29]. The OS therefore selectively uses
superpages such that the benefits of reduced TLB misses are not out-
weighed by these overheads.

This work observes that there actually exists a second regime
of page allocation contiguity, orthogonal to superpaging. Specifi-
cally, OS memory allocators use buddy allocators and memory com-
paction daemons which also, by construction, allocate contiguous

physical page frames to contiguous virtual pages. These mech-
anisms generate intermediate contiguity (in the range of tens of
pages), which falls short of superpage requirements (hundreds of
contiguous pages). However, this contiguity is achieved without
superpaging overheads like increased I/O traffic and sophisticated
page construction algorithms. In response, we propose Coalesced
Large-Reach TLBs (CoLT), a series of hardware mechanisms that
allow TLBs to coalesce multiple contiguous virtual-to-physical ad-
dress translations, increasing their memory reach. CoLT specifically
targets large amounts of intermediate contiguity that superpaging
cannot exploit. Our contributions are as follows:
• We study, on a real system, how often consecutive virtual pages

are allocated consecutive physical pages. We find that even with
high system fragmentation, tens of pages are usually contiguous.
Furthermore, while superpaging does increase contiguity, much
of it falls short of the level necessary to actually create large pages
(a 2MB superpage needs 512 contiguous 4KB base pages, while
we see tens of contiguous pages). Instead, we show that TLB
coalescing effectively leverages this contiguity.

• We propose CoLT for set-associative, two-level TLB hierarchies
commonly found in processors today [3, 17]. Our strategies elim-
inate roughly 40% of L1 and L2 TLB misses, resulting in average
performance improvements of 12%.

• We develop CoLT support for small, fully-associative TLBs com-
monly found in processors to cache superpage entries [3, 17]. We
show how to overcome the challenge of designing these small
structures, achieving L1 and L2 TLB miss elimination rates of
58% on average. These translate to average performance improve-
ments of 14%.

• Finally, we combine the benefits of coalescing on both set-
associative and fully-associative TLBs, improving average perfor-
mance by 14%.
Overall, we design low-overhead hardware to exploit intermedi-

ate levels of page allocation contiguity. Our studies evaluate this
approach under a variety of system configurations with heavy sys-
tem load and different superpaging configurations.

2. Background and Related Work

2.1. Prior TLB Enhancement Techniques

Address translation, especially with virtualization and larger applica-
tion working sets, is a primary source of system performance degra-
dation [8, 21]. In response, researchers have considered techniques
to improve TLB structure, lookup, and placement [9, 13]. More so-
phisticated techniques such as TLB prefetching and mechanisms to
accelerate page walks have also been considered [5, 11, 19, 27]. Our
goal is to propose techniques, orthogonal to past work, to further
boost TLB performance.

2.2. Superpaging Benefits and Problems

Superpages or hugepages have previously been proposed to lower
TLB miss rates [15, 16, 23, 25, 28, 29]. Superpages are typically

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.32

258

sized as power-of-two multiples of baseline pages. For example,
x86 systems use 4KB baseline pages and support 2MB and 1GB
superpages. Furthermore, superpages must be aligned in both virtual
and physical memory (superpages of size Nmust begin at virtual and
physical addresses that are multiples of N).

While superpages lower TLB miss rates by replacing hundreds to
thousands of base page translations with a single superpage transla-
tion entry, they have management overheads [23, 28]. For example,
dedicated OS code is required to support multiple large page sizes
[25, 28, 29]. The process of ensuring that sufficient contiguous phys-
ical pages are allocated to virtual pages can suffer high performance
overheads, particularly when alignment restrictions are also imposed
[15, 23]. Furthermore, if not fully-utilized, superpages can increase
the amount of I/O traffic and increase page initialization/fault la-
tency. A particular problem is the use of a single dirty bit for all
the baseline pages of a superpage; if set, the entire superpage must
be written back to disk even if only one base page has been modified,
greatly increasing disk traffic. Therefore, the OS weighs these over-
heads against the benefits of superpaging. Typically, the OS uses
superpages sparingly, only bothering to generate large amounts of
contiguity when superpaging is deemed to be worthwhile [4].

2.3. TLB Subblocking and Speculation

Two hardware schemes have been proposed to mitigate superpag-
ing overheads. Talluri and Hill [28] present complete-subblock
and partial-subblock TLBs, which record ranges of physical pages
per virtual page entry. Complete subblocking, while effective, re-
quires non-trivial modifications to traditional TLB hardware. Partial-
subblocking overcomes these overheads but with explicit OS support
[28]. Furthermore, subblocking was originally proposed for fully-
associative designs rather than the set-associative organizations most
commonly used in products today. Finally, sub-blocking effective-
ness depends heavily upon page alignment. Both complete and par-
tial subblocking are most effective when the first virtual page of a
contiguous group of virtual (and physical pages) is aligned to the
subblock length. Partial subblocking goes beyond this, reducing
hardware overheads by requiring that base physical pages also be
placed in an aligned manner within subblock regions [28]. Overall,
these requirements may constrain exploitable contiguity.

Alternately, past work [6] proposes TLB speculation for systems
with reservation-based superpaging [23, 28]. Here, physical pages
are allocated in aligned 2MB regions of physical memory corre-
sponding to their alignment within a 2MB region of virtual mem-
ory. Barr, Cox, and Rixner exploit this property with a SpecTLB
structure, which interpolates between existing TLB entries to predict
physical translations for TLB misses. While effective, SpecTLB re-
quires reservation-based superpaging, which is not universally used
(eg. Linux superpaging [4] does not use reservation-based super-
pages). SpecTLB also requires an additional TLB-like structure, and
can increase instruction replays on incorrect speculations.

2.4. Our Approach

In general, there are three regimes of page contiguity that the OS
generates. In the first regime, the OS does not succeed in map-
ping contiguous physical pages to contiguous virtual pages. In these
cases, traditional techniques such as changing TLB organizations
or prefetching are likely to be successful in increasing hit rates
[6, 11, 19]. At the other end of the spectrum, there exists a regime of
extremely high contiguity, when the OS decides that the overheads

of superpage construction are well worth the effort. Our goal, in this
work, is to exploit a third regime with intermediate contiguity, where
tens to hundreds of base pages are contiguous. Our characterization
studies will show that the OS naturally produces this contiguity with-
out the overheads of superpages and that this level of contiguity is
more prevalent than the other regimes. Our studies will be on a real
system under a comprehensive set of system environments which
include heavily-fragmented systems and systems with and without
superpaging.

We will then realize low-overhead TLB hardware to exploit inter-
mediate contiguity. Unlike prior work on speculation or prefetching
[6, 11, 19], CoLT does not augment the standard TLBs with separate
structures. Unlike superpages or subblocking, we avoid OS intrusion
and do not require prescribed amounts of contiguity. Instead, CoLT
studies available contiguity and exploits as much of it as possible.

3. Understanding Page Allocation Contiguity

We now explore why operating systems often allocate contiguous
physical page frames to contiguous virtual pages. Since CoLT relies
on this behavior, we ascertain which memory allocation policies and
mechanisms produce contiguity.

3.1. Defining Page Allocation Contiguity

We say that system contiguity exists when consecutive virtual pages
are allocated consecutive physical page frames. For example, if vir-
tual pages 1, 2, and 3 are allocated physical page frames 58, 59, and
60, we say that these pages are contiguous. Moreover, since this ex-
ample involves three pages, we say that this is an instance of 3-page
contiguity.

Our definition is distinct from superpages in two ways. First, su-
perpages require a set amount of contiguity. For example, 2MB su-
perpages on x86 systems require instances of 512-page contiguity.
Instead, we make no restrictions on the amount of contiguity that
is useful. Second, unlike superpages, we make no assumption on
alignment. Our relaxations on contiguity amounts and alignment
restrictions reveal huge great intermediate contiguity.

Note that this definition requires simultaneous contiguity in both
virtual and physical page numbers. As such, CoLT does not affect
cases where only virtual (or physical) pages are contiguous; these
will be cached by TLBs in the conventional manner.

3.2. Sources of Page Allocation Contiguity

Operating systems maintain a complex set of policies and mecha-
nisms to determine how to allocate physical memory to applications.
A number of these policies promote physical page contiguity. We
elaborate on them here, focusing on Linux for our discussion. Note,
however, that our observations extend more broadly to other oper-
ating systems which tend to utilize similar mechanisms to allocate
physical pages.
3.2.1. Buddy allocation. Linux uses a buddy allocator to track phys-
ical pages and assign them to virtual pages on demand. Figure 1 il-
lustrates the operation of a buddy allocator, assuming that pages 1, 2,
and 3 are already allocated. All free physical pages or page frames
(PFs) are grouped into ten lists of blocks, which we refer to as free
lists. Entry x in the free list tracks groups of 2x contiguous physical
pages. For example, pages 4-7 have 4-page contiguity and are hence
listed by entry two.

Physical page allocations proceed as follows. Suppose an appli-
cation requires an N-page data structure. To accommodate this, the

259

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

Physical Memory

List 0

List 1

List 2

List 3

Free Lists

PFN 0

PFN 4/5/6/7

Figure 1: Buddy allocator used for physical page
allocation. Already allocated pages are
shaded, while free pages are tracked by
the free lists.

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

Physical Memory

List 0

List 1

List 2

List 3

Free Lists

PFN 0

PFN 6/7

Figure 2: Buddy allocator state after an allocation
for 2 pages is finished.

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

Free Pages

Movable Pages

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

Movable Pages

Figure 3: The memory compaction daemon tracks
movable and free memory pages, ex-
changing them to eliminate fragmenta-
tion.

application makes a malloc call, simultaneously requesting N phys-
ical pages from the OS. The buddy allocator first searches the free
list entry corresponding to the smallest contiguous page frames big-
ger than N (entry �log2(N)�). If a block of free physical pages is
found in that list, allocation successfully completes. Otherwise, the
free list is progressively climbed until an entry with a block of free
contiguous physical pages is found. Once a free block is found, the
buddy allocator must minimize memory fragmentation. Therefore it
iteratively halves the block, inserting these new blocks in their ap-
propriate free list locations, until it extracts a block of N contiguous
physical pages. As an example, Figure 2 shows the state of the free
list after an application level request for two physical pages to be
allocated. At first, entry 1 in the free list is checked; however, since
this is empty, entry 2 is scanned. Here, a free block with contiguous
physical pages 4, 5, 6, and 7 is found. Hence, the buddy allocator
halves this block of four pages, returning pages 4 and 5 to the ap-
plication and moving pages 6 and 7 to free list entry 1. Apart from
allocation, the buddy allocator also updates its state when physical
pages are released. At this point, the kernel attempts to merge pairs
of free buddy blocks if both have the same size and are contiguous.

By construction therefore, the buddy allocator deliberately pro-
vides contiguous physical page frames to the application when it
asks for multiple page frames together. Since applications usually
make malloc calls that simultaneously request a number of physical
pages together (rather than one page at a time), the buddy allocator
is able to provide them a suitable contiguous range of pages. We will
show that the buddy allocator successfully produces this contiguity
even in the presence of significant system load. While insufficient
for superpages, CoLT benefits from this substantially.

3.2.2. Memory compaction. In order to glean contiguous runs of
physical pages, the buddy allocator relies on ensuring that mem-
ory fragmentation is tightly controlled. However, fragmentation is
pronounced when multiple processes with large working sets simul-
taneously run on the system. Therefore, many operating systems
boost the buddy allocator with a separate memory compaction dae-
mon. Figure 3 details the Linux memory compaction daemon in
three steps on a heavily-fragmented system.

First, as shown in the left-most diagram of Figure 3, memory com-
paction runs an algorithm that starts at the bottom of the physical
memory and builds a list of allocated pages that are movable. While
most user-level pages are movable, pinned and kernel pages usually
are not. Nevertheless, user-level pages usually outnumber kernel
pages, making most pages movable.

Second, the daemon starts at the top of physical memory and
builds a list of free pages. Eventually, the two algorithms meet in
the middle of the physical page list. At this point, Linux invokes mi-
gration code to shift the movable pages to the free page list, yielding

the unfragmented diagram at the right of Figure 3.
Since there is a cost associated with moving pages, the com-

paction daemon is only triggered when there is heavy system frag-
mentation. As such, its operation naturally produces contiguity, es-
pecially in tandem with the buddy allocator. In fact, we will show
that this daemon successfully generates contiguity even under heavy
system fragmentation.
3.2.3. Transparent hugepage support. Aside from buddy alloca-
tion and memory compaction, support for superpages is a primary
cause of page allocation contiguity. Unfortunately superpage man-
agement comes with high overheads. As a result, Linux’s Transpar-
ent Hugepage Support (THS), supported since the 2.6.38 kernel [4],
uses superpages sparingly. When THS is enabled, the memory allo-
cator attempts to find a free 2MB block of memory. If this block is
naturally aligned at a 2MB boundary, a superpage is constructed. In
practice, the OS relies on the memory compaction daemon to con-
struct these 2MB regions. Aligned 2MB regions are rare; when a
superpage cannot be constructed, the system defaults to the buddy
allocator. Even when the 2MB pages are allocated, increased load
can eventually make them harmful. In these cases, system pressure
triggers a daemon that breaks superpages into baseline 4KB pages.

In practice, THS struggles to maintain many superpages simul-
taneously. However, it does succeed in creating additional levels
of contiguity for two reasons. First, while optimistically-allocated
2MB superpages are often eventually split due to system pressure,
they retain contiguity among tens of baseline 4KB pages. Second,
THS relies on the memory compaction daemon, triggering it more
often and providing the buddy allocator even higher levels of conti-
guity suitable for CoLT.
3.2.4. System Load and Memory Fragmentation. Finally, page
allocation contiguity is deeply affected by the system load. If many
processes run simultaneously, main memory is likelier to be frag-
mented. Therefore, one may initially expect that higher load de-
grades contiguity. Surprisingly, we will show that contiguity can
actually increase with greater system load. This occurs because sys-
tem load has a complex relationship with the memory compaction
daemon, triggering it more often when there is higher load. This
can, in turn, free up more contiguous physical frames for the buddy
allocator, eventually resulting in more contiguity.

4. CoLT Design and Implementation

Having detailed contiguity sources, we now propose three variants
of CoLT. Overall, they share three design principles. First, they
detect instances of consecutive virtual-to-physical address transla-
tions. These entries are coalesced into single TLB entries, so as
to reduce miss rates. Second, CoLT coalesces only on TLB misses.
While TLB hits could also prompt coalescing, this may increase

260

 Tag Bits V V V V Attr. Base PPN a

b
c

PPN Generation Logic

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing Logic

Cache line: PTE N to N+7
1

2
3

4

Figure 4: CoLT for set-associative L1 and L2 TLBs.

 Base VPN Coal. Length Attr. Base PPN

a b

PPN Generation Logic

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing Logic

Cache line: PTE N to N+7
1

2
3

4

Range check logic

Base VPN � Request VPN �
Base VPN + Coal. Length

5

Figure 5: CoLT for fully-associative TLBs.

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing HW

Cache line: PTE N to N+7

1

2

3

4

Contiguity �
Threshold

Contiguity �
Threshold

Figure 6: Combined CoLT for all TLBs.

lookup latencies. Third, coalescing is unintrusive, unlike specula-
tion and prefetching [6, 11, 19, 27] which can degrade performance.
For example, incorrect speculations suffer a high penalty. Incorrect
prefetches lead to the eviction of useful entries and higher band-
width usage. Prior work mitigates these problems by using sepa-
rate structures to store prefetched translations or perform speculation
[6, 11, 19]. In contrast, we coalesce entries directly into the TLBs
but ensure that coalescing occurs only around on-demand transla-
tions. In the worst case, coalesced entries may be unused but are not
harmful. This is crucial given that system contiguity does not nec-
essarily imply that all contiguous translations are used in temporal
proximity. We ensure coalesced entries are available if needed but
do not harm TLB hit rates when they are unused.

We propose three variants of CoLT for two-level TLB hierarchies.
This hierarchy contains set-associative L1 TLB and L2 TLBs, used
to cache baseline 4KB pages [3, 17]. Superpages are cached in
separate small, fully-associative TLBs that are accessed in parallel
with the L1 TLB. Note that the L2 TLB is inclusive of just the set-
associative L1 TLB and not the superpage TLB.

There are three natural coalescing mechanisms for this hierar-
chy. First, we coalesce in just the set-associative L1 and L2 TLBs.
Second, we coalesce in the superpage TLB only. Third, we use a
combined approach that routes some coalesced entries to the set-
associative TLBs and others to the superpage TLBs. We now de-
scribe each of these schemes.

4.1. CoLT-SA Design and Implementation

CoLT-Set Associative (CoLT-SA) coalesces multiple virtual-to-
physical page translations in the set-associative L1 and L2 TLBs.
We first detail its high-level operation and then focus on specific de-
sign challenges.
4.1.1. Overall operation. The bottom half of Figure 4 shows a high-
level view of CoLT-SA. In step 1, the set-associative L1 TLB and
superpage TLB are looked up in parallel. Assuming L1 and L2 TLB
misses (step 2), a page table walk brings in the desired translation
entry into the LLC (step 3). We assume, like most x86 systems with
dedicated MMU page table caches [5], that the LLC is the highest
cache level for page table entries.

After the LLC fill, two parallel events occur. First, the requested
translation is returned to the processor pipeline. In parallel, the Co-
alescing Logic studies the translations around the requested entry
for contiguity. It coalesces as many of these translations as possi-
ble, as long as they map to the same set. This coalesced entry is
inserted into the L1 and L2 TLBs (step 4). However, conventional
set-associative TLBs map consecutive virtual addresses (and hence
contiguous translations) to consecutive sets, precluding coalescing.
We therefore modify the virtual page bits used for set-selection so
that translations for groups of consecutive virtual page numbers do
map to the same set. Furthermore, since we provide the requested

translation to the pipeline in parallel with the Coalescing Logic’s op-
eration, the latter is off the critical path and does not affect TLB miss
handling times.

4.1.2. TLB set selection. To understand how we modify TLB set se-
lection to permit coalescing, consider the following example. An 8-
set TLB would require three bits, bits 2 to 0 of the virtual page num-
ber for set selection (VPN[2-0]). Naturally, this would map consec-
utive translations to consecutive sets, preventing coalescing. How-
ever, if we left-shift the index bits by log2(N) bits, we may place N
consecutive translations in the same set (permitting a maximum of
N contiguous translations to be coalesced into a single entry). There-
fore, to ensure that translations with four consecutive virtual pages
map to the same set, we use VPN[4-2] as the new indexing bits.

To coalesce more entries, the indexing bits are further left-shifted
(for example, to coalesce up to eight entries, VPN[5-3] must be
used). However, using higher order bits for set indexing increases
conflict misses since more consecutive entries are mapped to the
same set. This is a fundamental tradeoff for CoLT-SA designs – in
choosing the correct index bits, we must balance opportunities for
coalescing with potentially higher conflict misses. We will show
that allowing for coalescing of four contiguous translations gener-
ally performs best.

4.1.3. Lookup operation. The top half of Figure 4 illustrates CoLT-
SA lookups. Each coalesced TLB entry maintains tag bits, the
higher order bits left of the index bits used for set selection. For
example, if up to four contiguous translations can be coalesced in a
TLB with eight sets, VPN[4-2] is used for set selection and VPN[63-
5] is the tag. In step (a), this tag is checked against the requested
virtual page number. In step (b), the non-index lower-order virtual
page bits (VPN[1-0] in our example) are used to select among multi-
ple valid bits. There is one valid bit for every possible translation in
a coalesced entry. These valid bits indicate the presence of a trans-
lation in the coalesced entry. If on step (b), a valid bit is set, there
is a TLB hit. At this point, extra logic calculates the physical page
number. CoLT entries store the base physical page number for each
coalesced entry. This number corresponds to the virtual page rep-
resented by the first set valid bit. To reconstruct the physical page
number, combinational logic (PPN Generation Logic) calculates the
number of valid bits away this entry is from the first set valid bit.
This number is added to the stored base physical page number to
yield the desired physical page.

4.1.4. Practical coalescing restrictions. Ideally, after the page ta-
ble is walked to handle a TLB miss, coalescing logic finds as many
contiguous translations around the requested translation as possi-
ble. Practically, however, coalescing is restricted by two constraints.
First, as we have already discussed, the choice of index bits for set
selection places a limit on coalescing opportunity. A second limit
arises from our desire to minimize the overhead associated with

261

searching for contiguous translations. On a TLB miss, a page table
walk finds the desired translation. We aim to prevent any additional
page walks when checking for contiguous entries adjacent to the re-
quested translation. Since the page table walk accesses the last-level
cache (LLC) and brings data in 64-byte cache lines, seven additional
translations are fetched. These translations are brought without ad-
ditional memory references; thus we check just them for contiguity.
In practice, this approach restricts coalescing to a maximum of eight
translations. Despite this restriction, CoLT eliminates a high number
of TLB misses.
4.1.5. Replacement, invalidations, and attribute changes. CoLT-
SA assumes standard LRU replacement policies. While there may
be benefits in prioritizing entries with different coalescing amounts
differently, we leave this for future work. We also assume a single
set of attribute bits for all the coalesced entries, restricting coalesc-
ing opportunity. More sophisticated schemes supporting separate
attribute bits per translation in a coalesced entry will improve our
results. Furthermore on TLB invalidations, we flush out entire coa-
lesced entries, losing information for pages that would be unaffected
in standard TLBs. Gracefully uncoalescing TLB entries and only in-
validating victim translations will perform even better. This too is
the subject of future work.
4.1.6. Discussion of hardware overheads. To accommodate CoLT,
the TLBs experience some key hardware changes. We argue, how-
ever, that these changes are modest. First, we believe that CoLT
lookup remains low-overhead and does not impact TLB access cy-
cle times. The initial tag match and check of valid bits is simple. The
PPN generation logic addition is also low-overhead as the amount of
coalescing is bounded (in our example, at best, an addition of four
will be required). As such, readily-implementable combinational
logic, similar to logic used to calculate prefetching strides and ad-
dresses or update branch predictor state, can calculate the physical
page number. This is lower-overhead than prior prefetching schemes
requiring dedicated adders [19].

Second, coalescing logic occurs on the TLB fill path rather than
lookup, allowing subsequent TLB reads to proceed unimpaired. It is
possible for subsequent reads to request translations that are part of
the requested coalesced entries. These reads must wait until coalesc-
ing completes but we find these instances occur rarely. Furthermore,
one might expect CoLT to require additional TLB ports to fill en-
tries without conflicting with subsequent TLB reads. In our results,
we assume no additional ports, finding that there is no significant
performance degradation from this.

4.2. CoLT-FA Design and Implementation

Rather than supporting coalescing in set-associative TLBs and
changing indexing schemes, we can instead coalesce into the fully-
associative TLB (this structure is usually used exclusively for super-
pages). We refer to this as CoLT-Fully Associative (CoLT-FA).
4.2.1. Overall operation. The bottom half of Figure 5 delineates
CoLT-FA operation. Assuming misses in all the TLBs (steps 1 and
2), a page walk is conducted in step 3. At this point, a cache line
provides up to eight translations that can be checked for contiguity.
Up to eight translations are now coalesced in step 4. If coalescable,
the entry is loaded into the fully-associative TLB. If no coalescing
is possible, it is loaded into the set-associative L1 and L2 TLBs.

On insertion into the fully-associative TLB, further coalescing is
possible. Since contiguity may exist between the newly coalesced
entry and a resident entry, the fully-associative TLB is scanned to

seek further opportunities for coalescing. This scan is conducted
while the requested TLB entry is returned to the processor. Further
coalescing from the scan is done in step 5.

Empirically, we have found that due to the small size of the
superpage-TLB, useful entries are frequently evicted. Therefore, for
performance reasons, when bringing a coalesced entry into the fully-
associative structure, we still bring just the requested entry (and not
its coalesced neighbors) into the L2 TLB. While this does create
some redundancy in terms of stored entries, we will show that per-
formance is improved. Note that we leave the L1 TLB unaffected
due to its much smaller capacity. Note also that CoLT-FA shares
both superpage entries and coalesced entries in a single structure.
One initial concern may be that if coalesced entries far outnumber
superpage entries, the latter will be evicted from the fully-associative
TLB. In practice, we find that this is not a problem for two reasons.
First, superpages are used sparingly, requiring a very small number
of entries in the buffer. Second, when used, these superpages are fre-
quently accessed, meaning that they remain at the head of the LRU
list, preventing their eviction.
4.2.2. Lookup operation. The top half of Figure 5 details CoLT-FA
lookup. Each coalesced entry maintains a base virtual page num-
ber as the tag and a field that logs the number of entries coalesced.
Unlike CoLT-SA, there are no coalescing restrictions due to index-
ing schemes. We find that using five bits for the coalescing length
field suffices as this captures a contiguity of 32 pages. Each entry
also stores the base physical page and attributes of all contiguous
translations.

In step (a), Range Checking Logic compares the requested virtual
page number against the range of translations stored by each entry
of the fully-associative TLB. As shown, comparator and adder logic
is required for the range check. If the virtual page is detected in the
range, there is a TLB hit. At this point (step (b)), the PPN Gener-
ation Logic subtracts the tag base virtual page number from the re-
quested virtual page number. This value is then added to the stored
base physical page number to find the desired physical page.
4.2.3. Replacement, invalidations, and attribute changes. We as-
sume standard LRU for the fully-associative structure. Due to its
smaller size, we suspect though that smarter replacement policies
will be even more effective. Furthermore, we share the same at-
tribute bits for all coalesced entries and invalidate entire entries, but
for larger amounts of coalescing. Despite this, we will show that
CoLT-FA performs effectively.
4.2.4. Discussion of hardware overheads. Generally, CoLT-FA
hardware for range checks and physical page number generation is
more complex than CoLT-SA. To account for this, we reduce the size
of the fully-associative TLB in CoLT-FA as compared to the baseline
case without coalescing. Commercial systems tend to implement 16
to 24-entry fully-associative TLBs for superpages [17]. To ensure
that the added lookup complexity does not bias our results, we as-
sume only 8-entry fully-associative TLBs with coalescing. While a
detailed circuit-level analysis of the lookup overhead is beyond the
scope of this work, our decision to apply CoLT to a half-sized fully-
associative TLB attempts to maintain the same access times.

An additional overhead arises from the secondary scan performed
between existing fully-associative TLB entries and the coalesced en-
try being filled. While one might initially assume that we may need
to increase port counts to ensure that subsequent lookups are not
delayed, our implementation retains just the single port. Instead,
we assume that the initial lookup of the fully-associative TLB iden-

262

tifies those resident entries likely to be coalescible with the filled
entry. Once the coalescing logic merges translations from a single
LLC cache line, it then checks whether those resident entries can be
further coalesced. In this way, a second TLB scan can actually be
avoided, minimizing coalescing overheads.

4.3. CoLT-All Design and Implementation

Finally, CoLT-All coalesces into both set-associative L1/L2 TLBs
and the superpage TLB. Its primary benefit over CoLT-SA and CoLT-
FA is that it provides potentially the largest reach, at the expense of
modifying both the set-associative and superpage TLB.
4.3.1. Overall operation. Figure 6 illustrates CoLT-All’s operation
when all the TLBs experience a miss. In step 1, the page walk has
occurred and the coalescing hardware has determined the amount of
contiguity present in the cache line. In then checks this contiguity
to see how it compares to a threshold. If it is lower than a threshold
(step 2), this means that the contiguity can be accommodated by the
indexing scheme of the set-associative TLBs. For example, suppose
the contiguity is three pages and we use an 8-set TLBwith VPN[4-2]
for indexing (allowing coalescing of up to four translations). In this
case, the coalesced entry is allocated into the set-associative L1 and
L2 TLBs. However the contiguity may be higher than the threshold
and the amount that the set-associative TLBs can accommodate. In
our example, the contiguity may be five. In this case, the entry is
coalesced and brought into the superpage-TLB. At the same time,
because the superpage-TLB is small, useful coalesced entries may
be frequently evicted. Therefore, like CoLT-FA, we allocate an entry
at this point into the L2 TLB as well. Unlike CoLT-FA however, our
set-associative L2 TLB can now also handle coalesced entries (albeit
with smaller levels of coalescing permissible by its choice of index
bits). Therefore, CoLT-All brings in as much of this coalesced entry
as possible into the L2 TLB, unlike CoLT-FA which brings just the
requested translation. Finally, in step 4, the new allocated superpage
entry may be coalesced with already-resident entries.
4.3.2. Lookup, replacement, invalidation, and attributes. While
lookups operate similarly to CoLT-SA and CoLT-FA, the only dif-
ference is that it is possible for an entry to be resident in both the
set-associative and fully-associative TLBs. While this occurs only
rarely in practice, there are no correctness issues associated with
this. Furthermore, there are no changes in replacement, invalidation,
and attribute policies.

5. Methodology

We now detail the infrastructure and workloads used to quantify real-
system contiguity and CoLT’s effectiveness at leveraging this conti-
guity to eliminate TLB misses. Our analysis focuses on data pages
since data references cause far more misses than instruction refer-
ences [10, 27].

5.1. Real-System Characterizations of Page Allocation

5.1.1. Experimental platform and methodology. We use a system
with a 64-bit Intel i7 processor, 64-entry L1 TLBs, and a 512-entry
L2 TLB, a 32KB L1 cache, a 256KB L2 cache, a 4MB last-level
cache (LLC), and 3GB of main memory. Furthermore, we run Fe-
dora 15 (Linux 2.6.38).

To measure contiguity, we modify the kernel to scan the page
table looking for instances of contiguous address translations. We
walk the page table every five seconds, capturing contiguity changes
through the benchmark run. Our original definition of contiguity is

Benchmark Suite THS on THS off
L1/L2 MPMI L1/L2 MPMI

Mcf Spec 56550/28600 95600/49230

Tigr BioB. 19000/18150 26950/18860

Mummer BioB. 12910/11450 14760/12970

CactusADM Spec 6610/8140 8420/6930

Astar Spec 8480/4660 17390/11240

Omnetpp Spec 8410/2730 34040/8080

Xalancbmk Spec 2670/2150 14120/2100

Povray Spec 7010/630 7310/630

GemsFDTD Spec 1300/620 8030/3620

Gobmk Spec 710/410 1550/510

FastaProt BioB. 460/300 610/300

Sjeng Spec 1840/200 3860/440

Bzip2 Spec 4070/150 7120/270

Milc Spec 120/90 3780/1820

Table 1: Summary of benchmarks used in our studies.
based only on page numbers; however, we now additionally require
that contiguous translations must share the same page attributes and
flags. While this eases the hardware implementation of CoLT by
allowing for the same set of attribute bits per coalesced entry, conti-
guity would be even higher if this constraint were relaxed.

To study the effect of memory compaction, we use the Linux
defrag flag. Enabling this flag triggers the memory compaction
daemon both on page faults and as system background activity. Dis-
abling this flag greatly reduces the number of times the memory
compaction daemon runs. In tandem, we enable and disable THS
to study the impact of superpaging. We also ensure that our system
is realistically fragmented by using a machine that has already run
a number of applications (eg. web browsers, network clients, office
utilities) for two months. To further load the system, we run memhog,
a memory fragmentation utility [12], with our workloads. We study
scenarios where memhog fragments 25% and 50% (a highly frag-
mented system when combined with the other background activities)
of the memory. In all, we study twelve system configurations. Due
to space constraints, this paper focuses on:

1. THS on, normal memory compaction, no memhog: this is the
current default setting for Linux.

2. THS off, normal memory compaction, no memhog: this shows
contiguity without superpaging.

3. THS off, low memory compaction, no memhog: conservative
case for contiguity because neither THS no memory compaction
occur. The buddy allocator struggles to find contiguous physical
blocks.

4. THS on, normal memory compaction, memhog: we test the
effect of system load on the default Linux setting by assigning 25%
and 50% of system memory to memhog.

5. THS off, normal memory compaction, memhog: shows the
impact of fragmentation without superpaging.
5.1.2. Evaluation workloads. We study system contiguity on the
Spec 2006 benchmarks [1] and bioninformatics workloads from
Biobench [2] in Table 1. We run each of the workloads with their
maximum data sets (for Spec, this corresponds to Ref) to completion.
From the real-system runs, we use on-chip performance counters to
track L1 and L2 TLB misses per million instructions (MPMI) when
THS support is enabled and disabled. The benchmarks are ordered
from highest to lowest THS on L2 TLBMPMIs. Mcf, Tigr, Mummer,
CactusADM, and Astar see particularly high TLB MPMIs. While

263

enabling superpaging does reduce TLB misses for some workloads,
it alone is insufficient. For example, Mcf still has an L2 TLB MPMI
of 57K with THS on, while Mummer is unchanged.

5.2. Simulation-Based CoLT Evaluations

5.2.1. Simulated system. Past work on TLBs [5, 6, 9, 27] focuses
on miss rates rather than performance because it is infeasible to run
memory-intensive applications for long enough durations to provide
performance numbers. We also study miss rates, but consider perfor-
mance too. We use a two-step evaluation to quantify changes in hit
rate and to then offer performance numbers feasible for simulations.

Like the bulk of recent work on TLB analysis, we first use a trace-
based approach to analyze miss rates [5, 6, 9, 10]. We extract de-
tailed memory traces by simulating an x86 processor on Simics [30].
These highly detailed traces maintain logs of both data and instruc-
tion references at the micro-op level. Our traces also capture full-
system effects by running benchmarks on a Linux 2.6.38 kernel. We
hack the simulated kernel to provide full page table walk details for
every single memory reference (this includes the virtual page, the
physical page, and all attribute bits). We set the kernel to its default
configuration of using THS and normal memory compaction. As we
will show, since contiguity is present across all kernel configurations,
CoLT will be effective across the range of superpaging and memory
compaction settings.

We run the traces through a highly-detailed custom memory sim-
ulator. We need to stress our TLBs using simulated workloads in a
manner that matches real-system stress; therefore, we use 32-entry
and 128-entry L1 and L2 4-way set-associative TLBs. These sizes
are chosen as they produce simulated load within 10% of the load
experienced by a real system. Our baseline system also assumes
a 16-entry fully-associative superpage TLB. As previously detailed,
CoLT-FA and CoLT-All reduce this size to 8 entries in order to pro-
vide conservative performance improvement data and negate the im-
pact of slightly more complex lookups. Furthermore, unlike past
work [9, 11], we model a more realistic TLB hierarchy with 22-
entryMMU caches, accessed on TLBmisses to accelerate page table
walks [5]. Finally, we assume a three-level cache hierarchy similar
to the Intel Core i7 (32KB L1 cache, 256KB L2 cache, 4MB LLC).

Having assessed miss rates, we now go beyond prior work and
the study the performance implications of our approach. We use
the Pin-based [20] CMP$im [18] simulation framework to model a
4-way out-of-order processor with a 128-entry reorder buffer. The
processor’s TLB and cache parameters match those of our custom
trace module. Unfortunately, the simulation speeds of this detailed
microarchitectural framework are slow; hence we cannot use it to
run full Linux distributions with the memory allocation behavior
necessary to study CoLT on sufficiently long-running, large-data ap-
plications. However, while this simulator does not maintain virtual-
to-physical address translations, it does observe the performance ef-
fects of TLB misses by tracking the allocated virtual pages. In tan-
dem with the miss rate eliminations extracted from our trace-based
approach, this allows us to interpolate CoLT’s actual performance
gains. This interpolation strategy is valid for two reasons. First, TLB
miss penalties (page walks) are serialized as only one page walk can
typically be handled at a time [9, 11]. Hence, TLB misses lie on the
execution’s critical path. Second, our interpolation approach is ac-
tually conservative as it does not account for the instruction replays
that would likely occur on TLB misses. Therefore, our projected
performance benefits would likely increase on a real system.

5.2.2. Evaluation workloads. We use the workloads from Table
1. However, due to slow simulation speeds, we use Simpoints [24]
that total to one billion instructions per workload. These simpoints
include operating system effects captured by Simics and assume re-
alistic inputs (for Spec, this corresponds to Ref).

6. Characterizations of Page Allocation Contiguity
We now quantify how the buddy allocator, memory compaction,
THS, and system load affect application contiguity on a real system.
We show that page allocation contiguity always exists regardless of
the kernel configuration.

We begin by discussing the cumulative density functions (CDFs)
from Figures 7 to 15. These graph the distribution of contiguities
experienced by non-superpage pages. Note that contiguity (the x-
axis) is presented as a log scale.

6.1. Superpaging, Memory Compaction

Figures 7, 8, and 9, ordering the benchmarks from highest to low-
est TLB MPMI, show contiguity assuming default Linux kernel set-
tings (superpaging and normal memory compaction). The legend
provides average contiguity numbers.

Figures 7, 8, and 9 show that there is heavy contiguity across
the workloads that cannot be exploited by superpages. On average,
pages are in 41-contiguity groupings. Furthermore, there can be
large instances of contiguity above the average. For example, most
CDFs see many 64 to 256-contiguity instances.

Interestingly, there exist many cases of 512 and 1024-page con-
tiguity. Since THS is enabled, one might initially expect that these
should be treated as superpages. However, this contiguity does not
translate to superpages for two reasons. First, these memory chunks
are not superpage-aligned. Second, THS currently supports super-
paging for only anonymous pages created through malloc calls; as
such, a number of file-backed pages created from are not superpage
candidates. Overall, we find that 15% of non-superpage pages actu-
ally have over 512-page contiguity.

Fortunately, Figures 7, 8, and 9 enjoy particularly high contigu-
ity for TLB-stressing benchmarks. Mcf, Tigr, and CactusADM see
tens to hundreds of contiguous pages, indicating their amenability
to TLB coalescing. For a number of these benchmarks, such as
Mcf, high contiguity arises because malloc and mmap calls are made
at the beginning of the execution to allocate large hash-based data
structures. These structures span megabytes of space, which the
buddy allocator ensures maps to contiguous physical pages.

6.2. No Superpaging, Memory Compaction

Figures 10 to 12 show how contiguity changes when superpaging
support is disabled. Average contiguity drops compared to THS on
from 41 to 18, for two reasons. First, THS optimistically creates
as many 2MB page as possible. While these 2MB pages eventually
get broken into 4KB pages due to system load, they do leave large
amounts of smaller, residual contiguity. Without THS, contiguity is
not generated this way. Second, disabling THS drastically reduces
memory compaction daemon invocations. Nevertheless, sufficient
exploitable intermediate contiguity remains (in the tens of pages,
around 18). Furthermore, heavy TLB-pressure benchmarks like Mcf
and Mummer see very high contiguity.

Surprisingly, some benchmarks like Omnetpp and Sjeng actually
see higher contiguity without THS. This occurs because the lack of
THS reduces superpages allocated to other running processes. As
a result, the pages allocated to our workloads remain unfragmented
and contiguous.

264

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(20.3)
 Tigr(55.55)

 Mummer(6.2)
 Cactus(149.7)

 Astar(3.89)

Figure 7: THS on, normal memory compaction
contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(32.05)
 Xalanc(1.88)
 Povray(1.85)

 Gems(8.1)
 Gobmk(8.9)

Figure 8: THS on, normal memory compaction
contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fastaprot(4.79)
 Sjeng(116.75)

 Bzip2(82.74)
 Milc(84.09)

 Average(41.19)

Figure 9: THS on, normal memory compaction
contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(11.14)
 Tigr(2.71)

 Mummer(8.1)
 Cactus(1.79)

 Astar(1.69)

Figure 10: THS off, normal memory compaction
contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(48.5)
 Xalanc(2.23)
 Povray(1.64)
 Gems(12.1)

 Gobmk(1.83)

Figure 11: THS off, normal memory compaction
contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fasta(1.013)
 Sjeng(104)

 Bzip2(59.55)
 Milc(1.88)

 Average(18.43)

Figure 12: THS off, normal memory compaction
contiguity CDF.

6.3. Superpaging, Low Memory Compaction

Figures 13, 14, and 15 present a worst-case scenario setting for
Linux, where THS is turned off and memory compaction is greatly
reduced via disabling the defrag kernel flag. While no kernel uses
or recommends this setting, we study it to ensure that sufficient con-
tiguity exists, even when there are almost no mechanisms to explic-
itly generate it. In fact, our results show that on average, contiguity
drops only marginally compared to the THS off, normal memory
compaction case to 15 pages on average. While important bench-
marks like Mcf, Mummer, and Omnetpp do lose compared to the
prior settings, they retain sufficiently high intermediate contiguity.
For example, even though Mummer’s average contiguity is now 1.3,
roughly 50% of its 4KB pages enjoy 4-page contiguity. Correctly
exploiting this gives our TLBs a 4× reach.

6.4. Superpaging, Memory Compaction, Memhog

We now focus on the impact of system load on fragmentation and
contiguity. Figure 16 shows how contiguity is affected when memhog
runs with each benchmark and fragments 25% and 50% of system
memory. Our studies have shown that combined with the other run-
ning system processes, memhog with 50% heavily fragments almost
all memory and causes page fault rates to greatly increase. We as-
sume default Linux settings (THS enabled, normal memory com-
paction).

One might initially expect higher load to lower contiguity.
Surprisingly, we find the opposite trend to hold when using
memhog(25%), with contiguity rising from 41 to roughly 43 pages
on average. For some benchmarks, the gain is markedly high; for
example, Mcf and GemsFDTFD contiguities are boosted by an order
of magnitude. The primary reason for this is that higher load invokes
the memory compaction daemon more often. This in turn provides
the buddy allocator more contiguous physical blocks.

Greatly fragmenting the system with memhog(50%) however,
does reduce contiguity. However, even this intermediate contigu-
ity is relatively high, averaging close to 10 pages. For heavy TLB-
pressure benchmarks like Mcf and Mummer, this configuration still

achieves higher contiguity than without system load. As such, the
buddy allocator, in tandem with memory compaction, manages to
actually leverage the additional load to increase contiguity.

6.5. No Superpaging, Memory Compaction, Memhog

This represents the scenario where THS is turned off despite high
system load. While kernel settings would not typically allow this,
we use this setting to stress-test our measurements. We find that
even under the pessimistic setting of no THS and memhog(50%), the
average contiguity is above 5. TLB coalescing can thus potentially
provide a 5× reach.

6.6. Summary of Results

Three primary conclusions can be drawn from our real-system char-
acterizations. First, under every single configuration, even those that
are unrealistically severe, the buddy allocator, compaction daemon,
and THS support succeed in inadvertently generating great interme-
diate contiguity. Second, system load can have surprising implica-
tions on contiguity, often increasing it. For some benchmarks that
suffer from high TLB misses, such as Mcf, this is a promising obser-
vation. Third, superpages are ill-equipped to handle this contiguity.
Therefore, coalescing techniques to harness this intermediate conti-
guity are warranted.

7. CoLT Evaluations

We now evaluate CoLT’s benefits, focusing on per-application miss
rate reductions and performance gains.

7.1. TLB Miss Rate Analysis

7.1.1. CoLT TLB miss rates. Figure 18 quantifies CoLT’s TLB
miss reductions. Benchmarks are ordered from highest to lowest
TLB miss rates. We first capture the number of L1 and L2 TLB
misses for a baseline configuration with 32-entry and 128-entry L1
and L2 TLBs (4-way) and a 16-entry superpage TLB. Note that we
count misses for both the set-associative L1 TLB and the superpage
TLB as L1 TLB misses since they are checked in parallel and have

265

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(5.01)
 Tigr(2.71)

 Mummer(1.3)
 Cactus(1.6)
 Astar(1.26)

Figure 13: THS off, low memory compaction conti-
guity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(1.2)
 Xalanc(1.775)
 Povray(1.82)

 Gems(8.4)
 Gobmk(1.68)

Figure 14: THS off, low memory compaction conti-
guity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fasta(1.1)
 Sjeng(96.6)

 Bzip2(89.09)
 Milc(1.88)

 Average(15.38)

Figure 15: THS off, low memory compaction conti-
guity CDF.

0
10
20
30
40
50

M
cf

Ti
gr

M
um

m
er

Ca
ct

us
ad

m

As
ta

r

O
m

ne
tp

p

Xa
la

nc
bm

k

Po
vr

ay

G
em

s

Go
bm

k

Fa
st

ap
ro

t

Sj
en

g

Bz
ip

2

M
ilc

Av
er

ag
eAv

er
ag

e
Co

nt
ig

ui
ty

No Memhog Memhog (25) Memhog (50)
295 55 150 117 82 118 84

Figure 16: Average contiguity for THS on, normal memory compaction
with varying Memhog.

0
5

10
15
20

M
cf

Ti
gr

M
um

m
er

Ca
ct

us
ad

m

As
ta

r

O
m

ne
tp

p

Xa
la

nc
bm

k

Po
vr

ay

G
em

s

Go
bm

k

Fa
st

ap
ro

t

Sj
en

g

Bz
ip

2

M
ilc

Av
er

ag
eAv

er
ag

e
Co

nt
ig

ui
ty

No Memhog Memhog (25) Memhog (50)
43 32 49 104 9754 60

Figure 17: Average contiguity for THS off, normal memory compaction
with varying Memhog.

the same hit time. After recording these misses, we then run the
same benchmarks on configurations with CoLT-SA, CoLT-FA, and
CoLT-All, tracking the new TLB miss rates. We assume that CoLT-
SA uses VPN[4-2] and VPN[6-2] for L1 and L2 set selection, mean-
ing that up to four translations can be coalesced per entry (we will
later show the effect of using more aggressive indexing). We also
conservatively assume 8-entry fully-associative TLBs when using
CoLT-FA and CoLT-All.

First and foremost, Figure 18 shows that all three CoLT schemes
improve every single benchmark by eliminating large chunks of the
baseline misses. On average, CoLT-SA eliminates 40% of both L1
and L2 TLBs misses, while CoLT-FA and CoLT-All do even better,
eliminating around 55% of both L1 and L2 misses. Second, Fig-
ure 18 shows that many of the benchmarks experiencing TLB pres-
sure gain particularly from CoLT. For example, Mcf, CactusADM,
and Astar all eliminate vast amounts of their TLB misses. In fact,
Astar almost achieves perfect TLBs with no misses with CoLT-FA
and CoLT-All.

Third, there is a correlation between system contiguity and effec-
tiveness of CoLT. For example, Mcf, Bzip2, Milc, and CactusADM,
which all see more instances of 20-page contiguity on average, can
coalesce large amounts of translations, increasing TLB reach sub-
stantially. However, contiguity alone does not guarantee coalescing
success; for coalescing to be effective, contiguous entries must actu-
ally be used close together in time. Without this temporal proximity,
a coalesced entry will be evicted from the TLB before multiple mem-
ber translations are used. This explains the lower benefits of Tigr,
which sees 10% TLB miss elimination rates despite a contiguity of
over 50 pages on average.

Fourth, Figure 18 shows that leveraging the superpage TLB in
CoLT-FA and CoLT-All provides 10-15% gains over CoLT-SA on
average. Benchmarks like Mcf and Fastaprot benefit particularly
from this. These gains are achieved despite dropping from a 16-entry
to an 8-entry structure. We find that the primary reason for this is
that even with THS on, superpages are used sparingly. Therefore,

a surprisingly high number of entries remain wasted in the fully-
associative TLB in the baseline case. Instead, CoLT-FA and CoLT-
All use these entries and can even perform unrestricted coalescing
on them, unlike the set-associative TLBs.

The difference between CoLT-FA and CoLT-All remains more nu-
anced. We find generally that both schemes eliminate roughly 55%
of TLB misses on average. Generally on the more TLB-intensive
benchmarks (eg. Mcf, Tigr, Mummer, CactusADM), CoLT-All out-
performs CoLT-FA slightly. However, in many benchmarks, CoLT-
All falls surprisingly short of CoLT-FA. This occurs because CoLT-
FA is better able to coalesce translations that reside across multiple
LLC cache lines. Essentially, in these benchmarks only a few trans-
lations in a single cache line are coalescible with translations from
another cache line. In CoLT-FA, since all the translations are brought
into the fully-associative structure, these entries are coalesced. In
CoLT-All however, if the cache line that maintains only a few coa-
lescible translations falls below the pre-defined threshold, they are
inserted into the set-associative TLB and can therefore never be
merged with the second cache line’s translations (which sits in the
fully-associative TLB). This reduces CoLT-All’s hit rates compared
to CoLT-FA.

Overall, all CoLT designs eliminate a large fraction of TLB
misses. We now focus on implementation details of the various
CoLT designs to lend greater insight on our gains.

7.1.2. Impact of CoLT-SA’s indexing scheme on TLB miss rates.
Our initial CoLT-SA results assume that we use VPN[4-2] and
VPN[6-2] for L1 and L2 set selection. This limits the amount of
coalescing to four translations per entry. While additional contiguity
could be coalesced by further left-shifting the index bits, this also in-
creases conflict misses. Figure 19 studies these opposing forces on
the 4-way associative TLBs by left-shifting the traditional index bits
by one bit (VPN[3-1] and VPN[5-1] for L1 and L2 TLBs), two bits,
and three bits (VPN[5-3] and VPN[7-3] for L1 and L2 TLBs). These
correspond to maximum allowable coalescing of two, four and eight
translations.

266

0
20
40
60
80

100

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

Mcf Tigr Mumm. Cact. Astar Omnet.Xalanc.

%
 B

as
el

in
e

M
iss

es L1 L2

0
20
40
60
80

100

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

SA FA Al
l

Povray Gems. Gobmk Fasta. Sjeng Bzip2 Milc Avg.

%
 B

as
el

in
e

M
iss

es L1 L2

Figure 18: Percentage of baseline TLB misses eliminated using CoLT-
SA, CoLT-FA, and CoLT-All.

-50
-25

0
25
50
75

100

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Mcf Tigr Mumm. Cact. Astar Omnet. Xal.

%
 B

as
el

in
e

M
iss

es L1 L2

-50
-25

0
25
50
75

100

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Pov. Gems. Gob. Fasta. Sjeng Bzip2 Milc Avg.

%
 B

as
el

in
e

M
iss

es L1 L2

Figure 19: Percentage of baseline TLB misses eliminated by CoLT-SA
when left-shifting the index by 1, 2, and 3 bits.

Figure 19 clearly shows that left-shifting the index bits by two pro-
vides the best balance between coalescing opportunity and conflict
misses. Below this (left-shifting by one bit), we can only coalesce
two entries, restricting our TLB miss elimination rates. However,
left-shifting by three bits actually increases TLB misses in many
cases due to the additional conflict misses. In general, unless there is
very high contiguity, like for Mummer, Tigr, and Milc, left-shifting
the index bits by three is overly-aggressive. Henceforth, we assume
a left-shit of two bits for our indexing scheme.

7.1.3. Impact of bringing missing entries into L2 TLB for
CoLT-FA and CoLT-All. As previously detailed, while CoLT-FA
and CoLT-All bring coalesced entries into the fully-associative, su-
perpage TLB, they also leverage the L2 TLB. For CoLT-FA, when
a coalesced entry is brought into the superpage TLB, just the re-
quested entry is also brought into the L2 TLB; for CoLT-All, a co-
alesced entry (where the coalescing amount is restricted by the in-
dex scheme) is brought into the L2 TLB. As we previously noted,
this is useful since the superpage TLB is small (8-entry); as a result,
only entries with high levels of coalescing are maintained there. As
such, intermediate-level coalesced entries are often evicted. Bring-
ing these entries into the L2 TLB as well increases the chance that
these they remain available if necessary.

For CoLT-FA, we have run experiments to compare the case when
(1) a coalesced entry is brought into the superpage TLB and just the
translation triggering the coalescing is also brought into the L2 TLB,
and (2) a coalesced entry is brought into the superpage TLB but the
L2 TLB remains unaffected. We have found that on average, (1)
outperforms (2) by an additional miss elimination of 10-15% for
both L1 and L2 miss counts. We see particularly high gains with
our approach on workloads with relatively lower contiguity such
as Povray, since the small superpage TLB cannot coalesce a high
enough number of entries to prevent eviction.

For CoLT-All, we have similarly run experiments to compare the
case when (1) a coalesced entry is brought into the superpage TLB
and its smaller coalesced version (a maximum of coalescing of four
translations in our design) is brought into the L2 TLB, and (2) a
coalesced entry is brought into the superpage TLB but the L2 TLB
remains unaffected. We see again that our approach, (1) outperforms
(2) by an average of 10-20% TLB miss eliminations.

7.1.4. Studying CoLT’s effectiveness at higher associativities. We
now consider CoLT effectiveness as TLB associativity is varied. A
number of past studies have quantified how effectively increasing
TLB associativity eliminates misses [13]. Generally, these studies

have concluded that the slightly higher TLB hit rates are offset by
huge power dissipation problems [7]. These observations are largely
responsible for the relatively low associativity (typically 2-way or
4-way) supported on current TLBs.

CoLT, however, increases the benefits of higher set-associativity
since the indexing scheme of the TLB can be more aggressively
changed without as significant an increase in conflict misses. Over-
all, this allows higher levels of coalescing. Figure 20 compares how
many L2 TLB misses in a 4-way 128-entry L2 TLB can be elimi-
nated by CoLT-SA (4-way, CoLT-SA), by varying the associativity
to 8-way but not allowing coalescing (8-way, No CoLT), and by al-
lowing CoLT on the 8-way TLB (8-way, CoLT-SA). Note that all
configurations use a fixed TLB size despite associativity changes.

First, Figure 20 shows that merely increasing the associativity to
8-way only eliminates 10% of the baseline L2 misses. In fact, even 4-
way L2 TLBs with low-overhead CoLT-SA far exceed the benefits of
higher associativity, eliminating 40% of baseline misses on average.

Figure 20 shows however, that the 8-way configuration aug-
mented with CoLT-SA does provide significant benefits. CoLT-SA
now eliminates 60% of the baseline misses on average, a substantial
improvement over the other two scenarios. While a detailed power
analysis is beyond the scope of this work, the performance, power
ratio may therefore become more amenable with CoLT.

7.2. Performance Analysis

Up to this point, we have evaluated the benefits of CoLT in terms
of miss rate eliminations. While this does indicate CoLT’s effec-
tiveness, we now focus on performance numbers which track how
much faster each application runs with coalescing. Figure 21 details,
for every benchmark, performance improvements from CoLT-SA,
CoLT-FA, and CoLT-All. It also provides data on performance im-
provements that would occur with absolutely perfect, 100%-hit rate
TLBs. The latter serves as a comparison point to determine how
effectively CoLT performs. Once again, the baseline is a system
with 4-way 32-entry and 128-entry L1 and L2 TLBs, and a 16-entry
superpage TLB. CoLT-FA and CoLT-All conservatively reduce the
superpage TLBs to 8 entries. Moreover, as previously detailed, we
simulate a 4-way out-of-order processor.

Figure 21 shows that perfect TLBs would improve most bench-
mark runtimes by over 10% (eg. all except Gobmk and Sjeng in our
benchmarks). In fact, Xalancbmk sees a huge 115% improvement in
performance from TLBs that achieve 100% hit rate. These numbers
indicate that TLBmiss handling does significantly slow down bench-

267

0
20
40
60
80

100

M
cf

Ti
gr

M
um

m
.

Ca
ct

.

As
ta

r

O
m

ne
t.

Xa
la

nc
.

%
 4

-w
ay

, n
o

Co
LT

M

iss
es

4-way, CoLT-SA 8-way, No CoLT 8-way, CoLT-SA

0
20
40
60
80

100
Po

vr
ay

G
em

s.

Go
bm

k

Fa
st

a.

Sj
en

g

Bz
ip

2

M
ilc

Av
g.

%
 4

-w
ay

, n
o

Co
LT

M

iss
es

Figure 20: Percentage of baseline misses eliminated by CoLT-SA when
increasing associativity.

0
5

10
15
20
25

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Mcf Cact. Astar Omnet. Xalanc. Povray

Pe
rf.

 Im
pr

ov
em

en
t

0
5

10
15
20
25

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Pe
rf

ec
t

Co
LT

-S
A

Co
LT

-F
A

Co
LT

-A
ll

Gems. Gobmk Sjeng Bzip2 Milc Avg.

Pe
rf.

 Im
pr

ov
em

en
t

115 58 60 63

Figure 21: CoLT-SA, CoLT-FA, and CoLT-All performance improvements
compared to perfect TLBs.

marks. This also implies that CoLT strategies have the potential to
significantly improve performance.

Fortunately, Figure 21 shows that all of the CoLT approaches
do indeed boost application performance significantly. On average,
CoLT-SA achieves a 12% performance improvement, while CoLT-
FA and CoLT-All achieve 14% improvements. On benchmarks like
Xalancbmk, the performance improvements hover around 60% of
runtime. Across other workloads like Mcf, CactusADM, Astar,
Omnetpp, and Bzip2, at least one of the CoLT configurations im-
proves performance over 10%. We anticipate that as applications
with even larger working sets or virtualization are considered, these
performance improvements will be even higher.

Figure 21 indicates that CoLT-SA, which has the simplest imple-
mentation, performs comparably to CoLT-FA and CoLT-All. Never-
theless, benchmarks like Omnetpp and Bzip2 do see boosts from
CoLT-FA/CoLT-All. Because we assume smaller 8-entry fully-
associative TLBs, we expect CoLT-FA and CoLT-All results to be
even higher with more realistically-sized superpage TLBs.

8. Conclusion

This paper proposes and designs Coalesced Large-Reach TLBs capa-
ble of exploiting address translation contiguity to achieve high reach.
Due to a variety of OS memory management techniques involv-
ing buddy allocators, memory compaction, and superpaging, large
amounts of translation contiguity are generated, even under heavy
system load. While this contiguity typically cannot be exploited to
generate superpages, CoLT provides lightweight hardware support
to detect this behavior. As a result, large TLB miss eliminations
are possible (on average, 40% to 58%), translating to performance
improvements of 14% on average.

This work has a number of interesting implications for architects,
system designers, and OS designers. We showcase TLB optimiza-
tion techniques that architects can readily incorporate in existing pro-
cessors. System designers and OS designers can tune their software
systems to generate contiguity suitable for CoLT. For example, while
superpages can overwhelm systems performance due to their over-
heads, CoLT provides alternate mechanisms to boost performance.
We believe that CoLT will become even more critical as applica-
tions have increasingly large memory requirements and trends like
virtualization become prevalent.

9. Acknowledgments

We thank the anonymous reviewers for their feedback. We also
thank William Katsak for his help in modifying the Linux kernel for

our studies. Finally, we thank Viji Srinivasan for her suggestions on
improving the final version of the paper. The authors acknowledge
the support of Rutgers University’s Office of the Vice President for
Research and Economic Development. This work was supported in
part by their Faculty Research Grant award.

References

[1] “The Standard Performance Evaluation Corporation. SPEC CPU2006
Results,” http://www.spec.org/cpu2006.

[2] K. Albayraktaroglu et al., “BioBench: A Benchmark Suite of Bioinfor-
matics Applications,” ISPASS, 2005.

[3] AMD Corporation, “AMD Programmer’s Manual,” vol. 2, 2007.
[4] Andrea Arcangeli, “Transparent Hugepage Support,” KVM Forum,

2010.
[5] T. Barr, A. Cox, and S. Rixner, “Translation Caching: Skip, Don’t Walk

(the Page Table),” ISCA, 2010.
[6] T. Barr, A. Cox, and S. Rixner, “SpecTLB: A Mechanism for Specula-

tive Address Translation,” ISCA, 2011.
[7] A. Basu, M. Hill, and M. Swift, “Reducing Memory Reference Energy

with Opportunistic Virtual Caching,” ISCA, 2012.
[8] R. Bhargava et al., “Accelerating Two-Dimensional Page Walks for Vir-

tualized Systems,” ASPLOS, 2008.
[9] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-Level

TLBs for Chip Multiprocessors,” HPCA, 2010.
[10] A. Bhattacharjee and M. Martonosi, “Characterizing the TLB Behav-

ior of Emerging Parallel Workloads on Chip Multiprocessors,” PACT,
2009.

[11] A. Bhattacharjee and M. Martonosi, “Inter-Core Cooperative TLB
Prefetchers for Chip Multiprocessors,” ASPLOS, 2010.

[12] D. Bovet and M. Cesati, “Understanding the Linux Kernel,” 2005.
[13] J. B. Chen, A. Borg, and N. Jouppi, “A Simulation Based Study of TLB

Performance,” ISCA, 1992.
[14] D. Clark and J. Emer, “Performance of the VAX-11/780 Translation

Buffers: Simulation and Measurement,” ACM Transactions on Com-
puter Systems, vol. 3, no. 1, 1985.

[15] Z. Fang et al., “Online Superpage Promotion with Hardware Support,”
HPCA, 2001.

[16] N. Ganapathy and C. Schimmel, “General-Purpose Operating System
Support for Multiple Page Sizes,” USENIX, 1998.

[17] Intel Corporation, “TLBs, Paging-Structure Caches and their Invalida-
tion,” Intel Technical Report, 2008.

[18] A. Jaleel et al., “CMP$im: A Pin-based On-the-fly Multi-core Simula-
tor,” 4th Workshop on Modeling, Benchmarking, and Simulation, 2008.

[19] G. Kandiraju and A. Sivasubramaniam, “Going the Distance for TLB
Prefetching: An Application-Driven Study,” ISCA, 2002.

[20] C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” PLDI, 2005.

[21] C. McCurdy, A. Cox, and J. Vetter, “Investigating the TLB Behavior
of High-End Scientific Appplications on Commodity Multiprocessors,”
ISPASS, 2008.

[22] D. Nagle et al., “Design Tradeoffs for Software-Managed TLBs,” ISCA,
1993.

268

[23] J. Navarro et al., “Practical, Transparent Operating System Support for
Superpages,” OSDI, 2002.

[24] E. Perelman et al., “Using SimPoint for Accurate and Efficient Simula-
tion,” SIGMETRICS, 2003.

[25] T. Romer et al., “Reducing TLB and Memory Overhead Using Online
Superpage Promotion,” ISCA, 1995.

[26] M. Rosenblum et al., “The Impact of Architectural Trends on Operating
System Performance,” SOSP, 1995.

[27] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-Based TLB
Preloading,” ISCA, 2000.

[28] M. Talluri and M. Hill, “Surpassing the TLB Performance of Super-
pages with Less Operating System Support,” ASPLOS, 1994.

[29] M. Talluri et al., “Tradeoffs in Supporting Two Page Sizes,” ISCA,
1992.

[30] Virtutech, “Simics for Multicore Software,” 2007.

269

NoRD: Node-Router Decoupling for Effective Power-gating of On-Chip Routers

 Lizhong Chen Timothy M. Pinkston
 Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA

{lizhongc, tpink}@usc.edu

Abstract
While power-gating is a promising technique to mitigate the
increasing static power of a chip, a fundamental requirement is for
the idle periods to be sufficiently long to compensate for the
power-gating and performance overhead. On-chip routers are
potentially good targets for power optimizations, but few works
have explored effective ways of power-gating them due to the
intrinsic dependence between the node and router – any packet
(sent, received or forwarded) must wakeup the router before being
transferred, thus breaking the potentially long idle period into
fragmented intervals. Simulation shows that directly applying
conventional power-gating techniques would cause frequent
state-transitions and significant energy and performance overhead.
In this paper, we propose NoRD (Node-Router Decoupling), a
novel power-aware on-chip network approach that provides for
power-gating bypass to decouple the node’s ability for transferring
packets from the powered-on/off status of the associated router,
thereby maximizing the length of router idle periods. Full system
evaluation using PARSEC benchmarks shows that the proposed
approach can substantially reduce the number of state-transitions,
completely hide wakeup latency from the critical path of packet
transport and eliminate node-network disconnection problems.
Compared to an optimized conventional power-gating technique
applied to on-chip routers, NoRD can further reduce the router
static energy by 29.9% and improve the average packet latency by
26.3%, with only 3% additional area overhead.

1. Introduction
 In recent years, power has become a critical design constraint,
driving the microarchitecture design toward the paradigm of chip
multiprocessors (CMPs). As a key component in CMPs, the
network-on-chip (NoC) is the backbone for supporting communi-
cations among multiple cores. It is thus very important for NoCs to
work efficiently and effectively to achieve both high performance
and low power. However, recent studies show that NoCs can draw
a substantial percentage of a chip’s power, by up to 10%~36% [8, 9,
28]. In particular, the static power of routers has become a
significant contributor of power consumption, consisting of more
than 35% and 43% of the total NoC power at 45nm and 32nm
processes, respectively (more details in Section 2). Unfortunately,
the impact of static power will only get worse with continued
scaling of transistor feature size and chip operating voltage.
 Power-gating is a useful circuit-level technique applicable to
power-aware architectures to mitigate the increasing static power,
especially for circuit blocks that exhibit enough idleness [10, 19].
While power-gating in general is a promising technique, applying
it directly to on-chip routers has been elusive as doing so requires
several fundamental problems to be addressed in order to
maximize energy-savings and minimize performance penalties.
First, intermittent packet arrivals may cause a large number of idle

periods to fall below the breakeven time needed to compensate for
power-gating overhead, reducing the opportunity to apply
power-gating techniques usefully. Second, packets encountering
gated-off routers suffer additional transport latency to wait for
routers to wake up and are likely to experience successive wakeup
latencies on the critical path if routed over multiple hops. Third, as
a gated-off router essentially disconnects the associated node from
the rest of the network, the power-gating opportunity is upper
bounded by the local node’s traffic and none of the local resources
(e.g., cache and directory) can be accessed by other nodes, unless
connectivity is somehow supported another way. Without solving
these fundamental problems, the effectiveness of applying
power-gating to on-chip routers is severely limited.
 The above problems are all caused by node-router dependence
– whether a node can send, receive or forward a packet depends
directly on the on/off status of the associated router of that node. In
this paper, we propose NoRD (Node-Router Decoupling), a novel
approach that provides separate power-gating bypass to decouple
the node’s ability for transferring packets from the status of the
router. This approach avoids unnecessary router wakeups and,
more importantly, the associated performance penalty and energy
overhead. NoRD effectively increases the length of idle periods,
removes wakeup latency from the critical path, and eliminates
power-gating disconnection problems. The main contributions of
this paper are the following:
� Fundamental and critical problems of applying conventional

power-gating techniques to on-chip network routers are iden-
tified;

� The concept of Node-Router Decoupling and a power-gating
bypass technique to implement NoRD are proposed, which
provides a unified and effective solution to the aforemen-
tioned problems;

� Full system simulations show a significant improvement in
the use of power-gating with NoRD as compared to directly
applying power-gating with conventional techniques.

 The rest of the paper is organized as follows. Section 2
provides more background on the static power of routers and the
power-gating technique. Section 3 highlights the problems of
power-gating on-chip routers and motivates the need for a better
approach. Section 4 explains the details of the proposed NoRD
design. Section 5 discusses our evaluation methodology, and
Section 6 presents simulation results. Finally, related work is
summarized in Section 7, and Section 8 concludes the paper.

2. Background
2.1 Static Power of On-chip Routers

 The static power of CMOS circuitry has been increasing
substantially in recent years due to the continued scaling of
transistor feature size and chip operating voltage. As a major

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.33

270

component of multicore chips, on-chip networks consume around
10%~36% of a chip’s power, as shown in recent industrial and
research chips [8, 9, 28]. A considerable amount of NoC power
comes from static consumption. To study the significance of NoC
static power and the impact of technology scaling, Figure 1(a)
plots the percentage of static power of on-chip routers at 3GHz for
various manufacturing generations and operating voltages. Results
are obtained from the Orion 2.0 [13] power model. To reflect
realistic workloads, Orion is fed with statistics from full system
simulation – Simics [21] plus GEMS [22] – running multi-threaded
PARSEC 2.0 benchmarks [2] (more details of the simulation
infrastructure are described in Section 5). As shown in the figure,
the percentage of static power consumption increases as the feature
size and operating voltage decrease, from 17.9% at 65nm and 1.2V,
to 35.4% at 45nm and 1.1V, to 47.7% at 32nm and 1.0V. This trend
clearly illustrates that the static power of on-chip routers has
become a significant part of the overall router power consumption,
and only worsens for process technologies beyond 45nm. Figure
1(b) further breaks down the total power consumption of on-chip
routers at 45nm with 1.0V into dynamic and various static
components. As can be seen, buffers consume 55% of the static
power (21% of the total power) while other router components
consume 45% of the static power (17% of the total power). This
indicates that the static power consumption in router components
other than buffers is significant and that appropriate techniques
need to be adopted to reduce all contributors to static power.

2.2 Power-gating Techniques

 One of the most effective techniques to mitigate the static
power of a circuit block is power-gating as it cuts off the power
supply of that block, which is the source of leakage currents in
both subthreshold conduction and reverse-biased diodes. It is
implemented by inserting appropriately sized header or footer
transistor(s) with high threshold voltage (non-leaky “sleep switch”)
between Vdd and the block, or the block and GND, as illustrated in
Figure 2(a). By asserting or de-asserting the sleep signal, the
supply voltage to the power-gated block can be turned on and off.
 Figure 2(b) depicts the key intervals of power-gating. At time t0,
the sleep signal is asserted and distributed to the sleep transistor
with certain overhead energy. At t1, this signal arrives at the sleep
transistor and turns it off, so the virtual Vdd starts to drop.
Correspondingly, the leakage current also decreases and the
cumulative energy savings start to increase. From this moment, the
block stays in the power-gated off state until t2 when the sleep
signal is de-asserted and distributed again, initiating the wakeup
process. From t2 to t3, another energy overhead is incurred in
distributing the sleep signal and waking up the gated-off block.
The cumulative energy savings stop increasing at t3 when the

virtual Vdd restores to full Vdd and the wakeup process concludes.
Consequently, an important parameter in power-gating is the
“breakeven time” (BET), which is defined to be the minimum
number of consecutive cycles that a gated block needs to remain in
idle state before being awoken to offset power-gating energy
overhead [19, 20]. Prior research using analytical modeling and
simulation [10, 23] estimate the BET value to be around 10 cycles
for functional units and on-chip routers under current technology
parameters.

2.3 Use of Power-gating

 Although power-gating can reduce power, it can also reduce
system performance. This is because a powered-off block cannot
perform the assumed functions temporarily, and waking up the
block takes an additional wakeup delay, thus potentially stalling
system progress. Therefore, effective use of power-gating should
achieve two objectives in a balanced way:
(1) Maximize net energy savings, which means to maximize the
idleness of unneeded functional blocks in order to increase the
cumulative energy savings while reducing the associated energy
overhead as much as possible;
(2) Minimize performance penalty, which means to partially or
completely reduce/hide the wakeup latency of needed functional
blocks, so that execution can continue with minimal delay.
 While power-gating has been used successfully in cores and
execution units [10, 19, 20], only recently has research started to
investigate its application to on-chip network routers [23, 24, 25].
However, as discussed shortly in the next section, due to the
node-router dependence in on-chip networks, the conventional way
of power-gating routers is ineffective in achieving the energy and
performance objectives. Several fundamental and critical problems
must be addressed to mitigate costly frequent state-transitions and
performance overhead that comes with applying the conventional
technique.

3. Motivation
3.1 Conventional Power-gating of On-chip Routers

 The on-chip network is responsible for connecting the various
components within a CMP, where each node may consists of a
processor core, caches, and an associated router. Node-router
dependence means that the ability for a node to send, receive or
forward a packet depends directly on the on/off status of the
associated router. For example, a node can inject a packet into the
network only when the associated router is in the powered-on state.
Conversely, routers become idle when the associated nodes have
no packet to send, receive or forward. Our full system simulation
results show that on-chip routers can be idle 30%~70% of the time

 (a) Static power percentage (b) Router power decomposition

Figure 1: Static power vs. dynamic power of on-chip routers.

0%

20%

40%

60%

80%

100%

1.2V 1.1V 1.0V 1.2V 1.1V 1.0V 1.2V 1.1V 1.0V

65nm 45nm 32nm

St
at

ic
po

w
er

 p
er

ce
nt

ag
e

Buffer_static
21%

VA_static 7%

SA_static 2%

Xbar_static 5%

Clock_static 4%

Dynamic
62%

271

(with x264 having the lowest of 30.4% and blackscholes having
the highest of 71.2%), depending on the physical location of the
routers in the NoC and the load intensity of the applications.
Therefore, power-gating techniques can be applied to on-chip
routers to take advantage of their idleness.
 When the internal datapaths of a router are empty (i.e., input
ports, output latches, and the crossbar), the router microarchitec-
ture can be power-gated off to save static power after notification
of all its neighbors. Figure 2(c) shows an example of power-gating
router B and handshaking with one of its upstream routers, router A.
A canonical wormhole router [3] is assumed, which consists of
routing computation (RC), VC allocation (VA), switch allocation
(SA) and switch traversal (ST), with another stage of link traversal
and buffered writing (LT). A small non-power-gated controller is
added in the router to monitor the emptiness of the datapath and
the wakeup signals from neighbors. When the datapath of router B
is detected as empty and the WU (wakeup) signals are clear, the
controller in router B asserts a sleep signal to put router B into
gated-off state and asserts a PG (power-gate) signal to notify router
A. Upon detecting the asserted PG signal, router A tags the output
port that leads to router B as being power-gated and hence becomes
unavailable in the SA stage1. Later, after router B is power-gated,
some packet in router A or another neighbor of router B may
request an output port to router B in the SA stage, triggering the
WU signal to be asserted which causes the controller in router B to
de-assert its sleep signal. The packet will then be stalled in the SA
stage while waiting for router B to wake up and de-assert the PG
signal. According to previous studies [23, 25], the wakeup latency
for on-chip routers under typical technology parameters is a few
nanoseconds, or around 10~20 cycles depending on the frequency.
In what follows, we use the term conventional power-gating of
routers to refer to the above mechanism of applying conventional
power-gating to on-chip routers.

3.2 Intensified BET Limitation

 A major obstacle to achieving effective power-gating of
on-chip routers is the intensified limitation caused by breakeven
time (BET). It has been observed that, when applying power-gating
to functional units, the BET limitation may cause large energy
penalty for some applications where functional units do not exhibit
long enough idle periods [19]. Unfortunately, when applying
conventional power-gating to on-chip routers, the BET limitation

1 To ensure the receiving of packets that are already in ST and LT stages,
either router B needs to wait two more cycles before deciding to enter
gated-off state, or WU should be generated early enough.

becomes much more prevalent due to intermittent packet arrivals
seen by the routers. Figure 3 illustrates the problem even in the
case where the NoC has substantial idleness, as given by a low
average arrival rate of 0.1 flits/cycle (i.e., 10% traffic load). In
(a), with two successive single-flit packets arriving in the first two
cycles, the router has up to 18 idle cycles for useful power-gating;
whereas in (b), discrete packet arrivals cut down idle periods to
below the BET, leading to an energy penalty as opposed to savings
if power-gated. Our evaluation on PARSEC benchmarks shows
that the number of idle periods having a length less than or equal to
the BET constitutes more than 61% of the total number of idle
periods. Thus, on the one hand, routers on average exhibit very
good idleness that could benefit from applying power-gating, but
on the other hand, a large percentage of these idle periods are too
short to meet the BET requirement as any sending, receiving or
forwarding operation of a node would generate packets for the
associated router to process, thus severely limiting the effective-
ness of conventional power-gating of routers.
 One direct way to address this problem is to reduce the BET
through better circuit-level design or advanced manufacturing
processes, which unavoidably have physical limitations (e.g.,
transistor sizing of the inverter-chain has limited ability in
mitigating the energy overhead of sleep-signal distribution).
Another possibility is to apply conventional power-gating to
smaller individual components within each router, such as per
input port or per virtual channel [24, 25]. This method, however,
can only mitigate the impact of the BET problem as individual
components have only slightly longer idle period, and even if the
BET condition is satisfied, many power-gated cycles are wasted to
offset the energy overhead. Moreover, this requires prohibitive
hardware implementation overhead. For example, there are 35
power domains in a single router in [25] to implement this method
of power-gating in addition to the complex coordination needed
among different components, which incurs significant energy and
area overhead with considerable design effort. Thus, a much more
effective way of removing the dependence between the node and
router is needed, so as to combat the BET limitation from the
source by reducing the number of wakeups while maintaining the
ability to transport packets in the NoC.

 (a) Power-gating technique (b) Energy vs. time (c) Power-gating of on-chip routers

Figure 2: Power-gating technique and its application to on-chip routers.

Power-gated
Block

sleep
signal

Vdd

Virtual
Vdd

GND

t0 t1 t2 t3 t

Energy
cumulative

energy savings

energy overhead

breakeven time

0

GND

Vdd

WU

PG

FIFO

FIFO

VA & SACtrlr
FIFO

FIFO

VA & SA Ctrlr

Router A Router B

(a)

(b)
Figure 3: Intermittent packet arrival.

9 cycles 9 cycles

0 10

18 cycles

0 1

272

3.3 Cumulative Wakeup Latency in Multi-hop Networks

 Just as the BET limitation of energy-savings is magnified in
power-gated on-chip routers, the wakeup latency problem is also
exacerbated in NoC environments, which affects performance
negatively. Due to the node-router dependence, conventional
power-gating of routers requires routers to be in on-state to
forward packets, which makes the wakeup latency exposed directly
to the critical path of packet transport to downstream routers. A
packet routed in a multi-hop NoC can experience wakeup latency
multiple times as routers at many hops along the path could be
gated-off. To make things worse, power-gating works best when
load rates are low, but in those situations more routers are in the
gated-off state, making packets more likely to encounter multiple
wakeups. One approach is to use early wakeup signal generation
(e.g., generate the wakeup signal as soon as the output port is
computed). However, this has limited ability to hide router wakeup
latency, e.g., 3 cycles maximum out of the 10~20 cycles of wakeup
latency for a 4-stage pipeline. Look-ahead wakeup is also possible
[23, 25], in which the candidate router monitors all the wakeup
signals two hops away so that it can hide at most 6 cycles of
wakeup latency. This still limited technique requires monitoring
hardware that is very complex and expensive to implement as
every router essentially has to monitor every input port in up to 12
routers within a 2-hop distance, assuming a 2-D mesh topology. A
much better approach would be to effectively remove the wakeup
latency from the critical path by providing bypass of powered-off
routers, as proposed in Section 4.

3.4 Disconnection Problem

 The third major and most obvious problem in applying
conventional power-gating to on-chip routers is the network
disconnection problem. This problem is caused also by the
node-router dependence, as whenever a router is power-gated off,
the associated node is disconnected from the rest of the network.
The disconnection problem impacts system in two ways. First, the
local node cannot send/receive packets to/from the network if the
associated router is powered-off, which limits the opportunity of
power-gating to only those cases when the core and cache
associated with the node are completely idle. Second, remote
nodes cannot access any resource on the local node either,
particularly the cache line and coherence directory. For a typical
shared last level cache (LLC) configuration, this essentially
decreases the effective cache size. For example, if half of the
routers are power-gated off, the accessible LLC size available to
the remaining nodes is reduced by 50%. Especially worth noting is
that a private LLC does not help much due to the maintaining of
cache coherence protocols. For instance, a dirty line in the private
LLC of the local node is the unique last copy of the data in the
entire system. Any other request to this line from remote nodes
must wakeup the local router to access the data and resume correct
execution, even if the local core is idle. Therefore, a more effective
way to circumvent powered-off routers and maintain the connec-
tivity of on-chip resources using some alternative path is needed.

4. Proposed Scheme: NoRD
 In this section, we propose NoRD (Node-Router Decoupling), a
novel approach that removes the intrinsic dependence between
nodes and routers, solving all the aforementioned problems
unaddressed by conventional power-gating of on-chip routers.

4.1 The Basic Idea

 The proposed approach is based on the simple idea of breaking
node-router dependence via wakeup-avoidance decoupling bypass
paths. Recall that in conventional power-gating of routers, due to
the node-router dependence, any incoming packet from either a
local node or other nodes would first have to wake up the gated-off
router before further packet transport could occur. This wakeup
incurs energy overhead and performance penalty on each
occurrence. By providing decoupling bypass for each router, the
ability to transport packets in the network is decoupled from the
on/off status of the routers. This solves all three problems of
conventional power-gating of routers. First, packets (sent, received
or forwarded) have the option to go through bypass paths instead
of powering-on the routers to continue progress, thus avoiding
unnecessary wakeups and the associated energy overhead which
causes BET in the first place. Second, bypass allows packets to be
transferred while the router is being awoken, which removes the
wakeup latency completely from the critical path of packet
transport. Third, when the associated router is powered-off, the
local node can still be connected with the rest of the network
through the decoupling bypass paths, thus eliminating the
disconnection problem.
 While NoRD conceptually is a simple yet attractive solution,
implementing decoupling bypass that provides chip-wide
connectivity even when many or all routers are gated-off and
transition between the gated-on/off state is not straightforward. In
the proposed design, we add internal bypass paths in each router
that can forward packets directly from a selected input port to the
network interface (NI) and then forward the packets from the NI
back to a selected output port. The input/output port pairs from all
routers form – in the worst case – a unidirectional ring across the
chip, so that all the NIs are always connected. The resulting bypass
paths, together with all remaining paths provided by the normal
deadlock-free routing algorithm, allow packets to be transported
without deadlock in NoCs comprised of any combination of
powered-on and powered-off routers. In the rest of this section, we
present the detailed design of NoRD, addressing the construction
of bypass paths, the implementation of NI forwarding, the
transition and interface between routers in bypass mode and
normal mode, the avoidance of deadlock and other network
abnormalities under the presence of both on and off routers, and
asymmetric wakeup threshold to further increase the efficiency of
NoRD.

4.2 Decoupling Bypass

 Without loss of generality, we start by describing the microar-
chitecture of bypass using a 4x4 2D mesh as an example.
Decoupling bypass is achieved through two-level coordination. At
the chip level, an input port (referred to as a Bypass Inport) and an
output port (referred to as a Bypass Outport) from each router are
chosen in a way such that, collectively across the network, they
form a unidirectional ring (referred to as Bypass Ring) connecting
all nodes, as shown in Figure 4(a). At individual router level, two
datapaths are added as follows. In order to inject packets from the
local node (e.g., processor core), a datapath is added from the NI
input to the Bypass Outport (the bottom bold line in Figure 4(b)).
In order to receive packets destined to the local node from the
network, a second datapath is added from the Bypass Inport to the
NI outport to eject packets from the router (the top bold line in
Figure 4(b)). The bypass paths consisting of minimal hardware
described here are not power-gated.

273

 To forward packets through a powered-off router, a bypass path
from the router’s Bypass Inport to its Bypass Outport is established
through the node’s NI. Flits are ejected from the powered-off
router to the NI and injected back into the same router along the
path of the Bypass Ring, as shown in Figure 4(c). In a typical NoC
with wormhole switching, the NI is responsible for accepting data
from the node and encapsulating it into packets and flits (NI core),
allocating a virtual channel and checking flow control credits in the
NI input port of the associated router, and injecting the formatted
flits into the network. Receiving data from the network to the node
has a similar but reversed process. Now, to implement router
bypassing through the NI of the node, we add a latch and a
demultiplexer ahead of the ejection queue, insert a multiplexer
after the NI’s injection queue, and create a path between the input
and output ports of the NI according to Figure 4(c). With this
forwarding path, a flit can now be forwarded from the gated-off
router’s Bypass Inport to its Bypass Outport in three stages, as
annotated in Figure 4(b) and (c): at the end of link traversal,
instead of being written into the router’s input buffer as done when
the router is powered-on, the flit is written directly into the NI
bypass latch through the bypass datapath; based on the packet’s
destination header bits, the NI either sinks this flit in the local node
or forwards the flit by allocating a VC (and checking its credits);

 the flit is re-injected into the power-gated router’s Bypass
Output through the bypass datapath. The bypass datapath is
enabled only when the router is in the power-gated off state.
 The above two-level coordination essentially decouples nodes
from the on/off status of routers, as now a node can send, receive
and forward packets through the decoupling bypass even if the
associated router is in the gated-off state. Moreover, it ensures the
connectivity of all nodes. Packets can route through a combination
of Bypass Ring paths to circumvent gated-off routers and normal
paths of gated-on routers to minimize hop count. Even in the
extreme case of all routers being gated-off, packets can still
traverse along the Bypass Ring to reach any destination.
 Owing to the decoupling bypass that provides network
connectivity in all cases, deadlock-free adaptive routing based on
Duato’s Protocol [4] is easily supported. Escape resources are
comprised of the unidirectional ring formed by the (Bypass Inport,
Bypass Outport) pairs in both gated-on and gated-off router state,
where two VCs can be used to break cyclic dependence. Additional
VCs can be used as adaptive resources for adaptive routing over
the NoC.
 The deadlock- and livelock-free routing of NoRD is as follows.
Every router has adaptive VCs and escape VCs (powered-off
routers have no VCs but still have the corresponding adap-

tive/escape latches for bypassing). At normal routers, packets on
adaptive VCs use minimal adaptive routing to choose the next hop,
but packets on escape VCs are confined to choose the Bypass
Outport (i.e., move along the bypass ring) and confined to escape
VCs until destination. For packets on adaptive VCs, misrouting
occurs only when all of the downstream routers on the minimal
path are powered-off AND the Bypass Outport forces a detour
(note that the Bypass Outport could, in fact, also be on the minimal
path). In that case, packets must choose the Bypass Outport to
traverse to next router (could be either normal or off) misrouted by
one hop. However, packets are still allowed to remain on adaptive
VCs for normal routers or the corresponding adaptive latches for
bypassed routers (i.e., the entire set of adaptive resources) if the
total misrouted hops are below a threshold; otherwise packets are
forced to enter escape VCs (or the corresponding escape latches for
bypassed router) and route along the unidirectional ring without
returning to adaptive resources until the destination is reached. At
the next router, if packets are still on adaptive VCs, they will repeat
the above process (i.e., use minimal adaptive routing if available
on the bypass ring or mesh, or enter escape resources on the
Bypass Ring if needed) until reaching the destination. No U-turns
are allowed at any hop. The above routing for NoRD follows
Duato’s Protocol for deadlock-free adaptive routing as the escape
VCs on the Bypass Ring have no cycles in the extended channel
dependence graph and the adaptive channels allow for fully
adaptive routing. As detoured packets have a cap on the number of
misroutes allowed before being forced to enter escape VCs with a
bounded hop count, NoRD avoids both deadlock and livelock.
Also, any additional hops from detours are partially offset by gains
in completely hiding router wakeup latency as compared to
conventional power-gating and reduced per hop latency of the
bypass path. Finally, starvation for NI resources by the local node
is easily avoided by granting priority over bypass traffic to the
local node if not served for a predetermined number of consecutive
cycles. However, this should happen rarely as the router is
assumed to be power-gated off only when the load is low and
contention is minimal.

4.3 Transition between Gated-on and Gated-off States

 To transition between gated-on and gated-off states and to
interface with neighboring routers for correct flow control, several
handshaking signals are needed as illustrated in Figure 5. In this
example, we focus on the state-transition of router B, and the
bypass of router B is from router A through the NI of router B to
router D.

 (a) Chip-level Bypass Ring (b) Bypass datapath in router (c) Bypass datapath in NI
 Figure 4: Decoupling bypass (shaded components in (b) and (c) are not power-gated).

 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

FIFO

FIFO

X+

VA & SA

X-
Y+

NI

Y-

Y- X-

X+

NI

Y+

Output
buffer

Network Interface

 Bypass
latch

To Processor
Core

Eject

Inject

NI
Core

Ejection Q

Injection Q

ctrl

From Processor
Core

274

 To transition from gated-on to gated-off state, similar to the
conventional power-gating mechanism described in Section 3.1, if
router B is empty and both IC and WU are clear (these two signals
will be explained shortly), it asserts the PG signals, enables bypass
and goes into gated-off state by asserting the sleep signal (not
shown). Upon detecting the asserted PG signal, routers C, D and E
tag the output port that leads to router B as power-gated (and
becomes unavailable in the SA stage) and stop tracking credits,
while router A, which is the Bypass Ring upstream router, sets the
credit of each VC in that output port to 1 as router B now has only
one output buffer available as shown in Figure 4(b). To ensure the
receiving of packets that are already in the ST and LT stages of the
neighboring routers, an IC (incoming) signal is generated at the
beginning of SA if there is a flit in the SA stage and propagates to
router B. In this way, the IC signal is always two cycles ahead of
flits to notify router B that a flit is incoming and router B should
not enter into gated-off state. Finally, for any flits that are in the VA
and SA stages of routers C, D and E, they will restart the pipeline
from RC using the new output port availability information as they
are still in the input channel. Note that these flits must be head flits;
otherwise if the head flits have left router C/D/E to B but body/tail
flits have not yet arrived at router B, then the virtual channel is not
de-allocated and router B is not considered as empty.
 To transition router B from gated-off state to gated-on state, the
WU signal first needs to be generated according to a wakeup
metric. Ideally, the wakeup metric should de-assert WU when the
load is low, and assert the signal when it is above a threshold when
the load becomes high. A naïve way is to use the number of flits
transmitted by the gated-off router in a fixed period of time, but
this may not necessarily generate a wakeup signal when the load is
high as flits could be stalled due to network congestion. Another
traditional metric is to use router buffer utilization [27], which also
is not suitable as input buffers are not used in the gated-off state.
As all traffic to gated-off routers are forwarded through the NI and
allocated a VC there to (re)inject into the network, we use as a
threshold parameter the number of VC requests at the local NI over
a period of time (10 cycles) for the wakeup metric. This metric
works for both low and high load as the number of VC requests
goes up even if the flits are stalled, and it remains valid in the
extreme case when all the routers are gated-off, as the wakeup
signal is generated locally.
 With the number of VC requests used as threshold wakeup
metric, the operation of turning on a gated-off router is straight-
forward. When the WU signal is asserted, router B starts to wake
up while the bypass is still functioning. When wakeup finishes,
router B de-asserts the PG signal. Upon detecting the de-asserted
PG signal, routers C, D and E reset the credits to full while router

A adds back (full-1) credits. Once the flit in the NI bypass datapath
is written into the input buffer of router B, the bypass of router B is
disabled to complete the state-transition.

4.4 Asymmetric Wakeup Thresholds

 While previous subsections describe the necessary operations
to keep NoRD functional, the efficiency of NoRD can be increased
using asymmetric wakeup thresholds. For certain topologies and
constructions of the Bypass Ring, some routers may have greater
impact on performance than others based on their location in the
NoC. For example, powering on Routers 4 and 5 in Figure 4(a) has
larger performance benefits than powering on Routers 0 and 1, as
the former provide a shortcut to route packets that would otherwise
be detoured through 9->13->12->8. Therefore, taking the
placement of bypass paths and routers into account, additional
performance gains can be obtained.
 To differentiate between routers in NoRD, asymmetric wakeup
thresholds can be used. For example, NoC routers can fall broadly
under two classes – performance-centric and power-centric –
based on their importance, where a low wakeup threshold is
assigned to the performance-centric class and a high wakeup
threshold is assigned to the power-centric class. The intuition
behind this is to wake up early a few performance-critical routers
while waking up late the rest (majority) of the routers. In this way,
not only performance improves due to the added shortcuts in
routing paths, but also more static power can be saved by allowing
non-performance-critical routers to stay in the gated-off state for a
longer time. As a threshold metric is needed for wakeup anyway,
no additional hardware is required.
 To select the set of routers that are more critical to performance,
we wrote a short off-line program based on the Floyd-Warshall
all-pair shortest path algorithm [7]. Figure 6 plots the best
node-to-node average distance and per-hop latency that can be
achieved with a given number of powered-on routers for the 2-D
mesh example in Figure 4(a). As expected, with more routers
turned on, the average hop distance between nodes in NoRD
decreases rapidly due to the added flexibility in routing paths.
Meanwhile, more packets are routed through the normal pipeline
of powered-on routers instead of the simpler and shorter bypass
pipeline, thus gradually increasing the per-hop latency. Figure 6
also shows that, by turning on six routers, the average hop distance
can be greatly reduced with moderate increase in the per-hop
latency, indicating a viable trade-off point. The corresponding
router set that achieves this data point consists of Routers 4, 5, 6, 7,
13 and 14 in Figure 4(a). In this example, these routers are
designated as the performance-centric routers, and the remaining
routers are classified as the power-centric routers. Other classifica-

Figure 5: Handshaking in NoRD.
PG: power-gate, WU: wakeup, IC: incoming

IC

PG

Router
A

Router
B

Router
D

WU

IC

PG

Router
C

IC PG

Router
E

IC PG

NI of
Router B

Figure 6: Impact of powering-on routers.

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Av
er

ag
e

pe
r-

ho
p

la
te

nc
y

(c
yc

le
s)

Av
er

ag
e

no
de

-t
o-

no
de

 d
ist

an
ce

 (h
op

s)

Number of powered-on routers

Node-to-node distance

Per-hop latency

275

tions are still possible and an optimal classification could be
determined dynamically with comprehensive consideration of
topology, traffic patterns, bypass placement, and routing algorithm.
For instance, the routing algorithm may adaptively steer packets to
a few performance-centric routers and the rest of the routers can be
designated as power-centric routers. While further work can be
conducted to investigate the design complexity of finding the
optimal classification and the trade-off in doing so, this falls
outside the scope of this paper. Here, we intend only to show that
asymmetric wakeup threshold, even with a simple dual-mode
classification, can provide additional benefits in both performance
and energy to complement the proposed decoupling bypass
mechanism.

4.5 Impact of NoRD on Energy and Performance

 We mentioned before that there are two primary objectives
when using power-gating techniques. Here, we analyze the impact
of NoRD on achieving these two objectives to highlight the
benefits of the proposed decoupling approach.
Impact on Net Energy Savings
 NoRD maximizes the opportunity for saving energy by
allowing fragmented idle periods that are even shorter than the
BET to be exploited, which is not possible in conventional
power-gating of routers. Moreover, by steering short packet spikes
to bypass paths without waking up the routers, the energy overhead
in distributing the sleep signal and powering-on the router is also
largely avoided. Therefore, NoRD is able to increase the cumula-
tive energy savings while reducing the power-gating energy
overhead.
Impact on Performance
 NoRD minimizes the performance penalty of power-gating
techniques from the following aspects: (1) the use of decoupling
bypass reduces the number of state-transitions and, hence, avoids
the wakeup latency when routers do not need to be turned on; (2)
when router wakeup is unavoidable, decoupling bypass provides
temporary paths for packets while the router is being awoken, thus
hiding wakeup latency; (3) a few performance-centric routers with
low thresholds can be awoken earlier to guard performance. With
these features, NoRD can greatly reduce the performance penalty
of conventional power-gating of routers, as the following analysis
shows.

5. Evaluation Methodology
5.1 Simulator Configuration

 The proposed NoRD scheme is evaluated quantitatively under
full-system simulation using Simics [21], with GEMS [22] and
Garnet [1] for detailed timing of the memory system and on-chip
network. Orion 2.0 [13] is integrated in Garnet for NoC power and
area estimation using technology parameters from an industrial
standard 45nm CMOS process and 1.1V operating voltage. The
saved static power is modeled after [10] and the overhead is
modeled after [10, 13]. A wakeup latency of 12 cycles is used
assuming a 4ns wakeup delay and 3GHz frequency, and 3 cycles
can be hidden when the early wakeup technique [23] is applied.
We modify the simulators to model all the key additional hardware
for power-gating and bypass, including the extra power consump-
tion in the NI buffering and forwarding logic. The additional
dynamic (static) power of the NI in NoRD is lumped into router
dynamic (static) power to provide fair comparison across different
schemes. Step 2 in Figure 4(c) that checks VC availability in the

NI is assumed to take one cycle, as this step essentially reuses the
original function in the NI which is modeled as one cycle in Garnet.
Wormhole switching with credit-based flow control is assumed,
although NoRD is agnostic to the switching and flow control
mechanism used. Table 1 lists the key parameters used in the
evaluations. Full system simulation uses a 16-node mesh, and
synthetic traffic simulation uses both 16- and 64-node configura-
tions to evaluate scalability.
 We compare the following designs: (1) No_PG: baseline design
with no power-gating; (2) Conv_PG: applying conventional
power-gating to routers; (3) Conv_PG_OPT: conventional
power-gating optimized with early wakeup (this optimized design
not only improves performance by partially hiding wakeup latency,
but also reduces power-gating overhead by avoiding powering-off
all idle periods that are shorter than 4 cycles); (4) NoRD: our
proposed approach based on node-router decoupling. In addition,
all designs under evaluation are augmented with adaptive routing
algorithms using Duato’s Protocol [4]. The only difference is that
(1)~(3) use adaptive routing in adaptive VCs and XY routing in
escape VCs, whereas (4) uses adaptive routing and the ring-based
escape mechanism described in Section 4.2.

5.2 Workloads

 Multi-threaded PARSEC 2.0 benchmarks [2] are used for the
majority of simulations, as the performance and power consump-
tion of realistic workloads are of primary concern. Each core is
warmed up for sufficiently long time (with a minimum of 10
million cycles) and then run until completion. We also perform
simulations with synthetic traffic (uniform random and
bit-complement [3]) to provide insight on the behavior of different
designs across a wide range of load rates and parameter values. In
those cases, packets are uniformly assigned two lengths. Short
packets are single-flit while long packets have 5 flits. For synthetic
traffic, the simulator is warmed up for 10,000 cycles and then the
statistics are collected over another 100,000 cycles.

6. Results and Analysis
6.1 Wakeup Thresholds

 To simulate NoRD, the appropriate wakeup thresholds must
first be found. This is done empirically. All routers are forced into
sleep mode without waking up – concentrating traffic on the
Bypass Ring – and the number of VC requests (averaged over all
routers) is recorded while varying the load rate. It can be seen from
Figure 7 that the maximum achievable throughput of the Bypass

Table 1: Key parameters used in simulation.
Core model Sun UltraSPARC III+, 3GHz
Private I/D L1$ 32KB, 2-way, LRU, 1-cycle latency
Shared L2 per bank 256KB, 16-way, LRU, 6-cycle latency
Cache block size 64Bytes
Coherence protocol MOESI
Network topology 4x4 and 8x8 mesh
Router 4-stage, 3GHz
Virtual channel 4 per protocol class
Input buffer 5-flit depth
Link bandwidth 128 bits/cycle
Memory controllers 4, located one at each corner
Memory latency 128 cycles

276

Ring is low (i.e., 14% of the throughput when all routers are turned
on), indicating that some routers need to be awoken when network
traffic increases, as measured by VC requests.
 The objective of choosing the wakeup thresholds is to
maximize the static power savings opportunity while not signifi-
cantly increasing packet latency. In this sense, the dual-threshold
technique in asymmetric wakeup thresholding provides more
flexibility in achieving a good trade-off. In the current implemen-
tation of NoRD, the performance-centric routers are assigned a
threshold of 1 as they are critical to performance and need to be
awoken early. The remaining power-centric routers can use a
higher threshold to enable more power-savings. Considering that a
threshold value of 4 VC requests can lead to nearly 60% increase
in packet latency, the power-centric routers are assigned a
threshold of 3 to avoid large performance penalty. Although the
thresholds here are determined empirically, they work very well
across all benchmarks.

6.2 Impact on Static Energy

 Figure 8 presents the results of static energy of different
designs normalized to No_PG. It can be seen that, Conv_PG
reduces the static energy slightly more than Conv_PG_OPT by 4.2%
on average (51.2% vs. 47.0%). This is because Conv_PG does
power-gating as long as the routers are empty whereas
Conv_PG_OPT power-gates routers only if the idle periods are
longer than 3 cycles as indicated by the early wakeup signal. As
shown later, early wakeup pays off for Conv_PG_OPT in terms of
performance. The lowest static power is achieved in the proposed
NoRD approach for all benchmarks, with an average reduction of
62.9% compared with No_PG. When comparing relatively, NoRD
provides savings relative to Conv_PG and Conv_PG_OPT of 23.9%
and 29.9% on average, respectively. This improvement mainly
comes from the increased opportunity in utilizing short idle periods
and the reduced number of wakeups through decoupling bypass.

6.3 Reducing Power-gating Overhead

 To provide more insight of the effectiveness of NoRD in
reducing power-gating overhead, Figure 9(a) compares the energy
overhead caused by router wakeup for conventional power-gating
designs and the bypass design, normalized to Conv_PG (No_PG is
not shown in the figure as it does not have any wakeups). As can
be seen, the power-gating overhead in NoRD is considerably
reduced by 80.7% and 74.0% compared with Conv_PG and
Conv_PG_OPT, respectively. Figure 9(b) shows the reduction in
the total number of wakeups in different designs normalized to

Conv_PG. NoRD decreases the number of wakeups by 81.0% and
73.3% over Conv_PG and Conv_PT_OPT, respectively, which
explains the above substantial reduction of power-gating overhead
and demonstrates the usefulness of the decoupling approach.

6.4 Impact on Dynamic Energy

 Due to the detour of some packets in bypassing powered-off
routers, the dynamic energy of NoRD may increase. Figure 10
plots the breakdown of NoC energy across the benchmarks, so that
the relative impact of each NoC energy component can be
examined. For the NoC dynamic energy (routers plus links), NoRD
incurs an overhead of 10.2% on average, which constitutes 4.0% of
the total NoC energy consumption. However, the static energy and
wakeup overhead savings offered by NoRD constitutes 24.7% of
the total NoC energy. Compared to No_PG, Conv_PG and
Conv_PG_OPT, this renders NoRD a net savings of NoC energy of
9.1% and 9.4% and 20.6%, respectively. As on-chip networks
consume a varying percentage of chip’s overall energy (e.g.,
around 10%~36% as mentioned in Section 2), the impact of NoRD
on overall chip energy depends on particular chip microarchitec-
tures.

6.5 Impact on Performance

 After presenting the energy statistics, we now compare the
performance impact of different designs, which is another
importance objective of power-gating techniques. Figure 11 shows
the average packet latency, and Figure 12 compares the execution
time of the four designs. No_PG does not have any performance
penalty as there is no power-gating, and hence provides a lower
bound on average packet latency and execution time. As can be
seen, the aggressive power-gating scheme, Conv_PG, significantly
degrades the average packet latency by 63.8% on average; whereas
Conv_PG_OPT with early wakeup mitigates this degradation to
41.5% on average. These large penalties in conventional pow-
er-gating designs mainly come from the fact that once a router is
power-gated off, any packet from either local traffic or in-network
traffic suffers additional wakeup latency before being processed by
the node. The comparison between Conv_PG_OPT and Conv_PG
indicates that early wakeup does help a lot in reducing the
performance penalty, but still cannot mask entirely the negative
effects of wakeup latency. In contrast, NoRD decouples nodes
from routers, effectively removing the wakeup latency from the
critical path. The latency overhead in NoRD is caused by packet
detours, which is partially offset by reduced per hop latency and
avoidance of long wakeup latency as discussed before. As a result,

 Figure 7: Determining wakeup threshold. Figure 8: Static energy comparison (normalized to No_PG).

Req = 1
Req = 2

Req = 3

Req = 4

Req = 5

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Injection Rate (flits/node/cycles)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

St
at

ic
en

er
gy

 (n
or

m
. t

o
N

o_
PG

)

No_PG Conv_PG Conv_PG_OPT NoRD

277

the overall degradation of average packet latency in NoRD is only
15.2%, on average. The disparities in average packet latency
among these designs result in different execution time, as shown in
Figure 12. Although different benchmarks exhibit variations in the
specific percentage of degradation due to their difference in
network sensitivity, the trend is similar that NoRD has the smallest
performance penalty compared to Conv_PG and Conv_PG_OPT.
Overall, the Conv_PG, Conv_PG_OPT and NoRD increase the
execution time by 11.7%, 8.1% and 3.9%, respectively, in order to
achieve the energy saving described previously.

6.6 Effects on Hiding Wakeup Latency

 So far, the effectiveness of NoRD has been demonstrated in
real applications using full system simulations. In addition to the
above primary results, we also perform simulations with synthetic
uniform random traffic to highlight key characteristics of NoRD.
Recall that cumulative wakeup latency is one of the big obstacles
to power-gating routers, particularly in multi-hop networks. To
illustrate that NoRD fundamentally solves this problem, Figure 13
shows the average packet latency of Conv_PG, Conv_PG_OPT
and NoRD while varying the wakeup latency across a wide range.
The load rate is set to the average load rate of PARSEC bench-
marks. As can be seen, the latency of Conv_PG and

Conv_PG_OPT increases by nearly 1.5X and when the wakeup
latency increases from 9 to 18 cycles; whereas the latency of
NoRD remain similar for different wakeup latencies, which clearly
demonstrates its ability to hide wakeup latency.

6.7 Behavior across Full Range of Network Loads

 Next, we investigate the behavior of different designs across
the entire network load range: from zero load to saturation loads.
Figure 14 presents the performance and power results of a 16-node
mesh under uniform random traffic, and Figure 15 presents for
64-node under uniform random and bit-complement traffic. Here,
while the behavior of No_PG is very typical, interesting results are
found for Conv_PG_OPT and NoRD. These are explained by
separating the loads into three regions.
 (1) Low to medium load region: When the load is very low,
many routers are in the gated-off state for the majority of the time
in both Conv_PG_OPT and NoRD. For Conv_PG_OPT, packets
are likely to experience wakeup latency once or multiple times, so
the average packet latency is high. For NoRD, packets use bypass
more often, so average latency is increased due to detours. When
load gradually increases, more routers are in the on-state, which
tends to reduce the latency. This factor actually offsets the effect of
increased load on average latency, leading to a net decrease in

 (a) Power-gating energy overhead (b) Reduction in router of wakeups

Figure 9: Reduction of power-gating overhead.

Figure 10: Overall NoC energy breakdown.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Po

w
er

-g
at

in
g

ov
er

he
ad

 e
ne

rg
y

Conv_PG Conv_PG_OPT NoRD

0%

20%

40%

60%

80%

100%

Re
du

ct
io

n
in

 r
ou

te
r w

ak
eu

ps

Conv_PG Conv_PG_OPT NoRD

0%

20%

40%

60%

80%

100%

120%

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

N
o_

PG

Co
nv

_P
G

Co
nv

_P
G_

O
PT

N
OR

D

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace swaptions vips x264 AVG

Br
ea

kd
ow

n
of

 p
ow

er
 (n

or
m

al
ize

d
to

 N
o_

PG
)

link static power

link dynamic power

router dynamic power

router static power

power-gating overhead

278

latency for Conv_PG_OPT and NoRD. As can be seen, NoRD
achieves both lower average latency and lower power than
Conv_PG_OPT. Note that, in this region, NoRD has increased
benefits compared to Conv_PG_OPT for larger networks. This is
because the cumulative wakeup latency problem in
Conv_PG_OPT is more severe due to the increased NoC diameter
in larger networks. A gated-off router at any hop of a packet’s route
adds extra wakeup latency, and every router has a high probability
of being gated-off under low load. For instance, at 10% injection
rate under uniform traffic, the latency for No_PG, Conv_PG_OPT
and NoRD for a 4x4 mesh is 24, 34 and 29 cycles, respectively;
whereas for an 8x8 mesh, it is 36, 52 and 44 cycles, respectively.
This indicates that for a 64 node network, the latency of NoRD is
lower than Conv_PG_OPT with an increased difference compared
to the 16 node network. Curves for power for an 8x8 NoC are also
similar in shape as for 4x4, indicating that the net energy-savings
of NoRD that considers all energy contributors is still more
favorable than conventional PG for larger networks.

 (2) Medium to high load region: In this region, the three
schemes have very similar latency and power characteristics. The
relatively high load causes most of the routers to be turned on,
making little difference between the designs with or without
power-gating.
 (3) Saturation region: In this region, as nearly all routers are in
the on-state, both Conv_PG_OPT and NoRD are reduced to
No_PG, except that they use different escape mechanisms. In this
regard, as the escape ring in NoRD has less flexibility in routing
packets as compared to escape XY routing of Conv_PG_OPT,
NoRD saturates a little earlier. However, this is not an inherent
limitation of node-router decoupling, as more efficient dead-
lock-free routing algorithms such as in [5] can be used for the
bypass ring to close the throughput difference.
 Our full system simulations show that real application loads, in
practice, typically stay within the low-to-medium region where
NoRD has clear advantages over Conv_PG_OPT in both
performance and power.

Figure 11: Average packet latency. Figure 12: Execution time.

 Figure 13: Impact of wakeup latency. Figure 14: Packet latency and power of 16-node for different load ranges.

Figure 15: Packet latency and power for 64-node. Left two figures: uniform random; right two figures: bit-complement.

0
5

10
15
20
25
30
35
40
45

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)
No_PG Conv_PG Conv_PG_OPT NoRD

50%

60%

70%

80%

90%

100%

110%

120%

130%

Ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

N
o_

PG
)

No_PG Conv_PG Conv_PG_OPT NoRD

0

10

20

30

40

50

9 12 15 18

Av
er

ag
e

la
te

nc
y

(c
yc

le
s)

Wakeup latency (cycles)

Conv_PG Conv_PG_OPT NoRD

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection rate (flits/node/cycles)

No_PG Conv_PG_OPT NoRD

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6

No
C

po
w

er
 (W

)

Injection rate (flits/node/cycles)

No_PG Conv_PG_OPT NoRD

0

15

30

45

60

75

90

105

120

0 0.1 0.2 0.3 0.4

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection rate (flits/node/cycle)

No_PG Conv_PG_OPT NoRD

0
5

10

15
20
25

30
35
40

45
50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.3

N
oC

 p
ow

er
 (W

)

Injection rate (flits/node/cycle)

No_PG Conv_PG_OPT NoRD

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection rate (flits/node/cycle)

No_PG Conv_PG_OPT NoRD

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15

N
oC

 p
ow

er
 (W

)

Injection rate (flits/node/cycle)

No_PG Conv_PG_OPT NoRD

279

6.8 Discussion

Area Overhead
 For any power-gating technique, there is hardware overhead for
the sleep switch and the distribution of the sleep signal. While it
greatly depends on the optimization level of circuit design, the area
overhead of a well-designed power-gating block is usually between
4~10% [10, 12]. More of a concern for NoRD is the area overhead
of the added bypass and related hardware. In evaluating this, the
Orion 2.0 [13] on-chip network model is used with 45nm
technology parameters. We modified the simulator to model all the
additional key components of NoRD, including the added
forwarding logic in the NI. Results show that NoRD has an area
overhead of only 3.1% compared with Conv_PG_OPT.
Other Conventional Power-Gating Techniques
 We have compared NoRD with conventional power-gating of
routers optimized with early wakeup, which is one of the most
effective optimizations so far. Another trade-off that can be done
for conventional power-gating is to power-gate smaller individual
components within a router, as mentioned in Section 3.2. As
investigated in [25], this approach can reduce static energy by an
additional 17.6% on top of conventional power-gating with early
wakeup, but at the cost of 15.9% area overhead using a commer-
cial standard cell library. In comparison, the proposed NoRD can
reduce static energy by 29.9% with only 3.1% area overhead
compared to Conv_PG_OPT, indicating NoRD is a much more
cost-effective approach.
Bufferless Routing
 Recently, bufferless routing has been proposed as a means of
reducing router power consumption [6]. Although the bufferless
approach may introduce livelock, deflection and packet reassembly
issues, it can eliminate buffers and their associated power
consumption. However, as shown in Figure 1(b), while buffers are
the largest contributor of static power, other router components
consume a considerable percentage (e.g., 45%) of total static
power, which would remain even if a bufferless approach is used.
In fact, bufferless routing is complementary to power-gating
techniques in general, as both can be applied at the same time to
reduce router power consumption. For example, flits in bufferless
routing have the option to be deflected through the bypass paths in
NoRD if needed.
Shorter router pipelines and aggressive NoRD design
 In the baseline, a canonical router is used which takes 4 cycles
for the pipeline plus 1 cycle for LT; whereas the bypass for
gated-off routers in NoRD takes 2 cycles plus 1 cycle for LT. There
are some techniques such as look-ahead routing [15] and specula-
tive SA [26] that can potentially shorten the 4-cycle router pipeline
to 2-cycle. However, NoRD is still competitive in that case for the
following reasons. First, shortening the pipeline by two also
reduces the number of cycles that can hide wakeup latency by two,
making the total time (pipeline delay plus wakeup latency) to go
through a gated-off router to remain the same. Second, these
techniques come with overheads. Look-ahead routing requires
contention information to be propagated one-hop ahead, while
speculative SA may not always succeed, making 2 cycles a
best-case scenario. Ironically, speculative SA is likely to succeed at
low load, in which routers are also likely to be gated-off and the
wakeup latency dominates the delay at those routers. Third, the
bypass in NoRD can also be optimized to become more aggressive
by directly connecting the Bypass Inport to the Bypass Outport.
This has a similar rationale as for speculation in that the forward-
ing of flits optimistically assumes that there is no local flit to inject,

thereby bypassing the router in just one cycle. In case of conflict,
additional cycles are needed, just like that in speculative SA.
Therefore, when optimizations are used for both the baseline and
NoRD, there are no clear advantages for the baseline, and NoRD
remains competitive.

7. Related Work
 Power-gating as a circuit-level technique has been proposed for
some time and has been applied to cores and execution units in
CMPs [10, 19, 20]. Only recently has it been investigated for
on-chip network routers [23, 24, 25]. These works apply pow-
er-gating to routers, but are severely limited by the BET
requirement, wakeup delay and disconnection problem. In contrast,
as our approach breaks node-router dependence, it provides a
unified solution to these problems and enables effective use of
power-gating to on-chip routers.
 Bypass has been used for various purposes in on-chip networks.
In [17], default backup paths are proposed to allow fault-tolerance
with graceful performance degradation. This scheme assumes all
routers are notified each time a router becomes faulty and requires
re-computing the routing table for all routers for each fault
occurrence. Therefore, it is not suitable for run-time power-gating
in which the status of routers may change more frequently. In
comparison, each router in the proposed NoRD approach can be
powered-on/off independently without notifying all other routers
or re-computing any routing tables. A modular router architecture
is proposed in [16] that can bypass some internal faults within a
router. However, this design does not provide chip-wide connectiv-
ity and does not explore the application of power-gating techniques
as proposed in this paper. Express VC [18] also makes use of
bypass in that it virtually bypasses routers to improve both
performance and dynamic power. However, it does not reduce
router static power. Another bypass design is proposed in [11] for
adaptive flow control between bufferless and buffered router
modes. It is based on bufferless design and is subject to the
associated constraints, such as flit-by-flit routing, livelock and
packet reassembly issues. Moreover, it only targets the buffers in a
router and applies power-gating techniques conventionally,
whereas our approach is able to bypass the entire router and
implement node-router decoupling.
 Many prior works have investigated techniques to save
dynamic and static power of links [14, 27, 29]. These techniques
can readily be used together with NoRD to provide more ener-
gy-efficient NoC designs. These works and other general-purpose
dynamic power-saving techniques (such as clock-gating) have
different targets other than router static power and, therefore, are
orthogonal and complementary to this work.

8. Conclusion
 While power-gating is a promising technique to reduce static
power, node-router dependence severely limits its effective use in
on-chip routers due to the BET limitation, wakeup delay and
disconnection problem. In this paper, a novel approach that
provides separate power-gating bypass to decouple the node’s
ability for sending, receiving and forwarding packets from the
on/off status of the associated router is proposed. The resulting
design can significantly reduce the number of state transitions,
increase the length of idle periods, completely hide the wakeup
latency from the critical path and eliminate node-network
disconnection problems. Full system simulations show that,

280

compared to an optimized conventional power-gating technique
applied to on-chip routers, NoRD can further reduce the router
static energy by 29.9% and improve average packet latency by
26.3%, with only 3% additional area overhead.

Acknowledgements
 We sincerely thank Ruisheng Wang, Siyu Yue, Di Zhu, and the
anonymous reviewers for their helpful comments and suggestions.
We especially acknowledge the efforts of Yuho Jin in creating
Simics checkpoints prior to this research. We also thank Li-Shiuan
Peh’s research group for their assistance in Orion 2.0. This
research was supported, in part, by the National Science Founda-
tion (NSF), grant CCF-0946388.

References
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, "GARNET: A

detailed on-chip network model inside a full-system simulator," in
International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 33-42, 2009.

[2] C. Bienia and K. Li, "Parsec 2.0: A new benchmark suite for
chip-multiprocessors," in Proceedings of the 5th Annual Workshop
on Modeling, Benchmarking and Simulation, 2009.

[3] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks: Morgan Kaufmann Publishers Inc., 2003.

[4] J. Duato, "A new theory of deadlock-free adaptive routing in
wormhole networks," IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 4, pp. 1320-31, 1993.

[5] J. Duato and T. M. Pinkston, "A general theory for deadlock-free
adaptive routing using a mixed set of resources," IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 12, pp. 1219-1235,
2001.

[6] C. Fallin, C. Craik, and O. Mutlu, "CHIPPER: A low-complexity
bufferless deflection router," in 17th International Symposium on
High Performance Computer Architecture (HPCA), pp. 144-55,
2011.

[7] R. W. Floyd, "Algorithm 97: shortest path," Communications of the
ACM, vol. 5, p. 345, 1962.

[8] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, "A 5-GHz
mesh interconnect for a Teraflops processor," IEEE Micro, vol. 27,
pp. 51-61, 2007.

[9] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V.
Erraguntla, M. Konow, et al., "A 48-Core IA-32 Processor in 45 nm
CMOS Using On-Die Message-Passing and DVFS for Performance
and Power Scaling," IEEE Journal of Solid-State Circuits, vol. 46,
pp. 173-83, 2011.

[10] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,
and P. Bose, "Microarchitectural techniques for power gating of
execution units," in International Symposium on Lower Power
Electronics and Design (ISLPED), pp. 32-37, 2004.

[11] S. A. R. Jafri, Y.-J. Hong, M. Thottethodi, and T. N. Vijaykumar,
"Adaptive flow control for robust performance and energy," in 43rd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 433-444, 2010.

[12] H. Jiang, M. Marek-Sadowska, and S. R. Nassif, "Benefits and costs
of power-gating technique," in International Conference on
Computer Design (ICCD), pp. 559-566, 2005.

[13] A. Kahng, L. Bin, L.-S. Peh, and K. Samadi, "ORION 2.0: A fast and
accurate NoC power and area model for early-stage design space
exploration," in Design, Automation and Test in Europe Conference
and Exhibition (DATE), pp. 423-428, 2009.

[14] E. J. Kim, K. H. Yum, G. M. Link, N. Vijaykrishnan, M. Kandemir,
M. J. Irwin, M. Yousif, and C. R. Das, "Energy Optimization
Techniques in Cluster Interconnects," in Proceedings of the

International Symposium on Low Power Electronics and Design
(ISLPED), pp. 459-464, 2003.

[15] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. R. Das,
"A low latency router supporting adaptivity for on-chip
interconnects," in 42nd Design Automation Conference (DAC), pp.
559-564, 2005.

[16] J. Kim, C. Nicopoulos, D. Park, V. Narayanan, M. S. Yousif, and C.
R. Das, "A gracefully degrading and energy-efficient modular router
architecture for on-chip networks," in 33rd International Symposium
on Computer Architecture (ISCA), pp. 4-15, 2006.

[17] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, "A
lightweight fault-tolerant mechanism for network-on-chip," in 2nd
ACM/IEEE International Symposium on Networks-on-Chip (NOCS),
pp. 13-22, 2008.

[18] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, "Express virtual
channels: Towards the ideal interconnection fabric," in 34th Annual
International Symposium on Computer Architecture (ISCA), pp.
150-161, 2007.

[19] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin, "Dynamic
power gating with quality guarantees," in International Symposium
on Low Power Electronics and Design (ISLPED), pp. 377-382,
2009.

[20] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram, "A case
for guarded power gating for multi-core processors," in 17th
International Symposium on High-Performance Computer
Architecture (HPCA), pp. 291-300, 2011.

[21] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hallberg, J. Hogberg, F. Larsson, A. Moestedt, et al., "Simics: A full
system simulation platform," IEEE Computer, vol. 35, pp. 50-58,
2002.

[22] M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A.
R. Alameldeen, K. E. Moore, M. D. Hill, et al., "Multifacet's general
execution-driven multiprocessor simulator toolset," ACM SIGARCH
Computer Architecture News, vol. 33, pp. 92-99, 2005.

[23] H. Matsutani, M. Koibuchi, W. Daihan, and H. Amano, "Run-time
power gating of on-chip routers using look-ahead routing," in 13th
Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 55-60, 2008.

[24] H. Matsutani, M. Koibuchi, D. Wang, and H. Amano, "Adding
slow-silent virtual channels for low-power on-chip networks," in 2nd
ACM/IEEE International Symposium on Networks-on-Chip (NOCS),
pp. 23-32, 2008.

[25] H. Matsutani, M. Koibuchi, D. Ikebuchi, K. Usami, H. Nakamura,
and H. Amano, "Ultra fine-grained run-time power gating of on-chip
routers for CMPs," in 4th ACM/IEEE International Symposium on
Networks on Chip (NOCS), pp. 61-68, 2010.

[26] L. S. Peh and W. J. Dally, "A delay model and speculative
architecture for pipelined routers," in 7th International Symposium
on High Performance Computer Architecture (HPCA), pp. 255-66,
2001.

[27] V. Soteriou and P. Li-Shiuan, "Design-space exploration of
power-aware on/off interconnection networks," in 2nd International
Conference on Computer Design (ICCD), pp. 510-17, 2004.

[28] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B.
Greenwald, H. Hoffman, P. Johnson, et al., "The Raw
microprocessor: a computational fabric for software circuits and
general-purpose programs," IEEE Micro, vol. 22, pp. 25-35, 2002.

[29] B. Zafar, J. Draper, and T. M. Pinkston, "Cubic Ring networks: A
polymorphic topology for network-on-chip," in 39th International
Conference on Parallel Processing (ICPP), pp. 443-452, 2010.

281

Dynamic Reconfiguration of 3D Photonic Networks-on-Chip for Maximizing Performance and
Improving Fault Tolerance

Randy Morris †, Avinash Karanth Kodi †, and Ahmed Louri ‡
†Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701
‡Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721

rm700603@ohio.edu, kodi@ohio.edu, louri@email.arizona.edu

Abstract

As power dissipation in future Networks-on-Chips (NoCs) is pro-
jected to be a major bottleneck, researchers are actively engaged in
developing alternate power-efficient technology solutions. Photonic
interconnects is a disruptive technology solution that is capable of
delivering the communication bandwidth at low power dissipation
when the number of cores is scaled to large numbers. Similarly, 3D
stacking is another interconnect technology solution that can lead to
low energy/bit for communication. In this paper, we propose to com-
bine photonic interconnects with 3D stacking to develop a scalable,
reconfigurable, power-efficient and high-performance interconnect
for future many-core systems, called R-3PO (Reconfigurable 3D-
Photonic Networks-on-Chip). We propose to develop a multi-layer
photonic interconnect that can dynamically reconfigure without sys-
tem intervention and allocate channel bandwidth from less utilized
links to more utilized communication links. In addition to improv-
ing performance, reconfiguration can re-allocate bandwidth around
faulty channels, thereby increasing the resiliency of the architecture
and gracefully degrading performance. For 64-core reconfigured
network, our simulation results indicate that the performance can
be further improved by 10%-25% for Splash-2, PARSEC and SPEC
CPU2006 benchmarks, where as simulation results for 256-core chip
indicate a performance improvement of more than 25% while saving
6%-36% energy when compared to state-of-the-art on-chip electrical
and optical networks.

1. Introduction

Future projections based on ITRS roadmap indicates that comple-

mentary metal oxide semiconductor (CMOS) feature sizes will shrink

to sub-nanometer within a few years, and we could possibly have

as many as 256 cores on-chip by the next decade. While Networks-

on-Chip (NoC) design paradigm offers modular and scalable per-

formance, increasing core counts leads to increase in serialization

latency and power dissipation as packets are processed at many in-

termdediate routers. Many electronic NoC designs such as Flattened

butterfly [12], concentrated mesh and MECS topologies [10] provide

express channels to avoid excess hops between distant nodes. While

metallic interconnects can provide the required bandwidth due to

abundance of wires in on-chip networks, ensuring high-speed inter-

core communication within the allocated power budget in the face of

technology scaling (and increased leakage currents) will become a

major bottleneck for future multicore designs [4].

Emerging technologies such as photonic interconnects and 3D

stacking are under serious consideration for meeting the communi-

cation challenges posed by the multicores. Photonic interconnects

provides several advantages such as: (1) bit rates independent of dis-

tance, (2) higher bandwidth due to multiplexing of wavelengths, (3)

larger bandwidth density by multiplexing wavelengths on the same

waveguide/fiber, (4) lower power by dissipating only at the endpoints

of the communication channel and many more [29, 3, 23]. Simi-

larly, 3D stacking of multiple layers have shown to be advantageous

due to (1) shorter inter-layer channel, (2) reduced number of hops

and (3) increased bandwidth density. A prevalent way to connect

3D interconnects is to use TSVs (through-silicon vias), micro-bump

or flip-chip bonding. The pitch of these vertical vias is very small

(4μm∼10μm), and delays on the order of 20 ps for a 20-layer stack.
Most prior photonic interconnect are 2D designs that are plagued

with high optical losses due to waveguide crossings or long snake-like

waveguides that coil around the chip to prevent waveguide crossings

altogether. For example, a photonic channel with 100 waveguide

crossings will have a -5 dB loss if we assume a -0.05 dB loss per

waveguide crossing [3]. 1 3D stacking can avoid waveguide cross-

ings and enable efficient stacking of multiple optical layers to design

power-efficient topologies. Jalali’s group at UCLA has fabricated

a SIMOX (Separation by IMplantation of Oxygen) 3D sculpting to

stack optical devices in multiple layers [16]. Lipson group at Cornell

has successfully buried active optical ring modulator in polyscrys-

talline silicon [24]. Moreover, recent work on using silicon nitride

has shown the possibility of designing multi-layer 3D integration of

photonic layers with layer-to-layer optical losses as low as 0.1 dB

[5].

With an emerging technology such as photonic interconnects, it

is essential to realize that the hardware cost of designing large scale

fully photonic networks requires a substantial investment.2 Therefore,

energy, hardware and architecture limitations could force future de-

signs to limit the number of photonic components at the on-chip level.

Moreover, the static channel allocation (wavelengths, waveguides)

proposed for most photonic interconnects can provide good perfor-

mance for uniform traffic, however, for non-uniform and temporal

and spatial varying traffic as seen in real traffic, the static allocation

could limit the network throughput. Moreover, in case of faults in the

channel either due to photonic device or electronic backend circuitry

failure, communication can breakdown isolating otherwise healthy

cores. However, if the network itself could determine the current

load on a channel and re-allocate bandwidth by reconfiguring the

network at run-time, then we could improve the throughput, reduce

the overall latency, provide alternate routes in case of channel failure

and ensure that the network delivers the best performance-per-Watt

per application.

To address the requirements of energy-efficient and high-

throughput NoCs, we leverage the advantages of two emerging tech-

nologies, photonic interconnects and 3D stacking with architectural

innovations to design high-bandwidth, low-latency, multi-layer, re-

1It should be noted that if the electro-optic integration is not monolithic, then the E/O
layers are built separately and integrated in 3D via flip-chip bonding. However, here we
refer to 2D designs only in the optic layer.

2For example, even after more than a decade of research in optics, Jagaur machine
from CRAY which employs a dragonfly topology will account for 20-40% photonics and
the rest being metal interconnects due to cost constraints.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.34

282

configurable network, called R-3PO (Reconfigurable 3D-Photonic
On-chip Interconnect). R-3PO consists of 16 decomposed photonic
interconnect based crossbars placed on four optical communication

layers, thereby eliminating waveguide crossing and reducing the

optical power losses. The proposed architecture divides a single

large monolithic crossbar into several smaller and manageable cross-

bars which reduces the optical hardware complexity and provides

additional disconnected waveguides which provide opportunities for

reconfiguration. As the cost of integrating photonics with electronics

will be high, statically designed network topologies will find it chal-

lenging to meet the dynamically varying communication demands of

applications. Therefore, in order to improve network performance,

we propose a reconfiguration algorithm whose purpose is to improve

performance (throughput, latency) and bypass channel faults by adapt-

ing available network bandwidth to application demand by multiplex-

ing signals on crossbar channels that are either idle or healthy. This

is accomplished by monitoring the traffic load and applying a recon-

figuration algorithm that works in the background without disrupting

the on-going communication. Our simulation results on 64-cores and

256-cores using synthetic traffic, SPEC CPU2006, Splash-2 [30] and

PARSEC [6] benchmarks provide an energy savings up to 6-36%

and outperforms other leading photonic interconnects by more than

10%-25% for adversial traffic via reconfiguration. The significant

contributions of this work are as follows:

• We maximize the available bandwidth by reconfiguring the net-
work at run time by monitoring the bandwidth availability and

applying the reconfiguration algorithm without disrupting the on-

going communication.

• We explore the design space (power-area-performance) of recon-
figuring across multiple layers on both synthetic traffic (uniform,

permutation) as well as on real application traces (Splash-2, PAR-

SEC, SPEC CPU2006).

• We apply our reconfiguration algorithm to overcome channel faults

by effectively sharing the bandwidth of the remaining healthy

channels, thereby allowing the performance to degrade gracefully.

2. Related Work

Photonic interconnects is a technology-based solution for designing

next generation communication fabric for future multicores. Most

photonic interconnects adopt an external laser and on-chip modula-

tors, called micro-ring resonators (MRRs). On application of voltage

Von, the refractive index of the MRR is shifted to be in resonance

with the incoming wavelength of light which causes a 0 to appear

at the end of the waveguide. Similarly, when no voltage is applied,

the MRR is not in resonance and a 1 appears at the output. MRRs

are used both at the transmitter (modulators) and receiver (filters)

sides and have become a favorable choice due to smaller footprint

(10 μm), lower power dissipation (0.1 mW), high bandwidth (> 10
Gbps) and low insertion loss (1 dB) [25]. Complementary-metal

oxide semiconductor (CMOS) compatible silicon waveguides allow

for signal propagation of on-chip light. Waveguides with micron-size

cross-sections (5.5 μm) and low-loss (1.3 dB/cm) have been demon-
strated [25]. Recent work has shown the possibility of multiplexing

64 wavelengths (wavelength-division multiplexing) within a single

waveguide with 60 GHz spacing between wavelengths, although the

demonstration was restricted to four wavelengths [3, 25]. An op-

tical receiver performs the optical-to-electrical conversion of data,

and consists of a photodetector, a transimpedance amplifier (TIA),

and a voltage amplifier [32, 14]. A recent demonstration showed

that Si-CMOS-Amplifier has energy dissipation of about 100 fJ/bit

with a data rate of 10 Gbps [32]. Thermal stability of MRRs is one

of the major challenges causing a mismatch between the incoming

wavelength and MRR resonance. Techniques ranging from thermal

tuning (more power), athermal tuning (applicable only at fabrication),

tuning free-spectral range with backend circuitry (more power) and

current injection (smaller tuning range) have been proposed which

offer different power consumption levels [7, 9].

On the architecture side, there has been several photonic inter-

connects that tackle several important issues including arbitration,

inter-core communication and core-memory communication[29, 3,

23, 15, 28]. Vantrease et.al. [29] proposed a 3D stacked 256-core

photonic interconnect to completely remove all electrical intercon-

nect by designing an optical crossbar and token control. Due to

sharing of resources, contention can be high as well as the cost and

complexity of designing an optical crossbar for very high core counts.

Firefly is an optoelectronic interconnect [23] that reduces the crossbar

complexity of [29] by designing smaller optical crossbars connecting

select clusters and implementing electrical interconnect within the

cluster. In the more recent “macrochip" from Oracle [15], multiple

many-core chips are integrated in a single package and propose multi-

phase arbitration protocols for communication. FlexiShare [22] is

an optical crossbar that combines the advantages of both Corona

(single-read, multiple-write) and Firefly (multiple-read, single-write).

While Flexishare is concerned with improving bandwidth in the time

domain (more slots on more channels), R-3PO improves performance

on both space and time domain with a gradient of bandwidth (dif-

ferent percentages). Recently, a 3D photonic interconnect called

MPNoCs was proposed that uses multiple layers to create a crossbar

with no optical waveguide crossover points [31]. In this work, we

extend the 3D photonic interconnect design space by implementing a

reconfiguration algorithm that dynamically re-allocates bandwidth

from under-utilized to over-utilized links. Prior work on dynamic

reconfiguration has been restricted to time slot re-allocation, time

and space re-allocation and both power and bandwidth regulation in

multiprocessor systems [13]. To the best of our knowledge, this is

the first work to propose bandwidth reconfigurability across multiple

layers for both improving performance and reliability.

3. R-3PO: Reconfigurable 3D Photonic On-Chip Intercon-
nect

The R-3PO architecture consists of 256 cores, running at 5 GHz,

in 64 tile configuration on a 400 mm2 3D IC. As shown in Figure

1, 256 cores are mapped on a 8 × 8 network with a concentration

factor of four, called a tile. From Figure 1(a), the bottom layer,

called the electrical die, adjacent to the heat sink, contains the cores,
caches and memory controllers. To utilize the advantage of a vertical

implementation of signal routing, we propose the use of separate

optical and core/cache systems unified by a single set of connector

vias. The upper die, called the optical die, consists of the electro-
optic transceivers layer which is driven by the cores via TSVs and

four decomposed photonic crossbar layers. The electro-optic layer

consists of all the front-end system drivers and the back-end receiver

circuitry for photonics. Using TSVs, each tile will modulate the

optical signal from an external laser using MRRs and route the signal

to the appropriate destination tile. Layers 0-3 contain optical sig-

nal routing elements composed of MRRs and bus waveguides and

electrical contact for other layers, if necessary. From fabrication per-

spective, the TSV approach is more tedious due to the maintenance

283

Core + Cache + MC

Electro-Optic Transceivers

Optical Layer 0
Optical Layer 1
Optical Layer 2
Optical Layer 3

TSVs Electrical
Die

Optical
Die

Heat
Sink

External
Laser

Electrical
Contact

Group
1

Group
2

Group
3

Group
0

Core
0

Core
2

Core
1

Core
3

Sh
ar

ed
 L

2
L1

 C
ac

he

L1
 C

ac
he

L1
 C

ac
he

L1

 C
ac

he

(a)

(b)

Group
2

Group
1

Group
 0

Group
3

Group
0

Group
3

Group
 2

Group
1

Group
2

Group
1

Group
 0

Group
3

(c)

(d)

(e)
Figure 1: Proposed 256-core 3D chip layout. (a) Electrical die consists of the core, caches, the memory controllers and TSVs to transmit signals

between the two dies. The optical die on the lower most layer contain the electro-optic transceivers and four optical layers. (b) 3D chip
with four decomposed photonic crossbars with the top inset showing the communication among one group (layer 0) and the bottom
inset showing the tile with a shared cache and 4 cores. The decomposition, slicing and mapping of the three additional optical layers:
(c) optical layer 1, (d) optical layer 2 and (e) optical layer 3.

of precise alignment for electrical contacts (TSVs). An alternate

technique of designing multiple layers is to incorporate racetrack

configuration where electrical contact is restricted to the bottom layer

(electro-optic layer), and the signal propagation to upper layers is via

passive vertical coupling of MRRs. While the racetrack configuration

eases fabrication, the technique could increase the laser power due to

extra vertical coupling losses and complicate the thermal heating at

the upper layers. Adding multiple ring resonators actually improves

the filtering of the signal and reduces the crosstalk due to residual

signals. Therefore, we propose to design multiple photonic ring res-

onators coupled in racetrack configuration to traverse multiple layers

to prevent the over-reliance on TSVs.

3.1. Intra- and Inter-Group Communication

In the proposed 3D layout, we divide tiles into four groups based

on their physical location. Each group contains 16 tiles. Unlike the

global 64 × 64 photonic crossbar design in [29] and the hierarchical

architecture in [23], R-3PO consists of 16 decomposed individual

photonic crossbars mapped on four optical layers. Each photonic

crossbar is a 16 × 16 crossbar connecting all tiles from one group to

another (Inter-group). It is composed of Multiple-Write-Single-Read

(MWSR) photonic channels, which requires lesser power than Single-

Write-Multiple-Read (SWMR) channels described in [23]. A MWSR

photonic channel allows multiple nodes the ability to write on the

channel but only one node can read the channel. This channel design

reduces power but requires arbitration as multiple nodes can write

at the same time. On the other hand, a SWMR channel allows only

one node the ability to write to the channel but multiple nodes can

read the data. This channel design reduces latency as no arbitration is

required but requires source destination handshaking protocol or else,

the power to broadcast will be higher. We adopt MWSR and Token

slot [29] in this architecture to improve the arbitration efficiency for

the channel. Each waveguide used within a photonic crossbar has

only one receiver which we define as the home channel. During
communication, the source tile sends packets to their destination tile

by modulating the light on the home channel of the destination tile.

An off-chip laser generates the required 64 continuous wavelengths,
∧
= λ0, λ1, λ2 λ63. Figure 1(b) shows the detailed floor plan for

the first optical layer. For optical layer 0, a 32 waveguide bundle

is used for communication between Groups 0 and 3 and two 16

waveguide bundles are used for communication within Groups 1

and 2. For inter-group communication between 0 and 3, the first

16 waveguide bundle is routed past Group 0 tiles so that any tile

within Group 0 can transmit data to any destination tile in Group

3. Similarly, the next 16 waveguide bundle is routed past Group 3,

so that any tile within Group 3 can communicate with a destination

tiles located within Group 0. The bidirectional arrows illustrate that

light travels in both directions and depends on which group is the

source and destination. The remaining two independent waveguide

bundles (16 waveguides) are used for intra-group communication

for Groups 1 and 2 respectively. Therefore, we require a total of 64

waveguide bundle per layer. A detailed decomposition and slicing of

the crossbar on the other three layers is shown in Figure 1(c-e).

284

3.2. Router Microarchitecture
Figure 2(a) shows the router microarchitecture in R-3PO for tile

0. Any packet generated from the L2 cache is routed to the input

demux with the header directed towards RC (routing computation).

The two MSBs are used to direct the packet to a one of the four

sets of input buffers (IB0 - IB3) corresponding to each optical layer

(0-3). For the second set of demuxes, the packet will utilize an

unique identifier (that corresponds to the core number) to indicate

the source of the packet to prevent any core from overwhelming the

input buffers. Token (Request + Release) ensures that packets are

transmitted from the IBs without collision and the MRRs are used

to modulate the signal into the corresponding home channel. At the

receiver, the reverse process takes place where the packet from the

optical layer is converted into electronics and according to the unique

identifier will find one set of buffers available. Token Control is used

to prevent buffer overflow at the home node by checking the number

of empty buffer slots. If the number of empty buffer slots falls below

a certain threshold Bu f T h, then the destination tile will capture the
circulating token and will not re-inject the token until the number

of free slots increases to the threshold. Furthermore, the receiver of

R-3PO does not require router computation for an incoming flit of

a packet because, flit interleaving does not take place as an optical

token is not re-injected until the whole packet is sent. The packets

will then contend to obtain the switch (switch allocator (SA)) to reach

the L2 cache. It should be noted that the proposed unique identifier

is similar to virtual channel allocator, however we do not perform

any allocation as the decision to enter any buffer is determined on the

core number (source or destination). Figure 2(b) shows the proposed

token control block. In the token control block, an optical token is

only placed on the token inject waveguide when an optical token

is present (high TR signal) and the buffer congestion (BC) signal

is low. A low BC signal in this case represents a free buffer slot at

the destination tile and a high BC signal represent that all the buffer

slots are full at the destination tile. 2(c) shows the router pipeline.

RC ensures that the packet is directed to the correct output port for

both static and reconfigured communication. BWS writes the packet

into the buffer slot. EO conversion takes place with appropriate

buffer chain after the token is received. Optical transmission can take

anywhere between 1-3 clock cycles running at 5 Ghz. OE conversion

is repeated at the receiver, BWD writes the packet into the buffer slot

and finally switch allocation (SA) ensures that the packet progresses

into the L2 cache.

4. Reconfiguration
As future multicores will run diverse scientific and commercial appli-

cations, networks that can adapt to communication traffic at runtime

will maximize the available resources while simultaneously improv-

ing the performance. Moreover, faults within the network or the

channel can isolate healthy groups of tiles; with the natural redun-

dancy available in the decomposed crossbar, we can take advantage

of reconfiguration to overcome channel faults and maintain limited

connectivity. To implement reconfiguration, we propose to include

additional MRRs that can switch the wavelengths from different lay-

ers to create a reconfigurable network. Further, we also propose a

reconfiguration algorithm to monitor traffic load and dynamically

adjust the bandwidth by re-allocating excess bandwidth from under-

utilized links to over-utilized links.

4.1. Bandwidth Re-Allocation
To illustrate with an example, consider a situation where tiles in

Group 0 communicates only with tiles in Group 3. Figure 3 shows

L2 Shared C
ache

 dem
ux

 m
ux

To Optical
Layer 0

To Optical
Layer 3

From Optical
Layer 3

From Optical
Layer 0

E/O
Tx

E/O
Tx

O/E
Rx

O/E
Rx

MRR
Modulators

MRR
Filters

 Route
Computation

(RC)

 Reconfiguration
Controller (RC)

Token
Req + Rel

BW
S RC EO OL OL OL OE BW

D SA

RC: Route Computation
BWS: Buffer Write (Source)
EO: Electrical to Optical Driver
OL: Optical link latency (1-3 cycles)
OE: Optical to Electrical (Dest)
BWD: Buffer Write (Dest)
SA: Switch Allocation

To other
RCs

Header

Tile 0

(a) (c)

IB0

IB3

0B0

0B3

(b)
Token

Control

Token
Req + Rel

Token
Control

Token capture
release

Token
Re-generation

 Switch Allocator
(SA)

BW
S RC EO OL OL OL OE BW

D SSA

TR

Clock
BC

Q

Q’

Power

Inject

Figure 2: (a) Router microarchitecture, (b) token control and (c)
router pipeline.

the reconfiguration mechanism. The static allocation of channel for
communication are in layer 2 as shown in Figure 3(a). Suppose no

tile within Group 1 (in layer 1) communicates with Group 3, then we

can re-allocate the bandwidth from Group 1 to Group 0 to communi-

cate with Group 3. To implement reconfiguration, however, we need

to satisfy two important requirements: (1) There should be a source

waveguide which should be freely available to start the communica-

tion on a source layer, and (2) there should be a destination waveguide

which also should be freely available to receive the extra packets.

As shown in Figure 3(b), as the two Groups 0 and 3 talk to each

other, we have the first set of waveguides on layer 0 (generally used

to communicate within the group) available, therefore this satisfies

the first condition. As Group 1 does not communicate with Group

3, we can utilize the destination waveguide available in layer 1 and

this satisfies the second condition. The signal originates on layer 0,

switches to layer 1 to reach the destination. Note that this additional

channel is available in addition to layer 2 static configuration, thereby

doubling the bandwidth. Therefore, during reconfiguration Group 0

has doubled the bandwidth to communicate with Group 3 via layers 2

(static) and 1 (dynamic). Two different communication are disrupted

when the reconfiguration occurs, namely, Group 0 in layer 0 can no

longer communicate with itself and Group 1 in layer 1 can no longer

communicate with Group 3.

4.2. Design-Space Exploration

The objective of reconfiguration is to improve performance by re-

allocating bandwidth from under-utilized to over-utilized links. The

design space of reconfiguration is large as there can be several com-

binations across multiple layers. Figure 4 shows four possible combi-

nations that we will evaluate as they cover most of the design space.

Row-column matrix indicates the statically allocated communication.

For example layer 0 - layer 0 shows three combinations G0 <−>
G0, G1 < − > G2 and G3 < − > G3 i.e. group 0 communicates

with itself, groups 1 and 2 communicate with each other and group 3

communicates with itself. The square (red) boxes show which layers

can be used for reconfiguration and the arrow indicates the layers

that can be used for reconfiguration. Figure 4(a) shows layer 0 can

reconfigure and take away bandwidth from layer 1; similarly layer

1 can reconfigure and can take away bandwidth from layer 0. Layer

285

Group 2 Group 3

Group 0 Group 1

Destination

Source Layer 2

(a)

Group 0 Group 1

Group 2 Group 3

Group 0 Group 1

Group 2 Group 3

Source

Destination

Switch point

(b)

Layer 0 Layer 1

Figure 3: (a) Static communication between the source in Group 0
and destination in Group 3. (b) Illustration of reconfigura-
tion between Groups 0 and 3 using partial waveguides from
layers 0 and 1.

2 can take bandwidth from layer 3 and vice versa. This approach

restricts to one additional layer that can be used for reconfiguration

and we call this R-3PO-L1 (R-3PO-Limited to 1 Layer) and this

restricted mechanism will reduce both the power consumption and

area overhead. Figure 4(b) shows reconfiguration across one or two

layers; however both layers have to be adjacent. Layer 0 can only

reconfigure with layer 1, where as layer 1 can reconfigure with both

layer 0 and layer 2 (adjacent). Adjacent layer reconfiguration is

easier to implement as the next layer (above or below) will be used

which improves on a single layer and we call this R-3PO-LA (R-3PO-

Limited to adjacent layer). Figure 4(c) shows reconfiguration across

two layers even if they are not adjacent and we call this configuration

R-3PO-L2 (R-3PO-Limited to 2 Layers). This increases the power

consumption as well as design fabrication as more TSVs will be

needed. One side-effect of this reconfiguration is that as more layers

are involved, there are more channels lost due to reconfiguration.

This is primarily due to the fact that as additional waveguides are

consumed, we are then restricting the number of layers that can be

reconfigured. For adverse and embarrassingly parallel applications,

this would be an interesting option as more layers can be used for

reconfiguration. Figure 4(d) shows the complete reconfiguration, as

any layer can go to any other layer, and we call this configuration

R-3PO-L3 (R-3PO-All 3 Layers). This fully reconfigured design

will need the most in terms of area overhead and also incur higher

complexity in terms of fabrication as TSVs have to extend to all the

layers.

4.3. Fault Tolerance

Fault tolerance occurs by allowing data from the faulty channel

to be switched to an adjacent layer (channel) that communicates

with the same destination. Figure 5 shows an example of how fault

tolerance is implemented in R-3PO. In this example, the tiles in

Layer 0 Layer 1 Layer 2 Layer 3

Layer 0 G0 <->G0
G1 <-> G2
G3 <-> G3

Layer 1 G0 <->G2
G1 <-> G3

Layer 2 G1 <->G1
G0 <-> G3
G2 <-> G2

Layer 3 G0 <->G1
G2 <-> G3

Layer 0 Layer 1 Layer 2 Layer 3

Layer 0 G0 <->G0
G1 <-> G2
G3 <-> G3

Layer 1 G0 <->G2
G1 <-> G3

Layer 2 G1 <->G1
G0 <-> G3
G2 <-> G2

Layer 3 G0 <->G1
G2 <-> G3

Layer 0 Layer 1 Layer 2 Layer 3

Layer 0 G0 <->G0
G1 <-> G2
G3 <-> G3

Layer 1 G0 <->G2
G1 <-> G3

Layer 2 G1 <->G1
G0 <-> G3
G2 <-> G2

Layer 3 G0 <->G1
G2 <-> G3

Layer 0 Layer 1 Layer 2 Layer 3

Layer 0 G0 <->G0
G1 <-> G2
G3 <-> G3

Layer 1 G0 <->G2
G1 <-> G3

Layer 2 G1 <->G1
G0 <-> G3
G2 <-> G2

Layer 3 G0 <->G1
G2 <-> G3

(a) (b)

(c) (d)

Figure 4: Various configurations evaluated: (a) R-3PO-L1 (R-3PO-
Limited to 1 Layer), (b) R-3PO-LA (R-3PO-Limited to adja-
cent layer), (c) R-3PO-L2 (R-3PO-Limited to 2 Layers) and
(d) R-3PO-L3 (R-3PO-All 3 Layers)

Group 0 Group 1

Group 2 Group 3

Group 0 Group 1

Group 2 Group 3

Faulty Link

Layer 0 Layer 1

Switch point Combine point

Figure 5: Fault tolerance in R-3PO.

Group 0 cannot communicate with Tile 0 because the optical receiver

at Tile 0 is inoperable or faulty, thereby isolating Tile 0 from other

tiles in Group 0. To detect a fault, we augment the reconfiguration

algorithm and hardware counters to detect faulty links.3 Once the

fault is detected, data is re-routed to the adjacent layer waveguides

that communicate with the same destination tile. After Group 0

detects that the communication to Tile 0 is faulty, any data originating

from Group 0 will be switched to the waveguide in Layer 1 that

communicates with Tile 0. In addition, we prevent a tile from Group

0 and a Tile from Group 2 from communicating to Tile 0 at the same

time which requires the token sharing scheme to be updated. In this

example, after the fault is detected, any tiles in Group 0 will need to

capture the token that tiles in Group 2 use to communicate with Tile

0. This in essence increases the number of tiles that share a common

link; therefore the bandwidth Group 2 utilizes to communicate with

Tile 0 is now shared by all tiles in Group 0 to communicate with Tile

0. Reconfiguration allows bandwidth or channel sharing where the

faulty channel can be bypassed by using bandwidth on adjacent layer.

4.4. Algorithm Implementation

We design our reconfiguration algorithm with the following objec-

tives: (a) The algorithm should not be overly sensitive to traffic

3The design space of testing the functionality of the channel is vast as multiple sources
or destination can be faulty; in this paper, we limit fault to the destination receiver which
can be self tested by the home channel by transmitting a pinging packet.

286

fluctuations to prevent rapid changes in topology; (b) the algorithm

should mostly work in the background, and (c) the algorithm should

ensure that no tile is starved from bandwidth. To implement such a

reconfiguration, we first take measurements that are available such

as link utilization (Linkutil) and buffer utilization (Bufferutil) using

hardware counters [8]. This implies that each tile within a group will

have four hardware counters (one for each of the three groups) that

will monitor traffic utilization and provide the link and buffer informa-

tion to Reconfiguration Controller (shown in 2). All these statistics

are measured over a sampling time window called Reconfiguration
window or phase, RW

t , where t represents the reconfiguration time t.
This sampling window impacts performance, as reconfiguring finely

incurs latency penalty and reconfiguring coarsely may not adapt in

time for traffic fluctuations. In our performance section, we show

that we evaluated a number of PARSEC applications to determine

the optimum size for RW . For calculation of Linkutil at configuration

window t, we use the following equation:

Linkt
util =

∑RW
cycle=1Activity(cycle)

RW
(1)

where Activity(cycle) is 1 if a flit is transmitted on the link or 0 if
no flit is transmitted on the link for a given cycle. For calculation of

Bufferutil at configuration window t, we use the following equation:

Bu f f ert
util =

∑RW
cycle=1Occupy(cycle)/Totalbu f f ers

RW
(2)

where Occupy(cycle) is the number of buffers occupied at each cy-
cle and Totalbu f f ers is the total number of buffers available for the
given link. When traffic fluctuates dynamically due to short term

bursty behavior, the buffers could fill up instantly. This can adversely

impact the reconfiguration algorithm as it tries to re-allocate the band-

width faster leading to fluctuating bandwidth allocation. To prevent

temporal and spatial traffic fluctuations affecting performance, we

take a weighted average of current network statistics (Linkutil and

Bufferutil), so that the network will gradually re-allocate bandwidth.

We calculate the Bufferutil as follows:

Bu f f ert
w =

∑Bu f f ert
util×weight+Bu f f ert−1

util

weight+1
(3)

where weight is a weighting factor and we set this to three in our
simulations [26].

After each RW
t , each tile will gather its link statistics (Linkutil and

Bufferutil) from the previous window RW
t−1 and send to its local

reconfiguration controller (RC) for analysis. We assume that Tile 0

of every group gathers the statistics from the remaining tiles and this

can be few bytes of information that is periodically transmitted. Next,

when each RCi, (∀ i = 0, 1, 2, 3), has finished gathering link and buffer
statistics from all its hardware controllers, each RCi will evaluate the

available bandwidth for each link depending on the Linkutil
t−1 and

Bufferutil
t−1 and will classify its available bandwidth into a different

thresholds β1−4 corresponding to 0%, 25%, 50% and 90%. We never
allocate 100% of the bandwidth as the source group may have new

packets to transmit to the destination tile before the next RW . RCi
will send link information (availability) to its neighbor RC j (j �= i).
If RC j needs the available bandwidth, RC j will notify the source and

the destination RCs so that they can switch the MRRs and inform the

tiles locally of the availability. Once the source/desitnation RCs have

Table 1: Reconfiguration Algorithm used in R-3PO.

Step 1: Wait for Reconfiguration window, RW
t

Step 2: RCi sends a request packet to all local tiles

requesting LinkUtil and Bu f f erUtil for

previous RW
t−1

Step 3: Each hardware counter sends LinkUtil and

Bu f f erUtil statistics from the previous

RW
t−1 to RCi

Step 4(a): RCi classifies the link statistic for each

hardware counter as:

If Linkutil = 0.0

Not-Utilized: Use β 4
If Linkutil ≤ Lmin
Under-Utilized: Use β 3

If Linkutil ≥ Lmin and Bufferutil < Bcon
Normal-Utilized: Use β 2

If Bufferutil > Bcon
Over-Utilized: Use β 1

Step 4(b): Faulty links detected by RCi are

eliminated from reconfiguration; Token sharing

updated to bypass the faulty link

Step 5: Each RCi sends bandwidth available

information to RC j, (i �=j)
Step 6: If RC j can use any of the free links then notify

RCi of their use, else

RC j will forward to next RC j
Step 7a: RCi receives response back from RC j and

activates corresponding microrings

Step 7b: RC j notifies the tiles of additional bandwidth

and RCi notifies RC j
that the additional bandwidth is now available

Step 8: Goto Step 1

switched their reconfiguration MRRs, RCi will notify RC j that the

bandwidth is available for use. On the other hand, if a node within

RCi that throttled its bandwidth requires it back due to increase in

network demand, RCi will notify that it requires the bandwidth back

and afterwards will deactivate the corresponding MRRs. The above

reconfiguration completes a three-way handshake where RCi first

notifies RC j, then RC j notifies RCi that RC j will use the additional

bandwidth, and finally RCi notifies RC j that the bandwidth can be

used. Table 1 shows the reconfiguration algorithm in R-3PO.

5. Performance Evaluation

In this section, we evaluate the performance, power-efficiency and

impact of faulty channel in R-3PO when compared to competing

electrical interconnects and photonic interconnects.

5.1. Simulation Setup

Our cycle-accurate simulator models in detail the router pipeline,

arbitration, switching and flow control. An aggressive single cycle

electrical router is applied in each tile and the flit transversal time is

one cycle from the local core to electrical router [18]. As the delay

of Optical/Electrical (O/E) and Electrical/Optical (E/O) conversion

can be reduced to less than 100 ps [29], the total optical transmission

latency is determined by physical location of source/destination pair

(1 - 3 cycles) and two additional clock cycles for the conversion delay.

We assume an input buffer of 16 flits with each flit consisting of 128

287

bits. The packet size is 4 flits which is sufficient to fit a complete

cache line of 64 bytes. We assume a supply voltage Vdd of 1.0 V and

a router clock frequency of 5 Ghz [29, 23]. We compare R-3PO ar-

chitecture to three other crossbar-like photonic interconnects, Corona

[29], Firefly [23], MPNoCs [31]; and two electrical interconnects

(mesh and Flattened Butterfly) [12]. We implement all architectures

such that four cores (one tile) are connected to a single router. We

assume token slot for both R-3PO and Corona to pipeline the arbi-

tration process to increase the efficiency. We use Fly_Src routing

algorithm [23] for Firefly architecture, where intra-group communi-

cation via electrical mesh is implemented first and then inter-group

via photonic interconnects. For a fair comparison, we ensure that

each communication channel in either electrical or optical network is

640 Gbps with 64 wavelengths. We also evaluate the performance

by restricting the channel bandwidth to 16/8 wavelengths and com-

munication bandwidth limited to 160/80 Gbps. For each network,

we ensure that identical bandwidth is maintained for each link in our

network, thereby providing equal bandwidth between each source

and destination pairs, whether it be electrical or optical networks.

For open-loop measurement, the packet injection rate is varied

from 0.1 to 0.9 of the network capacity, and packets are injected

according to the Bernoulli process based on the given network load.

The simulator was warmed up under load without taking measure-

ments until steady state was reached (up to 1000 cycles). Then a

sample of injected packets were labeled during a measurement inter-

val (1000 to 10,000). The simulation was allowed to run until all the

labeled packets reached their destinations. We consider both uniform

as well as permutation traffic such as bit-complement (bitcomp), bit-

reversal (bitrev), transpose, butterfly, neighbor and prefect shuffle

traffic patterns for 256-cores.

For closed-loop measurement, we collect traces from real appli-

cations using the full execution-driven simulator SIMICS from Win-

dRiver with the memory package GEMS enabled [20]. We evaluate

the performance of 64-core versions of each network on Splash-2

[30], PARSEC [6] and SPEC CPU2006 workloads. We assume a 2

cycle latency to access the L1 cache (64 KB, 4-way), a 4 cycle latency

to access the L2 cache (4MB, 16-way), cache line size of 64 bytes

and a 160 cycle latency to access the main memory. For Splash-2

traffic, we assume the following kernels and workloads: FFT (16K

particles), LU (512 × 512 with a block size of 16 × 16), Radix (1

Million integers), Ocean (258 × 258), and Water (512 Molecules).

We consider six PARSEC applications with medium inputs (blacksc-

holes, facesim, fluidanimate, freqmin, and streamcluster) and two

workloads from SPEC CPU2006 (bzip and hmmer). We ran several

benchmarks of PARSEC and Splash-2 to determine the optimum

size of RW by varying the simulation cycles. While initially the

performance improved with increasing window size as more statis-

tics are available which enable better decision making; at very large

window sizes, the performance diminishes as the algorithm cannot

react fast enough to take advantage of the reconfiguration algorithm.

Our simulation results show that 1300 cycles for RW showed the best

performance. We assume a 100 cycle latency for the reconfiguration

to take place after each RW (three-way handshake delay). It should

be noted that the reconfiguration latency is only incurred by those

links that already are lightly loaded and, therefore do not experience

a significant delay.

5.2. Simulation Results
5.2.1. Splash-2, PARSEC and SPEC CPU2006 for 64 Cores: We
analyze the speed-up for few selected Splash-2, PARSEC and SPEC

CPU2006 applications [30] for 64/16/8 wavelengths, where the speed-

up is normalized to mesh architecture. From Figure 6, all R-3PO

configurations show a speedup of 2.5 - 3X over electrical mesh, 10-

40% improvement over Flattened-Butterfly and Firefly architectures,

22-18% over MPNoC and Corona architectures for 64 wavelengths.

The performance gains over electrical and electro-optic networks

are derived primarily due to the decomposed crossbars which enable

increased traffic outflows from the router into four difference optical

crossbars. Further performance improvement over photonic crossbars

such as Corona and MPNoC are due to the reconfiguration algorithm

which takes advantage of the idle communication channels. Within

the four different configurations of R-3POs, the best performing

configuration is R-3PO-L3 which provides the maximum flexibility

by reconfiguring all the optical layers. For 64 wavelengths, the

performance improvements provided by R-3PO-L3 and R-3PO-LA

is 6-8% for streamcluster and bzip over R-3PO-L1.

Figure 7 shows the performance of various networks on Splash-2,

PARSEC and SPEC CPU2006 benchmarks for 16 wavelengths. From

Figure 7, all R-3PO configurations show a speedup of 2.3 - 3.5X over

electrical mesh, 17-40% improvement over Flattened-Butterfly and

Firefly architectures, 32-18% over MPNoC and Corona architectures

for 16 wavelengths. When the number of wavelengths is reduced,

the performance improvements over 64 wavelengths are primarily

due to the reconfiguration algorithm as the additional bandwidth has

more of an impact on the speedup. Figure 8 shows the performance

of various networks for 8 wavelengths. From Figure 8), all R-3PO

configurations show a speedup of 2.1 - 3.6X over electrical mesh, 17-

62% improvement over Flattened-Butterfly and Firefly architectures,

42-18% over MPNoC and Corona architectures for 8 wavelengths.

When the resources are further constrained, the bandwidth is stressed

where the re-allocated bandwidth via reconfiguration can alleviate

performance. Clearly, the performance gains increases dramatically

when we reduce the bandwidth and the reconfiguration algorithm

can assist in improving the performance. For LU, water, stream-

cluster and facesim benchmarks, R-3PO-L2 and R-3PO-L3 show

over a 10% increase in performance when compared to R-3PO-L1.

From the figure, the average speed provided by R3P0-LA, R-3PO-L2,

and R-3PO-L3 over R-3PO-L1 ranges from about 1% to as high

as 10%. Multiple configurations of R-3PO provide different perfor-

mance gains and the speedup increases with reduced bandwidth via

reconfiguration.

5.2.2. Synthetic Traffic: 256 Cores The throughput for all synthetic
traffic traces for 256-core implementations are shown in Figure 9

and is normalized to mesh network (for Uniform, the mesh has a

throughput of 624 GBytes per sec). R-3PO-L1 has about a 2.5 ×
increase in throughput over Corona for uniform traffic due to the

decomposition of the photonic crossbar. The decomposed crossbars

allow for a reduction in contention for optical tokens as now a single

token is shared between 16 tiles instead of 64 tiles as in Corona.

Firefly slightly outperforms R-3PO-L1 for uniform traffic due to the

contention found in the decomposed photonic crossbars. Moveover,

Firefly uses a SWMR approach for communication which does not

require optical arbitration. From the figure, R-3PO-L1 slightly out-

performs Corona for bit-reversal and complement traffic traces. This

is due to lower contention for optical tokens in the decomposed cross-

bars. R-3PO-L1 significantly outperforms mesh for the bit-reversal,

matrix-transpose and complement traffic patterns. In these traffic

patterns, packets need to traversal across multiple mesh routers which

in turn increases the packet latency and thereby reduces the through-

288

0

0.5

1

1.5

2

2.5

3

3.5

4

FFT LU radix ocean water blackscholes facesim fluidanimate freqmin streamcluster bzip hmmer

Sp
ee

d-
U

p

Mesh Flattened-Butterfly Firefly Corona MPNOC R-3PO-L1 R-3P0-LA R-3P0-L2 R-3P0-L3

Figure 6: Speed-up for 64-core using SPLASH-2, PARSEC and SPEC CPU2006 traffic traces using 64 wavelengths.

0

0.5

1

1.5

2

2.5

3

3.5

4

FFT LU radix ocean water blackscholes facesim fluidanimate freqmin streamcluster bzip hmmer

Sp
ee

d-
U

p

Mesh Flattened-Butterfly Firefly Corona MPNOC R-3PO-L1 R-3P0-LA R-3P0-L2 R-3P0-L3

Figure 7: Speed-up for 64-core using SPLASH-2, PARSEC and SPEC CPU2006 traffic traces using 16 wavelengths.

0

0.5

1

1.5

2

2.5

3

3.5

4

FFT LU radix ocean water blackscholes facesim fluidanimate freqmin streamcluster bzip hmmer

Sp
ee

d-
U

p

Mesh Flattened-Butterfly Firefly Corona MPNOC R-3PO-L1 R-3P0-LA R-3P0-L2 R-3P0-L3

Figure 8: Speed-up for 64-core using SPLASH-2, PARSEC and SPEC CPU2006 traffic traces using 8 wavelengths.

put. When R-3PO-L1 is compared to Firefly, R-3PO-L1 outperforms

Firefly by 2.5 ×. In Firefly, most traffic patterns will require pack-
ets to travel on several electrical routers and then an optical link to

reach the destination. R-3PO-L3 is able to out perform R-3PO-L1

for complement, matrix-transpose and perfect shuffle traffic traces.

These permutation traffic traces exhibit adversial patterns which will

benefit R-3PO-L1. In complement traffic, R-3PO-L1 has about a

55% increase in performance when compared to R-3PO-L1.

5.2.3. Fault Tolerance We evaluated the performance degradation
when 10%, 25% and 50% of the channels are faulty. These faults

were randomly inserted such that they do not coincide with the recon-

figuration window cycle. We assume that every tile checks the home

channel working once at the beginning of the Rw and if there are any

faults, bandwidth sharing is enabled where bandwidth from other

healthy channels is re-allocated. Figure 10 shows the performance

degradation for R-3PO-L1 for 64 wavelengths. The results show that

with 10%, 25% and 50% link failures, performance degrades by 5%,

10-15% and 20-40% respectively. While the reconfiguration algo-

rithm kicks in within a couple of iterations (in worst case scenario),

the loss primarily arises from the sharing of channel which increases

the latency for both faulty as well as non-faulty communication. The

results show that reconfiguration algorithm can bypass the faults

by efficiently sharing the link bandwidth with some performance

degradation. While the fault model assumes a high fault rate (10%

- 50%), with adequate process development and monolithic integra-

tion, variation-induced fault rates are actually much lower [2]. Our

analysis assumes worst-case fault rate for the system evaluation with

reconfiguration.

5.3. Energy Comparison

The energy consumption of a photonic interconnect can be divided

into two parts, electrical energy and optical energy. Optical energy

consists of the off-chip laser energy and on-chip MRRs heating

energy. In what follows, we first discuss the electrical energy and

then optical energy consumption.

5.3.1. Electrical Energy Model The electrical energy dissipated in-
cludes the energy of the link, router and back-end circuitry for optical

transmitter and receiver. We use ORION 2.0 [11] to obtain the en-

ergy dissipation values for an electrical link and router and modified

their parameters for 22nm technology according to ITRS. We assume

all electrical links are optimized for delay and the injection rate to

be 0.1. Moreover, we include the energy dissipated in both planar

and vertical links (communicating with all layers). Furthermore, we

incorporate the power dissipated within the router buffers, except for

virtual channel allocation. The energy for planar link is conserva-

tively obtained as 0.15 pJ/bit for Firefly, 0.075 pJ/bit for mesh, and

289

0

1

2

3

4

5

6

7

8

Uniform Bit-reversal Butterfly Compliment Matrix-Transpose Perfect Shuffle Neighbor

Sp
ee

d-
U

p

Mesh Flattened-Butterfly FireFly Corona MPNOC R-3PO-L1 R-3PO-LA R-3PO-L2 R-3PO-L3

Figure 9: Simulation results showing normalized saturation through-
put for seven traffic patterns for 256 cores.

0.15 pJ/bit per router bypass for Flattened-Butterfly under low swing

voltage signalling [11]. The link energy dissipation depends on the

location of the source and destination for Flattened-Butterfly. For a

10-layer chip, the vertical via is determined as ∼100- 200μm [15],
which is significantly less than planar links. As a result, the energy

consumption in vertical links are very small. We neglect it when we

calculate our electrical link power model. We calculate the energy

dissipated for a 10 × 10 router to be 0.42 pJ/bit, 8 × 8 router to be
0.30 pJ/bit [11], and 5 × 5 router will be 0.22 pJ/bit [11]. This is

the energy dissipated per hop of communication. For each bit of

optical transmission, we need to provide electrical back end circuit

for transmitter and receiver. We assume the O/E and E/O converter

energy is 100fJ/b, as predicted in [17]. For RC power dissipation,

each RC optimizes performance by analyzing few bits (2-16) of in-

formation every 1300 cycles. While the data packets are as large as

512 bits of information, the static and dynamic power impact of the

reconfiguration controller is negligible in comparison to the actual

data movement.

5.3.2. Optical Energy and Loss Model The optical power budget
is the sum of the laser power and the power dissipated in the MRRs.

The laser power is determined by Plaser = Prx + Closs + Ms where

Plaser is the required laser power, Prx is the receiver sensitivity, Closs
is the channel loss and Ms is the system margin. In order to perform

an accurate comparison with the other two optical architectures, we

use the same optical device parameters and loss values provided in

[3, 1], as listed in Table 2. In this paper, we assume a flat thermal

model that requires ring resonator heating power. However, this

power can be lower as heating power can be shared by an array of

rings [21], however this depends strongly on the actual layout of

the ring resonators. Recent work has also demonstrated that flat

thermal profile may not be practical and could increase off-resonance

coupling losses [19, 15]. In this work, we show a preliminary analysis

of the ring heating power which is a conservative model and more

aggressive models can reduce this power [21, 19]. In addition, we

assume a BER of 10−12 for each optical link and the Signal-Noise-
Ratio (SNR) is given by [27]

BER=
1

2
− 1

2
er f (0.354

√
SNR) (4)

Table 2: Electrical and optical power losses for select optical compo-
nents.

Component Value Unit
Laser efficiency 5 dB

Coupler (Fiber to Waveguide) 1 dB

Waveguide 1 dB/cm

Splitter 0.2 dB

Non-Linearity 1 dB

Ring Insertion & scattering 1e-2 - 1e-4 dB

Ring Drop 1.0 dB

Waveguide Crossings 0.5 dB

Photo Detector 0.1 dB

Ring Heating 26 μW/ring
Ring Modulating 500 μW/ring
Receiver Sensitivity -26 dBm

Table 3: Electrical power dissipation for various photonic intercon-
nects.

Corona Firefly R-3PO Mesh
Link(electric) - 0.15pJ/b - 75fJ/b

Router 0.22pJ/b 0.30pJ/b 0.22pJ/b 0.22pJ/b

O/E, E/O 100fJ/b 100fJ/b 100fJ/b -

Optical loss -25.2dB -17.6dB -16dB -

Power(λ) 0.81mW 0.14mW 0.10mW -

Laser power 13.6W 2.4W 6.1W -

Ring heating 26W 6.5W 27.5W -

and the minimum power for a given SNR is

SNR=
Po ·η

NEP ·√f
, (5)

where η is the quantum efficiency of the detector, NEP is the Noise-
Equivalent-Power, and f is the transmission frequency [27]. Using
the above equations, we determined the SNR in R-3PO to be 176.42.

Based on the energy model discussed in the previous section, we

calculate the energy parameters of all four architectures as shown

in Table 3. We test uniform traffic with 0.1 injection rate on the

all architectures and obtain the energy per-bit as shown in Figure

11. Although Firefly has 14 as many MRRs as Corona and R-3PO,

which results in 1
4 energy consumption per bit on ring heatings, it

still consumes more energy than R-3PO and CORONA due to the

overhead of electrical routers and links. In general, R-3PO saves

6.5%, 23.1%, 36.1% energy per bit compared to Corona, Firefly, and

mesh respectively. R-3PO has a slight increase in power dissipation

over MPNoCs due to the additional MRRs required for reconfigura-

tion. The total network power for each application varied between 4

Watts to 6 Watts for 64-core simulation and 16 Watts to 24 Watts for

256-core simulation.

5.3.3. Laser Power Variations The optical losses shown in Table 3
are mostly conservative estimates that may not reflect the actual losses

in future photonic devices. Figures 12(a) and 12(b) illustrate the

impact on laser power when four optical parameters, namely receiver

sensitivity, ring filter loss, wavelengths and waveguides are changed.

We choose these four parameters from Table 3 as we believe they

will have the greatest impact on the total laser power. We evaluate the

variation in laser power with receiver sensitivity and the number of

290

0

0.5

1

1.5

2

2.5

3

3.5

FFT LU radix ocean water blackscholes facesim fluidanimate freqmin streamcluster bzip hmmer

Sp
ee

d-
U

p

Mesh Flattened-Butterfly Firefly Corona MPNOC R3PO-L1 R3PO-L1 (10%) R3PO-L1 (25%) R3PO-L1(50%)

Figure 10: Speed-up for 64-core using SPLASH-2, PARSEC and SPEC CPU2006 traffic traces using 64 wavelengths for R-3PO-L1 with 10%, 25%
and 50% faults in the channel.

0

0.5

1

1.5

2

2.5

Mesh Firefly Corona MPNOC R-3PO-L1 R-3PO-LA R-3PO-L2 R-3PO-L3

En
er

gy
 p

er
 B

it
(p

J)

Ring modulation Ring heating Laser
Back-end circuit Electrical link Router

36%
23%

Figure 11: Average energy per-bit for electrical and photonic inter-
connects.

wavelengths in Figure 12(a). It should be noted that the bandwidth for

each wavelength configuration is maintained at 640 Gbps in order to

evaluate the laser power variation. Figure 12(a) shows that the laser

power increases as the receiver sensitivity decreases because power

per bit increases at the receiver. For example, a 6 dBm decrease in

receiver sensitivity (-20 dBm) would result in a 4× increase in total

laser power. Clearly, the receiver sensitivity has the greatest impact

on the total network power for R-3PO, a low sensitivity receiver can

increase the external laser power. Figure 12(b) shows the variations

in laser power with the ring filter loss and the number of waveguides.

From the figure, the increase in total laser power from waveguide

losses has greater impact than the ring filter losses. This is due to

the optical signal traversing several centimeters before arriving at the

photodetector. For example, a 0.5 dB increase in waveguide loss (1.8

dB/cm) would more than double the total laser power.

5.3.4. R-3PO Energy-Delay Product: In this paper, we propose
different configurations of R-3PO that have different degrees of re-

configuration (increases bandwidth) and dissipate different energy.

As such, the increase in performance due to more reconfiguration

options may come at the price of higher energy dissipation. Figure

13 evaluates the energy-delay product (EDP) for all R-3PO configura-

tions using the Splash-2, PARSEC, and SPEC CPU 2006 benchmarks.

From the figure, it can be seen that R-3PO-L1 and R-3PO-LA have

the least EDP. This is due to the fact that the slight increase in en-

ergy per bit over MPNoC and R-3PO-L1 is offset by the increase

in performance over other networks. On the other hand, R-3PO-L2

and R-3PO-L3 have the highest EDP among all optical networks.

This is obvious as these two networks have the highest energy per bit

and there is only a slight increase in performance when compared to

R-3PO-L1, R-3PO-LA and Corona. Mesh has the highest EDP as

it is the worst network in terms of performance and has the highest

energy per bit. When Flattened-Butterfly and Firefly are compared,

their EDP have similar values. Firefly consumes lesser energy than

Flattened-Butterfly although its performance is also proportionally

lower than Flattened-Butterfly.

5.4. Area Analysis

In this subsection, we analytically compare the optical and electrical

area overhead of R-3PO to Firefly [23] and Corona [29] photonic

interconnects. For the optical area overhead, we consider the area

required for all waveguides, MRRs and photodetectors. For the

electrical layer, we consider the area required for all routers, elec-

trical links and electrical receiver circuitry. Table 4 shows the area

overhead of both optical and electrical components used in the area

calculation. From Table 4, each router and electrical link values were

obtained from Orion 2.0 by scaling 32 nm technology values to 22

nm technology. From our evaluation, we observe that both Corona

and Firefly require 10% more optical area than R-3PO. This may be

counter-intuitive, but R-3PO uses decomposed crossbars that permit

waveguides in R-3PO to be shorter than the long serpentine waveg-

uides used in both Corona and Firefly. In terms of electrical layer

area overhead, R-3PO consumes 4X more electrical area than Corona.

As each tile is connected to four optical layers to facilitate inter-group

communication, each tile in turn should have the ability to receive

four signals instead of one as in Corona. However, when R-3PO

is compared to Firefly in terms of electrical area overhead, Firefly

consumes about 75% more area. In Firefly, the electrical network can

simultaneously receive from seven sets of optical receivers at once

due to SWMR organization. R-3PO combines both MWSR (Corona)

and SWMR (Firefly) communication channels, thereby increasing the

communication channels to each tile while reducing the optical area

overhead. For the different configurations of R-3PO, the additional

increase in area overhead when compared to MPNOC is marginal

as a single MRR can be used to switch all wavelengths from one

layer to the other [5]. For example, the increase in area overhead

for R-3PO-L1 is less than l% and the increase in area overhead for

R-3PO-L3 is about 1%. Table 5 shows the total area overhead for

each network.

6. Conclusions

In this paper, we propose R-3PO that uses emerging photonic inter-

connects and 3D stacking to reduce the optical power losses found

in 2D planar on-chip networks by decomposing a large 2D photonic

291

0
20

40
60

80
100

120
140

-30

-25

-20

-15
-60

-40

-20

0

20

40

60

80

100

120

Wavelengths

X: 64
Y: -26
Z: 6.1

Receiver Sensitivity (dBm)

La
se

r P
ow

er
 (W

at
ts

)

Wavelengths
Receiver

Sensitivity (dBm)

La
se

r P
ow

er

(W
at

ts
)

(a)
0.5

1
1.5

2
2.5

3

0

1

2

3
0

50

100

150

200

250

Waveguide Loss (dB)Ring Filter Loss (dB)

La
se

r P
ow

er
 (W

at
ts

)

(b)

Waveguide Loss (dB) Ring Filter (dB)

La
se

r P
ow

er

(W
at

ts
)

Figure 12: (a)Laser power variations as a function of (a) receiver sensitivity and the number of wavelengths, and (b) ring filtering loss and the
number of waveguides.

0

0.1

0.2

0.3

0.4

0.5

0.6

FFT LU radix ocean water blackscholes facesim fluidanimate freqmin streamcluster bzip hmmer

En
er

gy
-D

el
ay

 P
ro

du
ct

Mesh Flattened-Butterfly Firefly Corona MPNOC R-3PO-L1 R-3P0-LA R-3P0-L2 R-3P0-L3

Figure 13: Simulation speed-up for 64-core using SPLASH-2, PARSEC and SPEC CPU2006 traffic traces using 8 wavelengths.

Table 4: Electrical and optical area overhead for select electrical and
optical components

Component Area
Electrical Link 0.0085 (mm2)

Router (8 × 8) 0.128 (mm2)

Photodetector receiver circuitry 0.02625 (mm2)

Microring resonator 100(μm2)
Photodetector 100(μm2)
Waveguide 5.5 μm

Table 5: Electrical and optical area overhead for various networks
(mm2).

Network Electrical Optical
Firefly 712.25 78.5

Corona 107 78.5

R-3P0 407 70.9

crossbar into multiple smaller crossbars. In addition, we proposed

a reconfiguration algorithm that maximizes the available bandwidth

through run-time monitoring of network resources and dynamically

re-allocating channel bandwidth. The reconfiguration algorithm im-

proves performance by dynamically load balancing the network band-

width and provides fault tolerance by bypassing faulty channels. For

64-core reconfigured network, our simulation results showed that

the performance can be further improved by 10%-25% for Splash-

2, PARSEC and SPEC CPU2006 benchmarks, where as simulation

results for 256-core chip indicate a performance improvement of

more than 25% while saving 6%-36% energy when compared to

state-of-the-art on-chip electrical and optical networks.

Acknowledgment
This research was partially supported by NSF awards, ECCS-

0725765, CCF-0915537, CCF-0915418, CCF-1054339 (CAREER)

and ECCS-1129010 and by the IR/D program while Ahmed Louri

was serving at the National Science Foundation.

References
[1] J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert1, A. Davis, D. Fattal,

N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane,
D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-
scale integration,” Applied Physics A: Materials Science and Processing,
vol. 95, no. 4, pp. 989–997, June 2006.

[2] K. Aisopos, C.-H. O. Chen, and L.-S. Peh, “Enabling system-level mod-
eling of variation-induced faults in networks-on-chip,” in 48th Design
Automation Conference (DAC), 2011.

[3] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth,
M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovi,
and K. Asanovic, “Building manycore processor-to-dram networks with
monolithic silicon photonics,” in Proceedings of the 16th Annual Sym-
posium on High-Performance Interconnects, August 27-28 2008.

[4] R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S.
Williams, “Nanoelectronic and nanophotonic interconnect,” Proceedings
of the IEEE, vol. 96, no. 2, pp. 230–247, February 2008.

[5] A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S.
Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architec-
tures using multilayer deposited silicon materials for high-performance
chip multiprocessors,” J. Emerg. Technol. Comput. Syst., vol. 7, pp.
1–25, July 2011.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[7] N. L. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar,
R. Schreiber, and J. H. Ahn, “The role of optics in future high radix
switch design,” in ISCA, 2011, pp. 437–448.

[8] X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Pruncal, “Exploring
the design space of power-aware opto-electronic networked systems,” in

292

11th International Symposium on High-Performance Computer Archi-
tecture (HPCA-11), February 2005, pp. 120–131.

[9] M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing
link-level design tradeoffs for integrated photonic interconnects,” in
CICC, 2011, pp. 1–8.

[10] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express cube topolo-
gies for on-chip interconnects,” in Proceedings of the International Sym-
posium on High-Performance Computer Architecture (HPCA), 2009, pp.
163–174.

[11] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in in Proceedings of Design, Automation & Test in Europe
Conference & Exhibition, Nice, France, April 20-24 2009, pp. 423–428.

[12] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: Cost-efficient
topology for high-radix networks,” in Proceedings of 34th Annual Inter-
national Symposium on Computer Architecture(ISCA), June 2007, pp.
126 – 137.

[13] A. K. Kodi and A. Louri, “Energy-efficient and bandwidth reconfig-
urable photonic networks for hpc systemss,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 17, pp. 384–395, April 2011.

[14] S. J. Koester, C. L. Schow, L. Schares, and G. Dehlinger, “Ge-on-
soi-detector/si-cmos-amplifier receivers for high-performance optical-
communication applications,” Journal of Lightwave Technology, vol. 25,
no. 1, pp. 46–57, January 2007.

[15] P. Koka, M. O. McCracken, H. Schwetman, X. Zheng, R. Ho, and A. V.
Krishnamoorthy, “Silicon-photonic network architectures for scalable,
power-efficient multi-chip systems,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2010.

[16] P. Koonath and B. Jalali, “Multilayer 3-d photonics in silicon,” Opt.
Express, vol. 15, pp. 12 686–12 691, 2007.

[17] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau,
P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems
based on silicon photonic interconnects,” in Proceedings of the IEEE,
vol. 97, no. 7, June 2009, pp. 1337–1361.

[18] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha, “A 4.6tbits/s
3.6ghz single-cycle noc router with a novel switch allocator in 65nm
cmos,” in ICCD 2007, October 2007.

[19] Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. R.
Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reli-
ability modeling and management of nanophotonic on-chip networks,”
IEEE Trans. VLSI Syst, vol. 20, pp. 98–111, 2012.

[20] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s genreal execution-driven
multiprocessor simulator (gems) toolset,” ACM SIGARCH Computer
Architecture News, no. 4, pp. 92–99, November 2005.

[21] C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trim-
ming issues in on-chip nanophotonic networks,” in Proceedings of the
17th International IEEE Symposium on High Performance Computer
Architecture, 2011, pp. 122–131.

[22] Y. Pan, J. Kim, and G. Memik, “Flexishare: Channel sharing for an
energy-efficient nanophotonic crossbar,” in Proceedings of the 36th
annual international symposium on High Performance Computer Ar-
chitecutre (HPCA), 2010, pp. 1–12.

[23] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,
“Firefly: Illuminating future network-on-chip with nanophotonics,” in the
Proceedings of the 36th annual International Symposium on Computer
Architecture, 2009.

[24] K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lip-
son, “Deposited silicon high-speed integrated electro-optic modulator,”
Opt. Express, vol. 17, pp. 5118–5124, 2009.

[25] N. Sherwood-Droz, K. Preston, J. S. Levy, and M. Lipson, “Device
guidelines for wdm interconnects using silicon microring resonators,”
in Workshop on the Interaction between Nanophotonic Devices and
Systems (WINDS), co located with Micro 43, December 5th 2010, pp.
15–18.

[26] V. Soteriou, N. Eisley, and L.-S. Peh, “Software-directed power-aware
interconnection networks,” ACM Trans. Archit. Code Optim., vol. 4,
March 2007.

[27] T. H. Szymanski, “Optical link optimization using embedded forward er-
ror correcting codes,” Jornal of Selected Topics in Quantum Electronics,
vol. 9, no. 2, pp. 647–656, March/April 2003.

[28] D. Vantrease, N. Binkert, R. Schreiber, and M. H. Lipasti, “Light speed

arbitration and flow control for nanophotonic interconnects,” in MI-
CRO 42: Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009, pp. 304–315.

[29] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. Jouppi,
M. Fiorentino, A. Davis, N. Binker, R. Beausoleil, and J. H. Ahn,
“Corona: System implications of emerging nanophotonic technology,”
in Proceedings of the 35th International Symposium on Computer Ar-
chitecture, June 2008, pp. 153–164.

[30] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash-2
program: Characterization and methodological considerations,” 1995,
pp. 24–36.

[31] X. Zhang and A. Louri, “A multilayer nanophotonic interconnection
network for on-chip many-core communications,” in Proceedings of the
Design and Automation Conference (DAC), June 2010.

[32] X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin,
J. Yao, K. Raj, R. Ho, J. Cunningham, and A. Krishnamoorthy, “Ultra-
low power arrayed cmos silicon photonic transceivers for an 80 gbps
wdm optical link,” in in Optical Fiber Communication Conference,
March 2011.

293

Addressing End-to-End Memory Access Latency in NoC-Based Multicores∗

Akbar Sharifi, Emre Kultursay, Mahmut Kandemir and Chita R. Das
The Pennsylvania State University
University Park, PA, 16802, USA

{akbar,euk139,kandemir,das}@cse.psu.edu

Abstract

To achieve high performance in emerging multicores, it is crucial to
reduce the number of memory accesses that suffer from very high
latencies. However, this should be done with care as improving la-
tency of an access can worsen the latency of another as a result
of resource sharing. Therefore, the goal should be to balance la-
tencies of memory accesses issued by an application in an execu-
tion phase, while ensuring a low average latency value. Targeting
Network-on-Chip (NoC) based multicores, we propose two network
prioritization schemes that can cooperatively improve performance
by reducing end-to-end memory access latencies. Our first scheme
prioritizes memory response messages such that, in a given period
of time, messages of an application that experience higher latencies
than the average message latency for that application are expedited
and a more uniform memory latency pattern is achieved. Our sec-
ond scheme prioritizes the request messages that are destined for
idle memory banks over others, with the goal of improving bank
utilization and preventing long queues from being built in front of
the memory banks. These two network prioritization-based opti-
mizations together lead to uniform memory access latencies with
a low average value. Our experiments with a 4× 8 mesh network-
based multicore show that, when applied together, our schemes can
achieve 15%, 10% and 13% performance improvement on memory
intensive, memory non-intensive, and mixed multiprogrammed work-
loads, respectively.

1. Introduction

From an architectural side, in parallel to increasing core counts,
network-on-chip (NoC) is becoming one of the critical components
which determine the overall performance, energy consumption and
reliability of emerging multicore systems [14, 31, 35]. While NoC
helps to improve communication scalability of data, it also con-
tributes to memory access latencies. Consider as an example a
data read access in an NoC-based multicore. Such an accesses first
checks L1 cache, and if it misses there, accesses L2 cache by travers-
ing the NoC (assuming an S-NUCA-based [15] cache space manage-
ment). If it misses in L2, it takes another trip over the NoC to reach
the target memory controller determined by the address of the re-
quested data. Depending on the current status of the queue in the
target memory bank, it waits in the queue for some amount of time
before reaching the DRAM. After finally reading the data from the
DRAM, the same set of components are visited in the reverse order
until a copy of the data is brought into the core. Clearly, each of the
components in this round-trip access path (L1, L2, network, bank
queue, and memory access) contributes to the end-to-end latency of
this data access.

From an application side, interferences across simultaneously ex-
ecuting applications on various shared resources (e.g, NoC, memory

∗This research is supported in part by NSF grants #1213052, #1152479, #1147388,
#1139023, #1017882, #0963839, #0811687 and a grant from Microsoft Corporation.

controllers) can lead to high variances across the latencies of the off-
chip accesses made by an application [8, 18, 27]. Specifically, while
one request can be lucky to retrieve its data very quickly, another re-
quest of the same application can get delayed in the network and/or
the memory controller queue, suffering a much larger round-trip la-
tency. This variance can in turn lead to degradation in overall system
performance as requests that experience much higher latencies than
the average can block the progress of the application. To achieve
high performance, it is crucial to reduce the number of memory ac-
cesses that observe very high latencies, but this should be done with
care as improving the latency of an access can worsen the latency
of another as a result of resource sharing. Therefore, from an over-
all system performance point of view, instead of each application
aggressively trying to minimize the latencies of all its memory ac-
cesses, it is better to have each application balance the latencies of
its memory accesses.

Motivated by these observations, we propose two network prior-
itization schemes that can cooperatively reduce end-to-end memory
access latencies in NoC-based multicores. One of these schemes
targets memory response messages (i.e., messages from the memory
controller), whereas the other targets memory request messages (i.e.,
messages from the core side). Our first scheme prioritizes memory
response messages such that, in a given period of time, messages
of an application that experience higher latencies than the average
message latency of that application are expedited. This helps us re-
duce the number of off-chip requests with high latencies and achieve
a more uniform memory latency pattern. While one might want to
apply a similar optimization for memory request messages as well,
it is hard to identify whether a data access will experience high la-
tency at the time of the request generation as it has not even entered
the network yet. Instead, our second scheme approaches problem
from another angle, where it expedites request messages to improve
memory bank utilization. More specifically, observing that at any
given time frame some banks are heavily loaded whereas others are
idle, our second scheme prioritizes (at network routers) the request
messages that are destined for idle banks over the others. This helps
to improve bank utilization and prevent long queues in front of the
memory banks. These two network prioritization-based optimiza-
tions, when applied together, result in uniform memory access laten-
cies with a low average value.

We implemented our schemes in a simulation environment and
tested their effectiveness using a diverse set of multiprogrammed
workloads. Our experiments with a 4×8 mesh network-based mul-
ticore show that our first scheme is very effective in reducing the
number of off-chip requests with very high latencies. As a result,
we are able to achieve 11%, 6%, and 10% performance improve-
ment on memory intensive, memory non-intensive, and mixed mul-
tiprogrammed workloads, respectively. When both our schemes are
used together, these improvements jump to 15%, 10% and 13%, in
the same order. Our experimental evaluation also reveals that the
proposed schemes consistently generate good results under different

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.35

294

����

�� �	
�

�����

����

����
��	���
 ��
�

��

�� ��

����

Figure 1: A 5×5 NoC based multicore.

values of the main simulation parameters.
The rest of this paper is structured as follows. We provide an

overview of our target multicore architecture and the main motiva-
tions behind our optimizations in Section 2. In Section 3, we give
the details of our proposed schemes and discuss our network priori-
tization implementation. Section 4 presents our experimental frame-
work and discusses our results. We contrast our approach with re-
lated work in Section 5, and conclude the paper in Section 6.

2. Background and Motivation

2.1. Target Multicore System

Figure 1 shows the high level view of an NoC-based multicore sys-
tem that we target in this paper. As can be observed, this multicore
system has a number of nodes arranged in a 2D grid (an example
present day product using a similar organization is TILEPro36 by
Tilera [1]). In this architecture, each node contains a processing ele-
ment and a hierarchy of caches; only two levels of caches are shown
in Figure 1. The shared last level cache (L2) has a banked organi-
zation where the L2 space in each tile represents a separate bank.
The mapping of data to L2 cache banks is very important as far as
performance is concerned, and in one mapping scheme (SNUCA
[15]) which is also used in this paper, each cache block-sized unit of
memory is statically mapped to one of the cache banks based on its
address [16]. This address-based mapping results in an interleaving
of cache blocks across cache banks. The main memory is connected
to this multicore via memory controllers (MCs) on the corners (or
sides), each controlling a single memory channel with possibly many
memory modules (DIMMs) connected. Each channel consists of one
or more ranks, and each rank is a group of memory banks. Different
memory banks can be accessed at the same time, but they share com-
mon address and data buses. More details on the internal structure
of the main memory can be found in [3, 9, 29]. Note that the target
memory bank for each memory request is fixed and depends on the
OS address mapping. If more than one memory request are queued
in a memory controller trying to access the same bank, the memory
scheduler decides which one should be served first [33, 34].

2.2. Memory Accesses in an NoC-based Multicore

Once a core issues a memory request, first the local L1 is checked
for the presence of the requested data and if this fails, the request
is forwarded to the corresponding L2 bank via the on-chip network.
Finally, if the data is not found in the L2 bank, an off-chip memory
access is made, again using the on-chip network. Figure 2 depicts
this flow in our target architecture. One can make several critical ob-
servations from this figure. First, the L2 access latency is a function

���
�

�

�

�

�

���

���

���

Figure 2: Detailed flow of a memory access. In order to look-up the
corresponding L2 bank, a request message is sent from L1
to L2 (path1). If the data is a hit in L2 cache, then the re-
sponse data is sent back to the L1 cache (path5). In case
of an L2 miss, the request is forwarded to the memory con-
troller (path 2). The memory controller schedules this re-
quest (path3) and the response is sent first to the L2 cache
(path 4) and then to the L1 cache (path 5).

of the distance between the requesting core (L1) and the target L2.
It is to be noted that, longer this distance gets, higher the chances for
network contention. Second, the total latency to serve an L2 miss
(i.e., the overall memory latency) includes memory controller queu-
ing and memory service latencies (i.e., the memory access latency)
as well as the latency of four trips on the network: L1 to L2, L2
to memory controller (MC), MC to L2, and L2 to L1. As a result,
network latency can play a significant role in overall memory access
latency (in fact, our experiments show that, even in a 4× 8 mul-
ticore, cumulative network latency can be comparable to memory
access latency). Third, the time spent in an MC depends on other
requests that target the same MC as well as the (memory request)
scheduling policy adopted by the architecture. Fourth, at any given
time, there will be many memory requests traveling on the network.
These requests contend for the shared network resources, resulting
in additional delays. For example, a message from a core destined
to an L2 may contend for the same link/router with another message
going from an L2 to an MC. Lastly, the time it takes to service a
memory request (after it gets its turn from the memory scheduler)
depends on whether it results in a row buffer hit or not.

2.3. Out-of-Order Execution
In our target system, each processing element (core) is a high perfor-
mance out-of-order processor. It can issue multiple instructions by
looking at its instruction window. As a result, if these instructions
need to access the main memory, the memory requests can be issued
at the same time with the hope of improving the overall performance
by not stalling the processor for a single memory request. This is re-
ferred to as Memory Level Parallelism (MLP) [11, 28]. Note that
although memory requests may return out-of-order, the instructions
are committed in-order and therefore, a higher memory access la-
tency for an instruction may affect the performance of an applica-
tion significantly [10]. As an example, suppose that an application
issues four load instructions (load-A, load-B, load-C and load-D, as
shown in Figure 3) that need to access memory. As discussed, these
instructions may be ready to commit at different times due to the net-
work and memory latencies and also whether they are hits or misses

295

	
�������
 ��
���

��
	�

��

��
	�

��

��
	�

��

��
	�

��

���� ���������	�
���	

��	��� ��	��� ��	���

Figure 3: An instruction window with four outstanding memory re-
quests.

in the on-chip caches. Note that in the instruction window shown in
Figure 3, the load instruction (e.g, load-A) that needs to wait for a
longer time to access the data (as compared to the other instructions)
becomes a bottleneck for the application. The chances that a mem-
ory request will be a bottleneck depend on its delay and also other
outstanding memory requests from the same application. For exam-
ple, if an application is not memory intensive (an application with a
low MPKI [misses per kilo instructions]), the likelihood that one of
its off-chip memory requests would be a bottleneck is high. This is
why previously-proposed memory scheduling schemes [17, 18] and
network prioritization [7], higher priorities are given to the requests
coming from this type of applications. However, these prior works
do not consider the network and memory access latencies together.
For instance, in the application-aware network prioritization scheme
proposed in [7], the time it takes to access the memory is assumed
to be constant, whereas in reality memory requests (when they reach
the memory controller in an NoC based multicore) may face differ-
ent latencies due to queuing.

2.4. Motivations

Our proposed approach consists of two network prioritization based
schemes (Scheme-1 and Scheme-2). These schemes are proposed
based on two main motivations presented in this section. Specifi-
cally, Motivation-1 and Motivation-2 below motivate for Scheme-1
and Scheme-2, respectively.
2.4.1. Motivation 1: Some Memory Accesses Experience Much
Higher Delays than Others As illustrated in Figure 2, a round-trip
memory access has five paths/stages. The total delay of each access
is equal to the sum of the delays on these paths. To have a better
understanding of how much time each memory request spends on
different stages/paths on average, we simulated a 4× 8 NoC-based
multicore with 4 memory controllers attached to the corners, and
each core executing an application from the SPEC2006 benchmark
suite [12] (see workload-2 in Table 2; more details on the experi-
mental configuration and workloads are given in Section 4.1). Fig-
ure 4 plots the average round-trip delays of the off-chip memory
accesses issued by one of the cores (executing application milc), bro-
ken into individual components The values on the x-axis are the “de-
lay ranges” and each bar gives the “average latency” of the memory
accesses which experienced a delay value within the corresponding
range on the x-axis. For example, the first bar from the left gives the
average round-trip delay of the memory accesses with delay falling
between 150 cycles and 200 cycles. Each bar is partitioned into
five parts, which shows the breakdown of the average delays. These
partitions from bottom to top represent: (1) the average network de-
lay between L1 and L2 banks (path-1 in Figure 2), (2) the average
delay from the L2 bank to the memory controller (path-2 in Fig-
ure 2), (3) the average delay added by the memory (queuing delay
+ memory access latency), (4) the average network delay from the

�

���

���

���

���

���

���

���

�
��

	�
��

��
��

�

���	� �	
!�� �������

�� �� �� �� �� ��� ��� ��� �� �� �� �� ��

Figure 4: The average delays of the off-chip memory accesses is-
sued by one of the cores (executing milc in workload-2).

�

����

���

����

���

����

��� ��� ��� ��� ���

�
��

���

��
��

��
 �

��
��

��
�

!� �" #�"� ��$

%&��'�

Figure 5: The latency distribution of the memory accesses issued by
one of the cores (executing application milc in workload-2).

memory controller to the L2 bank (path-4 in Figure 2), and (5) the
average network delay form the L2 bank to the source core. As can
be seen from this figure, due to the large network and memory queu-
ing delays, some messages experience significantly larger delays as
compared to others.

However, the numbers of accesses in different delay ranges are
not the same. Figure 5 plots the distribution of the memory ac-
cesses across different delay regions. The values on the x-axis cor-
respond to different latencies observed during execution, and the y-
axis shows the percentage of the total memory requests for different
latencies. The area under the curve between x = d1 and x = d2 gives
the fraction of the memory accesses that have a total latency between
d1 and d2. As can be observed from this plot, the latencies of most
of the accesses are around the average, but there are few accesses
with very large delays (600 cycles or more). Unfortunately, these
high latency accesses can be very problematic and degrade overall
application performance significantly.

Our first scheme identifies these (high latency) accesses (after the
DRAM access is completed) and attempts to reduce their latencies
with the goal of improving the overall system performance. Specif-
ically, our proposed scheme tries to expedite these slow messages
on their return path by giving them a higher priority in the on-chip
routers. In other words, we try to make the latencies of the differ-
ent memory accesses issued by the same application as uniform as
possible.

296

���

����

��(

��(�

���

� � � � � � � (� �� �� ����������

"�
��

�
��

�	
��

Figure 6: The idleness of different banks of a memory controller.

�� ��

����

)�
*+�

)�
*+�

)�
*+�

���

���

�
��

Figure 7: A snapshot that shows the states of the three banks con-
trolled by one of the memory controllers.

2.4.2. Motivation 2: Bank Loads are Non-Uniform Once a mem-
ory request passes through the on-chip network and reaches the
memory controller, it may face a queue in front of the target memory
bank. We observed during our experiments that, at any given time,
different banks can have very different queue lengths (i.e., the num-
ber of pending requests). For instance, some banks may be idle for
a period of time, whereas other banks may be serving their requests.
Figure 6 plots the average idleness of different banks of one of our
memory controllers (again in our 4× 8 multicore). To compute the
average idleness, the queue of each bank is monitored at fixed inter-
vals. For example, an average idleness of 0.8 in this plot implies that
80% of the times, the bank is monitored, there has been no request
in its queue.

To explain how this observation can be exploited, consider Fig-
ure 7 which shows the states of three banks controlled by one of
the memory controllers at time t1. As can be seen, Banks 0 and 1
have requests to be serviced, whereas Bank-2 is idle. Assume fur-
ther that there are three memory requests (from L2 misses) in the
on-chip network destined for these banks as shown in Figure 7 (R-0,
R-1 and R-2 which are destined for Bank 0, 1 and 2, respectively).
In this example, the memory utilization could be improved if R-2
could reach its memory controller faster so it can be serviced by
Bank-2 immediately. Our proposed scheme exploits this load varia-
tion across different banks by using the local history at each node to
accelerate the memory requests on the network destined for the idle
banks.

3. Our Approach

In this paper, we propose two network prioritization schemes that
consider the states of the memory bank queues and the overall mem-

ory access delays in NoC-based multicores. In this section, we first
explain how our schemes work and then discuss the implementation
details of the specific network prioritization method we employ. In
our proposed approach, Scheme-1 focuses on the response messages
coming back from the memory and Scheme-2 considers request mes-
sages destined for the off-chip memory. We assume a one-to-one
mapping between applications and cores.

3.1. Scheme-1: Reducing Variations across Memory Accesses

This scheme is based on the motivation discussed in Section 2.4.1.
Recall from Figure 5 that some memory accesses issued by an appli-
cation can take much longer times to complete compared to other ac-
cesses from the same application (we call them late accesses). As an
example, in Figure 5, about 10% of the accesses have delays larger
than 600 cycles (while the average latency is about 350 cycles). As
mentioned earlier, these late accesses can severely degrade the per-
formance of applications. Suppose for example that an application
executes a = b + c. In this instruction, if one of the operands be-
comes ready only after a long time, this will delay the completion
of this instruction as well as all instructions that depend on it. The
main goal behind our Scheme-1 is to mitigate the impact of the late
accesses by helping them reach their destinations faster.

As shown in Figure 4, three different factors can cause memory
accesses to be late in the system: (1) the network latency from the
source cache bank to the corresponding memory controller, (2) the
memory access latency (which includes both queuing delay and the
time it takes to access the DRAM), and (3) the network latency from
the memory controller to the source cache bank. Therefore, in order
to reduce the delay experienced by the late accesses, one can po-
tentially target these three delays. The first and third delays can be
reduced by giving higher priorities to the request and the response
messages in the network. However, for the first part (network latency
after an L1 miss, from the L1 bank to the memory controller), it is
not known that a memory request is going to be a late memory ac-
cess, since the total delay depends mainly on the memory response
time (factor 2) and the network delay of the response messages (fac-
tor 3), as illustrated in Figure 4. To reduce the response time of the
memory (factor 2), late memory requests could be scheduled faster
at the bank queues. However, prioritizing these requests would harm
other late requests in the same bank. In other words, if one request
in a bank queue suffers long queuing delay, it is most likely that
this bank is a “common bottleneck” for all co-running applications,
and consequently prioritizing the requests from one application over
others would not help in a global sense.

Motivated by these observations, Scheme-1 attempts to reduce the
delays coming from the third factor, since right after the memory
controller the delays accumulated so far can give a good estimate
of whether a memory access is going to be “late” or not. In this
scheme, each memory message (packet) has a field that maintains
the age (“so-far delay”) of the corresponding access (based on the
delay at each router/stage, this field is updated over the round-trip
of the memory access). Note that the variations in network latencies
(the first factor) can come from two contributions: (1) the distances
in the network from L1 to L2 and from L2 to MC, and (2) the net-
work traffic. Both these sources are captured by our so-far delay
field, and consequently handled by our scheme.

To illustrate how Scheme-1 works, let us explain it through a sim-
ple example. In Figure 8, suppose that MC1 has received a memory
request from core-1, and R0 is the corresponding response message

297

��� ���

������

��

��

��

������

	!�

Figure 8: An example to illustrate how Scheme-1 works. MC1 has
received a memory request from core-1, and R0 is the cor-
responding response message for that request after it is
serviced by MC1.

for that request after it is serviced by MC1. Once R0 is ready, the
age field (the so-far delay) in R0 gets updated based on the delay
that has been imposed by the memory. After that, the updated so-far
delay is compared with a threshold value T h. If it is larger than T h,
this memory access is considered to be late and, on the return path,
R0 will have a higher priority to reach its destinations (the paths
from MC1 to L2 and L2 to L1 illustrated in Figure 8). Note that
in the memory controllers, each core/application is associated with
a threshold value. These threshold values are determined and sent
to the MCs by the cores periodically (every 1ms) over the execu-
tion and they are also prioritized over other requests (each MC has
storage to keep the threshold values). Since this happens every 1ms,
the overhead on the other messages is small. In our default config-
uration, each core sets its threshold value to 1.2×Delayavg, where
Delayavg is the average delay of the off-chip memory accesses that
belong to that application/core. Once a response message for an
off-chip memory access comes back, the round-trip latency of that
off-chip memory access is read from the message (the age field) and
Delayavg is updated accordingly. Consequently, during the course
of execution, the threshold value used for each application changes
dynamically.

Note also that we compute the priority of a response message
when the message is about to be injected into the network by the
memory controller. However, at that time instant, the memory con-
troller only knows the so-far delay of the request, and therefore,
any delay threshold that will be used in calculating the priority
must be defined based on the average delay up to and including
the memory access latency (Delayso− f ar−avg). For this reason, we
set our threshold to 1.2×Delayavg (which is almost equivalent to
1.7×Delayso− f ar−avg; both averages are marked in Figure 9 us-
ing vertical solid lines). Figure 9 plots two delay distributions of
the memory accesses (issued by the core executing application milc
from workload-2). Specifically, the dashed curve shows the distribu-
tion of the round-trip delays of the messages, while the solid curve
plots the distribution of the so-far delays at the point right after the
memory controller (i.e., when the data is read from the memory, and
is about to be injected into NoC).
Implementation Details. As discussed earlier, Scheme-1 needs
each memory access message to have a field (called “age” field) cap-

�

����

���

����

���

����

���

��� ��� ��� ��� ���

�
��

���

��
��

��
 �

��
��

��
�

!� �" #�"� ��$

��
�,��-,�� �" ��,��,�� �"

�.��.� �

!� �"/�&'

!� �"/��,��,�&'

Figure 9: Latency distributions of the memory accesses (issued by
the core executing application milc from workload-2). The
solid curve shows the distribution of the so-far delays at the
point right after the memory controller, while the dashed
curve plots the distribution of the round-trip delays of the
messages.

turing the so-far delay of the message in the NoC. We assume that
this field is 12-bit long and its value is in cycles. We believe a 12-bit
field is sufficient in our work, since it is very rare that the round-trip
of an off-chip message takes more than 4096− 1 cycles in the sys-
tem. We assume that the header flit has room for the so-far-delays
(12-bit) in a 128-bit header. At each router/memory-controller, once
the message is ready to be sent out, the age-field value is updated as
follows:

age = age+
(local_time−messageentry_time)×FREQ_MULT

local_ f requency
,

(1)
where local_time is the local router/MC clock cycles,
messageentry_time is the time when the message enters the
routers/MCs, FREQ_MULT is a constant value (used to work in
integer domain, instead of fractions of cycles) and local_ f requency
is the local operating frequency. As one can observe, in each
hop, first, the local delay of each incoming message is computed
(local_time−messageentry_time) and then this value is added to the
age-field of the message. Note that dividing the local delay by the
local_ f requency allows our scheme to work when routers/MCs
operate at different frequencies. Note also that, the entry time of
each message is not transferred over the network, and each router
keeps track of its own local delay and computes the so-far delay
locally. Instead of updating the age field at each hop, one may
choose to employ a global clock to compute the so-far-delays. In
this method, each message is labeled with the starting time and,
at the destination, the starting time is subtracted from the current
time to obtain the so-far-delay. However, in this mechanism, all the
nodes need to have clocks and these clocks should be synchronized.

3.2. Scheme-2: Balancing Memory Bank Loads

Based on Motivation-2 discussed in Section 2.4.2, the main goal be-
hind this scheme is to increase the utilization of the memory banks
in the system. To do this, the requests destined for the idle banks
are given higher priorities in the network to reach their target mem-
ory controllers faster. However, the number of requests queued in
each memory bank varies over the execution, and more importantly,
a core in our 2D mesh does not know about the states of the mem-
ory banks. In other words, no global information is available to the

298

nodes to help them decide whether different memory requests they
issue are destined for idle banks or not. To address this problem,
in our proposed scheme, each node exploits “local information” to
estimate the pressure imposed by the requests on the memory banks.
Specifically, each router keeps and updates a table (called “Bank His-
tory Table”) that records the number of off-chip memory requests
sent from this router to each bank in the last T cycles. An off-chip
request is given a higher priority in the on-chip network if no mes-
sage has been sent to the same bank according to the value in the
bank history table. In Section 4, we present results that show how
bank idleness is reduced when Scheme-2 is employed.

Note that due to Scheme-2 and the variation in the network laten-
cies, different requests that are destined for the same memory bank
may not reach the bank queue in order (based on their ages). This
may cause more delays for the late accesses. Message ordering can
be handled by the memory scheduler, since the scheduler knows the
timing information for all arriving messages.

3.3. Network Prioritization Implementation

Further, that would be very costly to use stronger routers and more
network resources. Our schemes can be used along with other ar-
chitectural solutions to provide additional benefits. In this section,
we give the implementation details of our prioritization method. In
our NoC-based multicore, we assume a typical architecture with 5-
stage pipeline for the on-chip routers [21]. We further assume flit-
buffering and VC (virtual channel) credit-based flow control at every
router [4]. In this architecture, each network message is split into
several flits with fixed-lengths and the flow of the flits follows the
wormhole switching protocol [6]. For further details, we refer the
reader to [21].

Once a header flit enters a router, in the first stage of the pipeline,
which is called buffer write (BW), the flit is written into the allocated
input buffer. In the next stage (routing computation (RC)), the rout-
ing algorithm is invoked and the right output port is determined for
the packet based on the position of the current router and the desti-
nation address extracted from the header flit. The next stage, called
virtual channel allocation (VA), is where a free output virtual chan-
nel is reserved for the packet. After this stage, the flit needs to get
the permission to use the crossbar switch (switch allocation (SA)).
In the last stage, the flit traverses the switch (ST) to be sent over
the physical link (LT). Note that only the header flit passes through
these stages, and the body and tail flits skip the RC and VA stages as
they simply follow the header flit.

In our approach, the messages to be expedited have higher priori-
ties in VC and SW arbitrations (for virtual channel and switch allo-
cations). The VC arbitration is done when an output VC is preferred
by more than one input VC and, one of them should be granted. The
SA arbitration on the other hand has two phases. In the first phase,
only one of the ready VCs is selected per input port and, in the sec-
ond phase, one VC is selected for each output port. The reason for
these two arbitrations is that, at each cycle, only one flit can be sent
from an input and each output is able to receive a single flit.

Although prioritization in the arbitration stages expedites the mes-
sages and helps them reach their destinations faster, there is a limit in
this message acceleration, since it takes at least 5 cycles for the data
flits to pass through a router in the network. To tackle this limita-
tion, we also employ a mechanism called “pipeline bypassing” [21],
which gives the late messages the opportunity to go through fewer
number of pipeline stages in the routers. In this mechanism, once

�� �� �� �� �	
��� �	

��
����� �������������

���

Figure 10: Pipeline stages in baseline and pipeline bypassing.

the header flit of a message (with high priority) enters a router, in
the same cycle, after it is written to the input buffer, one free out-
put VC is allocated to it (VC allocation) and the switch is reserved
for this flit (SW allocation) (in other words, the BW, RC, VA and
SA stages are combined and performed in the first stage which is
called the “setup stage”). Figure 10 illustrates the pipeline stages for
the baseline router as well as the one with pipeline bypassing). If
in this cycle, there is a conflict in selecting the free output VC and
the switch allocation between this flit and a flit (with normal prior-
ity) in another VC, the flit with the higher priority is prioritized over
the others. Body flits also use this “bypassing” only when the input
buffer is empty once they enter the router (Note that the input buffers
are always idle when the header flits enter).

To avoid starvation in the system, we also use “age fields" in the
messages (which are also used in Scheme-1). In our prioritization
scheme, flit A is prioritized over flit B in the cases discussed above,
if (1) flit A has a high priority but flit B has the normal one, and (2)
the age of message B is not more than T cycles greater than that of
message A (flits A and B belong to messages A and B). Note that
the routers also consider the local delays in addition to the age fields
in the messages. “Batching" [8] is another method that can be used
to avoid starvation. In this method, time is divided into intervals of
T cycles and there is a field in each message that indicates the batch-
ing interval in which the message was injected to the network. The
packets are prioritized if they belong to the same batch. However,
this method requires a synchronization among the cores since they
need to access a common global time.

4. Experimental Evaluation

In this section, we first explain our simulation framework and the
different workloads that we used in our evaluations and then, present
and discuss our experimental results.

4.1. Setup, Metrics, and Workloads

Setup: We use GEMS [25] as our simulation framework to eval-
uate our proposed schemes. This framework allows us to simu-
late an NoC-based multicore system. GEMS consists of two main
components called Opal and Ruby, and employs Simics [24] as the
base simulator. Opal implements an accurate model for out-of-order
cores, and Ruby implements the network modules (the routers and
the links) and the memory controllers. The instructions are executed
by Opal and, if they require a memory access, a request message
is injected to Ruby. Opal receives the response message once the
requested data comes back from an L2 bank or one of the memory
controllers (simulated by Ruby). Table 1 gives our baseline configu-
ration. As shown in this table, our baseline system has 32 cores con-
nected by a 4× 8 mesh-based NoC, and also 4 memory controllers
are connected to the four corners of the network. In our evaluation,
we employ cache line interleaving where the consecutive lines of an
OS page are mapped to different memory controllers. Note that this
strategy helps to avoid creating hot spots in the memory controllers.
In the results presented below, the overheads incurred by our pro-
posed schemes are included.

299

Processors 32 out-of-order cores with private L1 data and instruction caches. instruction window size: 128, LSQ size: 64
NoC Architecture 4×8

Private L1 D&I–Caches Direct mapped, 32KB, 64 bytes block size, 3 cycle access latency
Number of L2 Cache Banks 32 (distributed over the network)

L2 Cache 64 bytes block size, 10 cycle access latency
L2 Cache Bank Size 512KB

Number of Banks Per Memory Controller 16
Memory Configuration DDR-800, Memory Bus Multiplier: 5, Bank Busy Time: 22 cycles, Rank Delay: 2 cycles, Read-Write Delay: 3 cycles, Memory

CTL latency: 20 cycles, Refresh Period: 3120
Cache Coherency Protocol MOESI_CMP_Directory

NoC parameters 5-stage router, flit size: 128 bits, buffer size = 5 flits, Number of virtual channels per port = 4, Routing algorithm: X-Y

Table 1: Baseline configuration.

Evaluation Metric: We use normalized weighted speedup metric
to quantify the benefits of our proposed scheme. Weighted speedup

is defined as: WS = ∑
IPCi(shared)
IPCi(alone) , where IPCi(shared) is the IPC

of application i when it is executed with the other applications in
the workload and IPCi(alone) is the IPC of the same application
when it is executed alone without having any contention with the
other applications. In this section, we present the weighted speedup
values that are normalized to that achieved by the default case where
no prioritization is employed.
Workloads: We formed our workloads using the applications from
the SPEC2006 benchmark suite [12]. Table 2 gives the 18 workloads
that we used in our experiments on our 32-core system (the numbers
in the parenthesis represent the number of copies for each applica-
tion in the workload). The workloads listed in Table 2 cover all
applications and are categorized into three different groups based on
the memory intensity of the applications: (1) Workloads 1 through 6
(mixed workloads): in these workloads, half of the applications are
memory intensive (applications with high MPKI) and the remaining
ones are memory non-intensive. (2) Workloads 7 through 12: all
applications in this category are memory intensive. (3) Workloads
13 through 18: none of the applications in this group is memory
intensive. In other words, to form a workload, we first categorize
the applications into three groups based on the memory intensity
(since our scheme is proposed for memory accesses) and then, for
each workload, we randomly pick 32 applications from the specific
category (note that this strategy may choose some applications mul-
tiple times, but all the applications in a workload belong to the same
memory-intensity region). MPKI values representing the memory
intensities of the applications in the SPEC2006 suite can be found in
[17].

4.2. Results

We now present the experimental results collected using various
configurations. In executing a workload, the simulation was fast-
forwarded for 1 billion cycles, and then we collected our statistics
in the next 100-million cycle run. As stated earlier, we employed
a one-to-one mapping between applications and cores, that is, each
core executes one application and the application-to-core mapping
does not change during the execution.
Results for a 32-core system with the baseline configuration: As
mentioned earlier, in this configuration, 32 cores are connected by a
4× 8 2D mesh-based NoC and 4 memory controllers are placed in
four corners of the mesh (other parameters are as given in Table 1).

Figure 11 plots the normalized weighted speedup values achieved
for our workloads, which are categorized into three groups as shown
in Table 2. As discussed in Section 3, our approach to reducing end-
to-end latency employs two complementary schemes. In Scheme-
1, if the so-far delays of the response messages are larger than a
threshold value (the default value of this threshold is 1.2×Delayavg)
after the memory controller stage, they are given a higher priority

in the network on the return paths to reach their destinations faster,
whereas Scheme-2 accelerates the request messages that are destined
for the idle memory banks. As stated earlier, in this scheme, the
decision of whether a request message is destined for a idle bank or
not is made based on the local information. When an L2 miss occurs,
if over the last T cycles, the number of requests sent to the same
bank is less than a threshold (th), the request is given high priority
(the default values for T and th are 200 cycles and 1, respectively).

In Figure 11, two bars are presented for each workload. The first
bar shows the performance improvement achieved when Scheme-1
is employed in the system and the second one is for the case where
Scheme-1 and 2 are employed together. Note that the weighted
speedup values presented in Figure 11 are normalized to the base
case in which the applications are running together but no prioritiza-
tion scheme is employed.

As can be observed from Figure 11, our approach (Scheme-1 +
Scheme-2) improves performance by up to 13%, 15% and 10% for
the mixed, memory intensive and memory non-intensive workloads,
respectively. Further, in general, higher performance improvements
are achieved when the applications are more memory intensive. This
is because when the co-running applications are more memory in-
tensive, the traffic on the network is higher and, as a result, the im-
pact of our network prioritization based approach on accelerating
the late messages becomes more pronounced. However, our pro-
posed scheme does not improve the performance for all the work-
loads tested. For instance, the speedup values achieved by Scheme-1
for workloads 2 and 9 are slightly less than 1. The reason for this
behavior is that giving higher priorities to some of the messages in
the network hurts the other messages and, this can offset the benefits
of our scheme in some cases.

The impact of employing Scheme-1 and Scheme-2 can be ob-
served in the distribution of the end-to-end latencies and the aver-
age idleness of the memory banks, respectively. Figure 12a plots 8
“cumulative distribution functions” (CDFs) of the off-chip memory
accesses generated by the first 8 applications in workload-1. In this
figure, the values on the x-axis are the total latencies (in cycles) and
the y-axis shows the fraction of the total number of off-chip memory
accesses. Each curve corresponds to one of the applications and the
F(x) value gives the fraction of the total accesses with delays less
than x. Figure 12b plots the new CDFs of the off-chip accesses for
the same 8 applications when Scheme-1 is employed. It can be ob-
served from Figure 12a that 90% of the messages have an average
total latency about 700 cycles (shown with dashed lines), whereas
Scheme-1 reduces it to about 600 cycles (see Figure 12b).

Figure 12c plots the “probability density function” (PDF) of
the memory accesses issued by one of the applications (lbm) in
workload-1 before and after Scheme-1 is employed (the area under
the curve shows the fraction of total number of accesses). Employ-
ing Scheme-1 reduces the number of messages with large delays and
move them from Region-1 to Region-2. This results in about 8%

300

M
IX

E
D

Workload-1 mcf(3), lbm(2), xalancbmk(1), milc(2), libquantum(1), leslie3d(5), GemsFDTD(1), soplex(1), omnetpp(2), perlbench(1), astar(1), wrf(1), tonto(1), sjeng(1), namd(1),
hmmer(1), h264ref(1), gamess(1), calculix(1), bzip2(3), bwaves(1)

Workload-2 mcf(4), lbm(2), xalancbmk(2), milc(3), libquantum(2), GemsFDTD(1), soplex(2), perlbench(2), astar(3), wrf(3), povray(1), namd(3), hmmer(1), h264ref(1), gcc(1),
dealII(1)

Workload-3 mcf(4), lbm(1), milc(2), libquantum(5), leslie3d(2), sphinx3(1), GemsFDTD(1), omnetpp(1), astar(2), zeusmp(2), wrf(2), tonto(1), sjeng(1), h264ref(1), gobmk(1),
gcc(1), gamess(1), dealII(1), calculix(1), bwaves(1)

Workload-4 mcf(1), lbm(2), xalancbmk(3), milc(2), leslie3d(1), sphinx3(3), GemsFDTD(1), soplex(3), omnetpp(1), astar(2), zeusmp(1), wrf(1), tonto(1), sjeng(1), h264ref(2), gcc(1),
gamess(3), bzip2(2), bwaves(1)

Workload-5 mcf(4), lbm(2), xalancbmk(3), milc(1), leslie3d(1), sphinx3(1), soplex(4), astar(2), zeusmp(2), wrf(1), sjeng(1), povray(2), namd(1), hmmer(1), h264ref(2), gromacs(1),
gcc(1), calculix(1), bwaves(1)

Workload-6 mcf(2), xalancbmk(2), milc(1), libquantum(1), leslie3d(2), sphinx3(3), GemsFDTD(3), soplex(2), omnetpp(1), perlbench(2), wrf(1), tonto(2), hmmer(1), gromacs(1),
gobmk(1), gcc(1), gamess(1), dealII(2), bzip2(3)

M
E

M
IN

T
E

N
SI

V
E

Workload-7 mcf(1), lbm(5), xalancbmk(5), milc(1), libquantum(5), leslie3d(4), sphinx3(3), GemsFDTD(6), soplex(2)
Workload-8 mcf(3), lbm(2), xalancbmk(4), milc(3), libquantum(8), leslie3d(3), sphinx3(4), GemsFDTD(5)
Workload-9 mcf(4), lbm(5), xalancbmk(4), milc(3), libquantum(4), leslie3d(2), sphinx3(6), GemsFDTD(2), soplex(2)
Workload-10 mcf(4), lbm(3), xalancbmk(3), milc(2), libquantum(4), leslie3d(3), sphinx3(4), GemsFDTD(8), soplex(1)
Workload-11 mcf(3), lbm(6), xalancbmk(2), milc(5), libquantum(1), leslie3d(2), sphinx3(4), GemsFDTD(4), soplex(5)
Workload-12 mcf(2), lbm(3), xalancbmk(3), milc(6), libquantum(5), leslie3d(4), sphinx3(4), GemsFDTD(5)

M
E

M
N

O
N

-I
N

T
E

N
SI

V
E Workload-13 perlbench(1), astar(3), zeusmp(2), wrf(2), sjeng(3), povray(2), hmmer(1), gromacs(2), gcc(1), gamess(2), dealII(2), calculix(5), bzip2(2), bwaves(4)

Workload-14 omnetpp(3), perlbench(1), zeusmp(2), tonto(1), sjeng(1), povray(2), namd(2), hmmer(4), h264ref(3), gromacs(2), gobmk(3), gamess(3), bzip2(1), bwaves(4)
Workload-15 omnetpp(2), perlbench(2), astar(1), zeusmp(3), sjeng(1), povray(1), namd(1), hmmer(2), h264ref(1), gromacs(2), gobmk(3), gcc(2), gamess(1), dealII(4), calculix(2),

bzip2(2), bwaves(2)
Workload-16 omnetpp(3), perlbench(3), astar(2), zeusmp(1), wrf(2), sjeng(3), povray(3), namd(1), hmmer(2), h264ref(1), gobmk(1), gcc(4), gamess(2), dealII(2), bzip2(1), bwaves(1)
Workload-17 omnetpp(2), perlbench(2), astar(1), zeusmp(2), wrf(1), tonto(2), sjeng(1), povray(2), namd(1), hmmer(4), h264ref(1), gobmk(2), gcc(2), gamess(1), dealII(3), calculix(2),

bzip2(3)
Workload-18 omnetpp(2), perlbench(4), zeusmp(2), wrf(2), tonto(2), sjeng(2), namd(1), hmmer(2), h264ref(1), gromacs(2), gobmk(2), gcc(4), gamess(2), calculix(2), bzip2(1),

bwaves(1)

Table 2: Workloads used in our 32-core experiments.

���

����

�

����

���

����

���

�,� �,� �,� �,� �,� �,�0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

2�.���,� 2�.���,� 3 2�.���,�

(a) Mixed workloads.

���

����

�

����

���

����

���

�,� �,(�,� �,�� �,�� �,��0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

2�.���,� 2�.���,� 3 2�.���,�

(b) Memory intensive workloads.

���

����

�

����

���

����

���

�,�� �,�� �,�� �,�� �,�� �,�(0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

2�.���,� 2�.���,� 3 2�.���,�

(c) Memory non-intensive workloads.

Figure 11: Speedup values achieved for different workloads executed on a 32-core system.

performance improvement for this application. As one can observe
from this figure, not all the messages are transferred to Region-2 and
there are still messages in Region-1. This is because Scheme-1 re-
duces a portion of the total memory access latency and, for instance,
if a message spends a long time in the memory queue (e.g, 700 cy-
cles), Scheme-1 will not be able to move this message to Region-2.

To illustrate the impact of Scheme-2, we plot in Figure 13 the idle-
ness values for different banks of a memory controller when Scheme-
2 is employed and when no scheme is used (workload-1). As can be
seen, Scheme-2 reduces the idleness of our banks (resulting in an
overall system performance improvement of more than 5%). Fig-
ure 14 plots dynamic reduction in bank idleness over the course of
execution for one of our workloads (workload-1).
Results for a 16-core system: We also ran our experiments in a
smaller system with 16 cores connected by a 4×4 mesh-based NoC.
In this configuration, two memory controllers with the same param-
eters as in Table 1 are attached to two opposite corners of the mesh.

Figure 15 plots the speedup values achieved by our proposed
scheme when our workloads are executed on this smaller system.
We picked the first half of the applications in each workload shown
in Table 2 for this experiment (for the mixed workload, the first half
of the memory intensive and memory non-intensive applications are
selected). Averaged over all the workloads, the speedups achieved in

these experiments are about 8%, 10% and 5% for the mixed, mem-
ory intensive and memory non-intensive workloads, respectively.

A comparison between Figures 11 and 15 reveals that the speedup
values for the 32-core system are generally higher than those for the
16-core system. This is because as the network size increases, the
network delay contributes more to the round-trip latencies of the
off-chip accesses and, as a result, the impact of the network prioriti-
zation is amplified.
Impact of the threshold value in Scheme-1: As discussed earlier,
to determine whether a response message is late or not, after a re-
quest is serviced by the corresponding memory controller, the so-far
delay of the request is compared against a threshold and if it is larger
than this threshold value, the corresponding memory access is con-
sidered to be “late”. Recall also that the default value for this thresh-
old is 1.2×Avgdelay. Note that Avgdelay is the average round-trip
latency of the off-chip requests that belong to the same application
(issued by the same core) and is computed dynamically by the source
core. To study the impact of the threshold values on the achieved
speedups, we performed experiments for two other threshold values:
1.1×Avgdelay and 1.4×Avgdelay. Figure 16a plots the speedup val-
ues achieved for the three cases when workloads 1 through 6 are
used. As can be observed, when the threshold is set to a larger value,
the speedup values reduce since fewer messages are considered to be

301

�
���
���
���
���
���
���
���
��(
���

�

��� ��� ��� ��� ��� ��� ��� (�� ���

�
��

���

��
��

��
 �

��
��

��
�

4��� !� �" #�"� ��$

(a) CDF (base).

�
���
���
���
���
���
���
���
��(
���

�

��� ��� ��� ��� ��� ��� ��� (�� ���

�
��

���

��
��

��
 �

��
��

��
�

4��� !� �" #�"� ��$

(b) CDF (Scheme-1).

�

����

���

����

���

����

��� ��� ��� ��� ���

�
��

���

��
��

��
 �

��
��

��
�

!� �" #�"� ��$

0�� �����5����

6�'��

�

6�'��

�

��� ��������
���. .�'. �� �"�

(c) PDFs.

Figure 12: (a) The CDFs of the off-chip accesses for the first 8 applications in workload-1. The values on the x-axis are the total (end-to-end)
memory access latencies (in cycles), and the y-axis shows the fraction of the total number of off-chip memory accesses. (b) The
CDFs of the off-chip accesses for the first 8 applications in workload-1, when Scheme-1 is employed. (c) The delay distributions
of the memory accesses for one of the applications (lbm) in workload-1 before and after Scheme-1 is employed. This distribution
change results in 8% performance improvement.

���

����

��(

��(�

���

� � � � � � � (� �� �� ����������

"�
��

�
��

�	
��

����� � 2�.���,�

Figure 13: Idleness values of different banks of a memory controller
when Scheme-2 is employed and when no scheme is used.
As can be observed, Scheme-2 reduces idleness in most
of the banks.

����

���

����

��(

��(�

� � � � � �� �� �� �� ��

%&
�

�'
�

	�
 �

�
��

4��� 	
��&� #���*$

����� � ���. 2�.���,�

Figure 14: Average idleness of the memory banks (workload-1) over
the execution.

late in this case, and prioritized in the network. However, reducing
the threshold value may not help performance since when the num-
ber of late messages in the network increases, prioritizing too many
messages in the network hurts other messages, leading eventually to
network congestion and performance degradation.
Impact of the T value (history length): In Scheme-2, the decision
of whether a request message is destined for a idle bank or not is
made based on the local information. When an L2 miss occurs, if
over the last T cycles, the number of requests sent to the same bank
is less than a threshold (th), the request is given high priority (the de-
fault values for T and th are 200 cycles and 1, respectively). Figure
16b plots the speedup values for T = 100, 200, and 400. As can be

observed, for T = 400 the speedup values are not as high as the case
where T=200 since the number of late requests decreases. However,
reducing the T length (T = 100) does not necessarily increase the
speedups either (see workload-2 and workload-4) due to the impre-
cision in finding the idle banks and the slow down imposed on the
other messages in the network.

Impact of the number of memory controllers: Finally, Figure 16c
plots the performance improvements for our mixed workloads when
there are two and four memory controllers in the system. One can ob-
serve that, the performance improvement is slightly increased when
there are fewer number of memory controllers in the system. The
reason for this can be explained as follows. When there are fewer
number of memory controllers in the system, due to the pressure
increase on the bank queues, there will be more critical and late ac-
cesses in the system that can be enhanced by Scheme-1, and this
results in higher performance. Note also that, although the bene-
fits form Scheme-2 may reduce with fewer number of memory con-
trollers (since there will be less idle banks), due to the improve-
ment achieved by Scheme-1, the overall improvement (Scheme-1
+ Scheme-2) is slightly better (see Figure 16c). However, the per-
formance improvement is reduced for w-2 and w-3 due to the lower
improvements achieved by Scheme-2.

Sensitivity to the structure of the routers: Although many
schemes have been proposed by prior research to reduce message
latency and contention in the on-chip networks, they do not com-
pletely eliminate the network contention and we are far from achiev-
ing the ideal performance. Therefore, our proposed schemes can be
employed with the presence of the other proposed strategies to speed
up the critical off-chip messages by prioritizing them in the network.
One of the techniques to reduce the network latency is to employ
routers with the fewer number of pipeline stages. As given in Table
1, in our default configuration, the routers are implemented as five-
stage pipelines. However, the number of stages can be reduced to
two (as discussed in Section 3.3, but here, all the flits have the oppor-
tunity to traverse each router in two cycles if there is no contention).
Figure 17 compares the performance improvement achieved by our
proposed schemes (for w-1 to w-6) when the routers have two and
five pipeline stages. As can be observed from this plot, the perfor-
mance is still improved up to 10% for the 2-stage pipeline. However,
the improvement is 25-40% lower compared to the 5-stage pipeline
case. This is because the percentage of the network latency that

302

���

����

�

����

���

����

�,� �,� �,� �,� �,� �,�0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

2�.���,� 2�.���,� 3 2�.���,�

(a) Mixed workloads.

���

����

�

����

���

����

�,� �,(�,� �,�� �,�� �,��0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

2�.���,� 2�.���,� 3 2�.���,�

(b) Memory intensive workloads.

���

����

�

����

���

����

�,�� �,�� �,�� �,�� �,�� �,�(0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

2�.���,� 2�.���,� 3 2�.���,�

(c) Memory non-intensive workloads.

Figure 15: Speedup values achieved for different workloads executed on a 16-core system.

���

����

�

����

���

����

�,� �,� �,� �,� �,� �,�0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

��� 7 !� �"/�&' ��� 7 !� �"/�&' ��� 7 !� �"/�&'

(a) Impact of the threshold value in Scheme-1.

���

����

�

����

���

����

���

�,� �,� �,� �,� �,� �,�0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

48��� 48��� 48���

(b) Impact of the history length in Scheme-2.

���

����

�

����

���

����

�,� �,� �,� �,� �,� �,�0
�

�
�

�1
��

�
��

'.
��

�
2

-�
��

�-

��* ����

� �� � ��

(c) Impact of the number of memory controllers.

Figure 16: Results from our sensitivity experiments (32 cores).

���

����

�

����

���

����

���

�	� �	� �	
 �	� �	� �	�
��
�
��
��
��

��
��
��

��
��
�
��

��
��

��������

�	 ������������!� �	 �����������!�

Figure 17: Sensitivity to the number of pipeline stages.

can be reduced (for the selected messages) by the network prioriti-
zation decreases for the 2-stage pipeline case (note that in this case
no router bypassing is employed and the critical messages are pri-
oritized in the message arbitration done in the routers). However,
other techniques such as express channels proposed in [21] can be
employed to increase the latency savings.

5. Related Work

Main memory accesses have been identified as a critical bottleneck
in both multiprogrammed and multithreaded workloads [8, 18, 27].
Prior studies [2, 5, 22] have shown that packet latency variance can
be reduced by using age-based prioritization at the network routers.
These schemes added a new field to each packet to track its current
network latency and assigned a higher priority in the router to pack-
ets that suffered higher network latencies during switch allocation.
Lee et al. [23] proposed the use of a different metric with age-based
prioritization, where the hop count of a packet is used to assign its

network priority. However, livelocks can occur when such a static
metric is used for prioritization, and hence, this approach required
the implementation of complex probabilistic priority arbiters to pre-
vent livelocks. In contrast to these age-based schemes, in our work,
we compare the latency of a request coming from a core only against
the average latency of the requests from the same core. Therefore,
priorities for each core are calculated independently, which enables
per-core optimization of the memory access latency variance.

Two recent approaches to network prioritization-based latency op-
timization are proposed by Das et al. [7, 8]. In [7], packets are pri-
oritized based on the types of the co-running applications and in [8],
the slack of a network packet is defined as the number of cycles the
packet can be delayed without affecting the execution time of the ap-
plication. Although these works also employ network prioritization,
they do not have a detailed memory model (they assume fixed delay).
In contrast, we have a detailed memory model (with queuing and
row-buffer modeling) and use accurate so-far delay information dy-
namically updated during execution. Further, in [7, 8], latency/slack
calculation is done at the core side based on indirect parameters such
as hit/miss status of the packet and number of hops. However, it be-
comes extremely difficult to accurately predict latency/slack at the
cores when multiple requests from different cores compete for the
same MCs. Lastly, these prior works do not consider memory bank
idleness. Consequently, our schemes are different from these prior
works.

As mentioned earlier, in our work we use an S-NUCA [15] based
cache space management. In [13], a novel scheme called Reactive
NUCA is proposed for data placement in the distributed caches. In
the proposed method, data is placed in the local L2 slices for the
private data patterns seen in multi-programmed workloads. This
scheme reduces the network latency of the memory accesses by elim-

303

inating paths #1 (L1 to L2) and #5 (L2 to L1) in Figure 2. However,
it does not completely remove the network latency due to paths #2
(L2 to MC1) and #4 (MC1 to L2) in Figure 2, and our scheme will
still provide performance benefits (at a lower level).

Another important component of off-chip memory access latency
variance is the variations in memory queuing latency. In [29, 30],
the authors targeted at reducing the variance of memory access laten-
cies at the memory controller. These approaches coordinate multiple
on-chip memory controllers to equalize the performance penalty suf-
fered by each application due to interferences coming from other ap-
plications. The effectiveness of these schemes on a large multicore
with high network latencies is unclear. On a large network, com-
municating information across memory controllers itself can easily
have a very high latency, thus increasing the reaction time to dy-
namic changes in execution behavior.

Clearly, directly improving off-chip memory access latencies can
also improve overall system performance. Memory queuing laten-
cies can be improved by finding a better scheduling of memory re-
quests in the memory bank queues [17, 18], designing lower latency
routers [19, 26, 32], or employing better flow-control [20, 21]. We
would like to note that the network prioritization schemes we pro-
pose in this work can be used with any memory scheduling algo-
rithm, router micro architecture, or flow control scheme. For in-
stance, while our Scheme-1 is orthogonal to the memory schedul-
ing scheme employed (as it optimizes network latency component
after the memory), the increase in the average number of entries in
memory bank queues due to our Scheme-2 can enable these complex
memory schedulers to find even better schedules as they can see a
larger window of memory requests. We postpone the investigation
of such interactions to a future study.

6. Conclusion

We proposed two network prioritization schemes that reduce the end-
to-end memory access latency in multicores. Our first scheme ad-
dresses the latency variance in memory accesses that belong to the
same application, and expedites memory response messages that ex-
perience high latencies by prioritizing them. This reduces the num-
ber of off-chip requests with high latencies and achieves a more
uniform memory latency pattern. Our second scheme improves
memory performance by prioritizing memory request messages that
are destined for idle banks over other requests. This optimization
increases bank level parallelism and improves memory utilization.
Through an extensive evaluation of our schemes on a 4× 8 mesh-
based multicore, we show that our first scheme is very effective in
reducing the number of off-chip requests that experience very high
latencies and achieves 11% , 6%, and 10% performance improve-
ment on memory intensive, memory non-intensive, and mixed multi-
programmed workloads, respectively. When both our schemes used
together, these improvements jump to 15%, 10% and 13%, in the
same order.

References
[1] “Tilera tilepro36,” http://www.tilera.com/products/processors/TILEPRO36.
[2] D. Abts and D. Weisser, “Age-based packet arbitration in large-radix

k-ary n-cubes,” in SC, 2007.
[3] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance compari-

son of contemporary DRAM architectures,” in ISCA, 1999.
[4] W. J. Dally, “Virtual-channel flow control,” IEEE Trans. Parallel Dis-

trib. Syst., 1992.
[5] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks, 2003.

[6] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intecon-
nection networks,” in DAC, 2001.

[7] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-aware
prioritization mechanisms for on-chip networks,” in MICRO, 2009.

[8] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Argia: exploiting
packet latency slack in on-chip networks,” in ISCA, 2010.

[9] B. T. Davis, “Modern DRAM architectures,” Ph.D. dissertation, 2001.
[10] B. Fields, S. Rubin, and R. Bodík, “Focusing processor policies via

critical-path prediction,” in ISCA, 2001.
[11] A. Glew, “MLP yes! ILP no! memory level parallelism, or, why

I No Longer Worry About IPC.” in ASPLOS, 1998.
[12] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH

Comput. Archit. News, 2006.
[13] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive

NUCA: near-optimal block placement and replication in distributed
caches,” in ISCA, 2009.

[14] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, 2007.

[15] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
NUCA substrate for flexible CMP cache sharing,” in ICS, 2005.

[16] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in ASPLOS, 2002.

[17] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scal-
able and high-performance scheduling algorithm for multiple memory
controllers,” in HPCA, 2010.

[18] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,” in MICRO, 2010.

[19] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. Jha, “A 4.6tbits/s
3.6ghz single-cycle noc router with a novel switch allocator in 65nm
cmos,” in ICCD, 2007.

[20] A. Kumar, L.-S. Peh, and N. K. Jha, “Token flow control,” in MICRO,
2008.

[21] A. Kumar, L. shiuan Peh, P. Kundu, and N. K. Jha, “Express virtual
channels: Towards the ideal interconnection fabric,” in ISCA, 2007.

[22] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-synchronized frames
for guaranteed quality-of-service in on-chip networks,” in ISCA, 2008.

[23] M. M. Lee, J. Kim, D. Abts, M. Marty, and J. W. Lee, “Approximating
age-based arbitration in on-chip networks,” in PACT, 2010.

[24] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Håll-
berg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A
full system simulation platform,” Computer, 2002.

[25] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Mul-
tifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset,” SIGARCH Comput. Archit. News, 2005.

[26] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel
routers for on-chip networks,” in ISCA, 2004.

[27] N. Muralimanohar and R. Balasubramonian, “Interconnect design con-
siderations for large NUCA caches,” in ISCA, 2007.

[28] O. Mutlu, H. Kim, and Y. N. Patt, “Efficient runahead execution:
Power-efficient memory latency tolerance,” IEEE Micro, 2006.

[29] O. Mutlu and T. Moscibroda, “Stall-time fair memory access schedul-
ing for chip multiprocessors,” in MICRO, 2007.

[30] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: En-
hancing both performance and fairness of shared DRAM systems,” in
ISCA, 2008.

[31] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das, “Ex-
ploring fault-tolerant network-on-chip architectures,” in Proceedings
of the International Conference on Dependable Systems and Networks,
2006.

[32] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in HPCA, 2001.

[33] S. Rixner, “Memory controller optimizations for web servers,” in MI-
CRO, 2004.

[34] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in ISCA, 2000.

[35] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf,
M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,
and A. Agarwal, “The raw microprocessor: A computational fabric for
software circuits and general-purpose programs,” IEEE Micro, 2002.

304

MorphCore: An Energy-Efficient Microarchitecture for
High Performance ILP and High Throughput TLP

Khubaib† M. Aater Suleman‡ Milad Hashemi† Chris Wilkerson§ Yale N. Patt†

†The University of Texas at Austin ‡Calxeda/HPS §Intel Labs, Hillsboro, OR
{khubaib,miladh,patt}@hps.utexas.edu suleman@hps.utexas.edu chris.wilkerson@intel.com

Abstract

Several researchers have recognized in recent years that today’s
workloads require a microarchitecture that can handle single-
threaded code at high performance, and multi-threaded code at high
throughput, while consuming no more energy than is necessary. This
paper proposes MorphCore, a unique approach to satisfying these
competing requirements, by starting with a traditional high per-
formance out-of-order core and making minimal changes that can
transform it into a highly-threaded in-order SMT core when neces-
sary. The result is a microarchitecture that outperforms an aggres-
sive 4-way SMT out-of-order core, “medium” out-of-order cores,
small in-order cores, and CoreFusion. Compared to a 2-way SMT
out-of-order core, MorphCore increases performance by 10% and
reduces energy-delay-squared product by 22%.

1. Introduction

Traditional core microarchitectures do not adapt to the thread level
parallelism (TLP) available in programs. In general, industry
builds two types of cores: large out-of-order cores (e.g., Intel’s
Sandybridge, IBM’s Power 7), and small cores (e.g., Intel’s MIC
a.k.a Larrabee, Sun’s Niagara, ARM’s A15). Large out-of-order
(OOO) cores provide high single thread performance by exploiting
Instruction-Level Parallelism (ILP), but they are power-inefficient
for multi-threaded programs because they unnecessarily waste en-
ergy on exploiting ILP instead of leveraging the available TLP. In
contrast, small cores do not waste energy on wide superscalar OOO
execution, but rather provide high parallel throughput at the cost of
poor single thread performance.

Heterogeneous (or Asymmetric) Chip Multiprocessors
(ACMPs) [11, 22, 28] have been proposed to handle this soft-
ware diversity. ACMPs provide one or few large cores for speedy
execution of single-threaded programs, and many small cores
for high throughput in multi-threaded programs. Unfortunately,
ACMPs require that the number of large and small cores be fixed
at design time, which inhibits adaptability to varying degrees of
software thread-level parallelism.

To overcome this limitation of ACMPs, researchers have pro-
posed CoreFusion-like architectures [16, 5, 17, 25, 24, 32, 9, 10].
They propose a chip with small cores to provide high throughput per-
formance in multi-threaded programs. These small cores can dynam-
ically “fuse” into a large core when executing single-threaded pro-
grams. Unfortunately, the fused large core has low performance and
high power/energy consumption compared to a traditional out-of-
order core for two reasons: 1) there are additional latencies among
the pipeline stages of the fused core, thus, increasing the latencies of
the core’s “critical loops”, and 2) mode switching requires instruc-
tion cache flushes and incurs the cost of data migration among the
data caches of small cores.

To overcome these limitations, we propose MorphCore, an adap-
tive core microarchitecture that takes the opposite approach of previ-
ously proposed reconfigurable cores. Rather than fusing small cores
into a large core, MorphCore uses a large out-of-order core as the
base substrate and adds the capability of in-order SMT to exploit
highly parallel code. MorphCore provides two modes of execu-
tion: OutOfOrder and InOrder. In OutOfOrder mode, MorphCore
provides the single-thread performance of a traditional out-of-order
core with minimal performance degradation. However, when TLP
is available, MorphCore “morphs” into a highly-threaded in-order
SMT core. This allows MorphCore to hide long latency operations
by executing operations from different threads concurrently. Con-
sequently, it can achieve a higher throughput than the out-of-order
core. Since no migration of instructions or data needs to happen on
mode switches, MorphCore can switch between modes with mini-
mal penalty.

MorphCore is built on two key insights. First, a highly-threaded
(i.e., 6-8 way SMT) in-order core can achieve the same or better
performance as an out-of-order core. Second, a highly-threaded in-
order SMT core can be built using a subset of the hardware required
to build an aggressive out-of-order core. For example, we use the
Physical Register File (PRF) in the out-of-order core as the archi-
tectural register files for the many SMT threads in InOrder mode.
Similarly, we use the Reservation Station entries as an in-order in-
struction buffer and the execution pipeline of the out-of-order core
as-is.

MorphCore is more energy-efficient than a traditional out-of-
order core when executing multi-threaded programs. It reduces ex-
ecution time by exploiting TLP, and reduces energy consumption
by turning off several power hungry structures (e.g., renaming logic,
out-of-order scheduling, and the load queue) while in InOrder mode.

Our evaluation with 14 single-threaded and 14 multi-threaded
workloads shows that MorphCore increases performance by 10%
and reduces energy-delay-squared product by 22% over a typi-
cal 2-way SMT out-of-order core. We also compare MorphCore
against three different core architectures optimized for different per-
formance/energy design points, and against CoreFusion, a reconfig-
urable core architecture. We find that MorphCore performs best
in terms of performance and energy-delay-squared product across
a wide spectrum of single-threaded and multi-threaded workloads.

Contributions: This paper makes two contributions:

1. We present MorphCore, a new microarchitecture that combines
out-of-order and highly-threaded in-order SMT execution within
a single core. We comprehensively describe the microarchitec-
ture needed to implement MorphCore, and the policy to switch
between modes.

2. To the best of our knowledge, this is the first paper to quanti-
tatively compare small, medium and large core architectures in

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.36

305

Figure 1: Out of Order core microarchitecture

terms of performance and energy-efficiency on single-threaded
and multi-threaded workloads.

2. Background and Motivation
2.1. Out-of-order Execution

Out-of-order (OOO) cores provide better performance by executing
instructions as soon as their operands become available, rather than
executing them in program order. Figure 1 shows a high-level layout
of a 2-way SMT OOO core pipeline. The top part shows major
structures accessed and functionality performed in different stages of
the pipeline. We describe a Pentium-4 like architecture [26], where
the data, both speculative and architectural, is stored in the Physical
Register File (PRF), and the per-thread Register Alias Table (RAT)
entries point to PRF entries. The front-end Speculative-RAT points
to the speculative state, and a back-end Permanent-RAT points to
the architectural state. The front-end of the pipeline (from the Fetch
stage until the Insert into Reservation Station (RS)) works in-order.
Instructions are fetched, decoded, and then sent to the Rename Stage.
The Rename stage renames (i.e. maps) the architectural source and
destination register IDs into Physical Register File IDs by reading
the Speculative-RAT of the thread for which instructions are being
renamed, and inserts the instructions into the Reservation Station
(also referred to as Issue Queue).

Instructions wait in the Reservation Station until they are selected
for execution by the Select stage. The Select stage selects an instruc-
tion for execution once all of the source operands of the instruction
are ready, and the instruction is the oldest among the ready instruc-
tions. When an instruction is selected for execution, it readies its
dependent instructions via the Wakeup Logic block, reads its source
operands from the PRF, and executes in a Functional Unit. After ex-
ecution, an instruction’s result is broadcast on the Bypass Network,
so that any dependent instruction can use it immediately. The result
is also written into the PRF, and the instruction updates its ROB sta-
tus. The instruction retires once it reaches the head of the ROB, and
updates the corresponding Permanent-RAT.

Problem With Wide Superscalar Out-of-order Execution. Un-
fortunately, the single-thread performance benefit of the large out-
of-order (OOO) core comes with a power penalty. As we show in
Section 6.2, a large OOO core consumes 92% more power than a
medium OOO core, and 4.3x more than a small in-order core. This
overhead exists to exploit instruction-level parallelism to increase
core throughput, and is justified when the software has a single
thread of execution. However, when multiple threads of execution
exist, we propose that the core can be better utilized using in-order
Simultaneous Multi-Threading (SMT).

2.2. Simultaneous Multi-Threading

Simultaneous Multi-Threading (SMT) [13, 35, 31] is a technique to
improve the utilization of execution resources using multiple threads
provided by the software. In SMT, a core executes instructions from
multiple threads concurrently. Every cycle, the core picks a thread
from potentially many ready threads, and fetches instructions from
that thread. The instructions are then decoded and renamed in a reg-
ular pipelined fashion and inserted into a common (shared among all
the threads) RS. Since instructions from multiple candidate threads
are available in the RS, the possibility of finding ready instructions
increases. Thus, SMT cores can achieve higher throughput provided
that software exposes multiple threads to the hardware.

The Potential of In-Order SMT on a Wide Superscalar Core.
The observation that a highly multi-threaded in-order core can
achieve the instruction issue throughput similar to an OOO core was
noted by Hily and Seznec [12]. We build on this insight to design
a core that can achieve high-performance and low-energy consump-
tion when software parallelism is available.

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

 O
oO

 w
/ 1

 t
hr

ea
d

Out-of-Order
In-order

Number of SMT Threads

Figure 2: Performance of black with SMT

Figure 2 shows the performance of the workload black (Black-
Scholes pricing [23]) on an out-of-order and an in-order core. For
this experiment, both of the cores are similarly sized in terms of
cache sizes, pipeline widths (4-wide superscalar) and depths (refer
to Section 5 for experimental methodology). The performance of
the in-order core is significantly less than the performance of the
out-of-order core when both cores run only a single thread. As the

306

Figure 3: The MorphCore microarchitecture

number of SMT threads increases from 1 to 8, the performance of
the out-of-order core increases significantly at 2 threads, but starts
to saturate at 4 threads, because the performance is limited by the
peak throughput of the core. In contrast, the performance of the in-
order core continues to benefit from more threads (which allows it to
better tolerate long latency operations and memory accesses). When
the number of threads is equal to 8, the in-order core’s performance
begins to match the performance of the out-of-order core. This ex-
periment shows that when high thread-level parallelism is available,
high performance and low energy consumption can be achieved with
in-order SMT execution, therefore the core need not be built with
complex and power hungry structures needed for out-of-order SMT
execution.

Summary. In spite of its high power cost, out-of-order execu-
tion is still desirable because it provides significant performance im-
provement over in-order execution. Thus, if we want high single-
thread performance we need to keep support for out-of-order exe-
cution. However, when software parallelism is available, we can
provide performance by using in-order SMT and not waste energy
on out-of-order execution. To accomplish both, we propose the Mor-
phCore architecture.

3. MorphCore Microarchitecture

3.1. Overview of the MorphCore Microarchitecture

The MorphCore microarchitecture is based on a traditional OOO
core. Figure 3 shows the changes that are made to a baseline OOO
core (shown in Figure 1) to build the MorphCore. It also shows
the blocks that are active in both modes, and the blocks that are
active only in one of the modes. In addition to out-of-order exe-
cution, MorphCore supports additional in-order SMT threads, and
in-order scheduling, execution, and commit of simultaneously run-
ning threads. In OutofOrder mode, MorphCore works exactly like a
traditional out-of-order core.

3.2. Fetch and Decode Stages.

The Fetch and Decode Stages of MorphCore work exactly like an
SMT-enabled traditional OOO core. Figure 4 shows the Fetch Stage
of the MorphCore. MorphCore adds 6 additional SMT contexts to

Figure 4: Microarchitecture of the Fetch stage

the baseline core. Each context consists of a PC, a branch history
register, and a Return Address Stack. In OutofOrder mode, only 2
of the SMT contexts are active. In InOrder mode, all 8 contexts
are active. The branch predictor and the I-Cache are active in both
modes.

3.3. Rename Stage

Figure 5 shows the Rename Stage of the MorphCore. InOrder re-
naming is substantially simpler, and thus power-efficient, than OOO
renaming. In InOrder mode, we use the Physical Register File (PRF)
to store the architectural registers of the multiple in-order SMT
threads: we logically divide the PRF into multiple fixed-size par-
titions where each partition stores the architectural register state of
a thread (Figure 5(b)). Hence, the architectural register IDs can be
mapped to the Physical Register IDs by simply concatenating the
Thread ID with the architectural register ID. This approach limits
the number of in-order SMT threads that the MorphCore can support
to num_physical_registers/num_architectural_registers. However,
the number of physical registers in today’s cores is already large
enough (and increasing) to support 8 in-order SMT threads which is
sufficient to match the out-of-order core’s performance. For the x86
ISA [15] that we model in our simulator, a FP-PRF partition of 24
entries and an INT-PRF partition of 16 entries per thread is enough
to hold the architectural registers of a thread. The registers that are
not renamed and are replicated 2-ways in the baseline OOO core
need to be replicated 8-ways in MorphCore.

307

Figure 5: Microarchitecture of the Rename stage

Allocating/Updating the Resources. When the MorphCore is in
OutofOrder mode, the instructions that are being renamed are allo-
cated resources in the ROB and in the Load and Store Queues. In In-
Order mode, MorphCore leverages the ROB to store the instruction
information. We partition the ROB into multiple fixed-size chunks,
one for each active thread. We do not allocate resources in the Load
Queue in InOrder mode since memory instructions are not executed
speculatively. Thus, the Load Queue is inactive. The Store Queue
that holds the data from committed store instructions and the data
that is not yet committed to the D-cache, is active in InOrder Mode
as well, and is equally partitioned among the threads.

Insert into the Reservation Station (RS). Figure 5(c) shows the
part of Rename stage that inserts renamed instructions into the RS.
In OutofOrder mode, the RS is dynamically shared between multiple
threads, and the RS entry that is allocated to an incoming renamed
instruction is determined dynamically by consulting a Free List. In
InOrder mode, the RS is divided among the multiple threads into
fixed-size partitions (Figure 5(d)), and each partition operates as a
circular FIFO. Instructions are inserted into consecutive RS entries
pointed to by a per-thread RS-Insert-Ptr, and removed in-order after
successful execution.

3.4. Select and Wakeup

MorphCore employs both OutofOrder and InOrder Wakeup and Se-
lect Logic. The Wakeup Logic makes instructions ready for execu-
tion, and the Select Logic selects the instructions to execute from the
pool of ready instructions. Figure 6 shows these logic blocks.

OutofOrder Wakeup. OutofOrder Wakeup logic works exactly
the same as a traditional out-of-order core. Figure 6 (unshaded)
shows the structure of an RS entry [27]. An operand is marked
ready (R-bit is set) when the corresponding MATCH bit has been
set for the number of cycles specified in the DELAY field. When
an instruction fires, it broadcasts its destination tag (power hungry),
so that it can be compared against source tags of all instructions in

the RS. If the destination tag matches the source tag of an operand,
the MATCH bit is set and the DELAY field is set equal to the exe-
cution latency of the firing instruction (the latency of the instruction
is stored in the RS entry allocated to the instruction). The DELAY
field is also latched in the SHIFT field associated with the source tag.
The SHIFT field is right shifted one-bit every cycle the MATCH bit
is set. The R bit is set when the SHIFT field becomes zero. The
RS-entry waits until both sources are ready, and then raises the Req
OOO Exec line.

OutofOrder Select. The OutofOrder Select logic monitors all in-
structions in the RS (power hungry), and selects the oldest instruc-
tion(s) that have the Req OOO Exec lines set. The output of the
Select Logic is a Grant bit vector, in which every bit corresponds to
an RS entry indicating which instructions will fire next. When an
instruction is fired, the SCHEDULED bit is set in the RS entry so
that the RS entry stops requesting execution in subsequent cycles.

InOrder Wakeup. The InOrder mode executes/schedules instruc-
tions in-order, i.e., an instruction becomes ready after the previ-
ous instruction has either started execution or is ready and indepen-
dent. We add 2 new bit-fields to each RS entry for in-order schedul-
ing (Scheduled, and MATCH (M)). The new fields are shaded in
Figure 6. The InOrder Wakeup Logic block also maintains the
M/DELAY/SHIFT/R bit fields per architectural register, in order to
track the availability of architectural registers. When an instruction
fires, it sets the R, M, and DELAY bit fields corresponding to the
destination register in the InOrder Wakeup Logic block as follows:
resets the R bit, sets the MATCH (M) bit, and sets the DELAY field
to the execution latency of the firing instruction (the DELAY/SHIFT
mechanism works as explained above). Each cycle, for every thread,
the InOrder Wakeup checks the availability of source registers of the
two oldest instructions (R bit is set). If the sources are available, the
Wakeup logic readies the instructions by setting the M bit in the RS
entry to 1. The InOrder Wakeup is power-efficient since it avoids
the broadcast and matching of the destination tag against the source

308

Figure 6: MorphCore Wakeup and Selection Logic

operands of all instructions in the RS.

InOrder Select. The InOrder Select Logic block works hierar-
chically in a complexity-effective (power-efficient) manner by main-
taining eight InOrder select blocks (one per thread) and another
block to select between the outcomes of these blocks. Furthermore,
each in-order select logic only monitors the two oldest instructions
in the thread’s RS partition, rather than monitoring the entire RS as
in OOO select. Note that only two instructions need monitoring in
InOrder mode because instructions from each thread are inserted and
scheduled/removed in a FIFO manner.

3.5. Execution and Commit

When an instruction is selected for execution, it reads its source
operands from the PRF, executes in an ALU, and broadcasts its result
on the bypass network as done in a traditional OOO core. In Mor-
phCore, an additional PRF-bypass and data storage is active in In-
Order mode. This bypass and buffering is provided in order to delay
the write of younger instruction(s) in the PRF if an older longer la-
tency instruction is in the execution pipeline. In such a case, younger
instruction(s) write into a temporary small data buffer (4-entry per
thread). The buffer adds an extra bypass in PRF-read stage. Instruc-
tions commit in traditional SMT fashion. For OutofOrder commit,
the Permanent-RAT is updated as well. In InOrder mode, only the
thread’s ROB Head pointer needs to be updated.

3.6. Load/Store Unit

Figure 7 shows the Load/Store Unit. In OutofOrder mode, load/store
instructions are executed speculatively and out of order (similar to
a traditional OOO core). When a load fires, it updates its entry in

Figure 7: Load / Store unit

the Load Queue and searches the Store Queue to get the latest data.
When a store fires, it updates and stores data in the Store Queue,
and searches the Load Queue to detect store-to-load program order
violations. In InOrder mode, since load/store instructions are not ex-
ecuted speculatively, no Load Queue CAM searches are done. How-
ever, loads still search the Store Queue that holds committed data.
Store instructions also update the Store Queue.

3.7. Recovering from Branch Mispredictions

In OutofOrder mode, a branch misprediction triggers a recovery
mechanism that recovers the F-RAT to the state prior to the renaming
of the mispredicted branch instruction. In InOrder mode, a branch
misprediction squashes the instructions in the RS partition, the ROB
partition and the front-end pipeline from the thread, followed by redi-
rection of the PC to the correct target.

309

4. MorphCore Discussion

4.1. Area and Power Overhead of MorphCore

First, MorphCore increases the number of SMT ways from 2 to 8.
This adds hardware to the Fetch stage and other parts of the core,
which is less than 0.5% area overhead as reported by our modified
McPAT [20] tool. Note that it does not incur the two biggest over-
heads of adding SMT contexts in an OOO core –additional Rename
tables and physical registers– because the SMT contexts being added
are in-order. Second, MorphCore adds InOrder Wakeup and Select
logic, which we assume adds an area overhead of less than 0.5% of
core area, half the area of the OOO Wakeup and Select logic blocks.
Third, adding extra bypass/buffering adds an area overhead of 0.5%
of core. Thus, MorphCore adds an area overhead of 1.5%, and a
power overhead of 1.5% in InOrder mode.

4.2. Timing/Frequency Impact of MorphCore

MorphCore requires only two key changes to the baseline OOO
core:

1) InOrder renaming/scheduling/execution logic. MorphCore
adds a multiplexer in the critical path of three stages: a) in the Re-
name stage to select between OutofOrder mode and InOrder mode
renamed instructions, b) in the Instruction Scheduling stage to select
between the OutofOrder mode and InOrder mode ready instructions,
and c) in PRF-read stage because of additional bypassing in InOrder
mode. In order to estimate the frequency impact of this overhead,
we assume that a multiplexer introduces a delay of one transmission
gate, which we assume to be half of an FO4 gate delay. Assum-
ing 20 FO4 gate delays per pipeline stage [33, 7], we estimate that
MorphCore runs 2.5% slower than the baseline OOO core.

2) More SMT contexts. Addition of in-order SMT contexts can
lengthen the thread selection logic in MorphCore’s front-end. This
overhead is changing the multiplexer that selects one out of many
ready threads from 2-to-1 to 8-to-1. We assume that running Mor-
phCore 2.5% slower than the baseline OOO core hides this delay.

In addition to the above mentioned timing-critical changes to the
baseline OOO core, MorphCore adds InOrder Wakeup and Select
logic blocks. Because InOrder instruction scheduling is simpler than
OutofOrder instruction scheduling, we assume that newly added
blocks can be placed and routed such that they do not affect the
critical path of other components of the baseline OOO core. Thus,
we conclude that the frequency impact of MorphCore is only 2.5%.

4.3. Turning Off Structures in InOrder Mode

The structures that are inactive in InOrder Mode (OOO renaming
logic, OOO scheduling, and load queue) are unit-level clock-gated.
Thus, no dynamic energy is consumed, but static energy is still con-
sumed. Unit-level power-gating could be applied to further cut-
down static energy as well, but we chose not to do so, since ac-
cording to our McPAT estimates, static energy consumed by these
structures is very small, whereas the overhead incurred by unit-level
power-gating is significant.

4.4. Interaction with OS

MorphCore does not require any changes to the operating system,
and acts like a core with the number of hardware threads equal to the
maximum number of threads supported in the InOrder Mode (8 in
our implementation). Switching between the two modes is handled
in hardware.

4.5. When does MorphCore Switch Modes?

In our current implementation of MorphCore, we switch between
modes based on the number of active threads (other policies are part
of our future work). A thread is active when it is not waiting on any
synchronization event. The MorphCore starts running in OutofOrder
mode when the number of active threads is less than a threshold (2
in our initial implementation). If the OS schedules more threads
on MorphCore, and the number of active threads becomes greater
than the threshold, the core switches to InOrder mode. While run-
ning in InOrder mode, the number of active threads can drop for two
reasons: the OS can de-schedule some threads or the threads can
become inactive waiting for synchronization. We assume that the
threading library uses MONITOR/MWAIT [15] instructions such
that MorphCore hardware can detect a thread becoming inactive,
e.g., inactive at a barrier waiting for other threads to reach the barrier,
or inactive at a lock-acquire waiting for another thread to release the
lock. If the number of active threads becomes smaller than or equal
to the threshold, the core switches back to OutofOrder mode until
more threads are scheduled or become active (the hardware makes
the thread active when a write to the cacheline being monitored is
detected).

4.6. Changing Mode from OutofOrder to InOrder

Mode switching is handled by a micro-code routine that performs
the following tasks:

1) Drains the core pipeline.
2) Spills the architectural registers of all threads. We spill these

registers to a reserved memory region. To avoid cache misses on
these writes, we use Full Cache Line Write instructions that do not
read the cache line before the write [15].

3) Turns off the Renaming unit, OutofOrder Wakeup and Select
Logic blocks, and Load Queue. Note that these units do not neces-
sarily need to be power-gated (we assume that these units are clock-
gated).

4) Fills the register values back into each thread’s PRF partitions.
This is done using special load micro-ops that directly address the
PRF entries without going through renaming.

4.7. Changing Mode from InOrder to OutofOrder

Since MorphCore supports more threads in InOrder Mode than
in OutofOrder Mode, when switched into OutofOrder mode, Mor-
phCore cannot run all the threads simultaneously and out-of-order.
Thus some of the threads need to be marked inactive or “not running”
(unless they are already inactive, which is the case in our current im-
plementation). The state of the inactive threads is stored in memory
until they become active. To load the state of the active threads, the
MorphCore stores pointers to the architectural state of the inactive
threads in a structure called the Active Threads Table. The Active
Threads Table is indexed using the Thread ID, and stores an 8-byte
pointer for each thread. Mode switching is handled by a micro-code
routine that performs the following tasks:

1) Drains the core pipeline.
2) Spills the architectural registers of all threads. Store pointers

to the architectural state of the inactive threads in the Active Thread
Table.

3) Turns on the Renaming unit, OutofOrder Wakeup and Select
Logic blocks, and Load Queue.

4) Fills the architectural registers of only the active threads into
pre-determined locations in PRF, and updates the Speculative-RAT
and Permanent-RAT.

310

Table 1: Configuration of the simulated machine

Core Configurations

OOO-2 Core: 3.4GHz, 4-wide issue OOO, 2-way SMT, 14-stage pipeline, 64-entry unified Reservation Station (Issue Queue), 192 ROB, 50
LDQ, 40 STQ, 192 INT/FP Physical Reg File, 1-cycle wakeup/select Functional Units: 2 ALU/AGUs, 2 ALU/MULs, 2 FP units. ALU
latencies (cycles): int arith 1, int mul 4-pipelined, fp arith 4-pipelined, fp divide 8, loads/stores 1+2-cycle D-cache L1 Caches: 32KB
I-cache, D-cache 32KB, 2 ports, 8-way, 2-cycle pipelined SMT: Stages select round-robin among ready threads. ROB, RS, and instr
buffers shared as in Pentium 4 [18]

OOO-4 3.23GHz (5% slower than OOO-2), 4-wide issue OOO, 4-way SMT, Other parameters are same as OOO-2.
MED Core: 3.4GHz, 2-wide issue OOO, 1 Thread, 10-stage, 48-entry ROB/PRF. Functional Units: Half of OOO-2. Latencies same as

OOO-2. L1 Caches: 1 port Dcache, other same as OOO-2. SMT: N/A
SMALL Core: 3.4GHz, 2-wide issue In-Order, 2-way SMT, 8-stage pipeline. Functional Units: Same as MED. L1 Caches: Same as MED.

SMT: Round-Robin Fetch
MorphCore Core: 3.315GHz (2.5% slower than OOO-2), Other parameters are same as OOO-2. Functional Units and L1 Caches: Same as

OOO-2. SMT and Mode switching: 2-way SMT similar to OOO-2, 8-way in-order SMT (Round-Robin Fetch) in InOrder mode. RS
and PRF partitioned in equal sizes among the in-order threads. InOrder mode when active threads > 2, otherwise, OutofOrder mode

Memory System Configuration
Caches L2 Cache: private L2 256KB, 8-way, 5 cycles. L3 Cache: 2MB write-back, 64B lines, 16-way, 10-cycle access
Memory 8 banks/channel, 2 channels, DDR3 1333MHz, bank conflicts, queuing delays modeled. 16KB row-buffe, 15 ns row-buffer hit latency

Table 2: Characteristics of Evaluated Architectures

Core Type Freq
(Ghz)

Issue-
width

Num of
cores

SMT threads
per core

Total
Threads

Total Norm.
Area

Peak ST
throughput

Peak MT
throughput

OOO-2 out-of-order 3.4 4 1 2 2 1 4 ops/cycle 4 ops/cycle
OOO-4 out-of-order 3.23 4 1 4 4 1.05 4 ops/cycle 4 ops/cycle
MED out-of-order 3.4 2 3 1 3 1.18 2 ops/cycle 6 ops/cycle
SMALL in-order 3.4 2 3 2 6 0.97 2 ops/cycle 6 ops/cycle
MorphCore out-of-order

or in-order
3.315 4 1 OutOfOrder: 2,

or InOrder: 8
2 or 8 1.015 4 ops/cycle 4 ops/cycle

4.8. Overheads of Changing the Mode

The overhead of changing the mode is pipeline drain, which varies
with the workload, and the spill or fill of architectural register state
of the threads. The x86 ISA [15] specifies an architectural state of
∼780 bytes per thread (including the latest AVX extensions). The
micro-code routine takes ∼30 cycles to spill or fill the architectural
register state of each thread after the pipeline drain (a total of ∼6KB
and ∼250 cycles for 8 threads) into reserved ways of the private L2
cache (assuming a 256 bit wide read/write port to the cache, and a
cache bandwidth of 1 read/write per cycle). We have empirically
observed no loss in performance by taking away ∼6KB from the
private 256KB cache. Note that the overhead of changing the mode
can be reduced significantly by overlapping the spilling or filling of
the architectural state with the pipeline drain. It is our future work
to explore such mechanisms.

5. Experimental Methodology
Table 1 shows the configurations of the cores and the memory sub-
system simulated using our in-house cycle-level x86 simulator. The
simulator faithfully models microarchitectural details of the core,
cache hierarchy and memory subsystem, e.g., contention for shared
resources, DRAM bank conflicts, banked caches, etc. To estimate
the area and power/energy of different core architectures, we use a
modified version of McPAT [20]. We modified McPAT to: 1) report
finer-grain area and power data, 2) increase SMT ways without in-
creasing the Rename (RAT) tables, 3) use the area/energy impact of
InOrder scheduling (1/2 of OOO), 4) model extra bypass/buffering,
and 5) model the impact of SMT more accurately. Note that all core
configurations have the same memory subsystem (L2, L3 and main
memory).

Table 2 summarizes the key characteristics of the compared ar-
chitectures. We run the baseline OOO-2 core at 3.4GHz and scale
the frequencies of the other cores to incorporate the effects of both
increase in area and critical-path-delay. For example, OOO-4’s fre-
quency is 5% lower than OOO-2 because adding the 2 extra SMT
threads significantly increases the area/complexity of the core: it
adds two extra Rename tables (RATs), at least a multiplexer at the
end of Rename stage, and also adds extra buffering at the start of
Rename stage (to select between 4, rather than 2 rename tables)
which we estimate (using McPAT) to be an additional 5% area and
thus lower frequency by 5%. MorphCore’s frequency is reduced
by 2.5% because its critical path increased by 2.5% (as explained
in Section 4.2). Since the OOO-2 core has the highest frequency
and supports 4-wide superscalar OOO execution, we can expect it to
have the highest single thread (ST) performance. Since the SMALL
and MED cores have the highest aggregate ops/cycle, we can expect
them to have the highest multi-threaded (MT) performance. We ex-
pect the MorphCore to perform close to best in both ST and MT
workloads. In Section 7.1, we also compare MorphCore against
CoreFusion [16], a representative of reconfigurable core architec-
tures proposed to date.

5.1. Workloads

Table 3 shows the description and input-set for each application. We
simulate 14 single-threaded SPEC 2006 applications and 14 multi-
threaded applications from different domains. We limit the number
of single-thread workloads to 14 to ensure that the number of single-
thread and multi-thread workloads is equal, so that the single-thread
results do not dominate the overall average performance data. We
randomly choose the 14 SPEC workloads. Each SPEC benchmark

311

Table 3: Details of the simulated workloads

Workload Problem description Input set

Multi-Threaded Workloads
web web cache [29] 500K queries
qsort Quicksort [8] 20K elements
tsp Traveling salesman [19] 11 cities

OLTP-1 MySQL server [2] OLTP-simple [3]
OLTP-2 MySQL server [2] OLTP-complex [3]
OLTP-3 MySQL server [2] OLTP-nontrx [3]

black Black-Scholes [23] 1M options
barnes SPLASH-2 [34] 2K particles

fft SPLASH-2 [34] 16K points
lu (contig) SPLASH-2 [34] 512x512 matrix

ocean (contig) SPLASH-2 [34] 130x130 grid
radix SPLASH-2 [34] 300000 keys
ray SPLASH-2 [34] teapot.env

water (spatial) SPLASH-2 [34] 512 molecules

Single-Threaded Workloads
SPEC 2006 7 INT and 7 FP benchmarks 200M instrs

is run for 200M instructions with ref input set, where the represen-
tative slice is chosen using a Simpoint-like methodology. We do
so since SPEC workloads are substantially longer (billions of in-
structions), and easier to sample using existing techniques like Sim-
Point. Single-threaded workloads run on a single core with other
cores turned off. In contrast, multi-threaded workloads run with the
number of threads set equal to the number of available contexts,
i.e., numbero f cores× numbero f SMTcontexts. We run all multi-
threaded workloads to completion and count only useful instructions,
excluding synchronization instructions. Statistics are collected only
in the parallel region, and initialization phases are ignored. For ref-
erence, Figure 8 shows the percentage of execution time in multi-
threaded workloads when a certain number of threads are active. A
thread is active when it is not waiting on any synchronization event.
We will refer to this data when presenting our results next.

40.0

50.0

60.0

70.0

80.0

90.0

100.0

E
xe

c
T

im
e

(%
)

OOO-2 (time spent when num of active threads >= 2)
OOO-4 (time spent when num of active threads >= 3)
MorphCore (time spent when num of active threads >= 3)
MED (time spent when num of active threads >= 2)
SMALL (time spent when num of active threads >= 2)

web
qs

or
t

tsp
OLTP-1

OLTP-2

OLTP-3

bla
ck

ba
rn

es
fft lu oc

ea
n
rad

ix
ray wate

r

am
ea

n

Figure 8: Percentage of execution time when a certain number of
threads are active

6. Results

Since MorphCore attempts to improve performance and reduce
energy, we compare our evaluated architectures on performance,

Table 4: Micro-op throughput (uops/cycle) on OOO-2

web qsort tsp OLTP-1 OLTP-2 OLTP-3 black

3.47 1.95 2.78 2.29 2.23 2.35 3.39

barnes fft lu ocean radix ray water

3.31 2.68 3.11 2.17 1.94 3.06 3.51

energy-consumption, and a combined performance-energy metric,
the energy-delay-squared product.

6.1. Performance Results

Since design and performance trade-offs of ST and MT workloads
are inherently different, we evaluate their performance separately.
We will present a combined average across all ST and MT work-
loads in Section 6.1.3.

6.1.1. Single-Thread (ST) Performance Results. Figure 9a shows
the speedup of each core normalized to OOO-2. As expected,
OOO-2 achieves the highest performance on all workloads. The
MorphCore is a close second. This is because MorphCore intro-
duces minimal changes to a traditional out-of-order core. As a
result of these changes, MorphCore runs at a 2.5% slower frequency
than OOO-2, achieving 98.8% of the performance of OOO-2. The
OOO-4 core provides slightly lower performance than MorphCore.
This is because OOO-4 has a higher overhead when running in ST
mode, a 5% frequency penalty, as it supports 4 OOO SMT threads.
Note that the difference in performance among OOO-2, OOO-4,
and MorphCore is the smallest for memory-bound workloads, e.g.,
mcf, GemsFDTD, and lbm. On the other hand, the cores optimized
for multi-thread performance, MED and SMALL, have issue widths
of 2 (as opposed to 4 for ST optimized cores) and either run in-order
(SMALL) or out-of-order with a small window (MED). This results
in significant performance loss in ST workloads: MED loses perfor-
mance by 25% and SMALL by 59% as compared to OOO-2. The
performance loss is more pronounced for FP workloads (right half
of figure) as compared to INT workloads. In summary, MorphCore
provides the second best performance (98.8% of OOO-2) on ST
workloads.

6.1.2. Multi-Thread (MT) Performance Results. Multi-thread
(MT) performance is affected by not only the performance poten-
tial of a single core, but the total number of cores and SMT threads
on the cores. Figure 9b shows the speedup of each core normalized
to OOO-2. As expected, the throughput optimized cores, MED and
SMALL, provide the best MT performance (on average 30% and
33% performance improvement over OOO-2 respectively). This is
because MED and SMALL cores have higher total peak throughput
even though they take approximately the same area as OOO-2 (see
Table 2).

More importantly, MorphCore provides a significant 22% perfor-
mance improvement over OOO-2. MorphCore provides the highest
performance improvement for workloads that have low micro-op ex-
ecution throughput (uops/cycle) when run on the baseline OOO-2
core (Table 4). This is because MorphCore provides better latency
tolerance and increases core throughput by executing up to 8 threads
simultaneously. For example, radix gets the highest performance
improvement of 84% over OOO-2 by increasing the uops/cycle from
1.94 to 3.58. In fact, MorphCore outperforms MED cores by 15% on
radix because of its ability to run more SMT threads as compared

312

0.0

0.5

1.0

Sp
ee

du
p

N
or

m
. t

o
O

O
O

-2

OOO-4
MorphCore
MED
SMALL

pe
rlb

en
ch

gc
c

mcf
hm

mer

h2
64

ref

as
tar

xa
lan

cb
mk

bw
av

es

ga
mes

s

ze
us

mp

les
lie

3d

de
alI

I

Gem
sF

DTD

lbm gm
ea

n

(a) Single-thread (ST) workloads

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

N
or

m
. t

o
O

O
O

-2

OOO-4
MorphCore
MED
SMALL

web
qs

or
t

tsp
OLTP-1

OLTP-2

OLTP-3

bla
ck

ba
rn

es
fft lu oc

ea
n
rad

ix
ray wate

r

gm
ea

n

(b) Multi-Thread (MT) workloads

Figure 9: Performance results

to three MED cores. qsort is another workload with low uops/cycle
(1.95), however MorphCore (similar to other throughput cores) does
not provide as high a performance improvement as in the case of
radix. This is because of two reasons: 1) when executing qsort,
MorphCore does not spend a significant amount of time in InOrder
mode (only 80% of execution time runs more than 2 threads active as
shown in Figure 8), and 2) even when more than 2 threads are active,
only 50% of the time are 6 or more threads active (data not shown
in Figure 8). Thus, MorphCore does not get much opportunity to
achieve higher throughput. Note that MorphCore still outperforms
MED cores in qsort because of its ability to execute up to 8 threads.

Other workloads that have relatively high uops/cycle on OOO-2
(from 2.17 to 2.78) achieve relatively lower performance improve-
ment with MorphCore over OOO-2 (from 23% for fft to 40% for
tsp). The performance improvement of MorphCore is higher for
tsp as compared to other workloads in this category even with a rel-
atively high baseline uops/cycle of 2.78 (on OOO-2) because Mor-
phCore ends up executing fewer number of total instructions (-10%)
as compared to OOO-2 although doing the same algorithmic work.
This is because tsp is a branch and bound algorithm, and the likeli-
hood of quickly reaching the solution increases with more threads.

MorphCore provides the least performance improvement in work-
loads that can achieve a high uops/cycle (from 3.06 to 3.51) even
when run with 2 threads on OOO-2 (web, black, barnes, ray,
and water). These workloads have high per-thread ILP available,
and thus do not benefit significantly from increasing the number of
threads, because the performance improvement that can be achieved
is limited by the peak throughput of MorphCore. However, as we
later show, MorphCore is still beneficial because it is able to pro-
vide higher performance at a lower energy consumption by execut-
ing SMT threads in-order.

In general, MorphCore’s performance improvement is lower than
that of throughput optimized cores, MED and SMALL, over OOO-
2 (on average 22% vs 30% and 33%) because of its lower peak
MT throughput (Table 2). However, MorphCore outperforms MED
cores in 3 workloads: qsort, fft, and radix. qsort and radix

benefit from more threads as explained above. In fft, MED cores
suffer from thread imbalance during the execution: 3 threads are
active only for 72% of the execution time, and only 2 threads are
active for 24% of execution time, and thus provide a slightly lower

performance (-3%) than MorphCore. MorphCore also outperforms
SMALL cores in lu. (In fact SMALL cores perform worse than
OOO-2). This is because lu’s threads do not reach global barrier
at the same time and have to wait for the lagging thread. Because
SMALL cores have low single-thread performance, threads end up
waiting for the lagging thread for a significant amount of time (only
1 thread is active for 35% of the execution time as shown in Fig-
ure 8), and thus execution time increases significantly. MorphCore
does not suffer significantly from the problem of thread-imbalance-
at-barrier because it switches into OutOfOrder mode when only 1
thread is active, therefore thread’s waiting time is reduced.

MorphCore also outperforms OOO-4, a core architecture that
has a higher area overhead and is significantly more complex than
MorphCore (because OOO-4 supports 4 OOO SMT contexts), on
average by 7% and up to 26% (for qsort). Although the peak
throughput of both MorphCore and OOO-4 is the same (4, Table 2),
MorphCore wins because it provides better latency tolerance by
executing more threads than OOO-4. Thus, for workloads which
have low uops/cycle and benefit from increasing the number of
threads, MorphCore provides significantly higher MT performance
compared to OOO-4.

6.1.3. Overall Performance Results. Figure 10a summarizes the
average speedup of each architecture normalized to OOO-2. On
single-thread (ST) workloads, MorphCore performs very close to
OOO-2, the best ST-optimized architecture. On multi-thread (MT)
workloads, MorphCore performs 22% higher than OOO-2, and
achieves 2/3 of the performance potential of the best MT-optimized
architectures (MED and SMALL). On average across all workloads
(ST and MT), MorphCore outperforms all other architectures. We
conclude that MorphCore is able to handle diverse ST and MT work-
loads efficiently.

6.1.4. Sensitivity of MorphCore’s Results to Frequency Penalty.
We find that for a MorphCore with an X% frequency penalty, perfor-
mance of ST and MT workloads reduces by ∼ X/2% and X% respec-
tively as compared to a MorphCore with no frequency penalty. This
is because our ST workloads are core+memory bound while our MT
workloads are primarily core bound.

313

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Sp

ee
du

p
N

or
m

. t
o

O
O

O
-2

OOO-2
OOO-4
MorphCore
MED
SMALL

ST_Avg MT_Avg All_Avg

(a) Speedup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ow

er
 N

or
m

. t
o

O
O

O
-2

OOO-2
OOO-4
MorphCore
MED
SMALL

ST_Avg MT_Avg All_Avg

(b) Power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ne

rg
y

N
or

m
. t

o
O

O
O

-2

OOO-2
OOO-4
MorphCore
MED
SMALL

ST_Avg MT_Avg ALL_Avg

(c) Energy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ne

rg
y-

D
el

ay
-2

 N
or

m
. t

o
O

O
O

-2

OOO-2
OOO-4
MorphCore
MED
SMALL

ST_Avg MT_Avg ALL_Avg

3.5

(d) Energy-Delay-Squared (lower is bet-
ter)

Figure 10: Speedup, Power, Energy, and Energy-Delay-Squared Results Summary

6.2. Energy-Efficiency Results

We first refer to Figure 10b that shows total power (static + dy-
namic) of each core configuration for ST and MT workloads. As
expected, for ST workloads, the highest power configurations are
large out-of-order cores (OOO-2, OOO-4, and MorphCore). A sin-
gle MED or a single SMALL core takes area less than an out-of-
order core, and thus toggle less capacitance, resulting in 47% and
77% lower power respectively. For MT workloads, all core config-
urations consume similar power (except MED cores), thus confirm-
ing that area-equivalent core comparisons result in power-equivalent
core comparisons. The 3 MED cores take 18% more area (Table 2),
and provide 30% higher performance (which translates into more dy-
namic power), resulting in 25% more power over OOO-2. Note that
MorphCore consumes 2% less power than OOO-4 while providing
7% higher performance. This is because MorphCore does not waste
energy on OOO renaming/scheduling, and instead, provides perfor-
mance via highly-threaded in-order SMT execution.

Figure 10c shows the total (static + dynamic) energy consumed
by each configuration (core includes L1 I and D caches but not L2
and L3 caches) normalized to OOO-2. As expected, SMALL cores
are the most energy-efficient cores in both workload categories: for
ST workloads, they have 59% lower performance for 77% lower
power (an energy reduction of 46%), and for MT workloads they
have 33% higher performance for 1% higher power (an energy re-
duction of 19%) than OOO-2. For MT workloads, MorphCore is the
second best in energy-efficiency (after SMALL cores): MorphCore
consumes 9%, 7%, and 6% less energy than OOO-2, OOO-4, and
MED cores respectively.

MorphCore reduces energy consumption for two reasons: 1) Mor-
phCore reduces execution time, thus keeping the core’s structures
active for shorter period of time, and 2) even when MorphCore is
active, some of the structures that will be active in traditional out-of-
order cores will be inactive in MorphCore’s InOrder mode. These
structures include the Rename logic, part of the instruction Sched-
uler, and the Load Queue. For reference, Table 5 shows the power
for several key structures of OOO-2 core as a percentage of core
power averaged across MT workloads. We find that 50% of the en-
ergy savings of MorphCore over OOO-2, and 75% of the energy
savings of MorphCore over OOO-4 come from reducing the activ-
ity of these structures. MorphCore is also more energy-efficient than
MED cores because even when it provides 8% lower performance, it
does so at significantly (22%) lower power than MED cores, result-

ing an energy savings of 6% (70% of MorphCore’s energy savings
over MED cores happen because of reduced activity of MorphCore’s
structures in InOrder mode).

Table 5: Power of key structures of OOO-2

Structure Power

Rename + RATs 4.9%
Scheduler 2.9%
Physical Register File 3.7%
Load + Store Queue 3.0%
ROB 2.1%

Figure 10d shows Energy-Delay-Squared (ED2), a combined
energy-performance efficiency metric [36, 21], of the five evaluated
architectures. On average across all workloads, MorphCore provides
the lowest ED2: 22% lower than the baseline OOO-2, 13% lower
than OOO-4, 9% lower than MED, and 44% lower than SMALL.
We conclude that MorphCore provides a good balance between en-
ergy consumption and performance improvement in both ST and MT
workloads.

7. Related Work
MorphCore is related to previous work in reconfigurable cores, het-
erogeneous chip multiprocessors, scalable cores, simultaneous mul-
tithreading, and power-efficient cores.

7.1. Reconfigurable Cores
Most closely related to our work are the numerous proposals that
use reconfigurable cores to handle both latency- and throughput sen-
sitive workloads [16, 5, 17, 25, 24, 32, 9, 10]. All these proposals
share the same fundamental idea: build a chip with “simpler cores”
and “combine” them using additional logic at runtime to form a high
performance out-of-order core when high single thread performance
is required. The cores operate independently in throughput mode.

TFlex [17], E2 dynamic multicore architecture [25], Bahu-
rupi [24], and Core Genesis [10] require compiler analysis and/or
ISA support for instruction steering to constituent cores to reduce
the number of accesses to centralized structures. MorphCore does
not require compiler/ISA support, and therefore can run legacy bina-
ries without modification. Core Fusion [16], Federation Cores [5],
Widget [32], and Forwardflow [9] provide scalability without any
compiler/ISA support, similar to MorphCore.

314

Shortcomings. There are several shortcomings with the approach
of combining simpler cores to form a large OOO core:
(1) Performance benefit of fusing the cores is limited because the
constituent small cores operate in lock-step. Furthermore, fusing
adds latencies among the pipeline stages of the fused core, and re-
quires inter-core communication if dependent operations are steered
to different cores.
(2) Switching modes incurs high overhead due to instruction cache
flushes and data migration among the data caches of small cores.
(3) Core-Fusion-like proposals are not only in-efficient in “fused”
mode, but also in their “non-fused” mode, because they use medium-
size OOO cores as their base cores, which are power inefficient.

Comparison with CoreFusion. CoreFusion [16] fuses medium-
sized OOO cores (2-wide, 48 entry OOO window) to form a large
out-of-order core. Figure 11 shows the speedup of a single medium-
sized OOO core (MED) and MorphCore normalized to CoreFusion
for single-threaded workloads. In this experiment, CoreFusion com-
bines three MED cores (see Table 2), and we use fusion latencies
as described in [16] (7-cycle rename, 2-cycle extra branch mispre-
diction, and 2-cycle inter-core communication penalties). We use
the instruction steering heuristic described in the CoreFusion paper,
and assume perfect LSQ bank prediction for steering loads/stores to
cores. CoreFusion outperforms MED across all workloads except
mcf (12% on average) because of its higher effective issue-width,
window-size and L1 Dcache size. In mcf, these benefits are nullified
by the overhead of inter-core communication introduced by CoreFu-
sion. MorphCore outperforms both MED and CoreFusion across the
board because unlike CoreFusion, it is a traditional aggressive out-
of-order core without latency and communication overheads. On
average MorphCore performs 17% better than CoreFusion.

Figure 12 shows the average speedup, power, energy, and ED2

of MorphCore normalized to CoreFusion. On average, MorphCore
provides 5% higher performance than CoreFusion. CoreFusion out-
performs MorphCore in multi-threaded workloads (8% on average,
per benchmark results are shown in Figure 9b) because it has a
higher peak throughput as it consists of 3 medium-sized OOO cores.
MorphCore reduces power (19%), energy (29%), and ED2 (29%)
when averaged across both single-threaded and multi-threaded work-
loads over CoreFusion because it uses less area (see Table 2), and
thus, consumes less static power than CoreFusion’s three MED cores
while providing higher or comparable performance.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

N
or

m
. t

o
C

or
eF

us
io

n

MED
MorphCore

pe
rlb

en
ch

gc
c

mcf
hm

mer

h2
64

ref

as
tar

xa
lan

cb
mk

bw
av

es

ga
mes

s

ze
us

mp

les
lie

3d

de
alI

I

Gem
sF

DTD

lbm gm
ea

n

Figure 11: MorphCore’s Single-Thread Performance versus CoreFu-
sion

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
et

ri
c

N
or

m
. t

o
C

or
eF

us
io

n

MorphCore ST Avg
MorphCore MT Avg
MorphCore All Avg

Speedup Power Energy ED2_Product

Figure 12: Average Speedup, Power, Energy, and ED2 of MorphCore
versus CoreFusion

7.2. Heterogeneous Chip-Multiprocessors

Heterogeneous (or Asymmetric) Chip Multiprocessors
(ACMPs) [11, 22, 28] consist of one or a few large cores to
accelerate single-threaded code, and many small cores to accelerate
multi-threaded code. They have two limitations. First, the number
of large and small cores is fixed at design time. In contrast,
MorphCore can adapt the number of cores optimized for serial and
parallel execution dynamically. Second, they incur a migration
cost when execution is migrated between a small and a large core.
Since MorphCore can accelerate threads “in-place,” no migration
overhead is incurred.

7.3. Scalable Cores

Scalable cores scale their performance and power consumption over
a wide operating range. Dynamic Voltage and Frequency Scaling
(DVFS) [14, 6] is a widely-used technique to scale a core’s perfor-
mance and power (e.g., Intel Turbo Boost [1]). However, increasing
performance using DVFS costs significant increase in power con-
sumption (power increases with the cube of frequency). Albonesi et
al. [4] proposed dynamically tuning processor resources (e.g., cache
size, register file size, issue queue entries etc.) in order to provide
on-demand performance and energy savings. However, such tech-
niques do not explore how these resources can be better used, and
what other resources can be turned-off when TLP is available.

7.4. Simultaneous Multi-Threading

Simultaneous Multi-Threading (SMT) [13, 35, 31] was proposed to
improve resource utilization by executing multiple threads on the
same core. However, unlike MorphCore, previously proposed SMT
techniques do not reduce power consumption when TLP is avail-
able. Furthermore, traditional SMT increases the area/complexity
and power consumption of the core, whereas MorphCore leverages
existing structures and does not increase area/complexity and power.
Hily and Seznec observed in [12] that out-of-order execution be-
comes unnecessary when thread-level parallelism is available. In
contrast, MorphCore saves energy and improves performance when
executing multi-threaded workloads.

7.5. Power-Efficient Cores

Braids [30] provides OOO-like single-thread performance using in-
order resources. However, Braids does not adapt to the software
because it requires complicated compiler/software effort upfront. In
contrast, MorphCore requires no software effort, and adapts to the
software’s needs.

315

8. Conclusion

We propose the MorphCore architecture which is designed from
the ground-up to improve the performance and energy-efficiency of
both single-threaded and multi-threaded programs. MorphCore op-
erates as a high-performance out-of-order core when Thread-Level
Parallelism is low, and as a high-performance low-energy, highly-
threaded in-order SMT core when Thread-Level Parallelism is high.
Our evaluation with 14 single-threaded and 14 multi-threaded work-
loads shows that MorphCore increases performance by 10% and re-
duces energy-delay-squared product (ED2) by 22% over a typical
2-way SMT out-of-order core. We also show that MorphCore in-
creases performance and reduces ED2 when compared to an aggres-
sive 4-way SMT out-of-order core, medium out-of-order cores, and
small in-order cores. It also outperforms CoreFusion, a reconfig-
urable core architecture, in terms of performance (by 5%), and ED2

(by 29%). We therefore suggest MorphCore as a promising direc-
tion for increasing performance, saving energy, and accommodating
workload diversity while requiring minimal changes to a traditional
out-of-order core. In the future we plan to further enhance Mor-
phCore by exploring better policies for switching between in-order
and out-of-order mode and by providing hardware mechanisms to
support a low-power in-order single-thread mode.

Acknowledgments

We thank José Joao, other members of the HPS research group,
Carlos Villavieja, our shepherd Scott Mahlke, and the anonymous
reviewers for their comments and suggestions. Special thanks to
Nikhil Patil, Doug Carmean, Rob Chappell, and Onur Mutlu for
helpful technical discussions. We gratefully acknowledge the sup-
port of the Cockrell Foundation and Intel Corporation. Khubaib was
supported by an Intel PhD Fellowship.

References

[1] “Intel Turbo Boost Technology,” Intel Corporation,
http://www.intel.com/technology/turboboost/index.htm.

[2] “MySQL database engine 5.0.1,” http://www.mysql.com.
[3] “SysBench: a system performance benchmark v0.4.8,”

http://sysbench.sourceforge.net.
[4] D. H. Albonesi et al., “Dynamically tuning processor resources with

adaptive processing,” IEEE Computer, 2003.
[5] M. Boyer, D. Tarjan, and K. Skadron, “Federation: Boosting per-

thread performance of throughput-oriented manycore architectures,”
ACM Trans. Archit. Code Optim. (TACO), 2010.

[6] T. Burd and R. Brodersen, “Energy efficient CMOS microprocessor de-
sign,” in Proceedings of the Twenty-Eighth Hawaii International Con-
ference on System Sciences, 1995.

[7] Z. Chishti and T. N. Vijaykumar, “Optimal power/performance pipeline
depth for SMT in scaled technologies,” IEEE Trans. on Computers, Jan.
2008.

[8] A. J. Dorta et al., “The OpenMP source code repository,” in Euromicro,
2005.

[9] D. Gibson and D. A. Wood, “Forwardflow: a scalable core for power-
constrained CMPs,” in ISCA, 2010.

[10] S. Gupta, S. Feng, A. Ansari, and S. Mahlke, “Erasing core boundaries
for robust and configurable performance,” inMICRO, 2010.

[11] M. D. Hill and M. R. Marty, “Amdahl’s law in Multicore Era,” Univ. of
Wisconsin, Tech. Rep. CS-TR-2007-1593, 2007.

[12] S. Hily and A. Seznec, “Out-of-order execution may not be cost-
effective on processors featuring simultaneous multithreading,” in
HPCA, 1999.

[13] H. Hirata et al., “An elementary processor architecture with simultane-
ous instruction issuing from multiple threads,” in ISCA, 1992.

[14] M. Horowitz et al., “Low-power digital design,” in IEEE Symposium
on Low Power Electronics, 1994.

[15] Intel, “Intel 64 and IA-32 Architectures Software Dev. Manual, Vol-1,”
2011.

[16] E. Ipek et al., “Core fusion: accommodating software diversity in chip
multiprocessors,” in ISCA-34, 2007.

[17] C. Kim et al., “Composable lightweight processors,” in MICRO-40,
2007.

[18] D. Koufaty and D. Marr, “Hyperthreading technology in the Netburst
microarchitecture,” IEEE Micro, 2003.

[19] H. Kredel, “Source code for traveling salesman problem (tsp),”
http://krum.rz.uni-mannheim.de/ba-pp-2007/java/index.html.

[20] S. Li et al., “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO 42,
2009.

[21] A. J. Martin, et al., Power aware computing. Kluwer Academic Pub-
lishers, 2002, ch. ET2: a metric for time and energy efficiency of com-
putation.

[22] T. Y. Morad et al., “Performance, power efficiency and scalability of
asymmetric cluster chip multiprocessors,” 2006.

[23] NVIDIA Corporation, “CUDA SDK code samples,” 2009.
[24] M. Pricopi and T. Mitra, “Bahurupi: A polymorphic heterogeneous

multi-core architecture,” ACM TACO, January 2012.
[25] A. Putnam et al., “Dynamic vectorization in the E2 dynamic multicore

architecture,” SIGARCH Comp. Arch. News, 2011.
[26] D. Sager, D. P. Group, and I. Corp, “The microarchitecture of the pen-

tium 4 processor,” Intel Technology Journal, vol. 1, p. 2001, 2001.
[27] J. Stark et al., “On pipelining dynamic instruction scheduling logic,” in

MICRO-33, 2000.
[28] M. A. Suleman et al., “Accelerating critical section execution with

asymmetric multi-core architectures,” in ASPLOS, 2009.
[29] Tornado Web Server, “Source code,” http://tornado.sourceforge.net/,

2008.
[30] F. Tseng and Y. N. Patt, “Achieving out-of-order performance with al-

most in-order complexity,” in ISCA, 2008.
[31] D. M. Tullsen et al., “Simultaneous multithreading: Maximizing on-

chip parallelism,” in ISCA-22, 1995.
[32] Y. Watanabe et al., “Widget: Wisconsin decoupled grid execution tiles,”

in ISCA, 2010.
[33] C. Wilkerson et al., “Trading off cache capacity for reliability to enable

low voltage operation,” in ISCA, 2008.
[34] S. C. Woo et al., “The SPLASH-2 programs: Characterization and

methodological considerations,” in ISCA-22, 1995.
[35] W. Yamamoto et al., “Performance estimation of multistreamed, super-

scalar processors,” in Hawaii Intl. Conf. on System Sciences, 1994.
[36] V. Zyuban et al., “Integrated analysis of power and performance for

pipelined microprocessors,” IEEE Transactions on Computers, 2004.

316

Composite Cores: Pushing Heterogeneity into a Core

Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M. Sleiman, Ronald Dreslinski,

Thomas F. Wenisch, and Scott Mahlke

Advanced Computer Architecture Laboratory

University of Michigan

Ann Arbor, MI

{lukefahr, shrupad, reetudas, sleimanf, rdreslin, twenisch, mahlke}@umich.edu

Abstract
Heterogeneous multicore systems—comprised of multiple cores with
varying capabilities, performance, and energy characteristics—
have emerged as a promising approach to increasing energy effi-
ciency. Such systems reduce energy consumption by identifying phase
changes in an application and migrating execution to the most effi-
cient core that meets its current performance requirements. However,
due to the overhead of switching between cores, migration opportu-
nities are limited to coarse-grained phases (hundreds of millions of
instructions), reducing the potential to exploit energy efficient cores.

We propose Composite Cores, an architecture that reduces switch-
ing overheads by bringing the notion of heterogeneity within a sin-
gle core. The proposed architecture pairs big and little compute
μEngines that together can achieve high performance and energy
efficiency. By sharing much of the architectural state between the
μEngines, the switching overhead can be reduced to near zero, en-
abling fine-grained switching and increasing the opportunities to
utilize the little μEngine without sacrificing performance. An intelli-
gent controller switches between the μEngines to maximize energy
efficiency while constraining performance loss to a configurable
bound. We evaluate Composite Cores using cycle accurate microar-
chitectural simulations and a detailed power model. Results show
that, on average, the controller is able to map 25% of the execution
to the little μEngine, achieving an 18% energy savings while limiting
performance loss to 5%.

1. Introduction
The microprocessor industry, fueled by Moore’s law, has continued

to provide an exponential rise in the number of transistors that can fit

on a single chip. However, transistor threshold voltages have not kept

pace with technology scaling, resulting in near constant per-transistor

switching energy. These trends create a difficult design dilemma:

more transistors can fit on a chip, but the energy budget will not allow

them to be used simultaneously. This trend has made it possible

for today’s computer architects to trade increased area for improved

energy efficiency of general purpose processors.

Heterogeneous multicore systems are an effective approach to trade

area for improved energy efficiency. These systems comprise multi-

ple cores with different capabilities, yielding varying performance

and energy characteristics [20]. In these systems, an application is

mapped to the most efficient core that can meet its performance needs.

As its performance changes, the application is migrated among the

heterogeneous cores. Traditional designs select the best core by

briefly sampling performance on each. However, every time the ap-

plication migrates between cores, its current state must be explicitly

transferred or rebuilt on the new core. This state transfer incurs large

overheads that limits migration between cores to a coarse granularity

of tens to hundreds of millions of instructions. To mitigate these

effects, the decision to migrate applications is done at the granularity

of operating system time slices.

This work postulates that the coarse switching granularity in ex-

isting heterogeneous processor designs limits their effectiveness and

energy savings. What is needed is a tightly coupled heterogeneous

multicore system that can support fine-grained switching and is unen-

cumbered by the large state migration latency of current designs.

To accomplish this goal, we propose Composite Cores, an archi-

tecture that brings the concept of heterogeneity to within a single

core. A Composite Core contains several compute μEngines that

together can achieve both high performance and energy efficiency. In

this work, we consider a dual μEngine Composite Core consisting

of: a high performance core (referred to as the big μEngine) and

an energy efficient core (referred to as the little μEngine). As only

one μEngine is active at a time, execution switches dynamically

between μEngines to best match the current application’s characteris-

tics to the hardware resources. This switching occurs on a much finer

granularity (on the order of a thousand instructions) compared to

past heterogeneous multicore proposals, allowing the application to

spend more time on the energy efficient μEngine without sacrificing
additional performance.

As a Composite Core switches frequently between μEngines, it

relies on hardware resource sharing and low-overhead switching

techniques to achieve near zero μEngine migration overhead. For

example, the big and little μEngines share branch predictors, L1

caches, fetch units and TLBs. This sharing ensures that during a

switch only the register state needs to be transfered between the

cores. We propose a speculative register transfer mechanism to

further reduce the migration overhead.

Because of the fine switching interval, conventional sampling-

based techniques to select the appropriate core are not well-suited for

a Composite Core. Instead, we propose an online performance esti-

mation technique that predicts the throughput of the unused μEngine.

If the predicted throughput of the unused μEngine is significantly

higher or has better energy efficiency then the active μEngine, the

application is migrated. Thus, the decision to switch μEngines max-

imizes execution on the more efficient little μEngine subject to a

performance degradation constraint.

The switching decision logic tracks and predicts the accumulated

performance loss and ensures that it remains within a user-selected

bound. With Composite Cores, we allow the users or system archi-

tects to select this bound to trade off performance loss with energy

savings. To accomplish this goal, we integrate a simple control loop

in our switching decision logic, which tracks the current performance

difference based on the performance loss bound, and a reactive model

to detect the instantaneous performance difference via online perfor-

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.37

317

0

0.5

1

1.5

2

2.5

3

200K 400K 600K 800K 1M

In
st

ru
ct

io
ns

 /
Cy

cl
e

Instructions

Big Core Little Core

(a) Inst. window of length 2K over a 1M inst. interval

0

0.5

1

1.5

2

2.5

3

160K 170K 180K

In
st

ru
ct

io
ns

 /
Cy

cl
e

Instructions

Big Core Little Core

(b) Inst. window of length 100 over a 200K inst. interval

Figure 1: IPC Measured over a typical scheduling interval for 403.gcc

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

500 1K 5K 10K 50K 100K 500K 1M

Ad
di

tio
na

l S
w

itc
hi

ng
 O

ve
rh

ea
d

Quantum Length

Always Switch - Share

Always Switch - Stitch

Always Switch - Flush

Randomly Switch - Share

Randomly Switch - Stitch

Randomly Switch Flush

Figure 2: Migration overheads under different switching schemes
and probabilities

mance estimation techniques.

In summary, this paper offers the following contributions:

• We propose Composite Cores, an architecture that brings the con-

cept of heterogeneity within a single core. The Composite Core
consists of two tightly coupled μEngines that enable fine-grained

matching of application characteristics to the underlying microar-

chitecture to achieve both high performance and energy efficiency.

• We study the benefits of fine-grained switching in the context of

heterogeneous core architectures. To achieve near zero μEngine
transfer overhead, we propose low-overhead switching techniques

and a core microarchitecture which shares necessary hardware

resources.

• We design intelligent switching decision logic that facilitates fine-

grain switching via predictive rather than sampling-based perfor-

mance estimation. Our design tightly constrains performance loss

within a user-selected bound through a simple feedback controller.

• We evaluate our proposed Composite Core architecture with cycle

accurate full system simulations and integrated power models.

Overall, a Composite Core can map an average of 25% of the
dynamic execution to the little μEngine and reduce energy by 18%
while bounding performance degradation to at most 5%.

2. Motivation

Industry interest in heterogeneous multicore designs has been gaining

momentum. Recently ARM announced a heterogeneous multicore,

known as big.LITTLE [9], which combines a set of Cortex-A15 (Big)

cores with Cortex-A7 (Little) cores to create a heterogeneous pro-

cessor. The Cortex-A15 is a 3-way out-of-order with deep pipelines

(15-25 stages), which is currently the highest performance ARM core

that is available. Conversely, the Cortex-A7 is a narrow in-order pro-

cessor with a relatively short pipeline (8-10 stages). The Cortex-A15

has 2-3x higher performance, but the Cortex-A7 is 3-4x more energy

efficient.

In big.LITTLE, all migrations must occur through the coherent

interconnect between separate level-2 caches, resulting in a migration

cost of about 20 μseconds. Thus, the cost of migration requires that

the system migrate between cores only at coarse granularity, on the

order of tens of milliseconds. The large switching interval forfeits

potential gains afforded by a more aggressive fine-grained switching.

2.1. Switching Interval

Traditional heterogeneous multicore systems, such as big.LITTLE,

rely on coarse-grained switching to exploit application phases that

occur at a granularity of hundreds of millions to billions of instruc-

tions. These systems assume the performance within a phase is

stable, and simple sampling-based monitoring systems can recognize

low-performance phases and map them to a more energy efficient

core. While these long term low-performance phases do exist, in

many applications, they occur infrequently, limiting the potential to

utilize a more efficient core. Several works [27, 32, 33] have shown

that observing performance at much finer granularity reveals more

low-performance periods, increasing opportunities to utilize a more

energy efficient core.

Figure 1(a) shows a trace of the instructions per cycle (IPC) for

403.gcc over a typical operating system scheduling interval of one

million instructions for both a three wide out-of-order (big) and a

two wide in-order (little) core. Over the entire interval, the little core

is an average of 25% slower than the big core, which may necessitate

that the entire phase be run on the big core. However if we observe

the performance with finer granularity, we observe that, despite some

periods of relatively high performance difference, there are numerous

periods where the performance gap between the cores is negligible.

If we zoom in to view performance at even finer granularity (100s

to 1000s of instructions), we find that, even during intervals where

the big core outperforms the little on average, there are brief periods

where the cores experience similar stalls and the performance gap

between them is negligible. Figure 1(b) illustrates a subset of the

trace from Figure 1(a) where the big core has nearly forty percent

better performance, yet we can see brief regions where there is no

performance gap.

318

L1
Instruction

Cache

L1
Instruction

Cache
etchFetch

DecodeDecode

DecodeDecode

Physical
Register File

Physical
Register File Load Store QueueLoad Store QueueRATRAT

In-Order BackendIn-Order Backend

AAArrrccchhiittteeeccctttuurrraal
Register File

Architectural
Register File MemMemA hit t l

Out-Of-Order BackendOut-Of-Order Backend

Branch
Predictor
Branch

Predictor

L1
Data

Cache

L1
Data

Cache

Control Flow Data Flow Core Transfer

Reactive Online
Controller

Reactive Online
Controller

Figure 3: Microarchitectural overview of a Composite Core

Little uEngine
1.8 mm2

In
t+

FP
 R

eg
fil

e
0.

7
m

m
2

RO
B

+
Fr

ee
 L

ist

0.
4

m
m

2

Big uEngine
6.3 mm2

Ld Queue
0.1 mm2

St Queue
0.1 mm2

ICache + ITLB
0.7 mm2

BP
0.3 m2

DCache + DTLB
0.7 mm2

Reactive Online Controller
0.02 mm2

Fetch – 0.1 mm2

Ld/St Unit
0.1 mm2

Int+FP RegFile - 0.07 mm2

Figure 4: Estimated physical layout of a Composite Core in 32nm tech-
nology

2.2. Migration Overheads

The primary impediment to exploiting these brief low-performance

periods is the cost (both explicit and implicit) of migrating between

cores. Explicit migration costs include the time required to transport

the core’s architecturally visible state, including the register file,

program counter, and privilege bits. This state must be explicitly

stored into memory, migrated to the new core and restored. However,

there are also a number of implicit state migration costs for additional

state that is not transferred but must be rebuilt on the new core.

Several major implicit costs include the extra time required to warm

up the L1 caches, branch prediction, and dependence predictor history

on the new core.

Figure 2 quantifies the effects of these migration overheads for

different architectural implementations by measuring the additional

migration overheads of switching at a fixed number of dynamic

instructions, called a quantum or epoch. The figure shows the effects

of switching at the end of every quantum with both a 100% probability

(Always Switch) and with a 1
3 probability (Randomly Switch). The

1
3 probability is designed to weigh the instruction execution more

heavily on the big core to better approximate a more typical execution

mix between the big and little cores. The horizontal axis sweeps the

quantum length while the vertical axis plots the added overhead due

to increased switches.

The “Flush” lines correspond to a design where the core and cache

state is invalidated when a core is deactivated (i.e., state is lost due to

power gating), for example, ARM’s big.LITTLE design. The “Stitch”

lines indicate a design where core and cache state is maintained but

not updated for inactive cores (i.e., clock gating of stateful structures).

Finally, the “Shared” results indicate a design where both cores share

all microarchitectural state (except the pipeline) and multiplex access

to the same caches, corresponding to the Composite Cores approach.

Observe that at large quanta, switching overheads are negligible

under all three designs. However at small quantum lengths, the

added overheads under both “Flush” and “Stitch” cause significant

performance loss, while overhead under “Share” remains negligible.

These migration overheads preclude fine-grained switching in

traditional heterogeneous core designs. In contrast, a Composite
Core can leverage shared hardware structures to minimize migration

overheads allowing it to target finer-grained switching, improving

opportunities to save energy.

3. Architecture

A Composite Core consists of two tightly coupled compute μEngines
that together can achieve high performance and energy efficiency by

rapidly switching between the μEngines in response to changes in

application performance. To reduce the overhead of switching, the

μEngines share as much state as possible. As Figure 3 illustrates, the

μEngines share a front-end, consisting of a fetch stage and branch

predictor, and multiplex access to the same L1 instruction and data

caches. The register files are kept separate to minimize the little

μEngine’s register access energy.

As both μEngines require different control signals from decode,

each μEngine has its own decode stage. Each μEngine has a separate

back-end implementation, one striving for high performance and

the other for increased energy efficiency. However, both μEngines
multiplex access to a single L1 data cache, again to maximize shared

state and further reduce switching overheads. The register file is the

only state that must be explicitly transferred to switch to the opposite

μEngine.

The big μEngine is similar to a traditional high performance out-

of-order backend. It is a superscalar highly pipelined design that

includes complicated issue logic, a large reorder buffer, numerous

functional units, a complex load/store queue (LSQ), and register

renaming with a large physical register file. The big μEngine relies on

these complex structures to support both reordering and speculation

in an attempt to maximize performance at the cost of increased energy

consumption.

The little μEngine is comparable to a more traditional in-order

backend. It has a reduced issue width, simpler issue logic, reduced

functional units, and lacks many of the associatively searched struc-

tures (such as the issue queue or LSQ). By only maintaining an

architectural register file, the little μEngine eliminates the need for

renaming and improves the efficiency of register file accesses.

Figure 4 gives an approximate layout of a Composite Core system

at 32nm. The big μEngine consumes 6.3mm2 and the L1 caches

consume an additional 1.4mm2. The little μEngine adds an additional

1.8mm2, or about a 20% area overhead. However, this work assumes

that future processors will be limited by power budget rather than

transistor area. Finally, the Composite Core control logic adds an

additional 0.02mm2 or an additional 0.2% overhead.

3.1. μEngine Transfer

During execution, the reactive online controller collects a variety of

performance metrics and uses these to determine which μEngine
should be active for the following quantum. If at the end of the

quantum, the controller determines that the next quantum should be

run on the inactive μEngine, the Composite Core must perform a

switch to transfer control to the new μEngine. Figure 5 illustrates the

sequence of events when the controller decides to switch μEngines.

319

Fetch
BIG μENGINE SWITCHING

CONTROLLER

Exposed
Latency

Speculative Transfer

Residual Transfer

BIG
μENGINE

LITTLE
 μENGINE

SWITCHING
CONTROLLER

Ti
m

e

Hidden
Latency

LITTLE μENGINE
CommitFetchCommit

Collect Metrics

Compute Decision

Collect Metrics

Pipeline Drain

Pipeline Refill

Register
 Transfer

Active Inactive

Big

Little

Big

Big

Big

Little

Figure 5: Mechanism of a Composite Core switch

As both μEngines have different backend implementations, they

have incompatible microarchitectural state. Therefore, when the

Composite Core decides to switch, the current active μEngine must

first be brought to an architecturally precise point before control

can be transferred. If the big μEngine is active, it has potentially

completed a large amount of work speculatively, making a pipeline

flush potentially wasteful. Therefore, the Composite Core simply

stops fetching instructions to the active μEngine, and allows the

pipeline to drain before switching.

As all other stateful structures have either been drained (e.g.,

pipeline stages) or are shared (e.g., branch predictor), the only state

that must be explicitly transferred is the register file. While the active

μEngine is draining, the Composite Core attempts to speculatively

transfer as much of the register state as possible to hide switching

latency. Once the active μEngine has completely drained, the remain-

ing registers are transferred during the residual transfer. More details

on the register transfer are given in Section 3.2.

Once the register transfer has been completed, fetch resumes with

the instructions now redirected to the opposite μEngine. The new

μEngine will incur an additional delay while its pipeline stages are

refilled. Therefore the total switch latency is the sum of the pipeline

drain, register transfer, and the pipeline refill delay. As the pipeline

drain is totally hidden and a majority of the register file values can

be speculatively transferred, the only exposed latency is the residual

register transfer and the pipeline refill latency of the new μEngine.

As this latency is similar to that of a branch mispredict, the switching

overheads behave very similarly to that of a branch misprediction

recovery.

3.2. Register State Transfer

As the register file is the only architecturally visible stateful com-

ponent that is not shared, its contents must be explicitly transferred

during a μEngine switch. This transfer is complicated by the fact

that the little μEngine only contains architectural registers with a

small number of read and write ports while the big μEngine uses

register renaming and a larger multi-ported physical register file. To

copy a register from the big μEngine to the little, the architectural-to-

physical register mapping must first be determined using the Register

Allocation Table (RAT) before the value can be read from the physical

register file. Typically this is a two cycle process.

When the Composite Core initiates a switch, the registers in the

active μEngine are marked as untransferred. The controller then

utilizes a pipelined state machine, called the transfer agent, to transfer

the registers. The first stage determines the next untransferred register,

marks it as transferred, and uses the RAT to lookup the physical

register file index corresponding to the architectural register. Recall

that while the big μEngine is draining, its RAT read ports are not

needed by the pipeline (no new instructions are dispatched). The

second stage reads the register’s value from the physical register file.

The final stage transfers the register to the inactive μEngine.

To hide the latency of the register transfer, the Composite Core
begins speculatively transferring registers before the active μEngine
is fully drained. Therefore, when a register value is overwritten by

the draining pipeline it is again marked as untransferred. The transfer

agent will then transfer the updated value during the residual transfer

of Figure 5. The transfer agent will continue to run until the pipeline
is fully drained and all architectural registers have been transferred.

Once all registers have been transferred, the opposite μEngine can

begin execution. The process of transferring registers from the little

μEngine to the big μEngine is similar, except there is now a single

cycle register read on the little μEngine and a two cycle register write

on the big μEngine.

4. Reactive Online Controller

The decision of when to switch is handled by the Reactive Online

Controller. Our controller, following the precedent established by

prior works [20, 30], attempts to maximize energy savings subject

to a configurable maximum performance degradation, or slowdown.

The converse, a controller that attempts to maximize performance

subject to a maximum energy consumption, can also be constructed

in a similar manner.

To determine the appropriate core to minimize performance loss,

the controller needs to 1) estimate the dynamic performance loss,

which is the difference between the observed performance of the

Composite Core and the performance if the application were to run

entirely on the big μEngine; and 2) make switching decisions such

that the estimated performance loss is within a parameterizable bound.

The controller consists of three main components: a performance

estimator, threshold controller, and switching controller illustrated in

Figure 6.

The performance estimator tracks the performance on the active

μEngine and uses a model to provide an estimate for the performance

of the inactive μEngine as well as provide a cumulative performance

estimate. This data is then fed into the switching controller, which

estimates the performance difference for the following quantum. The

threshold controller uses the cumulative performance difference to

estimate the allowed performance drop in the next quantum for which

running on the little μEngine is profitable. The switching controller

uses the output of the performance estimator and the threshold con-

320

+ Threshold
Controller

Switching
Controller

ΔCPIthreshold Composite
Cores

Corenext

Performance
Estimator CPIobserved +

Performance Metrics

CPIactual

CPIerrorCPItarget

CPIbig CPIlittle

-
Σ

sum

CPIobserved

Figure 6: Reactive online controller overview

troller to determine which μEngine should be activated for the next

quantum.

4.1. Performance Estimator

The goal of this module is to provide an estimate of the performance

of both μEngines in the previous quantum as well as track the overall

performance for all past quanta. While the performance of the active

μEngine can be trivially determined by counting the cycles required

to complete the current quantum, the performance of the inactive

μEngine is not known and must be estimated. This estimation is

challenging as the microarchitectural differences in the μEngines
cause their behaviors to differ.

The traditional approach is to sample execution on both μEngines
for a short duration at the beginning of each quantum and base the de-

cision for the remainder of the quantum on the sample measurements.

However, this approach is not feasible for fine-grained quanta for

two reasons. First, the additional switching necessary for sampling

would require much longer quanta to amortize the overheads, for-

feiting potential energy gains. Second, the stability and accuracy of

fine-grained performance sampling drops rapidly, since performance

variability grows as the measurement length shrinks [32].

Simple rule based techniques, such as switching to the little

μEngine on a cache miss, cannot provide an effective performance

estimate needed to allow the user to configure the performance tar-

get. As this controller is run frequently, more complex approaches,

such as non-linear or neural-network models, add too much energy

overhead and hardware area to be practical.

Therefore the Composite Core instead monitors a selected number

of performance metrics on the active μEngine that capture fundamen-

tal characteristics of the application and uses a simple performance

model to estimate the performance of the inactive μEngine. A more

detailed analysis of the performance metrics is given in Section 4.4.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Little -> Big Big -> Little

Re
la

tiv
e

Co
ef

fic
ie

nt
 M

ag
na

tu
de

L2 Miss

Branch Mispredicts

ILP

L2 Hit

MLP

Active uEngine Cycles

Constant

Figure 7: Magnitude of regression coefficients

4.1.1. Performance Model The performance model provides an es-

timate for the inactive μEngine by substituting the observed metrics

into a model for the inactive μEngine’s performance. As this com-

putation must be performed often, we chose a simple linear model

to minimize computation overhead. Eq. 1 defines the model, which

consists of the sum of a constant coefficient (a0) and several input

metrics (xi) times a coefficient (ai). As the coefficients are specific

to the active μEngine, two sets of coefficients are required, one set

is used to estimate performance of the big μEngine while the little

μEngine is active, and vice versa.

y = a0 +∑aixi (1)

To determine the coefficients for the performance monitor, we profile

each of the benchmarks on both the big and little μEngine for 100

million instructions (after a 2 Billion instruction fast-forward) using

each benchmark’s supplied training input set. We then utilize ridge

regression analysis to determine the coefficients using the aggregated

performance metrics from all benchmarks. The magnitude of each

normalized coefficient for both models is shown in Figure 7, illustrat-

ing the relative importance of each metric to overall performance for

each μEngine.

The constant term reflects the baseline weight assigned to the aver-

age performance of the active μEngine without considering the met-

rics. The Active μEngine Cycles metric scales the model’s estimate

based on the CPI of the active μEngine. MLP attempts to measure the

levels of memory parallelism and account for the μEngine’s ability

to overlap memory accesses. L2 Hit tracks the number of L2 cache

hits and scales the estimate to match the μEngine’s ability to tolerate

medium latency misses. ILP attempts to scale the performance esti-

mate based on the inactive μEngine’s ability (or inability) to exploit

independent instructions. Branch Mispredicts and L2 Miss scales the

estimate based on the number of branch mispredictions and L2 cache

misses respectively.

Little->Big Model: This model is used to estimate the performance

of the big μEngine while the little μEngine is active. In general good

performance on the little μEngine indicates good performance on the

big μEngine. As the big μEngine is better able to exploit both MLP

and ILP its performance can improve substantially over the little for

applications that exhibit these characteristics. However, the increased

pipeline length of the big μEngine makes it slower at recovering

from a branch mispredict than the little μEngine, decreasing the

performance estimate. Finally, as L2 misses occur infrequently and

the big μEngine is designed to partially tolerate memory latency, the

L2 Miss coefficient has minimal impact on the overall estimate.

321

Big->Little Model: While the big μEngine is active, this model

estimates the performance of the little μEngine. The little μEngine
has a higher constant due to its narrower issue width causing less

performance variance. As the little μEngine cannot exploit applica-

tion characteristics like ILP and MLP as well as the big μEngine,

the big μEngine’s performance has slightly less impact than in the

Little->Big model. L2 Hits are now more important as, unlike the

big μEngine, the little μEngine is not designed to hide any of the

latency. The inability of the little μEngine to utilize the available

ILP and MLP in the application causes these metrics to have almost

no impact on the overall performance estimate. Additionally, as

the little μEngine can recover from branch mispredicts much faster,

mispredicts have very little impact. Finally even though L2 misses

occur infrequently, the little μEngine suffers more performance loss

than the big μEngine again due to the inability to partially hide the

latency.

Per-Application Model: While the above coefficients give a good

approximation for the performance of the inactive μEngine, some

applications will warrant a more exact model. For example, in the

case of memory bound applications like mcf, the large number of

L2 misses and their impact on performance necessitates a heavier

weight for the L2 Miss metric in the overall model. Therefore the

architecture supports the use of per-application coefficients for both

the Big->Little and Little->Big models, allowing programmers to

use offline profiling to custom tailor the model to the exact needs of

their application if necessary. However, our evaluation makes use of

generic models.

4.1.2. Overall Estimate The second task of the performance esti-

mator is to track the actual performance of the Composite Core as

well as provide an estimate of the target performance for the entire

application. The actual performance is computed by summing the ob-

served performance for all quanta (Eq. 2). The target performance is

computed by summing all the observed and estimated performances

of the big μEngine and scaling it by the allowed performance slow-

down. (Eq. 3). As the number of instructions is always fixed, rather

than compute CPI the performance estimator hardware only sums

the number of cycles accumulated, and scales the target cycles to

compare against the observed cycles.

CPIactual = ∑CPIobserved (2)

CPItarget = ∑CPIBig× (1−Slowdownallowed) (3)

4.2. Threshold Controller

The threshold controller is designed to provide a measure of the

current maximum performance loss allowed when running on the

little μEngine. This threshold is designed to provide an average

per-quantum performance loss where using the little μEngine is prof-

itable given the performance target. As some applications experience

frequent periods of similar performance between μEngines, the con-

troller scales the threshold low to ensure the little μEngine is only

used when it is of maximum benefit. However for applications that

experience almost no low performance periods, the controller scales

the threshold higher allowing the little μEngine to run with a larger

performance difference but less frequently.

The controller is a standard PI controller shown in Eq. 5. The

P (Proportional) term attempts to scale the threshold based on the

current observed error, or difference from the expected performance

(Eq. 4). The I (Integral) term scales the threshold based on the sum of

all past errors. A Derivative term can be added to minimize overshoot.

CPIBig

(a) (b)

CPILittle

ΔCPIThreshold

L
B

B Big More Profitable L Little More Profitable

Figure 8: Switching controller behaviour: (a) If CPIbig +
ΔCPIthreshold > CPIlittle pick Little; (b) If
CPIbig +ΔCPIthreshold <CPIlittle pick Big.

However in our case, it was not included due to noisiness in the input

signal. Similar controllers have been used in the past for controlling

performance for DVFS [29].

The constant Kp and Ki terms were determined experimentally.

The Kp term is large, reflecting the fact that a large error needs to

be corrected immediately. However, this term suffers from system-

atically underestimating the overall performance target. Therefore

the second term, Ki is introduced to correct for small but systematic

under-performance. This term is about three orders of magnitude

smaller than Kp, so that it only factors into the threshold when a

long-term pattern is detected.

CPIerror =CPItarget −CPIactual (4)

ΔCPIthreshold = KpCPIerror +Ki ∑CPIerror (5)

4.3. Switching Controller

The switching controller attempts to determine which μEngine is

most profitable for the next quantum. To estimate the next quantum’s

performance, the controller assumes the next quantum will have the

same performance as the previous quantum. As show in Figure 8, the

controller determines profitability by computing ΔCPInet as shown

in Eq. 6. If ΔCPInet is positive, the little μEngine is currently more

profitable, and execution is mapped to the little μEngine for the next

quantum. However, if ΔCPInet is negative, the performance differ-

ence between big and little is too large, making the little μEngine
less profitable. Therefore the execution is mapped to the big μEngine
for the next quantum.

ΔCPInet = (CPIBig +ΔCPIthreshold)−CPIlittle (6)

4.4. Implementation Details

We use several performance counters to generate the detailed metrics

required by the performance estimator. Most of these performance

counters are already included in many of today’s current systems,

including branch mispredicts, L2 cache hits and L2 cache misses.

Section 4.4.1 details the additional performance counters needed in

the big μEngine. Due to the microarchitectural simplicity of the little

μEngine, tracking these additional metrics is more complicated. We

add a small dependence table (described in Section 4.4.2) to the little

μEngine to capture these metrics.

4.4.1. Performance Counters The performance models rely heav-

ily on measurements of both ILP and MLP, which are not trivially

measurable in most modern systems. As the big μEngine is already

equipped with structures that exploit both ILP and MLP, we simply

add a few low overhead counters to track these metrics. For ILP, a per-

formance counter keeps a running sum of the number of instructions

in the issue stage that are waiting on values from in-flight instructions.

322

This captures the number of instructions stalled due to serialization

as an inverse measure of ILP. To measure MLP, an additional perfor-

mance counter keeps a running sum of the number of MSHR entries

that are in use at each cache miss. While not perfect measurements,

these simple performance counters give a good approximation of the

amount of ILP and MLP per quantum.

4.4.2. Dependence Table Measuring ILP and MLP on the little

μEngine is challenging as it lacks the microarchitectural ability to

exploit these characteristics and therefore has no way of measuring

them directly.

We augment the little μEngine with a simple table that dynami-

cally tracks data dependence chains of instructions to measure these

metrics. The design is from Chen, Dropsho, and Albonesi [7]. This

table is a bit matrix of registers and instructions, allowing the little

μEngine to simply look up the data dependence information for an

instruction. A performance counter keeps a running sum per quantum

to estimate the overall level of instruction dependencies as a measure

of the ILP. To track MLP, we extended the dependence table to track

register dependencies between cache misses over the same quantum.

Together these metrics allow Composite Cores to estimate the levels

of ILP and MLP available to the big μEngine.

However, there is an area overhead associated with this table. The

combined table contains two bits of information for each register over

a fixed instruction window. As our architecture supports 32 registers

and we have implemented our instruction window to match the length

of the ROB in the big μEngine, the total table size is 2×32×128

bits, 1KB of overhead. As this table is specific to one μEngine, the

additional area is factored into the little μEngine’s estimate rather

than the controller.

4.4.3. Controller Power & Area To analyze the impact of the con-

troller on the area and power overheads, we synthesized the controller

design in an industrial 65nm process. The design was placed and

routed for area estimates and accurate parasitic values. We used

Synopsys PrimeTime to obtain power estimates which we then scaled

to the 32nm target technology node. The synthesized design includes

the required performance counters, multiplicand values (memory-

mapped programmable registers), and a MAC unit. For the MAC

unit, we use a fixed-point 16*16+36-bit Overlapped bit-pair Booth re-

coded, Wallace tree design based on the Static CMOS design in [18].

The design is capable of meeting a 1.0GHz clock frequency and

completes 1 MAC operation per cycle, with a 2-stage pipeline.

Thus, the calculations in the performance model can be completed

in 9 cycles as our model uses 7 input metrics. With the added com-

putations for the threshold controller and switching controller, the

final decision takes approximately 30 cycles. The controller covers

0.02mm2 of area, while consuming less than 5uW of power dur-

ing computation. The MAC unit could be power gated during the

remaining cycles to reduce the leakage power while not in use.

5. Results

To evaluate the Composite Cores architecture, we extended the Gem5

Simulator [6] to support fast switching. All benchmarks were com-

piled using gcc with -O2 optimizations for the Alpha ISA. We evalu-

ated all benchmarks by fast forwarding for two billion instructions

before beginning detailed simulations for an additional one billion

instructions. The simulations included detailed modeling of the

pipeline drain functionality for switching μEngines.

We utilized McPAT to estimate the energy savings from a Com-
posite Core [28]. We model the two main sources of energy loss in

Architectural Feature Parameters
Big μEngine 3 wide Out-Of-Order @ 1.0GHz

12 stage pipeline
128 ROB entries
160 entry register file
Tournament branch predictor (Shared)

Little μEngine 2 wide In-Order @ 1.0GHz
8 stage pipeline
32 entry register file
Tournament branch predictor (Shared)

Memory System 32 KB L1 iCache, 1 cycle access (Shared)
32 KB L1 dCache, 1 cycle access (Shared)
1 MB L2 Cache, 15 cycle access
1024MB Main Mem, 80 cycle access

Table 1: Experimental Composite Core parameters

transistors, dynamic energy and static (or leakage) energy. We study

only the effects of clock gating, due to the difficulties in estimating

the performance and energy implications of power gating. Finally, as

our design assumes tightly coupled L1 caches, our estimates include

the energy consumption of the L1 instruction and data caches, but

exclude all other system energy estimates.

Table 1 gives more specific simulation configurations for each

of the μEngines as well as the memory system configuration. The

big μEngine is modeled as a 3-wide out-of-order processor with a

128-entry ROB and a 160-entry physical register file. It is also ag-

gressively pipelined with 12 stages. The little μEngine is modeled to

simulate a 2-wide in-order processor. Due to its simplified hardware

structures the pipeline length is also shorter, providing quicker branch

misprediction recovery, and it only contains a 32-entry architectural

register file. The branch predictor and fetch stage are shared between

the two μEngines.

5.1. Quantum Length

One of the primary goals of the Composite Cores architecture is to

explore the benefits of fine-grained quanta to exploit short duration

periods of low performance. To determine the optimum quantum

length, we performed detailed simulations to sweep quantum lengths

with several assumptions that will hold for the remainder of Section

5.1. To factor out controller inaccuracies, we assume the μEngine
selection is determined by an oracle, which knows the performance

for both μEngines for all quanta and switches to the little μEngine
only for the quanta with the smallest performance difference such that

it can still achieve the performance target. We also assume that the

user is willing to tolerate a 5% performance loss relative to running

the entire application on the big μEngine.

Given these assumptions, Figure 9 demonstrates the little

μEngine’s utilization measured in dynamic instructions as the quan-

tum length varies. While the memory-bound mcf can almost fully

utilize the little μEngine at larger quanta, the remaining benchmarks

show only a small increase in utilization until the quantum length

decreases to less than ten thousand instructions. Once quantum sizes

shrink below this level, the utilization begins to rise rapidly from

approximately thirty percent to fifty percent at quantum lengths of

one hundred instructions.

While a Composite Core is designed to minimize migration over-

heads, there is still a small register transfer and pipeline refill latency

when switching μEngines. Figure 10 illustrates the performance

impacts of switching μEngines at various quanta with the oracle

targeting 95% performance relative to the all big μEngine case. We

observe that, with the exception of mcf, which actually achieves a

small speedup, all the benchmarks achieve the target performance at

323

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

100 1K 10K 100K 1M 10M

Li
tt

le
 E

ng
in

e
U

til
iza

tio
n

Quantum Length

astar bzip2 gcc gobmk h264ref

hmmer mcf omnetpp sjeng average

Figure 9: Impact of quantum length on little μEngine utilization

80%

85%

90%

95%

100%

105%

100 1K 10K 100K 1M 10M

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 B
ig

Quantum Length

astar bzip2 gcc gobmk h264ref

hmmer mcf omnetpp sjeng average

Figure 10: Impact of quantum length on overall performance with a
5% slowdown target

longer quanta. This result implies that the additional overheads of

switching μEngines are negligible at these quanta and can safely be

ignored. However, for quantum lengths smaller than 1000 instruc-

tions we begin to see additional performance degradation, indicating

that the overheads of switching are no longer negligible.

The main cause of this performance decrease is the additional

switches allowed by the smaller quanta. Figure 11 illustrates the

number of switches per million instructions the Composite Core
performed to achieve its goal of maximizing the little μEngine uti-

lization. Observe that as the quantum length decreases, there is a

rapid increase in the number of switches. In particular, for a quantum

length of 1000 the oracle switches cores approximately 340 times

every million instructions, or roughly every 3000 instructions.

As quantum length decreases the Composite Core has greater po-

tential to utilize the little μEngine, but must switch more frequently to

achieve this goal. Due to increased hardware sharing, the Composite
Core is able to switch at a much finer granularity than traditional het-

erogeneous multicore architectures. However below quantum lengths

of approximately 1000 dynamic instructions, the overheads of switch-

ing begin to cause intolerable performance degradation. Therefore

for the remainder of this study, we will assume quantum lengths of

1000 instructions.

5.2. μEngine Power Consumption
A Composite Core relies on shared hardware structures to enable fine-

grained switching. However these shared structures must be designed

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

100 1K 10K 100K 1M 10M

Sw
itc

he
s

/ M
ill

io
n

In
st

ru
ct

io
ns

Quantum Length

astar bzip2 gcc gobmk h264ref

hmmer mcf omnetpp sjeng average

Figure 11: Impact of quantum length on μEngine switches

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

Av
er

ag
e

Po
w

er
 R

el
at

iv
e

to
 th

e
Bi

g
Co

re

Big uEngine Little Core Little uEngine

Figure 12: Average μEngine power relative to dedicated cores

for the high performance big μEngine and are over-provisioned when

the little μEngine is active. Therefore the little μEngine has a higher

average power than a completely separate little core. When the little

μEngine is active, its frontend now includes a fetch engine, branch

predictor, and instruction cache designed for the big μEngine. Also,

the little μEngine accesses a data cache that is designed to support

multiple outstanding memory transactions. While this functionality

is necessary for the big μEngine, the little μEngine cannot utilize it.

Finally, the leakage power of Composite Cores will be higher as it is

comprised of two μEngines.

Figure 12 illustrates the average power difference between the

μEngines and separate big and little cores. Observe that while the

big μEngine includes the leakage of the little μEngine, it does not

use noticeably more power than a separate big core. As the little

μEngine is small, its contribution to leakage is minimal. However,

while the little core requires only 22% of the big core’s power, the

shared hardware of the little μEngine only allow it to reduce the

power to 30% of the big core. This is caused by a combination of

both the leakage energy of the big μEngine and the inefficiencies

inherent in using an over-provisioned frontend and data cache.

While the little μEngine of Composite Core is not able to achieve

the same power reductions as a separate little core, this limitation

is offset by Composite Core’s ability to utilize the little μEngine
more frequently. As illustrated in Figure 9, a Composite Core, with a

quantum length of 1000 instructions, executes more instructions on

the little μEngine than a traditional heterogeneous multicore system,

which has a quantum length of 10 million instructions or more. Even

324

0%

5%

10%

15%

20%

25%

30%

35%

40%

-100% -50% 0% 50% 100%

Pe
rc

en
t o

f Q
ua

nt
um

s

Percent Deviation From Actual Performance Per Quantum

Regression Average Performance

Figure 13: Distribution of Big->Little regression accuracy

0%

5%

10%

15%

20%

25%

30%

-100% -50% 0% 50% 100%

Pe
rc

en
t o

f Q
ua

nt
um

s

Percent Deviation From Actual Performance Per Quantum

Regression Average Performance

Figure 14: Distribution of Little->Big regression accuracy

after accounting for the inefficiencies of the little μEngine, a Com-
posite Core is still able to achieve a 27% decrease in average power

compared to the traditional heterogeneous multicore approach.

5.3. Regression

While the oracle switching scheme was useful to determine the best

quantum length, it is not implementable in a real system. Therefore

in this section, we evaluate the accuracies of the performance model

from Section 4.1. Figures 13 and 14 illustrate the accuracy for the

Big->Little and Little->Big models respectively. The y-axis indicates

the percent of the total quanta, or scheduling intervals. The x-axis

indicates the difference between the estimated and actual performance

for a single quantum. The accuracy of using a fixed estimate equal

to the average performance of the inactive μEngine is also given for

comparison.

As the little μEngine has less performance variance and fewer

features, it is easier to model, and the Big->Little model is more accu-

rate. However, the Little->Big model must predict the performance

of the big μEngine, which has hardware features that were designed

to overlap latency, causing it to be less accurate. Also note that while

the individual predictions have a larger tail, the tail is centered around

zero error. Hence over a large number of quanta, positive errors

are canceled by negative errors, allowing the overall performance

estimate, CPItarget to be more accurate despite the variations in the

models themselves.

5.4. Little Core Utilization

For Section 5.4-5.6 we evaluate three different switching schemes

configured to allow a maximum of 5% performance degradation. The

Oracle is the same as in Section 5.1 and picks only the best quanta

to run on the little μEngine so that it can still achieve its performance

target. The Perfect Past has oracle knowledge of the past quanta

only, and relies on the assumption that the next quantum has the same

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Dy
na

m
ic

 In
st

ru
ct

io
ns

 o
n

Li
tt

le

Oracle

Perfect Past

Regression

Figure 15: Little μEngine utilization in dynamic instructions, for dif-
ferent switching schemes

90%

93%

95%

98%

100%

103%

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 B
ig

Oracle

Perfect Past

Regression

Figure 16: Performance impact for various switching schemes with a
5% slowdown target

performance as the most recent past quantum. The realistic Regres-
sion Model can measure the performance of the active μEngine, but

must rely on a performance model for the estimated performance of

the inactive μEngine. This model is the same for all benchmarks and

was described in Section 4.1.

Figure 15 illustrates the little μEngine utilization, measured in

dynamic instructions, for various benchmarks using each switching

scheme. For a memory bound application, like mcf, a Composite
Core can map nearly 100% of the execution to the little μEngine.

For applications that are almost entirely computation bound with

predictable memory access patterns, the narrower width of the little

μEngine limits its overall utilization. However, most applications lie

somewhere between these extremes and the Composite Core is able to

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

En
er

gy
 S

av
in

gs
 R

el
at

iv
e

to
 B

ig

Oracle

Perfect Past

Regression

Figure 17: Energy savings for various switching schemes

325

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

Utilization Overall Performance Energy Savings

Re
la

tiv
e

to
 B

ig

Figure 18: Slowdown sensitivity analysis

map between 20% to 60% of the instructions given oracle knowledge,

with an average of 37% utilization. Given the imperfect regression

model, these utilizations drop slightly, but still maintain an average

utilization of 25% across all benchmarks. Finally on omnetpp and

sjeng, the regression scheme actually achieves higher utilization

than the perfect past, however this comes at the cost of a performance

loss that is slightly below the target described in Section 5.5.

5.5. Performance Impact

Figure 16 illustrates the performance of the Composite Core relative

to running the entire application on the big μEngine. Composite Core
is configured to allow a 5% slowdown, so the controller is targeting

95% relative performance. As mcf is almost entirely memory bound,

the decrease in branch misprediction recovery latency actually causes

a small performance speedup. All other benchmarks are at or near

the target performance for all schemes. Note that the controller is

designed to allow a small amount of oscillation around the exact

performance target to reduce unnecessary switching, thus allowing

bzip2 to dip slightly below the target for the perfect past switching

scheme. Both omnetpp and sjeng suffer from slight inaccuracies in

the regression model which, when combined with the oscillation of

the controller, causes their overall performance to be approximately

an additional 1
2 % below the target performance.

5.6. Energy Reduction

Figure 17 illustrates the energy savings for different switching

schemes across all benchmarks. Note that these results only assume

clock-gating, meaning that both cores are always leaking static energy

regardless of utilization. Again, as mcf is almost entirely memory

bound, the Composite Core is able to map almost the entire execution

to the little μEngine and achieve significant energy savings. Overall,

the oracle is able to save 29% the energy. Due to the lack of perfect

knowledge, the perfect past scheme is not able to utilize the little

μEngine as effectively, reducing its overall energy savings to 24%.

Finally, the implementable regression model achieves 18% energy

savings as the additional inaccuracies in the regression model further

reduce the effective utilization of the little μEngine. When combined

with the performance, the regression model is able to achieve a 21%

reduction in EDP.

5.7. Allowed Performance Loss

As the Composite Core can be controlled to provide different levels

of energy savings by specifying permissible performance slowdowns,

the end user or OS can choose how much of a performance loss is

tolerable in exchange for energy savings. Figure 18 illustrates the

little μEngine utilization, performance, and energy savings relative

to the big μEngine for various performance levels. As the system is

tuned to permit a higher performance drop, utilization of the little

μEngine increases resulting in higher energy savings. Allowing

only a 1% slowdown saves up to 4% of the energy whereas tuning

to a 20% performance drop can save 44% of the energy consumed

on the big μEngine. This ability is particularly useful in situations

where maintaining usability is essential, such as low-battery levels

on laptops and cell phones.

6. Related Works

Numerous works motivate a heterogeneous multi-core design for the

purposes of performance [22, 2, 4], power [20], and alleviating serial

bottlenecks [10, 30, 13]. This paradigm has even begun to make its

way into commercial products [9]. The heterogeneous design space

can be broadly categorized into 1) designs which migrate thread

context across heterogeneous processors, 2) designs which allow a

thread to adapt (borrow, lend, or combine) hardware resources, and

3) designs which allow dynamic voltage/frequency scaling.

6.1. Heterogeneous Cores, Migratory Threads

Composite Cores falls within the category of designs which migrate

thread context. Most similarly to our technique, Kumar et al. [20]

consider migrating thread context between out-of-order and in-order

cores for the purposes of reducing power. At coarse granularities of

100M instructions, one or more of the inactive cores are sampled by

switching the thread to each core in turn. Switches comprise flushing

dirty L1 data to a shared L2, which is slow and energy consuming.

Rather than relying on sampling the performance on both cores, Van

Craeynest et al. [31] propose a coarse-grained mechanism that relies

on measures of CPI, MLP, and ILP to predict the performance on the

inactive core.

On the other hand, Rangan et al. [27] examine a CMP with clusters

of in-order cores sharing L1 caches. While the cores are identical

architecturally, varied voltage and frequency settings create perfor-

mance and power heterogeneity. A simple performance model is

made possible by having exclusively in-order cores, and thread mi-

gration is triggered every 1000 cycles by a history-based (last value)

predictor. Our solution combines the benefits of architectural hetero-

geneity [21], as well as those of fast migration of only register state,

and contributes a sophisticated mechanism to estimate the inactive

core’s performance.

Another class of work targets the acceleration of bottlenecks to

thread parallelism. Segments of code constituting bottlenecks are

annotated by the compiler and scheduled at runtime to run on a big

core. Suleman et al. [30] describe a detailed architecture and target

critical sections, and Joao et al. [13] generalize this work to identify

the most critical bottlenecks at runtime. Patsilaras, Choudhary, and

Tuck [25] propose building separate cores, one that targets MLP

and the other that targets ILP. They then use L2 cache miss rate to

determine when an application has entered a memory intensive phase

and map it to the MLP core. When the cache misses decrease, the

system migrates the application back to the ILP core.

Other work studies the benefits of heterogeneity in real systems.

Annavaram et al. [2] show the performance benefits of heteroge-

neous multi-cores for multithreaded applications on a prototype with

different frequency settings per core. Kwon et al. [23] motivate

asymmetry-aware hypervisor thread schedulers, studying cores with

various voltage and frequency settings. Koufaty et al. [17] discover

an application’s big or little core bias by monitoring stall sources,

326

to give preference to OS-level thread migrations which migrate a

thread to a core it prefers. A heterogeneous multi-core prototype is

produced by throttling the instruction retirement rate of some cores

down to one instruction per cycle.

6.2. Adaptive Cores, Stationary Threads

Alternatively, asymmetry can be introduced by dynamically adapting

a core’s resources to its workload. Prior work has suggested adapt-

ing out-of-order structures such as the issue queue [3], as well as

other structures such as ROBs, LSQs, and caches [26, 5, 1]. Ku-

mar et al. [19] explored how a pair of adjacent cores can share area-

expensive structures, while keeping the floorplan in mind. Homayoun

et al. [11] recently examined how microarchitectural structures can

be shared across 3D stacked cores. These techniques are limited

by the structures they adapt and cannot for instance switch from an

out-of-order core to an in-order core during periods of low ILP.

Ipek et al. [12] and Kim et al. [14] describe techniques to compose

or fuse several cores into a larger core. While these techniques

provide a fair degree of flexibility, a core constructed in this way is

generally expected to have a datapath that is less energy efficient than

if it were originally designed as an indivisible core of the same size.

6.3. Dynamic Voltage and Frequency Scaling (DVFS)

DVFS approaches reduce the voltage and frequency of the core to

improve the core’s energy efficiency at the expense of performance.

However, when targeted at memory-bound phases, this approach can

be effective at reducing energy with minimal impact on performance.

Similar to traditional heterogeneous multicore systems, the overall ef-

fectiveness of DVFS suffers from coarse-grained scheduling intervals

in the millisecond range. In addition, providing independent DVFS

settings for more than two cores is costly in terms of both area and

energy [16]. Finally, traditional DVFS is only effective when target-

ing memory-bound phases, while the Composite Core architecture

can also target phases of serial computation, low instruction level

parallelism and high branch-misprediction rates.

Despite these limitations, DVFS is still widely used in production

processors today, and has been incorporated into ARM’s big.LITTLE

heterogeneous multicore system [9]. Similar to big.LITTLE, DVFS

could easily be incorporated into a Composite Core design. Here

the operating system would attempt to maximize energy savings by

reducing the voltage for the entire Composite Core at a coarse gran-

ularity of multiple operating system scheduling intervals. Within

these intervals, the Composite Core would act as an additional layer

of optimization by exploiting fine-grained phases to further reduce

energy consumption. This approach can designed to achieve max-

imum energy savings by allowing DVFS and Composite Core to

work together to save energy by targeting both coarse-grained and

fine-grained phases.

In the future, a Composite Core may be able to utilize heterogenity

in terms of both microarchitecture and voltage/frequency scaling

to further improve energy efficiency. Two competing techniques to

enable fine-grained DVFS, fast on-chip regulators [16, 15] and dual-

voltage rails [24, 8], have recently been proposed that promise to

deliver transition latencies similar to that of a Composite Core. These

would allow the Composite Core to simultaneously switch μEngines
and scale the operating voltage/frequency to further maximize energy

savings.

7. Conclusion
This paper explored the implications of migration between heteroge-

neous systems at a much finer granularity than previously proposed.

We demonstrated the increased potential to utilize a more energy

efficient core at finer intervals than traditional heterogeneous multi-

core systems. We proposed Composite Cores, an architecture that

brings the concept of heterogeneity from between different cores to

within a core by utilizing two tightly coupled μEngines. A Composite
Core takes advantages of increased hardware sharing to enable fine-

grained switching while achieving near zero migration overheads.

The Composite Core also includes an intelligent controller designed

to maximize the utilization of the little μEngine while constraining

performance loss to a user-defined threshold. Overall, our system can

map an average of 25% of the dynamic execution to the little μEngine
and reduce energy by 18% while maintaining a 95% performance
target.

8. Acknowledgements
This work is supported in part by ARM Ltd and by the National

Science Foundation under grant SHF-1227917. The authors would

like to thank the fellow members of the CCCP research group, our

shepherd (Krste Asanovic), and the anonymous reviewers for their

time, suggestions, and valuable feedback.

References
[1] D. Albonesi, R. Balasubramonian, S. Dropsbo, S. Dwarkadas, E. Fried-

man, M. Huang, V. Kursun, G. Magklis, M. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. Cook, and S. Schuster, “Dynamically tuning
processor resources with adaptive processing,” IEEE Computer, vol. 36,
no. 12, pp. 49 –58, Dec. 2003.

[2] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating amdahl’s law
through epi throttling,” in Proceedings of the 32nd annual international
symposium on Computer Architecture, 2005, pp. 298–309.

[3] R. Bahar and S. Manne, “Power and energy reduction via pipeline bal-
ancing,” Proc. of the 28th Annual International Symposium on Computer
Architecture, vol. 29, no. 2, pp. 218–229, 2001.

[4] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of
performance asymmetry in emerging multicore architectures,” in Proc.
of the 32nd Annual International Symposium on Computer Architecture,
Jun. 2005, pp. 506 – 517.

[5] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory hierarchy reconfiguration for energy and per-
formance in general-purpose processor architectures,” in Proceedings of
the 33rd annual ACM/IEEE international symposium on Microarchitec-
ture, 2000, pp. 245–257.

[6] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[7] L. Chen, S. Dropsho, and D. Albonesi, “Dynamic data dependence
tracking and its application to branch prediction,” in Proc. of the 9th
International Symposium on High-Performance Computer Architecture,
2003, pp. 65–.

[8] R. Dreslinski, “Near threshold computing: From single core to many-
core energy efficient architectures,” Ph.D. dissertation, University of
Michigan, 2011.

[9] P. Greenhalgh, “Big.little processing with
arm cortex-a15 & cortex-a7,” Sep. 2011,
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf.

[10] M. Hill and M. Marty, “Amdahl’s law in the multicore era,” IEEE
Computer, no. 7, pp. 33 –38, 2008.

[11] H. Homayoun, V. Kontorinis, A. Shayan, T.-W. Lin, and D. M. Tullsen,
“Dynamically heterogeneous cores through 3d resource pooling,” in Proc.
of the 18th International Symposium on High-Performance Computer
Architecture, 2012, pp. 1–12.

[12] E. Ipek, M. Kirman, N. Kirman, and J. Martinez, “Core fusion: Accom-
modating software diversity in chip multiprocessors,” in Proc. of the
34th Annual International Symposium on Computer Architecture, 2007,
pp. 186–197.

327

[13] J. A. Joao, M. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck identifica-
tion and scheduling in multithreaded applications,” in 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2012, pp. 223–234.

[14] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler, “Composable lightweight processors,” in
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, 2007, pp. 381–394.

[15] W. Kim, D. Brooks, and G.-Y. Wei, “A fully-integrated 3-level dc-
dc converter for nanosecond-scale dvfs,” IEEE Journal of Solid-State
Circuits, vol. 47, no. 1, pp. 206 –219, Jan. 2012.

[16] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analy-
sis of fast, per-core dvfs using on-chip switching regulators,” in Proc.
of the 14th International Symposium on High-Performance Computer
Architecture, 2008, pp. 123–134.

[17] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in Proc. of the 5th European Conference on
Computer Systems, 2010, pp. 125–138.

[18] R. Krishnamurthy, H. Schmit, and L. Carley, “A low-power 16-bit
multiplier-accumulator using series-regulated mixed swing techniques,”
in Custom Integrated Circuits Conference, 1998. Proceedings of the
IEEE 1998, 1998, pp. 499 –502.

[19] R. Kumar, N. Jouppi, and D. Tullsen, “Conjoined-core chip multi-
processing,” in Proc. of the 37th Annual International Symposium on
Microarchitecture, 2004, pp. 195–206.

[20] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction,” in Proc. of the 36th Annual International
Symposium on Microarchitecture, Dec. 2003, pp. 81–92.

[21] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture opti-
mization for heterogeneous chip multiprocessors,” in Proc. of the 15th
International Conference on Parallel Architectures and Compilation
Techniques, 2006, pp. 23–32.

[22] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st annual international
symposium on Computer architecture, 2004.

[23] Y. Kwon, C. Kim, S. Maeng, and J. Huh, “Virtualizing performance
asymmetric multi-core systems,” in Proc. of the 38th Annual Interna-
tional Symposium on Computer Architecture, 2011, pp. 45–56.

[24] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu,
“Booster: Reactive core acceleration for mitigating the effects of pro-
cess variation and application imbalance in low-voltage chips,” in Proc.
of the 18th International Symposium on High-Performance Computer
Architecture, vol. 0, 2012, pp. 1–12.

[25] G. Patsilaras, N. K. Choudhary, and J. Tuck, “Efficiently exploiting
memory level parallelism on asymmetric coupled cores in the dark
silicon era,” ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp. 28:1–
28:21, Jan. 2012.

[26] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power requirements
of instruction scheduling through dynamic allocation of multiple datap-
ath resources,” in Proc. of the 34th Annual International Symposium on
Microarchitecture, Dec. 2001, pp. 90–101.

[27] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in Proc. of the 36th Annual
International Symposium on Computer Architecture, 2009, pp. 302–313.

[28] L. Sheng, H. A. Jung, R. Strong, J.B.Brockman, D. Tullsen, and
N. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. of the
42nd Annual International Symposium on Microarchitecture, 2009, pp.
469–480.

[29] J. Suh and M. Dubois, “Dynamic mips rate stabilization in out-of-order
processors,” in Proc. of the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 46–56.

[30] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating
critical section execution with asymmetric multi-core architectures,” in
17th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2009, pp. 253–264.

[31] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Proceedings of the 39th International Symposium
on Computer Architecture, ser. ISCA ’12, 2012, pp. 213–224.

[32] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proceedings of the 30th annual international symposium on
Computer architecture, 2003, pp. 84–97.

[33] B. Xu and D. H. Albonesi, “Methodology for the analysis of dynamic
application parallelism and its application to reconfigurable computing,”
vol. 3844, no. 1. SPIE, 1999, pp. 78–86.

328

Control-Flow Decoupling

Rami Sheikh, James Tuck, Eric Rotenberg

Department of Electrical and Computer Engineering

North Carolina State University

{rmalshei, jtuck, ericro}@ncsu.edu

Abstract

Mobile and PC/server class processor companies continue to roll
out flagship core microarchitectures that are faster than their prede-
cessors. Meanwhile placing more cores on a chip coupled with con-
stant supply voltage puts per-core energy consumption at a premium.
Hence, the challenge is to find future microarchitecture optimizations
that not only increase performance but also conserve energy. Elimi-
nating branch mispredictions – which waste both time and energy –
is valuable in this respect.

We first explore the control-flow landscape by characterizing
mispredictions in four benchmark suites. We find that a third of
mispredictions-per-1K-instructions (MPKI) come from what we call
separable branches: branches with large control-dependent regions
(not suitable for if-conversion), whose backward slices do not de-
pend on their control-dependent instructions or have only a short
dependence. We propose control-flow decoupling (CFD) to eradicate
mispredictions of separable branches. The idea is to separate the
loop containing the branch into two loops: the first contains only the
branch’s predicate computation and the second contains the branch
and its control-dependent instructions. The first loop communicates
branch outcomes to the second loop through an architectural queue.
Microarchitecturally, the queue resides in the fetch unit to drive timely,
non-speculative fetching or skipping of successive dynamic instances
of the control-dependent region.

Either the programmer or compiler can transform a loop for CFD,
and we evaluate both. On a microarchitecture configured similar
to Intel’s Sandy Bridge core, CFD increases performance by up to
43%, and reduces energy consumption by up to 41%. Moreover, for
some applications, CFD is a necessary catalyst for future complexity-
effective large-window architectures to tolerate memory latency.

1. Introduction

Good single-thread performance is important for both serial and

parallel applications, and provides a degree of independence from

fickle parallelism. This is why, even as the number of cores in a

multi-core processor scales, processor companies continue to roll out

flagship core microarchitectures that are faster than their predecessors.

Meanwhile placing more cores on a chip coupled with stalled supply

voltage scaling puts per-core energy consumption at a premium. Thus,

the challenge is to find future microarchitecture optimizations that

not only increase performance but also conserve energy.

Eliminating branch mispredictions is valuable in this respect. Mis-

predictions waste both time and energy, firstly, by fetching and execut-

ing wrong-path instructions and, secondly, by repairing state before

resuming on the correct path. Figure 1a shows instructions-per-cycle

(IPC) for several applications with hard-to-predict branches. The first

bar is for our baseline core (refer to Table 3 in Section 5) with a state-

of-art branch predictor (ISL-TAGE [28, 29]) and the second bar is

for the same core with perfect branch prediction. Each application’s

branch misprediction rate is shown above its bars. Speedups with

[18.8%]

[20.4%]

[7.7%]
[2%]

[6.8%]

[14.8%]

[3.9%]

[2.9%]

[4%]

[3%]

0
0.5

1
1.5

2
2.5

3
3.5

IP
C

baseline baseline + perfect prediction

(a) IPC

0.42 0.36

0.62

0.94

0.74 0.70

0.96
0.86 0.91 0.91

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

ize
d

En
er

gy

(b) Energy of perfect branch prediction relative to real branch prediction

Figure 1: Impact of perfect branch prediction.

perfect branch prediction range from 1.05 to 2.16. Perfect branch

prediction reduces energy consumption by 4% to 64% compared to

real branch prediction (Figure 1b).

Some of these applications also suffer frequent last-level cache

misses. Complexity-effective large-window processors can tolerate

long-latency misses and exploit memory-level parallelism with small

cycle-critical structures [31, 23]. Their ability to form an effective

large window is degraded, however, when a mispredicted branch

depends on one of the misses [31]. Figure 2a shows the breakdown

of mispredicted branches that depend on data at various levels in the

memory hierarchy: L1, L2, L3 and main memory. Figure 2b shows

how the IPC of ASTAR (an application with high misprediction rate

and significant fraction of mispredictions fed by L3 or main memory)

scales with window size. Without perfect branch prediction, IPC

does not scale with window size: miss-dependent branch mispredic-

tions prevent a large window from performing its function of latency

tolerance. Conversely, eradicating mispredictions acts as a catalyst

for latency tolerance. IPC scales with window size in this case.

We first explore the current control-flow landscape by character-

izing mispredictions in four benchmark suites using a state-of-art

predictor. In particular, we classify the control-dependent regions

guarded by hard-to-predict branches. About a third of mispredictions-

per-1K-instructions (MPKI) come from branches with small control-

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.38

329

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Br
ea

kd
ow

n
of

 M
is

pr
ed

ic
ts

 w
.r.

t.
Th

e
Ca

ch
e

Le
ve

ls
 F

ee
di

ng
 T

he
m

MEM
L3
L2
L1

(a) Breakdown of mispredictions with respect to the furthest
memory hierarchy level feeding them

0

0.5

1

1.5

2

2.5

3

168 256 384 512 640

IP
C

Window Size

baseline

baseline + perfect
prediction

(b) ASTAR(Rivers)
IPC under different
window sizes

Figure 2: Effect of branch mispredictions on memory latency toler-
ance.

dependent regions, e.g., hammocks. If-conversion using conditional

moves, a commonly available predication primitive in commercial

instruction-set architectures (ISA), is generally profitable for this

class [2]. For completeness, we analyze why the gcc compiler did

not if-convert such branches and manually do so at the source level

in order to focus on other classes. We discover that another third of

MPKI comes from what we call separable branches. A separable

branch has two qualities:

1. The branch has a large control-dependent region, not suitable for

if-conversion.

2. The branch does not depend on its own control-dependent instruc-

tions via a loop-carried data dependence (totally separable), or has

only a short loop-carried dependence with its control-dependent

instructions (partially separable).

For a totally separable branch, the branch’s predicate computation is

totally independent of the branch and its control-dependent region.

This suggests “vectorizing” the control-flow: first generate a vector

of predicates and then use this vector to drive fetching or skipping

successive dynamic instances of the control-dependent region. This

is the essence of our proposed technique, control-flow decoupling

(CFD), for eradicating mispredictions of separable branches. The

loop containing the branch is separated into two loops: a first loop

contains only the instructions needed to compute the branch’s pred-

icate (generate branch outcomes) and a second loop contains the

branch and its control-dependent instructions (consume branch out-

comes). The first loop communicates branch outcomes to the second

loop through an architectural queue, specified in the ISA and man-

aged by push and pop instructions. At the microarchitecture level,

the queue resides in the fetch unit to facilitate timely, non-speculative

branching.

Partially separable branches can also be handled. In this case,

the branch’s predicate computation depends on some of its control-

dependent instructions. This means a copy of the branch and the

specific control-dependent instructions must be included in the first

loop. Fortunately, this copy of the branch can be profitably removed

by if-conversion due to few control-dependent instructions.

Either the programmer or compiler can transform a loop for CFD,

and we evaluate both. On a microarchitecture configured similar

to Intel’s Sandy Bridge core [35], CFD increases performance by

up to 43%, and reduces energy consumption by up to 41%. For

hard-to-predict branches that traverse large data structures that suffer

many cache misses, CFD acts as the necessary catalyst for future

large-window architectures to tolerate these misses.

The paper is organized as follows. In Section 2, we discuss our

methodology and classification of control-flow in a wide range of

applications. In Section 3, we present the ISA, hardware and software

aspects of CFD. In Section 4, we describe our implementation of

CFD in the gcc compiler. In Section 5, we describe our evaluation

framework and baseline selection process. In Section 6, we present

an evaluation of the proposed techniques. In Section 7, we discuss

prior related work. We conclude the paper in Section 8.

2. Methodology and Control-Flow Classification

The goal of the control-flow classification is first and foremost dis-

covery: to gain insight into the nature of difficult branches’ control-

dependent regions, as this factor influences the solutions that will

be needed, both old and new. Accordingly we cast a wide net to

expose as many control-flow idioms as possible: (1) we use four

benchmark suites comprised of over 80 applications, and (2) for the

purposes of this comprehensive branch study, each application is run

to completion leveraging a PIN-based branch profiling tool.

2.1. Methodology

We use four benchmark suites: SPEC2006 [32] (engineering, sci-

entific, and other workstation type benchmarks), NU-MineBench-
3.0 [24] (data mining), BioBench [1] (bioinformatics), and cBench-
1.1 [10] (embedded). All benchmarks1 are compiled for x86 using

gcc with optimization level -O3 and run to completion using PIN [20].

We wrote a pintool that instantiates a state-of-art branch predictor

(winner of CBP3, the third Championship Branch Prediction: 64KB

ISL-TAGE [28]) that is used to collect detailed information for every

static branch.

Different benchmarks have different dynamic instruction counts.

In the misprediction contribution pie charts that follow, we weigh

each benchmark equally by using its MPKI instead of its total number

of mispredictions. Effectively we consider the average one-thousand-

instruction interval of each benchmark.

Figure 3a shows the relative misprediction contributions of the four

benchmark suites. Every benchmark of every suite is included2, and,

as just mentioned, each benchmark is allocated a slice proportional

to its MPKI. We further refine the breakdown of each benchmark

suite slice into targeted versus excluded, shown in Figure 3b. The

excluded slice contains (1) benchmarks with misprediction rates less

than 2%, and (2) benchmarks that we could not run in our detailed

timing simulator introduced later (due to gcc Alpha cross-compiler

problems). The targeted slice contains the remaining benchmarks.

Table 1 lists the targeted benchmarks along with their MPKIs.

This paper focuses on the targeted slices which, according to

Figure 3b, contribute almost 78% of cumulative MPKI in the four

benchmark suites.

2.2. Control-Flow Classification

We inspected branches in the targeted benchmarks, and categorized

them into the following four classes:

1For benchmarks with multiple ref inputs, we profiled then classified all inputs into
groups based on the control-flow patterns exposed. One input is selected from each
group in order to cover all observed patterns. For example, for bzip we select the ref
inputs input.source and chicken.

2A benchmark that is present in multiple suites is included once. For example, hmmer
appears in BioBench and SPEC2006. In both benchmark suites, the same hard-to-predict
branches are exposed, thus, only one instance of hmmer is included.

330

42.8%

30.0%

21.7%

5.4%

SPEC2006

cBench-1.1

BioBench

NU-MineBench-3.0

(a) Mispredictions per benchmark suite

38.8%

18.0%

16.1%

4.9%

3.9%

12.0%

5.6%
0.5%

Targeted SPEC2006
Targeted cBench-1.1
Targeted BioBench
Targeted NU-MineBench-3.0
Excluded SPEC2006
Excluded cBench-1.1
Excluded BioBench
Excluded NU-MineBench-3.0

(b) Targeted vs. excluded mispredictions

37.8%

27.2%

18.7%

16.3%

Separable (CFD)

Hammock (If-Conversion)

Inseparable

Not Analyzed

(c) Breakdown of targeted mispredictions

Figure 3: Breakdown of branch mispredictions.
Benchmark Suite Application MPKI Benchmark Suite Application MPKI

astar (BigLakes) 10.11 gsm 2.10

astar (Rivers) 25.98 jpeg-compr 8.17

bzip2 (chicken) 4.08 jpeg-decompr 2.41

bzip2 (input.source) 8.16 cBench quick-sort 4.64

gobmk 7.17 tiff-2-bw 5.42

SPEC2006 gromacs 1.13 tiff-median 3.60

hmmer 11.72

mcf 9.06 clustalw 4.25

namd 1.17 BioBench fasta 16.64

sjeng 5.15

soplex (pds) 6.14

soplex (ref) 2.25 MineBench eclat 10.19

Table 1: Targeted applications.

1. Hammock: Branches with small, simple control-dependent re-

gions. Such branches will be if-converted. From what we can tell,

the gcc compiler did not if-convert these branches because they

guard stores. An example from hmmer is shown in Figure 4, line

1. To encourage if-conversion, the code can be adjusted (manu-

ally or using compiler) to unconditionally perform the store, if

legal (i.e., if address is legal regardless of branch outcome). The

control-dependent store to ic[k] (line 1) is moved outside the ham-

mock (line 4) and the value being stored is a new local variable,

local. Depending on the branch, local contains either the original

value of ic[k] (line 2) or sc (line 3). Thus, the store to ic[k], after

the hammock, is effectively conditional – ic[k]’s value may or

may not change – even though it is performed unconditionally.

The new if-statement (line 3) is then if-converted by the compiler

using a conditional move (line 6): conditionally move sc into local
based on the condition sc > local. This transformation increases

the number of retired stores, but the extra stores are silent. Ob-

taining the original value at the memory location requires a load,

but we observed that most cases are like the hmmer example, in

which the load already exists because the branch’s test depends

on a reference to ic[k] (line 1).

2. Separable: Branches with large, complex control-dependent re-

gions, where the branch’s backward slice (predicate computation)

is either totally separable or partially separable from the branch

and its control-dependent instructions. The backward slice is

totally separable if it does not contain any of the branch’s control-

dependent instructions. Total separability allows all iterations of

the backward slice to be hoisted outside the loop containing the

branch, conceptually vectorizing the predicate computation, which

is what CFD does via its first and second loops. The backward

slice is partially separable if it contains very few of the branch’s

control-dependent instructions. In this case, the backward slice

also contains the branch itself, since the branch guards the few

control-dependent instructions in the slice. All iterations of the

backward slice can still be hoisted but it contains a copy of the

branch, therefore, the backward slice is if-converted. CFD will be

applied to totally and partially separable branches.

1 if (sc > ic[k]) ic[k] = sc;

2
3
4

local = ic[k];
if(sc > local) local = sc;
ic[k] = local;

5
6
7

local = ic[k];
CMOV(local, sc, sc > local);
ic[k] = local;

Figure 4: Hammock (from HMMER).

3. Inseparable: Branches with large, complex control-dependent

regions, where the branch’s backward slice contains too many

of the branch’s control-dependent instructions. An inseparable
branch differs from a partially separable branch, in that it is not

profitable to if-convert its backward slice. This type of branch is

very serial in nature: the branch is frequently mispredicted and

it depends on many of the instructions that it guards. This class

of branch cannot be handled by if-conversion or CFD, and will

require a new solution which is outside the scope of this paper.

4. Not Analyzed: Branches we did not analyze, i.e., branches with

small contributions to total mispredictions.

Figure 3c breaks down the targeted mispredictions of Figure 3b

into these four classes. 37.8% of the targeted mispredictions can

be handled using CFD. 27.2% of the targeted mispredictions can

be handled using if-conversion. That CFD covers the largest per-

centage of MPKI after applying a sophisticated branch predictor,

provides a compelling case for CFD software, architecture, and mi-

croarchitecture support. Its applicability is on par with if-conversion,

a commercially mainstream technique that also combines software,

architecture, and microarchitecture. In addition to comparable MPKI

coverage, CFD and if-conversion apply to comparable numbers of

benchmarks and static branches (see Table 5 in Section 6).

3. Control-Flow Decoupling

Figure 5a shows a high-level view of a totally separable branch within

a loop. Branch slice computes the branch’s predicate. Depending on

the predicate, the branch is taken or not-taken, causing its control-

dependent instructions to be skipped or executed, respectively. In

this example, none of the branch’s control-dependent instructions are

in its backward slice, i.e., there isn’t a loop-carried data dependency

between any of the control-dependent instructions and the branch. A

partially separable branch would look similar, except a small number

of its control-dependent instructions would be in the branch slice; this

would appear as a backward dataflow edge from these instructions to

the branch slice.

Figure 5b shows the loop transformed for CFD. The loop is sep-

arated into two loops, each with the same trip-count as the original.

The first loop has just the branch slice. It pushes predicates onto an

331

control-
dependent
instructions

branch slice +
branch

loop branch

(a) Original loop

control-
dependent
instructions

Branch_on_BQ

loop branch

branch slice +
Push_BQ

loop branch

P
us

h
at

 T
ai

l

P
op

 a
t H

ea
d

Branch Queue (BQ)

(b) CFD loops

Figure 5: High-level view of the CFD transformation.

architectural branch queue (BQ) using a new instruction, Push_BQ.

The second loop has the control-dependent instructions. They are

guarded by a new instruction, Branch_on_BQ. This instruction pops

predicates from BQ and the predicates control whether or not the

branch is taken.

Hoisting all iterations of the branch slice creates sufficient fetch
separation between a dynamic instance of the branch and its producer

instruction, ensuring that the producer executes before the branch is

fetched. If successive iterations are a, b, c, ..., instead of fetching slice-
a, branch-a, slice-b, branch-b, slice-c, branch-c, ..., the processor

fetches slice-a, slice-b, slice-c, ... branch-a, branch-b, branch-c,
Additionally, to actually exploit the now timely predicates, they must

be communicated to the branch in the fetch stage of the pipeline so

that the branch can be resolved at that time. Communicating through

the existing source registers would not resolve the branch in the fetch

stage. This is why we architect the BQ predicate communication

medium and why, microarchitecturally, it resides in the fetch unit.

While this paper assumes an OOO processor for evaluation pur-

poses, please note that in-order and OOO processors both suffer

branch penalties due to the fetch-to-execute delay of branches. We

want to resolve branches in the fetch stage (so fetching is not dis-

rupted) but they resolve in the execute stage, unless correctly pre-

dicted. Thus, the problem with branches stems from pipelining in

general. OOO execution merely increases the pipeline’s speculation

depth (via buffering in the scheduler) so that, far from being a so-

lution to the branch problem, OOO execution actually makes the

branch problem more acute.

For a partially separable branch, the first loop would not only have

(1) the branch slice and Push_BQ instruction, but also (2) the branch

and just those control-dependent instructions that feed back to the

branch slice. The branch is then removed by if-conversion, using

conditional moves to predicate the control-dependent instructions.

CFD is still profitable in this case because the subsetted control-

dependent region is small and simple (otherwise the branch would be

classed as inseparable).

CFD is a software-hardware collaboration. The following subsec-

tions discuss ISA, software, and hardware.

3.1. ISA Support and Benchmark Example
ISA support includes an architectural specification of the BQ and

two instructions, Push_BQ and Branch_on_BQ. The architectural

specification of the BQ is as follows:

1. The BQ has a specific size. BQ size has implications for software.

These are discussed in the next subsection.

2. Each BQ entry contains a single flag indicating taken/not-taken

(the predicate). Other microarchitectural state may be included

in each entry of the BQ’s physical counterpart, but this state is

transparent to software and not specified in the ISA.

3. A length register indicates the BQ occupancy. Architecting only

a length register has the advantage of leaving low-level man-

agement concerns to the microarchitect. For example, the BQ

could be implemented as a circular or shifting buffer. Thus, at

the ISA level, the BQ head and tail are conceptual and are not

specified as architectural registers: their physical counterparts are

implementation-dependent.

4. The ISA provides mechanisms to save and restore the BQ state

(queue contents and length register) to memory. This is required

for context-switches. We recommend the approach used in some

commercial ISAs, which is to include the BQ among the special-

purpose registers and leverage move-from and move-to special-

purpose-register instructions to transfer the BQ state to and from

general-purpose registers (which can be saved and restored via

stores and loads, respectively). If this is not possible, then dedi-

cated Save_BQ and Restore_BQ instructions could be used.

The Push_BQ instruction has a single source register specifier to

reference a general-purpose register. If the register contains zero (non-

zero), Push_BQ pushes a 0 (1). Branch_on_BQ is a new conditional

branch instruction. Branch_on_BQ specifies its taken-target like

other conditional branches, via a PC-relative offset. It does not have

any explicit source register specifiers, however. Instead, it pops its

predicate from the BQ and branches or doesn’t branch, accordingly.

The ISA specifies key ordering rules for pushes and pops, that

software must abide by. First, a push must precede its corresponding

pop. Second, N consecutive pushes must be followed by exactly N

consecutive pops in the same order as their corresponding pushes.

Third, N cannot exceed the BQ size.

Figure 6 shows a real example from the benchmark SOPLEX.

Referring to the original code: The loop compares each element of

array test[] to variable theeps. The hard-to-predict branch is at line

3 and its control-dependent instructions are at lines 4-9. Neither the

array nor the variable is updated inside the control-dependent region,

thus, this is a totally separable branch. This branch contributes 31%

of the benchmark’s mispredictions (for ref input).

Decoupling the loop is fairly straightforward. The first loop com-

putes predicates (lines 2-3) and pushes them onto the BQ (line 4). The

second loop pops predicates from the BQ and conditionally executes

the control-dependent instructions, accordingly (line 7).

An ISA enhancement must be carefully specified, so that its future

obsolescence does not impede microarchitects of future generation

processors. Accordingly, CFD is architected as an optional and

scalable co-processor extension:

1. Optional: Inspired by configurability of co-processors in the MIPS

ISA – which specifies optional co-processors 1 (floating-point

unit) and higher (accelerators) – BQ state and instructions can be

encapsulated as an optional co-processor ISA extension. Thus,

future implementations are not bound by the new BQ co-processor

ISA. Codes compiled for CFD must be recompiled for processors

that do not implement the BQ co-processor ISA, but this is no

different than the precedent set by MIPS’ flexible co-processor

specification.

2. Scalable: The BQ co-processor ISA can specify a BQ size of

332

 Original Loop
1
2
3
4
5
6
7
8
9
10
11

for (…) {
 x = test[i];
 if (x < -theeps) { // hard-to-predict branch
 x *= x / penalty_ptr[i];
 x *= p[i];
 if (x > best) { // predictable branch
 best = x;
 selId = thesolver->id(i);
 }
 }
}

 Decoupled Loops

1
2
3
4
5

First Loop
for (…) {
 x = test[i];
 pred = (x < -theeps); // the predicate is computed
 Push_BQ(pred); // then pushed onto the BQ
}

6
7
8
9
10
11
12
13
14
15
16

Second Loop
for (…) {
 Branch_on_BQ{ // pop the predicate
 x = test[i];
 x *= x / penalty_ptr[i];
 x *= p[i];
 if (x > best) {
 best = x;
 selId = thesolver->id(i);
 }
 }
}

Figure 6: SOPLEX’ source code.

N: a machine-dependent parameter, thus allowing scalability to

different processor window sizes.

3.2. Software Side

For efficiency, the trip-counts of the first and second loops should not

exceed the BQ size. This is a matter of performance, not correctness,

because software can choose to spill/fill the BQ to/from memory. In

practice, this is an important issue because many of the CFD-class

loops iterate thousands of times whereas we specify a BQ size of 128

in this paper.

We explored multiple solutions but the most straightforward one is

loop strip mining. The original loop is converted to a doubly-nested

loop. The inner loop is similar to the original loop but its trip-count is

bounded by the BQ size. The outer loop iterates a sufficient number

of times to emulate the original loop’s trip-count. Then, CFD is

applied to the inner loop.

Decoupling the loop can be done either manually by the program-

mer or automatically by the compiler. In this paper, CFD was initially

applied manually which was a fairly easy task. In Section 4, we

describe automating CFD in the gcc compiler and in Section 6 we

evaluate how well it compares to the manual implementation.

3.3. Hardware Side

This subsection describes microarchitecture support for CFD. The BQ

naturally resides in the instruction fetch unit. In our design, the BQ is

implemented as a circular buffer. In addition to the software-visible

predicate bit, each BQ entry has the following microarchitectural

state: pushed bit, popped bit, and checkpoint id. For a correctly

written program, a Push_BQ (push) instruction is guaranteed to be

fetched before its corresponding Branch_on_BQ (pop) instruction.

Because of pipelining, however, the push might not execute before

the pop is fetched, referred to as a late push. The pushed bit and

popped bit enable synchronizing the push and pop. We explain BQ

operation separately for the two possible scenarios: early push and

late push.

3.3.1. Early Push. The early push scenario is depicted in Figure 7,

left-hand side.

When the push instruction is fetched, it is allocated the entry at

the BQ tail. It initializes its entry by clearing the pushed and popped

bits. The push instruction keeps its BQ index with it as it flows down

the pipeline 3. When the push finally executes, it checks the popped

bit in its BQ entry. It sees that the popped bit is still unset. This

means the scenario is early push, i.e., the push executed before its pop

counterpart was fetched. Accordingly, the push writes the predicate

into its BQ entry and sets the pushed bit to signal this fact.

Later, the pop instruction is fetched. It is allocated the entry at the

BQ head, which by the ISA ordering rules must be the same entry

as its push counterpart. It checks the pushed bit. It sees that the

pushed bit is set, therefore, it knows to use the predicate that was

pushed earlier. The pop executes right away, either branching or not

branching according to the predicate.

3.3.2. Late Push. The late push scenario is depicted in Figure 7,

right-hand side.

In this scenario, the pop is fetched before the push executes. As

before, when the pop is fetched, it checks the pushed bit to see if the

push executed. In this case the pushed bit is still unset so the pop

knows that a predicate is not available. There are two options: (1)

stall the fetch unit until the push executes, or (2) predict the predicate

using the branch predictor. Our design implements option 2 which

we call a speculative pop. When the speculative pop reaches the

rename stage, a checkpoint is taken. (This is on top of the baseline

core’s branch checkpointing policy, which we thoroughly explore in

Section 5.) Unlike conventional branches, the speculative pop cannot

confirm its prediction – this task rests with the late push instruction.

Therefore, the speculative pop writes its predicted predicate and

checkpoint id into its BQ entry, and signals this fact by setting the

popped bit. This information will be referenced by the late push to

confirm/disconfirm the prediction and initiate recovery if needed.

When the push finally executes, it notices that the popped bit is

set in its BQ entry, signifying a late push. The push compares its

predicate with the predicted one in the BQ entry. If they don’t match,

the push initiates recovery actions using the checkpoint id that was

placed there by the speculative pop. Finally, the push writes the

predicate into its BQ entry and sets the pushed bit.

Empirically, late pushes are very rare in our CFD-modified bench-

marks, less than 0.1% of pops (one per thousand). When fully utilized

by software, a 128-entry BQ separates a push and its correspond-

ing pop by 127 intervening pushes. This typically corresponds to a

push/pop separation of several hundreds of instructions, providing

ample time for a push to execute before its pop counterpart is fetched.

3.3.3. BQ Length. The BQ length (occupancy) is the sum of two

components:

1. net_push_ctr: This is the net difference between the number of

pushes and pops retired from the core up to this point in the

program’s execution. The ISA push/pop ordering rules guarantee

this count will always be greater than or equal to zero and less

than or equal to BQ size. This counter is incremented when a

push retires and decremented when a pop retires.

2. pending_push_ctr: This is the number of pushes in-flight in the

window, i.e., the number of fetched but not yet retired pushes. It is

incremented when a push is fetched, decremented when a push is

retired (because it now counts against net_push_ctr), and possibly

adjusted when a mispredicted branch resolves (see next section).

BQ length must be tracked in order to detect the BQ stall condition.

In particular, if BQ length is equal to BQ size and the fetch unit

3Having the BQ index in the push instruction’s payload enables it to reference its
BQ entry later, when it executes OOO. This is a standard technique for managing
microarchitecture FIFOs such as the reorder buffer and load and store queues.

333

Execute ACCESS my BQ entry:
if (popped == true) {
 verify predicted predicate
 if misp. recover early
}
push predicate
pushed = true

Fetch ALLOCATE BQ entry (tail)

Fetch ACCESS BQ entry (head):
if (pushed == true) { //hit
 use pushed predicate
}
else { //miss
 use branch predictor
 record predicted predicate
 popped = true
}

Rename if (miss) {
 take checkpoint
 record chkpt_id in BQ
 for use by late push
}

PUSH BQ POP BQ
Ti

m
e

PUSH BQ

Execute ACCESS my BQ entry:
if (popped == true) {
 verify predicted predicate
 if misp. recover early
}
push predicate
pushed = true

Fetch ALLOCATE BQ entry (tail)

POP BQ

Fetch ACCESS BQ entry (head):
if (pushed == true) { //hit
 use pushed predicate
}
else { //miss
 use branch predictor
 record predicted predicate
 popped = true
}

Rename if (miss) {
 take checkpoint
 record chkpt_id in BQ
 for use by late push
}

Ti
m

e

Figure 7: BQ operation. Two scenarios are shown: early push (left, common) and late push (right, uncommon).

fetches a push instruction, the fetch unit must stall. Note that the

stall condition is guaranteed to pass for a bug-free program. The ISA

push/pop ordering rules guarantee that there are BQ size in-flight pop

instructions prior to the stalled push. The first one of these pops to

retire will unstall the stalled push.

3.3.4. BQ Recovery. The core may need to roll back to a branch

checkpoint, in the case of a mispredicted branch, or the committed

state, in the case of an exception. In either case, the BQ itself needs

to be repaired.

1. Preparing for misprediction recovery: Each branch checkpoint is

augmented with state needed to restore the BQ to that point in the

program execution. Namely, in addition to the usual checkpointed

state (Rename Map Table, etc.), each checkpoint also takes a

snapshot of the BQ head and tail pointers. This is a modest

amount of state compared to other checkpointed state.

2. Preparing for exception recovery: Exception recovery requires

maintaining committed versions of the BQ head and tail pointers,

called arch_head and arch_tail. Arch_head and arch_tail are

incremented when pops and pushes retire, respectively.

When there is a roll-back, the BQ head and tail pointers are restored

from the referenced checkpoint (on a misprediction) or their com-

mitted versions (on an exception), and all popped bits between the

restored head and tail are cleared. Moreover, pending_push_ctr (the

second component of BQ length) is reduced by the number of entries

between the tail pointers before and after recovery (this corresponds

to the number of squashed push instructions).

3.3.5. Branch Target Buffer. Like all other branch types,

Branch_on_BQ is cached in the fetch unit’s Branch Target Buffer

(BTB) so that there is no penalty for a taken Branch_on_BQ as long

as the BTB hits. The BTB’s role is to detect branches and provide

their taken-targets, in the same cycle that they are being fetched

from the instruction cache. This information is combined with the

taken/not-taken prediction (normal conditional branch) or the popped

predicate (Branch_on_BQ) to select either the sequential or taken tar-

get. As with other branches, a BTB miss for a taken Branch_on_BQ

results in a 1-cycle misfetch penalty (detected in next cycle).

Predicates for potential Branch_on_BQ instructions in the current

fetch bundle are obtained from the BQ in parallel with the BTB

access, because these predicates are always at consecutive entries

starting at the BQ head.

3.4. Optimization

This section describes an optimization on top of CFD, that can reduce

CFD instruction overheads in some cases. We observed that values

used to compute the predicate in the first loop are used again, thus

recomputed, inside the control-dependent region in the second loop.

A simple way to avoid duplication is to communicate values from the

first loop to the second loop using an architectural value queue (VQ)

and VQ push/pop instructions. We call this optimization CFD+.

An interesting trick to leverage existing instruction issue and reg-

ister communication machinery in a superscalar core, is to map the

architectural value queue onto the physical register file. This is fa-

cilitated by the VQ renamer in the rename stage. The VQ renamer

is a circular buffer with head and tail pointers. Its entries contain

physical register mappings instead of values. The mappings indicate

where the values are in the physical register file. A VQ push is allo-

cated a destination physical register from the freelist. Its mapping is

pushed at the tail of the VQ renamer. A VQ pop references the head

of the VQ renamer to obtain its source physical register mapping.

The queue semantics ensure the pop links to its corresponding push

through its mapping. In this way, after renaming, VQ pushes and

pops synchronize in the issue queue and communicate values in the

execution lanes the same way as other producer-consumer pairs. The

physical registers allocated to push instructions are freed when the

pops that reference them retire.

4. CFD Compiler Implementation

We have implemented a compiler pass to perform the CFD code

transformation automatically. The pass needs a list of hard-to-predict

branches derived from profiling or the programmer as input, and

it transforms the inner-loop containing the branch into CFD form.

We will refer to the decoupled first and second loops created by the

compiler pass as the Producer and Consumer loops, respectively.

Algorithm 1 shows the overall CFD compiler implementation. We

start with the CFD function which takes as input a loop and the

hard-to-predict predicates that are contained within the loop.

The first steps of the algorithm are inspired by the Decoupled

Software Pipelining (DSWP) algorithm presented by Ottoni et al.
[25]. In particular, we borrow their strategy of first constructing a

full Program Dependence Graph (PDG) and then consolidating the

strongly connected components (SCCs) into single nodes in the graph

to create a directed acyclic graph (Lines 2-3). If the hard-to-predict

branch forms the root of a control-dependent region which can be

334

Algorithm 1 Overall CFD algorithm.

1: function CFD(Loop l, Predicate p)
2: pdg← BuildPDG(l)
3: dag← ConsolidateSCCs(pdg)
4: MarkPredicateSlices(dag,p)
5: AssignStmtsToLoops(dag)
6: if non-empty CFD region found in dag then
7: producer← l
8: consumer← CloneLoop(l)
9: ConnectLoops(producer,consumer)

10: for all control flow decoupled branches, b do
11: Insert Push_BQ(Predicate(b)) in producer just before b
12: Replace b in consumer with Branch_on_BQ
13: end for
14: for all r, def’ed in producer and used in consumer do
15: Insert push in producer at definition of r
16: Replace definition of r in consumer with "r=Pop_VQ()"
17: end for
18: Remove code from producer assigned only to consumer
19: Remove code from consumer assigned only to producer
20: Final Dead and Redundant Code Elimination
21: end if
22: end function

isolated into one or more SCCs, then the branch is separable. We use

the consolidated graph to assign nodes to the Producer and Consumer

loops. Otherwise, if the control-dependent code is part of the same

SCC as the loop’s exit condition, then no decoupling may be possible

(and our algorithm gives up).

In Line 4, we call the MarkPredicateSlices subroutine which car-

ries out the following operations. For each predicate in the loop, it

finds its corresponding node in the dag. All nodes in its forward

slice (all immediate successors and those reached through a depth-

first search (DFS)) are marked as belonging to the Consumer. All

nodes in its backward slice and itself (all immediate predecessors and

those reached through a reverse DFS) are marked as belonging to the

Producer.

At this point, some nodes in dag have been scheduled among

the Producer and Consumer loops, but many nodes may remain un-

scheduled. For example, any node that is both control independent

and data independent from marked nodes will need to be assigned a

loop. AssignStmtsToLoops, on line 5, completes the task of schedul-

ing.

AssignStmtsToLoops. This function simultaneously solves sev-

eral problems. First, it must create a correct schedule. A statement

must be placed in the Producer if any dependent instruction has al-

ready been placed in the Producer. Similarly, a statement must be

placed in the Consumer if any statement it depends upon has already

been placed in the Consumer. These rules must always be enforced.

Fortunately, some flexibility does exist that can be leveraged for opti-

mization. For example, if a statement produces no side-effects, then

we can optionally schedule it in both loops. This flexibility allows to

choose between replicating work and communicating values depend-

ing on which is more efficient. We use a simple heuristic to solve

both problems at once as shown in Algorithm 2.

In lines 2-7, each node is initially marked as NoReplicate to mean

that it must be scheduled in only one loop. Next, we figure out if

the node has any side-effects (stores or function calls) which would

prevent replication, and if it does not, it is marked MaybeReplicate

to mean that we can possibly schedule it in both loops.

The second for-all loop visits all nodes in topological order, which

means we must visit a node’s predecessors in an earlier iteration. This

makes it easy to reason about predecessors since they have already

been processed.

In lines 9-15, we assign a node to a loop if it was not assigned

one in MarkPredicateSlices. Note, we prefer to place a node in

the Producer unless forced to place it in the Consumer. Once we

Algorithm 2 Assign all statements to the Producer and/or Consumer

loops.

1: function ASSIGNSTMTSTOLOOPS(PDG dag)
2: for all n ∈ dag do
3: Mark n as NoReplicate
4: if n has no side-effects then
5: Mark n as MaybeReplicate
6: end if
7: end for
8: for all n ∈ dag, in topological order do
9: if n has not been placed in a loop then

10: if any predecessor of n is in the Consumer then
11: place n in the Consumer
12: else
13: place n in the Producer
14: end if
15: end if
16: if n placed in Producer and n marked MaybeReplicate then
17: if n communicates to Consumer
18: and EstCost(n) > CommThreshold then
19: n marked NoReplicate (values will be communicated)
20: else
21: n marked Replicate
22: end if
23: end if
24: end for
25: end function

know where the node will be scheduled, we need to determine if it

is better to communicate or replicate any values it produces for the

Consumer loop. Lines 16-23 form this judgement. First, we check

to make sure that the node is in the Producer and that it is marked

MaybeReplicate. To determine if we should replicate, we compare

the estimated runtime cost (EstCost) of the node against a minimal

threshold that determines when communication will be cheaper. If

the node is expensive to execute, we mark the node as NoReplicate

which means that any register it defines must be communicated to

the Consumer loop. Otherwise, we mark the node as Replicate and

it will be computed in both loops. For all of our results, we use

CommThreshold=2.

Final Code Generation. If a non-empty CFD region is found

(line 6 of Algorithm 1), we finalize the loops and generate the code.

This process is shown in lines 7-20. First, we clone the loop (line 8)

and use the original as the Producer and the clone as the Consumer.

Next, we connect the loops so that the program will first execute the

Producer and then the Consumer. This entails redirecting the exits

of the Producer to the pre-header of the Consumer. The Consumer’s

exits, since they are a clone of the original loop, remain unchanged.

Also, our implementation works on an SSA graph, so we also fix the

phi-nodes at the pre-header of the Consumer loop and exits of the

Consumer loop. Also while connecting the loops, we perform the

loop strip mining transformation described in Section 3.2. This is

easily accomplished by inserting a new outer loop to surround both

the Producer and Consumer and by forcing a break from each loop

every BQ size iterations. Early breaks/returns are handled by keeping

a loop count in the Producer and passing that count to the Consumer

for it to use as its trip count.

Next, we insert the necessary predicate and value communication.

In lines 10-13, we visit all predicates that are computed in the Pro-

ducer loop and communicated to the Consumer loop. We insert a

Push_BQ in the Producer and place a Branch_on_BQ in the Con-

sumer in place of the original branch. This loop will always handle

the original hard-to-predict predicates but additional predicates may

also be included if the partitioning algorithm places a predicate in

the Producer that has control-dependent instructions in the Consumer.

Ideally, the partitioning algorithm should limit the frequency of this

case.

In lines 14-17, we insert value communication between the pro-

335

AMD Bobcat ARM Cortex A15 IBM Power6 INTEL Pentium 4
Fetch-to-Execute 13 15 13 20

Table 2: Minimum fetch-to-execute latency in cycles.

ducer and consumer loops. Any register that is defined in the Producer

and used in the Consumer must be communicated. The push is placed

at the definition in the Producer and the pop is placed at the same

point (the cloned register definition) in the Consumer.

Finally, the Producer and Consumer code is cleaned up. All instruc-

tions assigned the Consumer partition are removed from the Producer

loop and vice versa for the Consumer loop. Then, a final dead and

redundant code elimination pass eliminates other inefficiencies, like

empty basic blocks and useless control-flow paths.

5. Evaluation Environment

The microarchitecture presented in Section 3 is faithfully modeled in

a detailed execution-driven, execute-at-execute, cycle-level simulator.

The simulator runs Alpha ISA binaries. Recall, in Section 2, we

used x86 binaries to locate hard-to-predict (easy-to-predict) branches,

owing to our use of PIN. Our collected data confirms that hard-to-

predict (easy-to-predict) branches in x86 binaries are hard-to-predict

(easy-to-predict) in Alpha binaries. The predictability is influenced

far more by program structure than the ISA that it gets mapped to.

Section 2 described the four benchmark suites used. All bench-

marks are compiled to the Alpha ISA using gcc with -O3 level opti-

mization. (We built gcc from scratch using the trunk SVN repository

in the gcc-4 development line.) When applied, if-conversion and CFD

modify the benchmark source. The modified benchmarks are verified

by compiling natively to the x86 host, running them to completion,

and verifying outputs (software queues are used to emulate the CFD

queues).

Energy is measured using McPAT [19], which we augmented with

energy accounting for the BQ (CFD, CFD+) and VQ (CFD+). Per-

access energy for the BQ and VQ is obtained from CACTI tagless

rams, and every read/write access is tracked during execution.

The parameters of our baseline core are configured as close as

possible to those of Intel’s Sandy Bridge core [35]. The baseline core

uses the state-of-art ISL-TAGE predictor [28]. Additionally, in an ef-

fort to find the best-performing baseline, we explored the design space

of misprediction recovery policies, including checkpoint policies (in-

order vs. OoO reclamation, with confidence estimator [13] versus

without) and number of checkpoints (from 0 to 64). We confirmed

that: (1) An aggressive policy (OoO reclamation, confidence-guided

checkpointing) performs best. (2) The harmonic mean IPC, across

all applications of all workloads, levels off at 8 checkpoints.

The fetch-to-execute pipeline depth is a critical parameter as it

factors into the branch misprediction penalty. Table 2 shows the

minimum fetch-to-execute latency (number of cycles) for modern

processors from different vendors. The latency ranges from 13 to

20 cycles [6, 17, 18, 7]. We conservatively use 10 cycles for this

parameter. We also perform a sensitivity study with this parameter in

Section 6.1.1.

Table 3 shows the baseline core configuration. The checkpoint

management policy and number of checkpoints remain unchanged

throughout our evaluation, even for studies that scale other window

resources.

6. Results and Analysis

To evaluate the impact of our work on the top contributors of branch

mispredictions in the targeted applications, we identify the regions to

Branch Prediction BP: 64KB ISL-TAGE predictor
 - 16 tables: 1 bimodal, 15 partially-tagged. In addition to, IUM, SC, LP.
 - History lengths: {0, 3, 8, 12, 17, 33, 35, 67, 97, 138, 195, 330, 517, 1193, 1741, 1930}

BTB: 4K entries, 4-way set-associative
RAS: 64 entries

Memory Hierarchy Block size: 64B
Victim caches: each cache has a 16-entry FA victim cache
L1: split, 64KB each, 4-way set-associative, 1-cycle access latency
L2: unified, private for each core, 512KB, 8-way set-associative, 20-cycle access latency
 - L2 stream prefetcher: 4 streams, each of depth 16
L3: unified, shared among cores, 8MB, 16-way set-associative, 40-cycle access latency
Memory: 200-cycle access latency

Fetch/Issue/Retire Width 4 instr./cycle

ROB/IQ/LDQ/STQ 168/54/64/36 (modeled after Sandy Bridge)

Fetch-to-Execute Latency 10-cycle

Physical RF 236

Checkpoints 8, OoO reclamation, confidence estimator (8K entries, 4-bit resetting counter, gshare index)

CFD • BQ: 96B (128 6-bit entries)
• VQ renamer: 128B (128 8-bit entries)

Table 3: Baseline core configuration.

Application Skip (B) Overhead
CFD CFD+ Compiler (CFD+)

astar(BigLakes) 11.61 1.86 - -

astar(Rivers) 0.53 1.81 - -

eclat 7.10 1.28 1.12 1.14

gromacs 0.74 1.03 1.02 -

jpeg-compr 0.00 1.08 1.06 1.09

mcf 0.70 1.15 1.14 1.20

namd 2.17 1.01 - -

soplex(pds) 9.94 1.02 1.02 1.04

soplex(ref) 49.25 0.90 - 1.41

tiff-2-bw 0.00 1.00 - 1.00

Application Skip (B) If-Conversion
clustalw 0.04 1.0

fasta 0.00 1.0

gsm 0.00 1.03

hmmer 0.02 1.0

jpeg-decompr 0.00 1.0

quick-sort 0.19 1.06

sjeng 0.17 1.02

Table 4: Application skip distances and overheads.

be simulated as follows. Given the set of top mispredicting branches

and the functions in which they reside, we fast-forward to the first

occurrence of the first encountered function of interest, warm up for

10M retired instructions, and then simulate for a certain number of

retired instructions. When simulating the unmodified binary for the

baseline, we simulate 100M retired instructions. When simulating

binaries modified for CFD or if-conversion, we simulate as many

retired instructions as needed in order to perform the same amount of

work as 100M retired instructions of the unmodified binary. Table 4

shows the fast-forward (skip) distances of the applications and the

overheads incurred by the modified binaries. Overhead is the factor by

which retired instruction count increases (e.g., 1.5 means 1.5 times)

for the same simulated region. In all cases except SOPLEX(ref), the

modified binaries are simulated for more than 100M retired instruc-

tions4. Speedup is calculated as: cyclesbaseline/cyclesCFD, where

cyclesbaseline is the number of cycles to simulate 100M instructions

of the unmodified binary and cyclesCFD is the number of cycles to

simulate overhead_factor x 100M instructions of the CFD-modified

binary which corresponds to the same simulated region.

Table 5 shows detailed information about the modified source code,

most importantly: (1) the affected branches and (2) the fraction of

time spent in the functions containing these branches, as found by

gprof-monitored native execution5.

4SOPLEX(ref) is an exception. The original loop contains many variables whose
live ranges overlap, increasing pressure on architectural registers and resulting in many
stack spills/fills. CFD’s two loops reduce register contention by virtue of some variables
shifting exclusively to the first or second loop, eliminating most of the stack spills/fills,
resulting in fewer retired instructions.

5The fraction of time spent in the function(s) of interest is found using gprof while
running the x86 binaries (compiled using gcc with -O3) to completion 3 times on an idle,
freshly rebooted Sandy Bridge Processor running in single-user mode.

336

Application File name Function Time spent Loop line Branch line Loop strip mining Communicate values
astar Way_.cpp makebound2 20% (BigLakes) 57 62-63, 79-80 Y N

47% (Rivers) 96-97, 113-114

130-131, 147-148

164-165, 181-182

eclat eclat.cc get_intersect 46% 205 207, 211 Y Y

gromacs ns.c ns5_core 11% 1503 1507, 1508, 1510 N Y

jpeg-compr jcdctmgr.c forward_DCT 83% 322 251 N Y

jcphuf.c encode_mcu_AC_first 488 489

encode_mcu_AC_refine 662 663, 686 N

mcf pbeampp.c primal_bea_mpp 39% 165 171 Y Y

namd ComputeNonbondedBase.h ComputeNonbondedUtil 5% 397 410 Y N

soplex spxsteeppr.cc selectLeaveX 5% (pds) 291 295 Y Y

selectEnterX 17% (ref) 449 452 N

tiff-2-bw tif_lzw.c LZWDecode 100% 377 411 N N

Application File name Function Time spent Branch Line
clustalw pairalign.c forward_pass 98% 384, 388, 391-393

reverse_pass 436, 440, 443-444

diff 526-527, 529-530

555-556, 558-559

fasta dropnfa.c FLOCAL_ALIGN 47% 1085-1086, 1096-1097

1099-1101, 1104

gsm add.c gsm_div 49% 228

long_term.c Calculation_of_the_LTP_parameters 152

hmmer fast_algorithms.c P7Viterbi 100% 135-137, 142, 147

jpeg-decompr jdhuff.c HUFF_EXTEND 50% 372

jdphuff.c 207

quick-sort qsort_large.c compare 43% 26

sjeng moves.c make 10% 1305

search.c remove_one 515

Table 5: Details of modified code: CFD (left), If-Conversion (right).

1.
13

1.

14

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Sp
ee

du
p

CFD CFD+

(a) Speedup (lightly shaded CFD+ bars mean: no values are communicated)

0.
83

0.

81

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

ize
d

En
er

gy

CFD CFD+

(b) Energy relative to baseline

Figure 8: Performance and energy impact of CFD.

6.1. CFD

6.1.1. Manual CFD. We manually apply then evaluate: CFD and

CFD+. Figure 8a shows that CFD increases performance by up to

41% and 13% on average, while CFD+ increases performance by up

to 43% and 14% on average 6.

Figure 8b shows that CFD reduces energy consumption by up to

41% and 17% on average, while CFD+ reduces energy consumption

by up to 41% and 19% on average.

Figure 9 shows speedup with CFD as the minimum fetch-to-

execute latency is varied from five to twenty cycles. As expected,

CFD gains increase as the pipeline depth increases. The baseline

IPC worsens with increasing depth, whereas CFD’s eradication of

mispredicted branches makes IPC insensitive to pipeline depth. Thus,

as is true with better branch prediction, CFD has the added benefit

of exacting performance gains from frequency scaling (i.e., deeper

pipelining).

6The time spent in the functions of interest (shown in Table 5) along with the presented
speedups, can be used in Amdahl’s law to estimate the speedup of the whole benchmark.
For example, ASTAR(Rivers) is sped up by 34% (s=1.34) in its CFD region which
accounts for 47% of its original execution time (f=0.47); thus, we estimate 14% (1.14)
speedup overall.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sp
ee

du
p

Fetch-to-Execute Pipeline Depth

astar(BigLakes)
astar(Rivers)
eclat
gromacs
jpeg-compr
mcf
namd
soplex(pds)
soplex(ref)
tiff-2-bw

Bo
bc

at
/P

ow
er

6
G

eo
.M

ea
n

=
1.

16

Co
rt

ex
-A

15

G
eo

.M
ea

n
=

1.
18

Pe
nt

iu
m

4
G

eo
.M

ea
n

=
1.

22

Figure 9: Varying the minimum fetch-to-execute latency.

1.
14

1.

17

1.
20

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Sp
ee

du
p

168 256 384

Figure 10: CFD speedups as we scale the processor structures.

To project the gains of CFD+ on future processor generations, we

evaluate it under larger instruction windows. Figure 10 shows the

projection of CFD gains on two additional configurations labeled in

the graph with ROB size7. The average performance improvement

increases to 20%.

6.1.2. Automated CFD. We present results of our CFD compiler

pass for six applications: ECLAT, JPEG, MCF, SOPLEX (pds and

ref), and TIFF-2-BW. Figure 11 compares the performance improve-

ments and energy savings of manual CFD+ vs. automated CFD+.

The two approaches yield close results for five of the six applications.

For SOPLEX(ref), the compiler was unable to register-promote a

global variable accessed within the first loop, causing it to be repeat-

edly loaded within the loop, increasing the instruction overhead and

decreasing speedup. The employed alias analysis cannot confirm that

the global variable is not stored to by a store within the loop. Inspec-

tion of the whole benchmark gives us confidence that interprocedural

alias analysis would be able to confirm safety of register-promoting

the global variable, because its address is never taken.

As for the other four benchmarks:

1. NAMD, GROMACS: We simply have not yet attempted these

7[ROB,IQ,LDQ,STQ,PRF] are as follows for the two additional configurations: [256,
82, 96, 54, 324] and [384, 122, 216, 82, 452]. Other parameters match those of the
baseline, shown in Table 3 in Section 5.

337

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

Manual Automated

(a) Speedup

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

ize
d

En
er

gy

Manual Automated

(b) Energy relative to baseline

Figure 11: Comparison of manual and automated CFD.

benchmarks but do not anticipate difficulty. NAMD was de-

prioritized due to low MPKI and we recently added GROMACS

to the mix.

2. ASTAR (Rivers and Biglakes): This benchmark has complexity

that is not yet supported by our compiler pass: (1) It has a partially

separable branch. Note that all other targeted benchmarks have

only totally separable branches. (2) The control-dependent instruc-

tion in the branch’s backward slice is a store, hence, if-converting

the backward slice requires the transformation described in Sec-

tion 2.2. (3) It has two nested, separable branches (one partially

separable and one totally separable). We explore this complexity,

in depth, in Section 6.1.3.

6.1.3. ASTAR Case Study. One of the most interesting cases we

encountered in this work is ASTAR. Figure 12 shows a simplified

version of ASTAR’s original and decoupled loops.

ASTAR has a few challenging features that require special care

when decoupling its loop. First, there are two nested hard-to-predict

branches, with the inner predicate depending on a memory reference

that is only safe if the outer predicate is true (lines 3 and 4 of original

loop). Second, there is a short loop-carried dependency between the

outer predicate and one of its control-dependent instructions (line 7

of original loop): this is a partially separable branch.

These challenges are naturally handled by CFD. The nested con-

ditions are handled by decoupling the original loop into three loops.

The first loop evaluates the outermost condition. The second loop,

guarded by the outermost condition, evaluates the combined condi-

tion. The third loop guards the control-dependent instructions by the

overall condition. The loop-carried dependency is handled by hoist-

ing then if-converting the short loop-carried dependencies (shown in

lines 12 and 13 of the second loop).

Due to the high percentage of branch mispredictions that are fed

by the L3 cache and main memory, we expect a significant increase

in performance gains when we apply CFD to ASTAR under large

instruction windows. Figure 13 shows the effective IPC of the un-

modified binaries (baseline) and the CFD binaries, as we scale the

window size. Our expectations are confirmed for CFD.

6.2. If-Conversion
For completeness, we manually apply if-conversion (using condi-

tional moves) to branches with small control-dependent regions (in-

dividual and nested hammocks). Figure 14 shows that if-conversion

increases performance up to 76% and 23% on average, and reduces

energy consumption by up to 35% and 16% on average.

Note that there is no overlap between the if-converted and control-

flow decoupled applications.

 Original Loop

1
2
3
4
5
6
7
8
9
10

for (…) {
 index1=index-yoffset-1; // 8 instances of this body exist
 if (waymap[index1].fillnum != fillnum) // hard-to-predict branch (outer predicate)
 if (maparp[index1] == 0) { // hard-to-predict branch (inner predicate)
 bound2p[bound2l]=index1;
 bound2l++;
 waymap[index1].fillnum=fillnum; // loop-carried dependency
 waymap[index1].num=step;
 }
}

 Decoupled Loops

1
2
3
4
5

First Loop
for (…) {
 index1=index-yoffset-1;
 pred = (waymap[index1].fillnum != fillnum); // the outer predicate is computed
 Push_BQ(pred); // then pushed onto the BQ
}

6
7
8
9
10
11
12
13
14
15
16

Second Loop
for (…) {
 Branch_on_BQ{ // pop the outer predicate
 index1=index-yoffset-1;
 output = waymap[index1].fillnum;
 pred = (output != fillnum) & (maparp[index1] == 0); // evaluate the overall predicate
 Push_BQ(pred); // push the overall predicate
 CMOV(output, fillnum, pred); // conditional move
 waymap[index1].fillnum = output; // always store
 }
 else Push_BQ(0); // needed since we always pop in the 3rd loop
}

17
18
19
20
21
22
23
24

Third Loop
for (…) {
 Branch_on_BQ{ // pop the overall predicate
 index1=index-yoffset-1;
 bound2p[bound2l]=index1;
 bound2l++;
 waymap[index1].num=step;
 }
}

Figure 12: ASTAR source code.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

168 256 384 512 640

Ef
fe

ct
iv

e
IP

C

Window Size

BigLakes - Baseline BigLakes - CFD
Rivers - Baseline Rivers - CFD

Figure 13: ASTAR: effective IPC of base and CFD binaries as we scale
the window size.

1.23

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

cl
us

ta
lw

fa
st

a
gs

m
hm

m
er

jp
eg

-d
ec

om
pr

qu
ic

k-
so

rt
sj

en
g

G
eo

. M
ea

n

Sp
ee

du
p

(a) Speedup

0.84

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

cl
us

ta
lw

fa
st

a
gs

m
hm

m
er

jp
eg

-d
ec

om
pr

qu
ic

k-
so

rt
sj

en
g

G
eo

. M
ea

n

N
or

m
al

ize
d

En
er

gy

(b) Energy relative to baseline

Figure 14: Impact of if-conversion.

338

7. Related Work

There has been a lot of work on predication and branch pre-execution.

We focus on the most closely related work.

Various ingenious techniques for predication have been proposed,

such as: software predication [2], predication using hyperblocks [22],

dynamic hammock predication [16], wish branches [15], dynamic

predication based on frequently executed paths [14], and predicate

prediction [26], to name a few. In this paper, predication (i.e., if-

conversion) is a key enabling mechanism for applying CFD to par-

tially separable branches.

CFD resembles branch pre-execution [11, 36, 27, 8, 9]. The key

difference is that CFD preserves the simple sequencing model of

conventional superscalar processors: in-order instruction fetching

of a single thread. This is in contrast with pre-execution which re-

quires thread contexts or cores, and a suite of mechanisms for forking

helper threads (careful timing, value prediction, etc.) and coordi-

nating them in relation to the main thread. With CFD, a simplified

microarchitecture stems from software/hardware collaboration, sim-

ple ISA push/pop rules, and recognition that multiple threads are not

required for decoupling.

We now discuss several branch pre-execution solutions in more

detail.

Farcy et. al. [11] identified backward slices of applicable branches,

and used a stride value predictor to provide live-in values to the

slices and in this way compute predictions several loop iterations

in advance. The technique requires a value predictor and relies on

live-in value predictability. CFD does not require either.

Zilles and Sohi [36] proposed pre-executing backward slices of

hard-to-predict branches and frequently-missed loads using spec-
ulative slices. Fork point selection, construction and speculative

optimization of slices were done manually. Complex mechanisms are

needed to carefully align branch predictions generated by speculative

slices with the correct dynamic branch instances. Meanwhile, CFD’s

Push_BQ/Branch_on_BQ alignment is far simpler, always delivers

correct predicates, and has been automated in the compiler.

Roth and Sohi [27] developed a profile-driven compiler to extract

data-driven threads (DDTs) to reduce branch and load penalties.

The threads are non-speculative and their produced values can be

integrated into the main thread via register integration. Branches

execute more quickly as a result. Similarly, CFD is non-speculative

and automation is demonstrated in this paper. CFD interacts directly

with the fetch unit, eliminating the entire branch penalty. It also does

not have the microarchitectural complexity of register integration.

The closest aspect is the VQ renamer, but the queue-based linking of

pushes and pops via physical register mappings is simpler, moreover,

it is an optional enhancement for CFD.

Chappell et al. [8] proposed Simultaneous Subordinate Mi-

crothreading (SSMT) as a general approach for leveraging unused

execution capacity to aid the main thread. Originally, programmer-

crafted subordinate microthreads were used to implement a large,

virtualized two-level branch predictor. Subsequently, an automatic

run-time microthread construction mechanism was proposed for pre-

executing branches [9].

In the Branch Decoupled Architecture (BDA), proposed by Tyagi

et al. [33], the fetch unit steers copies of the branch slice to a dedi-

cated core as the unmodified dynamic instruction stream is fetched.

Creating the pre-execution slice as main thread instructions are being

fetched provides no additional fetch separation between the branch’s

backward slice and the branch, conflicting with more recent evidence

of the need to trigger helper threads further in advance, e.g., Zilles

and Sohi [36]. Without fetch separation, the branch must still be pre-

dicted and its resolution may be marginally accelerated by a dedicated

execution backend for the slice.

Mahlke et al. [21] implemented a predicate register file in the

fetch stage, a critical advance in facilitating software management

of the fetch unit of pipelined processors. The focus of the work,

however, was compiler-synthesized branch prediction: synthesizing

computation to generate predictions, writing these predictions into

the fetch unit’s predicate register file, and then having branches

reference the predicate registers as predictions. The synthesized

computation correlates on older register values because the branch’s

source values are not available by the time the branch is fetched,

hence, this is a form of branch prediction. Mahlke et al. alluded to

the theoretical possibility of truly resolving branches in the fetch unit,

and August et al. [3] further explored opportunities for such early-
resolved branches: cases where the existing predicate computation is

hoisted early enough for the consuming branch to resolve in the fetch

unit. These cases tend to exist in heavily if-converted code such as

hyperblocks as these large scheduling regions yield more flexibility

for code motion. Quinones et al. [26] adapted the predicate register

file for an OOO processor, and in so doing resorted to moving it

into the rename stage so that it can be renamed. Thus, the renamed

predicate register file serves as an overriding branch predictor for

the branch predictor in the fetch unit. CFD’s branch queue (BQ)

is innovative with respect to the above, in several ways: (1) The

BQ provides renaming implicitly by allocating new entries at the

tail. This allows for hoisting all iterations of a branch’s backward

slice into CFD’s early loop, whereas it is unclear how this can be

done with an indexed predicate register file as the index is static. (2)

Another advantage is accessing the BTB (to detect Branch_on_BQ

instructions) and BQ in parallel, because we always examine the BQ

head (Section 3.3.5). In contrast, accessing a predicate register file

requires accessing the BTB first, to get the branch’s register index,

and then accessing the predicate register file.

NSR [5] does not predict branches at all, rather, a branch waits

in the fetch stage for an enqueued outcome from the execute stage.

To avoid fetch stalls, a few instructions must be scheduled by the

programmer or compiler in between the branch and its producer

instruction. This is like branch delay slots except that, because the

fetch unit can stall, no explicit NOPs need to be inserted when no

useful instructions can be scheduled. NSR is a 5-stage in-order

pipeline so its static scheduling requirement is of similar complexity

to branch delay slot scheduling. CFD-class branches require our

“deep” static scheduling technique (for in-order and out-of-order

pipelines, alike) which in turn requires CFD’s ISA, software, and

hardware support.

Decoupled access/execute architectures [30, 4] are alternative im-

plementations of OOO execution, and not a technique for hiding the

fetch-to-execute penalty of mispredicted branches. DAE’s access and

execute streams, which execute on dual cores, each have a subset of

the original program’s branches. To keep them in sync on the same

overall control-flow path, they communicate branch outcomes to each

other through queues. However, each core still suffers branch penal-

ties for its subset of branches. Bird et al. took DAE a step further

and introduced a third core for executing all control-flow instructions,

the control processor (CP). CP directs instruction fetching for the

other two cores (AP and DP). CP depends on branch conditions cal-

culated in the DP, however. These loss-of-decoupling (LOD) events

339

are equivalent to exposing the fetch-to-execute branch penalty in a

modern superscalar processor.

The concept of loop decoupling has been applied in compilers for

parallelization. For instance, decoupled software pipelining [25, 34,

12] parallelizes a loop by creating decoupled copies of the loop on two

or more cores that cooperate to execute each iteration. All predicates

in the backward slices of instructions in the decoupled loops that are

not replicated must be communicated. However, predicates are not

sent directly to the instruction fetch unit of the other core. Rather, the

predicates are forwarded as values through memory or high speed

hardware queues and evaluated in the execution stage by a branch

instruction.

8. Conclusion
In this paper, we explored the control-flow landscape by characteriz-

ing branches with high misprediction contributions in four benchmark

suites. We classified branches based on the sizes of their control-

dependent regions and the nature of their backward slices (predicate

computation), as these two factors give insight into possible solutions.

This exercise uncovered an important class of high misprediction

contributors, called separable branches. A separable branch has a

large control-dependent region, too large for if-conversion to be prof-

itable, and its backward slice does not contain any of the branch’s

control-dependent instructions or contains just a few. This makes

it possible to separate all iterations of the backward slice from all

iterations of the branch and its control-dependent region. CFD is

a software/hardware collaboration for exploiting separability with

low complexity and high efficacy. The loop containing the separable

branch is split into two loops (software): the first contains only the

branch’s predicate computation and the second contains the branch

and its control-dependent instructions. The first loop communicates

branch outcomes to the second loop through an architectural queue

(ISA). Microarchitecturally, the queue resides in the fetch unit to drive

timely, non-speculative fetching or skipping of successive dynamic

instances of the control-dependent region (hardware).

Measurements of native execution of the four benchmark suites

show separable branches are an important class of branches, compara-

ble to the class of branches for which if-conversion is profitable both

in terms of number of static branches and MPKI contribution. CFD

eradicates mispredictions of separable branches, yielding significant

time and energy savings for regions containing them.

Acknowledgements
We thank the anonymous reviewers for their valuable feedback and

André Seznec for shepherding the paper. We thank Mark Dechene

for developing the simulator used in the study. This research was

supported by Intel and NSF grant CCF-0916481. Any opinions,

findings, and conclusions or recommendations expressed herein are

those of the authors and do not necessarily reflect the views of the

National Science Foundation.

References
[1] K. Albayraktaroglu et al., “Biobench: a benchmark suite of bioinfor-

matics applications,” in Int’l Symp. on Performance Analysis of Systems
and Software, 2005, pp. 182 –188.

[2] J. R. Allen et al., “Conversion of control dependence to data dependence,”
in 10th Symp. on Principles of Programming Languages, 1983, pp. 177–
189.

[3] D. August et al., “Architectural support for compiler-synthesized dy-
namic branch prediction strategies: Rationale and initial results,” in
3rd Int’l Symp. on High-Performance Computer Architecture, 1997, pp.
84–93.

[4] P. L. Bird, A. Rawsthorne, and N. P. Topham, “The effectiveness of
decoupling,” in 7th Int’l Conf. on Supercomputing, 1993, pp. 47–56.

[5] E. Brunvand, “The nsr processor,” in 26th Hawaii Int’l Conf. on System
Sciences, vol. 1, 1993, pp. 428–435.

[6] B. Burgess et al., “Bobcat: amd’s low-power x86 processor,” IEEE
Micro, vol. 31, no. 2, pp. 16–25, 2011.

[7] D. Carmean, “Inside the pentium 4 processor micro-architecture.” Pre-
sented at Intel Developer Forum, 2000.

[8] R. Chappell et al., “Simultaneous subordinate microthreading (ssmt),”
in 26th Int’l Symp. on Computer Architecture, 1999, pp. 186–195.

[9] R. Chappell et al., “Difficult-path branch prediction using subordinate
microthreads,” in 29th Int’l Symp. on Comp. Arch., 2002, pp. 307–317.

[10] cTuning, “Collective Benchmark,” in http://cTuning.org/cbench.
[11] A. Farcy et al., “Dataflow analysis of branch mispredictions and its

application to early resolution of branch outcomes,” in 31st Int’l Symp.
on Microarchitecture, 1998, pp. 59–68.

[12] J. Huang et al., “Decoupled software pipelining creates parallelization
opportunities,” in 8th Int’l Symp. on Code Generation and Optimization,
2010, pp. 121–130.

[13] E. Jacobsen, E. Rotenberg, and J. Smith, “Assigning confidence to con-
ditional branch predictions,” in 29th Int’l Symp. on Microarchitecture,
1996, pp. 142–152.

[14] H. Kim et al., “Diverge-merge processor (dmp): dynamic predicated
execution of complex control-flow graphs based on frequently executed
paths,” in 39th Int’l Symp. on Microarchitecture, 2006, pp. 53–64.

[15] H. Kim et al., “Wish branches: combining conditional branching and
predication for adaptive predicated execution,” in 38th Int’l Symp. on
Microarchitecture, 2005, pp. 43–54.

[16] A. Klauser et al., “Dynamic hammock predication for non-predicated
instruction set architectures,” in 7th Int’l Conf. on Parallel Architectures
and Compilation Techniques, 1998, pp. 278–285.

[17] T. Lanier, “Exploring the design of the cortex-a15 processor,” 2011.
[18] H. Q. Le et al., “Ibm power6 microarchitecture,” IBM Journal of Re-

search and Development, vol. 51, no. 6, pp. 639–662, 2007.
[19] S. Li et al., “Mcpat: an integrated power, area, and timing modeling

framework for multicore and manycore architectures,” in 42nd Int’l
Symp. on Microarchitecture, 2009, pp. 469–480.

[20] C.-K. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” SIGPLAN Not., vol. 40, no. 6, pp. 190–200,
Jun. 2005.

[21] S. Mahlke and B. Natarajan, “Compiler synthesized dynamic branch
prediction,” in 29th Int’l Symp. on Microarch., 1996, pp. 153–164.

[22] S. Mahlke et al., “Effective compiler support for predicated execution
using the hyperblock,” in 25th Int’l Symp. on Microarchitecture, 1992,
pp. 45–54.

[23] O. Mutlu et al., “Runahead execution: an alternative to very large
instruction windows for out-of-order processors,” in 9th Int’l Symp. on
High-Performance Computer Architecture, 2003, pp. 129–140.

[24] R. Narayanan et al., “Minebench: a benchmark suite for data mining
workloads,” in Int’l Symp. on Workload Characterization, 2006, pp.
182–188.

[25] G. Ottoni et al., “Automatic thread extraction with decoupled software
pipelining,” in 38th Int’l Symp. on Microarchitecture, 2005, pp. 105–
118.

[26] E. Quinones, J.-M. Parcerisa, and A. Gonzalez, “Improving branch
prediction and predicated execution in out-of-order processors,” in 13th
Int’l Symp. on High Perf. Computer Architecture, 2007, pp. 75–84.

[27] A. Roth and G. Sohi, “Speculative data-driven multithreading,” in 7th
Int’l Symp. on High-Perf. Computer Architecture, 2001, pp. 37–48.

[28] A. Seznec, “A 64 kbytes isl-tage branch predictor,” in 3rd Championship
Branch Prediction, 2011.

[29] A. Seznec, “A new case for the tage branch predictor,” in 44th Int’l
Symp. on Microarchitecture, 2011, pp. 117–127.

[30] J. E. Smith, “Decoupled access/execute computer architectures,” in 9th
Int’l Symp. on Computer Architecture, 1982, pp. 112–119.

[31] S. T. Srinivasan et al., “Continual flow pipelines,” in 11th Int’l Conf.
on Architectural Support for Programming Languages and Operating
Systems, 2004, pp. 107–119.

[32] Standard Performance Evaluation Corporation, “The SPEC CPU 2006
Benchmark Suite,” in http://www.spec.org.

[33] A. Tyagi, H.-C. Ng, and P. Mohapatra, “Dynamic branch decoupled
architecture,” in 17th Int’l Conf. on Comp. Design, 1999, pp. 442–450.

[34] N. Vachharajani et al., “Speculative decoupled software pipelining,” in
16th Int’l Conf. on Parallel Architecture and Compilation Techniques,
2007, pp. 49–59.

[35] B. Valentine, “Introducing sandy bridge.” Presented at Intel Developer
Forum, San Francisco, 2010.

[36] C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” in 28th Int’l Symp. on Computer Architecture, 2001, pp. 2–13.

340

Abstract
Chip-multiprocessors require a coherence directory to track

data sharing and order accesses to the shared data. Scaling
coherence directories to support a large number of cores is
challenging due to excessive area requirements of the directo-
ries. The state-of-the-art proposals reduce the directory size by
not keeping coherence information for private data. These
approaches are useful for workloads that have predominantly
private data, but are not applicable to workloads with shared
data.

We observe that data are not actively shared by multiple
cores. In workloads with a shared dataset, although each core
accesses the whole data, the chance that multiple cores access
the same piece of data at the same time is low. Based on this
observation we design a Spatiotemporal Coherence Tracking
scheme that drastically reduces the directory size without sacri-
ficing performance. The proposed directory scheme uses dual-
grain tracking and switches between the granularities when-
ever possible to save the area. It dynamically detects spatial
regions of data that are privately accessed by one core over a
time period and for those regions, increases coherence tracking
granularity from block-level to region-level. Our experimental
results show that the proposed approach can reduce the base-
line sparse directory size by at least 75% across a variety of
commercial and scientific workloads, while sacrificing only 1%
of performance. Using our approach, the directory can be
under-provisioned to have fewer entries than the number of
cache blocks that are being tracked.

1. Introduction

CMOS technology trends direct processor manufacturers
towards integrating more cores in a single chip with every new
technology generation. Scaling to larger shared-memory chip-
multiprocessors (CMPs) requires scalable coherence mecha-
nisms to keep the cores’ private caches coherent. Directory-
based coherence mechanisms have been used in chip-multipro-
cessors with a handful of cores. However, area overhead and
energy consumption of directories increase with the core count
and the size of private caches. Designing CMPs with a large
number of cores calls for area- and energy-efficient coherence
directories.

In directory designs, there exists a trade-off between the area
and the associativity. Duplicate-tag directories are area-efficient
but their associativity increases with the number of cores,
making them practical only in small-scale designs [2, 9]. Sparse
directories, on the other hand, use arrays with a low associa-

tivity. However, prior work shows that as the core count
increases, the area requirements of sparse directories become
comparable to the size of the caches they track [8, 11, 22]. The
directory can consume a large fraction of the die area in
systems with large private caches and a large number of cores.
Part of the sparse directory area overhead is due to the over-
provisioning in the number of entries that is needed to mini-
mize conflicts in an array with a low associativity [8].

Prior research on sparse directory design tries to reduce the
required number of entries notably by leveraging hashing tech-
niques to reduce the conflict frequency and the required over-
provisioning [8, 17, 19]. Recent proposals reduce the number
of the directory entries by deactivating coherence for private
data, which are accessed by one core all the time [6, 11]. Cuesta
et al. propose a directory scheme that detects private pages and
avoids tracking them in the directory [6]. Their proposal,
similar to [11], relies on the operating system’s TLB miss
handler and the page table to detect private pages. This scheme
can significantly reduce the directory size for workloads with
predominantly private data. However, there are limited amount
of private data in commercial server workloads [7, 11] and even
in scientific workloads [12], making this scheme inapplicable.

We observe that across a variety of commercial server and
scientific workloads, data are accessed and cached by one core
most of the time. These workloads have large datasets and the
likelihood that more than one core access the same data region
at the same time, is low. The implication is that although the
whole data is shared and accessed by all the cores, each data
region is private to one core for a period of time. Using this
property of data accesses offers a greater opportunity in
reducing the directory size than using only private data. We
refer to spatial regions of data that are accessed and cached by
one core for a period of time as temporarily-private regions.

In this paper, we propose a coherence directory, Spatiotem-
poral Coherence Tracking (SCT), which aims at reducing the
required number of directory entries. SCT is a dual-grain
coherence tracking mechanism that tracks temporarily-private
data at a region granularity and tracks shared data at a cache
block granularity. SCT detects temporarily-private regions by
observing cores’ access requests and maintains only one direc-
tory entry for any number of blocks that are cached in such
regions. Tracking coherence at a coarser granularity reduces the
required directory capacity. Our proposal is applicable to a
variety of workloads with both shared and private datasets.

We evaluate our proposal along with other coherence direc-
tory organizations using full-system simulation of a 16-core
CMP running a variety of commercial and scientific workloads.

Spatiotemporal Coherence Tracking

Mohammad Alisafaee
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

mohammad.alisafaee@epfl.ch

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.39

341

We analyze sharing patterns of the workloads to measure the
available opportunity at reducing the directory size using
temporarily-private regions. Our trace-based and cycle-accu-
rate simulations show that:
• More than 91% of the occupied directory entries are tempo-

rarily private and 77% of the occupied directory entries map
to temporarily-private pages. In comparison, only 32% of the
entries map to private pages.

• SCT requires four times less area to store the coherence
information compared to a sparse directory with a 2x over-
provisioning while losing only 1% of performance. In other
words, the SCT capacity is under-provisioned by 2x.

• In comparison with a recent proposal, which leverages
private data to reduce the directory size, SCT requires 50%
less area while delivering identical performance.

• SCT successfully classifies temporarily-private and shared
regions. More than 95% of the directory accesses are made to
regions that all of their cached blocks are either temporarily-
private or shared.

• The percentage of temporarily-private data does not decrease
in systems with large private caches.
The rest of this paper is organized as follows: Section 2

provides background on the directories and motivates the work.
In Section 3, we propose our idea and evaluate the available
opportunity at reducing the directory size. The design of the
Spatiotemporal Coherence Tracking and the details of various
coherence operations are described in Section 4. Section 5
contains our evaluation methodology and simulation results.
Section 6 discusses the related work and finally Section 7
concludes the paper.

2. Motivation

In shared-memory multiprocessors with one or more levels
of private caches per core, the coherence directory orders
accesses to the shared memory space. The directory observes
all the access requests to the data which come from cores and
maintains a list of sharers for every privately-cached piece of
data [8]. The granularity at which the directory keeps the track
of the sharers is usually equal to the cache block size. Every
block that is cached in the cores’ private cache hierarchy has a
corresponding entry in the directory. Therefore, the number of
entries in the directory must be at least equal to the aggregate
number of blocks of private caches.

Directory entries are kept inside a set-associative storage
array. In designs where the associativity of the directory is less
than the aggregate associativity of the private caches (i.e.,
number of cores times the associativity), conflicts can happen.
A conflict happens when more addresses than the directory
associativity map to the same set in the directory. Upon occur-
rence of a conflict, the directory has to invalidate an existing
address from the conflicting set and all sharers’ caches, to make
room for the new entry. As a result, conflicts may increase the
miss rate of private caches and can adversely affect the perfor-
mance. To decrease the number of conflicts in a directory, one
can either increase the associativity or over-provision the direc-

tory to have more entries than the aggregate number of cache
blocks in private caches.

Prior work shows that highly associative directories consume
a huge amount of power and cannot be deployed in designs
with a high core count [8, 22]. Therefore, a feasible solution is
a directory with a limited associativity, like a sparse directory.
To minimize conflicts, a 2-4x over-provisioning is normally
used in sparse directories implementations [1, 5]. However, [8]
shows that even with an 8x over-provisioning, it is still possible
to have conflicts in a sparse directory. The excessive overheads
of the sparse directories make them area-inefficient for designs
with a large number of cores.

In this work, we focus on the sparse directories and propose a
technique to reduce their area overheads. Our proposal aims at
reducing number of entries that required to be kept in the direc-
tory by increasing the coherence granularity.

3. Spatiotemporal Coherence Tracking

Our proposed directory scheme decreases the directory size
by dynamically increasing the coherence tracking granularity
for temporarily-private data regions. In this section, we
describe the concept of temporarily-private data and the way
we use it to reduce the directory size.

3.1. Temporarily-private Data

Data accessed by a program are conventionally categorized
into shared and private based on their access pattern. Private
data are always accessed by the same thread during the entire
program execution while shared data are accessed by multiple
threads. At the architectural level, data accesses come from
cores and no notion of threads is available. From the hardware
perspective, private data are those that are always accessed by
the same core while shared data are accessed by multiple cores.

We observe that although shared data are accessed by more
than one core, they are not accessed concurrently (i.e., they are
not actively shared). Based on this observation we introduce a
new definition of private data which includes a notion of time
in it. Our notion of time here is the period in which the data is
cached in the private cache hierarchies of the cores. We call a
piece of data temporarily private if it is currently cached by
only one core. Similarly, a piece of data is temporarily shared
at a particular time, if it is cached by at least two cores. Our
definition of temporarily-private only considers the number of
cores that are accessing the data instead of looking at the
number of cores that have accessed the data. Using these new
definitions, the same piece of data can be temporarily private or
temporarily shared at different times. This is in contrary to the
core-centric classification of data in which data are forever
considered to be shared as soon as they are accessed by more
than one core.

3.2. Spatial Coherence Tracking

In order to reduce the directory size, our proposal tracks
coherence at a coarser granularity than the cache block size. We

342

virtually divide the memory address space into fixed-size
spatial regions. Each region contains multiple consecutive
cache blocks. Our proposal dynamically identifies spatial
regions that are temporarily private and keeps coherence infor-
mation at the region-level for those regions. The proposed
directory stores only a single entry for an entire temporarily-
private region. At best, if all the regions are temporarily-
private, the directory size can be reduced by a factor equal to
the average number of blocks per temporarily-private region.

3.3. Classifying Regions

To classify regions as temporarily-private or temporarily-
shared, we rely on the access requests sent by the cores.
Memory access requests (i.e., read, write, and evict) determine
when a core caches and evicts data from data regions (we
assume a coherence protocol with explicit clean eviction
messages). The first read or write access to a region that has no
cached blocks in cores’ private caches, hints the start of a
period in which the region is cached. The region is evicted
when all of its cached blocks are evicted. The period between
the start of an access to a region until the eviction of the last
cached block can be identified by looking at access requests.

Relying on memory access requests to identify temporarily-
private regions, however, can result in false-positives. A region
might be misclassified as temporarily-shared even though it
really is temporarily-private. A misclassification happens when
the time periods in which a region is cached by different cores
overlap while the accesses do not overlap. Cached blocks of a
region are not immediately evicted after the last access and will
remain in the cache as dead blocks for a while before they get
replaced. If other cores access these dead cache blocks, a false-
positive happens. The rate of false-positives depends on the
residency period of regions in caches and is affected by the
cache parameters (i.e., size, associativity, and replacement
policy) and the region size.

3.4. Opportunity Analysis

We do an analysis to quantify the available opportunity at
reducing the directory size. Details of the evaluation method-
ology and the workloads can be found in Section 5.

At first, we measure the available opportunity when using
private data and compare it to using temporarily-private data to
reduce the directory size (Figure 1). A mechanism that uses
private data to reduce the directory size is similar to what
proposed in [6], which relies on the OS to identify private
pages. To make a fair comparison, we use a region size of 8 KB
in our approach (8 KB is the OS page size).

Each bar in Figure 1 shows the percentage of the occupied
directory entries that map to temporarily-private or private
pages. These results show that only a small percentage of data
are always accessed by the same core and thus are private,
which corroborates prior work [7, 11]. In workloads with
predominantly shared data (e.g., web workloads, and DSS)
using private data to reduce the directory size shows limited
opportunity while using temporarily-private provides consider-
ably higher opportunity. Scientific workloads like Ocean also
show higher opportunity when using temporarily-private
instead of private. Averaged across all the workloads, using
temporarily-private data provides 45% higher opportunity at
reducing the directory size compared to using private data.

We, now, focus on the opportunity of using temporarily-
private data at reducing the directory size. To measure the
maximum available opportunity, we implement an ideal
scheme that can exactly determine the residency period of
regions in private caches. This ideal scheme uses a perfect
dead-block predictor to predict when the last access to a cached
region happens. It removes all the false positives when classi-
fying regions by perfectly avoiding all unnecessary overlapped
caching of regions. We also measure the opportunity loss when
using a larger region than a cache block. Our approach needs to
keep some information about the spatial regions that are not
considered in these results.

Figure 2 shows the opportunity analysis results for three vari-
ants of our proposal: Ideal block-level, block-level, and page-
level. The block-level schemes track coherence at the cache
block granularity (i.e., 64 bytes) and the page-level tracks
coherence at OS page granularity (the same as Figure 1). This
figure shows that more than 97% of the entries are temporarily-
private if an ideal scheme is used. In other words, the directory

0%

20%

40%

60%

80%

100%

Q1 Q17 Oracle DB2 Em3d Ocean Apache Zeus

DSS OLTP Sci. Web

%
 O

cc
up

ie
d

En
tr

ie
s

Temporarily-private Private

Figure 1. Directory size reduction opportunity when using tem-
porarily-private data compared to using private data.

0%

20%

40%

60%

80%

100%

Q1 Q17 Oracle DB2 Em3d Ocean Apache Zeus

DSS OLTP Sci. Web

%
 O

cc
up

ie
d

En
tr

ie
s

Ideal Block-Level Block-Level Page-Level

Figure 2. Directory size reduction opportunity when using tem-
porarily-private data with ideal block-level, block-level, and
page-level granularities.

343

size can be reduced to 4% without losing any information on
data tracking. Tracking temporarily-private data at the block
granularity yields 6% less opportunity compared to the block-
level ideal scheme due to the false positives. When tracking
coherence at the page granularity instead of the block granu-
larity, the available opportunity is reduced by 14%. Larger
spatial regions are more likely to be accessed by multiple cores
and be temporarily-shared. In addition, the chance of a false-
positive is higher with larger regions.

4. Design

Our baseline system is a CMP with a tiled architecture.
Every tile contains a core with its private caches, a slice of the
shared last-level cache (LLC), a slice of the directory, and
routers and interconnects. In our design, we use a 4-way set
associative sparse directory as the baseline directory to store
coherence information. The directory maintains a bit-vector of
sharers for every block that is cached in the cores’ private
caches.

SCT keeps coherence information at both region and block
granularities. It uses the same storage array to store both
region- and block-level coherence information. Each entry can
hold coherence information for either a region or a block. Infor-
mation stored for blocks are the same as the baseline directory.
We add a single bit to each entry to determine if the entry
contains coherence information for a block or a region. Infor-
mation that SCT needs to maintain for regions are described in
Section 4.2.

4.1. Directory Organization

Our SCT design uses a distributed storage for keeping coher-
ence information. Directory and LLC slices are address
interleaved at the region granularity. Therefore, directory
entries for cache blocks in a region map to the same tile as the
directory entry for the region. Figure 3 shows schematic of a
directory slice and the storage formats for region- and block-
level entries.

4.2. Region-level Information

SCT needs to keep coherence information for every region
that has at least one cached block in the cores’ private caches.
These information are updated when the cores send requests for
cache blocks in a region, when cache block get evicted, or
when the directory invalidates a conflicting entry to make room
for a new address.

A temporarily-private region is a region which its blocks are
cached by only one core. When a region is first accessed by a
core, SCT marks it as temporarily-private. If further accesses to
the region come from the same core, the region remains tempo-
rarily private, but if other cores access the region, it becomes
temporarily shared. For temporarily-shared regions, SCT allo-
cates one block-level entry in the directory per shared block.
The region remains in either states until all of its cached blocks
are evicted.

We name the first core that accesses a region as the owner of
the region. For every region, SCT needs to know which core is
its owner and which of its blocks have been cached by the
owner so far. SCT must also know the state of the region,
which can be temporarily private or temporarily shared. For
temporarily-shared regions, SCT needs to know which blocks
are shared.

Figure 3 shows the format of the region-level information as
is kept in the SCT directory. SCT stores the core ID of the
owner for every cached region. We do not maintain an exact list
of the cache blocks that are cached by the owner. Instead, we
only keep a counter, Private Blocks Counter (PBC), to count
the number of blocks cached by the owner. Using a counter
instead of tracking the exact list of the cached blocks in a bit-
vector reduces the storage overhead. However, when the direc-
tory needs to know whether the owner has cached a block or
not, a probe message must be sent to the owner. Similarly, we
keep a counter, Shared Blocks Counter (SBC), to count the
number of shared blocks. SBC shows the number of block-
level entries that are allocated for a temporarily-shared region.
We need to maintain the number of shared blocks to determine
when a temporarily-shared region has all of its shared blocks
evicted.

SCT updates PBC and SBC according to memory access
requests. PBC is incremented when the owner sends a read or

����

����

	

�
��������

� ��� ��� �������

� ��� ����� ��� ���

����������

�����������

Figure 3. SCT uses a set-associative array to store block- and region-level coherence information.

344

write request to a temporarily-private region and is decre-
mented upon a clean or dirty eviction. PBC is also decremented
when one of the owner’s cached blocks is accessed by another
core in a temporarily-shared region. SBC is incremented when
a new cache block is accessed in a temporarily-shared region
and is decremented when a shared block is evicted by all of its
sharers or invalidated due to a conflict in the directory. Based
on the values of these two counters, SCT knows if the region is
temporarily-private (SBC==0), temporarily-shared (SBC>0), or
has been evicted (PBC==0 && SBC==0). When a region is
evicted, SCT de-allocates its directory entry. Later, when the
region is accessed by a core, it becomes temporarily-private to
that core. Section 4.3 describes various SCT operations in more
details.

4.3. Coherence Operations

Directory operations differ for various region types. When a
request arrives, SCT always looks for an associated region-
level entry for the requested address. Depending on the region
information, type of the access, and the requester’s core ID,
several scenarios are possible: Access to a non-existing region,
access to a temporarily-private region either from its owner or
from another core, access to a temporarily-shared region, and
cache blocks evictions. The following list describes each of
these scenarios in more details:
Access to a non-existing region: If SCT does not find an asso-
ciated region-level entry, the region has no block in private
caches. SCT allocates an entry for the region in the directory
and fills the owner field of the newly allocated entry with the
core ID of the requester. PBC is set to one, indicating that the
region is temporarily private. Allocating a new entry in the
directory might require invalidating another block- or region-
level entry (see Section 4.4).
Accesses to a temporarily-private region from its owner:
When SCT finds out that the region is temporarily private and
is being accessed by its owner, the only operation it needs to do
is to update PBC according to the request type. A read or write
request means that the owner does not have the cached block
and PBC must be incremented.
Access to a temporarily-private region from a core other
than its owner: When a temporarily-private region is accessed
by a core other than its owner, the region becomes temporarily
shared. SCT does not invalidate the blocks that are privately
cached by the owner and allows them to coexist with the shared
blocks. It allocates a new entry for the requested cache block
and sets the requesting core as a sharer. The SBC counter is set
to one, indicating that the region has one shared block. A copy
of the block must be sent to the requesting core. SCT must also
know if the owner has a copy of the block and update the
sharing information accordingly.

SCT looks up LLC for a copy of the block and checks the
state of the block (on a hit) which might reveal if the owner has
a copy or not. If the state of the block tells that the owner has a
copy, SCT decrements PBC and adds the owner to the sharers
list of the block if the access is a read. On a write access, SCT

invalidates the owner’s copy. If LLC has a valid copy then it
replies to the requester and otherwise SCT asks the owner to
forward the data to the requester.

When the block is not found in LLC, SCT needs to send a
probe message to the owner. Upon receiving a probe message,
the owner core looks up its cache for a copy of the block and
directly replies to the requesting core with the data if a copy
exists in its cache (we implement a 3-hop protocol). The owner
then sends back a reply to SCT to either acknowledge the exis-
tence of the data or notify the miss. Based on the owner’s reply,
SCT either updates PBC and the sharers list or brings data from
the off-chip memory.

If LLC has a valid copy of the data but its state does not
reveal that the owner has a copy or not, SCT replies to the
requester with the data and tells the requester to wait for an
acknowledge or a negative acknowledge from the owner if the
access is a write (a read accesses does not need to wait as the
LLC has a valid copy). SCT then sends a probe message to the
owner to inspect the existence of the block in its cache. Similar
to the previous scenario, the owner looks up its cache and
acknowledges the requesting core (upon a write) and replies
back to SCT to update the sharing information.

The probe message sent to the owner might introduce an
extra delay for some memory accesses. In our SCT protocol,
the access latency increases only when the owner does not have
a copy and either LLC does not have a copy or LLC has a copy
and the access is a write. In all the other cases, the probe
message would also be sent in the baseline directory protocol
or is not on the critical path of the access.
Accesses to a temporarily-shared region: When SCT finds
out that the region is temporarily-shared, it looks up the direc-
tory for the requested block address. If an entry is found then it
contains exact sharer information for the block and SCT acts as
a normal block-level directory. If the block does not have an
entry and the requester is not the owner and the owner has
some cached blocks (PBC>0), then the same scenario that a
temporarily-private region was being shared, happens. In all the
other cases, it is guaranteed that the owner does not have a
copy of the block and SCT allocates a new entry for the block
and increments SBC. The data is then filled either from LLC or
from the memory.
Evicting cache blocks from a temporarily-private region:
Upon receiving an eviction message from the owner, SCT
decrements PBC. If the counter reaches zero, then the region is
not cached anymore and SCT de-allocates the region directory
entry.
Evicting cache blocks from a temporarily-shared region:
SCT looks up the directory to find the corresponding block-
level entry. If an entry is found, then the sender is removed
from the sharers list. Then, if the block has no more sharers, its
directory entry is de-allocated and the SBC is decremented. If
an entry for the block is not found, then the sender of the evic-
tion message must be the region owner. In this case, PBC is
decremented. If both PBC and SBC are zero, then the region
directory entry is de-allocated.

345

4.4. Invalidating Directory Entries

Because our implementation of SCT uses a sparse directory
as the baseline, it is possible to have conflicting entries when
inserting a new entry to the directory. On a conflict, SCT must
select a victim from the existing entries in the directory. The
victim can be a block- or a region-level entry. Invalidating a
block-level entry involves in sending invalidation message to
its sharers.

Invalidating a region-level entry requires more work: SCT
sends an invalidation message to the owner if PBC value is not
zero. The owner’s private cache must be looked up for all
blocks in the region because we do not exactly know which
blocks are cached. Similarly, if the victim region is tempo-
rarily-shared, the directory must be looked up for all blocks in
the region. During a region invalidation operation, access
requests to that region are suspended. When the region invali-
dation is done, suspended accesses (if any) are resumed. In our
implementation, we select a block-level victim whenever
possible.

5. Evaluation

5.1. Methodology

We evaluate our proposal using trace-based and cycle-accu-
rate full system simulation of a chip-multiprocessor running
commercial server and scientific workloads. We use FLEXUS
[21] to model the system. FLEXUS can run unmodified bina-
ries of commercial applications and operating systems.
FLEXUS extends Virtutech Simics functional simulator with
cycle-accurate models of out-of-order cores, cache hierarchy,
and interconnection network.

We model two 16-core tiled chip-multiprocessor systems:
one with a 2-level cache hierarchy (private L1s and a shared
L2) and the other with a 3-level cache hierarchy (private L1s
and L2s and a shared L3). The system with a 3-level cache

hierarchy is only used in Section 5.7 to evaluate scalability of
SCT to larger caches. All the other results, including the perfor-
mance comparisons, are reported only for the system with a 2-
level cache hierarchy. Table 1 shows various parameters of the
modeled systems.

Simulated systems run the Solaris 8 operating system and
execute a variety of scientific and commercial server work-
loads. The commercial workloads include online transaction
processing (OLTP), decision support systems (DSS), and web
servers. Table 2 lists the workloads and their associated param-
eters. Our set of workloads covers a wide range of applications
with various sharing patterns [11].

We use LLC access traces for opportunity analysis and miss-
rate comparison. These traces are generated by running
FLEXUS in an in-order execution mode with an IPC of 1. For
OLTP, web, and DSS Q1 workloads, we warm up the simulator
state for one billion cycles and then run for another one billion
cycles and report the results. For DSS Q17 we run the simula-
tions for 300 million cycles, which covers the entire query
execution time. For scientific workloads, Em3d and Ocean, we
run the simulations for five iterations.

To compare performance, we use cycle-accurate simulations
based on the SimFlex sampling methodology [21]. Our samples
cover an interval of 10 to 30 seconds of simulation time for
OLTP and Web, over the complete query execution for DSS,
and over one iteration for scientific workloads. Each sample
has warmed caches and branch predictor states. We run each
sample for 100,000 cycles in a cycle-accurate simulator to
warm up micro-architectural states (e.g., ROB, LSQ) and then
measure and report performance for 50,000 cycles. We show
the results along with the 95% confidence interval.

In addition to SCT, we implement several other directories
including duplicate-tag, sparse, and a scheme similar to [6],
which we refer to it as PRV. PRV does not allocate cache blocks
that belong to private pages in the directory.

Table 1: System parameters.
CMP 16-core, tiled architecture

Cores UltraSPARC III ISA, 2 GHz, OoO cores,
3-wide dispatch/commit, 60-entry ROB, 16-entry
LSQ and store buffer

L1 cache 32 KB, 4-way split I/D caches, 64-byte lines, 3-
cycle load-to-use, 2 ports

L2 cache 2-level: shared, 512 KB per tile, 16-way, 64-byte
lines
3-level: private, 128, 256, and 512 KB per tile, 8-
way (128 and 256 KB) and 16-way (512 KB),
inclusive, 64-byte lines

L3 cache Shared, 1 MB per tile, 16-way, 64-byte lines

Coherence pro-
tocol

3-hop, MESI

Main memory 3 GB, 8 KB pages, 45ns access latency

Interconnect 4x4 mesh, 16-byte links, 1 cycle link latency, 2
cycles router latency

Table 2: Workloads.
Online Transaction Processing (TPC-C v3.0)

Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA
Oracle 10g Enterprise Database Server

DB2 100 warehouses (10 GB), 64 clients, 450 MB buffer pool
IBM DB2 v8 ESE

Decision Support (TPC-H on DB2 v8)

Q1 Scan-dominated, 450 MB buffer pool

Q17 Balanced scan-join, 450 MB buffer pool

Web Server (SPECweb99)

Apache 16K connections, FastCGI, worker threading model
Apache HTTP Server v2.0

Zeus 16K connections, FastCGI
Zeus Web Server v4.3

Scientific

Em3d 3M nodes, degree 2, span 5, 15% remote

Ocean 1026x1026 grid, 9600s relaxations, 20K res., err tol 1e-07

346

In all of the experiments and for all of the implemented
directory schemes, we separate instruction blocks from data
blocks and focus only on the data directory. Instruction blocks
are rarely updated and are shared by all the cores [11], meaning
that they either do not need a coherence directory or can be
tracked with a small directory. We use a dedicated directory for
instructions and make sure that they receive all the updates.

5.2. Impact of the Region Size

At first, we need to select the size of the spatial regions as it
affects the performance of our proposal. When selecting the
region size, there exists a trade-off between the storage require-
ments of block-level and region-level entries. Smaller regions
reduce the likelihood of misclassifying a temporarily-private
region as temporarily-shared and thus need less block-level
storage. However, when the region size is small, more regions
need to be tracked and more storage is required to store region-
level information. A larger region size increases the chance of
misclassifying a temporarily-private region as shared, which
limits the benefits of spatial coherence tracking.

To quantify the effect of the region size on the storage
requirements, we measure the opportunity in using spatiotem-
poral coherence tracking for various region sizes. Figure 4
shows the total number of required entries in a SCT directory
as a fraction of the sparse 2x baseline for various region sizes.
These results include the area overhead used to store region
information. Each bar is divided into two parts, showing the
percentage of the entries that are taken up by regions and cache
blocks.

In workloads that have predominantly private data (scien-
tific workloads and OLTP on Oracle), the total required storage
decreases as the region size increases. This behavior is
expected because in these workloads, increasing the region size
does not increase the region misclassification probability as the
data are private anyhow. In workloads with predominantly
shared data, increasing the region size up to 8 KB has minor
effect on the storage requirements. In these workloads, the
storage saving achieved by using a larger region is offset by an
increase in the number of block-level entries. When the region
size is increased to 16 KB, the total required storage increases

because of the larger number of block-level entries. We choose
a region size of 8 KB for the rest of our simulations because it
is the optimal size across all the workloads.

One important conclusion from this experiment is that the
average number of directory entries required to store region
information is 8%, 6%, and 5% of the baseline directory for
region sizes of 4 KB, 8 KB, and 16 KB respectively. SCT
incurs this area overhead to enable tracking of temporarily-
private regions which provides a greater area saving in return.

5.3. Miss-rate Comparison

Directories with a low associativity storage array have forced
cache block invalidations and therefore may increase the cache
miss rate. We measure L1D miss rates for various directories
and report the increase in the miss rate compared to a duplicate-
tag directory. A duplicate-tag directory does not have any
conflicts and therefore does not generate directory-induced
invalidations.

Figure 5 shows the percentage of increase in the L1D miss
rate over a duplicate-tag directory for four different directory
organizations: The sparse 2x baseline, PRV 1x, PRV 0.5x, and
SCT 0.5x. The number after each directory name denotes the
over-provisioning factor. The sparse 2x baseline has twice the
number of entries as the total number of cache blocks in L1Ds.
A 1x directory has the same number of entries as the total
number of L1Ds blocks while a 0.5x directory has half the
number of entries.

On average, SCT incurs a 2% higher L1D miss rate over the
duplicate-tag design. The maximum increase in miss rate is 8%
for OLTP on DB2. L1D miss rates in SCT and the Sparse 2x
baseline are almost identical. In comparison to SCT, PRV 0.5x,
which occupies identical silicon area, has significantly higher
miss rates (22%). This is specially true in workloads in which
temporarily-private provides a higher opportunity compared to
private (see Figure 1). PRV 1x also has higher miss rates
compared to SCT 0.5x although it has twice the number of
directory entries.

0%

10%

20%

30%

4
K

B

8
K

B

16
 K

B

4
K

B

8
K

B

16
 K

B

4
K

B

8
K

B

16
 K

B

4
K

B

8
K

B

16
 K

B

4
K

B

8
K

B

16
 K

B

4
K

B

8
K

B

16
 K

B

4
K

B

8
K

B

16
 K

B

4
K

B

8
K

B

16
 K

B

Q1 Q17 Oracle DB2 Em3d Ocean Apache Zeus

DSS OLTP Sci. Web

%
 B

as
el

in
e

En
tr

ie
s

Regions Blocks

Figure 4. Sensitivity of the SCT size to the region size.

0%

10%

20%

30%

40%

Q1 Q17 Oracle DB2 Em3d Ocean Apache Zeus

DSS OLTP Sci. Web

%
 In

cr
ea

se
 in

 M
is

s-
R

at
e

Sparse 2x PRV 1x PRV 0.5x SCT 0.5x

Figure 5. Increase in the L1D miss-rate over duplicate-tag.

347

5.4. Performance Comparison

We compare SCT’s performance against the prior work in the
literature. The performance metric that we use is committed
user instructions per cycles (UIPC) that has been shown to be
proportional to the execution time for our set of workloads
[21]. Figure 6 shows UIPC of PRV 1x, PRV 0.5x, and SCT
0.5x normalized to the sparse 2x baseline.

Performance results match the miss rate comparison results
of Figure 5. Different workloads show different performance
sensitivity to the miss rate. For example, DSS Q1 and Ocean
are less sensitive to the miss rate (due to the abundance of
instruction and data level parallelism in these workloads [15])
while the web server workloads show more sensitivity to the
miss rate.

PRV and SCT designs show identical performance as the
baseline for workloads with a private dataset (i.e., OLTP on
Oracle and Em3d). However, for workloads with extensive data
sharing (i.e., DSS, OLTP on DB2, Web, and Ocean) the PRV
design shows significant performance loss when the directory
size is decreased. SCT, on the other hand, is able to sustain
almost the same performance as the baseline (1% less on
average) while reducing the directory size by a factor of four.
Comparing SCT with PRV, SCT 0.5x provides the same perfor-
mance as PRV 1x using half the area and it has 6% higher
performance over PRV 0.5x.

5.5. Comparison of Energy Consumption

Organization of coherence directories affects the processor
energy consumption. Directory-induced cache invalidations
cause extra traffic passing through the on-chip network and
increase the cache lookups. Directories with a lower conflict
rate and smaller size consume less energy.

We calculate the total energy consumption of the system for
various directory organizations using McPAT [13]. To compare
the results across various designs, we divide the consumed
energy by the number of committed instructions to calculate
energy consumption per instruction. Figure 7 shows the
consumed energy per committed instruction for various directo-
ries normalized to the sparse 2x baseline. We only include

L1D, the on-chip network (NoC), and the directory components
in the results because the energy consumption of the rest of the
system remains constant.

The directory energy consumption is negligible compared to
two other components. A system with a PRV 0.5x directory
consumes up to 7% more energy. The average increase in the
energy consumption for PRV 0.5x is 3% in comparison with the
sparse 2x baseline. Most of this increase is due to the on-chip
network activity. Systems with SCT 0.5x and PRV 1x directo-
ries consume the same amount of energy as the baseline. SCT
occupies four times less area compared to the baseline while
does not increase the energy consumption.

5.6. Classification of Directory Accesses in SCT

SCT does not keep exact coherence information for blocks
that are cached by region owners. When SCT needs to know if
the owner has a copy of a block or not, it must send a probe
message to the owner (see Section 4.3). These probe messages
increase the latency of memory accesses and might degrade the
performance if they constitute a large fraction of accesses. In
practice, majority of the accesses are made to temporarily-
private regions or can find coherence information for individual
cache blocks in the directory. These accesses do not need a
probe message because either the owner itself is accessing the
region or the exact sharing information is available. In addition,
SCT can avoid a probe message by checking the state of the
block in LLC which can tell if the owner has a copy of the
block or not.

To quantify the number of requests that experience an extra
latency due to SCT, we measure the number of the SCT
accesses that are made to various region types. Figure 8 shows
a classification of the SCT accesses in four categories: accesses
to temporarily-private regions (Temporarily-private), accesses
to temporarily-shared regions that find exact block-level
sharing information (Block), accesses that require sending a
probe message on the critical path (Probe), and accesses that
find sharing information in LLC, require a forward message
even in the baseline protocol, or do not send the probe on the
critical path (Other).

70%

80%

90%

100%

Q1 Q17 Oracle DB2 Em3d Ocean Apache Zeus

DSS OLTP Sci. Web

N
or

m
al

iz
ed

 U
IP

C

PRV 1x PRV 0.5x SCT 0.5x

Figure 6. Comparison of performance normalized to sparse 2x.

0%

20%

40%

60%

80%

100%

120%

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

Q1 Q17 Oracle DB2 Em3d Ocean Apache Zeus

DSS OLTP Sci. Web

N
or

m
al

iz
ed

 E
ne

rg
y

L1D NoC Directory
����������	
����������
������������
�������������
�

Figure 7. Energy consumption of L1D, the on-chip network,
and the directory normalized to sparse 2x.

348

Majority of the accesses are made to the temporarily-private
regions (66%) or to the temporarily-shared regions that have
exact block-level sharing information (29%). This means that,
SCT is successful as a dual-grain coherence directory, which
allocates most of the directory entries in their correct positions.
Moreover, the number of accesses that experience an extra
delay is less than 0.5% of total accesses. Because such accesses
are mainly off-chip misses, the extra latency of the probe
message (i.e., a round-trip interconnect traversal) does not
increase their latency by much. Therefore, the effect of these
accesses on performance is negligible.

5.7. Scalability to Larger Caches

To detect temporarily-private data, SCT relies on access and
eviction requests that are sent by the cores. As discussed in
Section 3.3, any system parameter that increases the residency
time of blocks in the cache, can potentially reduce the likeli-
hood of data to be temporarily private. For example, larger
caches retain the data for a longer period of time, which might
increase the overlap of accesses from different caches to the
same data and might reduce the percentage of temporarily-
private data.

We measure the opportunity of using temporarily-private
data to reduce the directory size for large private caches.
Figure 9 shows the opportunity of reducing the directory size
across various cache sizes for a region size of 8 KB. This
experiment is done using a CMP with a 3-level cache hierarchy,
where each core has a private inclusive L2 cache. Each bar in
the figure shows the required number of entries in a SCT direc-
tory as a percentage of the number of baseline entries. The
baseline is a sparse 2x directory for the corresponding cache
size. We show the percentage that are taken up by region-level
and black-level entries.

SCT can reduce the size of the baseline sparse 2x directory
by 86% on average across all the workloads and at minimum
by 75%. The opportunity increases with the cache size in all
workloads except Web and Ocean. Systems with larger caches
require a larger coherence directory for coherence tracking.
SCT shows more opportunity in reducing the directory size as

the baseline directory gets larger. In Web and Ocean, the oppor-
tunity decreases slightly because of an increase in the number
of block-level entries.

6. Related Work

Techniques that have been proposed to reduce the area
requirements of the sparse directories can be categorized into
two broad classes: those that try to reduce the size of each
directory entry and those that try to reduce the number of direc-
tory entries. Gupta et al. propose a coarse-vector representation
of sharers where each bit in the sharing vector corresponds to
more than one core [10]. Using a limited number of pointers to
store sharers has been evaluated in [1]. When number of
sharers is more than the number of pointers, one of the sharers
is invalidated, sharers are kept in a coarse-vector [10], or all
future accesses are broadcasted [1]; LimitLESS directory [4]
traps to the software to enforce coherence on an overflow. Hier-
archical directories store sharers bit-vector in a hierarchy that
allocates only the necessary parts of the bit-vector [20].
Sanchez and Kozyrakis propose a design that uses a similar
representation of sharers as the hierarchical directory, but in a
flat organization [17]. In SCT, we store both block-level and
region-level entries in the same structure. The format of block-
level entries in SCT is the same as the chosen baseline. SCT
does not impose any limitation on the representation of the
sharers and can use any of these approaches as the baseline
directory. Moreover, region-level entries have only one field
that its width increases logarithmically with the core count (i.e.,
the owner field). In a system with a high core count, the SCT’s
region-level entries will not determine the width of the storage
array because they are normally narrower than the baseline
block-level entries.

Several techniques try to minimize the number of conflicts in
sparse directories to reduce the amount of required over-provi-
sioning. Hashing has been used to uniformly distribute
addresses across all sets, thus, reducing conflicts [19]. Ferdman
et al. propose using Cuckoo hashing to minimize conflicts in
the directory [8]. Their proposal, Cuckoo directory, uses
different hashes for different cache ways and tries to insert a

0%

20%

40%

60%

80%

100%

Q1 Q17 Oracle DB2 Em3d Ocean Apache Zeus

DSS OLTP Sci. Web

%
 D

ire
ct

or
y

A
cc

es
se

s
Temporarily-private Block Probe Other

Figure 8. Breakdown of the SCT accesses based on the loca-
tion where the coherence information is found.

0%

10%

20%

30%

12
8

K
B

25

6
K

B

51
2

K
B

12

8
K

B

25
6

K
B

51

2
K

B

12
8

K
B

25

6
K

B

51
2

K
B

12

8
K

B

25
6

K
B

51

2
K

B

12
8

K
B

25

6
K

B

51
2

K
B

12

8
K

B

25
6

K
B

51

2
K

B

12
8

K
B

25

6
K

B

51
2

K
B

12

8
K

B

25
6

K
B

51

2
K

B

Q1 Q17 Oracle DB2 Em3d Ocean Apache Zeus

DSS OLTP Sci. Web

%
 B

as
el

in
e

En
tr

ie
s

Regions Blocks

Figure 9. Directory size reduction opportunity for various
cache sizes.

349

conflicting address into another cache way. Skew-associate
caches [18] and ZCache [16] use a similar concept to minimize
invalidations due to set conflicts. Although these techniques
reduce the need for over-provisioning, none of them reduces
the required number of addresses that the directory needs to
track. SCT, on the other hand, reduces the number of addresses
that need to be tracked in the directory by using a coarser
tracking granularity. All of these techniques are orthogonal to
SCT as it also can use hashing to minimize conflicts in the
baseline storage array.

The most similar techniques to ours are [11] and [6], which
use the OS TLB miss handler and the page table to classify
shared and private pages. These proposals add a 1-bit flag to
each TLB entry to indicate if the corresponding page is private
or not. Cuesta et al. use this mechanism to disable coherence
tracking for cache blocks that map to private pages [6]. Such
mechanisms require modifications to be made in the page table
organization and the OS. SCT does not need any modifications
in the software. More importantly, private pages have limited
opportunity at reducing the directory size [7, 11, 12]. We
leverage temporarily-private data to decrease the directory size
which provides significantly higher opportunity.

 The concept of coarse-grain coherence tracking has been
used in snoopy coherence protocols in order to avoid unneces-
sary broadcasts and cache lookups for non-shared data [3, 14].
RegionScout [14] and Region Coherence Array maintain a list
of private regions next to each processor that is looked up to
check if a broadcast is needed. The list is updated based on the
messages seen on the snoop bus. We use a similar concepts in
SCT to reduce the directory size in a directory-based system.

7. Conclusion

Scaling to large shared-memory chip-multiprocessors calls
for scalable coherence tracking mechanisms. Sparse directories
provide a scalable solution but their excessive area require-
ments is prohibitive in large-scale systems. Prior work reduces
the required number of entries in sparse directories by avoiding
coherence tracking for private data. This approach is not appli-
cable to workloads with predominantly shared data like
commercial server applications.

In this paper, we observe that data are accessed by one core
most of the time, making them temporarily private. We advo-
cate the use of temporarily-private regions to reduce the
directory size. Our directory design, Spatiotemporal Coher-
ence Tracking, uses dual-grain tracking to reduce the directory
size while delivering identical performance as the baseline. It
dynamically detects temporarily-private regions as the program
executes and stores one entry in the directory for any number of
cached blocks in those regions. For shared regions, it stores one
entry per shared cache block. We show that across a variety of
commercial server and scientific workloads, 77% of cache
blocks map to temporarily-private pages that translates into a
75% reduction in baseline directory size. This saving is twice
more than a technique that deactivates coherence for private
pages.

Acknowledgements

The author would like to thank Michael Ferdman for his
technical advice and feedback, Babak Falsafi for his contribu-
tions in early stages of this work, and Pejman Lotfi-Kamran
and the anonymous reviewers for their feedback on earlier
drafts of this paper.

References
[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation of

directory schemes for cache coherence. In Proceedings of International
Symposium on Computer Architecture, 1988.

[2] L.A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A scalable architec-
ture based on single-chip multiprocessing. In Proceedings of the Interna-
tional Symposium on Computer Architecture, New York, NY, 2000.

[3] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving multiprocessor per-
formance with coarse-grain coherence tracking. In Proceedings of the In-
ternational Symposium on Computer Architecture, June 2005.

[4] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories: A
scalable cache coherence scheme. In Proceedings of the international con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems, 1991.

[5] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes.
Cache hierarchy and memory subsystem of the AMD Opteron processor.
IEEE Micro, 30(2):16-29, 2010.

[6] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato. Increasing
the effectiveness of directory caches by deactivating coherence for private
memory blocks. In Proceedings of the International Symposium on Com-
puter Architecture, 2011.

[7] A. Das, M. Schuchhardt, N. Hardavellas, G. Memik, and A. Choudhary.
Dynamic directories: A mechanism for reducing on-chip interconnect
power in multicores. In Proceedings of the Design, Automation, and Test
in Europe (DATE), Germany, 2012.

[8] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo directory:
A scalable directory for many-core systems. In Proceeding of Internation-
al Conference on High-Performance Computer Architecture, 2011.

[9] R. Golla. Niagara2: A highly threaded server-on-a-chip. Fall Microproces-
sor Forum 2006, San Jose, CA, 2006.

[10] A. Gupta, W. Weber, and T. Mowry. Reducing memory and traffic require-
ments for scalable directory-based cache coherence schemes. In Proceed-
ing of the International Conference on Parallel Processing, 1990.

[11] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NU-
CA: near-optimal block placement and replication in distributed caches. In
Proceedings of the International Symposium on Computer Architecture,
June 2009.

[12] D. Kim, J. Ahn, J. Kim, and J. Huh. Subspace snooping: filtering snoops
with operating system support. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques, New York,
NY, 2010.

[13] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi. McPAT: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures. In Proceedings of the In-
ternational Symposium on Microarchitecture, December 2009.

[14] A. Moshovos. RegionScout: Exploiting coarse grain sharing in snoop-
based coherence. ACM SIGARCH Computer Architecture News, 33(2):
234-245, May 2005.

[15] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Perfor-
mance of database workloads on shared-memory systems with out-of-or-
der processors. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, 1998.

[16] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling ways and associa-
tivity. In Proceedings of the International Symposium on Microarchitec-
ture, 2010.

[17] D. Sanchez and C. Kozyrakis. SCD: A scalable coherence directory with
flexible sharer set encoding. In Proceedings of the International Sympo-
sium on High Performance Computer Architecture, February 2012.

[18] A. Seznec. A case for two-way skewed-associative caches. In Proceedings
of the International Symposium on Computer Architecture. NY, 1993.

[19] N. Topham and A. González. Randomized cache placement for eliminat-
ing conflicts. IEEE Transactions on Computers, 48(2): 185-192, 1999.

[20] D. A. Wallach. PHD: A Hierarchical Cache Coherent Protocol. Massachu-
setts Institute of Technology Master’s Thesis, Cambridge, MA, 1992.

[21] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and
J. C. Hoe. SimFlex: statistical sampling of computer system simulation.
IEEE Micro, 26(4):18–31, 2006.

[22] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. A tagless co-
herence directory. In Proceedings of the International Symposium on Mi-
croarchitecture, New York, NY, 2009.

350

Predicting Coherence Communication by Tracking Synchronization Points at Run Time

Socrates Demetriades† and Sangyeun Cho‡†

†Computer Science Department, University of Pittsburgh
‡Memory Division, Samsung Electronics Co.

{socrates,cho}@cs.pitt.edu

Abstract
Predicting target processors that a coherence request must be de-
livered to can improve the miss handling latency in shared memory
systems. In directory coherence protocols, directly communicating
with the predicted processors avoids costly indirection to the direc-
tory. In snooping protocols, prediction relaxes the high bandwidth
requirements by replacing broadcast with multicast. In this work,
we propose a new run-time coherence target prediction scheme that
exploits the inherent correlation between synchronization points in
a program and coherence communication. Our workload-driven
analysis shows that by exposing synchronization points to hardware
and tracking them at run time, we can simply and effectively track
stable and repetitive communication patterns. Based on this obser-
vation, we build a predictor that can improve the miss latency of a
directory protocol by 13%. Compared with existing address- and
instruction-based prediction techniques, our predictor achieves com-
parable performance using substantially smaller power and storage
overheads.

1. Introduction
Inter-thread communication in shared memory systems is realized by

allowing different threads to access a common memory space. This

model simplifies the concept of communication; however, it creates

important scaling challenges mainly due to the cache coherence prob-

lem [32]. Traditionally, shared memory architectures employ either

a directory- or a snooping-based protocol to keep the per-processor

caches coherent. Directories maintain a full sharing state for each

cache line and therefore can precisely direct each miss to its destina-

tions. The indirection to the directory adds, however, considerable

extra latency to cache misses that are serviced by other caches. Snoop-

ing protocols avoid the latency and storage overheads of a directory

by resorting to broadcasting messages on each miss; however, they

place significant bandwidth demands on the interconnect even for a

moderate number of processors.

A common approach to improving coherence communication

is to predict the processors that a coherence request must be de-

livered to. Accurate prediction would reduce the latency of a

cache miss by avoiding indirection to the directory, or reduce the

high bandwidth demands of broadcasting by using multicasting in

snooping protocols. Such predictions can be made by program-

mers (e.g., [1]), compilers [29, 47], or transparently by the hard-

ware [2, 3, 8, 11, 28, 30, 31, 33, 36, 39]. Given that compiler tech-

niques are limited to static optimization [29] and that the shared

memory model should be kept transparent while offering high perfor-

mance [39], a preferred communication predictor would dynamically

learn and adapt to an application’s sharing behavior and communica-

tion patterns.

Much prior work explored coherence target prediction using

address- and instruction-based approaches [2,3,8,27,28,30,36,39].

Address-based coherence prediction was first proposed by Mukherjee

and Hill [39], who showed that coherence events are correlated with

the referenced address of a request. To exploit the correlation, they

associate pattern history tables with memory addresses, train them

by monitoring coherence activity, and probe them on each request

to obtain prediction. Alternatively, instruction-based prediction, as

proposed by Kaxiras and Goodman [28], correlates coherence events

with the history of load and store instructions. This allows a more

concise representation of history information since the number of

static loads and stores is significantly smaller than that of accessed

memory blocks.

The basic design of address- and instruction-based predictor has

been extended further to mainly relax the large space requirements

of those approaches [8, 30, 36, 40]. However, the extensions still

require relatively large and frequently accessed prediction tables.

Furthermore, to attain high accuracy, they often keep long sharing

pattern history per entry or rely on multi-level prediction mecha-

nisms. Designs that exploit the spatial locality of coherence requests,

such as the ones based on macroblock indexing [36], have shown

improvements for both space efficiency and prediction accuracy, in-

dicating that predicting sharing patterns at very fine granularities

is not necessarily optimal. Nevertheless, the window for capturing

such opportunities is still tight to hardware-level observation, limiting

the scope in which communication localities can be expressed and

exploited.

In this work, we propose Synchronization Point based Prediction
(SP-prediction), a novel run-time technique to predict coherence re-

quest targets. SP-prediction builds on the intuition that inter-thread
communication caused by coherence transactions is tightly related
with the synchronization points in parallel execution. The main idea

of SP-prediction is to dynamically track communication behavior

across synchronization points and uncover important communication

patterns. Discovered communication patterns are then associated

with each synchronization point in the instruction stream and used to

predict the communication of requests that follow each synchroniza-

tion point.

SP-prediction is different than existing hardware techniques be-

cause it exploits inherent application characteristics to predict com-

munication patterns. In contrast to address- and instruction-based ap-

proaches, it associates communication patterns with variable-length,
application-defined execution intervals. It also employs a simple

history structure to recall past communication patterns when the

program execution repeats previously seen synchronization points.

These two properties allow a very low implementation cost and hard-

ware resource usage, yet delivering relatively high performance. In

summary, this work makes the following contributions:

• We examine the communication behavior as observed between syn-

chronization points for various multithreaded applications (Section 3).

Our characterization reveals prominent prediction opportunities by

identifying (1) strong communication locality during periods between

consecutive synchronization points and (2) predictable communica-

tion patterns across repeating instances of such periods.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.40

351

0.0

0.2

0.4

0.6

0.8

1.0

communicating misses non−communicating misses

M
is

s
R

at
io

fm
m lu

oc
ea

n

ra
dio

sit
y

wat
er

−n
s

ch
ole

sk
y fft

ra
dix

wat
er

−s
p

bo
dy

tra
ck

flu
ida

nim
at

e

str
ea

m
clu

ste
r

vip
s

fac
es

im
fer

re
t

de
du

p
x2

64

Figure 1: Ratio of communicating misses. (Note: Details on the evaluation
environment are given in later sections.)

• We propose SP-prediction, a run-time technique to accurately pre-

dict the destination of each coherence request using a small amount

of hardware resources. SP-prediction captures synchronization points

at run time and monitors the communication activity between them.

By doing so, it extracts a simple communication signature and uses

it to predict the set of processors that are likely to satisfy coherence

requests of the program interval, as well as requests that will occur

in future dynamic instances of the same interval (Section 4).

• We fully evaluate SP-prediction over a directory-based coherence

protocol on an elaborate chip multiprocessor (CMP) model (Sec-

tion 5). Our results show that SP-prediction can accurately predict

up to 75% of the misses that must communicate with other caches,

without adding excessive bandwidth demands to the baseline direc-

tory protocol (below 10% of what broadcasting would add). Correct

predictions translate into sizable reduction in miss latency (13% on av-

erage) and execution time (7% on average) compared to the baseline

directory protocol. Compared to existing address- and instruction-

based predictors, our approach achieves comparable performance,

albeit at significantly lower cost.

2. Background and Motivation
Communicating misses. Coherence communication occurs on every

memory request that must contact at least one other processor in order

to be satisfied. Those requests, also called communicating misses1,

are read/write misses or write upgrades (upgrade misses) on cache

blocks that have valid copies residing in non-local caches. Prior

studies have shown that many applications incur a large fraction of

such communicating misses [5, 36]. This fraction depends primarily

on application characteristics like working set size, data sharing,

and data reuse distance, as well as on cache parameters. Figure 1

shows results for the workloads studied in this work. On average,

communicating misses account for 62%, with considerable variation

among different applications. In general, applications with a high rate

of communicating misses benefit from coherence target prediction.

Coherence communication prediction. Predicting the communica-

tion requirements of a coherence request involves guessing a set of

processors sufficient to satisfy a given miss. A prediction scheme

may exploit the communication behavior of recent misses to predict

the next one, assuming that misses exhibit temporal communication

locality. For instance, a prior study has shown that the two most

recent destinations grab a cumulative 65% chance of sourcing the

data of the next miss [25]. Communication locality is better captured,

however, if misses are tracked based on the address they refer to, or

1“Coherence request”, “coherence miss”, and “cache-to-cache miss” are
also commonly used names.

the corresponding static instructions, thus motivating the address-

and instruction-based prediction approaches.

Address-based prediction builds on the expectation that misses

to the same address (cache block) will have to communicate with

the processor that wrote on the same address previously, or the set

of processors that read from the same address recently. Tracking

misses in such fine granularity, however, adds significant area require-

ments. To reduce the overhead, a practical address-based predictor

is implemented with limited capacity (i.e., as a cache), or/and in-

dexed by blocks of larger granularity, e.g., a macroblock or page.

As for the case of macroblock indexing, it has been shown to in

fact improve both accuracy and space efficiency, since misses on

adjacent addresses are likely to have identical communication be-

havior [36]. Similar in concept and motivation, instruction-based

prediction resorts to the expectation that misses generated by the

same static instructions will have related coherence activity. This

compacts further the tracked information since the number of static

load and store instructions is much smaller than the number of data

addresses accessed.

The above prediction approaches are typically implemented as

hardware mechanisms that consume a considerable amount of re-

sources and are unaware of any application-level characteristics.

However, the way parallel applications are coded and structured

embodies intuition to create high-level understanding of how com-

munication activity occurs and changes through time. This work

examines the idea of exploiting such opportunity through the syn-

chronization points that exist in applications.

Synchronization points. The shared memory model eliminates the

explicit software management of data exchange between processors.

Nevertheless, race conditions between concurrent threads require

the explicit enforcement of synchronization points, through software

mechanisms, to ensure that operations on shared memory locations

are consistent. As a result, they naturally indicate points when certain

data private to a processor will become visible—and possibly be

communicated—to other processors. In what follows, we give a mo-

tivating example that shows how synchronization points partition the

execution of an application into intervals, capture the existing com-

munication locality in the application and, expose the repeatability

of those partitioned intervals throughout the execution.

Figure 2 plots how a processing core communicates with other

cores on a simulated 16-core CMP over (a) the whole execution (b)

different execution intervals, and (c) dynamic instances of a single

interval. By zooming into a granularity defined by synchroniza-

tion points (plot (b)), it becomes clearer that the spatial behavior of

the communication is strongly related to the specific intervals cho-

sen. The sharp changes in communication behavior at the interval

boundaries suggests that synchronization points are likely to indicate

directly when behavior changes, and potentially hint a predictor to

adapt faster to such changing behavior. In addition, the small set

of processors that are contacted during each interval suggest that

tracking the behavior on individual addresses or instructions within

the interval may not necessarily result in more accurate prediction.

Lastly, predictable communication patterns that may appear across

the dynamic instances of the same interval (plot (c)) create a new

scope of temporal predictability and a key opportunity to exploit the

repeatability of the communication behavior.

To illustrate how such variations in communication behavior are

manifested through shared memory programming practices, we list

a simple example code in the following. Shared data (ME and LE)

352

�

����

����

����

����

�����

� � � 	 �
 � � � � �� �� �� �	 �� �

�
�
�
��

��
��
��
��
��
��
��

��

�������

�

���

���

	��

���

� � � 	 �
 � � � � �� �� �� �	 �� �
�������

�

�

���

�
�

� � � 	 �
 � � � � �� �� �� �	 �� �
�������

���� ���� ����

Figure 2: Communication Distribution of Core 0 in bodytrack: (a) As seen during the whole execution. (b) As seen during the execution of four consecutive
synchronization-defined sub-intervals. (c) As seen across five different dynamic instances of the same sync-defined interval.

are exchanged between parents, children and siblings in a tree-like

structure, which has its nodes arranged across multiple processors

in a balanced way. During interval A, processors act as leafs and

communicate data from processors where their parents and parents’

sibling nodes reside. However, during interval B, processors act as

inner nodes, hence the communication direction switches towards the

set of processors that hold their children. This shift can be success-

fully detected and exposed by the synchronization point separating

the two intervals.

Example Program Code

for nodes in this processor:
...
barrier(); // interval A begins
node is a leaf:

p = node.parent.LE[];
for some node.parent.sibling:

ps = node.parent.sibling.LE[];
...
barrier(); // interval A ends
... // interval B begins
node is a parent:

for each node.child:
node.LE[] = translate(node.child.ME[]);

...
barrier(); // interval B ends

3. Communication Characterization
The communication behavior of a core over a certain interval can be

characterized by the target cores with which it communicates (called

communication set) and the distribution of the communication volume
across that set. We have already shown examples of such distributions

in Figure 2. In this section, we first introduce simple notions about

synchronization point based intervals, and then we characterize the

communication behavior of those intervals for various workloads.

3.1. Synchronization based Epochs
Synchronization primitives are implemented by various software

libraries, often with different terminology and semantics, e.g., POSIX

threads, OpenMP. Nonetheless, their range and use are similar in

concept in most programming environments. We assume a POSIX

thread library in this work; however, our methodology is applicable

to other implementations.

A synchronization point (sync-point) is an execution point in which

a software synchronization routine is invoked. Each sync-point has a

type, e.g, barrier, join, wakeup, broadcast, lock, and unlock,

and a static and dynamic ID. The static ID identifies each sync-point

statically in the program code and corresponds to its calling location

(e.g., program counter) or the lock address in the case of a lock sync-

point. At run time, the dynamic ID uniquely identifies the multiple

dynamic appearances of sync-points that have the same static ID. The

����
�������	�
��
����
�������	�
�
������
�����	
�
������
�������	
�
����
����
�������	
�
���
�����	
�
������
�������	
�
����
����	
�
�

����������	���

����������	���

����������	���

����������	���

����������	���

����������	���

� ���!���

� ���!���

���������

����! �

� ���!���

� ���!���

��

��!������!���
������� �� ��

��������������! �

Figure 3: Static and dynamic sync-points and sync-epochs.

dynamic ID of a sync-point can be expressed with the corresponding

static sync-point ID and how many times it has been executed so far.

Next, we define synchronization epoch (sync-epoch) as the exe-

cution interval enclosed by two consecutive sync-points. Based on

this simple definition, on each sync-point, a new sync-epoch starts

and the previous sync-epoch ends. A sync-epoch is described by the

type, static ID, and dynamic ID of the beginning sync-point. Using

our terminology, a critical section could be simply a sync-epoch that

begins with a lock and ends with an unlock. A static sync-epoch

that is exercised multiple times during execution creates dynamic
instances of itself. Figure 3 depicts different sync-epochs and the

notion of static and dynamic ID.

3.2. Simulation Environment

For the characterization study in this section, we employ a 16-core

CMP model based on Simics full-system simulator [35]. The target

system incorporates 2-issue in-order SPARC cores with 1MB private

L2 cache, and a MESIF coherence protocol [23]. To track inter-core

communication, we collected L2 miss traces that contain the miss data

address, type, PC, and the target set of cores that must communicates

with. The traces also contain all sync-points along with their type

and static/dynamic IDs. Traces do not capture the effects of timing

and are used only for characterization purposes. A full evaluation of

our prediction scheme uses a detailed execution-driven performance

model and is described in Section 5.

We study benchmarks from the splash2 and parsec suites [7, 48].

Table 1 lists key statistics related to sync-epochs for each studied

benchmark. We use all available processor cores by spawning 16

concurrent threads in all experiments. For stable and repeatable

measurements, we prevent thread migration by binding each thread

to the first touched core. This was done except for dedup, ferret, and

x264, because they create more threads than the available CPUs and

rely on the OS for scheduling. Section 5.5 describes how our scheme

can handle thread migration.

353

Number of Cores

%
 C

om
m

un
ic

at
io

n
V

ol
um

e
(c

um
m

ul
at

iv
e)

�

�

�

�

�

�
�

�
�

�
�

�
�

�
� �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100
bodytrack

Number of Cores

%
 C

om
m

un
ic

at
io

n
V

ol
um

e
(c

um
m

ul
at

iv
e)

�

�

�

�

�

�

�

�
�

� � � � � � �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100
fmm

Number of Cores

%
 C

om
m

un
ic

at
io

n
V

ol
um

e
(c

um
m

ul
at

iv
e)

�

�

�

�

�
�

�
�

�
�

�
�

�
�

� �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100
water−ns

�

sync−epoch
single−interval
static instruction

Figure 4: Average communication locality of bodytrack, water-ns and fmm: Each curve shows the average cumulative communication distribution as seen in
different granularities. Higher communication coverage for a given number of cores translates to better communication locality.

BENCHMARK # STATIC # STATIC PROGRAM # TOTAL DYN.

CRIT. SECT. SYNC-EPOCHS INPUT SYNC-EPOCHS

fmm 30 20 16K (particles) 2,789

lu 7 5 521 (matrix) 185

ocean 28 20 258 (grid) 2,685

radiosity 34 12 room 17,637

water-ns 20 8 512 (mol.) 1,224

cholesky 28 27 tk15.O 1,998

fft 8 8 256K (points) 22

radix 8 4 4M (keys) 35

water-sp 17 1 512 (mol.) 83

bodytrack 16 20 simsmall 456

fluidanimate 11 20 simsmall 8,991

streamcluster 1 24 simsmall 11,454

vips 14 8 simsmall 419

facesim 2 3 simsmall 3,826

ferret 4 6 simsmall 25

dedup 3 4 simsmall 508

x264 2 3 simsmall 56

Table 1: Sync-epoch statistics of benchmarks (per core average).

3.3. Communication Locality
The distribution of the communication volume characterizes the spa-

tial behavior of the communication during an interval and illustrates

whether it is “localized” to a certain set of targets. Examples of such

localization are clearly observable in the communication distribu-

tions of Figure 2. For instance, core 0 during the first sync-epoch in

example (b) communicates mostly with a single “hot” target, core 5,

while nine other targets are contacted sporadically.

The communication locality is expressed by measuring the amount

of communication volume that is covered by a certain number of

cores. Using the previous example, core 5 covers more than 90%

of the communication volume. Generally, if each individual miss

communicates with C targets on average and the overall volume of

the interval appears to be fully covered by C cores, then the interval

has a perfect locality. When comparing different intervals with a

similar C value, we can simply say that better locality exists as the

communication is concentrated to fewer destinations.

A question that arises is how good is this locality relative to various

granularities. For example, based on Figure 2(a), one could say that a

certain level of locality also exists at the whole execution granularity

since core 2 is “hotter” than the rest. To answer this question, Figure 4

shows the communication locality in applications, as captured by

three different granularities: The sync-epoch granularity, the whole

interval (as in Figure 2(a)), and the one that is based on static instruc-

tion indexing. Curves display average cumulative distributions over

the whole execution and each point in the curve directly measures

the average volume covered by a certain number of cores.

As the comparison shows, sync-epochs can capture the communi-

cation locality considerably better than a direct observation over the

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 >=5

%
 s

yn
c−

in
te

rv
al

s
fm

m lu

oc
ea

n

ra
dio

sit
y

wat
er

−n
s

ch
ole

sk
y fft

ra
dix

wat
er

−s
p

bo
dy

tra
ck

flu
ida

nim
at

e

str
ea

m
clu

ste
r

vip
s

fac
es

im
fer

re
t

de
du

p
x2

64

Figure 5: Distribution of intervals based on their hot communication set size:
More than 78% of intervals have a hot communication set size of
smaller than or equal to 4.

whole execution, suggesting that localities in communication’s spatial

behavior are closely related to sync-epochs. Moreover, sync-epochs

often show better locality even to instruction-based granularity. This

implies that communication activity could possibly be tracked as

effectively as in traditional methods using sync-epochs—which is

a much coarser-grain granularity. The results indicate that, overall,

sync-epochs are attractive for extracting and exploiting repeatable

communication behavior.

To create a representative signature of the communication behavior

over each execution interval, we derive a hot communication set
for each sync-epoch. A core is considered hot if it draws more

than a certain amount of the total communication activity in the

interval. Hence, the hot set could be formed based on a threshold

over the communication distribution of the interval. The size of the

set represents the amount of the interval’s hot targets. Figure 5 shows,

for each application, the distribution of sync-epochs based on the size

of their hot communication set. The results consider a threshold of

10%, meaning that a core is considered hot if it is contacted by at least

10% of the total communication activity of the interval. In contrast to

Figure 4 where only the average number of the hot communication

set size is clear, the latter figure shows how this size varies among

the sync-epochs of the applications. Note that to further measure

how close the hot set size is to the optimal locality, one should also

consider the average communication set size per miss.

3.4. Dynamic Instances of Sync-Epochs
Sync-points are executed repeatedly and create a sequence of dy-

namic instances for each sync-epoch. As these instances exercise

the same or similar code and operate on the same (or related) data

structures, it is likely that they present behavioral similarities between

them [14]. Such similarities or variations may also be reflected on

the communication’s behavior, depending on how the shared data are

accessed in each instance, their sharing patterns, the level of deter-

354

��
��
�
��
���
��
��
��
��

	�
���
	�
��
	�
���
	�
���
	�
���

�
�
�

�

� � � � � � � � � �� �� �� �� � ��

�
�
�

�

� � � � � � � � � �� �� �� �� � ��

�
�
�

�

� � � � � � � � � �� �� �� �� � ��

�
�
�

�

� � � � � � � � � �� �� �� �� � ��

�
�
�

�
�
�
�
�
�
�
�
�

� � � � � � � � � �� �� �� �� � ��

��	� ��	� ��	�

��	� ��	�

������� �������

������� �������

���������
��
�
��
���
��
��
��
��

��
��
�
��
���
��
��
��
��

��
��
�
��
���
��
��
��
��

	�
���
	�
��
	�
���
	�
���
	�
���

�
�
�
�
�
�

	�
���
	�
���
	�
���

	�
���
	�
���
	�
��

	�
���
	�
���
	�
���

	�
����
	�
����
	�
����
	�
����

��
��
�
��
���
��
��
��
�� �

	�
���
	�
��
	�
���
	�
���
	�
���
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
�
��
���
��
��
��
��

	�
���
	�
��
	�
���
	�
���
	�
���

Figure 6: Example hot communication set patterns across dynamic instances of a sync-epoch: (a) Stable pattern. (b) Change from one stable pattern to another.
(c) Repetitive pattern with stride 3. (d) Random pattern (critical section). (e) Combination of stable and random hot destinations.

minism, and possible machine artifacts, e.g., local cache capacity,

false sharing effects.

Here we present our general observations on how communication

activities appear in the dynamic sync-epoch instances in the exam-

ined applications. Our findings are derived from extracting the hot

communication set of every dynamic instance of a sync-epoch, and

characterizing how it changes from instance to instance.

Hot communication set patterns. Hot communication sets change

across the dynamic instances of a sync-epoch following predictable

or random pattern. We categorize the patterns into: Stable, repetitive,

random, or some combination of these. Figure 6 illustrates example

patterns by representing each hot communication set as a bit vector.

Stable hot communication sets occur when the majority of the

data consumed each time are provided by a single core. This case

is common in applications with stable producer-consumer sharing

aligned to sync-epoch granularity. Hot communication sets that

follow repetitive patterns are commonly found in fairly structured

parallel algorithms that exercise a different but finite number of data

paths on different sync-epoch iterations. For similar reasons, com-

munication sets may also demonstrate spatial-stride or next neighbor

patterns. In contrast, random patterns are usually caused by accesses

on migratory and widely shared data that are produced/consumed

in a non-deterministic order. Those occur when threads repeatedly

compete before they are granted the privilege to produce data that

will be shared (e.g., accesses within critical sections), or when the

data sharing sequences are dynamically determined by the parallel

algorithm (e.g., decisions made within critical sections). Patterns that

appear to combine various patterns are usually an artifact caused by

the granularity in which we track the communication (e.g., a long

sync-epoch may span across multiple functions and data structures,

each having different sharing patterns).

“Noisy” sync-epoch instances. Oftentimes, some dynamic instances

of a sync-epoch appear to have very low communication activity rela-

tive to other instances. This is usually caused by a control statement,

which forces specific instances to flow through different execution

paths that exercise code with relatively few accesses to shared data.

Such instances may not give a representative sample when forming

a hot communication set due to statistical bias; therefore, we treat

them as noise and exclude them from the dynamic pattern.

4. Sync-Epoch based Target Prediction
The existence of communication locality at the sync-epoch granu-

larity implies that misses within the sync-epoch are likely to com-

municate with processors in the hot communication set. Thus, the

hot set, if known, could be a relatively small and sufficient target

predictor for the majority of misses within the interval. Based on

this observation and, on evidences that many hot communication sets

are predictable, we propose SP-prediction, a run-time scheme that

exploits the temporal predictability within and across sync-epochs to

predict the communication destination of misses.

SP-prediction is different from other prior approaches that exploit

the temporal sharing patterns of misses in two fundamental ways.

First, it makes use of the communication locality over application-

specific execution intervals to predict for each miss in the interval,

with no reliance on the temporal communication locality between

consecutive misses. This is a significant advantage when communica-

tion locality is only seen among a broader temporal and spatial set of

misses. Second, it can recall communication patterns from the past at

a sync-epoch granularity and not for specific address or instruction.

This may allow the predictor to adapt quickly to old and forgotten

patterns without complex mechanisms and long history information.

4.1. Basic Idea of Run-Time Prediction
SP-predictor exploits sync-epochs’ communication locality to predict

the destinations of a miss. Each program thread is seen as a sequence

of sync-epochs, many of which are exercised multiple times during

program execution. Obtaining a predictor of the communication

behavior in a sync-epoch involves retrieving history information

from previously executed instances of the same sync-epoch, as well

as tracking the coherence communication of the currently executed

interval. Each private L2 cache controller would hold the obtained

predictor and accelerate miss-incurred communication by invoking a

prediction action in the standard coherence protocol on each miss.

Synchronization primitives are exposed to the hardware so that it

can identify the sync-epochs and sense their beginning and end. This

requires simple annotations in the related software library (or program

code) and corresponding support in the hardware. The hardware

design cost entails the addition of a new instruction that retrieves the

PC or lock address of the sync-point and forwards it to the coherence

controller. The insertion of the instruction in the code is trivial and

could be done by the library developer or automatically by a compiler.

We consider that such support is feasible in today’s hardware and

software, and similar implementations exist (e.g., [10, 45]).

355

EVENT ACTION

Sync-point captured
(sync-epoch begins)

- Store sync-epoch’s tag and type into SP-table.

- Reset all communication counters.

Data response on RD/WR-miss If the response comes from a remote node’s cache:

- Increment communication-counters[responder].

Invalidation Ack responses - Increment communication-counters[responders]

Sync-point captured
(sync-epoch ends)

- Extract hot communication set from counters

- Store the hot set as a signature to the SP-table

Table 2: Building communication signatures.

EVENT ACTION

Sync-point captured Retrieve d signature(s) from SP-table

Obtain predictor:

- If d=0 => extract current hot set (after warmup)

- If d=1 => last hot set

- If d=2 => last stable hot set

- If d>=2 => test for pattern (if supported)

- If sync-point is a lock => last d processors holding the lock

Forward predictor to the L2 controller

RD/WR-miss - Invoke a prediction action using the obtained predictor.

Confidence alert - Extract new hot communication set

- Replace predictor with new hot set

Table 3: Obtaining prediction.

4.2. Building Communication Signatures
Each processor monitors its communication activities by tracking

responses to misses that have invoked the coherence protocol. A

set of communication counters record the overall communication

towards each destination. Responses for read misses include the

data provider’s ID and increment the communication counter that

corresponds to the source processor. Responses for write and upgrade

misses include a bit vector capturing the invalidated processors and

increment the communication counters that correspond to the inval-

idated set. The communication counters are reset at the beginning

of each sync-epoch. Effectively, as the execution progresses within

the sync-epoch, the counters would reflect the processor’s communi-

cation spatial behavior up to the current execution point within the

sync-epoch. At the end of the sync-epoch, the hot communication

set is extracted from the counters and stored as a communication

signature (bit vector) in a history table called SP-table.

When the sync-epoch is a critical section, the communication

signature encodes only the ID of the processor that releases the lock.

This allows other critical sections that are protected by the same lock

to retrieve and use this information as their possible communication

target. Note that for noisy instances (Section 3.4), no communication

signature is stored. Table 2 summarizes how the communication

signatures are constructed during the execution.

4.3. SP-Table
SP-table is an associative table where each entry records a single,

per processor, static sync-epoch. Entries are indexed/tagged with the

static ID of the sync-epoch and the processor ID. For locks, entries

are tagged with the lock variable and are shared by all processors.

This allows all critical sections protected by the same lock (in the

same or different threads) to share the same communication history.

Each SP-table entry keeps a sequence of communication signatures.

This sequence has a bounded size d, the history depth. Whenever a

sync-point is encountered, SP-table is probed to store the signature

of the ending sync-epoch and retrieve the signature(s) of the next

sync-epoch. Updates involve shifting out the oldest signature and

shifting in the newest. For critical sections, updates occur just after

the lock is acquired. This ensures atomic updates in the shared entries

and avoids lookups of the table when a processor spins on a lock.

4.4. Obtaining Predictions
When a new instance of a previously seen epoch is detected, the

associated communication signature(s) are retrieved from SP-table

to generate a destination predictor for the misses that will occur in

the new instance. The obtained predictor for the sync-epoch will

be forwarded to the processor’s L2 cache controller and will trigger

an action to the coherence protocol on each miss. The state of the

predictor would be simply the previous communication signature or

some combination of previous signatures. A summary of how the

predictor is formed is given in Table 3. More specifically:

No history available (d = 0). If the sync-epoch is met for the first

time (or if no history table exists), then history information is not

available. In this case, the predictor uses a hot communication set

that is extracted from the communication counters while the sync-

epoch runs, after allowing some warm-up time, e.g., 30 misses. This

would essentially form a predictor that predicts requests based on the

activity recorded in the early stages of the interval.

Last hot communication set (d = 1). If only one history signature is

available so far (or if the table has history depth of one), then the pre-

dictor uses the last—and only available—communication signature

stored in the corresponding predictor entry.

Last stable hot communication set (d = 2). The intersection be-

tween communication bit vectors (bit-wise AND) returns the set of

destinations that remain stable across the instances. Our predictor

combines only the two most recent bit vectors, since this successfully

catches stable destinations across consecutive instances, as well as

adapts faster to changing stable patterns such as the one shown in

Figure 6(b).

Pattern-based hot communication set (d ≥ 2). A longer history

of signatures available to a sync-epoch could capture further hot

communication set patterns such as the repetitive pattern shown in

Figure 6(c). Specifically, to capture such repeatable patterns, history

depth should be at least as large as the repetition distance (or stride)

of the pattern, e.g., d ≥ 3 for the same example. Hardware could

detect a repetitive pattern by comparing a new bit vector with all the

stored bit vectors, saving the depth s of the one that matches, and

correctly predicting the next bit vectors using the one at depth s−1.

Our current predictor is tuned to detect only repetitive patterns of

stride-2, as it uses a history depth of no more than two.

Lock sync-point. If the captured sync-point is a lock, then the

retrieved signatures will indicate the sequence of processors holding

the lock last. A union of the available d signatures will therefore

form a prediction set that includes the last d processors that have held

the lock. The predictor may be further extended to return a union that

also includes the bit vector of the preceding sync-epoch, as coarse

critical sections are likely to benefit from it.

In order to detect and recover from pathological cases where the

predicted communication set does not provide correct prediction, we

employ a mechanism that sense low prediction confidence and adapts

to a new hot communication set. A recovery step is usually needed in

coarse sync-epochs, where communication’s spatial behavior could

oscillate within a sync-epoch instance. In our current design, the

confidence mechanism is a simple 4-bit saturating counter that incre-

ments on correct predictions and decrements otherwise. On each new

interval, the counter starts with a high confidence towards the pre-

dicted communication signature (counter is fully set) and triggers a

recovery step if the confidence level drops below a threshold (counter

is zero). To recover, we reconstruct the predictor by extracting the hot

communication set of the currently running interval, as it appears up

to the current point. The hot set is extracted based on the information

recorded in the communication counters that dynamically track the

356

communication activity of the interval.

4.5. Integration to the Coherence Protocol
SP-prediction requires additional functionality in the coherence proto-

col. However, it does not interfere with the base protocol and operates

on top of it. We briefly describe how our protocol arbitrates prediction

actions, verifies results, and recovers from mispredictions.2 As a base-

line protocol, we use a directory-based MESIF coherence protocol,

an extended version of MESI that effectively supports cache-to-cache

transfers of clean data [23]. Note that the prediction engine can

be integrated into any directory-based protocol, or any snoop-based

protocols that can recover from mispredictions [8, 36].

• Requesting node: When an L2 miss for a memory line occurs, a

prediction request is generated. The request is sent to the node(s) pre-

dicted to have the valid copy of the line and includes a bit identifying

it as predicted. The request is also sent to the directory along with a

bit vector identifying the predicted nodes.

• Directory: The directory node will receive the bit vector of pre-

dicted nodes for every miss and detect whether the targeted set was

sufficient or not. Upon detecting a misprediction, it will satisfy the

request as it would normally do, resulting in a miss latency similar

to the baseline protocol. If the request was for upgrade or write

miss with multiple sharers, the directory will invalidate the sharers

that were not predicted (if any), and reply to the requesting node,

indicating whether the predicted set was sufficient or not and which

sharers were correctly predicted.

• Predicted node: When a predicted request for a memory line arrives

at the cache controller, the line is searched in the L2 cache. If the line

is in Exclusive, Modified, or Forwarding state [23], then a copy of

the line is immediately forwarded to the requesting processor. Also,

an update message is sent to the directory indicating the new sharing

state of the cache line. If the line must be invalidated (i.e., due to

request for exclusive ownership), an Ack message is sent back to the

requesting processor after invalidation. Otherwise, the cache replies

with a Nack message.

• The requesting node will receive responses from the predicted

nodes, and also from the directory in case the request was for exclu-

sive ownership (write or upgrade miss). Upon receiving data, the

controller will perform line replacement as usual and, if the request

was a read, the miss will be completed. If the request was for exclu-

sive ownership, then it will be completed only after the response from

the directory and the necessary invalidation Acks from the correctly

predicted sharers have arrived (if any). Given that the directory is

always aware of the prediction result and can proceed as normal on

mispredictions, it is unnecessary for the requesting node to reissue

requests.

4.6. Discussion on SP-Table Implementation
SP-table can be implemented either in system software or hardware.

In the former case, the table is statically allocated at boot time by

the OS and kept at a certain memory location. Every sync-point will

invoke a trap to the OS, which will handle all necessary operations

on SP-table and return a predictor for the upcoming sync-epoch. In a

hardware embodiment, a slice of SP-table can be integrated with the

L2 cache controller on each processor and hold the information spe-

cific to that processor. Table entries that are shared by all processors

(for lock sync-points) could be either located at a centralized location

2More details on how the protocol handles race conditions and conflicts
can be found in similar extensions [2, 3, 8, 43].

Parameter Value

Proc. model in-order

Issue width 2

L2 Cache (private)

Line size 64 B

Size/Assoc. 1 MB, 8-way

Tag latency 2 cycles

Data latency 6 cycles

Repl. policy LRU

Parameter Value

L1 I/D Cache

Line size 64 B

Size/Assoc. 16 KB, 1-way

Load-to-Use lat. 2 cycles

Network-on-Chip

Topology 4×4 2D mesh

Router 2-stage pipeline

Main mem. lat. 150 cycles

Table 4: Simulated machine architecture configuration.

on chip, or distributed across the slices in an address-interleaved

fashion. All implementations assume that the sync-point’s PC, lock

address and the processor ID can be extracted at the processor, and the

necessary information can be piggybacked and transferred between

the hardware and software components involved.

SP-table has fairly low space requirements. Each slice requires as

many entries as the number of static sync-points in an application,

which is generally small (≤ 30 + 2∼3 entries as shared portion).

Each entry may hold more than one signatures, depending on the

history depth (we allow no more than two in our evaluation). The

length of the signature (in bits) is equal to the number of processors

(e.g., 16-bits for a 16-core CMP). Each entry also has a 32- or 64-bit

tag (PC) depending on the machine’s architecture and an additional

bit indicating whether the entry is shared, i.e., a lock. Although each

SP-table slice is considered to work as fully-associative, a smaller

set-associativity array is also possible without much cost from set

conflicts. A 2 KB aggregate SP-table is adequate to hold all necessary

information for even the most demanding applications (including 32-

bit tags). As we will discuss later in Section 5, this size is significantly

smaller compared to address- or instruction-based tables.

The location and management of SP-table is an implementation

choice that has no significant performance implications, since it is

small and accessed relatively infrequently (only on sync-points). A

hardware implementation would generally be more appropriate if

sync-epochs are short, e.g., the application has very fine-grain locking.

In general, the SP-table design should be dictated by both the design

goals and the target application domain.

5. Evaluation
5.1. Methodology
To evaluate the performance of the proposed predictor, we extend

the system described in Section 3.2 with detailed timing models for

cache hierarchy and interconnect. The target system is a 16-core

tiled CMP with a 4×4 2D mesh network-on-chip (NoC), similar to

models used in recent studies and commercial developments [12, 46].

Each tile incorporates a processor core that has two levels of private

caches, coherence logic, and a NoC router. Coherence is maintained

through a distributed directory-based MESIF coherence protocol with

some extensions as described in Section 4.5. The NoC operates at

the processor core frequency and is a wormhole-switched network

with deterministic X-Y routing and Ack/Nack flow control. Table 4

summarizes our architecture configuration parameters.

For the SP-table, we consider a distributed hardware implemen-

tation and each entry can hold no more than two signatures (d = 2).

The SP-table is accessed only on sync-points and the access latency

is rarely in the critical path. Updates on communication counters

complete in a single cycle, and we account four cycles for extract-

ing a hot communication set. We present the performance of the

SP-predictor with respect to the baseline directory protocol and a

357

0

20

40

60

80

100

when d = 0 when d = 2 when Lock w/ recovery Ideal Case

%
 C

om
m

un
ic

at
in

g
M

is
se

s

fm
m lu

oc
ea

n

ra
dio

sit
y

wat
er

−n
s

ch
ole

sk
y fft

ra
dix

wat
er

−s
p

bo
dy

tra
ck

flu
ida

nim
at

e

str
ea

m
clu

ste
r

vip
s

fac
es

im
fer

re
t

de
du

p
x2

64

av
er

ag
e

Figure 7: SP-prediction accuracy: Percentage of communicating misses that
avoid indirection to the directory.

broadcast protocol. Results consider both serial and parallel sections,

although the predictor is effective only during parallel sections. To

fairly evaluate a broadcast snoop-based protocol, we assume a totally

ordered interconnect with the same configuration as the one with

directory. At the end, we compare our prediction approach against

a simple locality-based predictor and state-of-the-art address- and

instruction-based destination set predictors [36].

5.2. Prediction Effectiveness
Prediction is correct when the predicted set is sufficient to satisfy a

communicating miss, i.e., a superset of the sharing information in the

directory. The size of the predicted set—which is the size of the hot

communication set in our case—creates a trade-off between predic-

tion accuracy and bandwidth waste. The fewer the cores included in

the predicted set, the less the probability to communicate with the

correct cores(s) for each request. On the other hand, the more cores

in the predicted set, the more redundant messages will be sent, and

hence the more bandwidth will be added on the interconnect. In our

evaluated scheme, the size of the hot communication set depends

on the communication locality of each sync-epoch as explained in

Section 3.3, and adapts to the changing communication patterns as

described in Section 4.4.

Figure 7 shows the percentage of communicating requests pre-

dicted correctly. On average, the SP-predictor correctly predicts and

eliminates indirection to the directory for 77% of all communicating

requests, with 98% (x264) and 59% (radiosity) as the best and the

worst case, respectively. The crosses indicate the accuracy that the

SP-predictor could obtain ideally, if the hot communication set for

each sync-epoch was known a priori. The gap between the actual

and the ideal accuracy comes from the lack of predictability in some

sync-epoch instances and the sensitivity level of the recovery mecha-

nism. This gap may be bridged somewhat if off-line profiling offers

initial prediction information and the sensitivity level is adjusted

dynamically.

The percentage breakdown indicates the prediction accuracy when

different information was available to the SP-predictor. The bottom

stack accounts for correct predictions made when no information

from past sync-epoch instances was available. Such situations appear

in applications where major sync-epochs are not replayed (fft, radix

and ferret). In those cases, the predictor relies mostly on most recent

within-interval communication activity to predict miss targets. The

next two stacks correspond to misses correctly predicted based on

signatures from past sync-epochs, indicating separately those occur-

ring within critical sections. Applications with highly repeatable

sync-epochs such as ocean and streamcluster can take advantage of

the pattern-based prediction policy. Similarly, applications with fine-

locking such as water-ns and fluidanimate gain with highly accurate

BENCHMARK AVG. ACTUAL AVG. PREDICTED RATIO OF PREDICTED

TARGETS PER REQ. TARGETS PER REQ. TO ACTUAL

fmm 1.19 3.11 2.61

lu 1.01 2.46 2.46

ocean 1.08 3.15 2.94

radiosity 1.11 4.12 3.71

water-ns 1.41 2.53 1.80

cholesky 1.04 1.89 1.83

fft 1.01 2.37 2.36

radix 1.00 2.75 2.75

water-sp 1.58 2.75 1.75

bodytrack 1.13 2.8 2.49

fluidanimate 1.14 2.05 1.79

streamcluster 1.14 1.95 1.72

vips 1.01 2.06 2.05

facesim 1.04 2.56 2.47

ferret 1.01 1.14 1.13

dedup 1.10 2.34 2.15

x264 1.01 1.93 1.93

Table 5: Average actual and predicted set size.

predictions due to the ability of our predictor to retrieve the random

sequence in which threads execute the critical sections. On average,

those sync-epoch history-based predictions account for up to 40% in

prediction accuracy. Sync-epochs with unpredictable intervals will

eventually adapt their predictors based on the recovery mechanism

and correctly predict an additional 9% of requests on average.

Messages will be wasted if the predicted target set for a miss is

incorrect, or larger than the minimum sufficient target set. Table 5

summarizes the differences between the minimum and the predicted

average target set size. The minimum sufficient set size is generally

close to 1 since read requests—which are the majority—must always

contact only a single destination.3 By comparing separately the reads

and writes, we found that, on average, the predicted set includes 1.4

and 0.5 more targets per request respectively. More insight on how

the prediction affects the bandwidth demands is given by more detail

results presented later in this section.

The way the hot communication set is extracted (Section 3.3)

strongly affects the trade-off between latency and bandwidth. The

current policy leads to some bias towards higher bandwidth when

the locality is poor, since there are no strict bounds on the maximum

size of the set. In general, the policy can be tuned depending on

the design goals and requirements. For example, in a case where

bandwidth demands must be bounded to avoid exceeding a power

envelope, one could tune the policy to extract a hot set that does not

exceed a certain size.

5.3. Performance Results
Impact on miss latency. Correct predictions will satisfy misses with-

out paying the cost of indirection to the directory, thereby reducing

the average cache miss latency. Incorrect predictions are detected

by the directory, which will then satisfy the miss without noticeably

degrading the latency of the indirected miss. Figure 8 shows the

average miss latency achieved by the SP-predictor and the baseline

protocols. Average latency is calculated by treating each miss indi-

vidually, and results are normalized to the directory protocol. The

results show that on average, SP-prediction reduces miss latency by

13% relative to the directory protocol and attains up to 75% of what

the broadcast snooping protocol can achieve. Under the (true) as-

sumption that the NoC does not get severely congested, the broadcast

scheme approximates the ideal case in terms of miss latency.

The predictor predicts correctly and reduces the latency for both

read and write requests. A correctly predicted “read” has slightly

3The reported numbers assume a cache-to-cache transfer request for clean data to
have a sufficient set size of 1, which is not necessarily true in a MESIF protocol [23].

358

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Base Directory Broadcast SP−predictor

M
is

s
La

te
nc

y
(N

or
m

al
iz

ed
)

fm
m lu

oc
ea

n

ra
dio

sit
y

wat
er

−n
s

ch
ole

sk
y fft

ra
dix

wat
er

−s
p

bo
dy

tra
ck

flu
ida

nim
at

e

str
ea

m
clu

ste
r

vip
s

fac
es

im
fer

re
t

de
du

p
x2

64

av
er

ag
e

Figure 8: Average miss latency. (Note: Y-axis starts at 0.4.)

0

10

20

30

40

0

10

20

30

40

non−communicating misses
communicating misses

%
 A

dd
iti

on
al

 B
an

dw
id

th

fm
m lu

oc
ea

n

ra
dio

sit
y

wat
er

−n
s

ch
ole

sk
y fft

ra
dix

wat
er

−s
p

bo
dy

tra
ck

flu
ida

nim
at

e

str
ea

m
clu

ste
r

vip
s

fac
es

im
fer

re
t

de
du

p
x2

64

av
er

ag
e

Figure 9: Additional bandwidth demands of SP-prediction relative to the
base directory protocol.

higher impact compared to a correctly predicted “write”, as writes

may have multiple targets to reach and wait for acknowledgments.

Also, the prediction accuracy slightly declines as the number of the

targets increases. Nevertheless, write requests with multiple targets

are generally a small fraction of the overall misses, and their impact

on the overall reductions in latency is limited.

Marginal improvements in some applications (e.g., lu, radix) are

due to the limited fraction of communicating misses (recall Figure 1).

The smaller this fraction is, the fewer the opportunities for latency

reduction. Moreover, the high miss latency of non-communicating

misses (i.e., off-chip misses) will, in the end, overshadow the improve-

ments coming from accelerating on-chip, communicating misses. A

quick look at how this fraction varies across the applications directly

explains why the miss latency reduction is limited for each applica-

tion. Note that this also limits the effectiveness of the broadcasting

scheme. It is generally possible for a larger cache size to elevate the

fraction of communicating misses for memory bound applications,

and hence increase the impact of the predictor to the miss latency re-

duction. Sensitivity analysis of cache parameters and workload input

sizes (not reported in this work) have shown expected observations

and trends.

Impact on bandwidth requirements. To measure the impact of

target prediction on bandwidth, we track the number of bytes trans-

mitted on the NoC due to L2 cache misses. These include request

messages to predicted cores, request and update messages to the di-

rectory, and control and data responses. Figure 9 shows the additional

average bandwidth requirements of a coherence request, relative to

those of the baseline directory protocol. The results show that SP-

prediction increases the bandwidth requirements by 18% compared

to the baseline. The snooping protocol would have the highest band-

width demands since messages are broadcast to all targets on each

miss, whereas the directory protocol essentially approximates the

ideal case possible. Overall, SP-prediction keeps its additional band-

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Base Directory Broadcast SP−predictor

E
xe

cu
tio

n
T

im
e

(N
or

m
al

iz
ed

)

fm
m lu

oc
ea

n

ra
dio

sit
y

wat
er

−n
s

ch
ole

sk
y fft

ra
dix

wat
er

−s
p

bo
dy

tra
ck

flu
ida

nim
at

e

str
ea

m
clu

ste
r

vip
s

fac
es

im
fer

re
t

de
du

p
x2

64

av
er

ag
e

Figure 10: Execution time. (Note: Y-axis starts at 0.4.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Base Directory Broadcast SP−predictor

E
ne

rg
y

(N
or

m
ili

ze
d)

fm
m lu

oc
ea

n

ra
dio

sit
y

wat
er

−n
s

ch
ole

sk
y fft

ra
dix

wat
er

−s
p

bo
dy

tra
ck

flu
ida

nim
at

e

str
ea

m
clu

ste
r

vip
s

fac
es

im
fer

re
t

de
du

p
x2

64

av
er

ag
e

Figure 11: Energy consumed on NoC and cache lookups.

width requirements below 10% of what the broadcasting protocol

would additionally demand to the baseline directory protocol (the

actual bars for broadcasting are not shown due to the very large

difference).

Much of the additional bandwidth comes from the (always unfor-

tunate) attempts to predict non-communicating misses. This portion

is shown by the bottom stack and accounts for 70% of the overhead.

Applications with a large fraction of non-communicating misses will

therefore increase the bandwidth demands with no positive return

in latency. Prior work has shown that most of such attempts can

be detected and avoided by simple snoop filtering [38]. For exam-

ple, a simple low cost TLB-based snoop filter can detect ∼75% of

them [17]. Thus, the use of orthogonal techniques can substantially

reduce the associated bandwidth overheads without compromising

the latency improvements.

Impact on execution time. Figure 10 depicts the overall improve-

ments in execution time as a result of reducing miss latency. SP-

prediction improves the execution time by 7% on average, with x264

seeing the best improvement (14%). Depending on the interconnect

design and control parameters, an excessive traffic could congest the

network and affect the performance negatively. In our simulated sys-

tem, congestion levels remain low for both, the prediction-augmented

directory protocol and base broadcast protocol. Marginal negative

impact was observed for broadcasting only in applications with very

small fraction of communicating misses.

Impact on energy. We estimate the energy impact of SP-prediction

using an intuitive analytical model that considers the dynamic energy

consumed on the interconnect and L2 cache snoops. For the network,

we assume that the energy consumed is proportional to the amount

of data transferred [4]. We also assume that the energy consumed in

a router is four times that consumed in the link. For cache snoops,

a single cache tag lookup energy is estimated using CACTI [21],

assuming a 32nm technology. Figure 11 presents the normalized

359

�

0 20 40 60 80 100

0
20

40
60

80
10

0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n

fmm

�

0 20 40 60 80 100

0
20

40
60

80
10

0
% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n

ocean

�

0 20 40 60 80 100

0
20

40
60

80
10

0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n

fluidanimate

�

0 20 40 60 80 100

0
20

40
60

80
10

0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n

dedup

�

SP−predictor
ADDR−predictor
INST−predictor
UNI−predictor
Directory

Figure 12: Performance/bandwidth trade-off comparison: The lower-left corner represents the best point on the trade-off space. The results are expressed
relative to the directory-based protocol, which is indicated with a “cross” symbol at the upper-left corner.

�

0 20 40 60 80 100

0
20

40
60

80
10

0

% Additional Bandwidth per miss

%
 M

is
se

s
in

cc
ur

in
g

in
di

re
ct

io
n �

SP−predictor
ADDR−predictor
INST−predictor
UNI−predictor
Directory

unlimited size
4KB

�

Averages

Figure 13: The effect of space requirements to prediction performance: SP-
prediction and UNI-prediction are not affected since they have sig-
nificantly lower space requirements.

results. Enabling SP-prediction over a directory protocol increases

the energy requirements on network and cache lookups by 25%

in total. Yet, this is substantially less compared with the energy

requirements of snoop broadcasting (2.4×). Considering that a large

fraction of traffic and snoop overhead could be filtered, as discussed

previously, the new energy demands could be brought down to below

8%.

5.4. Comparison with other Predictors
We compare SP-prediction with address- and instruction-based pre-

diction, implemented according to the “group” destination set predic-

tion model proposed by Martin et al. [36]. In addition, we compare

with a simple locality-based predictor that uses no index, i.e., predicts

simply based on the coherence activity of previous misses, indepen-

dent of their address or instruction. For abbreviation we will refer

to them as ADDR-, INST-, and UNI-prediction, respectively. The

ADDR and INST prediction models use both external coherence

requests and coherence responses to train a predictor for each data

block or instruction. The UNI predictor uses only the coherence

responses, i.e., it is trained based on the targets of previous misses by

the same core.

All the predictors return a group of possible sharers, aiming high

prediction accuracy while making best efforts to keep the bandwidth

requirements small4. Each predictor entry incorporates a two-bit

counter per core that accumulates the recent activity towards each

4Other prediction policies such as “owner” or “group/owner” can also be used and
fairly compared as far as all predictors are tuned to the same base policy.

destination, and a train-down mechanism which ensures that the

predictor eventually removes inactive destinations [36]. For a 16-

core machine, each group predictor entry requires a total of 37 bits

(tag not included): 32 bits for the train-up counters and a 5-bit roll-

over counter for the train-down purposes. For SP-prediction, we

consider an SP-table with two signatures per entry (total of 33 bits)

as a fair setting for comparison. Note that SP-prediction requires

also a set of communication counters (1-byte each) and a predictor

register, which account for a fixed cost of 17 bytes per core.

Each predictor represents a point in the trade-off between latency

and bandwidth. To effectively visualize this trade-off, we plot results

on a two dimensional plane (Figures 12, 13). The horizontal dimen-

sion represents request bandwidth per miss (as additional to that

of the based directory). The vertical dimension represents latency,

measured as the percent of misses that require indirection. The cho-

sen metrics provide a desirable level of detail for deriving insightful

results for the performance of the predictors under consideration.

Figure 12 displays the results for the four predictors in four dif-

ferent applications for illustration. The results assume predictors

with an infinite number of table entries for their indexed tables, i.e.,

they do not consider space efficiency. Overall, SP-prediction lays

in the trade-off plane comparably to address- and instruction-based

prediction. Among the examples, fmm presents a case in which

SP-prediction outperforms all other predictors, achieving both higher

accuracy and lower bandwidth. In contrast, dedup presents a counter

case, where SP-prediction is weaker on the accuracy dimension. Ac-

curacy levels between ADDR and INST appear to be similar, with the

ADDR-predictor having more tendency towards lower bandwidth re-

quirements. UNI-prediction is shown to have lower accuracy, which

also negatively affects the bandwidth demands since incorrect predic-

tions place unnecessary messages on the interconnect.

Each scheme has, however, a very different space demands to meet

the illustrated maximum performance. A perfect ADDR-prediction

scheme suggests storage requirements in proportion to the size of

the memory blocks, which is prohibitively large. Common practice

is for ADDR to consider, instead, predictors per macro block (e.g.,

256-bytes in our implementation). This reduces the maximum space

requirements, and also improves further the predictor by capturing

spatial locality. However, even with macro-blocks, the number of

entries required to achieve the maximum performance is in the order

of Kilo. INST has been promoted for its low storage needs; how-

ever, it requires significantly more table entries than the SP-table

(equal to static load/stores). UNI-prediction requires only a single

prediction entry and represents the cheapest possible solution. The

SP-prediction’s storage requirements are inherently bounded by the

360

number of static sync-points of the application as shown in Table 1.

This corresponds to substantially lower space demands compared to

ADDR and INST. Assuming that the SP-table is easily implementable

in the software layer, its hardware space requirements can be largely

eliminated, reaching those of UNI-predictor.

To evaluate the sensitivity of the predictors to space requirements,

we implement them with limited number of table entries. Figure 13

compares the performance of different predictors when table entries

go from unlimited to a finite number of 512 (∼4KB of storage space).

To simplify the illustration, we show only the average results for each

predictor, over all the studied applications. The results indicate that

limited space yields lower accuracy for ADDR and INSTR compared

to SP-prediction. Nonetheless, they present a corresponding decrease

in bandwidth, since prediction is attempted on fewer misses.

The prediction performance per space requirements is in a sense

the measure of how well the prediction information is encoded, or in

other words, the measure of a predictor’s space efficiency and cost.

Considering that SP-prediction requires significantly smaller storage

than ADDR and INST, we argue that the reported small performance

differences are insignificant when space and power requirements

are a primary design constraint, as is the clear case in modern and

emerging CMP implementations [19]. In conclusion, from the space

requirements perspective, an SP-predictor with ∼256 entries can

achieve performance equivalent to INST with ∼1K entries, or macro-

block ADDR with ∼8K entries, on average.

5.5. Discussion
Predictor’s power consumption comparison. Prediction tables

consume static and dynamic power. Static power is proportional

to the table size, which is substantially smaller with SP-prediction.

Dynamic power is primarily affected by the associativity, and the

access frequency of the predictor tables. While the ADDR and INST

access their tables on every miss, SP-predictor keeps the prediction

set in a single register, and accesses the SP-table for updates only on

sync-points. This directly translates into power savings. Based on an

overall observation, the SP-table would be accessed once for every

∼300 accesses of an ADDR- or INST-based table.

Thread migration. So far we have assumed that communication

signatures and predictors consist of bit vectors representing target

physical cores. If thread movements are allowed between cores, then

those representations should track a “logical core-ID” (e.g., thread-id)

rather than physical ID. The logical-to-physical destination mapping

must be known at the core side, and could be applied before or after

the formation of the predictor, depending on the coherence controller

implementation.

Projections for commercial workloads. Database, server, and OS

workloads are mostly based on lock synchronization and as a result

have less regular and predictable communication patterns [42]. The

proposed SP-predictor can effectively predict the communication

activity within critical sections since it can retrieve communication

signatures on lock points that include the cores (or the sequence of

cores) holding the lock previously in time. Results from applications

with a high count of critical sections (e.g., fluidanimate and water-ns)

show high prediction accuracy for the misses occurring within critical

sections (Figure 7). Therefore, although we have not performed

experiments on such workloads, we expect our predictor to work

reasonably well.

6. Related Work
Address and instruction-based indexing have been the basis of hard-

ware coherence predictors [27,28,31,39]. In the context of destination

set prediction, Acacio et al. [2] studied a two-level owner predictor

where the first level decides whether to predict an owner and the sec-

ond level decides which node might be the owner. In a similar work,

they study a single-level design to predict sharers for an upgrade

request [3]. Bilir et al. [8] studied multicast snooping using a “Sticky

Spatial” predictor. Martin et al. [36] explored different policies for

destination set predictors to improve the latency/bandwidth trade-off

under ordered interconnects. Other studies have further explored the

impact of predictor caches [40] and perceptron-based predictors [34].

There have been numerous other efforts to improve coherence per-

formance. Many protocols were developed or extended to optimize

for specific sharing patters, such as pairwise sharing [22], migratory

sharing [13, 44], producer-consumer sharing [11] and some mix of

those [20]. Dynamic self-invalidation was proposed to eliminate

the invalidation overhead [31,33]. Alternatively, software-driven ap-

proaches have proposed programming models or utilized compilers

to effectively prefetch or forward shared data to reduce miss laten-

cies [1, 29, 47]. A thorough characterization of data sharing patterns

and inter-processor communication behavior in emerging workloads

is presented in a work by Barrow et al. [5].

More recent work has exploited properties relevant to CMP archi-

tectures to accelerate coherence, such as core proximity and fast and

flexible on-chip interconnect. Brown et al. [9] describe an extension

to the directory-based coherence protocol where requests are first sent

to neighboring cores. Barrow et al. [6] propose adding new dedicated

links for forwarding the requests to the nearby caches, delegating

directory functions in case of proximity hits. Various other propos-

als, such as Token Coherence [37], examine novel approaches on

maintaining coherence in unordered interconnects without requiring

directory indirection. Eisley et al. [16] propose to embed directories

within the network routers that manage and steer requests towards

nearby sharers. Jerger et al. [18] propose a virtual tree structure to

maintain coherence in an unordered interconnect, with the root of

the tree acting as an ordering point for requests. In Circuit-Switch

Coherence [25], the same authors show how coherence predictors

can leverage existing circuits to optimize pairwise sharing between

cores. Similar to virtual tree coherence, DiCo-CMP [41] delegates

directory responsibilities to the owner caches.

Synchronization points have also been utilized by other recently

proposed techniques to direct hardware-level optimization. In Barri-

erWatch [14], the authors identify the relation between barriers and

time-varying program behavior and propose the use of this relation

to guide run-time optimizations in CMP architectures. Under the

MPI model, Ioannou et al. [24] propose tracking MPI calls to guide

phase-based power management in Intel’s MPI Cloud processor re-

search prototype. In heterogeneous architectures, locks and other

synchronization points may trigger scheduling/migration actions to

accelerate critical sections [45] and other critical bottlenecks [26].

Work on memory scheduling for parallel applications has also made

use of loop-based synchronization to effectively manage inter-thread

DRAM interference [15]. Lastly, exposing shared-memory synchro-

nization primitives to the hardware has been the underlying support

for software based coherence enforcement, e.g., [10].

7. Conclusions
This paper proposed and studied Synchronization Point based Co-
herence Prediction (SP-Prediction), a novel run-time technique for

predicting communication destinations of misses in cache-coherent

shared-memory systems. SP-prediction employs mechanisms that

capture synchronization points at run time, track the communication

361

activity between them, and extract simple communication signatures

that guide target prediction for future misses. SP-prediction is sub-

stantially simpler than existing techniques because it exploits the

inherent characteristics of an application to predict communication

patterns. Compared with address- and instruction-based predictors,

SP prediction requires smaller area and consumes less energy while

achieving comparative high accuracy. We anticipate that the syn-

chronization point driven prediction approach could be applicable

to further communication optimization cases, and this work will be

basis for future investigation towards this direction.

Acknowledgments
We thank our shepherd Prof. Milos Prvulovic, members of Pitt’s

XCG (formerly CAST) group, and the anonymous reviewers for their

constructive comments and suggestions. This work was supported

in part by the US NSF grants: CCF-1064976, CCF-1059283 and

CNS-1012070.

References

[1] H. Abdel-Shafi et al., “An evaluation of fine-grain producer-initiated
communication in cache-coherent multiprocessors,” in Proc. of the 3rd
IEEE Symp. on High-Performance Computer Architecture, 1997.

[2] M. E. Acacio et al., “Owner prediction for accelerating cache-to-cache
transfer misses in a CC-NUMA architecture,” in Proc. of Conf. on
Supercomputing, 2002.

[3] ——, “The use of prediction for accelerating upgrade misses in CC-
NUMA multiprocessors,” in Proc. Int’l Conf. on Parallel Architectures
and Compilation Techniques, 2002.

[4] A. Banerjee et al., “An energy and performance exploration of network-
on-chip architectures,” IEEE Trans. Very Large Scale Integr. Syst., 2009.

[5] N. Barrow-Williams et al., “A communication characterisation of
SPLASH-2 and PARSEC,” in Proc. Int’l Symp. on Workload Char-
acterization, 2009.

[6] ——, “Proximity coherence for chip multiprocessors,” in Proc. Int’l
Conf. on Parallel Aarchitectures and Compilation Techniques, 2010.

[7] C. Bienia et al., “The PARSEC benchmark suite: characterization and
architectural implications,” in Proc. Int’l Conf. on Parallel Architectures
and Compilation Techniques, 2008.

[8] E. E. Bilir et al., “Multicast snooping: a new coherence method us-
ing a multicast address network,” in Proc. Int’l Symp. on Computer
Architecture, 1999.

[9] J. A. Brown et al., “Proximity-aware directory-based coherence for
multi-core processor architectures,” in Proc. Int’l Symp. on Parallel
Algorithms and Architectures, 2007.

[10] J. B. Carter et al., “Implementation and performance of munin,” in Proc.
Int’l Symp. on Operating Systems Principles, 1991.

[11] L. Cheng et al., “An adaptive cache coherence protocol optimized for
producer-consumer sharing,” in Proc. of the Int’l Symp. on High Perfor-
mance Computer Architecture, 2007.

[12] S. Cho and L. Jin, “Managing distributed, shared l2 caches through
os-level page allocation,” in Proc. Int’l Symp. on Microarchitecture,
2006.

[13] A. L. Cox and R. J. Fowler, “Adaptive cache coherency for detecting
migratory shared data,” in Proc. of the 20th Int’l Symp. on Computer
Architecture, 1993.

[14] S. Demetriades and S. Cho, “Barrierwatch: characterizing multithreaded
workloads across and within program-defined epochs,” in Proc. of the
8th ACM Int’l Conf. on Computing Frontiers, 2011.

[15] E. Ebrahimi et al., “Parallel application memory scheduling,” in Proc.
of the 44th Annual IEEE/ACM Int’l Symp. on Microarchitecture, 2011.

[16] N. Eisley et al., “In-network cache coherence,” in Proc. Int’l Symp. on
Microarchitecture, 2006.

[17] M. Ekman et al., “TLB and snoop energy-reduction using virtual caches
in low-power chip-multiprocessors,” in Proc. of the 2002 Int’l Symp. on
Low power electronics and design, 2002.

[18] N. D. Enright Jerger et al., “Virtual tree coherence: Leveraging regions
and in-network multicast trees for scalable cache coherence,” in Proc.
Int’l Symp. on Microarchitecture, 2008.

[19] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore scaling,”
in Proc. of the 38th annual Int’l Symp. on Computer architecture, 2011.

[20] H. Hossain et al., “Improving support for locality and fine-grain sharing
in chip multiprocessors,” in Proc. Int’l Conf. on Parallel Architectures
and Compilation Techniques, 2008.

[21] http://quid.hpl.hp.com:9081/cacti/, “CACTI 5.3.”
[22] IEEE Computer Society, “IEEE standard for scalable coherent interface

(SCI).” 1992.
[23] Intel Co., “MESIF protocol,” uS Patent 6922756.
[24] Ioannou and et al, “Phase-based application-driven hierarchical power

management on the single-chip cloud computer,” in Proc. of the Int’l
Conf. on Parallel Architectures and Compilation Techniques, 2011.

[25] N. D. E. Jerger et al., “Circuit-switched coherence,” in IEEE 2nd Net-
work on Chip Symp., 2008.

[26] J. A. Joao et al., “Bottleneck identification and scheduling in mul-
tithreaded applications,” in Proc. of the Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems, 2012.

[27] S. Kaxiras and C. Young, “Coherence communication prediction
in shared-memory multiprocessors,” in Proc. Int’l Symp. on High-
Performance Computer Architecture, 2000.

[28] S. Kaxiras and J. Goodman, “Improving CC-NUMA performance using
instruction-based prediction,” in Proc. Int’l Symp. on High-Performance
Computer Architecture, 1999.

[29] D. A. Koufaty et al., “Data forwarding in scalable shared-memory
multiprocessors,” in Proc. Int’l Conf. on Supercomputing, 1995.

[30] A. Lai and B. Falsafi, “Memory sharing predictor: The key to a specu-
lative coherent DSM,” in Proc. Int’l Symp. on Computer Architecture,
1999.

[31] ——, “Selective, accurate, and timely self-invalidation using last-touch
prediction,” in Proc. Int’l Symp. on Computer Architecture, 2000.

[32] J. Laudon and D. Lenoski, “The SGI Origin: A CC-NUMA highly
scalable server,” in Proc. Int’l Symp. on Computer Architecture, 1997.

[33] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors,” in Proc. Int’l
Symp. on Computer Architecture, 1995.

[34] S. Leventhal and M. Franklin, “Perceptron based consumer prediction
in shared-memory multiprocessors,” in Int’l Conf. on Computer Design,
2006.

[35] P. S. Magnusson et al., “Simics: A full system simulation platform,”
IEEE Computer, 2002.

[36] M. M. K. Martin et al., “Using destination-set prediction to improve the
latency/bandwidth tradeoff in shared-memory multiprocessors,” in Proc.
Int’l Symp. on Computer Architecture, 2003.

[37] ——, “Token coherence. decoupling performance and correctness,” in
Proc. of the 30th Annual Int’l Symp. on Computer Architecture, 2003.

[38] A. Moshovos, “Regionscout: Exploiting coarse grain sharing in snoop-
based coherence,” in Proc. Int’l Symp. on Computer Architecture, 2005.

[39] S. Mukherjee and M. Hill, “Using prediction to accelerate coherence
protocols,” in Proc. Int’l Symp. on Computer Architecture, 1998.

[40] J. Nilsson et al., “The coherence predictor cache: a resource-efficient
and accurate coherence prediction infrastructure,” in Proc. of the Int’l
Parallel and Distributed Processing Symp., 2003.

[41] A. Ros et al., “A direct coherence protocol for many-core chip multipro-
cessors,” IEEE Trans. Parallel Distrib. Syst., 2010.

[42] S. Somogyi et al., “Memory coherence activity prediction in commercial
workloads,” in Workshop on Memory Performance Issues, 2004.

[43] D. J. Sorin et al., “Specifying and verifying a broadcast and a multicast
snooping cache coherence protocol,” IEEE Transactons on Parallel and
Distributed Systems, 2002.

[44] P. Stenström et al., “An adaptive cache coherence protocol optimized for
migratory sharing,” in Proc. of the Int’l Symp. on Computer Architecture,
1993.

[45] M. A. Suleman et al., “Accelerating critical section execution with
asymmetric multi-core architectures,” in Proc. of the Int’l Conf. on
Architectural Support for Programming Languages and Op. Syst., 2009.

[46] Tilera Co. and http://www.tilera.com, “Tilera TILE64 processor.”
[47] P. Trancoso and J. Torrellas, “The impact of speeding up critical sections

with data prefetching and forwarding,” in Proc. Int’l Conf. on Parallel
Processing, 1996.

[48] S. C. Woo et al., “The SPLASH-2 programs: characterization and
methodological considerations,” in Proc. Int’l Symp. on Computer Ar-
chitecture, 1995.

362

Vulcan: Hardware Support for Detecting
Sequential Consistency Violations Dynamically ∗

Abdullah Muzahid†, Shanxiang Qi, and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

Abstract
Past work has focused on detecting data races as proxies for Se-

quential Consistency (SC) violations. However, most data races do

not violate SC. In addition, lock-free data structures and synchro-

nization libraries sometimes explicitly employ data races but rely

on SC semantics for correctness. Consequently, to uncover SC vio-

lations, we need to develop a more precise technique.

This paper presents Vulcan, the first hardware scheme to pre-

cisely detect SC violations at runtime, in programs running on a

relaxed-consistency machine. The scheme leverages cache coher-

ence protocol transactions to dynamically detect cycles in memory-

access orders across threads. When one such cycle is about to occur,

an exception is triggered. For the conditions considered in this pa-

per and with enough hardware, Vulcan suffers neither false positives

nor false negatives. In addition, Vulcan induces negligible execu-

tion overhead, requires no help from the software, and only takes as

input the program executable. Experimental results show that Vul-

can detects three new SC violation bugs in the Pthread and Crypt

libraries, and in the fmm code from SPLASH-2. Moreover, Vul-

can’s negligible execution overhead makes it suitable for on-the-fly

use.

1. Introduction
The model that programmers have in mind when they program

and debug shared-memory threads is Sequential Consistency (SC).

SC requires the memory operations of a program to appear to ex-

ecute in some global sequence as if the threads where multiplexed

on a uniprocessor [18]. In practice, however, current hardware over-

laps, pipelines, and reorders the memory accesses of threads. As a

result, a program’s execution can be unintuitive.

As an example, consider Figure 1(a). Processor PA allocates a

variable and then sets a flag; later, PB tests the flag and, if set, it

uses the variable. While the particular interleaving in Figure 1(a)

produces expected results, the interleaving in Figure 1(b) does not.

In here, the hardware reorders the completion of the stores in the

two statements in PA. In this unlucky interleaving, PB ends up

using an unallocated variable. This order is an SC Violation (SCV).

From the hardware point of view, several conditions must be met

for an SCV to occur. First, we need to have at least two data races —

i.e., races on variables buff and init in the example. Secondly, these

races must be of a very special type: they must be overlapping in

time and intertwined in a manner that can form a cycle [30]. For

two threads, it requires a pattern like that in Figure 2(a) where, if

we follow program order, the two threads reference the same two

∗ This work was supported in part by the National Science Foundation under

grants CNS 0720593, CCF 1012759 and CNS 1116237, and by Intel under

the Illinois-Intel Parallelism Center (I2PC).
†Abdullah Muzahid is now with the University of Texas at San Antonio. His

e-mail address is muzahid@cs.utsa.edu.

A1: init=TRUE

A0: buff=malloc()

A1: init=TRUE

B0: if (init)

B1: ...=buff

(b)

B0: if (init)

B1: ...=buff

(a)

P P P P
A B A B

A0: buff=malloc()

Figure 1. Example of an SC violation.

variables in opposite orders, and each variable is written at least

once. Finally, the order of the references in these two racing pairs

has to form a cycle at runtime. This is shown in Figure 2(b), where

we have arbitrarily picked reads and writes: A1 must occur before

B0 and B1 must occur before A0. This is exactly what happened in

Figure 1(b), where y was init and x was buff.

Dependence edge
(Source to destination)
Program order edge

B0: rd y

B1: rd x

A0: wr x

A1: wr y

(b)

(a)

A0: ref(x) B0: ref(y)

A1: ref(y) B1: ref(x)

A0: wr x B0: rd y

B1: rd xA1: wr y

(c)

P P P P

P P

A B A

A

B

B

Figure 2. SC violations are possible.

Note, however, that if the timing at runtime is such that at least

one of the two dependence arrows occurs in the opposite direction,

there is no SCV. For example, Figure 2(c) shows the case when A1
executed before B0 but A0 executed before B1. Since there is no

cycle, SC is not violated. This case corresponds to the timing in

Figure 1(a).

Data race patterns that cause SCVs are sometimes found in

double-checked locking constructs [29], some synchronization li-

braries, and code for lock-free data structures.

Detecting SCVs is important because, in practically all cases,

they are harmful, clear-cut bugs. The reason is that, as the exam-

ple in Figure 1(b) shows, they require memory access orders that

contradict a programmer’s intuition. In addition, the programmer

cannot reproduce them using a single-stepping debugger.

Past work has attempted to find SCVs by focusing on detecting

data races (e.g., [4, 9, 15, 16, 23, 24, 32]). However, as we just saw,

using data races as proxies for SCVs is very imprecise. The specific

race pattern and interleaving required for an SCV is not necessarily

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.41

363

common. In large commercial codes, conventional race-detection

tools typically flag many data races, often causing the programmer

to spend time examining races that are much less likely to cause

code malfunctioning than SCVs [13, 26].

A second reason for not using data races as proxies is that we

may want to find SCVs in codes that have intentional data races,

such as in lock-free data structures. We may want to debug the

code for SCVs, while being less concerned about non-SC-violating

races. Here, a race-detection tool would not be a good instrument

to use. If we want to detect SCVs, we need to precisely zero-in on

the types of data races and interleavings that cause them.

Given the importance of these bugs and the difficulty in iso-

lating them, this paper contributes with Vulcan, the first hardware

scheme to precisely detect SCVs at runtime, in programs running

on a relaxed-consistency machine. Vulcan leverages cache coher-

ence protocol transactions to dynamically detect cycles in memory

access orders across threads. When a cycle is about to occur, an

exception is triggered, providing information to debug the SCV.

The Vulcan design in this paper focuses on finding cycles of

overlapping races between only two processors — since cycles in-

volving three and more processors are much rarer. In addition, it

does not consider speculative loads from mispredicted branch paths.

Moreover, it is not concerned with SCVs due to compiler transfor-

mations — Vulcan only reports SCVs due to hardware-initiated ref-

erence reordering. Within these constraints, and with large-enough

hardware structures, Vulcan suffers neither false positives nor false

negatives.

Vulcan’s approach has several advantages: it induces negligible

execution overhead, requires no help from the software, and only

takes as input the program executable. Experimental results show

that Vulcan detects three new bugs in popular codes. Specifically,

it finds SCVs in the Pthread and Crypt libraries, and in the fmm

program from SPLASH-2. We have reported the bugs to the devel-

opers. In addition, Vulcan’s negligible execution overhead makes it

suitable for on-the-fly use.

We also contribute with a new taxonomy of data races.

This paper is organized as follows: Section 2 gives a back-

ground; Section 3 introduces a taxonomy of data races; Sections 4

and 5 present Vulcan; Section 6 outlines its limitations; Section 7

evaluates Vulcan; and Section 8 discusses related work.

2. Background
A Sequential Consistency Violation (SCV) occurs when the

memory operations of a program have executed in an order that

does not conform to any SC interleaving. It is virtually always a

harmful bug, since it is the outcome of an unintuitive execution.

Moreover, it is difficult to debug because single-stepping debuggers

cannot reproduce it.

Shasha and Snir [30] show what causes an SCV: overlapping

data races where the dependences end up ordered in a cycle. Recall

that a data race occurs when two threads access the same memory

location without an intervening synchronization and at least one is

writing. Figure 2(a) showed the required program pattern for two

threads (where each variable is written at least once) and Figure 2(b)

showed the required order of the dependences at runtime (where we

assigned reads and writes to the references arbitrarily).

If at least one of the dependences occurs in the opposite direc-

tion (e.g., Figure 2(c)), no SCV occurs. In addition, if the code

of the two threads references the two variables in the same order

(Figure 3(a)), no SCV is possible — no matter how the hardware

reorders these references at runtime. For example, in Figure 3(b),

no SCV can occur, no matter the direction of the inter-thread de-

pendences.

A0: wr x B0: rd x

A1: wr y B1: rd y

A0: ref(x) B0: ref(x)

B1: ref(y)A1: ref(y)

(a)

(b)

P P

P P
A B

A B

Figure 3. SC violations are not possible.

Given the pattern in Figure 2(a), Shasha and Snir [30] prevent

the SCV by placing one fence between references A0 and A1, and

another between B0 and B1. Their algorithm to find where to put

the fences is called the Delay Set.

The commonly used Double-Checked Locking (DCL) [29] is a

major source of SCVs. This is a programming technique to reduce

the overhead of acquiring a lock by first testing the locking criterion

without actually acquiring the lock. Only if the test indicates that

locking is required does the actual locking logic proceed. The code

takes a structure like in Figure 1(a). Because the code is typically

involved, programmers often miss putting the two fences needed.

Data races and SCVs are very different, and programs have more

data races than SCVs. However, past work has focused on detecting

data races as proxies for SCVs. Specifically, one line of work de-

tects incoming coherence messages on data that has local outstand-

ing loads or stores. This work started with Gharachorloo and Gib-

bons [15] and now includes many aggressive speculative designs

(e.g., [4, 9, 16, 32]). Another line of work detects a conflict be-

tween two concurrent synchronization-free regions. This includes

DRFx [24] and Conflict Exceptions [23]. In general, all of these

works look for a data race with two accesses that occur within a

short time — but still, only a single race. Overall, while focusing

on these races may be a good way to discard many irrelevant ones, it

is still a very different problem than focusing on uncovering SCVs.

Other researchers have used the compiler to identify race pairs

that could cause SCVs, typically using the Delay Set algorithm, and

then insert fences to prevent cycles [12, 14, 17, 19, 31]. Since the

compiler has limited information, these approaches tend to be very

conservative and result in substantial slowdowns. Lin et al. [20]

hide much of the resulting fence delay with architectural support.

Lin et al. [21] have recently proposed a design to support SC

in a relaxed-consistency machine. While its goal is different than

Vulcan’s, it also involves the analysis of race cycles. We discuss

it in Section 8. Finally, in the program testing and verification do-

mains, there are proposals to detect SCVs by checking the seman-

tic correctness of programs, or by collecting traces and then, off-

line, applying reordering rules [6, 7, 8]. While such techniques are

promising, they are typically limited to small-sized codes and are

performed statically or as an off-line pass. Vulcan’s goal is to de-

tect SCVs in large codes on-the-fly and with negligible overhead.

More details on related work are presented in Section 8.

3. A Taxonomy of Data Races
To assess the relationship between data races and SCVs, we de-

velop a taxonomy of data races. We examined the bug databases of

364

popular programs such as Apache, MySQL, and Mozilla, and col-

lected all the data-race bugs we could find. Since these are races

reported by users, we know that they caused the program to mal-

function. Table 1 lists the applications and the number of reported

data races.

Application # Reported # Multi- # SCV # DCL
Data Races Races Races SCVs

Apache 24 5 5 5

MySQL 13 1 1 1

Mozilla 11 2 1 1

Redhat (glibc) 2 2 2 1

Java SDK 2 1 1 1

PostgreSQL 1 0 0 0

Pbzip2 1 from [33] 0 0 0

Windows kernel 1 from [13] 0 0 0

Isolator bench. 1 from Isolator [27] 0 0 0

Total 56 11 10 9

Table 1. Reported data races that we studied.

Overall, we found 56 reported race-based bugs. For each of

these bugs, if they contain more than one race, we call them Multi-
races; otherwise, we call them Single-races. In addition, if a multi-

race bug can create an SCV, we call it an SCV Race; otherwise it is

a Non-SCV Race. Finally, SCV races are classified into those that

are DCLs [29] and those that are not.

Table 1 shows the breakdown of the bugs per application. We

see that, of the total 56 reported race bugs, 11 are multi-races (20%).

Of these, 10 can cause SCVs (91%). The only one that, due to its

reference pattern cannot ever create an SCV is in Mozilla [2]. Of

the 10 SCV races, 9 are DCLs (90%).

It is well known from practical experience and from the litera-

ture [13, 26] that real programs contain many data races that users

and developers do not consider important enough to report or to fix.

Consequently, to put the previous numbers in context, we have to

assume that there is a potentially sizable number of additional, un-

reported data races. Therefore, we can build the tree of Figure 4(a),

which shows the frequency of each type of data race relative to

its parent’s. To visualize the frequency relative to all the race in-

stances, Figure 4(b) shows a diagram where the area is proportional

to the frequency of occurrence. Even if we do not know the actual

number of unreported data races, the figure suggests that previous

approaches that focus on data races as proxies for SCVs are insuf-

ficient.

Non�SCV
 Race
 (9%)

SCV
Race

(91%)

Single
Race
(80%)

Multi
Race
(20%)

Unreported
because less
important

Unreported
because less
important Single

Race
 (80%)

(a) (b)

Data Races

Reported

Data Races

Race (2%)

(18%)
Race
SCV

Non�SCV

Figure 4. Relative frequency of data-race types.

The figure also shows why a special technique for SCV races is

warranted: they comprise a substantial fraction of the reported data

races, namely 18%. Importantly, they are very hard to debug, since

current debuggers cannot reproduce them.

4. Vulcan: Detecting SC Violations
Our goal is to develop an approach to detect SCVs in relaxed-

consistency machines that is highly precise. In addition, we want

a solution that can deliver information to debug the SCV, uses no

other input than the executable, and has a negligible execution over-

head. Hence, we focus on a hardware-only solution to detect cycles

of inter-thread data dependences at runtime.

The idea behind our approach, called Vulcan, is to rely on the

cache coherence protocol to dynamically record the observed inter-

thread data dependences, while checking whether they form cycles.

These dependences are kept around only for as long as they can

participate in a cycle, and are discarded soon after. Both the record-

ing and the checking of these dependences is done in hardware to

minimize execution overhead.

4.1. Basic Algorithm to Detect Cycles
Figure 5(a) repeats the pattern that can lead to an SCV with two

threads. An SCV occurs when, due to the out-of-order execution of

ref(x) and ref(y) in one thread or in both threads, A1 executes before

B0, and B1 executes before A0 — creating a dependence cycle.

To understand how Vulcan works, consider the dependence ar-

row of Figure 5(b), which represents that reference A1 executed

before reference B0. This arrow creates two regions, R1 and R2,

such that any future dependence whose source is in R1 and destina-

tion is in R2 will cause an SCV. Consequently, after Vulcan records

A1→B0, it monitors that no new dependence is created from an ac-

cess in PB at or after B0 to an access in PA at or before A1. We put

this requirement as the two restrictions of Figure 5(c):

For any dependence whose source reference is in PB at or after

B0, the Allowed Destination (AD) in PA is after A1.

For any dependence whose destination reference is in PA at or

before A1, the Allowed Source (AS) in PB is before B0.

If there are multiple dependences between two threads, then the

AD of a dependence from a reference is the latest (i.e., maximum) of

the contributing ADs, while the AS of a dependence to a reference is

the earliest (i.e., minimum) of the contributing ASs. This is shown

in Figure 5(d). In the figure, for each of the two dependences, we

use the algorithm of Figure 5(c) to set the ADs of their R1 Regions

and the ASs of their R2 regions. In the areas where the two R1

regions overlap (B0 and later in PB), Vulcan sets the AD to the

maximum of the two values; in the areas where the two R2 regions

overlap (A1 and earlier in PA), Vulcan sets the AS to the minimum

of the two values.

Based on this discussion, Vulcan tags each monitored reference

with three labels. They are shown in Figure 5(e). The first one is

the Sequence Number (SN), which is the local dynamic reference

count, assigned when the load or store enters the pipeline (e.g., at

issue). The second one is the Allowed Destination (AD), which is

the SN of the reference in the other processor after which the local

reference can send data to. The last one is the Allowed Source (AS),

which is the SN of the reference in the other processor before which

the local reference can receive data from. Since a processor can

have dependences with every other processor, AD and AS are arrays

of N-1 entries, where N is the processor count. In each processor,

SN starts up as 0 and increases monotonically. AD starts up as 0 and

AS as∞.

365

SN: Sequence

Should not
be the
of a dependence
to Region R2

source

Region R2:

be the
Should not

of a dependence
destination

from Region R1

BPAP

(c)

A1

B0

A
llo

w
ed

 S
ou

rc
e:

A
llo

w
ed

 D
es

tin
at

io
n:

A
S

<
 B

0

A
D

 >
 A

1

BPAP

A1

ref(y)

(b)

B0

BP

If (SNBj >= AS

] max[curr_value, SNBj

2

If (SN [P <= ADAi Bj A])

AS[PA] of Bj and earlier =

All cases: Send response + SN Bj

Ai] min[curr_value, SN

A B
A BP P

A0: ref(x) B0: ref(y)

A1: ref(y) B1: ref(x)

(a)

ref(y)

P P

(d)

A
D

>
m

ax
(A

1,
 A

1’
)

A
D

>
A

1’

(f)

AP

B0

A1

Ai
Bj

AP

Ai

1 Request

Send SNAi

exception
Else

[P])

3

Ai B

AD[PB] of Ai and later =

(g)

BP

Bj
exception

Else

Action at producer
Action at consumer

A1

A1’

B0’

B0

A
S<

B
0’

A
S<

m
in

(B
0,

 B
0’

)

A BP

N�1

N: # of processors

(e)

A1
B1

A0
B0

P

Number

AD: Allowed
Destination

AS: Allowed
Source

0 0

1 1

Region R1:

Figure 5. Basic algorithm to detect cycles.

These structures are updated in hardware when a new cross-

processor dependence is created. The algorithm is shown in Fig-

ure 5(g), which refers to the example in Figure 5(f). Assume that

we already have the solid arrow A1→B0; now PA issues a request

from reference Ai that prompts reference Bj in PB to respond, cre-

ating the dotted arrow Bj→Ai. Figure 5(g) shows that there are

three steps in the creation of the Bj→Ai arrow. Step 1 is the request

from PA, which carries the SN of the requesting access (SNAi). In

Step 2, PB operates on its Vulcan metadata, sends the response, and

possibly raises an exception. Specifically, PB checks that a cycle

is not about to form by confirming that Ai is an allowed destination

of Bj. If it is not (SNAi ≤ ADBj [PA]), a cycle is about to form

and, hence an SCV is detected. In this case, PB sends the response

with the SN of the producer access (SNBj) and raises an excep-

tion. Otherwise, as in the example, the metadata is updated: the

AS[PA] of Bj and earlier accesses in PB are set to the minimum of

their current values and SNAi. Also, PB sends the response with

SNBj .

Finally, in Step 3, when the data reaches PA, PA operates on its

metadata and possibly raises an exception. Specifically, PA checks

that a cycle is not formed by confirming that Bj is an allowed source

of Ai. If it is not (SNBj ≥ ASAi[PB]), a cycle is formed and an

SCV has occurred. Consequently, an exception is raised. Other-

wise, as in the example, the AD[PB] of Ai and later accesses in PA

are set to the maximum of their current values and SNBj .

With this algorithm, Vulcan raises exceptions immediately when

a dependence closes a cycle and causes an SCV. This provides valu-

able information for debugging the SCV. The exception at the pro-

cessor that receives the response always occurs. The exception at

the producer processor may not occur since, at send time, there may

not be enough dependences for a cycle yet. In Section 5.5, we con-

sider all the information that is available to debug the SCV.

4.2. Safe Accesses
As a processor issues references, the Vulcan hardware monitors

them. To understand for how long they need to be monitored, we

define the concept of a Safe (and Unsafe) access:

An access is Safe when no data dependence involving this access

can cause an SCV any more. Otherwise, it is Unsafe. Vulcan can

stop monitoring an access when it becomes Safe.

To find out when an access becomes Safe, let us define the Per-
formed Point (PP) of a thread in an out-of-order processor. The PP

is the latest memory access (in program order) such that it and all

the accesses preceding it in the thread in program order have been

performed. A load is performed when it has retired; a store is per-

formed when it has retired and the cache has received the line and

all the invalidation acknowledgments.

As a thread executes, its PP keeps advancing. When the PP

reaches an access, it is clear that the access is completed. However,

the access may still participate in an SCV and, therefore, be Unsafe.

To see why, consider Figure 6(a). The creation of the A1→B1 de-

pendence makes the B1 and subsequent accesses in PB vulnerable.

Indeed, even if they complete and PB’s PP goes past them, they

can still participate in cycles. Specifically, if any access in PA prior

to A1 requests data from them (or generally becomes dependent on

them), a cycle is created. In precise terms: B1 and subsequent ac-

cesses in PB remain Unsafe for as long as PA’s PP has not reached

the reference in their AD (A1 in the example).

SN

A1

A2

P

B1

B2

(b)

A1

B1

(a)

Performed Point (PP) Array

 N

(c)

(d)
AD[] AS[]

Sequential
Consistency
Violation
Queue
(SCVQ)

Ref5
Ref4
Ref3
Ref2
Ref1

P P PA B A B

Figure 6. Understanding when an access is Safe.

366

The condition for an access Ci in processor PC to be Safe is:

Suppose that we have an array PP[] with the current value of the

PPs for each processor (given as SN numbers). Ci is Safe when

(SNCi ≤ PP [PC]) and (ADCi[PK] ≤ PP [PK]), for all proces-

sors K �= C. [Proof in Theorem 1 of Appendix 1].

As an example, consider Figure 6(b). The accesses in PA be-

come Safe as soon as PP [PA] reaches them (since their AD has

not been changed from 0). The accesses in PB remain Unsafe even

as PP [PB] reaches them. After that, as soon as A1 becomes Safe,

all the accesses in PB up to (but not including) B2 become Safe.

We also say that an access Ci in processor PC is Safe with re-
spect to another processor PM :

Ci is Safe with respect to PM when (SNCi ≤ PP [PC]) and

(ADCi[PM] ≤ PP [PM]).

Vulcan uses these insights as follows. First, each processor has

a PP[] array (Figure 6(c)). In this array, the entries corresponding

to the other processors are kept largely up-to-date thanks to the fact

that each processor includes its PP in every response message.

Second, a processor only keeps the SN, AD, and AS information

for its references that are Unsafe. Such information is kept in a

per-processor FIFO hardware queue associated with the cache con-

troller called SC Violation Queue (SCVQ) (Figure 6(d)). When the

processor issues a load or store, Vulcan allocates an SCVQ entry

and sets its SN field. Later, as the access executes and coherence

actions are received, the AD and AS fields are updated. Finally,

when the access becomes Safe, Vulcan deallocates the entry.

An SCVQ entry does not contain the data loaded or stored.

Moreover, the entry can remain allocated long after the access has

completed — for as long as it remains Unsafe.

4.3. Detecting Dependences

When an SCV occurs, the following must be true:

The two inter-processor dependence arrows that form the cycle

must share a property: their source reference is Unsafe with respect

to the destination processor. If one of the arrows fails this condition,

there is no SCV. [Proof in Theorem 2 of Appendix 1].

For example, in Figure 7(a), arrow 1 could participate in an SCV,

while arrow 2 cannot. Consequently, we conclude:

Vulcan only needs to watch for inter-processor data dependences

where the source reference is Unsafe with respect to the destination

processor. We call such dependences Unsafe dependences.

rd 1

PA BP PA PB

PA BP PA BP

PA PB

wr

wr

(e)

WAW

PP
PP

1
2 wr

T
im

e

rd

WAR

(a) (b)

wr

rd

(c)

RAW

wr

rd 2

(d)

RAW

RAW

Figure 7. Inter-processor data dependences.

To find the Unsafe dependences, we will see that Vulcan uses

the cache coherence protocol transactions (to a large extent). When

one is found, the hardware performs the basic algorithm described

in Section 4.1: the source and destination references exchange SNs,

the source checks its AD and potentially updates its AS (and those of

earlier accesses), and the destination checks its AS and potentially

updates its AD (and those of later accesses).

Figures 7(b)-(e) show the three types of dependences possible:

WAR, RAW, and WAW. Figure 7(b) shows a WAR. The write trig-

gers Vulcan to search the other processors’ SCVQs for accesses to

the address. Multiple reader processors may be identified. Each

reader processor has to take-in the write’s SN, provide its read’s SN
and run the Vulcan algorithm; the writer has to take-in all the reads’

SNs and run the Vulcan algorithm using the correct entries in its AD
and AS arrays. In addition, since the write will be the source of all
the future dependence(s) on this address, the write also triggers the

removal (i.e., invalidation) of the SCVQ entries for this address in

all the other processors.

Figure 7(c) shows a RAW. The read triggers Vulcan to search the

other processors’ SCVQs for a write to the address, ignoring SCVQ

entries for reads. The usual algorithm is then run. Figure 7(d) shows

a special case of a RAW, where the reader thread performs two reads

to the same address out of order: first a later read (rd1) and then a

read that is earlier in program order (rd2). In this case, both reads

must communicate with the writer’s SCVQ entry. In the process,

rd1 will first set the AS of the write (and of PA’s prior accesses) to

rd1’s SN; later, rd2 will set them to rd2’s SN, which is lower.

Figure 7(e) shows a WAW. As usual, the consumer write invali-

dates the SCVQ entry of the producer write. Note that other proces-

sors may have read the address in between the two writes. In this

case, the consumer writer forms WAR dependences with the readers

and a WAW dependence with the producer writer, and invalidates

all the SCVQ entries for this address but its own.

We next show how we detect all the Unsafe dependences. The

Appendix shows that:

If Vulcan records all the Unsafe dependences, then it detects all

the SCVs between processors. [Proof in Theorem 3 of Appendix 1].

4.4. Leveraging the Coherence Protocol
To detect all the Unsafe dependences, Vulcan partially relies on

piggybacking on the cache coherence protocol transactions. In this

paper, we describe the operation assuming a snoopy-based MSI pro-

tocol; other protocols may require slightly different arrangements.

Moreover, we assume a single-level private cache hierarchy per pro-

cessor, where the SCVQ is associated with the cache controller, and

multi-word cache lines. Without loss of generality, we describe our

system using words (i.e., 32 bits) as the grain of processor accesses.

We later consider finer-grained accesses such as bytes.

To understand how Vulcan uses the coherence protocol, this sec-

tion starts by assuming single-word cache lines; Section 5 shows

the final Vulcan design, which uses multi-word lines. With single-

word lines, the destination access of the WAR, RAW, and WAW

dependences of Figure 7 induces a coherence transaction in the net-

work. Vulcan leverages such a transaction. The only exception is

the second read (rd2) in the RAW with out-of-order reads to the

same address (Figure 7(d)). We describe this special case later.

As part of the coherence transaction, if the source reference is

Unsafe (i.e., it is in an SCVQ), the Vulcan metadata is exchanged

and operated upon. Specifically, on a processor read transaction in

the network, the hardware searches the SCVQs that may contain

367

the referenced address (we will see how we know this). In a given

SCVQ, it tries to find the latest write to the address in program or-

der. From the above discussion, at most one SCVQ can have writes.

If a write is found, we have detected a RAW. The Vulcan metadata

is exchanged (as part of the transaction) and operated upon.

On a processor write transaction in the network, the hardware

searches the SCVQs that may contain the referenced address. In

each SCVQ, the search tries to find the latest access to the address

in program order and, if that is a read, also any preceding write.

Vulcan looks for the latest accesses because they form the most con-

servative dependences. If we find any, we have detected a WAR or

a WAW. The metadata is exchanged and operated upon. As part of

the transaction, all the entries for the address in all SCVQs (except

in the requesting processor) are invalidated.

The second read (rd2) in the RAW with out-of-order reads of

Figure 7(d) presents a difficulty. On the one hand, the read hits in

the cache and would not cause a coherence transaction. On the other

hand, it needs to exchange SNs with the write and update the meta-

data (importantly, the AS of the write and prior accesses in PA must

become smaller). Vulcan solves the problem by forcing a Metadata
Network Access, namely one exactly like a regular one (the SCVQs

are searched and, if there is a hit, the Vulcan metadata is exchanged

and operated on) except that no data is returned. Hence, when a load

executes and finds that a later load to the same address has accessed

the network, the hardware forces a metadata network access.

Vulcan’s operation requires that, on a network transaction, the

hardware looks-up the SCVQs that may have the referenced ad-

dress. Vulcan cannot rely on the cache snoopers to flag which

SCVQs may have the address — since the corresponding cache line

may have been evicted from the cache. Consequently, Vulcan adds

a per-processor bloom filter that encodes the addresses currently in

the local SCVQ. If the address on the network hits in the filter, the

SCVQ is searched. Section 5.3 presents a detailed design.

5. Vulcan Hardware Design
We present Vulcan’s hardware structures: the coherence proto-

col and the SCVQs. We use a bus for the network. Section 7.2

summarizes the hardware needs for the configurations evaluated.

5.1. Supporting Multiple Words per Line
Detecting all the Unsafe dependences was easy with single-word

cache lines because, conveniently, in all cross-thread dependences

(Unsafe or otherwise, and except for RAWs with out-of-order read-

read) the destination reference induces a coherence action in an

MSI protocol (Figure 7). During the resulting bus access, if the

dependence is Unsafe, processors exchange Vulcan metadata. Un-

fortunately, this is not the case with multi-word cache lines. As

a processor misses on a word, other words are also brought into

the cache. Consequently, some Unsafe dependences do not trigger

coherence actions. Further, some coherence actions are caused by

false sharing rather than by data dependences.

To solve this problem, Vulcan decouples, to some extent, the

coherence actions from the Vulcan metadata operations. It ensures

that every time that an Unsafe dependence occurs, either (1) the

coherence protocol triggers a coherence action, or (2) Vulcan forces

a Metadata bus access.

Let us use a plain line-based MSI coherence protocol using word

accesses (for now). We assume that a bus transaction includes the

address of the word accessed within the line. Vulcan adds two State

bits per word in each line currently in the cache. These bits rep-

resent the word’s Vulcan-State (or V-State). A word in the cache

can be in one of three V-states: CanWrite, CanRead, and Need-
Check. Irrespective of the cache line state, a processor can write

and read a CanWrite word in its cache without trying to exchange

Vulcan metadata; it can only read a CanRead word without trying

to exchange metadata; and it must try to exchange metadata at ev-

ery access to a NeedCheck word. When needed, Vulcan metadata

is piggybacked on the coherence bus transaction if the access in-

duces one; otherwise, a Metadata bus accesses is initiated. These

V-states are largely independent of the cache coherence state of the

line. They follow rules when multiple caches have coherent copies

of the word. Specifically, if one cache keeps the word in CanWrite
state, then any other cache with the word must keep it in NeedCheck
state. Also, if one cache keeps it in CanRead state, then any other

cache can keep it in CanRead or NeedCheck state. Finally, the word

may be in NeedCheck state in all of the cached copies.

Before describing how a word reaches each state, consider the

(word) addresses of the accesses in an SCVQ. Typically, their cor-

responding line addresses are present in the local cache. However,

there is one exception: when, after the access, the line was invali-

dated or displaced from the cache. In this case, the corresponding

entries in the SCVQ have no V-state. In addition, when an invalida-

tion is received, the SCVQ entry for the written word is cleared.

A word w in a line cached by a processor reaches the three V-

states as follows:

CanWrite: Either (i) the local processor was the last writer of w
or, (ii) when the processor loaded w into its cache on a write miss

to another word of the line, w was not in any other SCVQ (if the

line was in another cache, it got invalidated). In addition, since any

of these two events occurred, no other processor has (i) accessed

w, or (ii) read-missed on another word in w’s line and loaded w as

CanRead, or (iii) written w’s line. A CanWrite word may be in the

local processor’s SCVQ but not in other processors’ SCVQs.

CanRead: Either (i) the local processor has been involved in a

dependence where the destination was a read of w (i.e., either the

local processor wrote and then a remote one read, or a remote one

wrote and then the local one read), or (ii) when the processor loaded

w into its cache on a read miss to another word of the line, w was

not in any other SCVQ. In addition, since any of these two events

occurred, the local processor has not written w and no other proces-

sor has written to w’s line. A CanRead word may be in the SCVQs

of the local and other processors.

NeedCheck: When the local processor loaded w on a miss to an-

other word of the line, w was in another processor’s SCVQ. Since

then, the local processor has not accessed w and no other processor

has written to w’s line. A NeedCheck word may be in the SCVQs

of the local and other processors.

We handle out-of-order read-read accesses to the same word like

in Section 4.4: when a read executes and finds that a later read to

the same address has already been sent to the bus, the hardware will

eventually force a second bus access.

5.2. V-State Transitions for a Word
Figure 8 shows how the V-state of a word changes. For sim-

plicity, we break the transitions into two figures. Figure 8(a) shows

the transitions of the word as its line moves in and out of the cache,

possibly due to accesses to other words in the same line; Figure 8(b)

shows the transitions as the word is accessed inside the cache.

368

Read miss

External re
ad

Local w
rite

Local read

Not�referenced words
that are not present

in any other SCVQ

Not�referencedwords
that may be present
in other SCVQsNeed

Check
Need
Check

External
write

External write

External read

Local read
Local write(a) (b)

Local read

Line invalidated
or evicted

Line invalidated
or evicted

L
oc

al
 w

ri
te

External
read

CanWrite

CanRead

word
Referenced

Not�referenced words
that are not present
in any other SCVQ

Write miss

Not�referencedwords
that may be present

in other SCVQs
Referenced

word

Line invalidated
or evicted

CanWrite

CanRead

External
write

Figure 8. V-state transitions for a word. In (b), the underlined transitions may require metadata exchange (only needed if the source of
the dependence is Unsafe) and, therefore, need a bus access. Such access can reuse a coherence bus transaction.

Starting with Figure 8(a), as a processor brings-in a line on a

read miss, the hardware operates on the Vulcan metadata of the

referenced word as indicated before, recording any Unsafe depen-

dence. Hence, the word is loaded into the cache as CanRead. The

other words in the line (i.e., not-referenced words) are loaded as

either CanRead — if their address is not in any of the other proces-

sor’s SCVQs — or as NeedCheck otherwise. This functionality is

supported by adding one control line in the bus for each word in a

line. During the bus transaction, all the other processors also check

the addresses of the not-referenced words in the line against their

bloom filter. If any processor finds a match for a given word, it sets

the control line for that word. If the control line for a particular

word is not set by the end of the bus transaction, it means that no

processor has the word in its SCVQ, and the word is loaded as Can-
Read. As a word is loaded as CanRead, any other cached copies of

the word that were CanWrite transition to CanRead.

Hardware-prefetched lines work seamlessly. We apply the algo-

rithm for not-referenced words to all the words in the line.

If the line is brought-in on a write miss, the state becomes Can-
Write for the referenced word. For the other words, the bloom filters

are checked as above and the state is set as CanWrite if no SCVQ

has the address or NeedCheck otherwise. Other cached copies of

the line are invalidated.

When a line is evicted from the cache or invalidated by an exter-

nal write to any of its words, the V-states of all its words are lost.

In Figure 8(b), the word is being accessed. The transitions cor-

respond to accesses to the word. The transitions underlined may

require metadata exchange (only needed if the source of the depen-

dence is Unsafe) and, therefore, need a bus access — which can

reuse a coherence transaction. Consider a CanWrite word. The

local processor can read and write it silently. An external read re-

quires a transition to CanRead and attempts metadata exchange.

Consider a CanRead word. A local read is silent. A local write

brings the local state to CanWrite and induces a bus access to try

to exchange metadata. All other copies of the line are invalidated.

An external read keeps the local state as CanRead and may involve

metadata exchange. Finally, in an NeedCheck word, a local read

and write bring the word to CanRead and CanWrite, respectively,

and induce a bus access to try to exchange metadata. An external

read keeps the word in NeedCheck. In all states, an external write

invalidates the line (and the corresponding SCVQ entry). It may

involve metadata exchange if the state was CanRead or CanWrite.

Figure 9 shows two examples of processors P1 and P2 access-

ing a line with words A and B. The figures show the transitions in

V-states and line states. For each access (e.g., rd A by P2), the figure

shows the resulting local V-state of each of the two words (CW, CR,

and NC mean CanWrite, CanRead, and NeedCheck, respectively),

the resulting local line state (D and S mean Dirty and Shared Clean,

respectively), and the type of bus request (CO and ME mean co-

herence and metadata request, respectively). For example, the first

read in Figure 9(a) brings the line to P2 in state S with both words as

CanRead. This is a coherence request without metadata exchange.

As we go down the access stream, some accesses cause bus requests

with only metadata exchange. We assume all SCVQ entries stay un-

less they are invalidated. Figure 9(b) shows an access stream with

false sharing. All accesses cause coherence-only bus requests.

CR

S COCR CR

D wr BCO CWNC

rd A CO+MESCR NC

rd B S MECR CR

Dwr B CO+MECR CW

S

S

DME CW CW wr A

D COCW CWwr A

wr A D COCW NC

D wr BCO NC CW

D wr BCO NC CW

rd A

P1 P2

A B

P1 P2

(b)

(a)

CR CW

CR

Figure 9. V-state transitions for two access streams.
Using V-state bits is an effective way to minimize metadata bus

accesses when a processor references variables with temporal and

spatial locality. Indeed, without V-state bits, all the words in the

cache would effectively be in NeedCheck state, and every single ac-

cess would require a metadata bus access. Unfortunately, V-state

bits take space. Hence, a compromise that we employ is to keep

369

V-state bits only for lines that currently have at least one word in

the local SCVQ. Since processor references have spatial and tem-

poral locality, we are still likely to avoid many metadata bus ac-

cesses. When all the addresses of the words in the line leave the

SCVQ (in addition to when the line is invalidated or evicted from

the cache), the line’s V-state information is discarded. A subsequent

cache hit on the line initializes the V-state bits as NeedCheck for all

the words (before the access). With this optimization, the V-state

bits are stored in a hardware structure whose size is proportional to

the maximum number of SCVQ entries rather than the number of

lines in the L1 cache.

5.3. SCVQ Implementation
The SC Violation Queue (SCVQ) is a FIFO queue that contains

the Vulcan metadata for Unsafe local loads and stores. Each en-

try contains the address loaded or stored, and the access’ SN, AS,

and AD. As a load or store enters the pipeline, an SCVQ entry is

allocated, setting SN to the current value plus one, AS to ∞, and

AD to the preceding access’ AD. The AS and AD are updated later,

when (1) the load or store executes, or (2) external accesses create

dependences with the load or store, or other entries in the SCVQ.

Figure 10 shows the SCVQ. It stores the information in a FIFO

circular queue. On a bus transaction, we need to look-up the SCVQ

for an address match. Hence, we route the word addresses from the

bus through a hash table and into the queue. With this design, it is

easy to allocate and deallocate entries, and to find the entries that

match bus transaction addresses. Finally, a write bus transaction

that invalidates an SCVQ entry simply marks it as “empty”.

Tail Hash table

Counting
bloom filter

Head

Figure 10. Implementation of the SC Violation Queue (SCVQ).

We want to minimize the number of useless SCVQ look-ups.

However, we cannot rely on the cache snooper to filter them. This is

because an SCVQ match may occur even if the corresponding line

has been evicted from the cache. Hence, Vulcan uses a counting

bloom filter [5] that hashes all the word addresses currently in the

SCVQ. This structure uses counters to allow the removal of an in-

dividual hashed address. As entries are inserted and removed from

the SCVQ, the addresses are added and removed from the filter. Bus

transactions check the filter for a match before initiating a hash-

table access. Any resulting false positives do not affect correctness;

false negatives do not occur.

Inserting or removing addresses from the filter is not in a critical

path. Insertion can occur any time from when the address of the

reference is known until when the load or store completes and can

be the source of an inter-thread dependence — in the meantime,

the SCVQ entry is effectively not full. Removal can be done lazily,

since at most it can induce false positive filter matches, which cause

unnecessary SCVQ searches.

5.4. Granularity of V-State Bits
For most accurate SCV detection, the finest granularity of a pro-

gram’s accesses and the granularity of Vulcan’s V-state bits have to

be the same. Specifically, if a program loads or stores bytes, then

Vulcan needs per-byte V-state bits — with per-word V-state bits,

Vulcan may incur SCV false positives and false negatives.

To support byte accesses, Vulcan adds per-byte V-state bits to

each line with at least one entry in the SCVQ. Individual entries

in the SCVQ may refer to a byte or to a coarser access. Since the

SCVQ bloom filter is looked-up by bus transactions accessing bytes

or coarser data elements, Vulcan conservatively hashes word (rather

than byte) addresses in the filter — at worst, it results in unneces-

sary SCVQ lookups. The transitions of Figure 8 operate on bytes or

words depending on the granularity of the access. Specifically, on

a byte access, when a line is brought into the cache (Figure 8(a)),

the requested byte is searched in all of the SCVQs and loaded in the

correct state; the other bytes of the line are loaded as NeedCheck or

CanRead/CanWrite depending on whether their word address hits

in the bloom filters. There are no additional filter lookups over a

word transaction. Note that the design is such that, if the program

only has word accesses, the per-byte V-state bits create no addi-

tional traffic over having only per-word V-state bits.

5.5. Information Available to Debug an SCV
Consider the cycle shown in Figure 2(b). There are two possi-

ble cases for when the SCV is detected. The first case is when one

dependence arrow (e.g., A1→B0) is fully recorded when the source

of the second dependence (B1) sends the response; the second case

is when it is not, because both responders (A1 and B1) respond con-

currently. In the first case, the SCV is detected at both the source

(B1) and destination (A0) of the second dependence; in the second

case, it is detected at the destinations of the two dependences (A0
and B0). In either case, when each processor detects the SCV, it

raises an exception.

The information that is available to the debugger in the inter-

rupted processor at the destination of the dependence is the address

being accessed, the instruction’s PC and, depending on the protocol

implementation, the ID of the sender processor. If the destination

reference is a read, the exception gets the precise processor state; if

it is write, it is not generally possible to get the precise state at the

reference — the reason is that the write is in the write buffer and

later operations may have already retired and completed. The infor-

mation available to the debugger in the interrupted processor at the

source of the dependence is the address accessed and the ID of the

requesting processor. The instruction’s PC is unavailable — unless

we augment the SCVQ with PCs. The exception in the source pro-

cessor is not precise because newer instructions may have finished.

Finally, the debugger can also inspect the Vulcan metadata of all the

Unsafe requests in the two processors, to provide more information.

6. Limitations of the Current Vulcan Design
The current Vulcan design has some limitations. The first one is

that it focuses on cycles involving only two processors. In practice,

this is not a major limitation because cycles involving more proces-

sors are much rarer — they need the overlapping of three or more

data races. Much of the related work also focuses on two-processor

interactions only (e.g., [6, 8, 10]). We could extend Vulcan to han-

dle several-processor cycles by propagating the AS/AD information

along the dependence arrows, instead of just sending SN.

A second limitation is that the current design does not consider

speculative loads from mispredicted branch paths. In a real system,

these loads cannot generate SCVs. However, to be able to take them

370

into account, we would need to change Vulcan. For example, the

hardware may have to delay performing metadata updates until the

load becomes non-speculative. However, Vulcan supports hardware

prefetches and within-processor load forwarding.

Vulcan is not concerned with the impact of compiler transforma-

tions on SCVs. It simply takes the executable that the compiler pro-

vides to the hardware and reports SCVs due to hardware-initiated

reference reordering. Similarly, since Vulcan is a dynamic scheme,

it only provides information for the actual performed runs.

We discussed in Section 5.4 that the finest granularity of pro-

gram accesses and of Vulcan’s V-state bits have to be the same —

otherwise, both SCV false positives and false negatives may occur.

Finally, the SCVQs need to be large enough to hold all the Unsafe

accesses. If they are not and they have to drop some of these ac-

cesses, then SCV false negatives may occur.

Overall, within these constraints (two-processor cycles only, no

misspeculated loads, and no compiler effects) and with appropriate

hardware structures (correct grain of V-state bits and large-enough

SCVQs), Vulcan has neither false positives nor false negatives.

Finally, our Vulcan design in a snoopy protocol with all-to-all

hardware structures may not scale well to large numbers of proces-

sors. However, this is not a major limitation. First, our evaluation

shows that Vulcan scales well until at least 8 processors (and we

did not explore beyond). Also, it is well known that runs with few

processors are typically enough to find concurrency bugs [22].

7. Evaluation
Our goal is to (1) validate Vulcan’s effectiveness in detecting

SCVs, (2) determine the size of its hardware structures, and (3)

assess its overhead in terms of network traffic and execution time.

7.1. Experimental Setup
We model Vulcan’s architecture using cycle-level execution-

driven simulations. We use the SESC simulator [28] to model a

multicore with a variety of configurations: four or eight out-of-

order cores with 2- or 4-issue wide pipelines and supporting the

Release Consistency (RC) or Processor Consistency (PC) memory

models. They have a simple cache hierarchy composed of a private

L1 cache and a shared L2 cache. Table 2 shows the architecture pa-

rameters. When there is a choice, the values in bold are the default

ones. In most of the evaluation, we use per-word V-state bits; in the

last part, we use per-byte V-state bits.

Architecture Chip multiprocessor with 4 or 8 cores.

Core pipeline Out-of-order; 2.0GHz; 2-issue or 4-issue.

ROB size 32, 64, 128, or 256 entries.

Consistency Release (RC) or Processor (PC) consistency.

Private L1 cache 32KB WB, 4-way asso., 2-cycle round trip.

Shared L2 cache 1MB WB, 8-way asso., 20-cycle round trip.

Cache line size 32B or 4B.

Coherence Snoopy MSI protocol; 1.0GHz 16B-wide bus.

Round-trip lat. L1-L1: 38 cyc; processor-memory: 500 cyc.

Vulcan SCVQ: 256 entries; SN, AD[i], AS[i]: 4B each.

parameters Bloom filter: 128B with 2-bit counts, H3 hash.

Word or byte V-state bits for lines in SCVQ.

Table 2. Multicore architectures evaluated.
We use three sets of applications for the evaluation (Table 3).

The first set has implementations of concurrent data structures

and mutual exclusion algorithms that have SCVs. They are taken

from [6, 8]. The second set has some reported SCV bugs from open

source libraries. The last set has 8 codes from SPLASH-2. The first

two sets have known SCVs and are used to evaluate Vulcan’s effec-

tiveness. The last set has lengthy applications, supposedly free of

SCVs, and is used to estimate Vulcan’s overheads.

Set Program Description

Dekker Algorithm for mutual exclusion.

Conc. Lazylist List-based concurrent set.

Algo. Snark Nonblocking double-ended queue.

Harris Nonblocking set.

Pthread cancel Unwind code after canceling

Bug from glibc thread needs a fence [3].

Kernels Crypt util Small table initialization code

from glibc needs a fence [1].

DCL Kernel using double checked

bug locking without fences.

Full Apps SPLASH-2 8 programs form SPLASH-2.

Table 3. Applications analyzed.

7.2. Hardware Requirements
Vulcan adds to each core the following hardware: (1) SCVQ

circular queue with its hash table, (2) SCVQ bloom filter, (3) V-

state bits in the lines with at least one entry in the SCVQ, and (4)

Performed Point array. For the default parameters in Table 2, in a 4-

core chip, the storage requirements are about 8448B, 128B, 512B,

and 16B, respectively, or a total of 9KB per core. For a machine

with N cores, the overhead per core can be shown to be (2052*N

+ 896) bytes. This means that, in an 8-core chip, the overhead is

17KB per core.

If we want to support byte-level accesses, we need per-byte V-

state bits for each line with at least one entry in the SCVQ. More-

over, each SCVQ entry needs a 2-bit longer address and 2 bits to

denote whether the reference was to a byte, half-word, or word.

The SCVQ bloom filter still conservatively hashes word addresses.

All this support only adds 1.7KB more Vulcan storage overhead per

core, irrespective of the number of cores in the machine.

7.3. SC Violation Detection Ability
To test Vulcan’s SCV detection ability, we run each application

multiple times — 100 times for the concurrent algorithms and bug

kernels, and 5 times for the SPLASH-2 codes. In each run, we gen-

erate different interleavings by forcing the processors to miss some

random number of fetch cycles. For each application, we report,

over all the runs, the number of unique and total SCVs observed.

This information is shown in Table 4, for cache lines of 4 and 32

bytes, and for RC and PC memory models. For SPLASH-2, the

table only shows fmm because Vulcan finds no SCV in the other

SPLASH-2 codes.

Under RC (Columns 4 and 5), Vulcan detects SCVs in all

of these codes (except in two codes with 4B lines). Under PC

(Columns 6 and 7), Vulcan finds slightly fewer unique SCVs, and

none in Lazylist or Snark. This is because PC is stricter than RC,

and some SCVs may be impossible or less likely to occur. Also, the

number of SCVs found changes with the line size. This shows that

this bug is highly dependent on the timing of events.

Overall, we find that Vulcan is very effective at finding SCVs

in these two different memory models. With more runs, new inter-

leavings may occur and Vulcan may find more SCVs.

Finally and most importantly, Vulcan finds three new, previously
unreported SC violation bugs in the codes in bold in Table 4: one in

Pthread cancel, one in Crypt util, and one in fmm (which appears

as three unique SCVs). We discuss them next.

371

Appl. Line # of # of SC Violations Found

Size Runs Under RC Under PC

(B) Uniq. Total Uniq. Total

Dekker 4 100 1 1982 1 1784

32 100 1 224 1 518

Lazylist 4 100 0 0 0 0

32 100 1 150 0 0

Snark 4 100 1 745 0 0

32 100 1 1467 0 0

Harris 4 100 0 0 1 2

32 100 1 18 1 2

Pthread 4 100 2 298 1 104

cancel 32 100 2 142 1 400

Crypt 4 100 2 564 1 228

util 32 100 2 130 1 800

DCL 4 100 2 648 1 600

32 100 1 2 1 491

fmm 4 5 1 2 3 14

32 5 3 18 0 0

Table 4. SC violations found in various applications. Vulcan
found three new SC violations in the codes in bold.

7.4. Three New SC Violation Bugs Found
New SC Violation in the Pthread Library

One of the SCVs in the Pthread cancel kernel of Table 4 is Bug

ID 2644 in the Redhat bug database [3], which has been fixed by

the developers. After running Vulcan, we found a new SC violation
even in the bug fix. We reported the new bug and its fix to the

developers, who have recently implemented the fix.

Figure 11 shows the bug in the original bug fix. Figure 11(a)

shows the pthread cancel init and Unwind Resume functions,

together with the fence (write barrier) that the developers in-

serted in an attempt to fix the bug. Assume that thread T1 is

in pthread cancel init, and about to initialize function pointers

libgcc s resume (in A0) and libgcc s gtecfa (in A1). Before it does

so, thread T2 is in Unwind Resume and calls pthread cancel init.
There, it finds libgcc s gtecfa already non-null (in B0), returns from

pthread cancel init and uses libgcc s resume (in B1). However,

due to an SCV, libgcc s resume is still uninitialized and the pro-

gram crashes.

The references involved and the fence are shown in Figure 11(b).

This code is the same as Figure 1(a) except for the fence. Unfor-

tunately, the fence only prevents the A0-A1 reorder. In an RC (or

PowerPC) memory model, B0 and B1 can effectively get reordered

as in Figure 11(c), causing a cycle. Specifically, the condition in

B0 is predicted true by the branch predictor (although it is currently

false) and B1 is executed before A0. After A0 and A1 execute, the

B0 branch resolves, confirming that B1 is in the correct path. How-

ever, B1 used the old value and the code crashes. To fix this, we

also add a fence between B0 and B1.

New SC Violation in the Crypt Library
A similar situation occurs for Crypt util. One of its SCVs in

Table 4 is Bug ID 11449 in the database [1], which had also been

incorrectly fixed by the developers. After running Vulcan, we found

a new SCV in the bug fix. We reported the new bug and its fix to

the developers. They declined to fix it because the bug also only

happens in memory models more relaxed than Intel’s x86 and the

cryptography library is used little.

Figure 12(a) shows the buggy code of function init des r,

which uses DCL to initialize shared tables, and the fence that the

developers added to fix the bug. Assume that thread T1 enters the

B0:if(libgcc_s_getcfa != NULL)

B1: libgcc_s_resume(...);

T1 T2

_Unwind_Resume(...) {
 if(libgcc_s_resume == NULL)
 pthread_cancel_init(...);
 libgcc_s_resume(...);

T1 T2

(a): Code from unwind�forcedunwind.c

B1:
}

}
A1:

A0:

if(libgcc_s_getcfa != NULL)
 return;

pthread_cancel_init(...) {
B0:

libgcc_s_getcfa = ...;
atomic_write_barrier();
libgcc_s_resume = ...;

libgcc_s_resume = ...;

libgcc_s_getcfa = ...;

(b): Accesses that participate in the SC violation

 atomic_write_barrier();
A0:

A1:

B0:
B1: libgcc_s_resume(...);

(c): Interleaving with an SC violation

libgcc_s_resume = ...;

libgcc_s_getcfa = ...;

A0:

A1:
 atomic_write_barrier();

if(libgcc_s_getcfa != NULL)

Figure 11. New SC violation found in the glibc pthread library.

function, grabs the lock and is about to initialize table eperm32tab
(in A0) and then set small tables- initialized (in A1). Thread T2

enters the function, finds small tables initialized set (in B0) and

uses eperm32tab (in B1). Unfortunately, eperm32tab is still unini-

tialized due to the SCV.

small_tables_initialized=1;
 atomic_write_barrier();

eperm32tab[...]= ...;A0:

A1: B1: ... =eperm32tab[...];
B0: if(small_tables_initialized==0){

T1 T2

 ...

}

 }

... =eperm32tab[...];

Done:
small_tables_initialized=1;

 if(small_tables_initialized)
 goto Done;

_init_des_r(...){
if(small_tables_initialized==0){

 atomic_write_barrier();

B0:

B1:

A0:

A1:

eperm32tab[...]= ...;

 lock;

 unlock;

(a): Code from crypt_util.c

(b): Accesses that participate in the SC violation

Figure 12. New SC violation found in the glibc crypt library.

The references involved and the fence are shown in Figure 12(b).

The code is similar to the one in Figure 11(b). We need another

fence between B0 and B1.

New SC Violation in fmm from SPLASH-2

Vulcan finds three new SCVs in fmm, caused by a single flag

dependence racing against three pairs of references. The code for

one of the racing pairs is shown in Figure 13. Inside the SetCol-
leagues function, a thread (T2) sets structure colleagues (in A0)

and then flag construct synch (in A1); another one spins on the flag

(in B0) and then uses the structure (in B1). This is the pattern of

Figure 1, and an SCV occurs. In the fmm code, the flag was de-

372

clared as volatile. However, in C, while volatile prevents compiler

optimizations, it does not prevent reordering by the hardware.

T2T1

}
... = parent_b�>colleagues[...];B1: child_b�>construct_synch=1;

b�>colleagues[...] =...;A0:
A1:

}

SetColleagues(...) {
while(b�>construct_synch==0);B0:

SetColleagues(...) {

Code from construct_grid.c

Figure 13. New SC violation found in fmm from SPLASH-2.
This SCV affects the precision of the program’s output because

thread T1 uses “old data”. However, since fmm is an N-body prob-

lem, the output might still be acceptable. Still, this is a serious bug

because the programmer can hardly reason about the bug’s impact

on the code. This bug can be fixed by either placing a fence between

the two references in each thread, or by using a synchronization in-

struction to access the flag.

7.5. SCVQ Size and Sensitivity
To size the SCVQ, we need to know the number of Unsafe ac-

cesses that individual processors maintain. Consequently, we count

the average and maximum number of Unsafe accesses per processor

over time. We use only SPLASH-2 applications because the others

are too small to provide useful information. For our measurements,

we take a sample every time a memory operation is issued. We

additionally count the average and maximum number of pending

accesses. These are loads and stores that have been issued but not

yet completed, and are a strict subset of Unsafe accesses — an ac-

cess remains Unsafe at least while pending and often beyond that.

Figure 14 shows the results for each application.

fft lu

ra
di

x

ch
ol

es
ky

oc
ea

n

ra
yt

ra
ce

ba
rn

es

fm
m

A
ve

ra
ge

0

5

10

15

20

25

30

A
ve

ra
ge

 #
 o

f a
cc

es
se

s Pending
Unsafe

(a) Average

fft lu

ra
di

x

ch
ol

es
ky

oc
ea

n

ra
yt

ra
ce

ba
rn

es

fm
m

A
ve

ra
ge

0

50

100

150

200

250

300

M
ax

im
um

 #
 o

f a
cc

es
se

s

(b) Maximum

Figure 14. Number of pending and Unsafe accesses.

The average number of Unsafe accesses ranges from 6 to 17

(Figure 14(a)). This is a small number, and is about double of the

average number of pending accesses. However, accesses are typi-

cally bursty and the maximum number of Unsafe accesses is higher.

Across applications, it ranges from 40 to 270 (Figure 14(b)). If we

average out all the codes, the number is about 140, which is also

about double of the maximum number of pending accesses.

Overall, to be conservative, we size the SCVQ with 256 entries.

Most of the time, only about 10 or so entries are in use. In one

application, namely cholesky, there are 170 times in the execution

of the 147-million memory-access program when we need more

than 256 entries. Hence, we have rerun the program with a 270-

entry SCVQ, which is large enough, and found no SCVs either.

We now measure how the number of Unsafe and pending ac-

cesses changes with the ROB size and processor issue width. This

is shown in Figure 15, which plots the average across all SPLASH-2

codes. For each ROB size and issue width, we show the average and

maximum number of pending and Unsafe accesses. The number on

top of the maximum Unsafe bars is the number of SCVQ overflows,

as a percentage of total instructions. We see that, for our default is-

sue width (Figure 15(a)), changes in the ROB size have negligible

impact. For 4-issue cores (Figure 15(b)), if the ROB reaches 128

entries or more, the SCVQ starts to overflow.

32 64 128 256

ROB Size

0.0

100.0

200.0

Avg Pending
Avg Unsafe

Max Pending
Max Unsafe

0% 0% 0% 0%

(a) 2-issue wide

0%
0%

7.8% 5.7%

32 64 128 256

ROB Size

0.0

100.0

200.0

(b) 4-issue wide

Figure 15. Pending and Unsafe accesses for different ROB sizes
and issue widths.

7.6. Network Traffic & Execution Overhead

Vulcan’s execution overhead comes from the additional bus traf-

fic that it induces. This traffic has two sources: (i) the information

that Vulcan piggybacks on some of the ordinary coherence transac-

tions on the bus and (ii) the Metadata bus accesses that it induces

(Section 4.4). In both cases, Vulcan sends a Sequence Number in

the request (4 bytes), and both a Sequence Number and a Performed

Point in the response (8 bytes).

To see the magnitude of this traffic, Figure 16 breaks down the

total bytes of traffic in the bus for each application. We run the ex-

periments for both 4-core and 8-core systems. The categories are:

traffic in a Vulcan-free execution (No Vulcan), traffic piggybacked

by Vulcan on the normal coherence (Piggybacked), and traffic in

Metadata bus accesses (Extra). We see that Vulcan’s effect is mod-

est: on average for 4 cores, Piggybacked accounts for 9% of the

traffic and Extra for 12%. For 8 cores, the result is similar.

fft lu
ra

di
x

ch
ol

es
ky

oc
ea

n
ra

yt
ra

ce
ba

rn
es

fm
m

A
ve

ra
ge

0

20

40

60

80

100

N
et

w
or

k
T

ra
ffi

c
(%

)

Extra
Piggybacked
No Vulcan

(a) 4 Cores

fft lu
ra

di
x

ch
ol

es
ky

oc
ea

n
ra

yt
ra

ce
ba

rn
es

fm
m

A
ve

ra
ge

0

20

40

60

80

100

(b) 8 Cores

Figure 16. Breakdown of total bus traffic in bytes.

Given the bus parameters of Table 2, we assume that the addi-

tional bytes piggybacked by Vulcan on a coherence transaction do

not increase the bus occupancy cycles of the transaction. However,

for Metadata bus accesses, we assume bus occupancies of 2 bus cy-

cles for request and 2 for reply. The contention induced by these

accesses causes Vulcan’s execution overhead.

Tables 5 and 6 show Vulcan’s execution overhead for 4 and 8

core systems, respectively. Each table shows the execution over-

head with word and byte granularity for V-state bits. For each core

count and V-state granularity, the tables show the number of bus

373

accesses, the fraction of those that are Metadata bus accesses, and

the increase in the program’s execution time due to Vulcan.

Word Granularity Byte Granularity

Appl. Tot. Meta. Exec. Tot. Meta. Exec.

Bus Bus Time Bus Bus Time

Acc. Acc. Over. Acc. Acc. Over.

(Mil.) (%) (%) (Mil.) (%) (%)

fft 0.4 32.4 4.9 0.4 32.6 4.9

lu 1.2 34.4 3.8 1.2 34.4 3.8

radix 2.0 32.5 0.7 2.0 32.6 0.7

chole. 34.4 38.9 8.1 34.4 38.9 8.1

ocean 21.5 26.7 5.5 21.5 26.7 5.5

raytr. 3.1 8.8 4.2 3.6 19.8 6.7

barnes 30.7 6.9 2.7 30.9 6.9 2.7

fmm 19.2 25.8 2.6 19.2 25.8 2.6

Avg. 14.1 25.8 4.1 14.2 27.2 4.4

Table 5. Vulcan’s execution overhead for 4 cores.

Word Granularity Byte Granularity

Appl. Tot. Meta. Exec. Tot. Meta. Exec.

Bus Bus Time Bus Bus Time

Acc. Acc. Over. Acc. Acc. Over.

(Mil.) (%) (%) (Mil.) (%) (%)

fft 0.4 31.8 9.5 0.4 31.9 9.5

lu 1.2 35.3 3.6 1.2 35.3 3.6

radix 2.1 33.0 1.4 2.1 33.0 1.4

chole. 35.6 38.4 9.0 35.7 38.5 9.0

ocean 21.6 27.7 12.3 21.7 27.6 12.3

raytr. 3.6 9.6 4.4 4.0 19.0 6.9

barnes 35.0 6.5 2.8 35.1 6.3 2.7

fmm 19.4 26.0 2.8 19.4 26.0 2.8

Avg. 14.9 26.0 5.7 14.9 27.2 6.0

Table 6. Vulcan’s execution overhead for 8 cores.

The tables show that Metadata bus accesses account for an aver-

age of 26-27% of the bus accesses, and that such fraction does not

change much with the core count. Importantly, Vulcan’s execution

time overhead is small. On average for word granularity, it is 4.1%

for 4-core systems and 5.7% for 8-core systems.

When Vulcan supports V-state byte granularity, the overhead in-

creases in the applications with a non-negligible fraction of byte

accesses. For the applications considered, only Raytrace is in this

class. As a result, in Raytrace, the number of Metadata bus ac-

cesses increases and the execution time overhead increases a mod-

est 2.5 percentage points, as we go from word to byte granularity

for both processor counts. For the other codes, since they reference

mostly words rather than bytes, Vulcan’s execution behaves as if it

had word- rather than byte-granularity V-state bits. On average for

all the applications, the execution overhead with byte-granularity V-

state bits is 4.4% for 4-core systems and 6.0% for 8-core systems.

Overall, we conclude that Vulcan’s execution overhead is small

enough to allow on-the-fly use — both with word- and byte-

granularity V-state bits. In addition, the overhead scales nicely from

4- to 8-core systems.

8. Other Related Work
There is related work in architecture, compilation, testing, and

hardware verification. In architecture, the most related work is Con-

flict Ordering (CO) by Lin et al. [21], which is a technique to sup-

port SC in a relaxed-consistency machine. CO is also based on

identifying Shasha’s delay sets [30] in hardware. At a high level,

CO and Vulcan differ in that their goals are different: Vulcan fo-

cuses on identifying SCVs, while CO focuses on supporting SC.

However, Vulcan could be extended to support SC when an upcom-

ing SCV is suspected, and CO could stop execution when an SCV

is possible. Hence, at a deeper level, CO and Vulcan are similar in

that they both attempt to identify race cycles.

CO’s key contribution is to use information about pending ac-

cesses in the directory module to avert cycles. Unfortunately, CO

requires introducing stalls in processor requests. Specifically, there

are two stall types: write- and read-induced. Write-induced stalls

occur when the write W that is about to retire misses in the cache.

At that point, the next read or write cannot retire until W goes to

the directory, leaves its address there, and brings back the list of

pending writes (write-list). This stall cannot be eliminated with ex-

clusive prefetching. Read-induced stalls occur when a speculative

read R misses in the cache. When R reaches the ROB head, R has

to perform a directory access again, to obtain the write-list. Only

when the write-list returns can R retire and allow subsequent reads

and writes to retire. Again, this cannot be fixed by prefetching.

CO also differs from Vulcan in that, to detect cycles, it compares

line addresses rather than word or byte addresses. This causes false

positives. Luckily, false positives simply cause stalls — although

this approach would not work to debug SCVs like Vulcan. If, in-

stead, CO compared word addresses, then a processor accessing

multiple words of the same line in sequence would have to make

multiple directory accesses to deposit the addresses of all the words.

There are compiler techniques to identify race cycles and put

fences (e.g., [14, 17, 19, 31]). They are conservative because they

only use static information, and typically cause large slowdowns.

Lin et al. [20] can hide some of the resulting fence delay with ar-

chitectural support. Duan et al. [12] use a race detector to construct

a graph of races dynamically. Then, off-line, they traverse the graph

to find potential SCVs. Vulcan differs in that: (1) it is an on-the-

fly scheme, while Duan’s SCV detection is off-line; (2) it needs no

software support; and (3) it has no false positives, while Duan’s

scheme may point to SCVs that never occur.

The software testing community has proposed static and off-line

techniques to check for SCVs (e.g., [6, 7, 8]). While promising,

these techniques are not designed for on-the-fly SCV detection in

large codes with negligible overhead. The hardware verification

community has designed techniques to verify if a memory system

hardware is correctly implemented (e.g., [10, 11, 25]). While re-

lated, these works have a different goal: we focus on debugging

software as it runs on a relaxed-consistent machine; they focus on

verifying that the hardware correctly implements a memory model.

9. Conclusion
This paper proposed Vulcan, the first hardware scheme to pre-

cisely detect SCVs at runtime, in programs running on a relaxed-

consistency machine. Vulcan uses cache coherence protocol trans-

actions to dynamically detect cycles in memory access orders across

threads. When a cycle is about to occur, an exception is triggered,

providing information to debug the SCV. For the conditions consid-

ered in this paper and with enough hardware, Vulcan suffers nei-

ther false positives nor false negatives. It induces negligible exe-

cution overhead, requires no software help, and only takes as input

the program executable. Our results showed that Vulcan detected

three new SCV bugs in popular codes: Pthread and Crypt libraries,

and fmm from SPLASH-2. Vulcan’s negligible execution overhead

makes it suitable for on-the-fly use.

374

References
[1] Sources bugzilla. Bug 11449. http://sources.redhat.com/

bugzilla/show bug.cgi?id=11449.
[2] Sources bugzilla. Bug 133773. https://bugzilla.mozilla.

org/show bug.cgi?id=133773.
[3] Sources bugzilla. Bug 2644. http://sources.redhat.com/

bugzilla/show bug.cgi?id=2644.
[4] C. Blundell, M. M. Martin, and T. F. Wenisch. InvisiFence:

Performance-transparent memory ordering in conventional multipro-
cessors. In ISCA, June 2009.

[5] F. Bonomi et al. An improved construction for counting Bloom filters.
In Ann. Euro. Symp. on Algo., September 2006.

[6] S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: Checking
consistency of concurrent data types on relaxed memory models. In
PLDI, June 2007.

[7] S. Burckhardt and M. Musuvathi. Effective program verification for
relaxed memory models. In CAV, July 2008.

[8] J. Burnim, K. Sen, and C. Stergiou. Sound and complete monitoring
of sequential consistency for relaxed memory models. In Tools and
Algo. for the Const. and Ana. of Sys., July 2011.

[9] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk en-
forcement of sequential consistency. In ISCA, June 2007.

[10] K. Chen, S. Malik, and P. Patra. Runtime validation of memory order-
ing using constraint graph checking. In HPCA, February 2008.

[11] A. Deorio et al. DACOTA: Post-silicon validation of the memory
subsystem in multi-core designs. In HPCA, February 2009.

[12] Y. Duan, X. Feng, L. Wang, C. Zhang, and P.-C. Yew. Detecting and
eliminating potential violations of sequential consistency for concur-
rent C/C++ programs. In CGO, March 2009.

[13] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
data-race detection for the kernel. In OSDI, February 2010.

[14] X. Fang, J. Lee, and S. P. Midkiff. Automatic fence insertion for
shared memory multiprocessing. In ICS, June 2003.

[15] K. Gharachorloo and P. B. Gibbons. Detecting violations of sequential
consistency. In SPAA, July 1991.

[16] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? In
ISCA, May 1999.

[17] A. Krishnamurthy and K. Yelick. Analyses and optimizations for
shared address space programs. Jour. Paral. Dist. Comp., Nov 1996.

[18] L. Lamport. How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs. IEEE Trans. Comp., July 1979.

[19] J. Lee and D. A. Padua. Hiding relaxed memory consistency with a
compiler. IEEE Trans. Comp., August 2001.

[20] C. Lin, V. Nagarajan, and R. Gupta. Efficient sequential consistency
using conditional fences. In PACT, September 2010.

[21] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient sequential
consistency via conflict ordering. In ASPLOS, March 2012.

[22] S. Lu et al. Learning from mistakes: A comprehensive study on real
world concurrency bug characteristics. In ASPLOS, March 2008.

[23] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict
Exceptions: Simplifying concurrent language semantics with precise
hardware exceptions for data-races. In ISCA, June 2010.

[24] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A simple and efficient memory model for
concurrent programming languages. In PLDI, June 2010.

[25] A. Meixner and D. J. Sorin. Dynamic verification of sequential con-
sistency. In ISCA, June 2005.

[26] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically classifying benign and harmful data races using replay
analysis. In PLDI, June 2007.

[27] S. Rajamani et al. ISOLATOR: Dynamically ensuring isolation in
concurrent programs. In ASPLOS, March 2009.

[28] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC Simulator,
January 2005. http://sesc.sourceforge.net.

[29] D. C. Schmidt and T. Harrison. Double-checked locking: An opti-
mization pattern for efficiently initializing and accessing thread-safe
objects. In Patt. Lang. of Prog. Design, 1996.

[30] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel
Programs that Share Memory. ACM TOPLAS, April 1988.

[31] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. Padua.
Compiler techniques for high performance sequentially consistent
Java programs. In PPoPP, June 2005.

[32] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms
for store-wait-free multiprocessors. In ISCA, June 2007.

[33] J. Yu and S. Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In ISCA, June 2009.

Appendix 1: Correctness Proofs
Theorem 1: An access Ci of processor PC is Safe when (SNCi ≤
PP [PC]) and (ADCi [PK] ≤ PP [PK]), for all processors K �= C.
Proof: Recall that Ci becomes Safe as soon as it cannot participate
in an SCV anymore. Assume that Ci can participate in an SCV with

another access of PC : either an earlier one Ci−m (Case 1) or a later
one Ci+m (Case 2) in program order (Figure 17).

Case 2

C PK PKPC

Ci
Kj

Kj�nCi�m

Ci+m

Ci Kj

Kj+n

El El

ErEr

Case 1

P

Figure 17. Possible cases for SCV.
Case 1: Consider two situations. In the first one, edge Er occurs

first. Although Ci has executed, it can still participate in an SCV
for as long as PC ’s previous accesses (Ci−m where 1 ≤ m ≤ i)
are not performed — since such accesses can still be the destination
of an El edge. Hence, when PP [PC] ≥ SNCi , then Ci is Safe.
The second situation is when edge El occurs first. Ci is not Safe
until all of the PK accesses up to Kj (Kj−n where 0 ≤ n ≤ j)
are performed, without consuming an edge from Ci. Note that the
allowed destinations of Ci are the accesses after the El source Kj

(ADCi [PK] = Kj). The El edge can point to any PC access
preceding Ci. Hence, Ci is only Safe when it and all the previous
accesses in PC are performed, and all the accesses in PK up to and
including ADCi [PK] are performed. Hence, the Safe condition in
Case 1 is (SNCi ≤ PP [PC]) and (ADCi [PK] ≤ PP [PK]).

Case 2: There are two situations. In the first one, edge El occurs
first. Although Ci has executed, it can still participate in an SCV
for as long as its disallowed destinations in PK (Kj+n and earlier)
have not performed — since such accesses can be the destination of
an Er edge. Hence, when ADCi [PK] ≤ PP [PK], then Ci is Safe.
The second situation is when Er occurs first. In this case, when
Ci performs, we know whether it creates a cycle with Er . Hence,
Ci is Safe when SNCi ≤ PP [PC]. Overall, the Safe condition
in Case 2 is the same as Case 1, namely (SNCi ≤ PP [PC]) and
(ADCi [PK] ≤ PP [PK]).

Generalizing to all the processors, Ci is safe when (SNCi ≤
PP [PC]) and (ADCi [PK] ≤ PP [PK]), for all processors K �= C.

Theorem 2: In order to form an SCV cycle with two dependences,
their source references have to be Unsafe with respect to their des-
tination processors.
Proof: This is proved by contradiction. Assume that one of the
dependences has a source that is Safe (with respect to the destina-
tion processor) and it forms an SCV cycle with another dependence
whose source is Unsafe (with respect to the destination processor).
According to the definition of a Safe access, once an access be-
comes Safe (with respect to a processor), no dependence from this
access to an access of that other processor can cause an SCV. This
contradicts our previous assumption and proves the theorem.

Theorem 3: If Vulcan records all the Unsafe dependences, then it
detects all the SCVs between processors.
Proof: Referring to Figure 17, an access Ci can participate in an
SCV with one of PC ’s earlier accesses (Case 1) or one of the later
accesses (Case 2). Without loss of generality, assume that, of the
two dependence edges in the cycle, the edge at Ci is formed the
latest. We now show that, when that edge is formed, Ci has all the
information that it needs to detect the SCV.

In Case 1, the information that Ci needs to keep is the sources
of the dependences pointing to any of the PC accesses before
Ci. More specifically, it needs to keep the maximum SN of such
sources. With this information, it cannot miss a cycle when the
edge at Ci occurs. But this is precisely the information in ADCi .

In Case 2, the information that Ci needs to keep is the destina-
tions of the dependences pointing from any of the PC accesses after
Ci. More specifically, it needs to keep the minimum SN of such
destinations. With it, Ci will not miss a cycle when the edge at Ci

occurs. But this is precisely the information in ASCi .
Overall, if Vulcan records all the sources and destinations of the

dependences (with AD and AS), it can find all the SCVs. More-
over, Theorem 2 proves that SCVs occur only among Unsafe de-
pendences. Hence, if Vulcan records all the Unsafe dependences,
then it detects all the SCVs.

375

Amoeba-Cache: Adaptive Blocks for Eliminating Waste in the Memory Hierarchy∗

Snehasish Kumar, Hongzhou Zhao†, Arrvindh Shriraman

Eric Matthews∗, Sandhya Dwarkadas†, Lesley Shannon∗

School of Computing Sciences, Simon Fraser University

†Department of Computer Science, University of Rochester
∗School of Engineering Science, Simon Fraser University

Abstract

The fixed geometries of current cache designs do not adapt to the

working set requirements of modern applications, causing significant

inefficiency. The short block lifetimes and moderate spatial locality

exhibited by many applications result in only a few words in the

block being touched prior to eviction. Unused words occupy between

17—80% of a 64K L1 cache and between 1%—79% of a 1MB private

LLC. This effectively shrinks the cache size, increases miss rate, and

wastes on-chip bandwidth. Scaling limitations of wires mean that

unused-word transfers comprise a large fraction (11%) of on-chip

cache hierarchy energy consumption.

We propose Amoeba-Cache, a design that supports a variable num-

ber of cache blocks, each of a different granularity. Amoeba-Cache

employs a novel organization that completely eliminates the tag array,

treating the storage array as uniform and morphable between tags

and data. This enables the cache to harvest space from unused words

in blocks for additional tag storage, thereby supporting a variable

number of tags (and correspondingly, blocks). Amoeba-Cache adjusts

individual cache line granularities according to the spatial locality

in the application. It adapts to the appropriate granularity both for

different data objects in an application as well as for different phases

of access to the same data. Overall, compared to a fixed granularity

cache, the Amoeba-Cache reduces miss rate on average (geometric

mean) by 18% at the L1 level and by 18% at the L2 level and reduces

L1—L2 miss bandwidth by ≃46%. Correspondingly, Amoeba-Cache

reduces on-chip memory hierarchy energy by as much as 36% (mcf)

and improves performance by as much as 50% (art).

1 Introduction

A cache block is the fundamental unit of space allocation and data

transfer in the memory hierarchy. Typically, a block is an aligned

fixed granularity of contiguous words (1 word = 8bytes). Current pro-

cessors fix the block granularity largely based on the average spatial

locality across workloads, while taking tag overhead into consider-

ation. Unfortunately, many applications (see Section 2 for details)

exhibit low— moderate spatial locality and most of the words in a

cache block are left untouched during the block’s lifespan. Even for

applications with good spatial behavior, the short lifespan of a block

caused by cache geometry limitations can cause low cache utilization.

Technology trends make it imperative that caching efficiency im-

proves to reduce wastage of interconnect bandwidth. Recent reports

from industry [2] show that on-chip networks can contribute up to

28% of total chip power. In the future an L2 — L1 transfer can cost

up to 2.8× more energy than the L2 data access [14, 20]. Unused

words waste ≃ 11% (4%—21% in commercial workloads) of the

cache hierarchy energy.

∗This material is based upon work supported in part by grants from the National
Science and Engineering Research Council, MARCO Gigascale Research Center, Cana-
dian Microelectronics Corporation, and National Science Foundation (NSF) grants
CNS-0834451, CCF-1016902, and CCF-1217920.

Sector
caches e.g.,

[29][31]

Bandwidth

Miss
Rate

Space

Utilization

Cache Filtering

e.g.,[30]

Bandwidth

Miss
Rate

Space
Utilization

Amoeba

Cache

Bandwidth

Miss
Rate

Space
Utilization

Figure 1: Cache designs optimizing different memory hierar-

chy parameters. Arrows indicate the parameters that are tar-

geted and improved compared to a conventional cache.

Figure 1 organizes past research on cache block granularity along

the three main parameters influenced by cache block granularity:

miss rate, bandwidth usage, and cache space utilization. Sector

caches have been used to [32, 15] minimize bandwidth by fetch-

ing only sub-blocks but miss opportunities for spatial prefetching.

Prefetching [17,29] may help reduce the miss rate for utilized sectors,

but on applications with low—moderate or variable spatial local-

ity, unused sectors due to misprediction, or unused regions within

sectors, still pollute the cache and consume bandwidth. Line distilla-

tion [30] filters out unused words from the cache at evictions using

a separate word-granularity cache. Other approaches identify dead

cache blocks and replace or eliminate them eagerly [19, 18, 13, 21].

While these approaches improve utilization and potentially miss rate,

they continue to consume bandwidth and interconnect energy for the

unutilized words. Word-organized cache blocks also dramatically

increase cache associativity and lookup overheads, which impacts

their scalability.

Determining a fixed optimal point for the cache line granularity at

hardware design time is a challenge. Small cache lines tend to fetch

fewer unused words, but impose significant performance penalties by

missing opportunities for spatial prefetching in applications with high

spatial locality. Small line sizes also introduce high tag overhead,

increase lookup energy, and increase miss processing overhead (e.g.,

control messages). Larger cache line sizes minimize tag overhead

and effectively prefetch neighboring words but introduce the nega-

tive effect of unused words that increase network bandwidth. Prior

approaches have proposed the use of multiple caches with differ-

ent block sizes [33,12]. These approaches require word granularity

caches that increase lookup energy, impose high tag overhead (e.g.,

50% in [33]), and reduce cache efficiency when there is good spatial

locality.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.42

376

In this paper, we propose a novel cache architecture, Amoeba-

Cache, to improve memory hierarchy efficiency by supporting fine-

grain (per-miss) dynamic adjustment of cache block size and the # of

blocks per set. To enable variable granularity blocks within the same

cache, the tags maintained per set need to grow and shrink as the # of

blocks/set vary. Amoeba-Cache eliminates the conventional tag array

and collocates the tags with the cache blocks in the data array. This

enables us to segment and partition a cache set in different ways: For

example, in a configuration comparable to a traditional 4-way 64K

cache with 256 sets (256 bytes per set), we can hold eight 32-byte

cache blocks, thirty-two 8-byte blocks, or any other collection of

cache blocks of varying granularity. Different sets may hold blocks

of different granularity, providing maximum flexibility across address

regions of varying spatial locality. The Amoeba-Cache effectively

filters out unused words in a conventional block and prevents them

from being inserted into the cache, allowing the resulting free space

to be used to hold tags or data of other useful blocks. The Amoeba-

Cache can adapt to the available spatial locality; when there is low

spatial locality, it will hold many blocks of small granularity and

when there is good spatial locality, it can adapt and segment the

cache into a few big blocks.

Compared to a fixed granularity cache, Amoeba-Cache improves

cache utilization by 90% - 99% for most applications, saves miss

rate by up to 73% (omnetpp) at the L1 level and up to 88% (twolf) at

the LLC level, and reduces miss bandwidth by up to 84% (omnetpp)

at the L1 and 92% (twolf) at the LLC. We compare against other

approaches such as Sector Cache and Line distillation and show that

Amoeba-Cache can optimize miss rate and bandwidth better across

many applications, with lower hardware overhead. Our synthesis

of the cache controller hit path shows that Amoeba-Cache can be

implemented with low energy impact and 0.7% area overhead for a

latency- critical 64K L1.

The overall paper is organized as follows: § 2 provides quantitative

evidence for the acuteness of the spatial locality problem. § 3 details

the internals of the Amoeba-Cache organization and § 4 analyzes

the physical implementation overhead. § 5 deals with wider chip-

level issues (i.e., inclusion and coherence). § 6 — § 10 evaluate

the Amoeba-Cache, commenting on the optimal block granularity,

impact on overall on-chip energy, and performance improvement.

§ 11 outlines related work.

2 Motivation for Adaptive Blocks

In traditional caches, the cache block defines the fundamental unit

of data movement and space allocation in caches. The blocks in the

data array are uniformly sized to simplify the insertion/removal of

blocks, simplify cache refill requests, and support low complexity

tag organization. Unfortunately, conventional caches are inflexible

(fixed block granularity and fixed # of blocks) and caching efficiency

is poor for applications that lack high spatial locality. Cache blocks

influence multiple system metrics including bandwidth, miss rate, and

cache utilization. The block granularity plays a key role in exploiting

spatial locality by effectively prefetching neighboring words all at

once. However, the neighboring words could go unused due to the

low lifespan of a cache block. The unused words occupy interconnect

bandwidth and pollute the cache, which increases the # of misses.

We evaluate the influence of a fixed granularity block below.

2.1 Cache Utilization

In the absence of spatial locality, multi-word cache blocks (typi-

cally 64 bytes on existing processors) tend to increase cache pollution

and fill the cache with words unlikely to be used. To quantify this

pollution, we segment the cache line into words (8 bytes) and track

the words touched before the block is evicted. We define utiliza-

tion as the average # of words touched in a cache block before it is

evicted. We study a comprehensive collection of workloads from

a variety of domains: 6 from PARSEC [3], 7 from SPEC2006, 2

from SPEC2000, 3 Java workloads from DaCapo [4], 3 commercial

workloads (Apache, SpecJBB2005, and TPC-C [22]), and the Firefox

web browser. Subsets within benchmark suites were chosen based on

demonstrated miss rates on the fixed granularity cache (i.e., whose

working sets did not fit in the cache size evaluated) and with a spread

and diversity in cache utilization. We classify the benchmarks into 3

groups based on the utilization they exhibit: Low (<33%), Moderate

(33%—66%), and High (66%+) utilization (see Table 1).

Table 1: Benchmark Groups

Group Utilization % Benchmarks

Low 0 — 33% art, soplex, twolf, mcf, canneal, lbm, om-

netpp

Moderate 34 — 66% astar, h2, jbb, apache, x264, firefox, tpc-c,

freqmine, fluidanimate

High 67 — 100% tradesoap, facesim, eclipse, cactus, milc,

ferret

0

20

40

60

80

100
ap

ac
h

e

ar
t

as
ta

r

ca
ct

u
s

ca
n

n
ea

l

ec
li

p
se

fa
ce

si
m

fe
rr

et

fi
re

fo
x

fl
u

id
.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p

le
x

tp
c-

c.

tr
ad

e.

tw
o

lf

x
2

6
4

m
ea

n

W
o

rd
s

A
cc

es
se

d
 (

%
)

1-2 Words 3-4 Words 5-6 Words 7-8 Words

4
5

2
0

3
9

7
9

3
0

8
0

7
7

8
2

4
9

6
2

5
5

3
8

4
0

3
2

2
9

8
1

3
3

2
1

5
3

7
3

2
9

4
6

5
0

Figure 2: Distribution of words touched in a cache block. Avg.

utilization is on top. (Config: 64K, 4 way, 64-byte block.)

Figure 2 shows the histogram of words touched at the time of

eviction in a cache line of a 64K, 4-way cache (64-byte block, 8

words per block) across the different benchmarks. Seven applications

have less than 33% utilization and 12 of them are dominated (>50%)

by 1-2 word accesses. In applications with good spatial locality

(cactus, ferret, tradesoap, milc, eclipse) more than 50% of the evicted

blocks have 7-8 words touched. Despite similar average utilization

for applications such as astar and h2 (39%), their distributions are

dissimilar; ≃70% of the blocks in astar have 1-2 words accessed at the

time of eviction, whereas ≃50% of the blocks in h2 have 1-2 words

accessed per block. Utilization for a single application also changes

over time; for example, ferret’s average utilization, measured as the

average fraction of words used in evicted cache lines over 50 million

instruction windows, varies from 50% to 95% with a periodicity of

roughly 400 million instructions.

377

2.2 Effect of Block Granularity on Miss Rate and Bandwidth

Cache miss rate directly correlates with performance, while under

current and future wire-limited technologies [2], bandwidth directly

correlates with dynamic energy. Figure 3 shows the influence of

block granularity on miss rate and bandwidth for a 64K L1 cache and

a 1M L2 cache keeping the number of ways constant. For the 64K

L1, the plots highlight the pitfalls of simply decreasing the block size

to accommodate the Low group of applications; miss rate increases

by 2× for the High group when the block size is changed from 64B

to 32B; it increases by 30% for the Moderate group. A smaller

block size decreases bandwidth proportionately but increases miss

rate. With a 1M L2 cache, the lifetime of the cache lines increases

significantly, improving overall utilization. Increasing the block size

from 64→256 halves the miss rate for all application groups. The

bandwidth is increased by 2× for the Low and Moderate.

Since miss rate and bandwidth have different optimal block granu-

larities, we use the following metric: 1
MissRate×Bandwidth to determine

a fixed block granularity suited to an application that takes both cri-

teria into account. Table 2 shows the block size that maximizes the

metric for each application. It can be seen that different applica-

tions have different block granularity requirements. For example, the

metric is maximized for apache at 128 bytes and for firefox (similar

utilization) at 32 bytes. Furthermore, the optimal block sizes vary

with the cache size as the cache lifespan changes. This highlights

the challenge of picking a single block size at design time especially

when the working set does not fit in the cache.

2.3 Need for adaptive cache blocks

Our observations motivate the need for adaptive cache line granu-

larities that match the spatial locality of the data access patterns in an

application. In summary:

• Smaller cache lines improve utilization but tend to increase miss

rate and potentially traffic for applications with good spatial local-

ity, affecting the overall performance.

• Large cache lines pollute the cache space and interconnect with un-

used words for applications with poor spatial locality, significantly

decreasing the caching efficiency.

• Many applications waste a significant fraction of the cache space.

Spatial locality varies not only across applications but also within

each application, for different data structures as well as different

phases of access over time.

Table 2: Optimal block size. Metric: 1
Miss−rate×Bandwidth

64K, 4-way

Block Benchmarks

32B
cactus, eclipse, facesim, ferret, firefox, fluidani-
mate,freqmine, milc, tpc-c, tradesoap

64B art

128B
apache, astar, canneal, h2, jbb, lbm, mcf, omnetpp, so-
plex, twolf, x264

1M, 8-way

Block Benchmarks

64B
apache, astar, cactus, eclipse, facesim, ferret, firefox,
freqmine, h2, lbm, milc, omnetpp, tradesoap, x264

128B art

256B canneal, fluidanimate, jbb, mcf, soplex, tpc-c, twolf

3 Amoeba-Cache : Architecture

The Amoeba-Cache architecture enables the memory hierarchy to

fetch and allocate space for a range of words (a variable granularity

32

64

128

3.0

4.0

5.0

6.0

7.0

8.0

10 26 42 58 74 90

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s
)

M iss Rate (Misses/1K ins)

(a) 64K - Low

64

128

256

2.5

3.0

3.5

4.0

4.5

5.0

10 26 42 58 74 90

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s
)

M iss Rate (Misses/1K ins)

(b) 1M - Low

32

64

128

1.0

1.3

1.6

1.9

2.2

2.5

2 6 10 14 18 22

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s
)

M iss Rate (Misses/1K ins)

(c) 64K - Moderate

64

128

256

0.5

0.6

0.7

0.8

0.9

1.0

2 6 10 14 18 22

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s
)

M iss Rate (Misses/1K ins)

(d) 1M - Moderate

32

64

128

0.80

0.84

0.88

0.92

0.96

1.00

0 3 6 9 12 15

B
a
n

d
w

id
th

 (
K

B
 /

 1
K

 i
n

s
)

M iss Rate (Misses/1K ins)

(e) 64K - High

64

128

256

0.40

0.45

0.50

0.55

0.60

0.65

0 3 6 9 12 15

B
a
n

d
w

id
th

 (
K

B
 /

 1
K

 i
n

s
)

M iss Rate (Misses/1K ins)

(f) 1M - High

Figure 3: Bandwidth vs. Miss Rate. (a),(c),(e): 64K, 4-way L1.

(b),(d),(f): 1M, 8-way LLC. Markers on the plot indicate cache

block size. Note the different scales for different groups.

cache block) based on the spatial locality of the application. For

example, consider a 64K cache (256 sets) that allocates 256 bytes

per set. These 256 bytes can adapt to support, for example, eight

32-bytes blocks, thirty-two 8-byte blocks, or four 32-byte blocks and

sixteen 8-byte blocks, based on the set of contiguous words likely

to be accessed. The key challenge to supporting variable granularity

blocks is how to grow and shrink the # of tags as the # of blocks per

set vary with block granularity? Amoeba-Cache adopts a solution

inspired by software data structures, where programs hold meta-

data and actual data entries in the same address space. To achieve

maximum flexibility, Amoeba-Cache completely eliminates the tag

array and collocates the tags with the actual data blocks (see Figure 4).

We use a bitmap (T? Bitmap) to indicate which words in the data

array represent tags. We also decouple the conventional valid/invalid

bits (typically associated with the tags) and organize them into a

separate array (V? : Valid bitmap) to simplify block replacement and

insertion. V? and T? bitmaps both require 1 bit for very word (64bits)

in the data array (total overhead of 3%). Amoeba-Cache tags are

represented as a range (Start and End address) to support variable

granularity blocks. We next discuss the overall architecture.

3.1 Amoeba Blocks and Set-Indexing

The Amoeba-Cache data array holds a collection of varied gran-

ularity Amoeba-Blocks that do not overlap. Each Amoeba-Block is

a 4 tuple consisting of <Region Tag, Start, End, Data-

Block> (Figure 4). A Region is an aligned block of memory

of size RMAX bytes. The boundaries of any Amoeba-Block block

(Start and End) always will lie within the regions’ boundaries.

The minimum granularity of the data in an Amoeba-Block is 1 word

378

379

Tag = Amoeba-Block in set). ②2 The data blocks that overlap with

the miss range are evicted and moved one-at-a-time to the MSHR

entry. ②3 Space is then allocated for the new block, i.e., it is treated

like a new insertion. ②4 A miss request is issued for the entire block

(START:0 — END:7) even if only some words (e.g., 0, 4, and 7)

may be needed. This ensures request processing is simple and only

a single refill request is sent. ②5 Finally, the incoming data block is

patched into the MSHR; only the words not obtained from the L1 are

copied (since the lower level could be stale).

Miss

(0:7)

R 1--3 R 5--6

0--7R

Fetch

MSHR

1
New
∩ Tag

0--7

2

==Region

StartNEW ≤ End
EndNEW > Start

MSHR

1--3 5--6X X

+
(0--7)

3

4

Refill (0:7)

Patch Xs

X

5

Identify Sub-Blocks

Insert New-Block

②1 Identify blocks overlapping with New block. ②2 Evict overlapping

blocks to MSHR. ②3 Allocate space for new block (treat it like a new

insertion). ②4 Issue refill request to lower level for entire block. ②5
Patch only newer words as lower-level data could be stale.

Figure 6: Partial Miss Handling. Upper: Identify relevant sub-

blocks. Useful for other cache controller events as well, e.g.,

recalls. Lower: Refill of words and insertion.

4 Hardware Complexity

We analyze the complexity of Amoeba-Cache along the following

directions: we quantify the additions needed to the cache controller,

we analyze the latency, area, and energy penalty, and finally, we study

the challenges specifically introduced by large caches.

4.1 Cache Controller

The variable granularity Amoeba-Block blocks need specific con-

sideration in the cache controller. We focus on the L1 controller

here, and in particular, partial misses. The cache controller manages

operations at the aligned RMAX granularity. The controller permits

only one in-flight cache operation per RMAX region. In-flight cache

operations ensure no address overlap with stable Amoeba-Blocks in

order to eliminate complex race conditions. Figure 7 shows the L1

cache controller state machine. We add two states to the default

protocol, IV_B and IV_C, to handle partial misses. IV_B is a

blocking state that blocks other cache operations to RMAX region

until all relevant Amoeba-Blocks to a partial miss are evicted (e.g.,

0–3 and 5–7 blocks in Figure 6). IV_C indicates partial miss com-

pletion. This enables the controller to treat the access as a full miss

and issue the refill request. The other stable states (I, V, D) and tran-

sient states (IV_Data and ID_Data) are present in a conventional

protocol as well. Partial-miss triggers the clean-up operations

(1 and 2 in Figure 6). Local_L1_Evict is a looping event that

keeps retriggering for each Amoeba-Block involved in the partial

miss; Last_L1_Evict is triggered when the last Amoeba-Block

involved in the partial miss is evicted to the MSHR. A key difference

L
o
c
a
l

L
1
_
E

v
ic

t

IV

Data
ID

Data

IV_B

IV_CV D

Parti
al

M
is
s

L
2

D
A

T
A L

2

D
A

T
A

L
a
s
t

L
1
_
E

v
ic

t

Partial
M

issS
to

reL
o
a
d

P
a
rt

ia
l

M
is

s

NP

Load StoreL1

Evi
ct

L1
W

riteback

Load
Load

/Store

Store

ID

Data

Cache controller states
State Description
NP Amoeba-Block not present in the cache.
V All words corresponding to Amoeba-Block present and valid

(read-only)
D Valid and atleast one word in Amoeba-Block is dirty (read-write)

IV B Partial miss being processed (blocking state)
IV Data Load miss; waiting for data from L2
ID Data Store miss; waiting for data. Set dirty bit.

IV C Partial miss cleanup from cache completed (treat as full miss)
Amoeba-specific Cache Events

Partial miss: Process partial miss.
Local L1 Evict: Remove overlapping Amoeba-Block to MSHR.
Last L1 Evict: Last Amoeba-Block moved to MSHR. Convert to full
miss and process load or store.
Bold and Broken-lines: Amoeba-Cache additions.

Figure 7: Amoeba Cache Controller (L1 level).

between the L1 and lower-level protocols is that the Load/Store event

in the lower-level protocol may need to access data from multiple

Amoeba-Blocks. In such cases, similar to the partial-miss event, we

read out each block independently before supplying the data (more

details in § 5.2).

4.2 Area, Latency, and Energy Overhead

The extra metadata required by Amoeba-Cache are the T? (1 tag

bit per word) and V? (1 valid bit per word) bitmaps. Table 3 shows

the quantitative overhead compared to the data storage. Both the T?

and V? bitmap arrays are directly proportional to the size of the cache

and require a constant storage overhead (3% in total). The T? bitmap

is read in parallel with the data array and does not affect the critical

path; T? adds 2%—3.5% (depending on cache size) to the overall

cache access energy. V? is referred only on misses when inserting a

new block.

Table 3: Amoeba-Cache Hardware Complexity.

Cache configuration
64K (256by/set) 1MB (512by/set) 4MB (1024by/set)

Data RAM parameters
Delay 0.36ns 2ns 2.5 ns
Energy 100pJ 230pJ 280pJ

Amoeba-Cache components (CACTI model)
T?/V? map 1KB 16KB 64KB

Latency 0.019ns (5%) 0.12ns (6%) 0.2ns (6%)
Energy 2pJ (2%) 8pJ (3.4%) 10pJ (3.5%)

LRU 1
8 KB 2KB 8KB

Lookup Overhead (VHDL model)
Area 0.7% 0.1%

Latency 0.02ns 0.035ns 0.04ns

% indicates overhead compared to data array of cache. 64K cache

operates in Fast mode; 1MB and 4MB operate in Normal mode.

We use 32nm ITRS HP transistors for 64K and 32nm ITRS LOP

transistors for 1MB and 4MB.

380

We synthesized1 the cache lookup logic using Synopsys and quan-

tify the area, latency, and energy penalty. Amoeba-Cache is compat-

ible with Fast and Normal cache access modes [28, -access-mode

config], both of which read the entire set from the data array in par-

allel with the way selection to achieve lower latency. Fast mode

transfers the entire set to the edge of the H-tree, while Normal mode,

only transmits the selected way over the H-tree. For synthesis, we

used the Synopsys design compiler (Vision Z-2007.03-SP5).

Figure 5 shows Amoeba-Cacheś lookup hardware on the critical

path; we compare it against a fixed-granularity cache’s lookup logic

(mainly the comparators). The area overhead of the Amoeba-Cache

includes registering an entire line that has been read out, the tag

operation logic, and the word selector. The components on the

critical path once the data is read out are the 2-way multiplexers, the

∈ comparators, and priority encoder that selects the word; the T?

bitmap is accessed in parallel and off the critical path. Amoeba-Cache

is made feasible under today’s wire-limited technology where the

cache latency and energy is dominated by the bit/word lines, decoder,

and H-tree [28]. Amoeba-Cache’s comparators, which operate on

the entire cache set, are 6× the area of a fixed cache’s comparators.

Note that the data array occupies 99% of the overall cache area.

The critical path is dominated by the wide word selector since the

comparators all operate in parallel. The lookup logic adds 60% to

the conventional cache’s comparator time. The overall critical path

is dominated by the data array access and Amoeba-Cache’s lookup

circuit adds 0.02ns to the access latency and ≃ 1pJ to the energy of

a 64K cache, and 0.035ns to the latency and ≃2pJ to the energy of

a 1MB cache. Finally, Amoeba-Cache amortizes the energy penalty

of the peripheral components (H-tree, Wordline, and decoder) over a

single RAM.

Amoeba-Cache’s overhead needs careful consideration when im-

plemented at the L1 cache level. We have two options for handling

the latency overhead a) if the L1 cache is the critical stage in the

pipeline, we can throttle the CPU clock by the latency overhead to

ensure that the additional logic fits within the pipeline stage. This

ensures that the number of pipeline stages for a memory access does

not change with respect to a conventional cache, although all instruc-

tions bear the overhead of the reduced CPU clock. b) we can add an

extra pipeline stage to the L1 hit path, adding a 1 cycle overhead to

all memory accesses but ensuring no change in CPU frequency. We

quantify the performance impact of both approaches in Section 6.

4.3 Tag-only Operations

Conventional caches support tag-only operations to reduce data

port contention. While the Amoeba-Cache merges tags and data, like

many commercial processors it decouples the replacement metadata

and valid bits from the tags, accessing the tags only on cache lookup.

Lookups can be either CPU side or network side (coherence invalida-

tion and Wback/Forwarding). CPU-side lookups and writebacks (≃

95% of cache operations) both need data and hence Amoeba-Cache in

the common case does not introduce extra overhead. Amoeba-Cache

does read out the entire data array unlike serial-mode caches (we

discuss this issue in the next section). Invalidation checks and snoops

can be more energy expensive with Amoeba-Cache compared to a

conventional cache. Fortunately, coherence snoops are not common

in many applications (e.g., 1/100 cache operations in SpecJBB) as a

coherence directory and an inclusive LLC filter them out.

1We do not have access to an industry-grade 32nm library, so we synthesized at
a higher 180nm node size and scaled the results to 32 nm (latency and energy scaled
proportional to Vdd (taken from [36]) and V dd2 respectively).

4.4 Tradeoff with Large Caches

0

0.4

0.8

1.2

1.6

2

4 8 16 32 4 8 16 32 4 8 16 32

2M 4M 8M

N
o

rm
al

v

s
 S

er
ia

l
M

o
d

e

Latency Energy

Ways Ways Ways

Baseline: Serial. ≤ 1 Normal is better. 32nm, ITRS LOP.

Figure 8: Serial vs Normal mode cache.

Large caches with many words per set (≡ highly associative con-

ventional cache) need careful consideration. Typically, highly as-

sociative caches tend to serialize tag and data access with only the

relevant cache block read out on a hit and no data access on a miss.

We first analyze the the tradeoff between reading the entire set (nor-

mal mode), which is compatible with Amoeba-Cache and only the

relevant block (serial mode). We vary the cache size from 2M—8M

and associativity from 4(256B/set) — 32 (2048B/set). Under current

technology constraints (Figure 8), only at very high associativity does

serial mode demonstrate a notable energy benefit. Large caches are

dominated by H-tree energy consumption and reading out the entire

set at each sub-bank imposes an energy penalty when bitlines and

wordlines dominate (2KB+ # of words/set).

Table 4: % of direct accesses with fast tags

64K(256by/set) 1MB(512by/set) 2MB(1024 by/set)
Tags/set 2 4 4 8 8 16
Overhead 1KB 2KB 2KB 16KB 16KB 32KB
Benchmarks
Low 30% 45% 42% 64% 55% 74%
Moderate 24% 62% 46% 70% 63% 85%
High 35% 79% 67% 95% 75% 96%

Amoeba-Cache can be tuned to minimize the hardware overhead

for large caches. With many words/set the cache utilization improves

due to longer block lifetimes making it feasible to support Amoeba-

Blocks with a larger minimum granularity (> 1 word). If we increase

minimum granularity to two or four words, only every third or fifth

word could be a tag, meaning the # of comparators and multiplex-

ers reduce to
Nwords/set

3 or
Nwords/set

5 . When the minimum granularity

is equal to max granularity (RMAX), we obtain a fixed granularity

cache with Nwords/set/RMAX ways. Cache organizations that collo-

cate all the tags together at the head of the data array enable tag-only

operations and serial Amoeba-Block accesses that need to activate

only a portion of the data array. However, the set may need to be

compacted at each insertion. Recently, Loh and Hill [23] explored

such an organization for supporting tags in multi-gigabyte caches.

Finally, the use of Fast Tags help reduce the tag lookups in the

data array. Fast tags use a separate traditional tag array-like structure

to cache the tags of the recently-used blocks and provide a pointer

directly to the Amoeba-Block. The # of Fast Tags needed per set

is proportional to the # of blocks in each set, which varies with the

spatial locality in the application and the # of bytes per set (more

details in Section 6.1). We studied 3 different cache configurations

(64K 256B/set, 1M 512B/set, and 2M 1024B/set) while varying the

number of fast tags per set (see Table 4). With 8 tags/set (16KB

381

overhead), we can filter 64—95% of the accesses in a 1MB cache

and 55— 75% of the accesses in a 2MB cache.

5 Chip-Level Issues

5.1 Spatial Patterns Prediction

101 1101 1

.........
101 1100 1

PC or Region

Tag

2

101 1100 1

==13

1

PC: Read 0xaddr

Miss Word

Block <Start, End>

PC or Region

Tag

Figure 9: Spatial Predictor invoked on a Amoeba-Cache miss

Amoeba-Cache needs a spatial block predictor, which informs

refill requests about the range of the block to fetch. Amoeba-Cache

can exploit any spatial locality predictor and there have been many

efforts in the compiler and architecture community [7, 17, 29, 6]. We

adopt a table-driven approach consisting of a set of access bitmaps;

each entry is RMAX (maximum granularity of an Amoeba-Block)

bits wide and represents whether the word was touched during the

lifetime of the recently evicted cache block. On a miss, the predictor

will search for an entry (indexed by either the miss PC or region

address) and choose the range of words to be fetched on a miss

on either side (left and right) of the critical word. The PC-based

indexing also uses the critical word index for improved accuracy. The

predictor optimizes for spatial prefetching and will overfetch (bring

in potentially untouched words), if they are interspersed amongst

contiguous chunks of touched words. We can also bypass the

prediction when there is low confidence in the prediction accuracy.

For example, for streaming applications without repeated misses to a

region, we can bring in a fixed granularity block based on the overall

global behavior of the application. We evaluate tradeoffs in the design

of the spatial predictor in Section 6.2.

5.2 Multi-level Caches

We discuss the design of inclusive cache hierarchies including

multiple Amoeba-Caches; we illustrate using a 2-level hierarchy.

Inclusion means that the L2 cache contains a superset of the data

words in the L1 cache; however, the two levels may include different

granularity blocks. For example, the Sun Niagara T2 uses 16 byte L1

blocks and 64 byte L2 blocks. Amoeba-Cache permits non-aligned

blocks of variable granularity at the L1 and the L2, and needs to deal

with two issues: a) L2 recalls that may invalidate multiple L1 blocks

and b) L1 refills that may need data from multiple blocks at the L2.

For both cases, we need to identify all the relevant Amoeba-Blocks

that overlap with either the recall or the refill request. This situation

is similar to a Nigara’s L2 eviction which may need to recall 4 L1

blocks. Amoeba-Cache’s logic ensures that all Amoeba-Blocks from

a region map to a single set at any level (using the same RMAX for

both L1 and L2). This ensures that L2 recalls or L1 refills index

into only a single set. To process multiple blocks for a single cache

operation, we use the step-by-step process outlined in Section 3.5

(②1 and ②2 in Figure 6). Finally, the L1-L2 interconnect needs 3

virtual networks, two of which, the L2→L1 data virtual network and

the L1→L2 writeback virtual network, can have packets of variable

granularity; each packet is broken down into a variable number of

smaller physical flits.

5.3 Cache Coherence

There are three main challenges that variable cache line granu-

larity introduces when interacting with the coherence protocol: 1)

How is the coherence directory maintained? 2) How to support

variable granularity read sharing? and 3) What is the granularity

of write invalidations? The key insight that ensures compatibility

with a conventional fixed-granularity coherence protocol is that a

Amoeba-Block always lies within an aligned RMAX byte region (see

§ 3). To ensure correctness, it is sufficient to maintain the coherence

granularity and directory information at a fixed granularity ≤ RMAX

granularity. Multiple cores can simultaneously cache any variable

granularity Amoeba-Block from the same region in Shared state; all

such cores are marked as sharers in the directory entry. A core that

desires exclusive ownership of an Amoeba-Block in the region uses

the directory entry to invalidate every Amoeba-Block corresponding

to the fixed coherence granularity. All Amoeba-Blocks relevant to an

invalidation will be found in the same set in the private cache (see set

indexing in § 3). The coherence granularity could potentially be <
RMAX so that false sharing is not introduced in the quest for higher

cache utilization (larger RMAX). The core claiming the ownership

on a write will itself fetch only the desired granularity Amoeba-Block,

saving bandwidth. A detailed evaluation of the coherence protocol is

beyond the scope of the current paper.

6 Evaluation

Framework We evaluate the Amoeba-Cache architecture with the

Wisconsin GEMS simulation infrastructure [25]; we use the in-order

processor timing model. We have replaced the SIMICS functional

simulator with the faster Pin [24] instrumentation framework to en-

able longer simulation runs. We perform timing simulation for 1

billion instructions. We warm up the cache using 20 million accesses

from the trace. We model the cache controller in detail including the

transient states needed for the multi-step cache operations and all the

associated port and queue contention. We use a Full— LRU replace-

ment policy, evicting Amoeba-Blocks in LRU order until sufficient

space is freed up for the block to be brought in. This helps decouple

our observations from the replacement policy, enabling a fairer com-

parison with other approaches (Section 9). Our workloads are a mix

of applications whose working sets stress our caches and includes

SPEC- CPU benchmarks, Dacapo Java benchmarks [4], commercial

workloads (SpecJBB2005, TPC-C, and Apache), and the Firefox web

browser. Table 1 classifies the application categories: Low, Moderate,

and High, based on the spatial locality. When presenting averages of

ratios or improvements, we use the geometric mean.

6.1 Improved Memory Hierarchy Efficiency

Result 1:Amoeba-Cache increases cache capacity by harvesting

space from unused words and can achieve an 18% reduction in both

L1 and L2 miss rate.

Result 2:Amoeba-Cache adaptively sizes the cache block granularity

and reduces L1↔L2 bandwidth by 46% and L2↔Memory bandwidth

by 38%.

In this section, we compare the bandwidth and miss rate properties

of Amoeba-Cache against a conventional cache. We evaluate two

types of caches: a Fixed cache, which represents a conventional

set-associative cache, and the Amoeba-Cache. In order to isolate the

benefits of Amoeba-Cache from the potentially changing accuracy

of the spatial predictor across different cache geometries, we use

utilization at the next eviction as the spatial prediction, determined

from a prior run on a fixed granularity cache. This also ensures that

the spatial granularity predictions can be replayed across multiple

simulation runs. To ensure equivalent data storage space, we set

the Amoeba-Cache size to the sum of the tag array and the data array

in a conventional cache. At the L1 level (64K), the net capacity of

382

the Amoeba-Cache is 64K + 8*4*256 bytes and at the L2 level (1M)

configuration, it is 1M + 8*8*2048 bytes. The L1 cache has 256 sets

and the L2 cache has 2048 sets.

1.0

2.0

3.0

4.0

5.0

6.0

20 26 32 38 44 50

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s
)

M iss Rate (Misses/1K ins)

Amoeba

Fixed

(a) 64K - Low

0.5

1.0

1.5

2.0

2.5

3.0

20 26 32 38 44 50
B

a
n

d
w

id
th

 (
K

B
 /

 1
K

 i
n

s
)

M iss Rate (Misses/1K ins)

Amoeba

Fixed

(b) 1M - Low

0.00

0.40

0.80

1.20

1.60

2.00

0 3 6 9 12 15

B
a
n

d
w

id
th

 (
K

B
 /

 1
K

 i
n

s
)

M iss Rate (Misses/1K ins)

Amoeba

Fixed

(c) 64K - Moderate

0.35

0.40

0.45

0.50

0.55

0.60

0 3 6 9 12 15

B
a
n

d
w

id
th

 (
K

B
 /

 1
K

 i
n

s
)

M iss Rate (Misses/1K ins)

Amoeba

Fixed

(d) 1M - Moderate

0.60

0.66

0.72

0.78

0.84

0.90

3 4 5 6 7 8

B
a
n

d
w

id
th

 (
K

B
 /

 1
K

 i
n

s
)

M iss Rate (Misses/1K ins)

Amoeba

Fixed

(e) 64K - High

0.40

0.42

0.44

0.46

0.48

0.50

3 4 5 6 7 8

B
a
n

d
w

id
th

 (
K

B
 /

 1
K

 i
n

s
)

M iss Rate (Misses/1K ins)

Amoeba

Fixed

(f) 1M - High

Figure 10: Fixed vs. Amoeba (Bandwidth and Miss Rate). Note

the different scale for different application groups.

Figure 10 plots the miss rate and the traffic characteristics of the

Amoeba-Cache. Since Amoeba-Cache can hold blocks varying from

8B to 64B, each set can hold more blocks by utilizing the space

from untouched words. Amoeba-Cache reduces the 64K L1 miss

rate by 23%(stdev:24) for the Low group, and by 21%(stdev:16)

for the moderate group; even applications with high spatial locality

experience a 7%(stdev:8) improvement in miss rate. There is a

46%(stdev:20) reduction on average in L1↔L2 bandwidth. At the

1M L2 level, Amoeba-Cache improves the moderate group’s miss

rate by 8%(stdev:10) and bandwidth by 23%(stdev:12). Applications

with moderate utilization make better use of the space harvested from

unused words by Amoeba-Cache. Many low utilization applications

tend to be streaming and providing extra cache space does not help

lower miss rate. However, by not fetching unused words, Amoeba-

Cache achieves a significant reduction (38%(stdev:24) on average) in

off-chip L2↔Memory bandwidth; even High utilization applications

see a 17%(stdev:15) reduction in bandwidth. Utilization and miss

rate are not, however, always directly correlated (more details in

§ 8).

With Amoeba-Cache the # of blocks/set varies based on the granu-

larity of the blocks being fetched, which in turn depends on the spatial

locality in the application. Table 5 shows the avg.# of blocks/set. In

applications with low spatial locality, Amoeba-Cache adjusts the

block size and adapts to store many smaller blocks. The 64K L1

Table 5: Avg. # of Amoeba-Block / Set

Blocks/Set 64K Cache, 288 B/set

4—5 ferret, cactus, firefox, eclipse, facesim, freqmine, milc, astar
6—7 tpc-c, tradesoap, soplex, apache, fluidanimate
8—9 h2, canneal, omnetpp, twolf, x264, lbm, jbb

10—12 mcf, art

1M Cache, 576 B/set

3—5 eclipse, omnetpp
8—9 cactus, firefox, tradesoap, freqmine, h2, x264, tpc-c

10—11 facesim, soplex, astar, milc, apache, ferret
12—13 twolf, art, jbb, lbm , fluidanimate
15—18 canneal, mcf

0

20

40

60

80

100

ap
ac

h
e

ar
t

as
ta

r
ca

ct
u

s

ec
li

p
se

fe
rr

et
fi

re
fo

x
fl

u
id

.
fr

eq
.

h
2

jb
b

lb
m

m
cf

m
il

c
o

m
n

et
.

so
p

le
x

tp
c-

c.
tr

ad
e.

tw
o

lf
x

2
6

4
m

ea
n

%
 o

f
A

m
o

eb
a

B
lo

ck
s

1-2 Words 3-4 Words 5-6 Words 7-8 Words

9
2

8
0

9
8

1
0

0

6
7

9
8

8
8

9
9

7
8

1
0

0

9
4

8
2

8
9

8
9

9
3

1
0

0

8
3

9
1

9
1

9
7

7
0

9
1

9
0

(a) 64K L1 cache

0

20

40

60

80

100

ap
ac

h
e

ar
t

as
ta

r
ca

ct
u

s

ec
li

p
se

fe
rr

et
fi

re
fo

x
fl

u
id

.
fr

eq
.

h
2

jb
b

lb
m

m
cf

m
il

c
o

m
n

et
.

so
p

le
x

tp
c-

c.
tr

ad
e.

tw
o

lf
x

2
6

4
m

ea
n

%
 o

f
A

m
o

eb
a

B
lo

ck
s

1-2 Words 3-4 Words 5-6 Words 7-8 Words
9

5

9
1

9
7

1
0

0

6
9

9
3

8
8

9
9

7
9

1
0

0

9
7

9
2

9
2

8
3

9
2

1
0

0

9
3

8
7

9
1

9
7

7
0

9
0

9
1

(b) 1M L2 cache

Figure 11: Distribution of cache line granularities in the 64K

L1 and 1M L2 Amoeba-Cache. Avg. utilization is on top.

Amoeba-Cache stores 10 blocks per set for mcf and 12 blocks per

set for art, effectively increasing associativity without introducing

fixed hardware overheads. At the L2, when the working set starts

to fit in the L2 cache, the set is partitioned into fewer blocks. Note

that applications like eclipse and omnetpp hold only 3—5 blocks

per set on average (lower than conventional associativity) due to

their low miss rates (see Table 8). With streaming applications (e.g.,

canneal), Amoeba-Cache increases the # of blocks/set to >15 on

average. Finally, some applications like apache store between 6—7

blocks/set with a 64K cache with varied block sizes (see Figure 11):

approximately 50% of the blocks store 1-2 words and 30% of the

blocks store 8 words at the L1. As the size of the cache increases and

thereby the lifetime of the blocks, the Amoeba-Cache adapts to store

larger size blocks as can be seen in Figure 11.

383

384

0
2
4
6
8

10
12
14
16

as
ta

r

ca
ct

.

ca
n

n
e.

ec
li

p
.

fa
ce

s.

fe
rr

et

fi
re

f.

fl
u

id
.

fr
eq

.

h
2

m
il

c

o
m

n
.

tp
c-

c

tr
ad

e.

x
2

6
4

M
P

K
I

Aligned Finite Infinite Finite+FT History

(a) Low MPKI Group

0
20
40
60
80
100
120
140

ap
ac
.

ar
t

lb
m

m
cf

jb
b

so
p
le
x

tw
o
lf

(b) High MPKI Group

0

300

600

900

1200

1500

1800

as
ta

r

ca
ct

.

ca
n

n
e.

ec
li

p
.

fa
ce

s.

fe
rr

et

fi
re

f.

fl
u

id
.

fr
eq

.

h
2

m
il

c

o
m

n
.

tp
c-

c

tr
ad

e.

x
2
6
4

B
an

d
w

id
th

Aligned Finite Infinite Finite+FT History

(c) Low Bandwidth Group

0

2000

4000

6000

8000

10000

ap
ac
.

ar
t

lb
m

m
cf

jb
b

so
p
le
x

tw
o
lf

(d) High Bandwidth Group

ALIGNED: fixed-granularity cache (64B blocks). FINITE: Amoeba-Cache with a REGION predictor (1024 entry predictor table and 4K region size).

INFINITE: Amoeba-Cache with an unbounded predictor table (REGION predictor).FINITE+FT is FINITE augmented with hints for predicting a default

granularity on compulsory misses (first touches). HISTORY: Amoeba-Cache uses spatial pattern hints based on utilization at the next eviction, collected from a

prior run.

((PC >> 3) << 3)+
(addr%64)

8 . and b) a Region-based (REGION)

approach that is based on the intuition that similar data objects tend

to be allocated in contiguous regions of the address space and tend

to exhibit similar spatial behavior. We compared the miss rate and

bandwidth properties of both the PC (256 entries, fully associative)

and REGION (1024 entries, 4KB region size) predictors. The size

of the predictors was selected as the sweet spot in behavior for each

predictor type. For all applications apart from cactus (a high spatial

locality application), REGION-based prediction tends to overfetch

and waste bandwidth as compared to PC-based prediction, which has

27% less bandwidth consumption on average across all applications.

For 17 out of 22 applications, REGION-based prediction shows 17%

better MPKI on average (max: 49% for cactus). For 5 applications

(apache, art, mcf, lbm, and omnetpp), we find that PC demonstrates

better accuracy when predicting the spatial behavior of cache blocks

than REGION and demonstates a 24% improvement in MPKI (max:

68% for omnetpp).

7.2 Predictor Table

We studied the organization and size of the pattern table using the

REGION predictor. We evaluated the following parameters a) region

size, which directly correlates with the coverage of a fixed-size table,

and b) the size of the predictor table, which influences how many

unique region patterns can be tracked, and c) the # of bits required to

represent the spatial pattern.

Large region sizes effectively reduce the # of regions in the work-

ing set and require a smaller predictor table. However, a larger region

is likely to have more blocks that exhibit varied spatial behavior

and may pollute the pattern entry. We find that going from 1KB

(4096 entries) to 4KB (1024 entries) regions, the 4KB region gran-

ularity decreased miss rate by 0.3% and increased bandwidth by

0.4% even though both tables provide the same working set cover-

age (4MB). Fixing the region size at 4KB, we studied the benefits

of an unbounded table. Compared to a 1024 entry table (FINITE

in Figure 6.2), the unbounded table increases miss rate by 1% and

decreases bandwidth by 0.3% . A 1024 entry predictor table (4KB re-

gion granularity per-entry) suffices for most applications. Organizing

the 1024 entries as a 128-set×8-way table suffices for eliminating

associativity related conflicts (<0.8% evictions due to lack of ways).

Focusing on the # of bits required to represent the pattern table,

we evaluated the use of 4-bit saturation counters (instead of 1-bit

bitmaps). The saturation counters seek to avoid pattern pollution

when blocks with varied spatial behavior reside in the same region.

Interestingly, we find that it is more beneficial to use 1-bit bitmaps

for the majority of the applications (12 out of 22); the hysteresis

introduced by the counters increases training period. To summarize,

we find that a REGION predictor with region size 4KB and 1024

entries can predict the spatial pattern in a majority of the applications.

CACTI indicates that the predictor table can be indexed in 0.025ns

and requires 2.3pJ per miss indexing.

7.3 Spatial Pattern Training

A widely-used approach to training the predictor is to harvest the

word usage information on an eviction. Unfortunately, evictions may

not be frequent, which means the predictor’s training period tends to

be long, during which the cache performs less efficiently and/or that

the application’s phase has changed in the meantime. Particularly

at the time of first touch (compulsory miss to a location), we need

to infer the global spatial access patterns. We compare the finite

region predictor (FINITE in Figure 6.2) that only predicts using

eviction history, against a FINITE+FT: this adds the optimization

of inferring the default pattern (in this paper, from a prior run) when

there is no predictor information. FINITE+FT demonstrates an

avg. 1% (max: 6% for jbb) reduction in miss rate compared to

FINITE and comes within 16% the miss rate of HISTORY. In

terms of bandwidth FINITE+FT can save 8% of the bandwidth (up

385

386

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6

B
a

n
d

w
id

th
 R

a
ti

o

Miss Rate Ratio

Fixed-2X

Sector
(x:1.8)

Sector-Pre Amoeba

Multi$-25

Multi$-50

(a) 64K - Low

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6

B
a
n

d
w

id
th

 R
a
ti

o

M iss Rate Ratio

Sector
(x:2.9)

Sector-Pre

Fixed-2X

Amoeba

Multi$-25

Multi$-50

(b) 64K - Moderate

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6

B
a

n
d

w
id

th
 R

a
ti

o

M iss Rate Ratio

Sector
(x:2.6
y:1.2)

Sector-Pre

Amoeba

Multi$-50

Multi$-25

Fixed-2X

(c) 1M - Low

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6

B
a

n
d

w
id

th
 R

a
ti

o

M iss Rate Ratio

 Sector
(x:3.9,
y:1.0)

Sector-Pre

Multi$-50

Multi$-25

Amoeba

Fixed-2X

(d) 1M - Moderate

Figure 14: Relative miss rate and bandwidth for different

caches. Baseline (1,1) is the Fixed-2x design. Labels: • Fixed-

2x, ◦ Sector approaches. ∗ : Multi$, △ Amoeba. (a),(b) 64K

cache (c),(d) 1M cache. Note the different Y-axis scale for each

group.

tions. On the high utilization group, all designs other than Sector have

comparable miss rates. Amoeba-Cache improves miss rate to within

5%—6% of the Fixed-2× for the low group and within 8%—17%

for the moderate group. Compared to the Fixed-2×, Amoeba-Cache

also lowers bandwidth by 40% (64K cache) and 20% (1M cache).

Compared to Sector-Pre (with prefetching), Amoeba-Cache is able

to adapt better with flexible granularity and achieves lower miss rate

(up to 30% @ 64K and 35% @ 1M). Multi$’s benefits are propor-

tional to the fraction of the cache organized as a WOC; Multi$-50

(18-way@64K and 36-way@1M) is needed to match the miss rate

of Amoeba-Cache. Finally, in the moderate group, many applica-

tions exhibit strided access. Compared to Multi-$’s WOC, which

fetches individual words, Amoeba-Cache increases bandwidth since

it chooses to fetch the contiguous chunk in order to lower miss rate.

10 Multicore Shared Cache

We evaluate a shared cache implemented with the Amoeba-Cache

design. By dynamically varying the cache block size and keeping out

unused words, the Amoeba-Cache effectively minimizes the footprint

of an application. Minimizing the footprint helps multiple applica-

tions effectively share the cache space. We experimented with a

1M shared Amoeba-Cache in a 4 core system. Table 7 shows the

application mixes; we chose a mix of applications across all groups.

We tabulate the change in miss rate per thread and the overall change

in bandwidth for Amoeba-Cache with respect to a fixed granularity

cache running the same mix. Minimizing the overall footprint enables

a reduction in the miss rate of each application in the mix. The com-

mercial workloads (SpecJBB and TPC-C) are able to make use of the

space available and achieve a significant reduction in miss rate (avg:

18%). Only two applications suffered a small increase in miss rate

(x264 Mix#2: 2% and ferret Mix#3: 4%) due to contention. The over-

all L2 miss bandwidth significantly improves, showing 16%—39%

reduction across all workload mixes. We believe that the Amoeba-

based shared cache can effectively enable the shared cache to support

more cores and increase overall throughput. We leave the design

space exploration of an Amoeba-based coherent cache for future

work.

Table 7: Multiprogrammed Workloads on 1M Shared Amoeba-

Cache%̇ reduction in miss rate and bandwidth. Baseline:

Fixed 1M.

Miss Miss Miss Miss BW
Mix T1 T2 T3 T4 (All)

jbb×2, tpc-c×2 12.38% 12.38% 22.29% 22.37% 39.07%
firefox×2, x264×2 3.82% 3.61% –2.44% 0.43% 15.71%

cactus, fluid., omnet., sopl. 1.01% 1.86% 22.38% 0.59% 18.62%
canneal, astar, ferret, milc 4.85% 2.75% 19.39% –4.07% 17.77%
–: indicates Miss or BW higher than Fixed. T1—T4, threads in the mix;
in the order of applications in the mix

11 Related Work

Burger et al. [5] defined cache efficiency as the fraction of blocks

that store data that is likely to be used. We use the term cache

utilization to identify touched versus untouched words residing in the

cache. Past works [6,29,30] have also observed low cache utilization

at specific levels of the cache. Some works [18, 19, 13, 21] have

sought to improve cache utilization by eliminating cache blocks that

are no longer likely to be used (referred to as dead blocks). These

techniques do not address the problem of intra-block waste (i.e.,

untouched words).

Sector caches [31, 32] associate a single tag with a group of con-

tiguous cache lines, allowing cache sizes to grow without paying

the penalty of additional tag overhead. Sector caches use bandwidth

efficiently by transferring only the needed cache lines within a sector.

Conventional sector caches [31] may result in worse utilization due to

the space occupied by invalid cache lines within a sector. Decoupled

sector caches [32] help reduce the number of invalid cache lines per

sector by increasing the number of tags per sector. Compared to the

Amoeba cache, the tag space is a constant overhead, and limits the #

of invalid sectors that can be eliminated. Pujara et al. [29] consider a

word granularity sector cache, and use a predictor to try and bring in

only the used words. Our results (see Figure 14) show that smaller

granularity sectors significantly increase misses, and optimizations

that prefetch [29] can pollute the cache and interconnect with unused

words.

Line distillation [30] applies filtering at the word granularity to

eliminate unused words in a cache block at eviction. This approach

requires part of the cache to be organized as a word-organized cache,

which increases tag overhead, complicates lookup, and bounds per-

formance improvements. Most importantly, line distillation does not

address the bandwidth penalty of unused words. This inefficiency

is increasingly important to address under current and future tech-

nology dominated by interconnects [14,28]. Veidenbaum et al. [33]

propose that the entire cache be word organized and propose an

online algorithm to prefetch words. Unfortunately, a static word-

organized cache has a built-in tag overhead of 50% and requires

energy-intensive associative searches.

Amoeba-Cache adopts a more proactive approach that enables con-

tinuous dynamic block granularity adaptation to the available spatial

locality. When there is high spatial locality, the Amoeba-Cache will

automatically store a few big cache blocks (most space dedicated

for data); with low spatial locality, it will adapt to storing many

small cache blocks (extra space allocated for tags). Recently, Yoon et

387

al. have proposed an adaptive granularity DRAM architecture [35].

This provides the support necessary for supporting variable granu-

larity off-chip requests from an Amoeba-Cache-based LLC. Some

research [10,8] has also focused on reducing false sharing in coherent

caches by splitting/merging cache blocks to avoid invalidations. They

would benefit from the Amoeba-Cache design, which manages block

granularity in hardware.

There has a been a significant amount of work at the compiler

and software runtime level (e.g. [7]) to restructure data for improved

spatial efficiency. There have also been efforts from the architecture

community to predict spatial locality [29, 34, 17, 36], which we can

leverage to predict Amoeba-Block ranges. Finally, cache compression

is an orthogonal body of work that does not eliminate unused words

but seeks to minimize the overall memory footprint [1].

12 Summary

In this paper, we propose a cache design, Amoeba-Cache, that

can dynamically hold a variable number of cache blocks of different

granularities. The Amoeba-Cache employs a novel organization that

completely eliminates the tag array and collocates the tags with the

cache block in the data array. This permits the Amoeba-Cache to trade

the space budgeted for the cache blocks for tags and support a variable

number of tags (and blocks). For applications that have low spatial

locality, Amoeba-Cache can reduce cache pollution, improve the

overall miss rate, and reduce bandwidth wasted in the interconnects.

When applications have moderate to high spatial locality, Amoeba-

Cache coarsens the block size and ensures good performance. Finally,

for applications that are streaming (e.g., lbm), Amoeba-Cache can

save significant energy by eliminating unused words from being

transmitted over the interconnects.

Acknowledgments

We would like to thank our shepherd, André Seznec, and the

anonymous reviewers for their comments and feedback.

Appendix

Table 8: Amoeba-Cache Performance. Absolute #s.

MPKI BW bytes/1K CPI Predictor Stats

L1 L2 L1←→L2 L2←→Mem First Touch Evict Win.
MPKI MPKI #Bytes/1K #Bytes/1K Cycles/Ins. % Misses # ins./Evict

apache 64.9 19.6 5,000 2,067 8.3 0.4 17
art 133.7 53.0 5,475 1,425 16.0 0.0 9

astar 0.9 0.3 70 35 1.9 18.0 1,600
cactus 6.9 4.4 604 456 3.5 7.5 162
canne. 8.3 5.0 486 357 3.2 5.8 128
eclip. 3.6 <0.1 433 <1 1.8 0.1 198
faces. 5.5 4.7 683 632 3.0 41.2 190
ferre. 6.8 1.4 827 83 2.1 1.3 156
firef. 1.5 1.0 123 95 2.1 11.1 727
fluid. 1.7 1.4 138 127 1.9 39.2 629

freqm. 1.1 0.6 89 65 2.3 17.7 994
h2 4.6 0.4 328 46 1.8 1.7 154
jbb 24.6 9.6 1,542 830 5.0 10.2 42
lbm 63.1 42.2 3,755 3,438 13.6 6.7 18
mcf 55.8 40.7 2,519 2,073 13.2 0.0 19
milc 16.1 16.0 1,486 1,476 6.0 2.4 66

omnet. 2.5 <0.1 158 <1 1.9 0.0 458
sople. 30.7 4.0 1,045 292 3.1 0.9 35
tpcc 5.4 0.5 438 36 2.0 0.4 200

trade. 3.6 <0.1 410 6 1.8 0.6 194
twolf 23.3 0.6 1,326 45 2.2 0.0 49
x264 4.1 1.8 270 190 2.2 12.4 274
MPKI : Misses / 1K instructions. BW: # words / 1K instructions
CPI: Clock cycles per instruction.
Predictor First touch: Compulsory misses. % of accesses that use default granularity.
Evict window: # of instructions between evictions. Higher value indicates
predictor training takes longer.

References
[1] A. R. Alameldeen. Using Compression to Improve Chip Multiprocessor Perfor-

mance. In Ph.D. dissertation, Univ. of Wisconsin-Madison, 2006.

[2] D. Albonesi, A. Kodi, and V. Stojanovic. NSF Workshop on Emerging Technolo-
gies for Interconnects (WETI). 2012.

[3] C. Bienia. Benchmarking Modern Multiprocessors. In Ph.D. Thesis. Princeton
University, 2011.

[4] S. M. Blackburn et al. The DaCapo benchmarks: java benchmarking development
and analysis. In Proc. of the 21st OOPSLA, 2006.

[5] D. Burger, J. Goodman, and A. Kaigi. The Declining Effectiveness of Dynamic
Caching for General-Purpose Workloads. In University of Wisconsin Technical
Report, 1995.

[6] C. F. Chen et al. Accurate and Complexity-Effective Spatial Pattern Prediction. In
Proc. of the 10th HPCA. 2004.

[7] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-Conscious Structure Layout. In
Proc. of the PLDI, 1999.

[8] B. Choi et al. DeNovo: Rethinking the Memory Hierarchy for Disciplined Paral-
lelism. In Proc. of the PACT, 2011.

[9] B. Dally. Power, Programmability, and Granularity: The Challenges of ExaScale
Computing. In Proc. of the IPDPS, 2011.

[10] C. Dubnicki and T. J. Leblanc. Adjustable Block Size Coherent Caches. In Proc.
of the 19th ISCA, 1992.

[11] A. Fog. Instruction tables. 2012. http://www.agner.org/optimize/
instruction_tables.pdf.

[12] A. González, C. Aliagas, and M. Valero. A data cache with multiple caching
strategies tuned to different types of locality. In Proc. of the ACM Intl. Conf. on
Supercomputing, 1995.

[13] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the memory system: predict-
ing and optimizing memory behavior. In Proc. of the 29th ISCA, 2002.

[14] C. Hughes, C. Kim, and Y.-K. Chen. Performance and Energy Implications of
Many-Core Caches for Throughput Computing. In IEEE Micro Journal, 2010.

[15] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: IBM’s Next-Generation
Server Processor. In IEEE Micro Journal, 2010.

[16] K. Kedzierski, M. Moreto, F. J. Cazorla, and M. Valero. Adapting Cache Parti-
tioning Algorithms to Pseudo-LRU Replacement Policies. In Proc. of the IPDPS,
2010.

[17] S. Kumar and C. Wilkerson. Exploiting spatial locality in data caches using spatial
footprints. In Proc. of the 25th ISCA, 1998.

[18] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-invalidation using
last-touch prediction. In Proc. of the 27th ISCA, 2000.

[19] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation: reducing coherence
overhead in shared-memory multiprocessors. In Proc. of the 22nd ISCA. 1995.

[20] S. Li et al. McPAT: an integrated power, area, and timing modeling framework for
multicore and manycore architectures. In Proc. of the 42nd MICRO, 2009.

[21] H. Liu et al. Cache bursts: A new approach for eliminating dead blocks and
increasing cache efficiency. In Proc. of the 41st MICRO, 2008.

[22] D. R. Llanos and B. Palop. TPCC-UVA: An Open-source TPC-C implementation
for parallel and distributed systems. In Proc. of the 2006 Intl. Parallel and Dis-
tributed Processing Symp. PMEO Workshop, 2006. http://www.infor.uva.
es/~diego/tpcc-uva.html.

[23] G. H. Loh and M. D. Hill. Efficiently enabling conventional block sizes for very
large die-stacked DRAM caches. In Proc. of the 44th Intl. Symp. on Microarchitec-
ture, 2011.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In Proc. of the PLDI, 2005.

[25] Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS) Toolset.
In ACM SIGARCH Computer Architecture News, Sept. 2005.

[26] S. Microsystems. OpenSPARC T1 Processor Megacell Specification. 2007.

[27] Moinuddin K. Qureshi et al. Adaptive insertion policies for high performance
caching In Prof. of the 34th ISCA, 2007.

[28] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In Proc.
of the 40th MICRO, 2007.

[29] P. Pujara and A. Aggarwal. Increasing the Cache Efficiency by Eliminating Noise.
In Proc. of the 12th HPCA, 2006.

[30] M. K. Qureshi, M. A. Suleman, and Y. N. Patt. Line Distillation: Increasing Cache
Capacity by Filtering Unused Words in Cache Lines. In Proc. of the 13th HPCA,
2007.

[31] J. B. Rothman and A. J. Smith. The pool of subsectors cache design. In Proc. of
the 13th ACM ICS, 1999.

[32] A. Seznec. Decoupled sectored caches: conciliating low tag implementation cost.
In Proc. of the 21st ISCA, 1994.

[33] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapting cache line
size to application behavior. In Proc. of the 13th ACM ICS. 1999.

[34] M. A. Watkins, S. A. Mckee, and L. Schaelicke. Revisiting Cache Block Super-
loading. In Proc. of the 4th HIPEAC. 2009.

[35] D. H. Yoon, M. K. Jeong, and M. Erez. Adaptive granularity memory systems:
a tradeoff between storage efficiency and throughput. In Proc. of the 38th ISCA.
2011.

[36] D. H. Yoon, M. K. Jeong, M. B. Sullivan, and M. Erez. The Dynamic Granularity
Memory System. In Proc. of the 39th ISCA, 2012.

[36] http://cpudb.stanford.edu/

388

Improving Cache Management Policies Using Dynamic Reuse Distances

Nam Duong†, Dali Zhao†, Taesu Kim†, Rosario Cammarota†,
Mateo Valero§ and Alexander V. Veidenbaum†

†University of California, Irvine §Universitat Politecnica de Catalunya,
Barcelona Supercomputing Center

{nlduong, daliz, tkim15, rcammaro, alexv}@ics.uci.edu, mateo.valero@bsc.es

Abstract

Cache management policies such as replacement, bypass, or
shared cache partitioning have been relying on data reuse behavior
to predict the future. This paper proposes a new way to use dynamic
reuse distances to further improve such policies. A new replace-
ment policy is proposed which prevents replacing a cache line until
a certain number of accesses to its cache set, called a Protecting
Distance (PD). The policy protects a cache line long enough for it
to be reused, but not beyond that to avoid cache pollution. This can
be combined with a bypass mechanism that also relies on dynamic
reuse analysis to bypass lines with less expected reuse. A miss fetch
is bypassed if there are no unprotected lines. A hit rate model based
on dynamic reuse history is proposed and the PD that maximizes the
hit rate is dynamically computed. The PD is recomputed periodi-
cally to track a program’s memory access behavior and phases.

Next, a new multi-core cache partitioning policy is proposed us-
ing the concept of protection. It manages lifetimes of lines from
different cores (threads) in such a way that the overall hit rate is
maximized. The average per-thread lifetime is reduced by decreas-
ing the thread’s PD.

The single-core PD-based replacement policy with bypass
achieves an average speedup of 4.2% over the DIP policy, while the
average speedups over DIP are 1.5% for dynamic RRIP (DRRIP)
and 1.6% for sampling dead-block prediction (SDP). The 16-core
PD-based partitioning policy improves the average weighted IPC by
5.2%, throughput by 6.4% and fairness by 9.9% over thread-aware
DRRIP (TA-DRRIP). The required hardware is evaluated and the
overhead is shown to be manageable.

1 INTRODUCTION
Reduction in cache miss rates continues to be an important issue

in processor design, especially at the last level cache (LLC). Cache

management policies such as replacement, bypass or shared cache

partitioning, have been relying – directly or indirectly – on the data

reuse behavior to improve cache performance. The future reuse is

predicted based on past behavior and thus may not necessarily be

accurate. In addition, such policies do not define an accurate cache

performance model based on the reuse information and thus cannot

achieve their full performance potential. This paper proposes a way

to address these issues for the above-mentioned cache management

policies and focuses on the LLC.
Let us start with the replacement policy. Many such policies have

been proposed for the LLC [1, 6, 14, 18, 19, 20, 24, 31] aiming to

improve over the LRU replacement policy, the most widely used re-

placement policy, which has been shown [33, 29, 24] to have anoma-

lous behavior for applications whose working set is larger than the

LLC. The newer policies are often adaptive and use heuristics based

on predicted future memory reference behavior for cache line re-

placement. A widely used estimate of the future behavior is the

observed reuse distance.
Many ways of reuse distance prediction and its use by replace-

ment heuristics have been proposed. For instance, EELRU [29] ac-

curately measures the reuse (stack) distance but uses a probabilistic

model to predict which cache line should be evicted on a cache miss.

RRIP [14] approximates the reuse distances as near, long or distant

future and tries not to replace lines which are predicted to be reused

sooner. IGDR [31] builds an accurate reuse distance distribution but

replacement is based on a “weight” function, with a line of smallest

weight replaced. However, the weight function does not necessarily

reflect future behavior of a line. The counter-based algorithm [19]

uses a counter matrix to predict when lines are reused. The approach

in [17] predicts reuse distances using program counters and evicts

lines with the longest remaining distance (more in Sec. 7).
A more precise knowledge of reuse would allow a replacement

policy (1) not to evict lines too early, before their next reuse point,

and at the same time (2) not to keep the lines in the cache for too

long to avoid cache pollution. A better “balance” between (1) and

(2) can improve the policy performance. Sec. 2.1 presents a case

study of this phenomenon, and the replacement policy proposed in

this paper indeed achieves such balance.
The reuse distance (RD) used in this paper is defined as the num-

ber of accesses to a cache set between two accesses to the same

cache line (Sec. 7 compares this definition to others). A reuse dis-
tance distribution (RDD) is a distribution of RDs observed in a pro-

gram at a given time. It is a unique signature of a program or a

phase for a given cache configuration. Fig. 1 shows the RDDs of

several SPEC CPU2006 benchmarks (see Sec. 5 for our measure-

ment methodology). As RDs can be very large, this paper limits

the maximum measured distance dmax to 256. The fraction of RDs

below the dmax is shown as a bar on the right of each figure.
Using the RDD to direct prediction, lines can be kept only until a

desired level of reuse is achieved and cache pollution is minimized.

For example, in Fig. 1, in 436.cactusADM enough lines are reused at

or below the RD of 64, increasing the RD beyond 64 leads to cache

pollution. The problem, however, is how to find an RD balancing

reuse vs. pollution and how to use it to manage replacement. This

paper proposes a way to solve this problem.
Similar to prior work [19, 31], this paper measures the RDs in

execution and builds the RDD dynamically. The RDD is used to

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.43

389

403.gcc

0 64 128 192 256

436.cactusADM

0 64 128 192 256

450.soplex

0 64 128 192 256

464.h264ref

0 64 128 192 256

482.sphinx3

0 64 128 192 256

Figure 1. Distribution of reuse distances for selected benchmarks.

compute an RD that maximizes the cache hit rate, i.e., the RD that

balances the opportunity for reuse with timely eviction. This RD

is called a Protecting Distance (PD) and our replacement algorithm

“protects” a line for this many accesses to its set before it can be

evicted. This policy is thus called the Protecting Distance based
Policy (PDP).

It can be said that the LRU policy protects a line for W unique ac-

cesses before eviction, where W is the cache associativity. However,

W may not be the RD that maximizes the hit rate. PDP achieves the

same effect for protecting distances PD ≤ W , i.e. in LRU-friendly

benchmarks. But the PDP also works for PDs > W using the same

algorithm. Thus PDP does not need to switch between LRU and

another algorithm as has been done in prior work [29, 24, 14, 17].

Note also that EELRU [29] can be said to “protect” the late eviction

point by evicting any “older” lines first, if present (see Sec. 7).

The RDD can also be used to manage a cache bypass policy in

non-inclusive or exclusive caches. Typically, the bypass is used to

place a line in an upper level cache and avoid duplicated use of stor-

age in the lower level cache. However, it may be better to store a

line with a lot of reuses in the lower level. A bypass policy that

makes such a choice intelligently can, in fact, have a better perfor-

mance than a strictly inclusive cache. The PDP can be combined

with the bypass policy to enhance the replacement policy by pro-

tecting cache lines from early eviction. The non-inclusive and ex-

clusive caches are already used in commercial products, such as the

AMD processors [8], and several policies to support bypass have

been proposed [6, 13, 18, 19, 5]. The work in [10] proposed a policy

to achieve performance similar to bypass in an inclusive cache, and

the algorithms in [6] are developed specifically for exclusive caches.

Finally, this paper describes a PD-based shared cache partition-

ing policy that is based on the measured RDDs of different threads

and a selection of PDs for the threads such that the shared cache hit

rate is maximized.

The paper discusses the hardware support required to measure

the reuse distance, compute the RDD dynamically, determine the hit

rate and find the PD. The hardware was synthesized to evaluate the

overheads and is shown to be feasible.

In summary, the main contributions of this paper are:

1. The concept of protecting distance PD and a policy for pro-

tecting cache lines, which is adaptive to changes in program

phases and memory access behavior.

2. A hit rate model for a single-core processor as a function of

reuse distances, which is shown to accurately predict the cache

behavior of an application.

3. A method and a hardware design to compute the PD that max-

imizes the hit rate.

4. A bypass policy that guarantees a desired level of reuse in the

LLC and is integrated with the replacement policy.

5. A multi-core shared LLC hit rate model that is a function of

PDs of individual threads.

6. A shared cache partitioning policy based on reuse distances,

which computes a set of PDs, one per thread, to maximizes the

overall hit rate.

The proposed policies were evaluated and compared to a number

of prior policies. For single-core replacement PDP was compared

to DIP, DRRIP, EELRU and sampling dead-block prediction (SDP).

Shared cache partitioning for multi-core processors was compared

to TA-DRRIP, UCP and PIPP.
The rest of the paper is organized as follows. The PD concept

is defined in Sec. 2 together with a hit rate model to quantitatively

relate the PD and the RDD. The hardware design is in Sec. 3. The hit

rate model for multi-core cache partitioning is defined in Sec. 4. The

experimental methodology is in Sec. 5. The experimental results are

in Sec. 6. Prior work is discussed in Sec. 7. Appendix A reports

results for SPEC CPU2006 benchmarks.

2 SINGLE-CORE PROTECTING DISTANCE
This section defines the protecting distance PD for a single-core

processor. A replacement policy using the PD and a combined re-

placement and bypass policy are presented. A hit rate model for the

policy is also described.

2.1 Protection – A Case Study
Let us start with a case study using RRIP policy [14], which was

recently proposed to improve the performance of applications with

a working set which is larger than the LLC. RRIP is able to preserve

a portion of the working set in the cache. It tackles the thrashing

and scanning issues by predicting that most of the inserted lines are

re-referenced (reused) in a distant future, the rest inserted lines in a

long future, and the reused lines in a near future.
Now consider RRIP from the perspective of protection. The re-

reference future of lines is predicted using a parameter, ε. This is

the probability that inserted lines are predicted to be reused in a long

future. In RRIP, ε is experimentally set to 1/32. This means that an

inserted line which is classified as being reused in the long future can

be protected for 32 misses. In RRIP with 2-bit storage per line, on

average a reused line can be protected for as long as 32×(22−1) =
96 misses (and an even larger number of accesses)1.

Fig. 2 shows the behavior of dynamic RRIP (DRRIP) as a

function of ε for four benchmarks (483.xalancbmk.3 is a certain

window of execution, see Sec. 5 for details). ε is varied from

1/128 to 1/4 and two trends can be observed. For 436.cactusADM

and 483.xalancbmk.3 decreasing ε increases the number of misses.

However, for 403.gcc and 464.h264ref a higher ε can reduce misses.

This means that, in the latter two benchmarks, lines should not be

1These numbers vary during runtime depending on access behavior.

390

0.9

1.0

1.1

1.2

N
o

rm
a

li
z
e

d
 M

P
K

I
(l

o
w

e
r

is
 b

e
tt

e
r)

403.gcc

436.cactusADM

464.h264ref

l b k

0.8

1/4 1/8 1/16 1/32 1/64 1/128

N

Epsilon

483.xalancbmk.3

Figure 2. DRRIP misses as a function of Epsilon ε.

0 6 5 2

0 4 6 3 6 3 5 2

1 4 6 3 0 3 5 2

1 4 6 3 0 3 5 6

1 4 6 3 0 63 2

1 4 6 3

Inserted line Reused line

(a) Hit

(b) Replace unprotected line

(c) Replace inserted line (inclusive cache)

(d) Replace reused line (inclusive cache)

(e) Bypass (non-inclusive cache)

Before After

Figure 3. Example of the PDP cache operation.

protected too long if they are not reused. Yielding cache space to

new lines improves performance. Sec. 2.3 will analyze these bench-

marks in more detail.

2.2 The Protecting Distance
The protecting distance PD is a reuse distance that “covers” a

majority of lines in the cache, that is they are reused at this or smaller

distance. It is a single value used for all lines inserted in the cache.

The PD is the number of accesses to a cache set that a line is pro-

tected for, i.e. the line cannot be evicted until after PD accesses.

The PD is used as follows. Each cache line is assigned a value to

represent its remaining PD (RPD), which is the number of accesses

it remains protected for. This distance is set to the PD when a line

is inserted or promoted. After each access to a set, the RPD of each

line in the set is decremented (saturating at 0). A line is protected

only if its RPD is larger than 0. An unprotected line is chosen as

the victim. Victim selection when there are no unprotected lines is

different for inclusive and non-inclusive caches.
In an inclusive cache a line with the highest RPD, i.e. the

youngest inserted or promoted line, is chosen in order to protect

older lines. Similar to DIP and RRIP, the fact that inserted lines are

less likely to be hit than reused lines is utilized. An inserted line with

the highest RPD is replaced or, if there are no such lines, a reused

line with the highest RPD is chosen. This requires a “reuse bit” to

distinguish between inserted and reused lines.
For a non-inclusive cache, the cache is bypassed if no unpro-

tected lines are found. This is based on the prediction that the pro-

tected lines are more likely to be reused in a the nearer future than the

missed lines. Note that the bypassed lines are inserted in a higher-

level cache. Here the bypass policy and the replacement policy work

together to further protect lines as opposed to only the replacement

policy in the inclusive cache. The reuse bit is not required here.
The example in Fig. 3 illustrates the PDP policy in a cache set

with four lines. Let us assume that the current predicted PD is 7.

In the figure, the number inside each box is the RPD of the corre-

sponding cache line. There are 5 possible scenarios in this example.

20%

40%

60%

80%

100%

436.cactusADM

0%

%

Acc Ocpy Acc Ocpy Acc Ocpy

DRRIP SPDP-NB SPDP-B

Hit Bypass Evict, <= 16 Evict, > 16

80%

85%

90%

95%

100%

464.h264ref

75%

Acc Ocpy Acc Ocpy Acc Ocpy

DRRIP SPDP-NB SPDP-B

Hit Bypass Evict, <= 16 Evict, > 16

(a) Breakdown of accesses (Acc) and occupancy (Ocpy).

483.xalancbmk.1

483.xalancbmk.2

483.xalancbmk.3

0 32 64 96 128

83 a a cb 3

(b) RDDs in 3 windows of 483.xalancbmk.

Figure 5. Case studies.

For each scenario, RPDs before and after the access are shown. In

Fig. 3a, the access results in a hit to the second line. In the other

4 cases, the access results in a miss leading to victim selection. In

Fig. 3b, the victim is the unprotected line. Fig. 3c and 3d are for

a cache without bypass. In Fig. 3c, the inserted line with the high-

est RPD is evicted, while in Fig. 3d there are no inserted lines and

the reused line with highest RPD is evicted. Fig. 3e is for the cache

with bypass, where the cache is bypassed as there are no unprotected

lines. In all cases, the RPD of the promoted or inserted line is set to

7, and the RPDs of all lines, including the new line, are decremented.

2.3 Evaluation of the Static PDP
The static PDP (SPDP) uses a constant PD throughout program

execution. The SPEC CPU2006 benchmarks were simulated with

static PDs between 16 (the associativity) and dmax = 256. The PD

which minimizes misses per 1K instructions (MPKI) varies from

benchmark to benchmark. Even in the three simulation windows

of 483.xalancbmk, the best PDs are different (see Appendix A for

details). Fig. 4 compares the static PDP with the best PD for non-

bypass (SPDP-NB) and bypass (SPDP-B) policies to DRRIP with

the best ε (as described in Sec. 2.1).
First, better DRRIP performance can be achieved with a “dy-

namic” ε. It is significant for 403.gcc, 450.soplex and 464.h264ref.

Second, both SPDP-NB and SPDP-B can further reduce misses over

DRRIP, by as much as 20% for SPDP-NB and by 30% in SPDP-B

in 464.h264ref. Third, SPDP-NB and SPDP-B have different behav-

iors in different benchmarks. For example, in 436.cactusADM the

miss reduction is similar, whereas for 483.xalancbmk.3 SPDP-B has

a significantly higher reduction than SPDP-NB. In general, SPDP-B

achieves a higher miss reduction than SPDP-NB and both perform

better than DRRIP.
The PDP aims to protect cache lines long enough to be reused,

but not for too long to avoid pollution. Let us define the occupancy
of a line as the number of accesses to its cache set between an inser-

tion or a promotion and the eviction or the next promotion and ana-

lyze accesses and occupancy for two benchmarks, 436.cactusADM

and 464.h264ref. The accesses and occupancy are shown in Fig. 5a,

each broken into promoted lines and evicted lines. The latter is fur-

ther divided into lines which are evicted before 16 accesses and all

the rest The fraction of bypassing for SPDP-B is also shown. The

391

0%

5%

10%

15%

20%

25%

30%

ti
o

n
 o

v
e

r
D

R
R

IP
 w

it
h

p

s
il

o
n

=
1

/3
2

DRRIP with best Epsilon SPDP-NB SPDP-B

-5%

M
is

s
 r

e
d

u
c

t
E

p

Figure 4. Comparing RRIP and static PDP.

RDDs of three execution windows for 483.xalancbmk are shown in

(Fig. 5b).
436.cactusADM. 28% of the accesses in DRRIP are hits and the

rest are misses, leading to replacement. Most of the missed lines are

evicted early, before 16 accesses, with only 3% evicted after that.

However, the total occupancy of the latter lines is as high as 16%,

whereas for early evicted lines, it is only 8%. In fact, our results

show that a number of lines occupy the cache for more than 256

accesses without reuse.
The occupancy of evicted lines is smaller for both PDP poli-

cies, 8% for SPDP-NB and 5% for SPDP-B, and much smaller for

long eviction distance lines. Neither has lines with occupancy above

90 accesses. Also, the small difference between the occupancy of

evicted lines in SPDP-NB and SPDP-B leads to the small difference

between their performance – SPDP-B reduces 1% more misses than

SPDP-NB compared to DRRIP (Fig. 4). The values of PD are 76

(SPDP-NB) and 72 (SPDP-B), respectively, which cover the highest

peak of the RDD.
464.h264ref. Both static PDP policies result in a smaller occu-

pancy fraction for lines evicted after more than 16 accesses. SPDP-

B is better than SPDP-NB due to a high bypass rate (89% of the

misses), hence protecting more lines and leading to higher miss re-

duction. This shows that the bypass plays an important role in this

and several other benchmarks.
483.xalancbmk. Fig. 4 shows that the three windows of execu-

tion within the same benchmark have different performance for both

static PDP policies. The best PD for each window are also differ-

ent in SPDP-B – 100, 88 and 124, respectively (see Appendix A).

This difference is due to different RDDs of these windows, as seen

in Fig. 5b. The peaks are at different reuse distances and even the

shapes of RDDs are not quite the same. This implies that a periodic

dynamic computation of the PD would perform even better.
In summary, replacement based on protecting distance reduces

cache pollution. A combination of replacement and bypass further

improves reuse and reduces pollution. The rest of the paper thus

targets non-inclusive caches with bypass.

2.4 The Hit Rate Model for a Non-Inclusive Cache
The definition of the protecting distance PD is not very helpful

in finding the optimal PD, static or dynamic. This section develops

a quantitative model relating the RDD, the PD and the cache hit rate

for a non-inclusive cache. The RDD or its approximation can be

built dynamically and the model then used to find the PD maximiz-

ing the hit rate. The model takes into account both replacement and

bypass policies.
The following notation is used in this section: dp is a value of

the PD, Ni is the hit count for reuse distance i, and Nt is the total

number of cache accesses. W is the set associativity. A line with an

RD larger than dp is called a long line and NL is the number of long
lines.

A function E(dp) approximating the hit rate is derived as fol-

lowing. Given a set of counters {Ni} representing the RDD and Nt,

NL = Nt −
dp∑
i=1

Ni.

Let us use the concept of occupancy defined in Sec. 2.3. A line

with an RD of i, i ≤ dp, has an occupancy of i and the line is hit

after i accesses. The total occupancy Li of all lines with RD of i in

the cache is Li = Ni ∗ i.
The total occupancy of the long lines is LL = NL ∗ (dp + de).

The additional term de accounts for the fact that a line may not be

immediately evicted after becoming unprotected. This may happen

due to the presence of an invalid or another unprotected line during

victim selection or when an access to a set is a hit on another line.

The total occupancy of all lines is therefore LT =
dp∑
i=1

Li + LL.

The number of hits contributed by all lines is Hits(dp) =
dp∑
i=1

Ni + HL, where HL is the number of hits contributed by long

lines. For dp ≥W the number of hits from long lines is quite small

compared to that from protected lines. And the computed PD is

greater than W (see below). Therefore, the following approxima-

tion is used Hits(dp) ≈
dp∑
i=1

Ni.

One access to a set with W lines increases the occupancy of each

line in the set by 1 unit, thus W units for the whole set. The total

number of accesses, therefore, is Accesses(dp) = LT /W and the

hit rate is HR(dp) = Hits(dp)/Accesses(dp).
To eliminate the dependence on cache organization (W) let us

define E(dp) = HR(dp)/W . Here E(dp) is proportional to the

hit rate and will be used to compute the protecting distance PD that

maximizes the hit rate.
Substituting the expressions for Li and LL in the equation for

E(dp) results in

E (dp) ≈

dp∑
i=1

Ni

dp∑
i=1

(Ni ∗ i) +
(
Nt −

dp∑
i=1

Ni

)
∗ (dp + de)

(1)

Finally, the de is a function of cache associativity and program

behavior. It has an impact on E(dp) only when the dp is small. It

392

LLC

Access

address

RD

PD

RDD

Higher

level

Main

memory

PD Compute

Logic

RD Counter

Array
RD Sampler

Figure 7. The PDP cache organization.

has been experimentally determined that it can be set to a constant

equal to W . This is another reason why E(dp) is an approximation

of the hit rate.
Fig. 6 shows the E(dp) and the actual hit rate as a function of

static dp < 256 for four SPEC CPU2006 benchmarks (Appendix A

shows the complete suite). The RDD is also shown. The model can

be seen to approximate the actual hit rate well, especially around the

PD which maximizes hit rate.
Eq. 1 (with de = W) is used to find the optimal PD, i.e. the

PD achieving the highest hit rate. The search algorithm computes

E(dp) for all dp < 256 and finds the maximum E(). Not that this

search is only performed periodically and that E(dp + 1) can be

computed from E(dp) to significantly reduce the search time.

3 PDP CACHE ORGANIZATION
This section describes the cache operation and the additional

hardware required for dynamic computation of the optimal PD.

Fig. 7 shows a block diagram of the PDP cache. The additional

blocks include an RD sampler to measure the reuse distances (RDs),

an array of RD counters which track the number of hits at each reuse

distance (i.e. the RDD), and logic to find the PD using Eq. 1.
The RD sampler. The RD sampler monitors access to a small

number of cache sets to collect the reuse distances observed. It uses

a per-set FIFO of addresses which accessed the set. A new access

to a sampled set has its address compared the set’s FIFO entries.

The FIFO position of the most recent match, if any, is the reuse

distance RD. Its corresponding reuse counter in the counter array is

incremented. An RD as large as dmax needs to be detected.
It has been shown in [24, 14] that sampling just 1/64 of the total

sets is sufficient to capture the behavior of an application. A reduced

FIFO insertion rate may be used to allow smaller FIFO size (note

that cache tag check is still performed for each access). In this case

a new entry is only inserted on every M th access to the set, with

a sampling counter counting up to M . The reuse distance RD is

now computed as RD = n×M + t, where n is the FIFO position

of the hit, t is the value of of the sampling counter on the sampler

hit. An entry is marked invalid on such a hit to reduce error in RD

measurement. Similar to the work in [18], a FIFO entry uses 16 bits

to store a tag. The total number of bits per sampled set is dmax
M

∗
16 + log2 M .

The array of RD counters. The RD counter array stores the

RDD {Ni}. The ith counter is the number of accesses with the RD

of i. An RD arrives from the RD sampler and the corresponding

counter is incremented. An additional counter is used for the total

number of accesses Nt. These are saturating counters and, when a

counter saturates, all other counters are frozen to maintain the RDD

shape.
A space optimization for the array is to store hit counts for a con-

secutive range of RDs in one counter. The range extent is called a

PROM

Decode

RegFile

R0-R7: 8-bit

R8-R15: 32-bit

ALU

RD Counter

Array

A

B

OP

PC

IR

ACC

Figure 8. A “PD compute logic" special-purpose
processor.

step counter, (Sc). For instance, if Sc = 4 then the first counter is

incremented for RDs from 1 to 4, the next one for the RDs from 5 to

8, and so on. The number of counters can thus be reduced to dmax
Sc

.

This also reduces the computation time to select the protecting dis-

tance PD. However, this also means that the PD belongs to a range

rather than being a single value. The proposed PDP implementation

uses 16-bit Ni counters and a 32-bit Nt counter. Total number of

bits required for the counter array is dmax
Sc

× 16 + 32.

Logic to compute the PD. The PD is recomputed infrequently

and thus its computation is not time critical. The logic to find the

optimal PD can thus be implement it as a special-purpose “proces-

sor”. A possible 4-stage pipelined architecture is shown in Fig. 8. It

uses a 32-bit ALU, eight 32-bit registers and eight 8-bit wide. The

processor uses the RD counter array as input and outputs the opti-

mal PD. It executes one algorithm using sixteen integer instructions:

add/sub, logical, move, branch, mult8 and div32. The mult8 mul-

tiplies a 32-bit register by an 8-bit register and is performed using

shift-add. The div32 is a division of two 32-bit numbers and is per-

formed as shift subtract/add non-restoring division (33 cycles). The

processor takes 64 cycles to compute E(dp) for one dp in Eq. 1.

Thus the total time to compute the optimal PD, 64 × 256 cycles, is

negligible compared to the number of cycles between two PD com-

putations (512K accesses to the LLC in this paper). The processor

can be put in low-power sleep mode when not in use. The processor

was synthesized using a 65nm technology library and required 10K

NAND gates operating at 500MHz clock frequency.

Cache tag overhead. The computed PD is used by the cache

to set the initial value of remaining PD, RPD (see Sec. 2.2 for the

definition), for inserted or promoted lines. Storing the RPD that

can range up to dmax = 256 requires nc = 8 bits per line. This

overhead can be reduced by using an increment, the Distance Step
Sd. An update of RPDs is done once every Sd accesses to the set

using a per-set counter (and counting bypasses). An access causing

the counter to reach Sd − 1 triggers the decrement of all RPDs in

the set. This does not have to be done in parallel but can be done

sequentially to reduce complexity. The maximum value of Sd is
dmax
2nc .

The PDP parameters. A number of hardware parameters are

used in the PDP: (1) the RD sampler size, (2) the Sc counter used

in the counter array, (3) the number of bits to store the PD nc, and

(4) the maximum distance dmax (Sec. 1). The choice of these pa-

rameter values impacts both the hardware overhead and the cache

performance. Sec. 6.1 presents a design space exploration of these

parameters.

393

E

Hit rate

0 64 128 192 256

403.gcc

RDD

0 64 128 192 256

436.cactusADM

464.h264ref

0 64 128 192 256

482.sphinx3

0 64 128 192 256

483.xalancbmk.2

0 64 128 192 256

Figure 6. E(dp) vs the actual hit rate.

4 A PD-BASED CACHE PARTITIONING POL-
ICY

All high-performance multi-core processors today use a shared

LLC. The shared LLC can benefit significantly from (cooperative)

cache partitioning. This section defines a new multi-core partition-

ing policy based on the concept of protecting distance. The key

insight is that decreasing a thread’s PD leads to a faster replacement

of its lines and thus shrinks its partition. Increasing the PD has the

opposite effect. The proposed policy defines a per-thread protecting

distance and computes a set of PDs that partitions the cache to max-

imize hit rate. The computation is based on a new shared LLC hit

rate model that is a function of a set of PDs.
The numerator and denominator in Eq. (1) are H(dp), the

number of hits, and A(dp)/W , the number of accesses. They

need to be computed per thread when multiple threads access the

shared cache. A thread t has Ht(d
(t)
p) hits and At(d

(t)
p)/W ac-

cesses for a protecting distance of d
(t)
p . The total number of hits

and accesses for T threads are Hits(d
(t)
p) =

T−1∑
t=0

Ht

(
d
(t)
p

)
and

Accesses(d
(t)
p) =

T−1∑
t=0

At

(
d
(t)
p

)
/W , respectively. The multi-core

function Em is Em = Hits/(Accesses ∗ W). Using a vector−→
dp =

[
d
(0)
p , ..., d

(T−1)
p

]
to denote an ordered set of d

(t)
p , the multi-

core hit rate approximation as a function of
−→
dp is:

Em

(−→
dp
)
=

T−1∑
t=0

Ht

(
d
(t)
p

)
T−1∑
t=0

At

(
d
(t)
p

) (2)

A vector
−−→
PD =

[
PD(0), ..., PD(T−1)

]
that maximizes

Em(
−−→
PD) defines the protecting distances PD(t) of each thread.

A heuristic is used to find the vector
−−→
PD instead of an an exhaus-

tive search. It is based on three observations. First, a thread with a

high single-core E will also make a high contribution to the multi-

core Em. Second, a computed multi-core PD for a given thread

is likely to be near one of the “peaks” in its single-core E. And

third, the number of “important” peaks in an application is quite

small. The heuristic thus builds
−−→
PD by adding a thread at a time

and searches for the added thread’s PD near one of its peaks only.
The multi-core partitioning policy requires a counter array per

thread but still uses the single-core PD computing logic to generate

the “high peaks” for each thread . The heuristic first sorts the threads

by their E’s, then adds the thread with the “highest E” to the vector.

The next highest thread is processed next, each of its peaks (com-

puted using the single-core E) is considered in combination with

Pipeline Depth 8

Processor Width 4

Instruction Window 128

DCache 32KB, 8-way, 64B, 2 cycles

ICache 32KB, 4-way, 64B, 2 cycles

L2Cache 256KB, 8-way, 64B, 10 cycles

L3Cache (LLC) 2MB, 16-way, 64B, 30 cycles

Memory latency 200 cycles

Table 1. The single-core processor.

peaks of the thread already in the vector. A search algorithm is used

to find the peak of the combination that maximizes Em. The process

is repeated for each remaining thread.
It has been experimentally determined that considering just three

peaks per thread is sufficient. For each thread combination, the

search algorithm has the complexity of O (T × S), where S is the

number of single-thread E re-computations. Given that the number

of combinations is a linear function of T , the complexity of Em is

O
(
T 2 × S

)
. The complexity is similar to that of UCP [25]. The

processor described in the previous section can be easily extended

to execute this heuristic. The latency of the PD vector search is still

negligible compared to the PD recomputation interval.

5 EXPERIMENTAL METHODOLOGY
The proposed single- and multi-core management policies at the

LLC were evaluated. A memory hierarchy with three levels of cache

is modeled which is similar to the Intel Nehalem processor. An out-

of-order core is modeled with the CMP$im [11] simulator. The core

and the memory hierarchy parameters are described in Table 1. The

L1 and L2 caches use the LRU policy. A multi-core processor with

a shared LLC is also modeled with CMP$im. The shared LLC size

is the single-core LLC size times p, where p is the number of cores.
The following SPEC CPU2006 benchmarks were used

for the single-core evaluation: 403.gcc, 429.mcf, 433.milc,

434.zeusmp, 436.cactusADM, 437.leslie3d, 450.soplex, 456.hm-

mer, 459.GemsFDTD, 462.libquantum, 464.h264ref, 470.lbm,

471.omnetpp, 473.astar, 482.sphinx3 and 483.xalancbmk. Other

benchmarks in the suite were not considered because they do not

stress the LLC, e.g. their MPKI is less than 1 for the baseline DIP

policy. A window of 1 billion consecutive instructions per individual

benchmark was simulated. To see how each policy reacts to phase

change within an application, three different 1B instruction windows

were studied for 483.xalancbmk to observe the phase changes, with

results denoted as 483.xalancbmk.X, where X is the window num-

ber. A subset of benchmarks which demonstrate significant phase

changes were simulated with a window of 10 billion instructions.
Multi-core, shared LLC simulations used workloads generated

394

by combining the individual benchmarks described above. Bench-

mark duplication was allowed in a workload. 80 workloads were

generated using random selection for the 4-core and 16-core config-

urations. A workload completes execution when each of its threads

completes the execution of its 1B instructions. A thread complet-

ing before other threads “rewinds” and continues its execution from

the first instruction of its window. Per-thread statistics are collected

when a thread finishes its first one billion instructions.
Single-core performance metrics are misses per thousand in-

structions (MPKI) and the IPC. Multi-core performance metrics

are the weighted IPC (W =
∑ IPCi

IPCSinglei
), the throughput

(T =
∑

IPCi), and the harmonic mean of normalized IPC (H =

N/
∑ IPCSinglei

IPCi
). IPCi above is the IPC of a thread i in multi-

core, multi-programmed execution for a given replacement policy.

IPCSinglei is the IPC of the thread i executed stand-alone on the

multi-core and using the LRU policy. LRU is used as the baseline

here for consistentency with prior work [25]. The results for each

metric for a given replacement policy are are shown normalized to

the shared cache DIP.
The single-core PDP is compared with DIP [24], DRRIP [14],

a variant of EELRU [29] and the sampling dead block predictor

(SDP) [18]. DIP and DRRIP used the dynamic policy. The ε = 1/32
was used for BIP and BRRIP except when evaluating the impact of

ε. An SDM with 32 sets and a 10-bit PSEL counter was used for DIP

and DRRIP. Writebacks were excluded in updating PSEL counters

in these policies. The hardware overhead for SDP was made 3 times

as large as that reported in the original work in order to maximize

the performance.
Each cache set for EELRU evaluation was augmented with a re-

cency queue to measure the number of hits at a stack position. Two

global counter arrays were used to count the number early hits and

total hits for each pair of early eviction point e and late eviction point

l over all sets. The parameters e and l were chosen aggressively to

make sure that EELRU achieves its best possible performance. The

maximum value of l is set to dmax = 256 to be compatible with

PDP.
Three thread-aware shared cache partitioning policies were

compared with PDP: the UCP [25], the PIPP [36] and the TA-

DRRIP [14]. The lookahead algorithm was used to compute the

ways for UCP and PIPP. Thirty two sampling sets were used for

UCP and PIPP. pprom = 3
4

, pstream = 1
128

, θm ≥ 4095, and

θmr = 1
8

were used for PIPP, per original work. The implementa-

tions of DIP, RRIP and TA-DRRIP were verified against the source

code from the author’s website.

6 EVALUATION AND ANALYSIS

The performance of PDP depends on a number of parameters.

Thus we start with a parameter space design exploration for the

single-core PDP. The parameters can be chosen to balance overhead

and performance. Once most of the parameters are selected, this sec-

tion presents and compares results for the single-core replacement

and bypass policies, as well as the PDP shared cache partitioning

policy.

6.1 A PDP Parameter Space Exploration
The performance and hardware overhead of the PDP are a func-

tion of the maximum PD allowed, sampler and FIFO sizes, and the

number of bits to store the remaining PD per line. Fig. 9 shows the

effect of two PDP parameters: the RD sampler size and the counter

Range of PD 16-32 33-64 65-128 129-256

of benchmarks 4 5 4 3

Table 2. The PD distribution of SPEC CPU2006
benchmarks.

step Sc. The Full configuration uses a FIFO per LLC line. The Real
configuration uses a 32-entry RD sampler (32 FIFOs, each with 32

entries). The impact of the counter step Sc is shown for the Real
configuration. The specific PDs of each configuration can be found

in Appendix A.

The results show that the RDDs obtained using the 32-entry RD

sampler are basically identical to those obtained without sampling.

An even smaller sampler size can be used, but it will take longer to

warm up and to build a good-quality RDD. Therefore, the rest of the

paper uses the Real configuration of the RD sampler.

Varying the counter step Sc from 1 to 8, the Sc = 2 has mostly

no difference with the Sc = 1. Two benchmarks, 456.hmmer and

470.lbm, show a noticeable change for higher values of Sc. This is

due to the rounding errors in the PD computation. The Sc = 4 is

selected for the rest of the paper in a trade-off between performance

and hardware overhead,

A third parameter, the maximum protecting distance dmax, is

chosen based on results in Table 2. The table shows the distribu-

tion of optimal PD for the sixteen SPEC CPU2006 benchmarks used

and the Full sampler configuration. None of the benchmarks has a

PD larger than 256, even if dmax is set to be larger. Therefore the

dmax = 256 is used in the rest of the paper. The table also shows

that a smaller dmax can also be used, but with some impact on per-

formance. For example, the dmax = 128 results in lower perfor-

mance for three benchmarks.

A fourth parameter, the number of bits per cache tag, is evaluated

in the next section.

6.2 The Single-core PDP
Fig. 10 shows the performance of PDP and three prior policies:

DRRIP [14], EELRU and SDP [18]. The static SPDP-B is also

shown. All the results are normalized to the DIP [24] pollcy. The

evaluated metrics are the miss reduction, IPC improvement, and the

fraction of accesses bypassed. Three different PDP configurations

are shown varying the number of extra bits per cache tag nc (e.g,

PDP-3 has nc = 3).

First, let us compare prior replacement policies. DRRIP has

several benchmarks which improve over DIP, significantly in the

450.soplex, 456.hmmer, and 483.xalancbmk.3. The benchmark

464.h264ref shows degradation over DIP. This benchmark was an-

alyzed in Sec. 2.1. In fact, DRRIP achieves similar performance to

DIP with ε = 1/4 for 464.h264ref. On average, DRRIP reduces the

misses by 1.8%, leading to a 1.5% improvement in IPC over DIP.

This is consistent with results for the SPEC CPU2006 suite reported

in the DRRIP work [14]. The EELRU is shown to have a significant

degradation compared to DIP in several benchmarks. This is due

to the fact that a majority of cache lines are evicted before reaching

their reuse point, hence they pollute the cache without contribut-

ing to hits. In fact, it was previously reported that DIP outperforms

EELRU [24].

Second, let us compare the miss reduction for the static PDP

(SPDP-B) and the dynamic PDP (PDP-8). Recall that the dynamic

PDP uses the hit rate model to find the PD which maximizes the

395

0.9

1

1.1

N
o

rm
a
li
z
e
d

 M
P

K
I

Full, Sc = 1

Real, Sc = 1

Real, Sc = 2

Real, Sc = 4

Real, Sc = 8

Figure 9. Comparing PDP parameters.

hit rate. The upper bound for short traces (1B instructions) is the

static PDP and the results show that in most cases the dynamic PDP

is close to this bound. However, there is a significant difference in

the case of 429.mcf and 456.hmmer. Appendix A also shows that

these two benchmarks have the best static PD which is quite differ-

ent from the computed PD. On average, SPDP-B eliminates 1.4%

more misses than PDP-8.

Third, consider the impact of nc. PDP-8 has a 1.5% and 0.5%

higher miss reduction, respectively, compared to PDP-2 and PDP-

3. This results in a 2.0% and 0.5% higher improvement in IPC,

respectively. But PDP-2 and PDP-3 have significantly less overhead.

Thus the nc parameter can be used to reduce the overhead with a

small performance impact. But for 436.cactusADM PDP-2 leads to

a significant performance reduction due to the approximation errors

eviction of many lines before reuse. Sometimes though, benchmarks

get a improvement with smaller nc, such as 429.mcf and 473.astar,

although the impact is less significant for the latter. 462.libquantum

has a big performance loss for nc < 8, because its PD is 256, equal

to the chosen dmax, and all lines are evicted before this PD. A larger

dmax will be able to avoid this loss.

Note that the three different execution windows of

483.xalancbmk have different performance. The second win-

dow sees a miss reduction of up to 21%, with a 21% improvement

in IPC (over DIP) which is higher than in the other two windows.

The results from only one window, with medium improvement, are

used in computing all the averages, for a fair comparison among

policies.

Overall, PDP significantly improves performance over DIP

and DRRIP in several benchmarks. 436.cactusADM, 450.soplex,

482.sphinx3 and 483.xalancbmk have more than a 10% improve-

ment over DIP. Other benchmarks do not have a significant improve-

ment. In some the LRU replacement works fine (LRU-friendly),

such as 473.astar. Others are streaming benchmarks with very large

data sets, such as 433.milc, 459.GemsFDTD, 470.lbm. The average

IPC improvement over DIP for PDP-2 and PDP-3 is 2.9% and 4.2%,

respectively, while the DRRIP improvement over DIP is 1.5%.

Next, let us compare PDP with SDP, a bypass policy using the

program counter based dead block prediction. SDP is able to iden-

tify and bypass many “dead-on-arrival” lines, but it does not al-

ways have a good prediction. This happens for 464.h264ref and

483.xalancbmk, where SDP loses significantly to DIP. Note that for

483.xalancbmk SDP still improves over LRU, the baseline policy

it builds upon. A look at the RDDs shows that these benchmarks

do not have many lines whose RDs are large, the target of the SDP

predictor. This explains the difference in performance for SDP and

PDP. Benchmarks where SDP is significantly better than all other

policies are 437.leslie3d and 459.GemsFDTD where the use of the

PC-based prediction is shown to be advantageous. On average, SDP

improves the IPC of 1.6% over DIP.
Bypassing a cache reduces its active power dissipation, an im-

portant issue for large LLCs, by not writing the data into the LLC.

Fig. 10c shows the fraction of bypassed lines normalized to the num-

ber of LLC accesses. Benchmarks which have high miss rates also

have high bypass rates. For nearly 40% of accesses the LLC does

not have to be written.
The results in this section show that PDP-2 or PDP-3 proved a

good balance of overhead and performance. The hardware overhead

of the RD sampler, the array of RD counters, the processor to com-

pute the PD and per-line bits was estimated for a 2MB LLC using

the PDP-2 and PDP-3 policies. Expressed in terms of SRAM bits,

the overhead is 0.6% for PDP-2 and 0.8% for PDP-3 of the total

LLC size. The overheads for DRRIP and DIP are 0.4% and 0.8%,

respectively.

6.3 A Direction to Improve PDP
The analysis above gives some hints to further ways to im-

prove PDP. For example, 429.mcf has a higher performance with

smaller nc while SDP is better than other policies in 437.leslie3d

and 459.GemsFDTD. The common cause in all cases is the inability

to determine how long a line should be protected. For 437.leslie3d

and 459.GemsFDTD this can be solved by using a PC-based pre-

dictor. A variant of PDP was used to better understand the case of

429.mcf. The variant inserts missed lines with the PD = 1 (mostly

unprotected) instead of the computed PD and this result in an 8%

miss reduction over DIP. The reduction for SPDP-B is 3.9% and

5.1% for DRRIP. This means that when the inserted lines are re-

moved faster a higher miss reduction is achieved for this benchmark.
The above suggests that the PDP can be improved by grouping

lines into different classes, each with its own PD, and where most of

the lines are reused. The lines in a class are protected until its PD

only, thus they are not overprotected if they are not reused. In fact,

prior approaches have classified and treated cache lines differently.

A popular way is using the program counters [18, 22, 9]. Another

way is to use a counter matrix to group lines [19]. SHiP [34] pro-

poses to improve RRIP using different ways to group cache lines.

However, the hardware overhead needs to be carefully considered.

6.4 Adaptation to Program Phases
An application phase change may require the PD to be recom-

puted. For instance, the three execution windows of 483.xalancbmk

have different PDs and different behaviors. to detect phase change

The PD needs to be recomputed and the RD counter array reset fre-

quently enough to detect the change. The computed PD is used until

the next recompilation while the counters collect the new RDD.
Five SPEC CPU2006 benchmarks have phase changes in an ex-

396

-20%

-10%

0%

10%

20%

30%

SDP

DRRIP

EELRU

PDP-2

PDP-3

PDP-8

-30%

20%
SPDP-B

-49

(a) Miss reduction vs. DIP

-20%

-10%

0%

10%

20%

30%

SDP

DRRIP

EELRU

PDP-2

PDP-3

PDP-8

-30%

20%
SPDP-B

(b) IPC improvement vs. DIP

0%

20%

40%

60%

80%

100%

SDP

PDP-2

PDP-3

PDP-8

SPDP-B

(c) Cache bypass as a fraction of accesses

Figure 10. Performance of replacement and bypass policies (Results for 483.xalancbmk.1 and 483.xalancbmk.2 are ex-

cluded from averages).

ecution window of 10B instructions. Fig. 11c shows the PD change

over time. Fig. 11a shows the effect of the PD recomputing interval

between 1M and 8M accesses, which can be significant. Fig. 11b

compares different replacement policies for these benchmarks. PDP

is able to adapt to phase changes for these benchmarks.

6.5 The Case for Prefetch-Aware PDP
The PDP policy can be applied in the presence of prefetching.

The RDDs in this case are dependent of a specific prefetching mech-

anism. Note that prefetching techniques often target very long dis-

tance access streams, i.e. lines which have very large RDs. Two

prefetch-aware variants of the PDP were investigated: (1) prefetched

lines are inserted with the PD of 1, and (2) prefetched lines bypass

the LLC.

The initial evaluation using a simple stream prefetcher and

the modified PDP-8 showed the following. First, the prefetch-

unaware PDP had a 3.1% improvement over the prefetch-unaware

DRRIP, which is similar to the results without prefetching. The

two PDP variants further improve the IPC to 4.1% and 5.6%

over prefetch-unaware PDP. Many benchmarks show an improve-

ment of over 20%, including 403.gcc, 450.soplex, 482.sphinx3 and

483.xalancbmk. The improvement is due to the fact that PDP re-

moves prefetched lines fast and even bypasses them, hence they do

not pollute the cache. This shows that the PDP can be easily modi-

fied to work with prefetching.

6.6 The Cache Partitioning Policy
Fig. 12 shows the performance of the multi-core PD-based parti-

tioning together with other thread-aware policies for 4- and 16-core

workloads. Three metrics are reported: the weighted IPC (W), the

throughput (T), and the harmonic mean of normalized IPC (H). The

PD-based partitioning parameters are the same as for the single-core

PDP, except that Sc = 16.
The average W, T, and H on four cores are slightly higher for both

PDP-2 and PDP-3 compared to the TA-DRRIP and are higher than

the UCP and PIPP. The PD-based partitioning is significantly better

than other policies for approximately 30 individual workloads, for

another 20 it has a negligible improvement, and is not as good as the

TA-DRRIP for the rest.
The PD-based partitioning is shown to be more scalable with a

larger improvement on the 16-core workloads. Its performance is

better than that of all other partitioning policies for more than 70 of

the 80 workloads. UCP and PIPP do not scale as well compared to

the other policies. On average, PDP-3 has a 5.2%, 6.4% and 9.9%

improvement in W, T, H, respectively, over the TA-DRRIP.

7 RELATED WORK
Cache line protection. Let us discuss prior policies from the

perspective of line protection, even if they do not use this concept

explicitly. LRU can only guarantee that a line is protected for the

number of unique accesses equal or smaller than associativity. A line

397

0%

10%

20%

30%

40%

WUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

10%

20%

30%

40%

TUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

10%

20%

30%

40%

HUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

5%

10%

W T H

Average

-10%

-5%

UCP PIPP PDP-2 PDP-3

0%

10%

20%

30%

40%

WUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

10%

20%

30%

40%

TUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

10%

20%

30%

40%

HUCP

PIPP

PDP-2

PDP-3

-20%

-10%

0 20 40 60 80

Workload

0%

5%

10%

W T H

Average

-10%

-5%

UCP PIPP PDP-2 PDP-3

Figure 12. Cache partitioning policies for 4-core (top) and 16-core (bottom) workloads (normalized to TA-DRRIP).

1.04

1.06

1.08

IP
C

 t
o

 i
n

te
rv

a
l
=

 1
M

403.gcc 429.mcf

450.soplex 482.sphinx3

483.xalancbmk

0.98

1.00

1.02

1M 2M 4M 8MN
o

rm
a

li
z
e
d

 I

Reset inverval

(a) Reset interval

5%

10%

15%

v
e

m
e

n
t

o
v
e

r
D

IP

RRIP PDP-2 PDP-3 PDP-8

-5%

0%

IP
C

 i
m

p
ro

v

(b) Performance

100

150

200

403.gcc

0

50

0 20 40 60

100

150

200

429.mcf

0

50

0 200 400 600

100

150

200

450.soplex

0

50

0 100 200 300

100

150

200

482.sphinx3

0

50

0 30 60 90 120

100

150

200

483.xalancbmk

0

50

0 50 100 150 200

X-axis: 1M accesses

Y-axis: PD

(c) PD change over time

Figure 11. Adaptation to program phases.

with a reuse distance RD larger than associativity can be protected

either by replacing other lines or by explicitly protecting the line.

DIP [24] and RRIP [14] predict the re-reference future of lines and

protect lines which are predicted to be reused sooner. The counter-

based replacement policy [19], using a matrix of counters, protects

lines by not evicting them until they expire. This approach does not

use an explicit protecting distance, but rather predicts how long a

line should be protected by using the past behavior of lines in the

same class. The work in [15] measures Inter Reference Recency

(IRR) which is similar to reuse distance. Based on this IRR infor-

mation, cache lines are classified into 2 categories: high IRR and

low IRR, and low IRR lines are protected over high IRR lines. The

work in [21] uses PC information to identify which lines to protect

and the cache is also divided into two regions: MainWays and Deli-

Ways. The use of DeliWays is to protect cache lines longer. Dead

block prediction [18] uses program counters (PC) to predict which

lines have a very long RD and to bypass them, thus protecting exist-

ing lines in the cache.
The approach in [17] used a PC-based reuse distance predictor

and monitored the distance remaining till reuse. An LRU line or

a line with the largest “distance till reuse” is evicted, whichever is

larger. This can be viewed as “protecting” lines with lower distance

till reuse. The two issues with this policy are: 1) the PC-based reuse

distance prediction is not very accurate and 2) the decision to switch

eviction to an LRU line is an approximation without a model to sup-

port it.
Shepherd cache [26] emulates the Belady [2] policy to estimate

RD and evict lines with a long RD and protect lines with a short

RD. The insertion algorithms in [6], which target an exclusive LLC,

insert a line with a certain age to determine how long the line should

be protected. Similarly, SHiP [34] determines the insertion age of

a line by using information about either the memory region or pro-

gram counters or instruction sequence.
The EELRU [29], or early eviction LRU, was defined for page

replacement using the model in [33] and accurately measured the

reuse distance. It used LRU for part of the set (physical memory) and

switched to early eviction when LRU failed. It can be said to divide

the pages into protected and unprotected regions and to compute the

region boundaries dynamically. The computation used hit counters

and the search process for the best boundary is similar to the search

for the best PD. However, unlike the PDP, the EELRU “protection”

is managed via eviction only (by evicting all older lines first), i.e. all

missed blocks are inserted into the set.
The PDP is different from prior work in that it explicitly esti-

mates how long a line should be protected using the concept of pro-

tecting distance. After this explicit protection, if it is not reused, the

line becomes unprotected and can be replaced.
Distance measurements. Three ways to measure the reuse dis-

tance were defined in prior work. The first one is the stack distance,

used by LRU and its variants, with the time unit defined as the num-

ber of unique accesses [24, 29, 28]. Stack distance can be used to

tell which lines are older, but not its real age. The other two are

non-stack: one uses a cache miss as the time unit [21], and the other

one uses an access as a unit [22, 17, 4]. The former is dependent

398

on the replacement policy. Computing stack distance is more com-

plex. Thus we used access-based distance measurement in this pa-

per. Note that the approach in [17] uses global RDs, while PDP uses

set-based RDs, which significantly reduces overhead.
Cache bypass. There has been a number of studies using by-

pass [6, 18, 20, 16, 32, 19, 5]. The dead block prediction work [18]

bypasses blocks predicted dead. The work in [32] explores bypass

by characterizing data cache behavior for individual load instruc-

tions. The approach in [20] uses a hash table to identify never-

accessed lines. The approach in [16] uses memory addresses to

identify which lines to bypass. Recently, the work in [6] proposed

bypass algorithms that use sampling sets to identify dead and live

blocks. Our approach bypasses a block when existing blocks are still

protected, but without explicitly identifying which lines are likely to

be dead. The bypass mechanism in [19] also bypasses lines if there

are no expired lines in the set.
Cache sampling. Prior work used sampling on a subset of cache

sets [24, 14, 18] and on a fraction of the accesses [18, 22]. Other

approaches use feedback to adjust the cache replacement [3] or par-

titioning [30]. PDP’s only contribution here is a low hardware over-

head.
RDDs and hit rate model. The IGDR policy [31] used the Inter-

Reference Gap Distribution which is similar to the RDD. It used the

concept of Inter-Reference Gap from [23]. IGDR used the distribu-

tion to compute a “weight” of cache lines and evict the line with a

smallest weight. The work in [19] used the distribution implicitly.

The approach in [22] used PCs to compute the RD of a line. PDP

uses the RDD to explicitly compute a global protecting distance.

The PD computation searches for a maximum of E(PD, RDD) and

uses the PD achieving the maximum. EELRU [29] used a similar

search approach to choose the best set {eviction point, probability}.
Prefetch-aware caching policies. Prior work investigated re-

placement policy in the presence of prefetching [7, 35, 6]. PAC-

Man [35] is one such approach showing that RRIP can be modified

to adapt to prefetching. Our preliminary results also show opportu-

nities to improve PDP in the presence of prefetching.
Shared-cache policies. A number of multi-core, shared cache

partitioning policies [25, 36] have been proposed as well as thread

aware insertion or eviction [12, 14]. Recently, Vantage mecha-

nism [27] used an analytical model to enhance partitioning in CMP

and this model can be used with existing policies. Similar to the

work in [12, 14], multi-core PDP does not perform partitioning

among cores explicitly, rather it estimates the needs of each thread

from its PD and chooses a set of PDs, one per thread, that maximize

the hit rate.

8 CONCLUSIONS
Cache management policies such as replacement, bypass, and

shared cache partitioning, have been exploiting – directly or indi-

rectly – the data reuse behavior to improve cache performance. This

paper proposed the novel PDP cache management policy which ex-

plicitly protects a cache line for a predicted reuse distance, the pro-

tecting distance PD. This guarantees a hit if the reuse occurs while

the line is protected. Unprotecting a line speeds up its eviction and

reduces cache pollution, thus freeing the cache space for new lines.

The PDP achieves a good balance between reusing lines and reduc-

ing pollution. A bypass mechanism can be used when all the lines

in a set are protected. A hit rate model as a function of program

behavior and PD is proposed and shown to be accurate. The model

Benchmark SPDP Full Real, Sc =
NB B 1 2 4 8

403.gcc 68 72 63 64 64 64 64

429.mcf 136 152 182 182 180 184 176

433.milc 248 248 216 216 216 216 208

434.zeusmp 16 16 16 16 16 16 16

436.cactusADM 76 72 65 66 66 66 64

437.leslie3d 36 40 40 40 40 40 48

450.soplex 60 52 73 74 72 72 80

456.hmmer 44 176 22 22 24 24 32

459.GemsFDTD 24 24 26 26 28 32 32

462.libquantum 256 256 256 256 256 256 256

464.h264ref 40 40 48 48 48 48 48

470.lbm 52 52 50 50 52 56 64

471.omnetpp 20 20 33 32 32 32 32

473.astar 24 20 16 16 16 16 16

482.sphinx3 84 120 84 84 84 88 80

483.xalancbmk.1 88 100 113 114 116 112 112

483.xalancbmk.2 72 88 56 56 56 56 64

483.xalancbmk.3 96 124 74 74 72 72 80

Table 3. The PDs of SPEC CPU2006 benchmarks.

is used to periodically recompute the PDP to adapt to phase changes

and memory access behavior. A shared-cache hit rate model is also

developed and used by the new PD-based partitioning policy. The

additional hardware is shown to have the overhead similar to exist-

ing replacement policies. The performance evaluation of PDP shows

that it outperforms existing management policies for both single-

core and multi-core configurations.

A RESULTS FOR SPEC CPU2006 BENCH-
MARKS

Table 3 shows the PDs of the benchmarks used in this paper.

The first two columns are for the static PDP (see Sec. 2) with and

without bypass (B and NB). The third column shows the PDs of the

dynamic PDP with a full RD sampler (see Sec. 6.1). The last four

columns are the PDs with a real RD sampler and different values of

Sc (see Sec. 6.1). These results were collected at the end of the 1B

instruction execution window.

Fig. 13 shows the RD distribution for all benchmarks and win-

dows, the modeled hit rates (E) and the static hit rates as described

in Sec. 2. Each is normalized to its highest peak.

ACKNOWLEDGMENTS
This work is supported in part by NSF grant CISE-SHF 1118047

and by the Ministry of Science and Technology of Spain and the Eu-

ropean Union (FEDER funds) under contract TIN2007-60625. Nam

Duong is also supported by the Dean’s Fellowship, Donald Bren

School of Information and Computer Sciences, UC Irvine. The au-

thors would like to thank the anonymous reviewers for their useful

feedback and Drs. G. Loh and M. Qureshi for their shepherding

help.

REFERENCES
[1] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez. Scav-

enger: A new last level cache architecture with global block priority.
In MICRO’07.

[2] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 1966.

399

E

Hit rate

0 64 128 192 256

403.gcc

RDD

429.mcf

0 64 128 192 256

433.milc

0 64 128 192 256

434.zeusmp

0 64 128 192 256 0 64 128 192 256

436.cactusADM
437 l li 3d

0 64 128 192 256

437.leslie3d

450.soplex

0 64 128 192 256

456.hmmer

0 64 128 192 256

459.GemsFDTD

0 64 128 192 256

462.libquantum

0 64 128 192 256

464.h264ref

0 64 128 192 256

470.lbm

0 64 128 192 256

471.omnetpp

0 64 128 192 256

473 t

0 64 128 192 256

473.astar

482.sphinx3

0 64 128 192 256

483.xalancbmk.1

0 64 128 192 256

483.xalancbmk.2

0 64 128 192 256

483.xalancbmk.3

0 64 128 192 256

Figure 13. The RDDs, modeled and actual hit rates of SPEC CPU2006 benchmarks.

[3] N. Duong, R. Cammarota, D. Zhao, T. Kim, and A. Vendenbaum.
SCORE: A score-based memory cache replacement policy. In
JWAC’10.

[4] M. Feng, C. Tian, C. Lin, and R. Gupta. Dynamic access distance
driven cache replacement. ACM Transactions on Architecture and
Code Optimization, 2011.

[5] H. Gao and C. Wilkerson. A dueling segmented LRU replacement
algorithm with adaptive bypassing. In JWAC’10.

[6] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and insertion al-
gorithms for exclusive last-level caches. In ISCA’11.

[7] B. S. Gill and D. S. Modha. SARC: sequential prefetching in adaptive
replacement cache. In ATEC’05.

[8] D. Hackenberg, D. Molka, and W. E. Nagel. Comparing cache archi-
tectures and coherency protocols on x86-64 multicore SMP systems.
In MICRO’09.

[9] M. Hayenga, A. Nere, and M. Lipasti. MadCache: A PC-aware cache
insertion policy. In JWAC’10.

[10] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and J. Emer. Achiev-
ing non-inclusive cache performance with inclusive caches: Temporal
locality aware (TLA) cache management policies. In MICRO’10.

[11] A. Jaleel, R. S. Cohn, C. keung Luk, and B. Jacob. CMP$im: A pin-
based on-the-fly multi-core cache simulator. In MoBS’08.

[12] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer. Adaptive insertion policies for managing shared caches. In
PACT’08.

[13] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and
J. Emer. CRUISE: cache replacement and utility-aware scheduling.
In ASPLOS’12.

[14] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High
performance cache replacement using re-reference interval prediction
(RRIP). In ISCA’10.

[15] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference recency
set replacement policy to improve buffer cache performance. In SIG-
METRICS’02.

[16] T. Johnson, D. Connors, M. Merten, and W.-M. Hwu. Run-time cache
bypassing. IEEE Transactions on Computers, 1999.

[17] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache replacement
based on reuse-distance prediction. In ICCD’07.

[18] S. M. Khan, Y. Tian, and D. A. Jimenez. Sampling dead block predic-
tion for last-level caches. In MICRO’10.

[19] M. Kharbutli and Y. Solihin. Counter-based cache replacement and
bypassing algorithms. IEEE Transactions on Computers, 2008.

[20] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency.
In MICRO’08.

[21] R. Manikantan, K. Rajan, and R. Govindarajan. NUCache: An ef-
ficient multicore cache organization based on next-use distance. In
HPCA’11.

[22] P. Petoumenos, G. Keramidas, and S. Kaxiras. Instruction-based reuse-
distance prediction for effective cache management. In SAMOS’09.

[23] V. Phalke and B. Gopinath. An inter-reference gap model for temporal
locality in program behavior. In SIGMETRICS’95.

[24] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive
insertion policies for high performance caching. In ISCA’07.

[25] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO’06.

[26] K. Rajan and G. Ramaswamy. Emulating optimal replacement with a
shepherd cache. In MICRO’07.

[27] D. Sanchez and C. Kozyrakis. Vantage: scalable and efficient fine-
grain cache partitioning. In ISCA’11.

[28] D. L. Schuff, M. Kulkarni, and V. S. Pai. Accelerating multicore reuse
distance analysis with sampling and parallelization. In PACT’10.

[29] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: simple and effec-
tive adaptive page replacement. In SIGMETRICS’99.

[30] S. Srikantaiah, M. Kandemir, and Q. Wang. SHARP control: con-
trolled shared cache management in chip multiprocessors. In MI-
CRO’09.

[31] M. Takagi and K. Hiraki. Inter-reference gap distribution replace-
ment: an improved replacement algorithm for set-associative caches.
In ICS’04.

[32] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A modified
approach to data cache management. In MICRO’95.

[33] C. Wood, E. B. Fernandez, and T. Lang. Minimization of demand
paging for the LRU stack model of program behavior. Information
Processing Letters, 1983.

[34] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. Steely, and
J. Emer. SHiP: Signature-based hit predictor for high performance
caching. In MICRO’11.

[35] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr., and J. Emer.
PACMan: prefetch-aware cache management for high performance
caching. In MICRO’11.

[36] Y. Xie and G. H. Loh. PIPP: promotion/insertion pseudo-partitioning
of multi-core shared caches. In ISCA’09.

400

Kernel Partitioning of Streaming Applications:
A Statistical Approach to an NP-complete Problem

Petar Radojković1,2 Paul M. Carpenter1,2 Miquel Moretó1,2,4 Alex Ramirez1,2 Francisco J. Cazorla1,3

1Barcelona Supercomputing Center 2Universitat Politècnica de Catalunya - Barcelona TECH
3Spanish National Research Council (IIIA-CSIC) 4International Computer Science Institute, Berkeley

{petar.radojkovic, paul.carpenter, miquel.moreto, alex.ramirez, francisco.cazorla}@bsc.es

Abstract

One of the greatest challenges in computer architecture is how to
write efficient, portable, and correct software for multi-core proces-
sors. A promising approach is to expose more parallelism to the
compiler, through the use of domain-specific languages. The com-
piler can then perform complex transformations that the programmer
would otherwise have had to do. Many important applications related
to audio and video encoding, software radio and signal processing
have regular behavior that can be represented using a stream pro-
gramming language. When written in such a language, a portable
stream program can be automatically mapped by the stream compiler
onto multicore hardware. One of the most difficult tasks of the stream
compiler is partitioning the stream program into software threads.
The choice of partition significantly affects performance, but finding
the optimal partition is an NP-complete problem.

This paper presents a method, based on Extreme Value Theory
(EVT), that statistically estimates the performance of the optimal
partition. Knowing the optimal performance improves the evaluation
of any partitioning algorithm, and it is the most important piece of
information when deciding whether an existing algorithm should
be enhanced. We use the method to evaluate a recently-published
partitioning algorithm based on a heuristic. We further analyze how
the statistical method is affected by the choice of sampling method,
and we recommend how sampling should be done. Finally, since a
heuristic-based algorithm may not always be available, the user may
try to find a good partition by picking the best from a random sample.
We analyze whether this approach is likely to find a good partition.
To the best of our knowledge, this study is the first application of EVT
to a graph partitioning problem.

1. Introduction

Stream programming is suitable for applications that process long

sequences of data, such as voice, image, multimedia content, Internet

and communication traffic. Stream programming languages such as

StreamIt [8, 39], Brook [7] and SPM [2, 10] represent the program

as concurrent kernels, which communicate only via point-to-point

streams. A kernel is a basic computation block with a user-defined

function that processes one or more input data streams into one or

more output data streams. Dependencies between different kernels

are described explicitly through the communication data channels.

The whole application can be represented as a stream graph. The
nodes of the stream graph correspond to the kernels, while the di-

rected edges represent the communication data channels.

There are three main advantages of stream programming

languages, compared with traditional languages such as C. First, a
stream programming language is a domain-specific language, which

provides a natural way to describe streaming applications. Second,

when the program is described using a stream language, the compiler

may perform complex optimizations over the stream graph, producing

Figure 1: A kernel partition example

an efficient multithreaded program. Some optimizations involve ma-

jor changes to the program’s structure and data layout. Third, unlike

some other parallel programming models, including multithreading,

a stream program is deterministic, and therefore easier to debug.

In order to take advantage of multiple processor cores the stream

program is automatically compiled into a multithreaded executable

by the stream compiler. One of the most important tasks of the stream

compiler is to partition the kernels in the stream graph into software

threads. In Figure 1, we illustrate a stream graph of a simple program,

which is comprised of five kernels (K1 to K5). The figure also shows

one possible kernel partition of the graph: kernels K1, K2, and K3

are to be compiled to software thread Th1, while kernels K4 and K5

are to be compiled into Th2.
Kernel partitioning can significantly affect the overall system

performance. For example, for the benchmarks included in the

StreamIt 2.1.1 suite, the relative performance difference between

good and bad kernel partitions of the same benchmark mapped into

four software threads ranges from 2.4× to 3.9×, and on average it

is 3.5×.
The optimal kernel partition cannot be determined because the

essence of the analysis is graph partitioning, which is an NP-complete

problem [18, 20]. Due to the large exploration space, brute force

exploration is impractical: as streaming applications comprise tens

or hundreds of interconnected kernels (54 kernels on average in the

StreamIt 2.1.1 suite), the number of possible kernel partitions is vast.

For example, the channelvocoder benchmark has 55 kernels, and it

can be distributed into 1022 partitions of exactly four software threads.

The number of possible kernel partitions increases rapidly with the

number of output software threads, so the number of partitions using

eight threads is 1034.

Several studies (see Section 6) propose heuristic-based algorithms

to address the kernel partitioning problem. As kernel partitioning is

an intractable problem, it is impossible in general to know the perfor-

mance of the optimal partition, so the room for improvement is also

unknown. It is hard to decide whether to invest additional effort to try

to improve a given algorithm, since it may already be close to optimal.

In this paper, we present a statistical approach to the kernel parti-

tioning problem. We present a method that predicts the performance

of the optimal partition based on the observed performance of each

kernel partition in a random sample. The method is based on Extreme

Value Theory (EVT), a branch of statistics that analyzes extreme de-

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.44

401

viation from the population median. We also present several different

approaches to generate the random samples. Finally, we show that

the performance of the best observed kernel partition in a random

sample is likely to be close to the optimal one. If a heuristic is not

available for the user’s problem, a good kernel partition can be found

using random sampling on its own.

The main contributions of our study are:

• We present a method based on EVT that statistically estimates

the performance of the optimal kernel partition. To the best of

our knowledge, this is the first study that applies EVT to a graph

partitioning problem.

• We show that the sampling method, used to generate random

partitions, has a significant effect on the applicability of the sta-

tistical method. We analyze different sampling methods, and our

results strongly recommend that the samples should be uniformly

distributed.

• We use the estimates of the optimal performance to evaluate a

state-of-the-art heuristic-based kernel partitioning algorithm.

• Finally, since a complex heuristic-based algorithm may not always

be available, the user may pick the best from a random sample, and

measure its quality using the estimates of the optimal performance.

We analyze whether random sampling is likely to find a good

kernel partition.

The presented analysis is evaluated for the benchmarks included

in the StreamIt 2.1.1 suite. The method based on EVT successfully

estimates the performance of the optimal kernel partitions for all the

benchmarks under study. In all experiments, the two different kernel

partitioning methods, the heuristics-based algorithm and the method

based on random sampling, detected kernel partitions with practically

the same performance.

The rest of the paper is organized as follows. Section 2 describes

metrics that can be used to measure the performance of streaming ap-

plications. Section 3 discusses methods to generate random samples

of kernel partitions. Section 4 presents the statistical analysis that

we use to estimate the performance of the optimal kernel partition.

In Section 5, we apply the presented analysis to the StreamIt 2.1.1

benchmark suite, and evaluate the results. Section 6 describes related

work, and Section 7 presents the conclusions of the study.

2. Background

In this section, we describe different metrics that could be of interest

when doing kernel partitioning. We also briefly describe related work

with a focus on the conclusions that directly affect our study.

2.1. Target metric

There are several metrics that can describe the performance of stream-

ing applications. In our study, we analyze the cost of streaming

applications. The cost is proportional to the time needed to process

a fixed amount of input data. This metric corresponds to execution

time for non-streaming applications. Other metrics include energy

or power, the hardware utilization of the target architecture, or some

weighted sum of them.

The input to the statistical analysis is the cost of each kernel

partition in a random sample. The costs are generated using metrics

from the StreamIt 2.1.1 compiler. Instead of using the streaming

compiler, the target metric could alternatively have been measured

using real execution or simulation.

The proposed statistical approach and the general conclusions of

this study are independent of both the target metric and the way in

which the metric is evaluated: program compilation, execution or

simulation. It is important to note, however, that the results from the

statistical analysis are clearly dependent on the quality of the samples

provided to it.

If the application behavior is sensitive to its input data, which is

generally not the case for streaming applications, the user should con-

sider the analysis for different input datasets that are representative

for different application behavior.

If the user wants to use the statistical method for multiple objective

functions separately, then it is only necessary to do a full set of

compilations, executions or simulations once. After obtaining a

complete set of metrics, the statistical analysis can be done multiple

times using different metrics.

2.2. Convexity constraint

Carpenter et al. [9] present a partitioning and allocation algorithm for

an iterative stream compiler. The algorithm produces kernel partitions

that are easier to compile and that require short pipelines of software

threads. The authors evaluate their proposal on the benchmarks

included in the StreamIt 2.1.1 suite.

One of the conclusions in that paper is that the kernel partition

should be convex. A kernel partition is convex if the dependencies

between different software threads form an acyclic graph. This means

that every directed path between two kernels in the same software

thread is internal to that thread. The reason for the convexity con-

straint is that the choice of partition affects the length of the pipeline

generated by the streaming compiler. The convexity constraint con-

trols the length of that pipeline. The authors demonstrate that without

the convexity constraint, the compiler may generate long pipelines

of software threads, which increases memory use and latency of

the inter-thread communication, significantly affecting the overall

performance.

We follow these instructions and focus our study on the analysis

of convex kernel partitions. We pay special attention to generating

random samples comprised only of kernel partitions that satisfy the

convexity constraint. It is important to notice, however, that convex-

ity is not a requirement of the proposed statistical approach. The

approach can be also used for the analysis of non-convex kernel

partitions.

Although the convexity constraint significantly reduces the num-

ber of kernel partitions, their number is still vast, and brute force

exploration is impractical. For example, the fm benchmark can be

distributed into 1012 convex kernel partitions of exactly four software

threads, radar into 1014 partitions, filterbank into 1020, and vocoder

into 1023.

3. Sampling methods
In order to apply Extreme Value Theory (EVT) to the kernel

partitioning problem for streaming applications, we need to generate

random convex partitions of the stream graph that are independent

and identically distributed (i.i.d.). Intuitively, random variables

are independent if knowing the value of one of them gives no new

information about the values of the others; they are identically

distributed if they all have the same probability distribution, which

does not have to be uniform. Uniform distribution would mean that

each kernel partition would be selected with the same probability.

The different methods we used to select the random i.i.d. kernel
partitions are described next. For each method, we describe how to

select a single random kernel partition. To generate a sample of N
i.i.d. kernel partitions, repeat the sampling method N times.

402

(a) Assigning kernel K3 (b) Assigning kernel K5

Figure 2: DFS sampling method

3.1. Depth-First Search (DFS)

The first sampling method generates a random kernel partition using

a depth-first search (DFS) of the stream graph. The kernels are

visited in sequence, each kernel being assigned with equal probability

to any software thread that would not violate the convexity constraint.

Thus, this method generates random kernel partitions in a single

traversal of the stream graph.

We illustrate the sampling method with the example shown in

Figure 2. The example stream graph contains five kernels (K1 to K5)

that are to be compiled into two software threads (Th1 and Th2). For

example, assume that kernels K1 and K2 are already assigned to Th1,

and that the next kernel to be assigned is K3 (Figure 2(a)). K3 can

be assigned with equal probability to Th1 or Th2. If K3 is assigned

to Th2, kernel K5 has to be assigned to Th2 in order to generate a

convex partition (see Figure 2(b)). Since the number of candidate

threads that do not break the convexity constraint decreases rapidly,

the DFS sampling method often generates kernel partitions with an

unbalanced number of kernels per threads.

3.2. Edge Contraction (EC)

The second sampling method generates a random partition using edge

contraction of the stream graph. Initially, each kernel is placed in its

own cluster. Then, the edges of the stream graph are visited in ran-

dom order. In each step the selected edge of the graph is contracted

by fusing the clusters connected through this edge. If the resulting

graph violates the convexity constraint, the contraction is undone.

The process is continued, by moving to the next edge in random

sequence, until the number of clusters equals the number of software

threads. Finally, the clusters are randomly assigned to the threads.

Figure 3 illustrates the EC kernel partitioning of a simple stream

graph into two software threads. For example, assume that K1→K2

edge is selected as the first edge to be contracted. In this case, kernels

K1 and K2 are fused into a single cluster while the rest of the graph

is not modified. Afterwards, we illustrate the contraction of edges

K3→K5 and (K1&K2)→K4. Finally, the clusters are randomly

distributed among software threads. In comparison with DFS, the EC

sampling method generates random kernel partitions with a balanced

number of kernels.

3.3. Edge Contraction with Filter (EC-F)

The third sampling method is an enhancement of the EC method, de-

signed to bias the sampling towards kernel partitions with a low cost,

which will lead to good application performance. The EC-F method

selects the edges of the stream graph in random order, fuses the

corresponding clusters, and checks whether the convexity constraint

is violated, as for the EC sampling method. The only difference is

that EC-F performs an additional check: if contracting the current

edge generates a cluster with a high cost (i.e. that exceeds a given

Figure 3: EC sampling method: Contracting K1→K2, K3→K5, and
(K1&K2)→K4 edges, respectively.

Figure 4: UD sampling method: Example partition graph for a small
stream program

threshold), the contraction is undone and the process is repeated

for a different edge. In the experiments presented in the paper, the

threshold was the lowest cost detected in ten random kernel partitions

generated using the EC sampling method.

It may happen that, although the number of clusters is still greater

than the number of threads, none of the edges can be contracted

without creating a cluster of cost exceeding the threshold. In this case,

the remaining edges are visited in a new random order, and edges are

contracted without checking whether the cost of the final clusters is

over the threshold. Finally, the clusters are then randomly assigned

to threads. In contrast with other presented sampling methods, this

method does take into account the cost of each particular kernel when

generating partitions. The main target of this algorithm is to generate

random partitions with a balanced cost among clusters.

3.4. Uniformly Distributed (UD) sampling

The final sampling method generates a uniform sampling distribution

of the kernel partitions. This means that each convex kernel partition

is selected with the same probability. It is important to notice that

the statistical method used in the study does not require the kernel

partitions to be uniformly distributed, since it only requires their

costs to be independent and identically distributed (i.i.d.). In general,

previous sampling methods do not provide uniformly distributed

kernel partitions.

This sampling method comprises three steps.

Step 1: We analyze different kernel partitions using the partition
graph, the graph of all possible convex partitions of the stream graph

under study. Each node of the partition graph is a different kernel

partition, so the number of nodes is equal to the number of partitions.

There is an undirected edge between two nodes of the partition graph

if they differ in the assignment of exactly one kernel partition. Also,

each node contains a self-loop edge, an edge that connects the node

to itself. Due to its large size (this is an NP-complete problem),

the partition graph is never actually constructed in its entirety. An

example partition graph, for a small stream program that is to be

assigned to two software threads, is shown in Figure 4.

Step 2: We perform a random walk on the partition graph. First,

we have to choose an initial node of the partition graph to start the

403

random walk. This node can be selected by any method that generates

random kernel partitions. In the experiments presented in our study,

the initial kernel partition (initial node of the partition graph) is

selected using the EC sampling method. The random walk starts from

the initial node in the partition graph and calculates all its neighbors.

Then it randomly chooses one of the neighbors (using a uniform

distribution) to be the next node that is to be visited. The neighbor

selection is repeated N times, with N large enough to potentially

visit all the nodes of the partition graph of the benchmarks used in

the study1. The last node of the partition graph that is visited is the

outcome of the random walk. The probability that a given node is

selected using the random walk is directly proportional to its degree

(the number of its neighbors in the graph) [32]. As we know the

probability of each visited node of the partition graph to be selected,

the random walk generates samples with a known distribution.

Step 3: In the final step of this sampling method, we convert the

output of the random walk from a known distribution to a uniform

distribution. In order to do so, each kernel partition selected using the

random walk is included in the outcome of this sampling method with

a probability that is inversely proportional to its degree in the partition

graph. This way, every convex partition has the same probability

of being selected, i.e. the method provides uniformly distributed

samples.

3.5. Statistical i.i.d. tests

The sampling methods described in the previous section are designed

to generate random i.i.d. samples. After generating the samples, we

perform statistical tests to confirm that they are indeed independent

and identically distributed.

Wald–Wolfowitz test: The Wald–Wolfowitz test or runs test ex-
amines whether the observations in the sample are mutually indepen-

dent [6, 16]. The test comprises two main steps. First, the costs of

kernel partitions (non-negative real numbers) have to be converted

into binary values. We converted the cost of a given kernel partition

to ‘0’ if its value was below the median cost in the sample, and con-

verted it to ‘1’ otherwise. This way, the sequence of non-negative real
numbers was converted into a sequence of 0s and 1s, e.g. 000110000.
In the second step, the test analyzes the sub-sequences of consecutive

identical values (0s or 1s), which are referred to as runs. For example,

the sequence 000110000 is composed of three runs: 000, 11, and
0000. The Wald–Wolfowitz test validates that the observations in the

sample under study are mutually independent if the lengths of the

runs follow a Gaussian distribution [6]. The mutual independence

hypothesis was tested at the 0.05 significance level. All the samples

used in the study passed the test.

Kolmogorov–Smirnov test: In order to validate that selected

kernel partitions in a given sample are identically distributed, we used

a two-sample Kolmogorov–Smirnov test [16, 19]. The test compares

the empirical cumulative distribution functions (ECDF) of two data

sets and, based on the maximum distance between the two ECDFs, it

confirms or rejects the hypothesis that the data sets correspond to the

same distribution. The identically distributed test that we performed

contains three steps. First, we generated a random sample of 20,000

kernel partitions and observed the cost of each partition. The costs of

the kernel partitions in the sample followed the order in which the

partitions were generated. Second, in each experiment, we observed

two randomly-selected segments of m consecutive values from the

1In our experiments, N = 100.

(a) Estimation of the population maximum

(b) Estimation of the population minimum

Figure 5: Exceedances over the threshold

original sample. Finally, we used a two-sample Kolmogorov–Smirnov
test to check whether the randomly selected segments of the sample

have the same probability distribution. If the kernel partition costs are

indeed identically distributed, then all segments of consecutive values

in the sample have the same distribution. For each sample used the

study, we performed the test for segments of m =100, 500, 1,000 and

5,000 observations. All the samples used in the study passed the test

at the 0.05 significance level.

4. A statistical approach to kernel partitioning of stream-
ing applications

We estimate the minimal cost of kernel partitions (that lead to optimal

performance) using Extreme Value Theory (EVT). EVT is a branch

of statistics that studies extreme deviations from the median [5, 12].

One of the approaches in EVT is the Peak Over Threshold (POT)

method. In its original form, the POT method takes into account

only the distribution of the observations that exceed a given (high)

threshold to estimate the population maximum [4, 35]. For example,

in Figure 5(a), the observations x1, x4, x5, and x7 exceed the threshold
and constitute extreme values, which can be used by POT analysis.

The POT method can also be used to estimate the population

minimum [21, 28]. Estimation of the minimum requires the following

five steps explained in detail in the next section:

• Obtain i.i.d. observations xi of the cost of kernel partitions.

• Invert the sign of the observations: x′i =−xi.

• Determine the threshold u, shown in Figure 5(b).
• Use the values x′i over the threshold u to estimate the maximum

cost of the inverse population (Max(CostInv)).
• The minimum cost of the original population (Min(Cost)) cor-

responds to the negative value of the maximum of the inverse

population: Min(Cost) =−Max(CostInv);

The POT method can also be explained using cumulative distri-

bution functions (CDF). For example, assume that F is the CDF

of a random variable X . The POT method can be used to estimate

the cumulative distribution function Fu of values of x above a cer-

tain threshold u. The function Fu is called the conditional excess
distribution function and it is defined as

Fu(y) = P(X−u≤ y | X > u), 0≤ y≤ xF −u,

404

Figure 6: Cumulative distribution function F(x) and matching condi-
tional excess distribution function Fu(y)

where X is the observed random variable, u is the given threshold,

y = x−u are the exceedances over the threshold, and xF ≤ ∞ is the

right endpoint of the cumulative distribution function F . Figure 6
shows a CDF of a random variable X (upper chart) and the cor-

responding conditional excess distribution function Fu(y) (bottom
chart).

The POT method is based on the following theorem [4, 35]:

Theorem 1 For a large class of underlying distribution functions F,
the conditional excess distribution function Fu(y), for large threshold
u, is well approximated by Fu(y)≈ Gξ ,σ (y) where

Gξ ,σ (y) =

{
1− (1+ ξ

σ y)−1/ξ for ξ �= 0

1− e−y/σ for ξ = 0

for y ∈ [0,(xF −u)] if ξ ≥ 0 and y ∈ [0,−σ
ξ] if ξ < 0, where Gξ ,σ

is called Generalized Pareto Distribution (GPD).

This means that for numerous distributions that present real-life

problems, Fu can be approximated with a GPD. For each particular

problem, the decision of whether GPD can be used to model the

problem or not, is based on how well the sample of observations can

be fitted to GPD. We describe the goodness of fit of observations

to GPD in Steps 3 and 4 of Section 4.1. GPD is defined with two

parameters: shape parameter ξ and scaling parameter σ . One of

the characteristics of GPD is that for ξ < 0 the upper bound of the

observed value equals u− σ
ξ , where σ and ξ are the GPD parameters

and u is the selected threshold [21, 28].

In Theorem 1, the definition of Gξ ,σ (y) for ξ = 0 can only be

used to model problems with an infinite upper bound [21, 28]. In

this study we use the GPD to estimate the minimal cost of kernel

partitions for streaming applications. The value of this cost is always

finite, and the estimated values of the parameter ξ are always ξ̂ < 0.

Therefore, for the sake of simplicity of the presented mathematical

formulas, in the rest of the paper we do not present Gξ ,σ (y) formulas

for ξ = 0.

4.1. Application of Peak Over Threshold method

We use the POT method to estimate the minimal cost of kernel

partitions for streaming benchmarks based on the cost of a sample

of random partitions. Application of the POT method involves the

following six steps:

Step 1: Generate the sample of random kernel partitions, and

determine the cost of each partition in the sample (xi). A requisite of

(a) Ordered costs of the random kernel partitions

(b) Sample mean excess plot

Figure 7: Selection of the threshold for mpeg2-subset

the presented statistical analysis is that the selected kernel partitions

must be independent and identically distributed (i.i.d.). The proposed
methods to generate i.i.d. kernel partitions are described in Section 3.

All of them passed the described i.i.d. tests.
Step 2: Invert the sign of the values of the observed costs. Orig-

inally, the POT method was used to estimate the maximum of a

population based on a set of random i.i.d. observations. In order to
estimate the minimum cost of kernel partitions, we invert the sign

of the observed values (x′i =−xi) and estimate the maximum of the

inverse population.

Step 3: Select the threshold u. The selection of the threshold

u is an important step in POT analysis. Gilli and Këllezi [21, 28]

propose using the sample mean excess plot, a graphical tool for

threshold selection. This method first sorts all task assignments in the

sample in non-decreasing cost order: x′1 ≤ x′2 ≤ ·· · ≤ x′n. Figure 7(a)
shows the sorted cost of 20,000 uniformly distributed random kernel

partitions of mpeg2-subset benchmark (see Section 3.4).

Then, the possible threshold u takes the values from x′1 to x′n
(x′1 ≤ u ≤ x′n), and for each value we compute the sample mean

excess function en(u):

en(u) =
∑n

i=k(x
′
i−u)

n−k+1 , where k = min{ i | x′i > u}.
In this formula, the factor n− k+1 is the number of observations

that exceed the threshold. Finally, the sample mean excess plot is

defined by the points (u, en(u)) for x′1 ≤ u≤ x′n. Figure 7(b) shows
the example of the sample mean excess plot for the mpeg2-subset
benchmark.

As commented before, the estimated parameter ξ of GPD must

be negative (ξ̂ < 0) to obtain the upper bound of the Max(CostInv).
A characteristic of the GPD with parameter ξ < 0 is that it has a

linear mean excess function plot. In order to have a good fit of the

conditional distribution function Fu to GPD, the threshold should

be selected so that the observations that exceed the threshold have

a roughly linear sample mean excess plot. As an example, for

the data presented in Figure 7, the threshold should be selected

405

to be u = −17,500. The sample mean excess plot is also a good

tool to test whether GPD can be used to model a particular set of

observations. If the right portion of the mean excess plot for the

sample of measured task assignments performance is not roughly

linear, that particular problem cannot be modeled using GPD.

Another important tool that can be used to understand if a given

sample of observations can be modeled with a GPD is a quantile
plot [5, 28]. In a quantile plot, the sample quantiles x′i are plotted
against the quantiles of a target distribution F−1(qi) for i = 1, . . . ,n.
If the sample data originates from the family of distributions F , the
plot is close to a straight line.

The linear sample mean excess plot and the quantile plot are not

the only constraints that should be considered when selecting the

threshold. If the threshold is too low, the estimated parameters of

GPD may be biased to the median values of the cumulative distribu-

tion function instead of to the maximum values. In order to avoid this

bias, when selecting a threshold we have to ensure that the number

of observations that exceed the selected threshold is not higher than

5% of the task assignments in the whole sample. This is a commonly

used limit in studies that use POT analysis [21, 28, 36].

Step 4: Fit the GPD function to the observations that exceed the

threshold and estimate parameters ξ and σ . Once the threshold u is

selected, the observations over the threshold can be fitted to GPD,

and the parameters of the distribution can be estimated. For the sake

of simplicity, we assume that observations from x′k to x′n in the sorted

sample presented in Figure 7(a) exceed the threshold. We rename the

exceedances yi−k+1 = x′i−u for k≤ i≤ n and use the set of elements

{y1,y2, ...,ym} to estimate the parameters of GPD. The number of

elements in the set, m = n−k+1, is the number of exceedances over

the threshold.

Different methods can be used to estimate the parameters of GPD

from a sample of observations [11, 24, 26, 38]. In our study, we

used estimation based on the likelihood function [3]. The GPD

has parameters ξ and σ . The likelihood that a set of observations

Y = {y1,y2, ...,ym} is the outcome of a GPD with parameters ξ = ξ0
and σ = σ0 is defined to be the probability that GPD with parameters

ξ0 and σ0 has outcome Y .
We make use of the likelihood function to compute the probability

of different values of GPD parameters for a given set of observa-

tions {y1,y2, ...,ym}. As the logarithm is a monotonically increasing

function, the logarithm of a positive function achieves the maximum

value at the same point as the function itself. This means that instead

of finding the maximum of a likelihood function, we can determine

the maximum of the logarithm of the likelihood function, the log-
likelihood function. In statistics, log-likelihood is frequently used

instead of the likelihood function because it simplifies computations.

The estimation of parameters ξ and σ of Gξ ,σ (y) involves the fol-
lowing steps:

(i) Determine the corresponding probability density function as a

partial derivative of Gξ ,σ (y) with respect to y:

gξ ,σ (y) =
∂Gξ ,σ (y)

∂y = 1
σ (1+ ξ

σ y)−
1
ξ −1

(ii) Find the logarithm of gξ ,σ (y):

log (gξ ,σ (y)) =−log σ − (1ξ +1) log(1+ ξ
σ y)

(iii) Compute the log-likelihood function L(ξ ,σ |y) for the GPD as

the logarithm of the joint density of the observations {y1,y2, ...,ym}:
L(ξ ,σ |y) =

m

∑
i=1

log gξ ,σ (yi)

L(ξ ,σ |y) =−m log σ − (1ξ +1)
m

∑
i=1

log(1+
ξ
σ

yi)

We compute estimated values of parameters ξ̂ and σ̂ , to maximize
the value of the log-likelihood function L(ξ ,σ |y) for observations
{y1,y2, ...,ym}:

L(ξ̂ , σ̂ |y) =max
ξ ,σ

(L(ξ ,σ |y))

L(ξ̂ , σ̂ |y) =max(−m log σ − (
1

ξ
+1)

m

∑
i=1

log(1+
ξ
σ

yi))

In order to determine the parameters ξ̂ and σ̂ , we find the minimum

of the negative log-likelihood function, min
ξ ,σ

(−L(ξ ,σ |y)), using the
procedure fminsearch() included in Matlab R© R2007a [13]. The

values ξ̂ and σ̂ are called the point estimates of the parameters ξ and

σ , respectively.

Step 5: Estimate the maximum of the inversed costs. The maxi-

mum of the inverse cost can be determined only for ξ̂ < 0 which is

satisfied for all data sets that are presented in this paper. The point

estimate of Max(CostInv) is computed as ̂Max(CostInv) = u− σ̂/ξ̂ .
In order to indicate the confidence of the estimate, we compute

the confidence intervals of the estimated ̂Max(CostInv). The confi-
dence intervals is computed using the likelihood ratio test [3], which
consists of the following steps:

(i) Define GPD as a function of ξ and Max(CostInv):

Gξ ,Max(CostInv)(y) = 1− (1− 1
Max(CostInv)−u y)−1/ξ

(ii) Determine the corresponding probability density function:

gξ ,Max(CostInv)(y) =
∂Gξ ,Max(CostInv)(y)

∂y =

=− 1
ξ (Max(CostInv)−u) (1− 1

Max(CostInv)−u y)−
1
ξ −1

(iii) Compute the joint log-likelihood function for observations

{y1, ...,ym}:
L(ξ ,Max(CostInv)|y) =

m

∑
i=1

log gξ ,Max(CostInv)(yi)

L(ξ ,Max(CostInv)|y) =−n log(−ξ (Max(CostInv)−u))−
−(1+ 1

ξ)
n

∑
i=1

log(1− 1

Max(CostInv)−u
yi)

(iv) Find the Max(CostInv) confidence interval. We determine the

confidence interval for Max(CostInv) using the likelihood ratio test [3]
and Wilks’s theorem [14, 41, 42]. The maximum log-likelihood

function is determined as:

L(ξ̂ , ̂Max(CostInv)|y) = max
ξ ,Max(CostInv)

(L(ξ ,Max(CostInv))).

The function L(ξ̂ , ̂Max(CostInv)|y) has two parameters that are free

to vary (ξ and Max(CostInv)), hence it has two degrees of freedom

(d f1 = 2). As Max(CostInv) is our parameter of interest, the profile

log-likelihood function is defined as:

L∗(Max(CostInv)) =max
ξ

L(ξ ,Max(CostInv)).

The function L∗(Max(CostInv)) has one parameter that is free

to vary, i.e. one degree of freedom (d f2 = 1). Wilks’s theorem

applied to the problem that we are addressing claims that, for a

large number of exceedances over the threshold, the distribution of

2(L(ξ̂ , ̂Max(CostInv)−L∗(Max(CostInv))) converges to a χ2 distri-

bution with d f1−d f2 degrees of freedom. Therefore, the confidence

interval of Max(CostInv) includes all values of Max(CostInv) that
satisfy the following condition:

406

Figure 8: Max(CostInv) confidence interval

L(ξ̂ , ̂Max(CostInv))−L∗(Max(CostInv))<
1

2
χ2
(1−α),1 (1)

χ2
(1−α),1 is the (1−α)-level quantile of the χ2 distribution with

one degree of freedom (d f1− d f2 = 1). α is the confidence level

for which we compute Max(CostInv) confidence intervals. We

illustrate the computation of the Max(CostInv) confidence inter-

val in Figure 8. The figure plots L∗(Max(CostInv)) for different

values of Max(CostInv). For Max(CostInv) = ̂Max(CostInv), L∗
reaches its maximum. The confidence interval of Max(CostInv)
includes all values of Max(CostInv) that satisfy the condition

L∗(Max(CostInv))> L(ξ̂ , ̂Max(CostInv))− 1
2χ2

(1−α),1, which corre-

sponds to Equation 1. We computed the Max(CostInv) confidence
interval using an iterative method based on the fminsearch() function
included in Matlab R© R2007a.

Step 6: Estimate the minimum cost of the kernel partitions. The

minimum cost of the kernel partitions corresponds to the estimated

maximum of the inverse cost: Min(Cost) = − Max(CostInv).
Also, the lower and upper endpoints of the Min(Cost) confidence
interval correspond to the inverse upper and lower endpoints of the

Max(CostInv) confidence interval, respectively.
The code that performs the statistical i.i.d. test, generates the sam-

ple mean excess plots, infers the parameters of the GPD distribution,

and estimates the minimum cost of kernel partitions was developed

in Matlab R© R2007a.

5. Results

In this section, we use the POT method to estimate, for each of the

StreamIt 2.1.1 benchmarks, the cost of the optimal kernel partition.

We compare the four sampling methods described in Section 3. We

also evaluate the number of random kernel partitions that are required

by the presented statistical approach. Finally, we analyze whether a

good kernel partition would be found using random sampling on its

own.

Before using any heuristics-based algorithm for the concrete appli-

cation under study, the user should check whether exhaustive search

would be impractical. In general, the number of valid kernel par-

titions is vast (e.g. 1020). It is possible, however, that a particular

benchmark has a small stream graph, so that exhaustive search would

work. For example, the dct benchmark included in the StreamIt 2.1.1

suite contains only eight kernels, linked in a simple stream graph.

The number of partitions of this benchmark, onto four threads, is just

32. In this case, exhaustive search is the simplest and fastest way to

find the optimal kernel partition.

Table 1: Applicability of the POT method

Benchmark Sampling method
DFS EC EC-F UD

bitonic-sort NA � NA �
channelvocoder � NA NA �
des NA � � �
fft NA � NA �
filterbank NA NA NA �
fm � NA NA �
mpeg2-subset NA � NA �
radar � NA NA �
serpent_full NA � NA �
tde_pp NA � NA �
vocoder NA � NA �

5.1. Estimation of the minimal cost using the POT method

We apply our technique to estimate the performance of the optimal

kernel partition on four threads, for each of the benchmarks in the

StreamIt 2.1.1 suite. As discussed in the previous section, the dct
benchmark can be solved using exhaustive search, leaving eleven

benchmarks to be analyzed using the POT statistical method.

For each benchmark, we use the four sampling methods described

in Section 3 to generate random samples, and use these samples as

the input to the statistical analysis. Each sample contains 20,000

random kernel partitions. Table 1 shows whether or not the statistical

method could produce an estimate of the optimal performance. Each

row in the table corresponds to one of the benchmarks, and each

column corresponds to a different sampling method. A tick sign (�)

means that the POT method did generate an estimate. An NA (Not

Applicable) entry means that the statistical method failed to produce

any estimate.

There are two reasons why the POT method is sometimes unable to

produce an estimate. First, the lower bound of the estimated minimal

cost may diverge to minus infinity. Second, the iterative method

that determines the confidence bounds of the estimated minimal

cost (see Step 5 in Section 4.1) may not converge to a solution. In

all experiments in which the POT method was not applicable, the

sample mean excess plot and the quantile plot strongly suggested that

the POT method could not be applied to that dataset (see Step 3 in

Section 4.1).

From the results in the table, we see that the POT method using

the Depth First Search (DFS) sampling method was successfully

applied for only three out of eleven benchmarks. The results for

the Edge Contraction (EC) method are better, but still moderate: the

POT method estimated the minimum cost for seven out of eleven

benchmarks. The Edge Contraction with Filter (EC-F) method was

an attempt to improve load-balance over EC. However, the POT

analysis could now only be applied to one of the benchmarks. We

compared the costs of the random kernel partitions sampled by the

EC and EC-F methods, and confirmed that the EC-F method did

indeed select kernel partitions with lower cost. This was, however,

not sufficient to make the samples appropriate for POT analysis. In

future work, we plan to analyze this phenomenon in detail. Finally,

when the POT method was applied to the uniformly distributed

random samples (UD column of the table), a minimum cost was

generated for all eleven benchmarks under study.

From the results presented in Table 1, we conclude that the sam-

pling method is an important step in the analysis. All presented

sampling methods select i.i.d. samples and fulfill the requirements of

the POT statistical analysis. However, only the uniformly distributed

407

Figure 9: Estimated minimal cost

samples always led to an estimate of the cost of the optimal kernel

partition. Other sampling method used to address the same prob-
lem, for the same benchmarks, using the same statistical analysis
provided moderate (EC method) or low performance (DFS and EC-F

methods).

5.2. Precision of the estimation

The results that we use to analyze the precision of the estimated

values are presented in Figure 9. The X-axis of the figure lists the

benchmarks, while the Y-axis shows the estimated minimal cost, i.e.

the estimated cost of the optimal kernel partition. The results are

presented relative to the cost of the best kernel partition captured

in 80,000 random kernel partitions from all four sampling methods.

Kernel partitions were generated using four different sampling meth-

ods (DFS, EC, EC-F, and UD), and each method generated 20,000

random partitions.

Different bars of the chart correspond to the different sampling

methods used: DFS, EC, EC-F, and UD. If the POT method could

not be used to estimate the minimal cost for a given benchmark and

sampling method, the corresponding bar is not plotted. The height

of the solid bars correspond to the point estimation of the minimal

cost, while the error bars correspond to the confidence bounds for

0.95 confidence level.

High precision of the estimated minimal cost is indicated by tight

confidence bounds. The width of the confidence bounds is below

10% for all bars except one (DFS sample for the fm benchmark). For

18 out of 22 cases, the width of the confidence bounds is below 5%.

Required number of random kernel partitions: UD method is

the only sampling method that provided samples appropriate for the

POT statistical analysis for all the benchmarks under study. Therefore,

from this point on, we analyze only the samples that are generated

with this method. In order to understand the impact of the sample

size on the estimated minimal cost, we generated samples that con-

tain between 1,000 and 20,000 random kernel partitions. For each

sample, we used the POT method to estimate the minimal kernel cost.

Intuitively, we expect that the POT method provides more precise

estimation as the number of kernel partitions in the sample increases.

In general, larger samples contain more kernel partitions in the tail

that are fitted to the Generalized Pareto Distribution (GPD), and

therefore the estimated GPD parameters and the minimal cost are

more precise. Figure 10 shows the results for the channelvocoder
and serpent_full benchmarks. In each figure, X-axis lists the number

of random kernel partitions in the sample, while the Y-axis shows the

(a) channelvocoder benchmark (fastest convergence)

(b) serpent_full benchmark (slowest convergence)

Figure 10: The impact of the sample size on the estimation of the min-
imal cost (UD sampling method)

estimated minimal cost. The cross markers show the point estimation

of the minimal cost, and the error bars correspond to the confidence

bounds for the 0.95 confidence level.

For the channelvocoder benchmark, 1,000 random kernel parti-

tions are sufficient to estimate the minimal cost with a high preci-

sion (see Figure 10(a)). We detect similar results for fft, filterbank,
fm, mpeg2-subset, tde-pp, and vocoder. On the other hand, for the

serpent_full benchmark, estimation based on 1,000 random kernel

partitions has wide confidence bounds (see Figure 10(b)). Precise es-

timation of the minimal cost requires more than 8,000 random kernel

partitions. The width of the confidence bounds reduces significantly

as the sample increases from 1,000 to 8,000 kernel partitions. Further

increment in the sample size only slightly improves the precision

of the estimation. From the results shown in Figure 10(b), we also

see that, as the sample size increases, the point estimation remains

roughly the same and the confidence bounds converge to this value.

Results for the benchmarks bitonic-sort, des, and radar follow the

same trend.

Based on the presented analysis, we see that the sample size re-

quired for the precise estimation of the minimal cost significantly

depends on the benchmark under study. If a user requires a minimal

cost to be estimated with a given precision, we propose the following

iterative method. The user can generate a small sample of random

kernel partitions and estimate the minimal cost using the POT method.

As long as the estimated cost does not fulfill the user’s requirements,

the user can increase the sample size and repeat the analysis.

408

Figure 11: Comparison between the actual and the estimated ker-
nel partition costs (serpent_full benchmark, UD sampling
method)

5.3. Accuracy of the estimation

In general, the kernel partitioning problem is an intractable problem.

However, for bitonic-sort, des, fft, mpeg2-subset, serpent_full, and
tde_pp benchmarks partitioned into exactly four software threads,

brute force exploration is time consuming, but feasible. Therefore,

we were able to determine the cost of all the kernel partitions, and

to compare the actual and the estimated best kernel partition costs

for these benchmarks. The results for the serpent_full benchmark

are shown in Figure 11. We also analyze the estimation accuracy for

different numbers of uniformly distributed random kernel partitions

in the sample. The X-axis of the figure lists the size of the sample,

while the Y-axis shows the absolute value of the kernel partition cost.

The cross data markers show the point estimation of the minimal cost,

and the error bars correspond to the confidence bounds for the 0.95

confidence level. The actual best kernel partition cost is marked with

the horizontal dashed line. Finally, we also plot the minimal kernel

cost observed in each random sample (diamond data markers).

First, we observe that the estimated best kernel partition cost (with

confidence bounds included) is always lower than the minimal kernel

cost detected in the corresponding random sample. Intuitively, this is

because the statistical method estimates that the best kernel partition

cost in the population (out of all possible partitions) is not higher

than the minimal cost observed in the sample. We also detected that

the upper confidence bound of the estimated best kernel partition cost

asymptotically approaches the minimal kernel partition cost observed

in the sample, as the confidence level of the estimation increases.

The estimation of the best kernel partition cost is accurate if its

confidence bounds include the actual best (minimal) cost, which is

satisfied for the samples that contain from 1,000 to 5,000 random

kernel partitions in the Figure 11. For the samples that contain more

than 6,000 kernel partitions, the presented statistical method slightly

underestimates the minimal cost. This is because these samples

capture a kernel partition with the best actual cost, as we explain

in the previous paragraph. The underestimation is very low and it

decreases with the number of kernel partitions in the sample, from

0.9% (6,000 kernel partitions) to 0.3% (20,000 partitions). The results

for bitonic-sort, des, fft, mpeg2-subset, and tde_pp benchmarks follow

the same trend.

Brute force exploration of the kernel partitioning problem for

channelvocoder, filterbank, fm, radar, and vocoder benchmarks is

infeasible. Therefore, for these benchmarks, we cannot determine the

optimal kernel partition and its cost, and we cannot validate that the

Figure 12: Comparison of random sampling (UD method) and
heuristics-based algorithm

estimated values of the POT method were correct. However, from

the results presented in Figure 9, we can detect that the estimation is

incorrect if:

• The confidence bounds of different bars that correspond to the

same benchmark do not overlap. This means that the POT method

applied to different samples of the same benchmark estimated

different minimal cost.

• The ratio between the estimated minimal cost (with confidence

bounds included) and the minimal cost detected in random samples

is higher than 1. This means that we detected a kernel partition

with the cost that is lower than the estimated minimal cost.

From the results presented in Figure 9, we did not detect a single

mispredicted cost of the optimal kernel partition.

5.4. Random sampling approach to a kernel partitioning

Our previous study [36] addresses the problem of process scheduling

for modern multicore/multithreaded processors. The results presented

in the study demonstrate that a random sample of several thousand

random process schedules likely captures a schedule with a good

performance. The study analyzes the probability that a uniformly

distributed random sample of N observations contains at least one

observation from the best-performing P% of the population (e.g. the

best 1% of the population). This probability can be computed using

the following formula: Prob = 1− (
100-P
100

)N
. As P is a small positive

number, the value of the fraction 100-P
100

is always between 0 and 1.

Therefore, for large N, the factor
(
100-P
100

)N
converges to 0, and the

observed probability converges to 1. For example, the probability

that a uniformly distributed random sample of 1,000 observations

contains at least one element from the best 1% of the population

exceeds 99.99%.

In order to analyze whether random sampling can be used to select

a good kernel partition, we compare the cost provided by the fairly-

complex heuristics-based kernel partitioning algorithm proposed by

Carpenter et al. [9] with the minimal cost observed in the random sam-

ple. The sample was comprised of 20,000 kernel partitions generated

using the UD sampling method. The results are shown in Figure 12.

The X-axis of the figure lists different benchmarks, while the Y-axis

shows the possible performance improvement of the kernel partition-

ing approaches. For bitonic-sort, des, fft, mpeg2-subset, serpent_full,
and tde_pp benchmarks, brute force exploration is feasible, so we

compare the kernel partition costs provided by the random sampling

and heuristics-based algorithm with the actual minimal costs. For

the remaining five benchmarks, channelvocoder, filterbank, fm, radar,

409

and vocoder, the results are plotted relative to the estimated mini-

mal costs. The minimal cost is estimated using the POT method on

20,000 uniformly distributed random kernel partitions. The markers

correspond to the point estimation of the minimal cost, while the

error bars correspond to the estimated confidence bounds for a 0.95

confidence level.

For bitonic-sort, des, fft, mpeg2-subset, serpent_full, and tde_pp
benchmarks, the best costs observed by the random sampling and

the heuristics-based algorithm match the actual best costs of kernel

partitions. For the channelvocoder, filterbank, fm, radar, and vocoder
benchmarks, random sampling and heuristics-based algorithm, detect

kernel partitions with a cost that is close to the estimated optimal

one. For four out of five benchmarks (all except radar), the possible
improvement of both approaches is below 3% (confidence bounds in-

cluded). For radar benchmark, the estimated improvement ranges up

to 4% and 4.2% for random sampling and heuristics-based algorithm,

respectively. If we consider the point estimation, the estimated perfor-

mance improvement is below 2% for all the benchmarks, and below

1% for four out of five benchmarks. For channelvocoder, fm, and
vocoder benchmarks, the performance of the best kernel partitions

in the random sample match the performance of the heuristics-based

algorithm. For filterbank and radar benchmarks, the heuristics-based

algorithm selected kernel partitions with 0.6% and 0.2% lower cost,

respectively, which is a negligible difference. If a good heuristics-

based approach is available for the applications, hardware, and metric

under study, the user can choose whether to use the heuristics or

the random sampling. However, it is common that heuristics-based

approaches are not directly applicable to the exact situation under

study. It is often difficult and time-consuming to adapt a heuristic to

a particular target scenario. On the other hand, the random sampling

approach is simple and easy to apply.

Required number of random kernel partitions: The formula

Prob = 1− (
100-P
100

)N
can be used to compute the probability that an

uniformly distributed random sample of N observations captures at

least one out of P% of the kernel partitions with the lowest cost.

However, as we do not know the difference in the cost in the best P%
of all kernel partitions, the formula cannot be used to compute the

difference between the minimal cost captured in a random sample

and the actual optimal cost.

In order to analyze whether a sample of N randomly selected ker-

nel partitions captures a good partition, we observe the minimal cost

detected in the random sample and compare it with the minimal cost

determined by the statistical estimation or brute force exploration,

when feasible. The random samples are generated with the UD sam-

pling method. Figure 13 shows the results of the experiments for

serpent_full benchmark. We repeat the experiment for different sam-

ple sizes that are listed along the X-axis of the figure. Dashed vertical

lines separate the results for tens (from 10 to 90), hundreds (from

100 to 900), and thousands (from 1,000 to 20,000) of random kernel

partitions in the sample. The Y-axis shows the relative difference

between the minimal cost captured in the random sample and the

actual minimal cost determined by brute force exploration. In order

to present statistically significant results, for each sample size, we

randomly generate the sample 100 times and report the mean (cross

marker) and the standard deviation (error bars) of the minimal cost

detected in different runs.

We see that tens of random kernel partitions in the sample are

unlikely to capture a good partition. We also detect a high standard

deviation, which means that the cost of the best-captured kernel

Figure 13: The impact of the sample size on the performance of the
random sampling (serpent_full benchmark, UD sampling
method)

partition is significantly different for different samples of the same

size. For hundreds of kernel partitions in the sample, the best captured

cost slowly converges to the estimated optimal one. The standard

deviation decreases, which means that different samples of the same

size provide similar performance. Finally, several thousand random

kernel partitions capture a cost that is very close to the optimal one.

Also, the detected standard deviation is low (1-2%).

We detect the same trend for all eleven benchmarks under study.

Therefore, we conclude that uniformly distributed random sampling

can be used to find a good kernel partition. However, we recommend

this method only when the random sample contains at least several

thousand kernel partitions.

In order to determine the sample size that captures a good kernel

partition, a user could also observe the convergence rate of the best

observed kernel partition performance in the sample as the sample

increases. For example, from the Figure 13, we could observe that

increasing the random sample over several thousand kernel partitions

insignificantly improves the observed performance, and stop the

random sampling at that point without estimation of the optimal

performance. Although this approach may provide good results, it is

not clear how it would avoid convergence to a local minimum of the

population (e.g. see the results for 60, 70, and 80 kernel partitions

in Figure 13). Also, without estimated optimal performance, we

cannot determine the quality of the delivered kernel partition, i.e. we

cannot provide the confidence bounds of the estimated performance

improvement.

5.5. Other considerations

There are several additional aspects to consider regarding the pre-

sented statistical approach.

Experimentation time: The presented approach requires thou-

sands of random kernel partitions to be generated and evaluated. The

time to generate and evaluate 1,000 uniformly distributed random

kernel partitions, for one of the StreamIt 2.1.1 benchmarks, was on

average 28 minutes, using a single core of an Intel Xeon E5649 pro-

cessor at 2.5GHz with 4GB memory. Running the POT method takes

less than a minute. The program that generates the uniformly dis-

tributed samples is not optimized and is implemented in the Python

programming language. An implementation in C would be much

faster. Also, since different kernel partitions can be generated inde-

pendently, the time to generate the sample would decrease linearly

with the number of cores. The experimentation time is acceptable

considering that the selected kernel partition will be compiled to the

executable that can be used on numerous systems based on the same

hardware during the lifetime of the system.

410

Scalability: The number of cores and the number of hardware

threads increase in each processor generation [34]. In order to

optimally use future multicore processors, kernel partitioning

algorithms will have to generate a significantly larger number of

threads. It is important, therefore, to analyze how these algorithms

scale with the number of software threads. On the other hand, at the

application level, it is reasonable to expect that the complexity of

streaming applications increases leading to more complex stream

graphs that comprise a larger number of kernels.

The statistical analysis that estimates the optimal kernel cost is

based on the values of the performance metric, so its cost is inde-

pendent of the number of threads and the complexity of the stream

graph. The cost of the sampling method that generates the uniformly

distributed random kernel partitions scales linearly with the number

of kernels in the stream graph and with the number of output software

threads. It also scales linearly with the mixing time of the partition

graph [30].

Compiler optimizations and system constraints: When the

program is described using a stream language, the compiler may per-

form complex optimizations over the stream graph; it can combine

adjacent filters, split computationally intensive filters into multiple

parts, or duplicate filters to have more parallel computation [8]. In or-

der to find the set of optimizations that provides the best performance,

it is important to determine good kernel partitions for different opti-

mization sets. In this case, the proposed kernel partitioning approach

does not change, but the random sampling and the presented statisti-

cal analysis are simply repeated for different optimization sets, i.e. for

different stream graphs of the same program. Kernel partitioning that

satisfies different system constraints, such as optimizing performance

subject to memory limits, is an interesting avenue for future work.

Evaluation on real hardware: In this paper, the presented sta-

tistical approach was evaluated based on the estimates of the kernel

partitions’ costs provided by the StreamIt compiler. The approach

was not evaluated on real hardware because of limitations in the ex-

perimental environment. The back-end of the StreamIt compiler, that

we used in the study, was not capable of generating working code for

different user-defined kernel partitions. As a part of future work, we

plan to evaluate the presented statistical approach on real hardware.

In order to do so, we intend to modify the StreamIt compiler, so it can

generate the executables that correspond to any given kernel partition.

6. Related work
Several projects and studies propose different tools for compiling of

streaming-like applications and their mapping onto multicore archi-

tectures.

StreamIt is a project with publicly available compiler and bench-

mark suite [1] . The StreamIt source language imposes a structure

on the stream program graph to the compiler. The StreamIt compiler

performs fully automated load balancing, communication scheduling,

routing, and a set of cache optimizations [22, 23, 37]. The StreamIt

compiler targets the Raw Microprocessor [40], symmetric multicore

architectures, and clusters of workstations.

The Stream Graph Modulo Scheduling (SGMS) algorithm is part

of StreamRoller [29], a StreamIt compiler for the Cell Architecture.

This algorithm splits stateless kernels, partitions the graph, and stati-

cally schedules the software threads onto the Cell architecture. The

splitting and partitioning problem is translated into an integer linear

programming problem, which is solved using CPLEX Optimization

Studio [27], an software package for mathematical programming.

Gedae Graph Language [33] is a proprietary GUI tool that supports

the hierarchical development of data flow graphs. Gedae allows the

user to specify different graph partitions and automatically maintains

the data flow and connectivity of the graph. However, all the graph

partition is done under user control, not by the compiler.

The Ptolemy II software environment [17] is designed to model

heterogeneous embedded computing systems. Ptolemy views com-

puting systems as a set of basic processing blocks (actors) that are
connected using explicitly-defined communication channels. This

view is very similar to the state-of-the-art interpretation of streaming-

like applications. Related work from the Ptolemy project explores

the more theoretical aspects of partitioning and scheduling data flow

graphs for multiprocessors [25].

Liao et al. [31] present a parallel compiler for the Brook streaming

language [7] with aggressive data and computation transformations.

The compiler models each streaming kernel as an implicit loop nest

over stream elements and uses affine partitioning to map regular

programs onto multicore processors.

Farhad et al. [18] show that state-of-the-art linear programming

approaches are impractical for transformations of large stream graphs

to be executed on a large number of processor cores. The authors also

propose an approximation algorithm for deploying stream graphs on

multicore processors.

Our study shows a different approach to the kernel partitioning

problem. Instead of using complex heuristics-based algorithms, we

address the problem using random sampling and statistical inference.

We present a statistical method that estimates performance of the

optimal kernel partition based on measured performance of a sample

of random partitions. We also demonstrate that random sampling

can be used to find a kernel partition with performance close to the

optimal one.

In our previous study [36], we use random sampling and statisti-

cal inference to analyze the optimal assignment of existing software

threads onto different processor cores. There are two main contribu-

tions of this article, beyond our previous work: (1) In this article, we

apply EVT to a different domain. Kernel partitioning and thread as-

signment are fundamentally different problems. In its essence, kernel

partitioning is a graph partitioning problem, and the thread assign-

ment problem addressed in our previous study is a multiprocessor

scheduling problem [20]. (2) In this article, we also show that the sam-

pling method has a significant effect on the applicability of the statis-

tical method. We analyze different sampling methods, and our results

strongly recommend that the samples should be uniformly distributed.

7. Conclusions
One of the greatest difficulties in using modern computing systems

is how to write efficient, portable, correct software for multicore

processors. A promising approach is to expose more parallelism to

the compiler through domain-specific languages, enabling the com-

piler to perform complex high-level transformations. An important

application domain comprises stream programs. A prominent step

in compiling a stream program to multiple processors is kernel parti-

tioning, which significantly affects application performance. Finding

an optimal kernel partition is, however, an intractable problem.

In this paper, we proposed a statistical approach to the kernel

partitioning problem. We described a method that statistically

estimates, with a given confidence level, the performance of the

optimal kernel partition. Knowing the optimal performance improves

the evaluation of any kernel partitioning algorithm, and it is the

most important piece of information for the system designer when

411

deciding whether an existing algorithm should be enhanced. We

demonstrated that the sampling method is an important part of the

analysis, and that not all methods that generate i.i.d. samples provide

good results. We also showed that random sampling on its own

can be used to find a good kernel partition, and that it could be an

alternative to heuristics-based approaches.

The presented statistical method does not depend on the applica-

tion. It does not require any application profiling nor does it require

the understanding of the application stream graph. The method can

be applied to streaming applications with any number of kernels, and

it can target any number of software threads. The presented method

can analyze different metrics such as throughput, maximum hardware

utilization, and minimum energy or power consumption.

We successfully applied the presented statistical analysis to the

benchmarks included in the StreamIt 2.1.1 suite. The method pre-

cisely estimated the optimal kernel partition performance for all the

benchmarks under study. Also, in our experiments, several hundred

or several thousand random kernel partitions were enough to find a

partition with close to optimal performance. The performance of the

kernel partitions that were selected using random sampling matched

the performance provided by the complex heuristic-based approach.

Acknowledgments
This work has been supported by the Ministry of Science and Tech-

nology of Spain under the contract TIN-2007-60625, and by the

European HiPEAC-3 Network of Excellence. Also, this work has

been partially supported by the Department of Universities, Research

and Information Society (DURSI) of the Catalan Government (grant

2010-BE-00352). Petar Radojković holds the FPU grant (Programa

Nacional de Formación de Profesorado Universitario) under con-

tract AP2008-02370, of the Ministry of Education of Spain. Miquel

Moretó is supported by an MEC/Fulbright Fellowship. The authors

wish to thank to Liliana Cucu-Grosjean and Luca Santinelli from

INRIA, and Jaume Abella from Barcelona Supercomputing Center

for their technical support.

References
[1] “StreamIt project,” http://groups.csail.mit.edu/cag/streamit/.
[2] ACOTES, “IST ACOTES Project Deliverable D2.2 Report on Streaming

Programming Model and Abstract Streaming Machine Description Final
Version,” 2008.

[3] A. Azzalini, Statistical Inference Based on the Likelihood. Chapman
and Hall, 1996.

[4] A. A. Balkema and L. de Haan, “Residual life time at great age,” Annals
of Probability, vol. 2, 1974.

[5] J. Beirlant et al., Statistics of Extremes: Theory and Applications. John
Wiley and Sons, Ltd, 2004.

[6] J. V. Bradley, Distribution-Free Statistical Tests. Prentice-Hall, 1968.
[7] I. Buck, “Brook Spec v0.2,” 2003.
[8] CAG MIT, StreamIt Language Specification, Version 2.1, 2006.
[9] P. M. Carpenter, A. Ramirez, and E. Ayguade, “Mapping stream pro-

grams onto heterogeneous multiprocessor systems,” in Proceedings of
the international conference on Compilers, Architecture, and Synthesis
for Embedded Systems, 2009.

[10] P. M. Carpenter et al., “A streaming machine description and program-
ming model,” Proceedings of the International Symposium on Systems,
Architectures, Modeling and Simulation, 2007.

[11] E. Castillo and A. Hadi, “Fitting the Generalized Pareto Distribution to
data,” Journal of the American Statistical Association, vol. 92, 1997.

[12] E. Castillo, Extreme value theory in engineering. Academic Press, Inc.,
1988.

[13] S. J. Chapman, Essentials of MATLAB Programming. Cengage Learn-
ing, 2009.

[14] H. Chernoff, “On the distribution of the likelihood ratio,” Annals of
Mathematical Statistics, vol. 25, 1954.

[15] W. G. Cochran, Sampling Techniques, 3rd edition. Wiley-India, 2007.
[16] L. Cucu-Grosjean et al., “Measurement-based probabilistic timing analy-

sis for multi-path programs,” in Proceedings of the 2012 24th Euromicro
Conference on Real-Time Systems, 2012.

[17] J. Eker et al., “Taming heterogeneity–the Ptolemy approach,” Proceed-
ings of the IEEE, vol. 91, no. 1, 2003.

[18] S. M. Farhad et al., “Orchestration by approximation: mapping stream
programs onto multicore architectures,” in Proceedings of the sixteenth
international conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[19] W. Feller, An introduction to Probability Theory and Its Applications.
John Wiley & Sons, Inc., 1971.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[21] M. Gilli and E. Këllezi, “An application of extreme value theory for
measuring financial risk,” Computational Economics, vol. 27, 2006.

[22] M. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” in Twelfth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[23] M. Gordon et al., “A Stream Compiler for Communication-Exposed Ar-
chitectures,” in Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2002.

[24] S. Grimshaw, “Computing the maximum likelihood estimates for the
Generalized Pareto Distribution to data,” Technometrics, vol. 35, 1993.

[25] S. Ha and E. Lee, “Compile-time scheduling and assignment of data-
flow program graphs with data-dependent iteration,” IEEE Transactions
on Computers, vol. 40, no. 11, 1991.

[26] J. R. M. Hosking and J. R. Wallis, “Parameter and quantile estimation
for the generalised pareto distribution,” Technometrics, vol. 29, 1987.

[27] ILOG, “CPLEX Math Programming Engine,”
http://www.ilog.com/products/cplex/.

[28] E. Këllezi and M. Gilli, “Extreme value theory for tail-related risk
measures,” International Center for Financial Asset Management and
Engineering, FAME Research Paper Series, 2000.

[29] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream pro-
grams on multicore platforms,” in Proceedings of ACM SIGPLAN Con-
ference on Programming Language Design & Impl., 2008.

[30] D. Levin, Y. Peres, and E. Wilmer, Markov chains and mixing times.
American Mathematical Society, 2009.

[31] S. Liao et al., “Data and Computation Transformations for Brook
Streaming Applications on Multiprocessors,” in Proceedings of the
International Symposium on Code Generation and Optimization, 2006.

[32] L. Lovász, “Random walks on graphs: A survey,” Combinatorics, Paul
Erdos is Eighty, vol. 2, no. 1, 1993.

[33] W. Lundgren, K. Barnes, and J. Steed, “Gedae: Auto Coding to a Virtual
Machine,” in 8th High Performance Embedded Computing Workshop,
2004.

[34] K. Olukotun and L. Hammond, “The future of microprocessors,” Queue,
vol. 3, no. 7, Sep. 2005.

[35] J. I. Pickands, “Statistical inference using extreme value order statistics,”
Annals of Statististics, vol. 3, 1975.

[36] P. Radojković et al., “Optimal task assignment in multithreaded pro-
cessors: A statistical approach,” in Proceedings of the seventeenth
international conference on Architectural Support for Programming
Languages and Operating Systems, 2012.

[37] J. Sermulins et al., “Cache aware optimization of stream programs,”
in Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on
Languages, Compilers, and Tools for Embedded Systems, 2005.

[38] N. Tajvidi, “Design and implementation of statistical computations for
Generalized Pareto Distributions,” Technical Report, Chalmers Univer-
sity of Technology, 1996.

[39] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A Language
for Streaming Applications,” International Conference on Compiler
Construction, vol. 4, 2002.

[40] E. Waingold et al., “Baring It All to Software: Raw Machines,” Com-
puter, 1997.

[41] S. S. Wilks, “The large-sample distribution of the likelihood ratio for
testing composite hypotheses,” Annals of Mathematical Statistics, vol. 9,
1938.

[42] S. S. Wilks, Mathematical Statistics. Princeton University, 1943.

412

Inferred Models for Dynamic and Sparse Hardware-Software Spaces

Weidan Wu Benjamin C. Lee

Duke University

{weidan.wu, benjamin.c.lee}@duke.edu

Abstract

Diverse software and heterogeneous hardware pose new challenges
in systems and architecture management. Managers benefit from
improving introspective capabilities, which provide data across a
spectrum of platforms, from software and datacenter profilers to per-
formance counters and canary circuits. Despite this wealth of data,
management has become more difficult as sophisticated decisions are
demanded.

To address these challenges, we present modeling strategies for
integrated hardware-software analysis. These strategies include (i)
identifying shared software behavior; (ii) quantifying that behavior
in a portable, microarchitecture-independent manner; (iii) infer-
ring generalized trends with statistical regression models; and (iv)
automatically constructing/updating these models as new software
profiles are obtained.

Models produced by these strategies are accurate for general
SPEC2006 applications with median errors of 8-10%. Predicted
and actual performance are strongly correlated with coefficients
of ρ > 0.9. Moreover, when we exploit application semantics and
domain-specific software parameters, model accuracy improves and
model complexity falls. In a case study for sparse linear algebra,
we present models with 5% median error and new capabilities in
coordinated hardware-software tuning.

1. Introduction

Hardware management is the art of linking data to decisions. But

forging this link is increasingly difficult. Across a spectrum of com-

puting platforms, decisions must be made with increasingly sparse

data. Not every node can be profiled yet datacenter managers must

navigate diverse hardware-software interactions. Not every configu-

ration can be profiled yet adaptive chips must navigate performance

and power trade-offs.

Our ability to collect data has advanced significantly at all scales,

from software and datacenter profilers to performance counters and

canary circuits. But even as introspection has supplied more data,

the decisions demanded of hardware managers have become more

complicated. Datacenters must allocate and schedule software while

navigating heterogeneity and contention. Architectures must adapt

operating parameters and structural resources to dynamic application

behavior.

All of these decisions require linking data to expectations of per-

formance and closing the data-to-decision gap. But because many of

these decisions involve diverse software on heterogeneous hardware,

prior efforts that separate application analysis and architectural op-

timization are insufficient. Instead, we must reason about software,

hardware, and their interactions in a coordinated fashion.

To integrate hardware-software analysis yet keep costs tractable,

we present strategies to share profiled behavior (§2). First, we break

an application into shards and profile microarchitecture-independent

measures of behavior. Given profiles, we construct models that

predict performance as a function of software behavior and hardware

parameters. Finally, because the number of parameters explodes

in an integrated hardware-software space, an automated heuristic

constructs the model.

We demonstrate this strategy in two settings. In the general and

more difficult setting, we measure detailed software behavior for

arbitrary applications and infer a model. Models in the second,

domain-specific setting exploits programmer-level knobs in tunable

codes. In both settings, we link hardware-software interactions to

performance. Thus, we make the following contributions:

• Laying a foundation for system management, we construct pre-

dictive models for hardware-software interactions. But software

behavior is dynamic, exhibits high variance, and introduces an un-

wieldy number of parameters. We present a heuristic that automat-

ically builds and updates regression models as software behavior

is profiled. (§3)

• Inferred models interpolate and extrapolate performance for di-

verse hardware-software interactions. Median errors are 8-10%.

Predicted and actual performance are strongly correlated with

coefficients of ρ > 0.9. (§4)

• Given domain knowledge, software behavior is captured more

concisely. Domain-specific software parameters produce smaller,

more accurate models. In a case study for sparse linear algebra,

we show accurate models for highly irregular performance topolo-

gies and demonstrate their application to coordinated hardware-

software tuning. (§5)

Collectively, these results lay the foundation for understanding di-

verse software on heterogeneous hardware. By linking sparse data

to performance predictions, we enable future work in control mecha-

nisms for reconfigurable architectures and allocation mechanisms for

heterogeneous datacenters.

2. Sharing – Principles and Strategies

Capturing hardware-software performance is made difficult by highly

variable software behavior. To address this challenge, we infer shared

behavior and construct integrated models with four strategies.

2.1. Shard-level Profiles

Models are most effective when inferred from diverse data. To in-

crease diversity, we break an application into shards, each with an

equal number of instructions. When collected for short shards, pro-

files detect fine-grained phase behavior. In contrast, monolithic

application profiles (e.g., average instruction mix) obscure intra-

application diversity.

This diversity is needed when sharing profiles between applica-

tions. Suppose we have profiled several applications and are given a

new one. Profiles of monolithic application behavior are useful only

if the new application resembles a previously observed one. This

constraint is too restrictive to meaningfully share profiled insights.

Relaxing this similarity constraint, fine-grained shards in the new

application may resemble disparate shards from others. As illustrated

in Figure 1, profiles from relevant shards can be drawn from several

applications to capture partial similarities. Sharding increases the

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.45

413

Figure 1: Reflecting partial similarity, a new application might be un-
derstood in terms of shards drawn from several previously
profiled applications.

Figure 2: Portable, microarchitecture-independent characteristics
that are profiled for architectures A, B, and C are applica-
ble to new architecture D.

value of an application’s profile since part of it is likely relevant for

other applications of interest.

In contrast to related work [35], our approach to sharding is agnos-

tic to underlying phase behavior. We simply ensure that shards are

shorter than phases so that intra-application diversity is preserved. A

short, pre-determined shard length is sufficient. Forgoing sophisti-

cated phase analysis simplifies the mechanics of profiling software

characteristics.

2.2. Portable Characteristics

We measure application characteristics that are portable and inde-

pendent of the microarchitecture [14, 36]. For example, data re-use

distance is a portable measure while cache miss rate is not. Such

portability is important when profiling tunable codes on reconfig-

urable cache architectures. We cannot profile every code on every

cache configuration [43].

At the system-level, portability is needed to navigate increasing

heterogeneity. The Google-wide Profiler samples application behav-

ior across many datacenter nodes [39] . And future node managers

must anticipate heterogeneous hardware demand in the form of di-

verse resource containers [2, 17, 19], contention [30], or big/small

cores [38]. Thus, software profiles will be collected from increasingly

diverse platforms.

Portable measures of software are needed when sharing profiles

between architectures. Figure 2 shows how profiles collected for

different shards and architectures might provide insight for a new

application on a new architecture. While these links might be found

explicitly, perhaps with distance calculations and clustering, the costs

of doing so are prohibitive given the number of dimensions in an

integrated hardware-software space. Implicitly inferring these links

is more tractable.

2.3. Statistical Inference

To infer these links, we extend related work in predictive modeling.

Previous models predict performance as a function of parameters

from the processor design space. Sampled measurements from the

space are used to train neural networks [11, 21, 22] or fit regression

models [26, 27]. These efforts infer hardware performance for design

space exploration.

In this paper, inferred performance also accounts for software

behavior and lays a foundation for run-time decisions. Let z be

performance. And let x = (x1, . . . ,xp) and y = (y1, . . . ,yq) be sets of

p hardware parameters and q software characteristics. By sparsely

profiling hardware-software interactions, a model can be inferred

to predict z = F(x,y)+ ε with some approximation error ε . With

statistical regression, we construct an integrated hardware-software

model.

2.4. Automated Modeling

Unfortunately, an integrated hardware-software space is unwieldy.

To infer a model, we must navigate a space of hardware and soft-

ware parameters, several non-linear transformations on them, and

a combinatorially increasing number of interactions between them.

In prior work, users manually specified hardware-only models. But

specifying hardware-software models is complicated by the sheer

number of variables and requires additional guidance.

We present a heuristic to search for effective model specifications,

which are defined by variables, transformations, and interactions.

We encode model specifications as genetic sequences, which evolve

toward better fits. Unlike stepwise regression, which considers only

one term at a time, crossovers and mutation in genetic algorithms

support a rapid search of possible models. Moreover, the heuristic

accommodates new data by updating the model specification and

fitting new regression coefficients. This capability supports dynamic

run-time environments with evolving software profiles.

3. Generalized Hardware-Software Models

Accommodating dynamic software behavior is difficult for two rea-

sons. First, software characteristics have high variance and long tails

(i.e., infrequent instances of large values), which models have diffi-

culty capturing. Second, profilers have little control over the software

behavior used for training.

Nonetheless, modeling software behavior is critically important.

Behavior differs dramatically between application phases and be-

tween different applications. These differences are exploited by

many of the most innovative heterogeneous systems and adaptive

architectures. The viability of these innovations depends on linking

software dynamics to system and architecture preferences.

Consider a system with diverse software that requests computation

from heterogeneous hardware. The space of software behavior is

large. Moreover, it is sparsely and non-uniformly populated by real

applications. As applications run, models have the difficult task

of generalizing trends by profiling software behavior that it cannot

precisely sample and manipulate. In comparison, hardware modeling

is easier since simulators allow architects to sample uniformly from

a cleanly defined design space.

3.1. Inference and Software Behavior

Regression is the starting point for our models. Suppose we have in-

dependent variables x = (x1, . . . ,xp) for software and y = (y1, . . . ,yq)

414

Figure 3: Each shard reports the sum of its re-use distances for 256B
data cache blocks. (a) Histogram for this sum-of-distances
(x) shows long tail of outliers across SPEC2006 shards. (b)
Transforming x→ x1/5 stabilizes variance.

for hardware. And we have a dependent variable z for performance.

A basic regression fits z = β0 +β1x1 +β2x2 + . . .+βp+qyq + ε by

finding β ’s to minimize error given x, y, and z from training data.

In practice, more sophisticated models are needed. Users must

determine which independent variables to include (xi or y j), how

these variables are transformed to accommodate non-linear trends

(S(xi)), and which variables interact to affect performance (xiy j). In

each of these decisions, software characteristics introduce new chal-

lenges that we address with an automated heuristic for constructing

and updating models.

Choosing Variables. In some cases, the impact of software behav-

ior is clear from domain knowledge. For example, rare floating-point

divides are not strong predictors of performance. But more generally,

we cannot always anticipate the precise mix of applications in a sys-

tem and determining the best software predictors of performance is

complicated.

Further affecting the choice of variables are strong relationships

between software characteristics. For example, consider measures of

locality. Temporal locality measures time between two consecutive

accesses to a cache block. And spatial locality is the quotient of

two measures for temporal locality at different block sizes. From an

architect’s perspective, this link is clear and both locality measures

should be modeled.

However, from a statistician’s perspective, these locality measures

are linearly dependent and highly correlated. Such subtle collinearity,

which prevents solvers from fitting a model, is common amongst

software variables. Although we use domain expertise to eliminate

obvious cases of collinearity, many are not easily discovered until

model construction. For this reason, the modeling heuristic must

also check for and eliminate collinear variables as it dynamically and

automatically seeks a mix of variables with high predictive ability.

Transforming Variables. Once chosen for the model, variables

benefit from non-linear transformations that provide flexibility and

mitigate the high variance in software behavior, which is particularly

important since we cannot explicitly control training samples from

the space of software behavior.

To illustrate challenges posed by behavioral asymmetry, Figure

3(a) plots a histogram of temporal locality for SPEC2006 shards. We

measure a shard’s locality as the sum of all re-use distances within

it.1 While most profiles report small sum-of-distances, many profiles

report much larger ones. Outliers are an order of magnitude larger

than the common case; sum-of-distances at 5E+4 are most common

but sum-of-distances at 5E+5 are observed. Such tails are typical in

software.

Because this heteroscedasticity (i.e., non-constant variance) breaks

1Re-use distance is the number of instructions separating two consecutive accesses to
the same data block.

underlying regression assumptions, we apply variance stabilizing

transformations. Rather than use x, we use x1/n in the model.2

With such a transformation, our measure of locality exhibits more

symmetry and less variance around the mean as shown in Figure 3(b).

Transformations also provide flexibility to capture non-linear or

non-monotonic trends. We can use splines that divide a variable

into pieces and fit different cubic polynomials to each piece [18].

For example, S(x) = β0 +β1x+β2x2 +β3x3 +β4(x−a)3
++β5(x−

b)3
++β6(x− c)3

+ splits x into pieces delimited by three inflections at

a, b, and c. Since (x−a)+ = max(x−a, 0), β4 has an effect only if x
is greater than a. In this way, different coefficients are fit to different

parts of the space.

These transformations require decisions, such as the exponent in

variance stabilization or the number of inflections in splines. The

right choice depends on the training data. But since this data evolves

in dynamic systems, our modeling heuristic searches the space of

transformations and applies the best one automatically.

Specifying Interactions. Lastly, variables interact to affect the

predicted value. For example, the performance impact of branch

prediction is larger in deeper pipelines because the price of wrong-

path execution is higher. Pairwise hardware-software interactions are

particularly important since they are a fundamental determinant of

performance.

Regression captures such interactions with a product term. In z =
β0+β1x+β2y+β3xy+ε , the interaction between x and y is captured

by coefficient β3. Note the partial derivative δ z/δx1 = β1 +β3x2.

Given p variables and t possible transformations on those variables,

there are
(p×t

2

)
possible pairwise interactions. These possibilities are

explored and evaluated by the modeling heuristic.

3.2. Accommodating System Dynamics

Training models in dynamic systems is difficult. Because we add

software behavior to the model and rely on real applications for sparse

profiles, we have little control over training data. Some software

behavior may be well represented while others are not. And, in

systems with run-time profiling, new software behavior requires

model updates.

We describe the modeling process for a large system with diverse

architectures and applications. As software runs, sparse run-time

profiling collects hardware-software interactions and their effect on

performance (e.g., Google-wide Profiler [39]). And in the future,

these profiles may be collected on heterogeneous platforms with

big/small cores [38], differentiated virtual machines [2], or diverse

servers in federated clouds. As data accrues, the model is updated.

An Inductive Analysis. To describe system and model dynamics,

we take an inductive approach. In the inductive hypothesis, the

system is in steady state. Architectures and applications from spaces

H and S have been sparsely profiled. And this data has trained an

accurate model M for the integrated H/S space. In practice, this

hypothesis holds because models can be boot-strapped with data

from benchmark suites.

In the inductive step, the system is perturbed by a new architecture

or application.3 Suppose software space S is perturbed by a new

application +s. Since the application runs on at least one architecture,

there exists a profile with microarchitecture-independent software

2n≥1 and statistics packages, like ladder in Stata, help identify the best power
transformation.

3We use the words “architecture” to represent a hardware environment. A new
architecture could arise from new hardware, virtual machines, or contention conditions.
Similarly, a new application could arise from new jobs, input data, or code optimizations.

415

behavior x+s, hardware parameters y, and performance z. With this

data, we check the existing model’s accuracy, comparing measured

performance z against a prediction M(x+s,y).
If predicted performance is accurate, the new application likely

shares behavior with already observed software. A sufficiently accu-

rate model will have errors for +s that are competitive with those for

applications in S. And, in practice, the desired accuracy depends on

how predictions are used. For example, median errors less than 10-

15% may be sufficient to make coarse-grained resource allocations.

Input: Profiles PS
Output: Regression Model M
foreach Generation g≤G do

foreach Model m∈g do
foreach Software s∈S do

Split Ps data into training Ts, validation Vs
Fit m using {P−s,Ts}×w
Set software fitness fs as m’s accuracy on Vs

end
Set model fitness fm as (∑s∈S fs)/|S|

end
Populate N% of g+1 with g’s N% best models

Populate (100-N)% of g+1 with crossovers, mutations

end

3.3. Updating System Models

An inaccurate prediction may suggest that the new application is

poorly served by existing regression coefficients and/or model speci-

fications. However, the error could also be an outlier. To determine

whether to trigger a model update, more data is needed. Profiling

+s, or variants of it, on a few more architectures would provide addi-

tional insight. In practice, we find 10-20 additional data points are

sufficient.

Exactly when additional profiles are obtained determines model

responsiveness. A model might be updated immediately by invoking

profilers for +s on various hardware. Alternatively, because large

systems invoke profilers periodically and selectively, a model might

be updated only after a sufficient number of additional profiles has

accrued. This latter scenario would introduce hysteresis into system

models.

To update the model, we insert the new application and its profiles

into S. With profiles Ps for each application s∈S, we invoke a heuristic

to re-specify and perform a weighted fit of the model. This heuristic

chooses new variables, transformations, and interactions. To ensure

model updates accommodate all profiled applications, the inner loop

evaluates the fit of a candidate model for every application (fs,s∈S),

which then determines average model fitness (fm).

3.4. Genetic Search

The heuristic’s outer loops implement a genetic search, in which the

best models propagate into the next generation while the others are

subject to crossovers and mutations. Each model is described by a

chromosome that encodes variables, transformations, and interac-

tions.

Each gene encodes a variable. If the genetic value for xi is 0, the

variable is excluded. If the value is 1, 2, or 3, we add xi with a linear,

quadratic, or cubic transformation. And if the genetic value is 4, we

apply a piecewise-cubic transformation with three inflection points.

Instruction Mix
x1 # Control
x2 # Taken Branches
x3 # Float ALU
x4 # Float Mul/Div
x5 # Integer Mul/Div
x6 # Integer ALU
x7 # Memory

Memory – Temporal Locality
x8 average re-use distance for 64B d-cache blocks
x9 average re-use distance for 64B i-cache blocks

Instruction-Level Parallelism
x10 # of instructions between floating-point ALU

and its consumer
x11 # of instructions between floating-point multiply

and its consumer
x12 # of instructions between integer multiply

and its consumer
x13 Average basic block size

instructions / # branches

Table 1: Software characteristics that are microarchitecture-
independent and profiled for 10M-instruction shards.

Pipeline Parameter
y1 Width 1 :: 2x :: 8
y2 Load/Store queue 11 :: 5+ :: 38

Physical registers 86 :: 42+ :: 300
Instruction queue 22 :: 10+ :: 72
Reorder buffer 64 :: 32+ :: 224

Cache
y3 L1 Associativity 1 :: 2x :: 8

L2 Associativity 2 :: 2x :: 8
y4 MSHR 1 2 4 6 8
y5 Data cache size (KB) 16 :: 2x :: 128
y6 Instruction cache size (KB) 16 :: 2x :: 128
y7 L2 cache size (KB) 256 :: 2x :: 4096
y8 L2 latency (cy) 6 :: 2+ :: 14

Functional Unit Number
y9 Integer ALU 1 :: 1+ :: 4
y10 Integer Mult/Div 1, 2
y11 Float ALU 1 :: 1+ :: 3
y12 Float Mult 1, 2
y13 Cache Read/Write Port 1 :: 1+ :: 4

Table 2: Hardware parameters that include extreme designs so that
models infer interior points more accurately.

The chromosome also encodes interactions, specifying a pair of

numbers i− j for interaction xix j . Given p variables and t transforma-

tions on them,
(p×t

2

)
interactions are possible interactions. Because

we cannot statically specify a chromosome long enough to accommo-

date so many interactions, we dynamically expand/shrink its length

as the search runs.

The genetic search starts with a random population of models,

which evolves with crossovers and mutations. With evolving chro-

mosomes, the heuristic quickly covers a large space of model spec-

ifications. Models may be affected by three crossover operators:

(C1) single variable randomly exchanged between two chromosomes,

(C2) interaction randomly exchanged between two chromosomes,

(C3) interaction randomly created using single variables from two

chromosomes.

We further consider two mutation operators: (M1) interaction ran-

domly changed for a chromosome, (M2) single variable randomly

416

Software Parameters Hardware Parameters
un-used y12

linear x6,x8,x9 y3,y4,y8,y10

poly, degree 2 x1,x4,x5,x7,x10 y1,y6

x11,x12,x13

spline, 3 knots x2,x3,x6 y2,y7,y9,y11,y13

Table 3: Transformations after 20 genetic search generations.

changed for a chromosome. Each crossover occurs with 12.5% prob-

ability and each mutation occurs with 5% probability, which we find

experimentally effective.

4. Evaluating Generalized Models

We evaluate the effectiveness of the modeling heuristic, illustrating

its convergence and describing the nature of the produced model. We

further demonstrate accuracy, both in steady state and after updates,

for integrated hardware-software performance prediction.

4.1. Experimental Methodology

To define an integrated hardware-software space, we consider a spec-

trum of microarchitectures and key measures of software behavior.

We sparsely sample application-architecture profiles to train models.

Software Parameters. We break SPEC2006 applications into

shards of 10M dynamic instructions. For each shard, we profile

portable measures of software behavior as listed in Table 1. In the

datapath, these characteristics capture instruction mix. They also cap-

ture instruction-level parallelism via the number of instructions that

separate producer and consumer instructions. In the cache hierarchy,

the profile captures locality by measuring the number of instructions

separating two consecutive accesses to the same data block [40].

These characteristics primarily capture processor-bound workload

behavior. Other workloads may require memory or I/O characteris-

tics. For memory-bound workloads, such parameters might include

memory hierarchy latencies, memory channel bandwidth, application

concurrency, and memory request burstiness. Similar strategies apply

for I/O-bound workloads.

Hardware Parameters. Applications are profiled on the diverse

microarchitectures listed in Table 2. Such hardware diversity may

manifest physically in an implemented design, or manifest logically

during run-time as partitioning schemes or contention for shared

resources. To collect profiles, these microarchitectures must support

introspective performance counters.

We embed such counters into Gem5 [1], extending the simulator

to profile software behavior during the commit pipeline stage, which

ensures that software behavior is independent of the out-of-order

microarchitecture. Gem5 simulates the Alpha instruction set and we

cross-compiled the following SPEC2006 applications: astar, bwaves,
bzip2, gemsFDTD, hmmer, omnetpp, sjeng.

Just as large system profilers selectively profile hardware-software

pairs [39], we sample the integrated hardware-software space to

produce profiles. With profiled data and R statistics libraries, the

modeling heuristic fits a regression model [18]. For performance, we

parallelize the genetic search with R libraries doMC and Multicore,

which automatically fork and join R threads.

4.2. Automated Modeling

An initial collection of random models may produce a few with

reasonable accuracy. And as these models evolve toward better

specifications, errors fall. In practice, useful models begin appearing

Figure 4: Frequency of interactions in the 50 best models after 20
generations of a genetic search. Interactions are shown be-
tween software parameters (lower-left), software-hardware
parameters (upper-left), and hardware parameters (upper-
right). Matrix is symmetric and we show upper triangle with-
out loss of generality.

Figure 5: Accuracy improves genetic algorithm evolves for 20 gener-
ations. Median errors summed for 7 applications used by a
genetic algorithm.

after only a few generations. We see diminishing marginal benefits to

accuracy as the search approaches 20 generations. Figure 5 illustrates

the benefit to our heuristic’s measure of accuracy: sum of median

errors for applications of interest.

Comparison with Manual Modeling. A research assistant with

no prior experience in regression requires nearly ten months to pro-

duce an integrated hardware-software model by hand. Much of this

time is spent identifying variables, transformations and interactions.

Moreover, a manually specified model is susceptible to human

biases, which limit the number of candidate models he considers.

Automatically derived models benefit from a comprehensive search.

We find that model errors from genetic search are 10% lower than

those from hand-tuning.

Modeling Time. The speed of parallelized and automated genetic

search significantly reduces the time to find and fit an accurate model.

As long as the heuristic’s three nested loops are ordered to minimize

data movement, we find that twelve processor cores provide a 9×
speedup.

Moreover, the genetic algorithm’s inner loop is embarrassingly

parallel. Statistical computation for each candidate model in a gener-

417

ation is independent; a generation with n models could benefit from

n-way parallelism.

With such speed, the search can evaluate one generation every 20

minutes. In practice, we expect even faster training times. As the

search begins with more effective models in the starting population,

fewer generations are required. And each generation is evaluated

more quickly as more cores provide greater parallelism.

Parameter Significance. System analysts benefit, not only from

speed and accuracy, but also from an additional source of insight as

the genetic search identifies determinants of performance. The search

begins with a population of random models. But as models evolve,

the population increasingly prefers certain variables, transformations,

and interactions.

Some parameters, such as those that support out-of-order execution

(y2), have complex relationships with performance that require sophis-

ticated spline transformations. Other parameters, such as the number

of floating-point multiplies (y12) is less significant and dropped from

the model. Consider a genetic algorithm evolved for more than 20

generations using SPEC 2006 shard profiles. After the search con-

verges, we examine the best models and Table 3 presents common

transformations.

In practice, hardware-software interactions are sophisticated and

span many different parameters. However, the model accommodates

only pairwise interactions. The genetic search must use many such

pairs to capture the desired effect. Specifically, the two-dimensional

histogram of Figure 4 indicates how often a particular pairwise inter-

action appears in the 50 best models. After 20 generations, the best

models still exhibit considerable diversity in its choice of pairwise

interactions.

4.3. Accuracy in Steady State – Interpolation
We evaluate model accuracy in two scenarios. In the first, the system

is in steady state. An integrated hardware-software space has been

sparsely profiled to construct a model that interpolates performance.

As illustrated in Figure 6(a), interpolation lends itself to accurate

models. For every prediction made, we have likely profiled similar

hardware for another application or profiled similar software for

another architecture.

Interpolation Accuracy. To evaluate interpolation accuracy, we

train and validate a model. First, we randomly sample architec-

tures. For each architecture, we randomly sample applications. The

number of samples is many orders of magnitude smaller than the

cross-product of applications and architectures. With these sparse

samples, the automated heuristic produces a model. On average, each

of 7 applications is profiled on 360 architectures.

We assess accuracy in two ways. First, we examine the distribu-

tion of prediction errors with boxplots, which show the median and

quartiles computed over the validation data. Second, we consider the

correlation between predicted and true performance, which is a better

measure of accuracy in the context of optimization. For example,

correlation is important in hill climbing heuristics that use models to

find higher performance.

Training data is randomly selected from application-architecture

pairs. Validation data is select randomly and independently of the

training data. Validation against 140 separately profiled application-

architecture pairs illustrates the effectiveness of our automated mod-

eling heuristic. The resulting model has low median errors of 5% in

Figure 7(a) and high correlation coefficients of ρ>0.9 in Figure 8(a).

Reduced Profiling Costs. Not only is the integrated hardware-

software model accurate, it requires less data to train when com-

pared against prior approaches in regression and neural networks

[21, 26]. Previously, each application would require its own architec-

tural model and 400-800 architectural profiles to train it.

With our integrated approach, we require fewer architectural sam-

ples per application to construct a single model shared by all appli-

cations. Shared software behavior reduces the number of required

profiles. If applications s1 and s2 exhibit similar software behavior,

each benefits from the other’s architectural profiles. By exploiting

such shared behavior, profiling costs per application falls by 2−4×.

Cost reductions are even greater (20-40×) when existing profiles are

used to extrapolate new application or architecture performance.

4.4. Accuracy after Updates – Extrapolation

Shared shard behavior is the basis for extrapolation and the second

modeling scenario. In this scenario, the system is perturbed by a

new architecture, new application, or both. By exploiting similar

behavior in existing profiles, models can be updated inexpensively to

extrapolate performance as illustrated in Figure 6(b-d).

Extrapolation for Shards. We first evaluate the notion of shard

similarity by extrapolating individual shard performance. Profiles of

shards from n−1 applications train a model, which is used to predict

the performance of shards from application n. Each SPEC2006

application takes a turn as application n; the other n−1 applications

train.

Accurate shard-level predictions indicate exploitable relation-

ships across application shards. For example, astar shard per-

formance is predicted accurately by sparse shard profiles from

{bwaves, . . . ,sjeng}. We validate against 300 separately profiled

shards for each application. Figure 10 shows low median errors of

8%. Moreover, predictions correlate with true performance values;

ρ≥0.9.

Extrapolation for Applications/Architectures. Automatic

model updates further enhance accuracy when the system is per-

turbed by a new application and/or architecture. As illustrated in

Figure 6(d), a system in steady state has sampled shard profiles from

n−1 applications on diverse architectures. These profiles produce an

accurate hardware-software model for interpolation. When perturbed

by application n, the model is updated (§3.2–§3.4).

To predict application performance, we predict the performance

of its constituent shards and aggregate their contributions to the

application. The performance for most shards can be extrapolated

accurately. A few inaccurate shard predictions have a small effect on

the end-to-end prediction since an application contains many 10M

instruction shards.

We first consider systems perturbed by variants of existing appli-

cations, which perform the same fundamental computation but differ

in code structure or input data. These differences alter the dynamic

instruction stream, significantly affecting both performance and the

underlying microarchitecture-independent characteristics we profile.

For example, we find the choice of back-end compiler optimizations

affect performance by up to 60%; mean effect is 26%.

Consider a system perturbed by applications with code optimiza-

tions (-O1,-O3) or input data (-v1,-v2,-v3) that differ from those

in existing profiles. For these software variants, updated models

accurately predict performance for 150 application-architecture pairs.

Median errors are 8% in Figure 7(b). Correlation coefficients ρ≥0.9
in Figure 8(b).

Beyond the common perturbations of varying software, systems

may also encounter fundamentally new software. In such scenarios,

418

Figure 6: Shaded HW-SW pairs are profiled. Pair p denotes a prediction. (a) Interpolation for previously observed hardware and software. (b)-(d)
Extrapolation after updates for new hardware, new software, or both.

Figure 7: Distributions of performance prediction error when (a) interpolating in steady state, (b) extrapolating for new software variant, (c)
extrapolating for new hardware/software.

Figure 8: Correlation between predicted and true performance when (a) interpolating in steady state, (b) extrapolating for new software variant,
(c) extrapolating for new hardware/software.

Figure 9: Extrapolation for bwaves suffers from significant differences in software behavior and performance. (a) illustrates the difference
between training data mean and bwaves/sjeng mean for various software characteristics; x-axis refers to Table 2. (b) plots CPI
distribution for all applications excluding bwaves and (c) plots a very different CPI distribution for bwaves.

419

Figure 10: Error distribution when predicting shard performance.
Model is trained and validated with separate, randomly
sampled shards.

extrapolation reaches further beyond the already profiled space. To as-

sess accuracy, each SPEC2006 application takes a turn as application

n; the other n−1 train.

We predict the performance of application n for 140 new

application-architecture pairs. While inherently more difficult than

interpolation, extrapolation with updated models captures perfor-

mance trends with low median errors of 6% in Figure 7(b) and strong

correlations between predicted and true values; ρ≥0.9 in Figure 8(b).

4.5. Outliers

Extrapolation is more difficult when already profiled software be-

havior does not cover those in the target application. For example,

compare performance extrapolation for sjeng and bwaves. Software

behavior in sjeng is very similar to that in the n−1 other applications.

In contrast, bwaves exhibits very different behavior.

Figure 9 quantifies this difference. For each software characteristic

of Table 1, we take the mean value observed for a given application

and subtract the mean value observed for its training applications.

If this difference is zero, application n behaves like the other n−1

applications. However, if this difference is large, the training data is

not representative of the target application.

Figure 9(a) indicates that, while sjeng differences are modest,

bwaves is not well represented by its training data. Compared to train-

ing applications, bwaves has far more taken branches and floating-

point operations. And it has far fewer integer and memory operations.

Such large behavioral differences translate into performance dif-

ferences. Figure 9(b-c) show CPI histograms for bwaves’ shards

versus those in all the other applications. While performance of other

applications’ shards are clustered around CPI=1, bwaves CPI exhibits

much greater variance and bimodal behavior around CPI = 0.5 and

1.0. Even model updates cannot accommodate this difference in

performance distribution.

However, these challenges are not fundamental and, in an avenue

for future work, training data can be augmented to better cover the

space of software behavior. Synthetic benchmarks provide explicit

control on software behavior and enable uniform profiling across the

software space [23]. If synthetic benchmarks were used, they would

need to be coordinated with real application profiles.

5. Domain-Specific Models
To model performance from instruction-level software behavior, §3–

§4 develop an extensive methodology to accommodate generality.

This generality is expensive. Capturing performance requires many

measures of software behavior that then require automated model-

ing heuristics. Identifying determinants of performance is difficult

without application semantics.

A =

⎛
⎜⎝

a00 a01 0 0 0 0
a10 a11 0 0 a14 a15

0 0 a22 0 a24 a25

0 0 0 a33 a34 a35

⎞
⎟⎠

b_row_start = (0 2 4); b_col_idx = (0 4 2 4)

b_value = (a00 a01 a10 a11 0 0 a14 a15 a22 0 0 a33 a24 a25 a34 a35)

Figure 11: BCSR with 2×2 blocks. 2×2 blocks are stored contigu-
ously in b_value. The first column index of entry (1,1)
in each 2×2 block is stored in b_col_idx. Pointers to
block row starting positions in b_col_idx are stored in
b_row_start.

Given domain knowledge, however, we can express software be-

havior more concisely. Rather than analyze individual instructions,

we can analyze the behavior of libraries and algorithms. This ap-

proach is gaining traction in a number of domains, such as signal

processing [37], linear algebra [3, 44], and program sketching [42].

From these diverse domain-specific program generators, we choose

sparse matrix-vector multiply (SpMV [44]) for a case study.

5.1. Sparse Matrix-Vector Multiply (SpMV)

SPMV poses interesting challenges for integrated hardware-software

models. Its performance trends are non-monotonic and its hardware-

software interactions are sophisticated. We capture these subtleties

while exploiting program-level software characteristics that keep

model complexity modest.

Sparse matrix-vector multiply (SpMV) computes v = v+Au when

most elements in A are zero. We refer to u and v as the source

and destination vectors, respectively. SpMV performance tuning is

complicated by irregularity and variation in the best choice of sparse

matrix data structure and code transformation across matrices and

machines.

A particularly effective transformation improves locality by orga-

nizing a sparse matrix into r×c sub-blocks. Blocks with at least one

non-zero are stored. The multiply proceeds block by block, re-using

c source elements and streaming through r destination elements in a

row-major matrix.

5.2. SpMV Hardware-Software Interactions

Choosing a matrix block size requires navigating sophisticated trade-

offs between hardware and software. Sparse matrices store non-zero

values with row and column pointers that map each value to a location

in the matrix. Index overheads are reduced in a blocked compressed

format since indices point to matrix blocks instead of individual

matrix values (Figure 11).

However, this reduction is offset by explicit zeros which must be

stored to create dense blocks of the same size; Figure 11 stores four

such zeros. The fill ratio is the number of stored values (original non-

zeros plus filled zeros) in a blocked matrix divided by the original

number of non-zeros. Fill increases the number of unnecessary

floating-point operations.

The precise balance of blocking’s costs and benefits depends on

input data, block size, and cache architecture. Sparser matrices and

larger block sizes require more filled zeros to produce dense structure.

And as density improves spatial locality, SpMV benefits from larger

cache lines.

There exists an optimal balance between fill and locality. But we

must strike this balance in an irregular performance topology. Rather

than profile the cross-product of sparse matrix patterns, block sizes,

420

Matrix Dimension Non-Zeros Sparsity
1 3dtube 45330 1629474 7.93E-04
2 bayer02 13935 63679 3.28E-04
3 bcsstk35 30237 740200 8.10E-04
4 bmw7st 141347 3740507 1.87E-04
5 crystk02 13965 491274 2.52E-03
6 memplus 17758 126150 4.00E-04
7 nasasrb 54870 1366097 4.54E-04
8 olafu 16146 515651 1.98E-03
9 pwtk 217918 5926171 1.25E-04
10 raefsky3 21200 1488768 3.31E-03
11 venkat01 62424 1717792 4.41E-04

Table 4: Sparse matrices. N is dimension in a square matrix. Sparsity
is number of non-zero elements divided by N2.

SpMV
x1 brow, block row 1 :: 1+ :: 8
x2 bcol, block column 1 :: 1+ :: 8
x3 fR, fill ratio function of brow,bcol,matrix

Cache Architecture
y1 lsize, line size 16B :: 2x :: 128B
y2 dsize, data size 4KB :: 2x :: 256KB
y3 dways, data ways 1 :: 2x :: ::8
y4 drepl, data repl LRU, NMRU, RND
y5 isize, inst size 2KB :: 2x :: 128KB
y6 iways, inst ways 1 :: 2x :: ::8
y7 irepl, inst repl LRU, NMRU, RND

Table 5: Hardware-software space, which includes software block
sizes and hardware cache parameters.

and cache architectures, we infer models that accurately capture these

complex relationships for coordinated optimization.

5.3. Accuracy for Coordinated Optimization

Software and Hardware Space. The integrated hardware-software

space spans matrices, block sizes, and cache architectures. Table 4

lists matrices drawn from various application domains [34]. SpMV

for each matrix has 64 variants with block sizes from 1×1 to 8×8,

each with a corresponding fill ratio. These codes are generated

automatically by OSKI [44].

Given the diversity in matrices and data structures, we evaluate

a reconfigurable architecture that can accommodate them. To accu-

rately assess core and cache reconfigurability, we use a simulator for

a 400MHz Tensilica Xtensa processor, supplemented with CACTI

and Micron to estimate cache and memory power [31, 33]. Because

SpMV is memory-intensive, we focus on the cache (Table 5).

Non-monotonic Performance. Performance in this integrated

hardware-software space is highly irregular.4 Matrix blocking has a

direct but discontinuous performance impact. Locality and perfor-

mance increase with block size. But the largest blocks require the

greatest number of filled zeros and produce diminishing marginal

returns.

Figure 12 illustrates this irregularity in an example matrix, raefsky3.

8 block rows maximize performance but 6 or 7 block rows are only

as effective as 2. For block columns, 1, 4, and 8 are equally effective,

which reflects inherent dense sub-structure that arises in multiples of

4. A poorly chosen block size increases the fill ratio, which can harm

performance (e.g., fR > 1.25).

4Performance is true floating-point operations per second. The numerator excludes
operations on filled zeros. The denominator includes reduced execution time from
blocking.

Figure 12: SpMV blocking parameters and performance. Data in-
cludes 400 samples drawn from integrated SpMV-cache
space for raefsky3. Average Mflop/s is reported for all sam-
ples at each parameter value.

Figure 13: Cache architecture and performance trends. Data in-
cludes 400 samples drawn from integrated SpMV-cache
space for raefsky3. Average Mflop/s is reported for all sam-
ples at each parameter value.

421

Figure 14: Distributions of (a) performance and (b) power prediction error. Matrix numbers refer to Table 4.

Figure 15: (a) Profiled and (b) predicted performance topologies. Colormap illustrates Mflop/s and numbers in each cell indicate speedup over
1×1 code. Data shown for a representative matrix nasasrb.

Figure 16: (a) Performance and (b) energy efficiency optimization. Matrix numbers refer to Table 4.

422

These blocking effects interact with cache structure, as shown in

Figure 13. A larger cache line amortizes off-chip latency over a larger

number of bytes to increase streaming bandwidth. Ideally, matrix

values would not be cached since they are never re-used. But in a

highly associative cache, matrix blocks occupy cache lines longer as

they must travel down the LRU stack.

SpMV-Cache Modeling Accuracy. We train and validate a model

for these complex performance effects. First, we randomly sample

combinations of matrix block sizes and cache architectures. With

these sparse samples, we fit regression models that predict perfor-

mance and power using SpMV specific software parameters.

Such domain-specific parameters encapsulate much more infor-

mation than generic instruction-level profiles. Rather than measure

locality with re-use distances, SpMV block sizes directly quantify

the amount of exploitable locality. Models use fewer, semantic-rich

parameters to greater effect. With 400 sparsely sampled profiles for

training and another 100 for validation, performance and power are

accurately predicted with median errors between 4-6% across 11

matrices. Accuracy is shown in Figure 14.

Moreover, for a representative matrix nasasrb, Figure 15 illustrates

the accuracy of inferred models on an irregular performance topology.

The model accurately captures high performance at the same block

sizes (3×3, 3×6, 6×3, 6×6). The model also captures discontinu-

ities; many block sizes adjacent to 6×6 are worse than not blocking

at all.

Coordinated Optimization. Advances in parameterized code

generators and reconfigurable architectures make navigating an in-

tegrated hardware-software space imperative. In many domains, we

can choose to tune the application, the architecture, or both. We com-

pare these strategies for SpMV, exploiting the tractability of inferred

models.

For SpMV, application tuning identifies the best matrix block size.

Sparse matrices that have dense sub-structure (e.g., matrices 10 and

11) benefit from larger block sizes and modest fill ratios. Because

SpMV is memory-bound, architecture tuning tailors the cache. Larger

cache lines amortize off-chip memory latency. In Figure 16(a), ap-

plication and architecture tuning improve performance by 1.6× and

2.7×, respectively. When tuned together, performance improves by

5.0×.

However, these tuning strategies incur different costs. Application

tuning improves performance while simultaneously reducing energy

as blocking improves locality and reduces the number of expensive

memory accesses. With less data movement, both latency and energy

fall. The optimal block size reduces energy from 17 to 11 nJ/Flop in

Figure 16(b).

In contrast, energy increases to 25 nJ/Flop with architecture tuning.

Larger cache lines increase the number of memory transfers, which

cost 6nJ per 64b double-precision word [31]. This cost is difficult to

justify unless the matrix is blocked to increase spatial locality. With

coordinated tuning, energy per floating-point operation falls by 0.9×
(i.e., 10% reduction) even as performance increases by 5.0×.

Collectively, these results motivate new thinking on efficiency.

Architects cannot afford to ignore application tuning, which increases

performance and reduces energy. For such tuning, inferred models

provide tractability and insight.

6. Related Work

Hardware performance is modeled with statistical regression [26, 28]

or neural nets [21]. Dubach et al. and Khan et al. separately construct

models that predict new applications as a weighted combination of

others by defining canonical machines and software profiles on them

[11, 10, 25]. Instead of profiling each application on a few pieces of

canonical hardware, we embed fundamental measures of software

behavior into an integrated hardware-software model. Alternatively,

analytical models link instruction behavior with pipeline structure

[15, 24] and can help coordinate multiprocessor management [5].

We leverage prior work in microarchitecture-independent software

characteristics to parameterize our model [6, 14, 20, 36]. We en-

counter challenges with variance in real application behavior, which

might be mitigated with synthetic benchmarks controlled to produce

uniform training data [13, 23]. Sampling identifies short, repre-

sentative instruction segments within an application to predict its

overall performance [41, 45]. Alternatively, a robust approach to

experimental design might identify the subset of architectural simu-

lations required to understand performance trends [46]. Like these

prior works, we sample to reduce measurement costs but we do so

uniformly at random. Moreover, our software samples profile behav-

ior of fine-grained shards, which are shorter and more diverse than

coarse-grained application phases.

Hardware-software co-tuning has been applied to dense matrix-

matrix multiply, sparse matrix-vector multiply, and stencil computa-

tion [32]. Instead of exploratory profiling, we construct a model and

reduce co-tuning costs. Similar models would benefit code generators

and optimizers in a variety of application domains, including signal

processing [37], linear algebra[3, 44], sorting [29], and back-end

compilation [8].

Beyond software tuning for specific application domains, prior

work has studied other predictors of software performance, such as

how often particular methods are called and which compiler optimiza-

tions are applied. Chun et al. extract application-specific features

(e.g., method invocation counts) from program analysis to predict

performance but these features do not generalize across different

applications [7]. Dubach et al. identifies more general predictors of

software performance, some of which overlap with ours [9]. Navigat-

ing complex, back-end compiler optimizations is difficult and prior

work has analyzed their impact on software performance [4, 16].

Many of these prior efforts focus entirely on performance variabil-

ity in the software space for a given hardware platform. A notable

exception, Dubach et al. coordinate the choice of compiler optimiza-

tions to the architectural design [12]. Rather than use compiler flags

as predictors of software performance, we rely on sharded application

behavior or domain-specific tuning parameters, allowing us to apply

models beyond optimizing compilers.

7. Conclusions

We demonstrate a model for general applications by relying on shared

behavior across application shards. By inferring performance models

from software characteristics and hardware parameters, we better

understand software preferences for hardware. Moreover, with mod-

eling heuristics, such models can be updated automatically to reflect

system dynamics.

Further accuracy is possible with domain-specific code generators.

As application and architecture designers pursue performance and

efficiency together, we need frameworks that maintain the integrity

of abstraction layers while building new bridges across them. We pre-

serve abstractions by synthesizing descriptors of software structure

(e.g., matrix block size, fill ratio) and understanding their interactions

with underlying hardware.

423

There are a number of directions for future work. In future, in-

ferred models will need to accommodate virtual machines, which are

prevalent in large, datacenter systems. We must determine whether

modeling strategies change when hardware resources are virtualized

and shared amongst co-located applications. These strategies may

further extend to memory and I/O systems. Models for such sys-

tems require new parameters to characterize software behavior. By

broadening the system scope, these models can be made even more

relevant for datacenter management and big data computation.

Acknowledgements
This work is supported by NSF grant CCF-1149252 (CAREER). Any

opinions, findings, conclusions, or recommendations expressed in

this material are those of the author(s) and do not necessarily reflect

the views of the National Science Foundation.

References
[1] —. gem5. http://www.m5sim.org/.
[2] Amazon. Elastic cloud computing. http://aws.amazon.com/ec2/.
[3] J. Ansel et al. PetaBricks: a language for compiler and algorithmic

choice. In PLDI, 2009.
[4] J. Cavazos et al. Automatic performance model construction for the fast

software exploration of new hardware designs. In CASES, 2006.
[5] J. Chen and L. John. Predictive coordination of multiple on-chip re-

sources for chip multiprocessors. In ICS, 2011.
[6] J. Chen, L. John, and D. Kaseridis. Modeling program resource demand

using inherent program characteristics. In SIGMETRICS, 2011.
[7] B. Chun, L. Huang, S. Lee, P. Maniatis, and M. Naik. Mantis: Pre-

dicting system performance through program analysis and modeling.
Computing Research Repository (CoRR), 2010.

[8] K. Cooper, D. Subramanian, and L. Torczon. Exploring the structure of
the space of compilation sequences using randomized search algorithms.
The Journal of Supercomputing, 36(2), 2006.

[9] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, and
O. Temam. Fast compiler optimisation evaluation using code-feature
based performance prediction. In CF, 2007.

[10] C. Dubach, T. Jones, E. Bonilla, G. Fursin, and M. O’Boyle. Portable
compiler optimisation across embedded programs and microarchitec-
tures using machine learning. In MICRO, 2009.

[11] C. Dubach, T. Jones, and M. O’Boyle. Microarchitectural design space
exploration using an architecture-centric approach. In MICRO, 2007.

[12] C. Dubach, T. Jones, and M. O’Boyle. Exploring and predicting the
architecture/optimising compiler co-design space. In CASES, 2008.

[13] L. Eeckhout, K. DeBosschere, and H. Neefs. Performance analysis
through synthetic trace generation. In ISPASS, 2000.

[14] L. Eeckhout, J. Sampson, and B. Calder. Exploiting program microar-
chitecture independent characteristics and phase behavior for reduced
benchmark suite simulation. In IISWC, 2005.

[15] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. Smith. A performance
counter architecture for computing accurate CPI components. In ASP-
LOS, 2006.

[16] G. Fursin and O. Temam. Collective optimization: A practical collabo-
rative approach. TACO, 2010.

[17] A. Ghodsi et al. Dominant resource fairness: Fair allocation of multiple
resource types. In Proc. NSDI, 2011.

[18] F. Harrell. Regression Modeling Strategies. Springer, 2001.
[19] B. Hindman et al. Mesos: A platform for fine-grained resource sharing

in the data center. In Proc. NSDI, 2011.
[20] K. Hoste et al. Performance prediction based on inherent program

similarity. In PACT, 2006.
[21] E. Ipek, S. McKee, B. de Supinski, M. Schulz, and R. Caruana. Effi-

ciently exploring architectural design spaces via predictive modeling. In
ASPLOS, 2006.

[22] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A predictive perfor-
mance model for superscalar processors. In MICRO, 2006.

[23] A. Joshi, L. Eeckhout, L. John, and C. Isen. Automated microprocessor
stressmark generation. In HPCA, 2008.

[24] T. Karkhanis and J. Smith. Automated design of application specific
superscalar processors: An analytical approach. In ISCA, 2007.

[25] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra. Using predictive mod-
eling for cross-program design space exploration in multicore systems.
In PACT, 2007.

[26] B. Lee and D. Brooks. Accurate and efficient regression modeling
for microarchitectural performance and power prediction. In ASPLOS,
2006.

[27] B. Lee and D. Brooks. Illustrative design space studies with microarchi-
tectural regression models. In HPCA, 2007.

[28] B. Lee, J. Collins, H. Wang, and D. Brooks. CPR: Composable per-
formance regression for scalable multiprocessor models. In MICRO,
2008.

[29] X. Li et al. A dynamically tuned sorting library. In CGO, 2004.
[30] J. Mars et al. Bubble-Up: Increasing utilization in modern warehouse

scale computers via sensible co-locations. In MICRO, 2011.
[31] Micron. Technical note TN-47-04: Calculating memory system power

for DDR2. In www.micron.com, 2006.
[32] M. Mohiyuddin et al. A design methodology for domain-optimized

power-efficient supercomputing. In SC, 2009.
[33] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimiz-

ing NUCA organizations and wiring alternatives for large caches with
CACTI 6.0. In MICRO, 2006.

[34] NIST. Matrix market. http://math.nist.gov/MatrixMarket/.
[35] E. Perelman et al. Using SimPoint for accurate and efficient simulation.

In SIGMETRICS, 2003.
[36] A. Phansalkar et al. Analysis of redundancy and application balance in

SPEC CPU 2006 benchmark suite. In ISCA, 2007.
[37] M. Pueschel et al. SPIRAL: Code generation for DSP transforms. Proc.

IEEE, 2005.
[38] V. Reddi et al. Web search using mobile cores: Quantifying and mitigat-

ing the price of efficiency. In ISCA, 2010.
[39] G. Ren et al. Google-wide profiling: A continuous profiling infrastruc-

ture for data centers. IEEE Micro, 2010.
[40] X. Shen, Y. Zhang, and C. Ding. Locality phase prediction. In ASPLOS,

2004.
[41] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically

characterizing large scale program behavior. In ASPLOS, 2002.
[42] A. Solar-Lezama, R. Rabbah, R. Bodk, and K. Ebcioglu. Programming

by sketching for bitstreaming programs. In PLDI, 2005.
[43] A. Solomatnikov et al. Using a configurable processor generator for

computer architecture prototyping. In MICRO, 2009.
[44] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically

tuned sparse matrix kernels. In SciDAC, Journal of Physics, 2005.
[45] R. Wunderlich et al. Smarts: Accelerating microarchitecture simulation

via rigorous statistical sampling. In ISCA, 2003.
[46] J. Yi, D. Lilja, and D. Hawkins. A statistically rigorous approach for

improving simulation methodology. In HPCA, 2003.

424

SMARQ: Software-Managed Alias Register Queue for Dynamic Optimizations

Cheng Wang Youfeng Wu Hongbo Rong Hyunchul Park

Programming Systems Lab
Microprocessor and Programming Research

Intel Labs
{cheng.c.wang, youfeng.wu, hongbo.rong, hyunchul.park}@intel.com

Abstract
Traditional alias analysis is expensive and ineffective for dynamic
optimizations. In practice, dynamic optimization systems perform
memory optimizations speculatively, and rely on hardware, such as
alias registers, to detect memory aliases at runtime. Existing
hardware alias detection schemes either cannot scale up to a large
number of alias registers or may introduce false positives. Order-
based alias detection overcomes the limitations. However, it
brings considerable challenges as how software can efficiently
manage the alias register queue and impose restrictions on optimi-
zations. In this paper, we present SMARQ, a Software-Managed
Alias Register Queue, which manages the alias register queue
efficiently and supports more aggressive speculative optimizations.
We conducted experiments with a dynamic optimization system on
a VLIW processor that has 64 alias registers. The experiments on a
suite of SPECFP2000 benchmarks show that SMARQ improves the
overall performance by 39% as compared to the case without
hardware alias detection. By scaling up to a large number (from
16 to 64) of alias registers, SMARQ improves performance by
10%. Compared to a technique with false positives (similar to
Itanium), SMARQ improves performance by 13%. To reduce the
chance of alias register overflow, the novel alias register alloca-
tion algorithm in SMARQ reduces the alias register working set by
74% as compared to a straightforward alias register allocation
based on program order.

1. Introduction
Dynamic optimization systems perform optimizations at runtime.
Thus it is crucial to keep under control the time spent on the opti-
mizations. It is difficult and expensive to perform traditional
memory alias analysis at runtime [13]. First, the dynamic optimiz-
er may not have source level information, such as data type, array
and subscript information. Second, for dynamic optimizations the
alias analysis time is part of the execution time, and the expensive
alias analysis can seriously impact the overall performance [13].
On the other hand, memory alias information is critical to the ef-
fectiveness of optimizations, especially for in-order processors [3].
Due to this dilemma, dynamic optimizations on in-order processors
usually use simple or speculative alias analysis algorithms [1, 14]
and rely on hardware (HW) to detect aliases at runtime. In this
way, they can optimize memory accesses speculatively [6, 10].

Figure 1 shows the overall framework for a dynamic optimiza-
tion system with HW alias detection. The application code runs on
top of the system, which dynamically optimizes the application
code to run on the CPU through an optimizer. The optimizer may
assume no alias for memory operations that are unlikely to alias to
each other. When the optimized code runs, the alias HW in CPU
may detect the aliases for these operations and raise an alias excep-
tion. The optimized code is put into atomic regions for speculative
execution [10] such that at the entry of each atomic region execu-

tion, the atomicity HW in CPU will create a checkpoint for rolling
back the region in case of alias exception. The runtime module in
the dynamic optimization system will catch the alias exceptions
and trigger the optimizer to re-optimize the region conservatively:
this time it assumes the two memory operations that just triggered
the exception are always aliased. All the HW interrupts, excep-
tions and memory consistency violations are also caught by the
runtime module to trigger region rollbacks [11].

Figure 1: A Dynamic Optimization System with HW Alias Detection

Existing HW alias detection schemes suffer from several prob-
lems. HW alias detection on Transmeta Efficeon [6] is not scala-
ble and cannot support more than 15 alias registers. HW alias
detection on Itanium [2] (which is called Advanced Load Address
Table or ALAT) may introduce false positives and cannot detect
aliases between stores. Order-based alias detection overcomes the
limitations in Efficeon and Itanium. However, it brings considera-
ble challenges to the efficient software management of the alias
register queue and imposes restrictions on optimizations. (We will
describe all of them in details in Section 2). In this paper, we
present SMARQ, a Software-Managed Alias Register Queue for
speculative dynamic optimization, which overcomes all the prob-
lems in the existing HW alias detection schemes. We conducted
experiments with a dynamic binary translation/optimization system
on a VLIW processor that has 64 alias registers. The experiments
on a suite of SPECFP2000 benchmarks show that optimizations
with SMARQ improve the overall performance by 39% as com-
pared to those without hardware alias detection support. By scal-
ing up the alias register number from 16 to 64, SMARQ improves
performance by 10%. Compared to a technique with false posi-
tives (similar to Itanium), SMARQ improves performance by 13%.
To reduce the chance of alias register overflow (i.e. running out of
alias registers), the novel alias register allocation algorithm in
SMARQ reduces the alias register working set by 74% as com-
pared to a straightforward alias register allocation based on pro-
gram order.

The rest of paper is organized as follows. In Section 2, we
present the motivation of the work. In Section 3, we use several
examples to show the architectural features used in SMARQ. In
Section 4, we develop the compiler analysis framework for identi-

 CPU

Runtime

Alias Exception

Alias HW

Optimizer

Atomicity HW
Roll Back

Application Code

Dynamic Optimization System

Checkpoint

Optimized Code in
Atomic Regions

Re-Optimize

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.46

425

fying the alias detection constraints. In Section 5, we describe our
fast alias register allocation algorithm to satisfy all alias detection
constraints. We present our experiments in Section 6 and discuss
the related works in Section 7. At last, we conclude the paper and
point out the future direction in Section 8.

2. Motivation
In this section, we illustrate the concept of HW alias detection.
Then we show the HW alias detection in Efficeon and Itanium, and
point out their weaknesses. We motivate our solution that ad-
dresses the weaknesses.
2.1 HW Alias Detection
Figure 2 shows an example for HW alias detection. The code in
Figure 2 (a) is speculatively optimized into the code in Figure 2
(b). For simplicity, the only optimization applied here is reorder-
ing the memory accesses such that loads are performed as early as
possible. Since it is unlikely that load M3 and store M2 alias to
each other, M3 is speculatively reordered above M2 after the opti-
mization. Also, M0 is reordered below M2. For HW alias detection
between M3 and M2, the optimizer needs to annotate M3 to set an
alias register AR0 and annotate M2 to check AR0 for aliasing.
Assume each memory access is 4 bytes. Then during the execution,
M3 will set AR0 with its memory access range [r2, r2+3]. Later
M2 will check this range in AR0 against its own memory access
range [r0, r0+3]. If the two ranges overlap, an alias exception is
raised.

Figure 2: A HW Alias Detection Example

2.2 Efficeon HW Alias Detection
A memory operation may need to check multiple alias registers.
For example in Figure 2, M0 needs to check 2 alias registers, AR0
and AR1. Transmeta Efficeon [6] uses a bit-mask in the instruction
to specify the individual alias registers that need to be checked.
There is limited encoding space for the bit-mask in an instruction.
For this reason, the alias register file cannot scale up to a large
number of alias registers. In the current encoding scheme, Effice-
on cannot support more than 15 alias registers. This is tolerable in
Efficeon where an atomic region is typically small, with only about
30 x86 instructions on average. However, large schedul-
ing/optimization regions are critical for achieving good perfor-
mance on in-order processors [15, 19]. Since speculative optimi-
zation with large regions will inevitably use more alias registers,
the scalability of alias register support will be a serious issue. In
our experiment with a dynamic binary translation/optimization
system on a VLIW processor, we see performance improvement
for ammp benchmark in SPEC 2000 by 30% by using 64 alias
registers instead of 16 alias registers.
2.3 Itanium HW Alias Detection
Itanium memory alias detection [2] (which is called Advanced
Load Address Table or ALAT) requires stores to automatically
check all the alias registers set by previous advanced loads (i.e. ld.a
instruction) without the need to specify the individual alias regis-
ters that need to be checked. Unfortunately, that may lead to false

positives in the alias detection, which is a serious issue in dynamic
optimization (Note that Itanium was not designed for dynamic
optimization). Figure 3 shows the Itanium alias detection for the
example shown in Figure 2. M2 does not need to check M1 (i.e.
check AR1) for aliasing, instead, Itanium ALAT hardware checks
M2 against all alias registers. This would result in a false positive
if M1 aliases with M2 (Remember that M1 and M2 have not been
reordered). In our experiments on ammp benchmark, the false
positives can lead to performance degradation of 47%. Moreover,
Itanium memory alias detection cannot detect aliases between
stores, and therefore, it does not allow speculative reordering be-
tween stores. However, our experiments show that speculative
reordering between stores is a desirable optimization: it can im-
prove performance by 13% for mesa benchmark in SPEC2000.

Figure 3: Itanium Alias Detection for Optimization in Figure 2

Figure 4: Order-Based Alias Detection for Optimization in Figure 2

2.4 Order-Based HW Alias Detection
To overcome the scaling bottleneck, prevent the false positives and
allow aggressive optimizations (like reordering stores), we can
adopt the idea of order-based memory alias detection [4], which
was used in Memory Order Buffer (MOB) in out-of-order proces-
sor to detect aliases between memory operations reordered by SW.
In order-based memory alias detection, the alias registers are orga-
nized into an ordered circular queue (called alias register queue in
this paper). Each memory operation is allocated an alias register,
whose order matches the original program execution order. Figure
4 shows how the order-based alias detection works for the example
shown in Figure 2. The alias register numbers 0~3 (see the second
column of the code in Figure 4 (a)) corresponding to alias registers
AR0~AR3. They are allocated to memory operations M0~M3 re-
spectively in their original program execution order. When a
memory operation executes, HW will set its memory access range
into the allocated alias register and check all later alias registers in
the alias register queue set by previously executed instructions for
aliasing. Here by “alias register ARx is later than alias register
ARy”, we mean x>y. So when M2 executes, the alias registers will
have contents as shown in Figure 4 (b), and HW will only check
AR3 but not AR1 because in the alias register queue, AR1 is earlier
than the alias register allocated to M2 (i.e. AR2). HW also auto-

3
1
2
0

M3: … = ld [r2]
M1: … = ld [r1]
M2: st [r0] = …
M0: st [r0+4] = …

// set AR3
// set AR1
// set AR2, check AR3
// set AR0, check AR1, AR2, AR3

check all later registers
against [r0,r0+3]

(b) Alias Check when M2 Executes

(a) Optimized Program

AR0 AR1 AR2 AR3

NULL [r1, r1+3] [r0,r0+3] [r2,r2+3] …

M3: … = ld.a [r2]
M1: … = ld.a [r1]
M2: st [r0] = …
M0: st [r0+4] = …

// set AR0
// set AR1
// check AR0, AR1
// check AR0, AR1

Optimized Program

(b) Optimized Program

M0: st [r0+4] = …
M1: … = ld [r1]
M2: st [r0] = …
M3: … = ld [r2]

(a) Original Program

M3: … = ld [r2]
M1: … = ld [r1]
M2: st [r0] = …
M0: st [r0+4] = …

// set AR0
// set AR1
// check AR0
// check AR0, AR1

426

matically marks the alias registers that are set by loads so that later
loads do not check against them. So in this example, M1 will not
check M3 for aliasing (i.e. not check AR3). In general, order-based
alias detection can guarantee to detect all the aliases between reor-
dered memory operations without any false positive. Table 1
shows the comparison between order-based alias detection and
alias detection on Efficeon and Itanium.

Table 1: Comparison between different HW Alias Detections

 Efficeon Itanium Order-Based
Features bit-mask ALAT ordered queue
Scalability Poor Good Good
False positive No Yes No
Detect alias between stores Yes No Yes

Even though the order-based alias detection can overcome all
the problems with Efficeon and Itanium, it has three serious draw-
backs. First, it is very inefficient in alias register usage by allocat-
ing each memory operation an alias register in program order.
Second, it may perform many unnecessary alias detections, which
costs energy. For example in Figure 4, the compiler analysis may
find that M0 and M2 never alias to each other. So M0 does not need
to check M2 (i.e. check AR2) for aliasing, even though they are
reordered in optimization. Moreover, allocating alias registers in
program order can only detect aliases if speculative memory reor-
dering is the only optimization applied, but not if there are other
optimizations such as speculative load/store elimination, which
may need alias detection between memory operations that are not
re-ordered. For example in Figure 5 (a), M1 and M4 access the
same memory location so we speculatively eliminate the load at M4
by forwarding data from M1 to M4 (see Figure 5 (b)), assuming
there is no alias between M1 and M3. To ensure correctness, M3
needs to check M1 for aliasing, even though they are not reordered
in the optimization.

Figure 5: A Speculative Load Elimination Example

2.5 SMARQ: Software-Managed Alias Register Queue
To reduce unnecessary alias register usage in order-based alias
detection and keep the alias register allocation algorithm to be fast
and suitable for dynamic optimizations, SMARQ use a constraint
order among the memory operations derived from compiler analy-
sis to enforce the order among the registers assigned to the memo-
ry operations. Our constraints not only make sure that all required
alias detections are performed, but also avoid any unnecessary
alias check that may lead to false positive alias exception. Based
on the constraint graph, SMARQ integrates alias register allocation
and instruction scheduling in a single pass, and leverage a few
architecture features to achieve the above objectives. SMARQ
improve over the order-based alias detection approaches in follow-
ing way:

• reducing unnecessary alias detection between reordered
memory operations (between M0 and M2 in Figure 4)

• performing the necessary alias detection between even non-
reordered memory operations for speculative load/store elimi-
nations (between M1 and M3 in Figure 5)

Below we will first describe the architectural features used in
SMARQ. Then we show the two components in our solution in
details: constraint analysis and alias register allocation algorithm.

3. SMARQ Architectural Features
In this section, we introduce the key architectural features in
SMARQ, which the compiler analysis can leverage to allocate alias
registers efficiently. These features include 1) protection (P) and
check (C) bits; 2) alias register rotation; 3) alias moving. These
features are useful for avoiding unnecessary alias detection, reduc-
ing alias register overflow and preventing false positive in the alias
detection.
3.1 Avoid Unnecessary Alias Detection with P/C Bits
To avoid unnecessary alias detection, in addition to the alias regis-
ter number, we allow the compiler to set a P bit to a memory oper-
ation that needs to set an alias register, and a C bit to a memory
operation that needs to check alias registers. So we get:
[ORDERED-ALIAS-DETECTION-RULE] Memory operation X
checks memory operation Y for memory aliasing if and only if:

• Y precedes X in the optimized program execution and,
• X has C bit and,
• Y has P bit and,
• The alias register allocated to X is not later than the alias

register allocated to Y in the alias register queue.
For a memory operation with both P bit and C bit, the memory

operation will check alias registers before setting the alias register
to prevent the alias detection on itself. As an example, Figure 6
shows the order-based alias detection with P/C bit for the optimi-
zation shown in Figure 2. M3 and M1 do not need to check any
earlier executed memory operation for memory aliasing. So M3
and M1 only set alias register numbers 1 and 0 respectively with P
bits without C bits. M0 and M2 do not need to set an alias register
because no later executed memory operation needs to check them
for memory aliasing. So memory operations M2 and M0 only have
C bits but no P bits. In this way, we achieve the same efficient
alias detection as Efficeon (Figure 2) without using a bit-mask.
Compared to the order-based alias detection of Memory Ordered
Buffer (Figure 4), we not only avoid the unnecessary alias detec-
tion between M0 and M2, but also reduce the alias registers used in
the optimization from 4 to 2.

Figure 6: Alias Detection with P/C bits for Optimization in Figure 2

3.2 Reduce Alias Register Overflow with Rotation
An Alias register rotation instruction increments a base alias regis-
ter pointer, BASE, by a specified value (with the wrap-around of
the circular queue), and clean up the registers between the previous
BASE and the current BASE. With register rotation, alias registers
are referenced in the program only by non-negative offsets relative
to the current BASE. As an example, Figure 7 (a) shows an alias

1
0
1
0

M3: … = ld [r2]
M1: … = ld [r1]
M2: st [r0] = …
M0: st [r0+4] = …

-
-
C
C

// set AR1
// set AR0
// check AR1
// check AR0, AR1

P
P
-
-

instruction alias annotation

M2: … = ld [r1]
M1: r2 = ld [r0+4]
M0: st [r0] = …
M3: st [r1] = …
M4: r4 = r2

 (a) Original Program (b) Optimized Program

M0: st [r0] = …
M1: r2 = ld [r0+4]
M2: … = ld [r1]
M3: st [r1] = …
M4: r4 = ld [r0+4]

427

register allocation for a reordering optimization, where M0, M1, …,
M5 represent their original program execution order. Since no
memory operation after M0 will set or check AR0, we can rotate the
alias register by 1 after M0 as shown in Figure 7 (b). After the
rotation, the base alias register pointer BASE will point to AR1, and
alias register AR0 is cleaned up and logically becomes a free alias
register at the end of the alias register queue. Then M4 needs to
use offset 1 to reference alias register AR2 instead of offset 2.
Similarly, we can rotate the alias register by another 1 after M1.

Rotation can reduce the register usage, and thus the chance of
alias register overflow. For example, if HW supports only 2 alias
registers, we can run the code in Figure 7 (b), as after the first rota-
tion, AR0 is reused as alias register AR2 at offset 1. However, we
cannot run the code in Figure 7 (a) as there is no alias register at
offset 2. In general, the maximum offset + 1 gives the minimum
number of HW alias registers required to run the code without alias
register overflow.

It seems that in Figure 7 (a), we may directly reuse and
set/check the alias register AR0 in M4 and M3 without the rotation.
However, the check of AR0 in M3 in this example may lead to a
false positive alias detection between M2 and M3 (AR1 allocated to
M2 is later than AR0). In general, reusing alias register without
rotation makes it hard for the alias register allocation algorithm to
manage the ordered alias registers to prevent false positive (see
more details in section 5). Therefore, SMARQ is designed to reuse
alias registers only through rotation.

Figure 7: An Alias Register Rotation Example

Due to the rotation of BASE, the “offset” relative to BASE does not
reflect the actual order of the alias registers in the alias register

queue. To avoid confusion, in the rest of the paper, we will use
“order” to refer to the alias register number relative to BASE 0, and
“offset” to refer to the alias register number relative to the BASE at
the memory operation execution. So in Figure 7 (b), the offset of
the register allocated to M4 is 1 (denoted offset(M4) = 1), but the
order of the register allocated to M4 is 2 (denoted order(M4) = 2)
because the BASE at M4 execution is 1 (denoted base(M4) = 1). In
general, base(X) keeps increasing in the optimized program execu-
tion with the rotation instructions and order(X) reflects the actual
order of alias registers in the circular queue with the invariance:
order(X) = base(X) + offset(X). Note that base(X) and order(X)
are independent of HW register count and can be from 0 to infini-
ty, but offset(X) must be smaller than the HW alias register count.
Since alias register allocation in SMARQ assigns an order(X) to
each memory operation X that needs an alias register, we may refer
to the allocation of alias registers as the allocation of alias register
orders.
3.3 Prevent False Positive with Alias Moving
Although order-based alias detection can guarantee to detect all the
aliases between reordered memory operations without any false
positive, the alias detection between non-reordered memory opera-
tions for speculative load/store eliminations (see an example in
Figure 5) may introduce false positives (see detailed discussions in
Section 5.3). To prevent false positives, SMARQ introduces an
alias moving instruction denoted “AMOV offset1, offset2”, which
moves the memory access range stored in the alias register at off-
set1 to the alias register at offset2. After the moving, the alias
register at offset1 is cleaned up. We also allows offset2 to be same
as offset1, which only cleans up memory access range in the alias
register at offset1 without moving it to another alias register. The
alias moving instructions can prevent all false positives in the alias
detection.

4. Constraint Analysis
In this section, we develop the compiler analysis to identifying the
necessary alias detection constraints in three general speculative
optimizations: memory operation reordering, load elimination and
store elimination. These general optimizations subsume other
specific memory optimizations, such as speculative register promo-
tion [7], etc. As the first study on this topic, we focus on optimiza-
tion in superblock regions [15], and we believe the solution can be
generalized to arbitrary code regions.
4.1 Check-constraints
In our compiler analysis, we first derive a set of check-constraints,
denoted X �check Y, such that X needs to check Y for aliasing to
ensure optimization correctness. We first consider only instruction
scheduling without speculative load/store elimination. In this case,
check-constraints can be computed in two steps. Before the in-
struction scheduling, we compute a set of dependences, denoted X
�dep Y, such that memory operation Y depends on memory opera-
tion X with the following conditions:
[DEPENDENCE] X �dep Y if:

• X precedes Y in the original program execution order and,
• X and Y may (including must) access the same memory

location and,
• At least one of X and Y is a store.
Then after the instruction scheduling, we derive the check-

constraints X �check Y from dependences X �dep Y with the
following condition:

0
1
0
-
1
0
-
0

M5: … = ld [r1+8]
M2: … = ld [r2]
M0: st [r0] = …
 rotate 1
M4: … = ld [r4]
M1: st [r1] = …
 rotate 1
M3: st [r1+4] =

(b) With Rotation

-
-
C
-
-
C
-
C

// set AR0
// set AR1
// check AR0, AR1
// rotate BASE to AR1
// set AR2
// check AR1, AR2
// rotate BASE to AR2
// check AR2

P
P
-
-
P
-
-
-

(a) Without Rotation

(c) Dependences (d) Constraints

Check-Constraint

Dependence

Anti-Constraint

M0

M1

M2

M3

M4

M5

M5 (P)

M2 (P)

M0 (C)

M4 (P)

M1 (C)

M3 (C)

0
1
0
2
1
2

M5: … = ld [r1+8]
M2: … = ld [r2]
M0: st [r0] = …
M4: … = ld [r4]
M1: st [r1] = …
M3: st [r1+4] =

-
-
C
-
C
C

// set AR0
// set AR1
// check AR0, AR1
// set AR2
// check AR1, AR2
// check AR2

P
P

P
-
-

428

[CHECK-CONSTRAINT] X �check Y if:
• X �dep Y and,
• Y precedes X after scheduling.
As an example, for the memory reordering in Figure 7, Figure

7 (c) shows all the dependences before scheduling. The solid
edges in Figure 7 (d), on the other hand, show all the check-
constraints derived from dependences after scheduling. There is
no dependence M1 �dep M5 or M3 �dep M5 since the compiler
can easily disambiguate them. Due to that, there is no check-
constraint M1 �check M5 or M3 �check M5, even though they are
reordered in the scheduling. For each check-constraint X �check
Y, we set the C bit to X and the P bit to Y, as shown aside with the
memory operations in Figure 7 (d).

To handle speculative load elimination, we only need to extend
dependences with the following condition:
[EXTENDED-DEPENDENCE 1] If a load Z is eliminated specula-
tively by forwarding data from an earlier memory operation X (a
store or a load) to Z, we add extended dependences Y �dep X for
all stores Y satisfying:

• Y is between X and Z in the original program execution
order and,

• Y and X may access the same memory.
As an example, in the optimization with speculative load eli-

mination in Figure 5, M1 and M4 access the same memory location
so we speculatively eliminate the load at M4 by forwarding data
from M1 to M4, and according to EXTENDED-DEPENDENCE 1,
derive the extended dependence M3 �dep M1, as shown in Figure
8 (a). With the extended dependence, we derive a check-
constraint M3 �check M1 after the scheduling according to
CHECK-CONSTRAINT, as shown by the bold edge in Figure 8
(b). This is necessary because we need to enforce the alias detec-
tion between M1 and M3 in order for the load elimination to be
correct, even though M1 and M3 are not reordered. Note that there
are both dependence M1 �dep M3 and extended dependence M3
�dep M1 in Figure 8 (a). So depending on the orders between M1
and M3 after the scheduling, we will have either check-constraint
M1 �check M3 or M3 �check M1 to enforce the alias detection
between M1 and M3.

Figure 8: Dependences and Constraints for Optimization in Figure 5

Similarly, to handle speculative store elimination, we only need
to extend dependences with the following condition:
[EXTENDED-DEPENDENCE 2] If a store X is eliminated due to
the overwriting of the same memory location by a later store Z, we
add extended dependence Z �dep Y for all loads Y satisfying:

• Y is between X and Z in the original program execution
order and,

• Z and Y may access the same memory.
Figure 9 shows an example for speculative store elimination.

M5 overwrites the same memory location as accessed by M0. So

we speculatively eliminate M0, and according to EXTENDED-
DEPENDENCE 2, derive the extended dependence M5 �dep M1,
as shown in Figure 9 (c). With the extended dependence, we de-
rive the check-constraint M5 �check M1 as shown by the bold
edge in Figure 9 (d). This is necessary because we need to enforce
the alias detection between M1 and M5 in order for the store elimi-
nation to be correct, even though M1 and M5 are not reordered after
optimization. It is interesting that in EXTENDED-DEPENDENCE
2, we add extended dependence Z �dep Y only for load Y between
X and Z, but not for store Y between X and Z. Due to that, we do
not enforce the alias detection between M2 and M5, or between M4
and M5, as the aliases between them do not affect the correctness
of the store elimination (i.e. there is no need for check-constraint
M5 �check M2 or M5 �check M4).

Figure 9: A Speculative Store Elimination Example

4.2 Anti-Constraints
In the optimization example shown in Figure 5, we get the check-
constraints M0 �check M2 and M3 �check M1, as shown in Figure
8 (b). Due to ORDERED-ALIAS-DETECTION-RULE (described
in Section 3), the alias detection between M0 and M2 requires or-
der(M0) ≤ order(M2), and the alias detection between M3 and M1
requires order(M3) ≤ order(M1). If we allocate order(M2) < or-
der(M1), transitively, we will have order(M0) ≤ order(M2) < or-
der(M1), which means that M0 will additionally check M1 for alias-
ing. The resulting alias detection is shown in Figure 10 (a) (note
the additional check of AR1 by M0). Similarly, if we allocate or-
der(M1) < order(M2), transitively, we will have order(M3) ≤ or-
der(M1) < order(M2), which means that M3 will additionally check
M2 for aliasing. The resulting alias detection is shown in Figure 10
(b) (note the additional check of AR1 by M3). In either case, we
have to perform an additional alias detection not specified in the
check-constraints in Figure 8 (b).

Although the additional detection between M0 and M1 in Figure
10 (a) is benign (i.e. will never generate alias exception), the addi-
tional alias detection between M2 and M3 in Figure 10 (b) will gen-
erate an alias exception, even though the alias does not affect the
optimization correctness. This false positive will result in expen-
sive rollback of execution.

To prevent false positive, our compiler analysis also derives
anti-constraint, denoted X �anti Y, such that X should not be
checked by Y. So for the optimization in Figure 5, we need to
derive the anti-constraint M2 �anti M3 to prevent M2 from being
checked by M3. Figure 11 shows how to prevent false positive

M1: … = ld [r1]
M4: st [r4] = …
M2: st [r2] = …
M5: st [r0] = …
M3: … = ld [r0+4]

(d) Constraints

Anti-Constraint
Check-Constraint

M1 (P)

M4 (P)

M2 (C)

M5 (C)

M3 (C)

(a) Original Program

(b) Optimized Program

M0: st [r0] = …
M1: … = ld [r1]
M2: st [r2] = …
M3: … = ld [r0+4]
M4: st [r4] = …
M5: st [r0] = …

(c) Dependences
M1

M2

M3

M4

M5

Dependence

Anti-Constraint
Check-Constraint

Dependence

M2 (P)

M1 (P)

M0 (C)

M3 (C)

(a) Dependences

M0

M1

M2

M3

(b) Constraints

429

with anti-constraints. There are multiple alias register allocations
(i.e. allocation 1 and allocation 2) that can perform all the alias
detections enforced by check-constraints. However, allocation 2
also performs certain alias detections prohibited by anti-constraints
which may lead to false positive. Our alias register allocation al-
gorithm aims to find allocation 1, which performs all the alias de-
tections enforced by the check-constraints without any alias detec-
tions prohibited by the anti-constraints.

Figure 10: False Positive for the Example in Figure 5

Figure 11: Preventing False Positive

An anti-constraint X �anti Y is needed only if X and Y may
alias to each other. So we compute the anti-constraints X �anti Y
from the subset of dependences X �dep Y such that X precedes Y
after scheduling. Moreover, if Y �check X, then Y does need to
check X for aliasing to ensure optimization correctness. We cannot
prohibit Y from checking X in that case (Remember that X �anti
Y means Y cannot check X, which is opposite to what Y �check X
means). So an anti-constraint X �anti Y can be enforced only
when there is no Y �check X. At last, since only a memory opera-
tion X with P bit may be checked by a memory operation Y with C
bit, an anti-constraint X �anti Y is needed only if X has P bit and Y
has C bit. In summary, we compute the anti-constraints X �anti Y
with the following condition:
[ANTI-CONSTRAINT] X �anti Y if:

• X �dep Y and,
• X precedes Y after scheduling and,
• there is no Y �check X and,
• X has P bit and,
• Y has C bit.
As an example in Figure 8 (b), we will derive the anti-

constraint M2 �anti M3, with ANTI-CONSTRAINT. There is no

anti-constraint M1 �anti M3 due to M3 �check M1. There is also
no anti-constraint M0 �anti M3 because M0 does not have P bit.

5. Alias Register Allocation Algorithm
In this section, we show how to allocate alias registers to memory
operations to satisfy all the check-constraints and anti-constraints.
These constraints together form a constraint graph. First, we show
how to perform a fast allocation if there is no cycle in the con-
straint graph. Then based on that, we show how to handle cycles.
We then discuss how to avoid register overflow. Finally, we put
together all of these parts into a complete algorithm.
5.1 Fast Alias Register Allocation in Constraint Order
According to ORDERED-ALIAS-DETECTION-RULE, we have:
[REGISTER-ALLOCATION-RULE]

• Given a check-constraint X �check Y, the alias register allo-
cated to X must be no later than the alias register allocated to
Y, i.e. order(X) ≤ order(Y).

• Given an anti-constraint X �anti Y, the alias register allo-
cated to X must be earlier than the alias register allocated to Y,
i.e. order(X) < order(Y).

So the constraints naturally provide the orders for alias registers. If
there is no cycle in the constraint graph, we can simply allocate
alias registers to memory operations with a topological traversal of
the constraint graph:
[FAST ALGORITHM] We use next_order to keep track of the
next available alias register (i.e. its order) to be allocated, which is
initialized to 0. We traverse memory operations in a topological
order of the constraint graph to allocate alias registers. For a
memory operation X, if P(X) is set, we allocate a new alias register
order to X with order(X) = next_order and increase next_order by
1. If only C(X) is set, we just set order(X) = next_order without
increasing next_order.

Without alias register rotation, we can directly use order(X)
computed in FAST ALGORITHM as the alias register offset to
satisfy all the constraints. As an example, for the optimization
shown in Figure 7, we can allocate the alias registers in the topo-
logical order M0, M5, M1, M2, M3, M4 of the constraint order in
Figure 7 (d) and get the alias register allocation as shown in Figure
7 (a).

Alias register overflow happens when an alias register offset is
equal to or larger than the physical alias register count. Given
order(X), due to the invariance order(X) = base(X) + offset(X), we
can minimize offset(X) by maximizing base(X) through alias regis-
ter rotation. Assume base(X) = i. Then all alias registers with
orders in the range [0, i-1] are released at the execution of X and
can no longer be set/checked by X or any memory operations ex-
ecuted after X. So mathematically, we can compute maximum
base(X) with the formula:

[MAX-BASE] base(X) = MIN {order(Y)| ∀Y that is X or succeeds
X after scheduling}.

Then we needs to insert rotating instruction “rotate base(X2) –
base(X1)” between two consecutive memory operations X1, X2 if
base(X1) < base(X2). For the alias register allocation shown in
Figure 7 (a), by maximizing base(X), we will get base(M5) =
base(M2) = base(M0) = 0, base(M4) = base(M1) = 1, base(M3) = 2,
and the register allocation shown in Figure 7 (b).

Alias detections enforced by check-constraints

Alias detections prohibited by anti-constraints

Alias detections performed with alias register allocation 1

Alias detections performed with alias register allocation 2

0
1
0
1
-

M2: … = ld [r1]
M1: r2 = ld [r0+4]
M0: st [r0] = …
M3: st [r1] = …
M4: r4 = r2

(a) Alias Register Allocation 1

-
-
C
C
-

// set AR0
// set AR1
// check AR0, AR1
// check AR1

P
P
-
-
-

1
0
1
0
-

M2: … = ld [r1]
M1: r2 = ld [r0+4]
M0: st [r0] = …
M3: st [r1] = …
M4: r4 = r2

(b) Alias Register Allocation 2
-
-
C
C
-

// set AR1
// set AR0
// check AR1
// check AR0, AR1

P
P
-
-
-

430

5.2 Handle Cycles in Constraint Graph
For an optimization that only speculatively reorders memory oper-
ations in superblocks, the constraint order cannot contain cycles
because all the dependences and hence all the constraints (which
are subset of dependences) follow the original program execution
order. This is the reason that the alias register allocation in pro-
gram order can always detect all the aliases without any false posi-
tive. However, with the speculative load/store elimination, we
introduce extended dependences in the backward execution order
of the original program. Hence we may encounter cycles in the
constraint graph as shown in Figure 9 (d).

Figure 12: AMOV for the Example in Figure 9
According to REGISTER-ALLOCATION-RULE, no alias reg-

ister order can satisfy all the constraints in Figure 9 (d). So we
need to insert an alias moving instruction AMOV to break the
cycles. Figure 12 (b) shows the same constraints as Figure 9 (d).
Suppose an AMOV instruction M4’ is inserted between M2 and M5
to move the memory access range from the alias register allocated
to M4 to the new alias register allocated to M4’ (how to choose an
alias register to move is explained later in Section 5.4). Then con-
straints M3 �check M4 and M4 �anti M5 need to be changed to M3
�check M4’ and M4’ �anti M5 respectively as shown in Figure 12
(c), as at the execution of M3 and M5, the alias access range of M4
will stay in the alias register allocated to M4’ instead of the alias
register allocated to M4. So the alias moving instruction M4’
breaks the cycles in Figure 12 (b) to get the constraints without
cycle as shown in Figure 12 (c). Allocating the alias registers in
constraint order in Figure 12 (c) will get the alias register alloca-
tion as shown in Figure 12 (a). Instruction M4’ moves the memory
access range from AR2 (i.e. the alias register allocated to M4) to
AR0 (i.e. the alias register allocated to M4’). Then M5 will not
check M4 for aliasing. However, M3 still can check the memory
access range of M4 in AR0 for aliasing.

In many cases, the AMOV instruction does not really need an
additional alias register to save the memory access range, and the
AMOV often needs merely to clean up the memory access range in

the source alias register to avoid false positive. We will quantify
this effect in the experiment section.
5.3 Prevent Alias Register Overflow
Since there is no hardware support to spill alias register, we embed
our alias register allocation within a list scheduling framework so
that we can allocate alias register during the instruction scheduling.
In this way, we can dynamically adjust the schedule to prevent
alias register overflow. Our list scheduler schedules the instruc-
tions in two different modes. When there are enough alias regis-
ters and thus no danger of overflow, we schedule instructions in
the speculation mode, which speculatively reorders memory opera-
tions with alias registers. When the alias register may overflow,
we switch to the non-speculation mode, which only rotates alias
registers to release unused alias registers without allocating new
alias registers. After releasing enough alias registers, we will
switch back to the speculation mode.
5.4 Overall Alias Register Allocation Algorithm
The overall algorithm for the alias register allocation is shown as
pseudo code in Figure 13, with details discussed in following sec-
tions. Note that alias register allocation is integrated with list
scheduling, and we omit any necessary steps required by scheduler
here.
5.4.1 Algorithm Overview
Initialization (lines 1-3): The algorithm begins with initializing
required information. All the dependences are calculated for mem-
ory operations. For detecting cycles in the constraint graph, a par-
tial order T(X) for each memory operation X is initialized to the
original program execution order (line 2). The details on cycle
detection with T(X) are explained later in this section.
Incrementally Building Constraints (lines 8-17): After schedul-
ing a memory operation Y in the list scheduler, we incrementally
build the constraints by adding all the constraints X �check Y and
X �anti Y (line 11 and 14).

Once a memory operation Y is scheduled, all the dependences
X �dep Y are examined for adding corresponding constraints (line
8). In our list scheduler, the schedule is constructed by filling time
slots in an increasing manner. That is, instructions scheduled later
than X are always placed in the same or later time slots. Since
check-constraints are always in a backward direction in the sche-
dule and anti-constraints are always in a forward direction in the
schedule, we only need to consider not-yet-scheduled instructions
for check-constraints, while only considering already-scheduled
instructions for anti-constraints. Lines 9 and 13 show the condi-
tions for adding check-constraints and anti-constraints, respective-
ly.
Cycle Detection (lines 33-54): An incremental cycle detection
algorithm [12] is employed for cycle detection in the constraint
graph. The algorithm maintains the following partial order T for all
the instructions to ensure that there is no cycle in the constraint
graph.
Invariance: if there exists a constraint X �check Y or X �anti Y,
then T(X) < T(Y)

We first initialize T(X) for all the instructions to the original
program execution order (line 2). Since there is no constraint add-
ed yet, the invariance holds at this point. As we add each constraint
X �check Y or X �anti Y, we check if the invariance T(X) < T(Y)
is met. If not (i.e. T(X) � T(Y)), we take necessary actions so that
the invariance is met throughout all the constraints.

// set AR1
// set AR2
// check AR2
// move AR2 to AR0
// check AR1 (no AR2)
// check AR0

(b) Constrains without AMOV
M1 (P)

M4 (P)

M2 (C)

M5 (C)

M3 (C)

M1 (P)

M4 (P)

M2 (C)

M5 (C)

M3 (C)

M4’ (P)

Check-Constraint Anti-Constraint

1
2
2
0
1
0

M1: … = ld [r1]
M4: st [r4] = …
M2: st [r2] = …
M4’: AMOV 2, 0
M5: st [r0] = …
M3: … = ld [r0+4]

(a) Optimized Program

-
-
C
-
C
C

P
P
-
P
-
-

(c) Constraints with AMOV

431

For a check-constraint X �check Y, we simply decrease T(X)

to T(Y) – 1 (line 12) to ensure the invariance. Since X is not sche-
duled yet, there is no constraint * �check X or * �anti X yet.
Therefore, this action will neither break any existing invariance
conditions nor create any cycle in the constraints.

However, adding an anti-constraint X �anti Y requires more
complicated step (detect_cycle() in line 33), since it can create a
cycle. We first build a set H of instructions that are reachable from
Y in the constraint order (including Y itself). If X is not in H, there
is no cycle created and we simply increase the order numbers of Y
and its connected component (set H) as in line 37-38. When a
cycle is detected (X is in set H), we break the cycle by inserting an
AMOV instruction (X’) just before Y (line 40). After the execution
of X’, the memory access range for X is transferred to the alias
register allocated to X’. So, all the instructions not yet scheduled (Z)
should check X’ instead of X (line 42). We also need to remove the
original anti-constraint X �anti Y (line 46) and add a new one X’
�anti Y if P(X’) is set (line 48). Finally, X’ is put into the de-
lay_queue since it is not ready for allocation yet.
Allocation (lines 56-75): First, we remember the base pointer at Y
execution in base(Y). This is used to calculate the offset of the
allocated register (offset(Y)). We maintain two FIFO queues for
allocation: ready_queue and delay_queue. If Y has no constraints *
�check Y or * �anti Y, Y is ready for allocation and put into
ready_queue. Otherwise, allocation is delayed by putting it into
delay_queue. For instructions X in ready_queue, a simple alloca-
tion is performed as in line 64-65. When the alias register for an
instruction X is allocated, we delete all the constraints X �check Z
or X �anti Z. This could make other instructions (Z) in de-
lay_queue ready for allocation and we can continue with them.
Due to the delayed alias register allocation, an alias register is allo-
cated only when the last instruction that uses it is scheduled (i.e.
the alias register can be released after the scheduled instruction).
So we rotate the base pointer after the scheduled instruction with
the amount of newly allocated registers (line 72-73) and dequeue
allocated memory operations from the head of delay_queue (line
74).
Preventing Overflow (lines 21-31): To avoid overflow, we need
to ensure that offset(X) should not equal to or exceed the number of
physical alias registers. We bound the maximum possible offset
with the following three numbers.

First, we estimate the minimum possible base pointer (line 22).
Then the maximum register order (max_order) is estimated. In
addition to the allocated registers (next_order), each instruction Z
with P(Z) set in delay_queue requires a new alias register so we
estimate that they each will use a separate alias register (line 23).
Thirdly, we need to consider the future register usage due to not-
yet-scheduled instructions. Even if we follow the data depen-
dences without speculation, we might still need more alias registers
for extended dependences introduced by load/store eliminations
(line 24). The maximum possible offset is conservatively calcu-
lated (line 25) and it is compared against the number of physical
alias registers to determine the memory reordering policy in the list
scheduler.
5.4.2 Allocation Example
As an example of alias register allocation, let’s take a look at the
optimization performed in Figure 7. After scheduling M5, we insert
a check-constraint M0 �check M5 and delay the allocation for M5.
Similarly, after scheduling M2, we insert check-constraints M0
�check M2, M1 �check M2 and delay the allocation for M2 as
well. Then when scheduling M0, we allocate next_order 0 (i.e.

1 compute all dependences (including extended dependences);
2 initialize all T(X) to the original program execution order;
3 next_order = 0;
4
5 while (there is not-scheduled instruction) {
6 Y = next_instruction(); // next instruction for scheduling
7 if (Y is not memory instruction) continue;
8 for (all dependences X �dep Y) {
9 if (X is not scheduled) {
10 set C(X), P(Y);
11 add X �check Y;
12 if (T(X) � T(Y)) T(X) = T(Y) – 1;
13 } else if (offset(Y) not set, P(X), C(Y), no Y �check X) {
14 add X �anti Y;
15 if (T(X) � T(Y)) detect_cycle(X, Y);
16 }
17 }
18 if (P(Y) or C(Y)) allocate_reg(Y);
19 }
20
21 next_instruction() {
22 min_base = base(head of delay_queue);
23 max_order = next_order + # of Z’s with P(Z) in delay_queue;
24 reserved = # of non-scheduled Z’s
 with extended dependences * �dep Z;
25 max_offset = max_order – min_base + reserved;
26 if (max_offset � # physical alias registers)
27 schedule Y without speculation;
28 else
29 schedule Y with speculation;
30 return Y;
31 }
32
33 detect_cycle(X, Y) { // for X �anti Y
34 delta = T(X) – (T(Y) – 1);
35 set H = instructions reachable from Y in constraint order;
36 if (X not in set H) { // no cycle detected
37 for (all instruction Z in H)
38 T(Z) = T(Z) + delta;
39 } else { // cycle detected
40 insert AMOV(X’) before Y;
41 for (all Z �check X, Z not scheduled) {
42 replace Z �check X with Z �check X’;
43 set P(X’);
44 T(Z) = T(Z) – delta;
45 }
46 remove X �anti Y;
47 if (P(X’)) {
48 add X’ �anti Y;
49 T(X’) = T(Y) – 1;
50 add X’ to delay_queue;
51 base(X’) = next_order;
52 }
53 }
54 }
55
56 allocate_reg(Y) {
57 base(Y) = next_order;
58 if there is no *�check Y or *�anti Y
59 add Y into ready_queue;
60 else
61 add Y into delay_queue;
62 while (ready_queue not empty) {
63 X = ready_queue.dequeue();
64 offset(X) = next_order – base(X);
65 if (P(X)) next_order++;
66 for (X �check Z or X �anti Z) {
67 delete X �check Z or X �anti Z;
68 if (there is no *�check Z or *�anti Z)
69 add Z into ready_queue;
70 }
71 }
72 if (next_order > base(Y))
73 insert rotate instruction after Y by next_order – base(Y);
74 dequeue all X at the head of delay_queue if offset(X) is set
75 }

Figure 13: Alias Register Allocation Algorithm

432

offset(M0) = 0) to M0 with C bit. After the register allocation for
M0, we delete the check-constraints M0 �check M5 and M0
�check M2. Since there is no constraint * �check M5 or * �anti
M5, M5 becomes ready for allocation. Then we allocate next_order
0 (i.e. offset(M5) = 0) to M5 with P bit and increase next_order by
1. We also insert rotation by 1 after M0 to rotate the allocated alias
register at order 0. After scheduling M4, the alias register alloca-
tion for M4 is delayed due to the check-constraint M1 �check M4
and M3 �check M4. Since now next_order is 1, base(M4) will get
1, which indicates that BASE is 1 at the execution of M4. When
scheduling M1, we will allocate next_order 1 to M1 with C bit and
delete the check-constraint M1 �check M2 and M1 �check M4.
Since base(M1) is 1, we will get offset(M1) = next_order –
base(M1) = 0. Now M2 becomes ready for register allocation and
we allocate next_order 1 to M2 with P bit and increase next_order
to 2. Since base(M2) is 0, we will get offset(M2) = 1. After M1, we
insert rotation by 1 to rotate the allocated alias register at order 1.
At last after scheduling M3, we allocate next_order 2 to M3 and M4.
Since base(M3) is 2 and base(M4) is 1, we get offset(M3) = 0 and
offset(M4) = 1. The final register allocation will be as shown in
Figure 7 (b).
5.4.3 Cycle Detection Example
We take the constraints in Figure 12 (b) (based on the optimization
shown in Figure 9) and illustrate how the cycle detection algorithm
[12] works in our allocation scheme. We initialize T(M1) = 1,
T(M2) = 2, T(M3) = 3, T(M4) = 4 and T(M5) = 5. After scheduling
of M1, we add check-constraint M5 �check M1 and delay the alias
register allocation for M1. Since T(M5) � T(M1), we update T(M5)
= T(M1) – 1 = 0. After the scheduling of M4, we add check-
constraint M2 �check M4 and M3 �check M4, and delay the alias
register allocation for M4. After the scheduling of M2, we add anti-
constraint M1 �anti M2 and delay the alias register allocation for
M2. When scheduling M5, we need to add anti-constraint M4 �an-
ti M5. However, T(M4) � T(M5). Then we find the set H = {M5,
M1, M2, M4} of instructions that are reachable from M5. Since M4
is in set H, a cycle will be created with the adding of anti-
constraint M4 �anti M5. So we insert an alias moving instruction
M4’ before M5 to move the memory access range of M4. We then
replace the check-constraint M3 �check M4 with M3 �check M4’,
add anti-constraint M4’ �anti M5 and delay the alias register allo-
cation for M4’ and M5. We also set T(M4’) = -1 and update T(M3)
to -2. The resulting constraints are as shown in Figure 12 (c). At
last we schedule M3 and allocate alias registers to all the instruc-
tions in delay_queue. The resulting code and alias register alloca-
tion is shown in Figure 12 (a).

Table 2: Architecture parameters

Architecture Features Parameter

8-wide VLIW 2 INT units, 2 FP units, 2 MEM
unit, 1 BRANCH unit, 1 ALIAS
unit

L1 I-Cache 4-way 256KB

L1 D-Cache 4-way 64KB, HW prefetch

L2 Cache 8-way 2MB, 8 cycle latency,
HW perfetch

L3 Cache 8-way 8MB, 25 cycle latency

Memory 1GB, 104 cycle latency

6. Experiments
We evaluate SMARQ in a dynamic optimization framework as

shown in Figure 1, which translates and optimizes x86 binary
codes into code running on an internal VLIW CPU modeled by a
cycle-accurate simulator. The VLIW simulator supports atomic
region execution [10, 11] with 64 alias registers. Table 3 lists the
important architecture parameters for the VLIW simulator.

Our dynamic optimizer forms superblock regions for optimiza-
tion similar to [6]. X86 binary code is first executed through inter-
pretation. The system profiles the execution for hot basic blocks.
When a hot block is identified (i.e. the execution count of a basic
block reaches a threshold for hotness), the dynamic optimizer
forms a region along the hot execution paths starting from the ba-
sic block until it reaches a cold block (i.e. execution count lower
than a threshold for coldness). After region formation, the x86
binary code is translated into an Internal Representation (IR) for
optimizations. Table 2 lists the important optimizations. After all
the optimizations, the optimizer performs register allocation and
then the instruction scheduling algorithm as shown in Figure 13.

Table 3: Important Optimizations

If-conversion Copy propagation Loop invariant hoisting

Load elimination Store elimination Dead code elimination

Constant propagation Alias analysis Common sub-expression
elimination

SMARQ focus on a suite of SPECFP 2000 benchmarks, which
can form large superblocks for optimization, to show the benefit of
SMARQ. Figure 14 shows the average number of memory opera-
tions in superblocks.

Figure 14: Average Number of Memory Operations in Superblocks

For each benchmark we select 10 code segments for our expe-
riment. The simulated code segments are selected to be repre-
sentative of the applications. We simulate each segment for 1
billion x86 instructions functionally to warm up dynamic optimiza-
tions, 30 million instructions cycle-accurately to warm up micro-
architectural state, and 100 million instructions cycle-accurately to
collect performance data.
6.1 Performance Improvement
Figure 15 shows the speedups of SMARQ and two other alias de-
tection schemes. The first one (SMARQ16) models an alias detec-
tion approach that uses only 16 ordered alias registers (we may
refer to it as Efficeon-like since Efficeon scheme can only supports

0

10

20

30

40

50

60

M
em

or
y

O
pe

ra
ti

on
s

433

15 alias registers). The second scheme (Itanium-like) models an
alias detection approach that does not consider alias register orders.

The left bar shows the speedup with SMARQ. Overall, opti-
mizations with SMARQ improve the performance by 39% as com-
pared to that without hardware alias detection support. The middle
bar in Figure 15 shows the speedup of SMARQ16 with only 16
alias registers. On average, we get 29% speedup, a 10% smaller
speedup than SMARQ. For ammp, the impact is as high as 30%
due to the large number of memory operations in the superblocks,
as shown in Figure 14. So the scalable alias register scheme in
SMARQ is important for speculative optimization on programs
with large superblocks. We believe SMARQ is even more
promising for larger region and loop level optimizations. The right
bar in Figure 15 shows the speedup with the Itanium-like model.
With the non-ordered alias detection, we can only get 26% spee-
dup, a 13% smaller speedup than SMARQ. For ammp, the impact
is as high as 47%.

Figure 15: Speedup with Different Alias Detection

Note that, Itanium alias detection may not even achieve the
performance in the right bar of Figure 15 because Itanium cannot
detect alias between reordered stores. Figure 16 shows the per-
formance impact of disabling store reordering. Without the store
reorder in the optimization, on average, we observe 2.6% perfor-
mance impact. For mesa, the impact is as high as 13%. Note that
the ammp benchmark shows slight performance loss with store
reorder. This can happen when the reordered stores alias to each
other at runtime and cause execution rollback.

Figure 16: Impact of Store Reordering

6.2 Working Set Reduction
In SMARQ, all the live alias registers stay in a slide window refe-
renced through alias register offsets. The window is from the cur-
rent BASE to the maximum offset. So the maximum offset + 1

determines the size of the alias register working set. To prevent
alias register overflow, the size of the alias register working set
cannot exceed the physical alias register count.

The straightforward alias register allocation in program order
cannot handle speculative load/store elimination, so we cannot
directly compare performance with it. Since supporting aggressive
reordering without alias register overflow is the key to perfor-
mance, we collect statistics for the working set in the alias register
allocation, as shown in Figure 17. All the data are normalize to the
number of memory operations averaged over all the superblocks,
which represents the size of the alias register working set by allo-
cating each memory operation an alias register in program order.
The first bar shows the number of memory operations that have P
bits, which represents the size of the working set by allocating alias
registers in program order to the memory operations that set alias
registers. The second bar shows the size of the alias register work-
ing set in SMARQ. We can see that SMARQ can reduce the alias
register working set by 74% as compared to the straightforward
alias register allocation for each memory operation in program
order. Even compare to the alias register allocation in program
order for only the memory operations that set alias registers (i.e.
the first bar), SMARQ can reduce the working set by 25% through
rotation.

Given a check-constraint X �check Y, the alias register set by
Y needs to be kept alive between the execution of instruction Y and
instruction X. So like traditional register allocation, the maximum
number of live-ranges that cross any program point provides a
lower-bound on the size of the alias register working set in all
possible alias register allocations. The last bar of Figure 17 shows
that lower-bound. We can see that the size of the alias register
working set in our fast alias register allocation with constraint or-
der is close to the lower bound.

Figure 17: Alias Register Working Set

6.3 Optimization Overhead
To measure the optimization overhead, we put special markers

(symbols) around our algorithm implementation. During simula-
tion, the simulator will detect the markers and record the execution
time to measure the optimization overheads. Figure 18 shows the
translation overheads. The left bar shows the percentage of execu-
tion time spent in the overall optimization and the right bar shows
the percentage of execution time spent in the scheduling. Overall,
only 0.05% of execution time is spent in the optimization. Within
it, around half of time is spent in the scheduling, which includes
our alias register allocation.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Sp
ee

du
p

SMARQ SMARQ16 Itanium-Like Approach

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Sp
ee

du
p

SMARQ no store reorder

0

0.1

0.2

0.3

0.4

0.5

0.6

memory operations with P bit SMARQ lower-bound

434

Figure 18: Optimization Overhead

6.4 Alias Register Allocation Statistics
To further show the efficiency of SMARQ, Figure 19 shows the
number of constraints normalized to the number of memory opera-
tions. On average, for each scheduled memory operation, we in-
sert 1.3 check-constraints and 0.1 anti-constraints. So the con-
straint graph is very sparse and the number of edges in the con-
straint graph is close to the number of memory operations.

Figure 19: Constraint Count

Figure 20: Statistic Data in Cycle Detection

Figure 20 shows the statistics on the cycle detections and
AMOV insertions. All the data are normalized to the number of
scheduled memory operations. The left bar show the number of
cycle detections (i.e. detect_cycle() in Figure 13). The middle bar
shows the number of cycles detected. On average, only 1.5%
scheduled memory operations need to detect cycles and about 1%
are inside cycles that need to insert the AMOV instructions. The

right bar shows the number of inserted AMOV instructions that
need to set an alias register (i.e. with P bit). In majority of the
cases, the AMOV instruction does not need to set an alias register
(i.e. just clean up the memory access range in an alias register
without copying it to a new alias register).

7. Related Works
Dynamic binary optimization morphs existing binary programs to
improve performance [6,17], save power [16], enhance security,
reliability, and parallelism [20]. Architectural supports, such as
atomic region [10,11] and alias registers [3,4] are crucially impor-
tant for aggressive instruction scheduling and speculative optimi-
zations, due to many constraints at binary level [18].

Compiler managed data speculation has been considered an
important technique for instruction scheduling [1,3,5,7,8]. DAISY
[17] used a load-verify instruction to reload the value of a pre-
viously speculated load in program order. Itanium [2] uses ALAT
(Advanced Load Address Table) to enable scheduling of load
above stores. The load moved above a store is encoded as an ad-
vanced load, and in the original load location there is a check-load
to verify that no stores have invalidated the advanced load. This
scheme requires each store to check all the advanced loads ex-
ecuted before the store and may result in false positives. Also it
cannot be used for general instruction scheduling (e.g. move store
above aliased store) or optimizations (e.g. store load forwarding,
etc).

The Transmeta Effecion [6] uses a mask to selectively check
multiple registers without false positive. It can also support sche-
duling of stores. However, the scheme is not scalable and limits
the number of alias registers to the width of the bit-mask.

There is a proposal to use order-based alias detection for in-
struction scheduling [4]. However, it targets primarily at reorder-
ing memory operations. It has serious limitation when apply to
other speculative optimizations, such as load/store eliminations.
We identified the potential false positive issue and extended hard-
ware support with the novel register move technique to handle
potential false positive issues. We developed a novel fast algorithm
to allocate the alias registers in constraint order and demonstrated
its effectiveness via extensive experiment.

The study in [9] shows that compiler managed data speculation
is less useful in a source compiler due to recent advance in static
alias analysis techniques, and is significantly more useful in a dy-
namic binary optimization environment where sophisticated alias
analysis is impractical. A simple and fast binary level alias analy-
sis technique was proposed in [13]. However, it can only discover
a small subset of aliases, mostly those between direct memory
accesses and those indexed by stack-frame registers [14]. The
technique proposed in [14] can discover reasonable amount of alias
between memory operations indexed by non-stack-frame registers.
Although it is useful for static analysis of executable files, it is
impractical for dynamic optimizations, as it may take hours to
analyze one binary. Speculative alias analysis [1] uses memory
region analyses and profile information to increase alias analysis
coverage, and use checking and recovery code for correctness.
The increased alias analysis coverage can help our speculative
optimizations to filter out the likely aliased cases and reduce re-
covery overhead.

0.00%
0.02%
0.04%
0.06%
0.08%
0.10%
0.12%
0.14%

optimization schedule

0

0.5

1

1.5

2

2.5

memory operation check-constraint anti-constraint

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

cycle detections detected cycles AMOV_P

435

8. Conclusion and Future Work
In this paper, we first studied in details the order-based alias

detection mechanism and identified two serious limitations. First,
it can potentially generate false positives when it is used to support
general speculative optimizations. Second, it imposes serious chal-
lenge to the allocation algorithm and a straightforward allocation
in program order unnecessarily uses too many alias registers. We
extended the mechanism with a simple alias-move instruction to
avoid potential false positive, and develop a novel fast allocation
algorithm to use the alias registers not only in instruction schedul-
ing, but also in speculative optimizations. The new algorithm can
avoid all the potential false positives so all the aliases detected will
affect the optimization correctness. Our experiments show that
dynamic binary optimization on a VLIW processor with 64 alias
register can improve the overall performance by 39% as compared
to the optimization without alias register. Our software-managed
order-based alias detection can reduce the alias register working
set by 74% over the straightforward allocation in original program
execution order.

This work can be extended in several directions. First, we have
informally argued that register “rotation” is the preferred method
for reusing order-based alias registers. It would be interesting to
prove that the traditional lifetime analysis may not be able to
achieve better register usage efficiency than our SMARQ algo-
rithm for order-based alias registers. Second, our alias register
allocation algorithm is integrated with a list scheduler. We may try
to integrate the allocation algorithm with other instruction schedul-
ing techniques, such as software pipelining, etc.

References
1. Manel Fernández , Roger Espasa, Speculative Alias Analysis for

Executable Code, Proceedings of the 2002 International Conference
on Parallel Architectures and Compilation Techniques, p.222-231,
September 22-25, 2002

2. Crawford, J., “Introducing the Itanium Processors.” IEEE Micro,
Volume: 20 Issue: 5, Sept.-Oct. 2000, Page(s): 9 –11

3. Gallagher, David M., Chen, William Y., Hwu, Wen-mei W., “Dy-
namic Memory Disambiguation Using the Memory Conflict Buffer,”
ACM SIGPLAN notices, NOV 01 1994 v 29 n 11, Page: 183

4. Holscher, Brian; Rozas, Guillermo; Van Zoeren, James; Dunn, David,
“Systems and methods for reordering processor instructions,” United
States Patent 7634635

5. Huang, A. S., G. Slavenburg, and J. P. Shen, "Speculative Disambig-
uation: A Compilation Technique for Dynamic Memory Disambigua-

tion, "In Proc.of the 21st Annual Int'l Symp. on Computer Architec-
ture, pp. 200-210, April 1994.

6. K. Krewell, “Transmeta Gets More Efficeon”, Microprocessor re-
port. v.17, October, 2003.

7. Jin Lin , Tong Chen , Wei-Chung Hsu , Pen-Chung Yew, Speculative
register promotion using Advanced Load Address Table (ALAT),
Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, March 23-
26, 2003

8. Nicolau, A., "Run-time Disambiguation: Coping with Statically Un-
predictable Dependencies," IEEE Trans. on Computers, Vol. 38, No.
5, pp. 663-678, May 1989.

9. Y. Wu, Li-Ling Chen, R. Ju, J. Fang, "Performance potentials of
compiler-directed data speculation," ISPASS-2003, IEEE Internation-
al Symposium on Performance Analysis of Systems and Software
(ISPASS'03)

10. N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan and C. Zilles,
“Hardware atomicity for reliable software speculation”, ISCA 2007.

11. M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures”, In Proceedings of the 20th an-
nual International Symposium on Computer Architecture (ISCA)
1993.

12. Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha
Sen, Robert Endre Tarjan, “Incremental Cycle Detection, Topological
Ordering, and Strong Component Maintenance”, ICALP-2008

13. Saumya Debray, Robert Muth, Matthew Weippert, “Alias analysis of
executable code”, POPL 1998.

14. Thomas Reps , Gogul Balakrishnan, “Improved memory-access anal-
ysis for x86 executables”, Compiler Construction, 2008

15. W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R.
A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,
J. G. Holm, and D. M. Lavery, “The Superblock: An effective tech-
nique for VLIW and superscalar compilation,” The Journal of Su-
percomputing, vol. 7, 1993

16. R. Rosner, Y. Almog, Y, M. Moffie, N. Schwartz and A. Mendelson,
“Power Awareness through Selective Dynamically Optimized
Frames”, ISCA 2004.

17. K. Ebcioglu , E. R. Altman, “DAISY: dynamic compilation for 100%
architectural compatibility”, ISCA 1997.

18. C. Wang, Y. Wu, “Modeling and Performance Evaluation of TSO-
Preserving Binary Optimization”, PACT-2011

19. J. Bharadway, K. Menezes, C. McKinsey, “Wavefront scheduling:
path based data representation and scheduling of subgraphs”, MICRO
1999.

20. C. Wang, Y. Wu, E. Borin, S. Hu, W. Liu, D. Sager, T. Ngai, J. Fang,
“Dynamic parallelization of single-threaded binary programs using
speculative slicing”, ICS 2009

436

Profiling Data-Dependence to Assist Parallelization:
Framework, Scope, and Optimization

Alain Ketterlin Philippe Clauss

INRIA & Université de Strasbourg (France)

{Alain.Ketterlin,Philippe.Clauss}@inria.fr

Abstract

This paper describes a tool using one or more executions of a se-
quential program to detect parallel portions of the program. The
tool, called Parwiz, uses dynamic binary instrumentation, targets
various forms of parallelism, and suggests distinct parallelization
actions, ranging from simple directive tagging to elaborate loop
transformations.

The first part of the paper details the link between the program’s
static structures (like routines and loops), the memory accesses per-
formed by the program, and the dependencies that are used to high-
light potential parallelism. This part also describes the instrumenta-
tion involved, and the general architecture of the system.

The second part of the paper puts the framework into action. The
first study focuses on loop parallelism, targeting OpenMP parallel-
for directives, including privatization when necessary. The second
study is an adaptation of a well-known vectorization technique based
on a slightly richer dependence description, where the tool suggests
an elaborate loop transformation. The third study views loops as a
graph of (hopefully lightly) dependent iterations.

The third part of the paper explains how the overall cost of data-
dependence profiling can be reduced. This cost has two major causes:
first, instrumenting memory accesses slows down the program, and
second, turning memory accesses into dependence graphs consumes
processing time. Parwiz uses static analysis of the original (binary)
program to provide data at a coarser level, moving from individual
accesses to complete loops whenever possible, thereby reducing the
impact of both sources of inefficiency.

1. Introduction

The last decade has seen a radical evolution of programming practice

towards parallelism. Processor clock frequencies have practically

reached their physical limits, newer processors include more and

more cores, and parallelism is now vital for old and new applica-

tions. However, parallel programming is much more difficult than

its sequential counterpart, and productivity and correctness are much

more difficult to achieve in a parallel world. Moreover, parallelism

can take highly diverse forms, using constructs like parallel loops,

threads, futures, and so on. The choice of a specific implementation

“language” has a tremendous impact on the quality of the application.

There have been many attempts at automating the detection and use

of parallelism in programs. Two distinct approaches have dominated

the research in this domain. The first approach consists in building

compilers that are able to parallelize programs. Sophisticated and

powerful techniques have been developed, but their scope is severely

restricted by the requirements they put on the programs they are able

to handle. The second approach consists in leaving the work to the

execution environment, with perhaps some help from the compiler. In

this case, efficiency is seldom guaranteed, and specific hardware, e.g.,

a transactional memory, is usually required. For all these reasons, it

is not unreasonable to consider that parallel programs will continue

to be written by hand. Therefore, programmers will need tools to

assist them in their task.

Commercial tools are already available to help a programmer paral-

lelizing his program. A good example of such a tool is Intel Advisor1:

it lets the user insert annotations to “sketch out potential parallelism”,

generates the corresponding code, and monitors program execution

to detect data-races and to evaluate the resulting gain in performance.

A paper by Kim and colleagues [11] has a very good explanation of

why this is insufficient in practice: the difficulty is much more in

locating the parallelism than in implementing it, and Intel Advisor

focuses on the latter, but is of no help in the former. Several research

works have aimed at filling the gap: Prospector [11], SD3 [12], and

Kremlin [6] are some of the most recent tools designed to assist in

the discovery of parallelism in sequential programs.

This paper describes a new tool called Parwiz that provides hints

to the programmer, pointing out parallel sections in a sequential pro-

gram and suggesting how parallelism should be implemented. The

basic idea is that the programmer provides a representative set of

input data. The tool then observes one or more executions of the pro-

gram on these data and collects information on the data dependencies

exhibited by the program. Using these dynamic, empirical depen-

dencies, various parallelization strategies are tentatively applied to

suggest adequate transformations of the program. Since conclusions

are drawn from data samples, only the programmer can validate the

resulting suggestions, and choose to implement them, or not. Tools

that facilitate the implementation phase already exist, where the de-

veloper can select abstract strategies and let the tools generate the

corresponding code. Our goal is to describe a tool that would suggest

a set of valid strategies to help the programmer.

The main characteristic of Parwiz is that it relies exclusively on

data dependencies. These dependencies are obtained by instrument-

ing the original program, and are described with positions in the

program execution. They are carried by static program structures like

loops and functions, at various levels of resolution. Section 2 details

the dynamic dependence analysis framework, regarding dependence

capture and collection, as well as all data structures kept by the ana-

lyzer. The system is designed to work directly on executable code, it

is therefore independent of any compiler or library. When collecting

dependencies, it associates them to program structures (functions

and loops), and accumulates them across a single execution, across

a complete program execution, or even across several executions of

the same program on different input data sets. Such an accumulated

set of dependencies can then be submitted to different parallelism

analysis algorithms to obtain a description of parallel sections, or

even transformed code.

Building on this general framework, this paper makes two main

contributions:

1. it shows that Parwiz can be used for various kinds of paralleliza-

tion tasks, covering the discovery of parallel loops but also paral-

1See http://software.intel.com/en-us/intel-advisor-xe.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.47

437

lelization strategies leading to complex program transformations;

2. it describes two different optimizations strategies, memory ac-

cess coalescing and parametrized loop nests extraction, that both

reduce the cost of dynamic data-dependence profiling without

affecting its accuracy.

Section 3 gives several example analysis techniques, including

detecting parallel loops (where OpenMP can be used to implement a

parallel version), loop nest transformations (applying a well-known

vectorization algorithm), and task-parallelism.

Section 4 then focuses on the cost of profiling a program and

extracting its dependencies. Two distinct strategies are suggested to

reduce the cost of memory tracing and dependency modeling. Both

rely on the regularity and locality one may expect in programs. This

work is not complete yet, but we think it can be useful in other forms

of memory profiling. We illustrate its use in Parwiz.

2. A Data-Dependence Profiling Framework

The goal of Parwiz is to capture all data dependencies happening

at run time, and to build from that a dependence graph covering

all sequentiality constraints between program structures, at various

levels of resolution.

The relevant program structures are single instructions, loops and

their iterations, and routine calls. Individual instructions in the binary

code are used to to hold the location of individual memory accesses.

These structures are arranged into a static hierarchy in the program

code (an extended form of the call-graph). During execution, this

static hierarchy unfolds into an execution tree, where loops “fan out”

into the iterations they perform.

After an initial warm-up, every memory access may lead to a

data-dependence. The relative execution points of the current access

and the previous one(s) at the same section of memory completely

describe the dynamic data-dependence. This pair of positions can

then be “projected” back onto the static call-graph, where it is merged

with other (static) dependencies to lead to the final dependence graph.

2.1. Execution Points and Data-Dependence

To detect data dependencies, Parwiz maintains an extensive execu-

tion tree. This tree holds all information about the current execution

points, as well as past execution points as long as they may be re-

quired to correctly describe dependencies. The tree holds several

kinds of nodes: CALL and LOOP nodes represent their respective

type of program structures, ITER nodes (to be found only immedi-

ately under LOOP nodes) represent individual loops iterations, and

ACCESS nodes represent individual memory accesses and are leaves

of the execution tree. Every node is identified by its program address,

and has a “position” relative to its parent node. On ITER nodes the

position is an iteration number, and on other nodes it is an abstract

position consistent with the textual position of the corresponding

program structure.

Every memory access is uniquely identified by the path starting at

the root of the tree (which by convention is a CALL node) and going

down to the corresponding ACCESS node. This path alternates CALL

nodes and LOOP-ITER pairs of nodes. The sequence of positions

on the path is the global iteration vector of that access. Given two

memory accesses x1 and x2 hitting the same address (or overlapping

ranges of addresses), one can compute the least common ancestor of

both accesses, i.e., the node where both execution points join, labeled

J on the picture. Nodes C1 and C2 are immediate children of node J.

J

C1

x1

C2

x2

RAW

We say J “carries” the dependence, and nodes

C1 and C2 are source and sink of the dependence.

For instance, if J denotes a loop, C1 and C2 are

both iterations (not necessarily consecutive). Sec-

tion 3.1 describes an experiment collecting de-

pendencies between loop iterations. In the gen-

eral case, J, C1, and C2 could be nodes of any

type: for instance, J and C1 could be calls and

C2 a loop. A dependence is labeled by its type, indicating what kind

of accesses its source and sink perform. We use the usual notations

(e.g., RAW for read-after-write on the picture).

In many cases, one may want to capture data-dependence across

several levels of the execution tree, for instance inside a deep loop

nest, or across a certain set of routine calls. To account for this, we

adopt a slightly more general set of definitions. In the general case,

data-dependence profiling in Parwiz considers tiles covering parts of

the execution tree. A tile has a single root node R, and covers a subset

R

J

C1

x1

C2

x2

of the tree with the property that any

node in the tile has either all or none

of its children in the tile. Tiles are ei-

ther defined implicitly (e.g., rooted on all

LOOP nodes that are immediate children

of a CALL node, down to the first CALL

or ACCESS nodes), or explicitly, as a

user-selected portion of the static call-

graph. Whenever a dependence appears

between accesses x1 and x2, their join-

point J is computed, and the dependence

is added to all tiles containing J. The

description of the dependence includes

the iteration vectors of both accesses, restricted to their sections that

belong to the tile.

In Parwiz, tiles are allowed to overlap. The tile is the major unit

of dependence analysis: tiles collect dependencies, and when the

execution of a tile is finished its dependence graph is computed. The

kind of information retained in the graph depends on the type of the

tile, and can be set on a per-tile basis. We will see several examples

of tile types below, in section 3.

2.2. Instrumentation and Profiling Architecture

To put the framework just described into practice, Parwiz needs to

instrument the sequential program under study to obtain a trace of

all the relevant program actions. This trace of events is then passed

to a profiling component that maintains data structures representing

the relevant part of the execution tree, a shadow memory, and the

various dependence graphs. Both the instrumented program and the

profiling component could be integrated into a single executable. For

practical reasons, we have preferred to keep them separate and let

them communicate over a standard channel, e.g., a pipe:

Instrumented

Program
Dependence

Profiler

trace

Some processing time is saved by letting both components run in

parallel and synchronize on their communication channel. Traces of

events can also be saved, and different types of dependence analysis

can be run without relaunching the program.

The instrumented program provides a trace of events signaling the

execution of basic program structures (routines, loops and iterations,

438

Main algorithm:

On control-flow events (CALL, ...):

update the current execution path

On memory access events (ACCESS, ...):

(0) create a node xn for the access at address a
(1) lookup the previous conflicting access xo to a
(2) locate the latest common execution point p
(3) for each tile containing p:

(4) record a data dependence in the table

associated with the root of the tile

Core data structures:

Execution tree

call

p = loop

iter

xo

iter

call

xn

Mem. table
.
.
.

.

.

.
0xabcd xo

.

.

.
.
.
.

Dep. table #n
.
.
.

〈xo,xn, . . .〉
.
.
.

(0)
(1)

(2)

(3)

(4)

Figure 1: The process of data-dependence profiling.

and memory accesses). Parwiz performs instrumentation on the bi-

nary code, without using source code (debugging information is used

to provide source code locations to the user). This makes Parwiz

independent of any compiler infrastructure, and lets it instrument

libraries for which no source code is available. The parsing compo-

nent analyzes routines individually, extracts a control-flow graph, a

dominator tree, and a loop hierarchy [21]. We use the Xed library to

parse the binary, and Pin to do the instrumentation [17].

Once the loop hierarchy is built, the code is instrumented to out-

put events on routine entry and return, on loop start and end, on

iterating (i.e., following a back-edge), and on accessing memory.

Some systems calls, like malloc and free and similar utilities, are

also wrapped to emit necessary information about address space

management. The various types of events are the following:

CALL id Routine id has just been called, starts executing;

ENDCALL The current call ends;

LOOP id Loop id starts executing: this event is emitted once before

the first iteration of the loop;

ENDLOOP The current loop terminates;

ITER A new iteration of the current loop starts;

BLOCK id Execution of basic block id starts;

ACCESS id mode size addr Instruction id loads/stores (indicated

by mode) size bytes starting at address addr;

MALLOC addr size Address range [addr,addr+size) has become

available to the program;

FREE addr Range of addresses starting at addr becomes unavail-

able.

New types of events will be added later, in Section 4. The BLOCK

event type is generated optionally. It is mostly useful to wrap static

or dynamic quantitative data, e.g, an instruction mix or number of

cache misses. Since this paper doesn’t cover quantitative analysis,

we do not give more details on this.

2.3. Algorithm and Core Data Structures

The main profiling algorithm processes a trace of events and detects

data dependencies as they appear. Events describing control-flow are

used to maintain an execution tree, the right edge of which is the

currently active stack of function calls and loops. Events represent-

ing memory accesses require looking up the previous access to the

same range of addresses, from which a description of a new data-

dependence is derived, and then updating internal data-structures.

The algorithm is sketched on Figure 1.

The profiling component maintains three major data structures

(see Figure 1). The first one, the execution tree, keeps enough of the

dynamic execution tree to be able to detect and describe dependen-

cies. It is actually maintained through a stack containing the current

execution path. Getting events for routines entries, loop starts, and

iterations all push a new node, or “frame”, onto the stack; events for

routine returns, end of loops and iterations all make a node be popped

from that stack. The stack is actually “cactus-shaped”: popped nodes

continue to exist as long as they are referenced from inside the mem-

ory table. Even though, theoretically, the execution tree may grow

very large, there are several ways to keep its size within limits. First,

unused tree nodes are immediately collected (via reference count-

ing). Second, at any time, the tiles that lie on the currently executing

path precisely delimit the set of nodes that may me used in a future

dependence; the others can be removed, making the tree look like a

comb more often that not. In practice, this simple garbage-collection

strategy has been sufficient to avoid any kind of excessive memory

overhead.

The second data structure is the memory table, which is indexed

by memory addresses. It is in fact a shadow memory, holding a

pointer to the latest execution point for each interval of addresses,

along with a single bit to indicate whether this access was a read or a

write. Conceptually, the memory table is organized similarly to page

directories/tables used in MMUs, as a sparse hierarchy of tables. In

practice, it is implemented as a combination of a lexicographic tree

and an interval tree. Consecutive entries with the same contents are

coalesced into a single entry.

The third data structure maintained by the profiler is the depen-
dence table. This name actually covers many different types of data

structures. A dependence table is attached to each node that is the

root of a tile in the execution tree. Its exact nature depends on the

desired analysis: in simple studies on loop parallelism as in Sec-

tion 3.1, a couple of bits may be enough. In more elaborate studies,

e.g., the vectorization algorithm used in Section 3.2, a dependence

table contains a set of tuples containing references to instructions

and iteration vector abstractions. In this section we will consider

dependence tables as abstract objects supporting two operations:

1. adding a (fully described) dependence, and

2. drawing a conclusion on the parallelism present in the program

structure to which it is attached.

The next section presents several examples of dependence table types.

New types can easily be added to Parwiz.

439

Program

Executed OpenMP-annotated loops Dynamic Slowdown/overhead

#
L

o
o

p
s

#
P

ar
.

#
L

o
o

p
s

#
P

ar
.

Main cause of failure

#
P

ri
v.

#
A

cc
.

(1
0

9
)

D
u

r.
(s

ec
)

T
ra

ce
(×

)

P
ro

f.
(×

)

M
em

.
(M

b
)

312.swim_m 26 25 8 7 reduction 7 92 149.39 33 118 2527

314.mgrid_m 58 52 12 11 reduction 11 163 216.32 39 147 1376

316.applu_m 168 135 30 17 priv. + reduction 25 115 128.12 48 148 1082

318.galgel_m 541 455 37 30 priv. required 30 107 176.05 42 121 1394

320.equake_m 73 67 11 3 priv. required 10 58 73.88 43 150 723

324.apsi_m 191 147 28 13 priv. + reduction 27 132 196.12 44 134 4798

326.gafort_m 58 43 9 7 priv. + reduction 7 29 74.18 35 93 679

328.fma3d_m 233 192 29 22 reduction 22 129 203.59 42 99 2223

330.art_m 79 65 5 4 (non-openmp code) 4 1 5.77 34 92 200

332.ammp_m 76 48 7 5 priv. required 7 87 178.46 37 97 504

Table 1: Results of boolean dependence analysis on SPEC OMP-2001 programs

3. Scope and Applications

3.1. Loop Parallelism and OpenMP

Our first experiment aims at detecting trivially parallel loops, i.e.,

loops whose iterations can be executed in parallel without any need

for privatization, scalar expansion, or any kind of transformation.

The idea is to detect when two distinct iterations of the same loop

access the same address in a conflicting way, and to flag the loop

when this happens.

loop

iter.

x1

iter.

x2

i1 i2

Parwiz implements this task by placing a

tile rooted at each loop and extending one

level down to cover the loop’s iterations. Each

loop node has an attached dependence table,

in Parwiz parlance, which is restricted to a

single boolean flag, initially set to true. Any

detected dependence carried by a loop makes

the associated boolean false. A loop is paral-

lel if all its executions have been found par-

allel. At the end of execution, the boolean

indicates whether the loop is trivially parallel.

We have applied this strategy to the SPEC OMP-2001 benchmark

suite. The source programs contain OpenMP pragmas, which we ask

the compiler to ignore, but which will provide “ground truth”, i.e., a

reference parallelization to which we are going to compare the result

of a dynamic dependence analysis. All programs have been compiled

with gcc version 4.4.3 with option -O2 (compiling with -O3 provides

similar results, but makes it harder to interpret results). The programs

were statically analyzed offline to locate functions, loops and memory

accesses, and then instrumented and run sequentially to completion

on their train input data set. Parwiz worked directly from the binary

program, and debug information was used to display analysis results

in terms of program source code files and lines.

Table 1 shows the results of the experiment. For each program we

indicate the total number of loops executed at least once (#Loops),

and the number of loops that have been discovered trivially parallel

by the analyzer (#Par.). However, since source code is annotated

with OpenMP pragmas, we have also performed a detailed analysis

of the loops that were marked parallel by the programmer. The

second set of columns shows first the number of annotated loops in

source code (#Loops), then how many loops have been found parallel

by Parwiz among these (#Par.). A short remark gives the major

causes of failure: some loops carry a reduction operation or other

dependent operations, and some have specific implementations used

when OpenMP is disabled. However, the vast majority of failures

comes from the need to privatize data before parallelization.

Since privatization is such a major cause for failure, we have

slightly adapted our setting to account for this. The idea is the follow-

ing: loops that only carry dependencies of types WAR or WAW can be

parallelized by privatizing the data involved. Therefore, dependence

tables attached to loop nodes keep a set of observed dependence types

(i.e., RAW, WAR, or WAW), instead of a single boolean, and can

also store a set of program locations where these dependencies occur.

This strategy works because Parwiz detects a dependence between an

access and the last conflicting access during program execution: if

an iteration has a dependence of type WAR or WAW with a previous

iteration, it simply means that it reuses some memory location for

its own usage, without really restraining parallelization. Results are

shown on Table 1 in Column #Priv. Basically, reductions remain

the last cause of failure, all other loops have been recognized. If the

dependence table stores code locations of the dependence-triggering

accesses, debug information can be used to give hints on which

variable is responsible for the false dependence.

Table 1 also provides quantitative data about the actual executions,

like the number of memory accesses performed by the program,

which is also the number of addresses processed by Parwiz (#Acc,

in billions), and the duration of the execution of the uninstrumented

program (Dur, in seconds). The column labeled Trace gives the

slowdown of the instrumented program, whereas Prof. gives the

overhead incurred by Parwiz. The latter is also the overall slowdown,

since the program and Parwiz run in parallel. All slowdowns are given

as multiples of the bare program execution time (Dur), and include

time spent in I/O. Dynamic data-dependence profiling typically slows

the program down by a factor ranging from 100 to 150: reducing

this overhead is the topic of Section 4. Finally, the last column

(Mem) in Table 1 shows the overall memory usage of Parwiz alone:

the requirements are reasonable (except maybe in one case), mainly

because Parwiz uses a single shadow memory, and also because of

the careful management of the execution tree.

Note that the results given above have been obtained directly from

the binary code of the various programs, without any need to manip-

ulate source code. Also, some of the loops that have been discovered

parallel contained functions calls, used pointer-based data structures

or indirect addressing inside arrays. Dynamic dependence analysis

with Parwiz is insensitive to programing language idiosyncrasies.

440

void ak(int * X, int * Y,
int ** A, int * B, int ** C)

{
for (int i=1 ; i<=100 ; i++) {

S1: X[i] = Y[i] + 10;
for (int j=1 ; j<=100 ; j++) {

S2: B[j] = A[j][N];
for (int k=1 ; k<=100 ; k++)

S3: A[j+1][k] = B[j] + C[j][k];
S4: Y[i+j] = A[j+1][N];

}
}

}

for (i=1 ; i<=100 ; i++) {
for (j=1 ; j<=100 ; j++) {

B[j] = A[j][N];
parfor (k=1 ; k<=100 ; k++)

A[j+1][k] = B[j] + C[j][k];
}
parfor (j=1 ; j<=100 ; j++)

Y[i+j] = A[j+1][N]
}
parfor (i=1 ; i<=100 ; i++)

X[i] = Y[i] + 10;

Figure 2: Code example for Section 3.2: the original code is on the left, the result of Allen & Kennedy’s codegen algorithm is on the right.
Arrows highlight loop transformations, parfor indicates vectorized loops.

3.2. Program Transformations

The goal of our second experiment is to illustrate the use of a

more elaborate dependence abstraction, by considering dependencies

across levels of the execution tree. This experiment also illustrates

how the result of dynamic dependence analysis can be submitted to

standard parallelization algorithms to suggest program transforma-

tions.

In this experiment, a tile can be placed on any loop, either implic-

itly or based on user selection. The tile extends down to all memory

accesses and calls, i.e., we do not consider loops that extend across

function boundaries. This means that a path between the common

ancestor of two execution points and the nearest tile root may contain

several loop nodes, as on the following figure, where x1 and x2 are

memory accesses, and the boxed loop is the root of the tile:

x1iter.loopiter.

x2iter.

loopiter.loop

If x1 and x2 access the same address, the dependence will be carried

by the boxed loop, with a dependence level of 2 (the depth of the

common ancestor of both execution points, the root being at depth

1). Hence, the dependence table attached to a tile’s root will collect

dependencies described by their end points, a type, and a dependence

level. At the end of the run, dependencies of a given tile are collected

into a dependence graph.

The left side of Figure 2 shows the loop nest used to illustrate

dependence-level based dynamic dependence analysis (we will come

back to the right part in a moment). This loop nest manipulates arrays

that come in as parameters of the function named ak. Note that a

source code compiler cannot apply any transformation to this loop

nest, unless it is able to prove that the various arrays and the various

rows of the two 2-dimensional arrays A and C do not alias.

Figure 3 shows the corresponding x86-64 binary code before in-

strumentation (in Intel syntax). Individual instructions are labeled

with the last three hexadecimal digits of their address. The extents of

the various loops are shown on the left side of the code. Statements

S1 to S4 are also shown: they have been located by first selecting

the memory stores, and then slicing back along register use-def links

until reaching either constants or memory loads (the extraction of

use-def links is explained below). It is important to remember that

vertices of the dependence graph are individual binary instructions,

i.e., not source statements.

Figure 4 shows the dependence graph emitted by Parwiz: vertices

are the instructions, edges are dependencies, and gray rectangles

group instructions into statements. An important remark about this

4004fc: mov r12d,0x0
502: mov r13d,0x2
508: mov r14d,0x0
50e: mov ebp,0x4
513: mov eax,DWORD [rsi+r12*1+0x4]
518: add eax,0xa
51b: mov DWORD [rdi+r12*1+0x4],eax
520: mov ebx,r13d
523: mov r9,r14
526: mov rax,QWORD [rdx+r9*2+0x8]
52b: mov eax,DWORD [rax+0x4]
52e: mov DWORD [rcx+r9*1+0x4],eax
533: mov rax,rbp
536: mov r10,QWORD [rdx+r9*2+0x10]
53b: mov r11,QWORD [r8+r9*2+0x8]
540: mov r11d,DWORD [r11+rax*1]
544: add r11d,DWORD [rcx+r9*1+0x4]
549: mov DWORD [r10+rax*1],r11d
54d: add rax,0x4
551: cmp rax,0x194
557: jne 400536
559: movsxd rax,ebx
55c: mov r10,QWORD [rdx+r9*2+0x10]
561: mov r10d,DWORD [r10+0x4]
565: mov DWORD [rsi+rax*4],r10d
569: add r9,0x4
56d: add ebx,0x1
570: cmp r9,0x190
577: jne 400526
579: add r13d,0x1
57d: add r12,0x4
581: cmp r12,0x190
588: jne 400513

i

j

k

S1

S2

S3

S4

Figure 3: Binary code (before instrumentation) corresponding to Fig-
ure 2

S1 513 518 51b S252b 52e

S4 565

WAW,1

561 S3549

WAW,1

544 540

RA
W,

1 WAR,1RA
W,

1

WA
R,

1 RAW,2

WAR,1

RAW,2

Figure 4: Empirical dependence graph for Figure 2

441

graph is that is includes “static” dependencies (displayed with dashed

lines) along with dynamic dependencies. Static dependencies are

use-def links, and represent RAW dependencies between registers

(e.g., on register eax between instructions 52b and 52e).

A dependence graph like the one on Figure 4 can be used to derive

an optimal program transformation. The algorithm, named codegen,

has been devised by Kennedy & Allen for vectorization [8], but

can be applied to any kind of dependence graph since it uses only

the topology of the graph and the dependence levels labeling its

edges. The transformation is optimal in the sense that no algorithm

can vectorize (parallelize) more loops given only dependence level

information [4]. The result of applying codegen to the dependence

graph on Figure 4 is shown on the right part of Figure 2, where

parallel loops are denoted with parfor, and arrows indicate how

several loops have been split and rearranged. The reader interested

in the details of the algorithm execution can consult the book by

Allen & Kennedy [8, Section 2.4.3]: we have kept exactly the same

example.

There are several important remarks on the code produced. First,

the final loop nest is the result of several complex transformations:

loops have been split and rearranged according to the dependence

graph. Second, the dependence graph produced by dynamic depen-

dence analysis has fewer edges than “classical” dependence graphs

produced by considering all possible pairs of memory accesses. This

is, once again, due to the fact that dynamic dependencies automati-

cally highlight dependencies with the last conflicting access. How-

ever, the complete graph (like the one displayed in Allen & Kennedy’s

book) can be produced by computing the transitive closure of the

dynamic dependence graph. The codegen algorithm is insensitive

to this aspect of the graph, because it computes strongly connected

components.

Extracting dependencies across loop-levels and suggesting com-

plex transformations is, as far as we know, a distinguishing feature of

Parwiz.

3.3. Bags of Tasks

Our last experiment illustrates the use of an explicit dependence table.

The goal is to use Parwiz to evaluate the potential parallelization of a

loop over a linked list. We will not describe a full-scale experiment,

but rather use a small example giving rise to a dependence graph

between iterations of a list. The code of interest is a loop iterating

over a list, merging the two elements at the front of the list and

appending the result at the end of the list (in the actual program the

list stores graphs, but this doesn’t matter here). The target source

code loop operates a pairwise merging over the elements of the list:

list<Graph*> graphs;
...
while (graphs.size() > 1) {

Graph * g1 = graphs.front();
graphs.pop_front();
Graph * g2 = graphs.front();
graphs.pop_front();
Graph * m = merge(g1,g2);
graphs.push_back(m);

}

We would like to know whether there are hidden data dependencies

in this loop, and would like to obtain the dependence graph between

iterations.

Parwiz can be directed to profile every execution of a given loop.

In this case, the tile is rooted at the loop, and extends downwards

until reaching either calls or memory accesses. When run with a

single title, Parwiz maintains a restricted execution tree: all accesses

inside a call (e.g., to merge) are directly linked to the call node.

In this experiment, we have attached to the tile a dependence table

collecting three attributes per dependence: its type (RAW,...) and

the two executions points on the lower edge of the tile. Here is an

example of the contents of the dependence table:

RAW 0x4008d4:CALL(0x400a80) (8,0)
--> 0x40087e:CALL(0x400b18) (3,1)

This means that there is a RAW dependence between the call

at address 0x4008d4 (calling the routine at 0x400a80—actually

push_back()) to the call at 0x40087e (calling 0x400b18, i.e.,

pop_front()). A vector like (8,0) indicates that the given pro-

gram structure is the 9th child of the iteration node, which itself is the

1st child of the loop.

To graphically depict the dependence table, one can create a graph

with an (unordered) vertical axis for the various program structures,

and another (ordered) horizontal axis for iterations, and then draw

an arc for each dependence. When the loop is run with a list con-

taining 16 elements, the result appears in Figure 5 (showing RAW

dependencies only). On this graph, solid lines represent dependencies

between memory accesses, whereas dashed lines are dependencies be-

tween registers. The lower part of the graph represents dependencies

between calls to merge(). The upper part groups dependencies be-

tween list operations (front(), pop_front(), and push_back())

This graph describes two major aspects of the loop. First, the list

handling actions and the processing done on elements are clearly

separated, all traffic between the two going through registers and

remaining local to an iteration. Hence, any kind of iterator could be

used instead of the (inherently sequential) linked list. Second, the

processing of the various elements leaves some room for parallelism.

The dependence graph between calls to merge (at the bottom of

the graph) has a critical path length of four, which means that with

enough processors four steps are enough to complete the computation.

Various other metrics could be used to estimate the load balance

between iterations, or the gain given a parallelization scenario. This

is out of the scope of this paper.

Before moving to the optimization of Parwiz, we would like to

briefly mention two characteristics of the real experiment that in-

spired this section. First, each iteration actually executes tens of

million instructions (in the call to merge). This makes almost any
parallelization opportunity worthwhile, including those that require

explicit scheduling control. Second, any single call to merge per-

forms several library calls, most of them to functions provided by

the GNU Multi-Precision library (GMP). The fact that Parwiz di-

rectly handles binary code has saved a lot of work in setting up the

experiment.

4. Optimization
Parwiz is made of two subsystems, the instrumented program and

the profiling component, that run in parallel and synchronize on a

unidirectional communication channel. The time taken to analyze

a realistic execution of a program is caused by two distinct, but

correlated, factors:

1. the large amount of instrumentation code dilates the original pro-

gram, making it slower, and leading to a large volume of data

output to the communication channel;

442

merge()

front()
pop_front()
push_back()

Figure 5: An explicit dependence graph: list handling on top, application-specific processing at the bottom). Solid lines are data-dependencies,
dashed lines represent traffic between registers.

2. the processing of events by the profiler takes a significant number

of operations, and requires updating the memory table and one or

more dependence tables for each memory access.

A first approach to reduce processing time is to sample memory

accesses (and control-flow events). Several sampling techniques have

been developed, targeting executions paths and/or values (see, e.g.,

[18]). These techniques reduce the overhead without sacrificing too

much accuracy. Unfortunately, sampling does not apply well to data-

dependence profiling, for two main reasons. First, a data-dependence

is made of two distinct memory accesses. Omitting only one of these

is enough to miss a dependence, and therefore introduce spurious

dependencies. In consequence, sampling may decrease accuracy

exponentially for data-dependence profiling. Second, the omission

of a single dependence may completely change the structure of the

resulting dependence graph, and then the nature of the hints provided

to the user. Since dynamic dependence profiling is already sensitive

to the accuracy of input data selection, sampling memory accesses

would add another two layers of approximation. We consider that

sampling introduce an excessive risk. We are looking for tracing

optimizations that fully preserve the accuracy of the traces.

The idea we develop in this section is the following: if several

contiguous memory accesses can be considered “atomically”, instead

of individually, then the time taken for these accesses will be divided

by a factor proportional to the number of accesses that have been

coalesced. Moreover, if these intervals can be detected statically in

the program, leading to the production and processing of a single

event, then the benefit will apply to both the instrumented program

and the dependence profiler. We focus on two cases where memory

accesses can be coalesced. The first works at a small scale, trying to

combine nearby individual accesses, typically appearing when the

program updates the various fields of a structure. The second works

at a larger scale, combining all accesses performed by a loop when

the loop appears to be traversing one or more arrays.

4.1. Static Analysis of Binary Code

We have already mentioned in Section 2.2 that Parwiz discovers loops

in the control-flow graph. But it actually goes further, performing

data-flow analysis on instructions and using the semantics of specific

classes of instructions to derive a symbolic model of parts of the

program. This section details the various steps of the analysis.

Static Single Assignment Each routine is put into single assign-

ment form (SSA) [3], where each instruction is represented as a

transformation between uses (input operands) and definitions (out-

put operands). All definitions get unique names, and all uses point

directly to the corresponding definition. This applies to all machine

registers, but also to a special variable M representing memory as a

whole (every memory store defines a new “version” of memory). In

the following, the word “register” designates a definition, i.e., a spe-

cific version of a machine register whose value is set at a well-defined

location in the code. Figure 6 shows several fragments of code where

register names are decorated with their version number.

Forming Symbolic Expressions The second phase follows use-

def links and considers instruction semantics to form symbolic expres-

sions for all memory operands, and for as many branch conditions as

possible. Starting with every memory operand, expressed in x86-64

as a linear combination of at most two registers, a symbolic expres-

sion is formed for each involved register, and the results are combined

into the memory operand expression. This recursive process uses

opcode semantics to combine expressions. With an instruction set as

exuberant as x86-64, this may seem an extremely complex process.

It is however reasonably simple for two reasons. First, it considers

memory addresses, the computation of which is usually restricted to

adding offsets and indexing. Second, it restricts the acceptable ex-

pressions to contain only additions, subtractions, and multiplications

of registers (remember that “register” means “definition”), and stops

the substitution process when reaching an opcode whose semantics

goes beyond these operations. Also, the substitution process stops

when reaching either the entry point of the routine (which by con-

vention contains a implicit definition of all registers, with unknown

value), or an instruction using a memory operand (whose value is,

in the general case, hard to track back), or a φ -function (which is

an SSA abstraction representing the uncertainty on the provenance

of the value). An example appears in Figure 6(a), where a memory

address gets a symbolic expression formed by combining several

basic definitions. Branch conditions are handled in the same way, the

branching instruction providing the comparison used, and the instruc-

tion setting the rflags register providing a symbolic expression. In

some cases however, a branch condition cannot be expressed by the

kind of expressions we target (e.g., branch on parity), and remains

unknown.

Scalar Evolution The third step analyzes φ -functions used in sym-

bolic expressions. The goal is to derive a closed form for the φ -

function, using loop counters. Suppose a φ -function r = φ(r1,r2)
appears on the head block of a loop, and suppose r1 is defined outside,

before the loop, whereas r2 is defined inside the loop (thereby provid-

ing the updated version of r). If r2 has an associated expression that

is of the form r+α , where α involves only loop invariant registers,

then r can be expressed as r1 + i ·α , where all registers involved are

loop-invariant, and i is a normalized loop counter (starting at zero

with step one). Then, every occurrence of r inside the loop can be

443

replaced with r1 + i ·α , making the resulting expression dependent

only on the loop counter. This step is crucial, because in favorable

cases it makes the description of a loop depend only on loop-invariant

registers, and introduces the loop counter. Two examples of inductive

variable evolution appear in Figure 6(b), illustrating the introduction

of loop counters in symbolic expressions.

Loop Trip-Counts The fourth step combines branching conditions

inside loop bodies to derive iteration numbers. The idea is to compute

the condition under which the control will “come back” to the loop

head, i.e., follow one of the back-edges. Using control-dependence,

this condition can often be determined even when some internal

branch conditions are unknown. If the iteration condition is known,

and involves only the loop counter and loop-invariant registers, then

it can be turned into a simple upper bound on the loop counter. This

is true because we put an additional restriction on scalar evolution:

symbolic expressions have to be linear in loop counters, i.e., they are

affine combinations of loop counters where coefficients are products

of regular registers. Figure 6(c) shows two symbolic branch con-

ditions, one of which “jumps over” a loop, the other being used to

determine whether to start a new iteration of a loop. The latter can be

used to extract a trip count for the corresponding loop.

4.2. Coalescing Consecutive Accesses

Our first optimization technique consists in detecting a set of accesses

to consecutive or overlapping memory places in straight-line code,

such that it is legal to consider this set of accesses as a single, large

access. To reach this goal, there are two problems to solve: First,

detecting that two accesses reach consecutive areas of memory , and

second checking for accesses that may conflict, to avoid incorrect

coalescing. We will restrict the process to sets of accesses appearing

in the same basic-block.

Parwiz’ static analysis of the code provides symbolic expressions

for all memory addresses, and individual instructions provide the

mode of access (load or store) as well as the size of the accesses. The

sequence of instructions in a basic-block can then be turned into a

list of accesses [(m1,s1,a1), . . . ,(mn,sn,an)], where mi is either load

or store, si is the size, and ai is a symbolic expression of the address.

We can make no hypothesis on the values of the registers appearing

in the expressions. However, we can hope that two accesses near to

each other have a good chance of using the same registers, and that

comparing the expressions can in a reasonable number of cases let us

conclude on whether they reach consecutive areas.

Comparing two address expressions works as follows. First, if

both expressions point to distinct areas, one to the current stack frame

and the other to outer memory, the addresses are necessarily distinct.

Otherwise, the difference between the expressions is formed and

simplified (this is noted (ai�ap) in Figure 7). If the result involves

registers, then nothing can be said about the value of the difference.

Otherwise, the difference is a constant, and if it is zero both addresses

are equal.

The next step is to examine each access in turn, and compare

it to the accesses that precede it. The goal is to go back as far as

possible, as long as the accesses met on the way do not conflict.

The backward search stops on a potential conflict (addresses are not

distinct and accesses are of different modes), or when a coalescing

opportunity has been found (same mode, and equal or consecutive

memory ranges). Of course, the search also stops when reaching the

start of the basic block, or when crossing a definition of a register

0x406ad2 mov r13.8, qword ptr [...] ; value unknown
0x406af5 mov r15.58, qword ptr [...] ; value unknwon
0x406afd r11.93 = phi(...) ; value unknown

...
0x406b10 rdi.98 = phi(rdi.97,rdi.99)

; = r11.93 + i_0x406b10*r13.8

0x406b28 rcx.304 = phi(rcx.303,rcx.302)
; = r15.58 + 8*rdi.98 + 8*i_0x406b28

0x406b2e mov rbx.44, qword ptr [rcx.304]
; @ r15.58 + 8*r11.93
; + 8*i_0x406b28 + 8*i_0x406b10*r13.8

(a) Combining symbolic expressions to describe memory addresses

0x406ad2 mov r13.8, qword ptr[...] ; value unknown
...

0x406afd r11.93 = phi(...) ; value unknown
...

0x406b05 mov rdi.97, r11.93 ; = r11.93
0x406b08 mov esi.244, 0x1 ; = 0x1

...
0x406b10 rsi.245 = phi(rsi.244,rsi.246)

; = 0x1 + i_0x406b10*0x1
rdi.98 = phi(rdi.97,rdi.99)

; = r11.93 + i_0x406b10*r13.8
...

0x406b3e inc rsi.246/.245 ; = 0x1 + rsi.245
0x406b41 add rdi.99/.98, r13.8 ; = rdi.98 + r13.8

...
0x406b4a j... 0x406b10

(b) Scalar evolution and artificial loop counters

0x402493 movsxd ebp.2, dword ptr[...] ; unknown
...

0x406b10 test rbp.2, rbp.2
0x406b13 jle 0x406b3e

; if rbp.2 <= 0
...

0x406b28 rax.175 = phi(rax.174,rax.176)
; = 0x1 + i_0x406b28*0x1

...
0x406b2b inc rax.176/.175

...
0x406b39 cmp rbp.2, rax.176
0x406b3c jnl 0x406b28

; if -0x2 + rbp.2 - i_0x406b28 >= 0
0x406b3e ...

(c) Branch conditions and control-flow

Figure 6: Static analysis of binary code. Registers carry suffixes rep-
resenting their SSA names, and phi-pseudo instructions
are inserted. Symbolic expressions are placed in com-
ments (after ;). Loop counters are named after the address
of their loop, e.g., i_0x406b10.

444

COALESCE([(m1,s1,a1), . . . ,(mn,sn,an)])
–– Input: n accesses, with type mi, size si, and address ai

let Ci = {(mi,si,ai)} for all i
for i = 1 to n

SEARCH(i)
for each Ci such that |Ci|> 1

coalesce all accesses in Ci
SEARCH(i)

let p = i−1

while p≥ 0 and ai is defined at p
if ai and ap both point to the same area

if (ai�ap) is not a constant

if mi �= mp then return

else if (ai�ap) is 0

if mi = mp then merge(Ci,Cp)
return

else if mi = mp and ai,ap consecutive then

merge(Ci,Cp)
return

decrement p

Figure 7: Coalescing accesses inside a basic-block

involved in the expression of the address. This is function SEARCH

in Figure 7.

Coalescing is implemented by computing classes of accesses. For

a given basic-block, each access starts in its own class. Finding a

coalescing opportunity during SEARCH simply merges the classes

of both accesses. When all accesses have been considered, classes

with more than one access are coalesced: it is easy to see that a class

contains accesses of the same type, corresponding to consecutive

ranges of addresses. The resulting “super-access” event is emitted by

instrumenting any access belonging to the class, e.g., the one having

the lowest address, and giving it a synthetic size corresponding to the

merging of the coalesced address ranges.

To evaluate the effect of coalescing, we use the same set of pro-

grams as in Section 3.1 and measure three quantities: the number of

events, the time taken by the tracing component, and the time taken

by Parwiz. Table 2 shows how much is gained in these quantities,

compared to full instrumentation. The first column (Events) shows

the proportion of events that can be avoided: the numbers vary sub-

stantially between programs, ranging from a negligible amount up to

30%. The second column (Tracing) shows the reduction in tracing

time: several factors condition this number but intuitively, we should

see here a lower reduction percentage, because avoiding memory ac-

cess events doesn’t change the amount of other types of events. The

third column (Profil.) shows the reduction in data-dependence pro-

filing time: this number is roughly equivalent to tracing time, since

all events emitted by the tracing component are processed by the

profiler. The general conclusion of this experiment is that any saving

on instrumentation (around 20% on average) translates directly into

the corresponding saving on profiling time, albeit with a difference of

5% on average. Larger variations are due to other software artifacts,

such as the sensitivity of the tracing infrastructure to instrumentation

position, or the handling of the shadow memory in Parwiz.

4.3. Parametric Loop Nests

After static analysis, symbolic expressions are available for all

memory addresses and for some branch conditions. For some loops,

an iteration condition has also been found, which can be turned

Program Events Tracing Parwiz

312.swim_m 32.61 27.27 24.87

314.mgrid_m 5.52 2.56 1.97

316.applu_m 26.96 16.67 17.57

318.galgel_m 17.76 19.05 13.32

320.equake_m 29.31 21.15 19.33

324.apsi_m 16.67 9.09 19.70

326.gafort_m 0.80 0.21 0.10

328.fma3d_m 31.01 19.05 16.08

330.art_m 2.56 8.82 6.13

332.ammp_m 51.72 44.73 41.62

Table 2: Coalescing memory accesses: gain (in percentage) in num-
ber of events, in tracing time, and in profiling time.

into a number of iterations. An example loop, extracted from the

436.cactusADM SPEC program, appears in Figure 8 (part of the

original code was shown in Figure 6). Back-edge conditions have

been turned into loop bounds, branch conditions have been converted

into regular conditionals, and memory accesses have an explicit

expression. The loop model is turned into C code, and parameters

used in either expressions or conditions come in as parameters to the

embedding function. Such code can be compiled and, when provided

with parameter values, can simulate the execution of the original

code.

To implement our second optimization, Parwiz will select loops

whose description is precise enough to not require a complete in-

strumentation of its code. This description will be used to avoid

instrumenting the loop, transmitting just enough parameters for the

profiler to be able to infer the overall impact of the loop on memory.

A loop nest N (containing any number of sub-loops, down to

any depth) is said to be parametric affine if it meets the following

conditions:

• all address expressions inside N involve only counters of N’s loops

and registers that are invariant in N, i.e., registers defined before
N;

• all branch conditions are known, and their expressions respect the

same restrictions;

• all expressions are linear in the loop counters, but not necessarily

in parameters;

• all loops have a known iteration condition, i.e., an iteration has a

uniform effect on the loop counter.

Such loops are also known as static control loops, because their

behavior does not depend on any data manipulated during the itera-

tions. The memory accesses of a parametric loop can be reproduced

given only the values of the parameters it uses, irrespective of the

contents of the memory areas it uses. Intuitively, loops iterating over

multi-dimensional arrays are parametric, whereas loops over linked

structures are not.

Let us now explain how parametric affine loop nests will be used.

First, since the loop is parametrized, the original program will be

instrumented to provide the values of the parameters required by the

loop, instead of the memory accesses of the loop. This requires two

new event types:

PARAM id value this is emitted when a parameter is defined (pa-

rameter ids are simple sequential numbers);

EXEC id this is emitted by instrumenting the control-flow edge(s)

leading to the loop header, once and for all before the execution

of the loop starts.

445

void 0x406b10_1(reg_t r15_58, reg_t r9_81, reg_t r11_93, reg_t rbp_2,
reg_t r14_7, reg_t r13_8, reg_t rsi_214, reg_t r10_94)

{
for (reg_t i_0x406b10=0 ; (-0x1 + r9_81 + -i_0x406b10 >= 0) ; i_0x406b10++) {

if ((rbp_2 > 0)) {
for (reg_t i_0x406b28=0 ; (-0x1 + rbp_2 + -i_0x406b28 >= 0) ; i_0x406b28++) {

ACCESS(’R’, 8, r15_58 + 8*r11_93 + 8*i_0x406b28 + 8*r13_8*i_0x406b10);
ACCESS(’W’, 8, r14_7 + 8*r10_94 + 8*i_0x406b28 + 8*rsi_214*i_0x406b10);

}}}
}

Figure 8: A symbolic model for a loop extracted from binary code, translated to C code.

Instrumenting loops this way lowers the weight of instrumentation.

More importantly, it replaces instrumentation of repeatedly executed

instructions (the memory accesses inside the loop) by instrumenta-

tion of register definitions that are executed only once, before the

loop starts. So we expect an important gain in instrumentation and

communication costs. But this is only half the story.

The profiling component, on the other side of the pipe, receives

parameter values, and an indication that the loop is executed. It is

therefore responsible for transforming this information into the set

of memory accesses. The first solution is for the profiler to simply

run the loop (or a recompiled, minimal form of it—static analysis

has provided enough information to create a “trace generator”, see

Figure 8), but this leads to no gain at all in profiling costs, not

counting the overhead of running the loop. However, it saves a lot in

instrumentation and communication time.

A better solution would to turn the loop into a set of memory

ranges. It seems that this problem is far from easy for parametric

loops, and the ones that Parwiz finds are heavily parametrized, with

little or no available hypothesis on the values of the parameters: the

simple loop in Figure 8 requires eight parameter values. We have

not yet solved this problem. Many clever techniques (and tricks) can

be used for restricted families of loops, but a generally applicable

solution requires a lot more theoretical work.

4.4. Evaluation

To evaluate Parwiz’ optimization techniques, we have run a sample

of SPEC2006 benchmarks (compiled with gcc at -O2 optimization

level) on their train input data set, and measured how many memory

accesses were “saved”. Since coalescing memory accesses and loop

modeling are completely unrelated, we evaluate them separately,

and then combined. Our evaluation is entirely based on the number

of memory accesses that do not need to be transmitted from the

instrumented program to the dynamic dependence analyzer.

Reducing the number of memory accesses that have to be pro-

cessed has a triple effect. First, it reduces the static amount of instru-

mentation that has to be inserted into the original program, thereby

avoiding deleterious effects on instruction caches, instruction schedul-

ing, branch predictors, and so on. Second, it reduces the quantity

of instrumentation code that needs to be executed. The magnitude

of this reduction depends on the frequency with which the various

parts of the code are exercised. Third, it reduces the actual running

time of the instrumented program, but in a way that depends on the

instrumentation infrastructure: although the amount of dynamic in-

strumentation and the actual run time are highly correlated, they are

not absolutely equivalent.

Table 3 displays the effect of both optimization techniques used

alone, and also of their combined use, on the three quantities of

interest. The reference values are those provided by an execution of

the instrumented program without any optimization. Each number

quantifies the gain along a given quantity observed when one or

both optimizations have been applied. For instance, the first three

columns show the effect of memory access coalescing alone on static

instrumentation, dynamic instrumentation, and run time respectively.

Looking at the line in this table (for 401.bzip) in this graph, one

can observe that memory coalescing removes around 20% of the

static instrumentation, but that removal led to a gain of only around

10% in dynamic instrumentation (more instrumentation has been

removed in less often executed code). This may seem disappointing,

by eventually more than 25% of the run time was saved. This shows

that the three factor have complex interactions. Therefore, we present

all three quantities in each optimization setting.

There are several lessons to learn from these graphs. First, coalesc-

ing consecutive memory accesses almost always leads to a gain. In

some cases, e.g. 416.gamess, more accesses are coalesced in less

frequently executed portions of code, and vice-versa. In other cases,

e.g. 435.gromacs, coalesced memory accesses are obviously placed

in hot spots, and the gain in dynamic instrumentation and run time is

far superior to what the static gain would have led to expect.

Second, finding parametric loop nests can have a dramatic effect

on run time. Programs like 403.gcc, which have almost no loops,

see no change in their behavior, whereas programs like 433.milc
see their run time divided by 4 thanks to one or more loops occupying

less than 4% of the program space.

Finally, the last group of columns shows that both optimization

techniques are complementary in terms of dynamic instrumentation.

Since coalescing seems to apply across the whole program code,

whereas loops nests focus on small pieces of the code, their effects

usually accumulate. For instance, 454.calculix gains 20% dy-

namic instrumentation thanks to memory coalescing alone, and 27%

thanks to parametric loop nests alone: when both are combined,

the gain is over 46%. However, this doesn’t always translate into

an equivalent gain in run-time. We have no plausible explanation

for this phenomenon, which is certainly highly dependent on the

instrumentation infrastructure.

5. Related Work

One of the first paper on empirical dependence analysis is that of

Larus [13], which defines the basic process and data structures (in-

cluding simple execution points). A similar mechanism has been

used to provide feedback to the compiler, even when dependence

analysis is not exact [2]. Nowadays, a significant number of works on

dynamic dependence profiling is more or less related to thread-level

speculative parallelization (TLS), where the goal is to find portions of

programs that can be executed in parallel with a small probability of

446

Program Coalescing Loop nests Combined

Stat. Dyn. Time Stat. Dyn. Time Stat. Dyn. Time

401.bzip2 79.20 89.73 73.30 99.53 99.95 90.84 78.96 91.05 80.46

403.gcc 84.59 70.02 82.27 99.90 98.54 98.58 84.51 68.59 76.77

410.bwaves 51.37 71.53 76.15 96.86 19.53 42.15 51.52 9.50 36.54

416.gamess 68.79 89.38 93.16 99.06 95.88 82.59 68.53 85.40 74.06

429.mcf 76.68 87.10 77.25 98.80 99.54 99.47 76.46 86.65 95.10

433.milc 73.00 57.17 49.32 96.37 23.29 25.96 71.16 19.65 22.15

434.zeusmp 61.82 86.71 80.15 94.14 40.34 51.19 57.66 33.89 47.61

435.gromacs 61.96 20.90 24.43 98.99 98.27 93.41 61.39 19.56 23.84

436.cactusADM 68.89 21.28 24.79 93.95 0.12 4.14 67.79 0.09 4.24

437.leslie3d 54.19 79.62 70.76 70.04 4.45 14.51 42.72 4.40 15.31

444.namd 72.46 58.73 52.33 99.68 99.82 76.76 72.41 58.63 49.17

445.gobmk 74.60 77.84 81.77 99.87 98.55 95.71 74.52 76.48 79.08

447.dealII 70.17 80.88 76.53 99.12 87.53 85.15 69.86 70.94 72.03

450.soplex 80.90 92.21 95.04 99.21 94.43 79.18 81.13 86.65 85.83

454.calculix 68.58 80.15 83.24 98.71 72.99 64.48 68.00 53.81 57.01

456.hmmer 78.26 97.00 91.62 99.14 94.96 96.90 78.45 91.96 89.74

458.sjeng 85.83 85.44 80.16 99.33 99.23 92.84 85.48 84.67 84.57

462.libquantum 63.23 99.17 99.42 99.67 65.54 71.65 63.05 64.71 71.06

464.h264ref 81.48 64.57 62.91 98.09 91.98 89.63 79.99 56.78 61.75

465.tonto 59.47 50.15 50.17 99.87 43.24 40.53 64.41 45.77 50.83

470.lbm 49.39 59.99 60.60 80.81 98.22 73.31 46.08 59.69 56.15

473.astar 68.80 73.88 63.82 99.71 99.99 77.48 68.71 73.88 82.37

482.sphinx3 79.51 92.86 99.99 99.97 36.58 43.46 79.62 29.51 37.66

483.xalancbmk 73.86 73.38 75.61 99.94 99.93 90.95 73.82 73.31 73.99

average 70.29 73.32 71.87 96.70 73.45 70.04 69.43 56.07 59.47

Table 3: Evaluation of the optimization techniques according to the amount of static instrumentation (Stat.), the number of executions of
instrumentation points (Dyn.), and raw run-time (Time). All numbers are percentages relative to the unoptimized program.

violating dependencies (in which case, all or a part of execution must

be rolled back) [25], or when it may prove profitable [5]. The POSH

system [16] is a representative example of a mixed system, com-

bining static analysis to select tasks and dynamic data to refine this

selection. Speculation usually either uses specific hardware structures

like caches [22], or requires support for transactions [1].

The goal of our work is more related to systems that help the

developer in using parallel programing structures, provided the pro-

gram is actually parallel but the compiler cannot infer that fact from

the source code. Examples of this use case include interactive com-

piler tools, like the SUIF Explorer system which let the user explore

dependencies that prevent parallelization [15]. Using dynamic in-

formation, some authors suggest visualizing “ready plots”, which

highlight parallel sections in raw memory access traces [19]. Other

works focus on providing loop information back to the developer

for final approval [24]. Experiments have also been conducted on

managed runtime environments [7].

The major goal of the framework presented in Section 2 is to

handle fine-grain and coarse-grain program structures in an homo-

geneous way. Coarse-grain parallelism is a common target for dy-

namic systems, sometimes targeting specific parallel construction like

pipelining [23]. Going beyond parallel constructions, some authors

target program partitioning, including the distribution of program

parts onto accelerators [20]. The ALCHEMIST system [27] includes

variations on several features of the framework we describe in this

paper: it uses execution points and a simpler version of our execution

tree. As far as we know, none of these systems include a generic

dependence graph builder, and/or target loop nest transformations.

Recent work on dynamic dependence analysis includes the SD3

system [12], which mainly targets loop parallelism (what we call

Boolean dependencies in Section 3.1). Kim’s thesis [10] also covers

privatization, pipelining, and other enabling transformations. An

interesting aspect of SD3 is its focus on optimizing the profiling

phase, performing linear interpolation on memory accesses to reduce

memory overhead, and parallelizing the profiler itself to speed-up

the whole process. Our static analysis technique could certainly help

SD3 by avoiding completely the run time interpolation phase, since

many (but probably not all) linear access functions are discovered

off-line. Another major difference between SD3 and our system

is the handling of the memory “shadows”, i.e., our memory table.

SD3 uses an address table per loop execution, and a secondary table

to detect inter-iteration dependencies. Parwiz uses a single table,

a strategy that seems to reduce memory consumption significantly,

since we have been able to run the unoptimized version of our system

on SPEC benchmarks. Also, the use of complete execution points

in Parwiz makes it easier to collect dependencies across loop-levels

(Section 3.2) and process them in order of occurrence. SD3’s ap-

proach to parallelize dependence analysis looks promising, and we

plan to include some variation of it in later versions of our system.

A recent development based on SD3 called “Multi-slicing” [26]

uses compiler-provided information on memory aliasing to cluster

memory accesses into slices that can be analyzed independently. This

partitioning is then used to parallelize the analysis, by running several

distinctly instrumented versions of the program, one for each slice.

The complete chain of tools relies on an existing compiler (GCC)

for part of the static aliasing analysis, with additional steps on the

447

complete, whole-program call graph. This approach is essentially

orthogonal to many current approaches (including the one presented

in this paper). Its efficiency relies heavily on the accuracy of the

aliasing information used.

The Kremlin system [6] is another notable recent work, with ob-

jectives very similar to ours. It uses the notion of a “parallelization

plan”, covering OMP-like loop parallelization and Cilk++-like task

parallelism, even though the latter is not evaluated. The major focus

of the system is on evaluating the expected speedup of the paral-

lel program, a goal it shares with [24]. Kremlin uses the notion of

self-parallelism, which in turn is based on evaluating an amount of

work (apparently instruction counts) and critical path analysis. We

have not covered this quantitative and predictive aspect of dynamic

dependence analysis at all. Kremlin also uses a shadow memory,

which seems to keep several versions (“availability times”) of mem-

ory accesses, something Parwiz solves by keeping an execution tree.

Both Multi-slicing and Kremlin use an existing compiler architec-

ture to analyze and instrument their target program. Compiler-based

approaches are essentially unable to cover library code when no

source is available. Parwiz uses static analysis of binary code instead,

which is more flexible but probably less accurate in some cases.

Reducing the overhead of memory tracing has been an explicit or

implicit concern in almost all trace-based studies. Most often the

impact of tracing is reduced by using an acceptable approximation of

the full trace: [18] is a recent representative example of this approach.

Few studies have used static analysis of the executable code to reduce

overhead while preserving perfect accuracy. Larus’ qpt [14] is, as

far as we know, the first system to trace abstract events that are then

submitted to a “trace generator” (as our PARAM and EXEC events).

Our own contribution to this approach can be found in [9].

6. Conclusion

This paper has presented a framework for dynamic dependence analy-

sis. The system, called Parwiz, instruments the binary program under

study to obtain a stream of events describing the execution. A profiler

consumes this stream and keeps a model of the execution, which

it uses to detect all data dependencies at runtime. We have shown

three applications of the framework, covering three different kinds

of parallelization tasks: searching for parallel loops, transforming a

loop nest for vectorization, and studying the behavior of a given loop.

Finally, we have suggested some ways to optimize the whole

process, by limiting the number of events generated by the program,

and processed by the profiler. Memory access coalescing searches for

accesses to regions of data that are larger than the word size. Loop

replacement searches for complete loops whose effect on memory

can be simulated. Both techniques have shown promising results.

Loop replacement needs more work, especially on the theoretical

aspect of the process, to be a convincing optimization in this context.

Probably the main aspect of Parwiz is its constant combination

of static and dynamic techniques. Even though it acts directly on

x86-64 binary programs, it shares many techniques with traditional

compilers. We think this combination is an important strategy to

lower the cost of empirical analysis, for dynamic data-dependence

analysis but probably also for other types of studies.

Future research will tell where dynamic dependence analysis is

most useful: as a profiling tool for developers, as a mechanism to

collect feedback to compilers, or even as a component for dynamic

optimization systems.

References
[1] M. Chen and K. Olukotun, “Test: a tracer for extracting speculative

threads,” in CGO’03., march 2003.
[2] T. Chen, J. Lin, X. Dai, W.-C. Hsu, and P.-C. Yew, “Data depen-

dence profiling for speculative optimizations,” in Compiler Construction,
E. Duesterwald, Ed. Springer Berlin / Heidelberg, 2004.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM TOPLAS, vol. 13, no. 4, 1991.

[4] A. Darte and F. Vivien, “On the optimality of allen and kennedy’s
algorithm for parallelism extraction in nested loops,” in Euro-Par’96
Parallel Processing, L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert,
Eds., 1996.

[5] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai, “A
cost-driven compilation framework for speculative parallelization of
sequential programs,” in PLDI’04, 2004.

[6] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: rethinking
and rebooting gprof for the multicore age,” in PLDI’11, 2011.

[7] C. Hammacher, K. Streit, S. Hack, and A. Zeller, “Profiling java pro-
grams for parallelism,” in IWMSE’09, 2009.

[8] K. Kennedy and J. R. Allen, Optimizing compilers for modern architec-
tures: a dependence-based approach. Morgan Kaufmann, 2002.

[9] A. Ketterlin and P. Clauss, “Efficient memory tracing by program skele-
tonization,” in ISPASS’11, 2011, pp. 97–106.

[10] M. Kim, “Dynamic program analysis algorithms to assist parallelization,”
Ph.D. dissertation, Georgia Institute of Technology, 2012, available at
http://www.cc.gatech.edu/~minjang/.

[11] M. Kim, H. Kim, and C.-K. Luk, “Prospector: A dynamic data-
dependence profiler to help parallel programming,” in 2nd USENIX
Workshop on Hot Topics in Parallelism (HotPar’10), 2010.

[12] ——, “Sd3: A scalable approach to dynamic data-dependence profil-
ing,” in Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010.

[13] J. R. Larus, “Loop-level parallelism in numeric and symbolic programs,”
IEEE Trans. Parallel Distrib. Syst., vol. 4, July 1993.

[14] J. Larus, “Efficient program tracing,” Computer, vol. 26, pp. 52–61,
May 1993.

[15] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum, and M. S.
Lam, “Suif explorer: an interactive and interprocedural parallelizer,”
in PPoPP’99, 1999.

[16] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas,
“Posh: a tls compiler that exploits program structure,” in PPoPP’06,
2006.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in PLDI’05, 2005.

[18] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri, “Shadow
profiling: Hiding instrumentation costs with parallelism,” in CGO’07,
2007.

[19] G. D. Price, J. Giacomoni, and M. Vachharajani, “Visualizing potential
parallelism in sequential programs,” in PACT’08, 2008.

[20] S. Rul, H. Vandierendonck, and K. De Bosschere, “Towards automatic
program partitioning,” in CF’09, 2009.

[21] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee, “Identifying loops using dj
graphs,” ACM Trans. Program. Lang. Syst., vol. 18, pp. 649–658, 1996.

[22] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable
approach to thread-level speculation,” SIGARCH Comput. Archit. News,
vol. 28, May 2000.

[23] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A practical approach
to exploiting coarse-grained pipeline parallelism in C programs,” in
MICRO 40, 2007.

[24] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards
a holistic approach to auto-parallelization: integrating profile-driven
parallelism detection and machine-learning based mapping,” in PLDI’09,
2009.

[25] C. von Praun, R. Bordawekar, and C. Cascaval, “Modeling optimistic
concurrency using quantitative dependence analysis,” in PPoPP’08,
2008.

[26] H. Yu and Z. Li, “Multi-slicing: a compiler-supported parallel approach
to data dependence profiling,” in ISSTA’12, 2012.

[27] X. Zhang, A. Navabi, and S. Jagannathan, “Alchemist: A transparent
dependence distance profiling infrastructure,” in CGO’09, 2009.

448

Neural Acceleration for General-Purpose Approximate Programs

Hadi Esmaeilzadeh Adrian Sampson Luis Ceze Doug Burger∗

University of Washington ∗Microsoft Research

{hadianeh,asampson,luisceze}@cs.washington.edu dburger@microsoft.com

Abstract
This paper describes a learning-based approach to the acceleration
of approximate programs. We describe the Parrot transformation,
a program transformation that selects and trains a neural network
to mimic a region of imperative code. After the learning phase, the
compiler replaces the original code with an invocation of a low-power
accelerator called a neural processing unit (NPU). The NPU is tightly
coupled to the processor pipeline to accelerate small code regions.
Since neural networks produce inherently approximate results, we
define a programming model that allows programmers to identify
approximable code regions—code that can produce imprecise but
acceptable results. Offloading approximable code regions to NPUs
is faster and more energy efficient than executing the original code.
For a set of diverse applications, NPU acceleration provides whole-
application speedup of 2.3× and energy savings of 3.0× on average
with quality loss of at most 9.6%.

1. Introduction
Energy efficiency is a primary concern in computer systems. The ces-

sation of Dennard scaling has limited recent improvements in transis-

tor speed and energy efficiency, resulting in slowed general-purpose

processor improvements. Consequently, architectural innovation has

become crucial to achieve performance and efficiency gains [10].

However, there is a well-known tension between efficiency and

programmability. Recent work has quantified three orders of magni-

tude of difference in efficiency between general-purpose processors

and ASICs [21, 36]. Since designing ASICs for the massive base of

quickly changing, general-purpose applications is currently infeasible,

practitioners are increasingly turning to programmable accelerators

such as GPUs and FPGAs. Programmable accelerators provide an

intermediate point between the efficiency of ASICs and the gener-

ality of conventional processors, gaining significant efficiency for

restricted domains of applications.

Programmable accelerators exploit some characteristic of an ap-

plication domain to achieve efficiency gains at the cost of generality.

For instance, FPGAs exploit copious, fine-grained, and irregular par-

allelism but perform poorly when complex and frequent accesses

to memory are required. GPUs exploit many threads and SIMD-

style parallelism but lose efficiency when threads diverge. Emerg-

ing accelerators, such as BERET [19], Conservation Cores and Qs-

Cores [47, 48], or DySER [18], map regions of general-purpose code

to specialized hardware units by leveraging either small, frequently-

reused code idioms (BERET and DySER) or larger code regions

amenable to hardware synthesis (Conservation Cores). Whether an

application can use an accelerator effectively depends on the degree

to which it exhibits the accelerator’s required characteristics.

Tolerance to approximation is one such program characteristic that

is growing increasingly important. Many modern applications—such

as image rendering, signal processing, augmented reality, data mining,

robotics, and speech recognition—can tolerate inexact computation

in substantial portions of their execution [7,14,28,41]. This tolerance

can be leveraged for substantial performance and energy gains.

This paper introduces a new class of programmable accelerators

that exploit approximation for better performance and energy effi-

ciency. The key idea is to learn how an original region of approx-

imable code behaves and replace the original code with an efficient

computation of the learned model. This approach contrasts with pre-

vious work on approximate computation that extends conventional

microarchitectures to support selective approximate execution, in-

curring instruction bookkeeping overheads [1, 8, 11, 29], or requires

vastly different programming paradigms [4, 24, 26, 32]. Like emerg-

ing flexible accelerators [18, 19, 47, 48], our technique automatically

offloads code segments from programs written in mainstream lan-

guages; but unlike prior work, it leverages changes in the semantics

of the offloaded code.

We have identified three challenges that must be solved to realize

effective trainable accelerators:

1. A learning algorithm is required that can accurately and effi-

ciently mimic imperative code. We find that neural networks can

approximate various regions of imperative code and propose the

Parrot transformation, which exploits this finding (Section 2).

2. A language and compilation framework should be developed

to transform regions of imperative code to neural network evalua-

tions. To this end, we define a programming model and implement

a compilation workflow to realize the Parrot transformation (Sec-

tions 3 and 4). The Parrot transformation starts from regions of

approximable imperative code identified by the programmer, col-

lects training data, explores the topology space of neural networks,

trains them to mimic the regions, and finally replaces the original

regions of code with trained neural networks.

3. An architectural interface is necessary to call a neural process-

ing unit (NPU) in place of the original code regions. The NPU

we designed is tightly integrated with a speculative out-of-order

core. The low-overhead interface enables acceleration even when

fine-grained regions of code are transformed. The core communi-

cates both the neural configurations and run-time invocations to

the NPU through extensions to the ISA (Sections 5 and 6).

Rather than contributing a new design for neural network implemen-

tation, this paper presents a new technique for harnessing hardware

neural networks in general-purpose computations. We show that us-

ing neural networks to replace regions of imperative code is feasible

and profitable by experimenting with a variety of applications, includ-

ing FFT, gaming, clustering, and vision algorithms (Section 7). These

applications do not belong to the class of modeling and prediction

that typically use neural networks. For each application, we identify a

single approximable function that dominates the program’s execution

time. NPU acceleration provides 2.3× average whole-application

speedup and 3.0× average energy savings for these benchmarks with

average accuracy greater than 90% in all cases. Continuing work

on NPU acceleration will provide a new class of accelerators—with

implementation potential in both analog and digital domains—for

emerging approximate applications.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.48

449

Imperative
Source
Code

Annotated
Source
CodeProgrammer

Input
Data

Processor

Training
Inputs Trainer

(Topology &
Synaptic
Weights)

Trained
Neural

Network

Code
Generator

Instrumented
CPU Binary

NPU Config

Core

NPU

Programming Code Observation Training Code Generation Execution

Compilation

Figure 1: The Parrot transformation at a glance: from annotated code to accelerated execution on an NPU-augmented core.

2. Overview
The Parrot transformation is an algorithmic transformation that con-

verts regions of imperative code to neural networks. Because neural

networks expose considerable parallelism and can be efficiently ac-

celerated using dedicated hardware, the Parrot transformation can

yield significant performance and energy improvements. The trans-

formation uses a training-based approach to produce a neural network

that approximates the behavior of candidate code. A transformed

program runs primarily on the main core and invokes an auxiliary

hardware structure, the neural processing unit (NPU), to perform

neural evaluation instead of executing the replaced code. Figure 1

shows an overview of our proposed approach, which has three key

phases: programming, in which the programmer marks code regions

to be transformed; compilation, in which the compiler selects and

trains a suitable neural network and replaces the original code with a

neural network invocation; and execution.

Programming. During development, the programmer explicitly

annotates functions that are amenable to approximate execution and

therefore candidates for the Parrot transformation. Because toler-

ance of approximation is a semantic property, it is the programmer’s

responsibility to select code whose approximate execution would

not compromise the overall reliability of the application. This is

common practice in the approximate computing literature [8, 11, 41].

We discuss our programming model in detail in Section 3.

Compilation. Once the source code is annotated, as shown in Fig-

ure 1, the compiler applies the Parrot transformation in three steps:

(1) code observation; (2) neural network selection and training; and

(3) binary generation. Section 4 details these steps.

In the code observation step, the compiler observes the behavior of

the candidate code region by logging its inputs and outputs. This step

is similar to profiling. The compiler instruments the program with

probes on the inputs and outputs of the candidate functions. Then,

the instrumented program is run using representative input sets such

as those from a test suite. The probes log the inputs and outputs of

the candidate functions. The logged input–output pairs constitute the

training and validation data for the next step.

The compiler uses the collected input–output data to configure

and train a neural network that mimics the candidate region. The

compiler must discover the topology of the neural network as well

as its synaptic weights. It uses the backpropagation algorithm [40]

coupled with a topology search (see Section 4.2) to configure and

train the neural network.

The final step of the Parrot transformation is code generation. The

compiler first generates a configuration for the NPU that implements

the trained neural network. Then, the compiler replaces each call to

the original function with a series of special instructions that invoke

the NPU, sending the inputs and receiving the computed outputs.

The NPU configuration and invocation is performed through ISA

extensions that are added to the core.

Execution. During deployment, the transformed program begins

execution on the main core and configures the NPU. Throughout

execution, the NPU is invoked to perform a neural network evaluation

in lieu of executing the original code region. The NPU is integrated as

a tightly-coupled accelerator in the processor pipeline. Invoking the

NPU is faster and more energy-efficient than executing the original

code region, so the program as a whole is accelerated.

Many NPU implementations are feasible, from all-software to

specialized analog circuits. Because the Parrot transformation’s ef-

fectiveness rests on the efficiency of neural network evaluation, it is

essential that invoking the NPU be fast and low-power. Therefore,

we describe a high-performance hardware NPU design based on a

digital neural network ASIC (Section 6) and architecture support to

facilitate low-latency NPU invocations (Section 5).

A key insight in this paper is that it is possible to automatically

discover and train neural networks that effectively approximate im-

perative code from diverse application domains. These diverse ap-

plications do not belong to the class of modeling and prediction

applications that typically use neural networks. The Parrot transfor-

mation enables a novel use of hardware neural networks to accelerate

many approximate applications.

3. Programming Model

The Parrot transformation starts with the programmer identifying

candidate code regions. These candidate regions need to comply with

certain criteria to be suitable for the transformation. This section

discusses these criteria as well as the concrete language interface

exposed to the programmer. After the candidate regions are identified,

the Parrot transformation is fully automated.

3.1. Code Region Criteria

Candidate code for the Parrot transformation must satisfy three cri-

teria: it must be frequently executed (i.e., a “hot” function); it must

tolerate imprecision in its computation; and it must have well-defined

inputs and outputs.

Hot code. Like any acceleration technique, the Parrot transfor-

mation should replace hot code. The Parrot transformation can be

applied to a wide range of code from small functions to entire al-

gorithms. The code region can contain function calls, loops, and

complex control flow whose cost can be elided by the Parrot trans-

formation. When applied to smaller regions of code, the overhead of

450

1 f l o a t sobel [[PARROT]] (f l o a t [3] [3] p) {
f l o a t x , y , r ;

3 x = (p [0] [0] + 2 ∗ p [0] [1] + p [0] [2]) ;
x = (p [2] [0] + 2 ∗ p [2] [1] + p [2] [2]) ;

5 y = (p [0] [2] + 2 ∗ p [1] [2] + p [2] [2]) ;
y = (p [0] [0] + 2 ∗ p [1] [1] + p [2] [0]) ;

7 r = s q r t (x ∗ x + y ∗ y) ;
i f (r >= 0.7071) r = 0.7070;

9 return r ;
}

void edgeDetect ion (Image& srcImg , Image& dstImg) {
2 f l o a t [3] [3] p ; f l o a t p i x e l ;

for (i n t y = 0; y < srcImg . he igh t ; ++y)
4 for (i n t x = 0; x < srcImg . width ; ++x)

srcImg . toGrayeScale (x , y) ;
6 for (i n t y = 0; y < srcImg . he igh t ; ++y)

for (i n t x = 0; x < scrImg . width ; ++x) {
8 p = srcImg . build3x3Window (x , y) ;

p i x e l = sobel (p) ;
10 dstImg . s e t P i x e l (x , y , p i x e l) ;

}
12 }

(a) Original implementation of the Sobel filter

p[0][0]

p[1][0]

p[2][0]

p[0][1]

p[1][1]

p[2][1]

p[0][2]

p[1][2]

p[2][2]

...

r
Input Layer Hidden Layer Output Layer

(b) The sobel function transformed to a 9 → 8 → 1 NN

void edgeDetect ion (Image& srcImg , Image& dstImg) {
2 f l o a t [3] [3] p ; f l o a t p i x e l ;

for (i n t y = 0; y < srcImg . he igh t ; ++y)
4 for (i n t x = 0; x < srcImg . width ; ++x)

srcImg . toGrayeScale (x , y) ;
6 for (i n t y = 0; y < srcImg . he igh t ; ++y)

for (i n t x = 0; x < scrImg . width ; ++x) {
8 p = srcImg . build3x3Window (x , y) ;

NPU_SEND(p [0] [0]) ; NPU_SEND(p [0] [1]) ; NPU_SEND(p [0] [2]) ;
10 NPU_SEND(p [1] [0]) ; NPU_SEND(p [1] [1]) ; NPU_SEND(p [1] [2]) ;

NPU_SEND(p [2] [0]) ; NPU_SEND(p [2] [1]) ; NPU_SEND(p [2] [2]) ;
12 NPU_RECEIVE(p i x e l) ;

dstImg . s e t P i x e l (x , y , p i x e l) ;
14 }

}

(c) parrot transformed code; an NPU invocation replaces the function call

Figure 2: Three stages in the transformation of an edge detection algorithm using the Sobel filter.

NPU invocation needs to be low to make the transformation profitable.

A traditional performance profiler can reveal hot code.

For example, edge detection is a widely applicable image process-

ing computation. Many implementations of edge detection use the

Sobel filter, a 3×3 matrix convolution that approximates the image’s

intensity gradient. As the bottom box in Figure 2a shows, the local

Sobel filter computation (the sobel function) is executed many times

during edge detection, so the convolution is a hot function in the

overall algorithm and a good candidate for the Parrot transformation.

Approximability. Code regions identified for the Parrot transfor-

mation will behave approximately during execution. Therefore, pro-

grams must incorporate application-level tolerance of imprecision.

This requires the programmer to ensure that imprecise results from

candidate regions will not cause catastrophic failures. As prior work

on approximate programming [2, 8, 29, 41, 43] has shown, it is not

difficult to deem regions approximable.

Beyond determining that a code region may safely produce im-

precise results, the programmer need not reason about the mapping

between the code and a neural network. While neural networks are

more precise for some functions than they are for others, we find that

they can accurately mimic many functions from real programs (see

Section 7). Intuitively, however, they are less likely to effectively

approximate chaotic functions, in which even large training sets can

fail to capture enough of the function’s behavior to generalize to

new inputs. However, the efficacy of neural network approximation

can be assessed empirically. The programmer should annotate all

approximate code; the compiler can then assess the accuracy of a

trained neural network in replacing each function and select only

those functions for which neural networks are a good match.

In the Sobel filter example, parts of the code that process the pixels

can be approximated. The code region that computes pixel addresses

and builds the window for the sobel function (line 8 in the bottom box

of Figure 2a) needs to be precise to avoid memory access violations.

However, the sobel function, which estimates the intensity gradient of

a pixel, is fundamentally approximate. Thus, approximate execution

of this function will not result in catastrophic failure and, moreover,

is unlikely to cause major degradation of the overall edge detection

quality. These properties make the sobel function a suitable candidate

region for approximate execution.

Well-defined inputs and outputs. The Parrot transformation re-

places a region of code with a neural network that has a fixed number

of inputs and outputs. Therefore, it imposes two restrictions on the

code regions that can feasibly be replaced. First, the inputs to and

outputs from the candidate region must be of a fixed size known at

compile time. For example, the code may not dynamically write an

unbounded amount of data to a variable-length array. Second, the

code must be pure: it must not read any data other than its inputs nor

affect any state other than its outputs (e.g., via a system call). These

two criteria can be checked statically.

The sobel function in Figure 2a complies with these requirements.

It takes nine statically identifiable floating-point numbers as input,

produces a single output, and has no side effects.

3.2. Annotation
In this work, we apply the Parrot transformation to entire functions.

To identify candidate functions, the programmer marks them with

an annotation (e.g., using C++11 [[annotation]] syntax as shown in

Figure 2a). The programmer is responsible for ensuring that the

function has no side effects, reads only its arguments, and writes only

its return value. Each argument type and the return type must have a

fixed size. If any of these types is a pointer type, it must point to a

fixed-size value; this referenced value is then considered the neural

network input or output rather than the pointer itself. If the function

needs to return multiple values, it can return a fixed-size array or a C

struct. After the programmer annotates the candidate functions, the

Parrot transformation is completely automatic and transparent: no

further programmer intervention is necessary.

Other annotation approaches. Our current system depends on ex-

plicit programmer annotations at the granularity of functions. While

we find that explicit function annotations are straightforward to apply

(see Section 7), static analysis techniques could be used to further

simplify the annotation process. For example, in an approximation-

aware programming language such as EnerJ [41], the programmer

451

uses type qualifiers to specify which data is non-critical and may be

approximated. In such a system, the Parrot transformation can be

automatically applied to any block of code that only affects approxi-

mate data. That is, the candidate regions for the Parrot transformation

would be implicitly defined.

Like prior work on approximate computing, we acknowledge

that some programmer guidance is essential when identifying error-

tolerant code [2, 8, 11, 29, 41]. Tolerance to approximation is an

inherently application-specific property. Fortunately, language-level

techniques like EnerJ demonstrate that the necessary code annotations

can be intuitive and straightforward for programmers to apply.

4. Compilation Workflow

Once the program has been annotated, the compilation workflow

implements the Parrot transformation in three steps: observation,

training, and instrumented binary generation.

4.1. Code Observation

In the first phase, the compiler collects input–output pairs for the

target code that reflect real program executions. This in-context

observation allows the compiler to train the neural network on a

realistic data set. The compiler produces an instrumented binary for

the source program that includes probes on the input and output of the

annotated function. Each time the candidate function executes, the

probes record its inputs and outputs. The program is run repeatedly

using test inputs. The output of this phase is a training data set: each

input–output pair represents a sample for the training algorithm. The

system also measures the minimum and maximum value for each

input and output; the NPU normalizes values using these ranges

during execution.

The observation phase resembles the profiling runs used in profile-

guided compilation. Specifically, it requires representative test inputs

for the application. The inputs may be part of an existing test suite or

randomly generated. In many cases, a small number of application

test inputs are sufficient to train a neural network because the candi-

date function is executed many times in a single application run. In

our edge detection example, the sobel function runs for every pixel in

the input image. So, as Section 7 details, training sobel on a single

512×512 test image provides 262144 training data points and results

in acceptable accuracy when computing on unseen images.

Although we do not explore it in this paper, automatic input genera-

tion could help cover the space of possible inputs and thereby achieve

a more accurate trained neural network. In particular, the compiler

could synthesize new inputs by interpolating values between existing

test cases.

4.2. Training

The compiler uses the training data to produce a neural network that

replaces the original function. There are a variety of types of artificial

neural networks in the literature, but we narrow the search space to

multilayer perceptrons (MLPs) due to their broad applicability.

The compiler uses the backpropagation algorithm [40] to train the

neural network. Backpropagation is a gradient descent algorithm

that iteratively adjusts the weights of the neural network according to

each input–output pair. The learning rate, a value between 0 and 1, is

the step size of the gradient descent and identifies how much a single

example affects the weights. Since backpropagation on MLPs is not

convex and the compilation procedure is automatic, we choose a small

learning rate of 0.01. Larger steps can cause oscillation in the training

and prevent convergence. One complete pass over the training data

is called an epoch. Since the learning rate is small, the epoch count

should be large enough to ensure convergence. Empirically, we

find that 5000 epochs achieve a good balance of generalization and

accuracy. Larger epoch counts can cause overtraining and adversely

affect the generalization ability of the network while smaller epoch

counts may result in poor accuracy.

Neural network topology selection. In addition to running back-

propagation, this phase selects a network topology that balances be-

tween accuracy and efficiency. An MLP consists of a fully-connected

set of neurons organized into layers: the input layer, any number of

“hidden” layers, and the output layer (see Figure 2b). A larger, more

complex network offers better accuracy potential but is likely to be

slower and less power-efficient than a small, simple neural network.

To choose the topology, we use a simple search algorithm guided

by the mean squared error of the neural network when tested on an

unseen subset of the observed data. The error evaluation uses a typical

cross-validation approach: the compiler partitions the data collected

during observation into a training set, 70% of the observed data, and

a test set, the remaining 30%. The topology search algorithm trains

many different neural network topologies using the training set and

chooses the one with the highest accuracy on the test set and the

lowest latency on the NPU (prioritizing accuracy).

The space of possible topologies is large, so we restrict the search

to neural networks with at most two hidden layers. We also limit

the number of neurons per hidden layer to powers of two up to

32. (The numbers of neurons in the input and output layers are

predetermined based on the number of inputs and outputs in the

candidate function.) These choices limit the search space to 30

possible topologies. The maximum number of hidden layers and

maximum neurons per hidden layer are compilation options and

can be specified by the user. Although the candidate topologies

can be trained in parallel, enlarging the search space increases the

compilation time.

The output from this phase consists of a neural network topology—

specifying the number of layers and the number of neurons in each

layer—along with the weight for each neuron and the normalization

range for each input and output. Figure 2b shows the three-layer

MLP that replaces the sobel function. Each neuron in the network

performs a weighted sum on its inputs and then applies a sigmoid

function to the result of weighted sum.

On-line training. Our present system performs observation and

training prior to deployment; an alternative design could train the

neural network concurrently with in-vivo operation. On-line training

could improve accuracy but would result in runtime overheads. To

address these overheads, an on-line training system could offload

neural network training and configuration to a remote server. With off-

site training, multiple deployed application instances could centralize

their training to increase input space coverage.

4.3. Code Generation

After the training phase, the compiler generates an instrumented

binary that runs on the core and invokes the NPU instead of calling

the original function. The program configures the NPU when it is

first loaded by sending the topology parameters and synaptic weights

to the NPU via its configuration interface (Section 6.2). The compiler

replaces the calls to the original function with special instructions

that send the inputs to the NPU and collect the outputs from it. The

452

Core

Speculative Tail

Non-speculative Head
Speculative Head

Output FIFO

Input FIFO

Config FIFO

NPU

Fetch

Decode

Issue

Execute

Memory

Commit

Figure 3: The NPU exposes three FIFO queues to the core. The spec-
ulative state of the FIFOs is shaded.

configuration and input–output communication occurs through ISA

extensions discussed in Section 5.1.

5. Architecture Design for NPU Acceleration

Since candidate regions for the Parrot transformation can be fine-

grained, NPU invocation must be low-overhead to be beneficial.

Ideally, the NPU should integrate tightly with the processor pipeline.

The processor ISA also needs to be extended to allow programs to

configure and invoke the NPU during execution. Moreover, NPU

invocation should not prevent speculative execution. This section

discusses the ISA extensions and microarchitectural mechanism for

tightly integrating the NPU with an out-of-order processor pipeline.

5.1. ISA Support for NPU Acceleration

The NPU is a variable-delay, tightly-coupled accelerator that com-

municates with the rest of the core via FIFO queues. As shown in

Figure 3, the CPU–NPU interface consists of three queues: one for

sending and retrieving the configuration, one for sending the inputs,

and one for retrieving the neural network’s outputs. The ISA is ex-

tended with four instructions to access the queues. These instructions

assume that the processor is equipped with a single NPU; if the ar-

chitecture supports multiple NPUs or multiple stored configurations

per NPU, the instructions may be parameterized with an operand that

identifies the target NPU.

• enq.c %r: enqueues the value of the register r into the config FIFO.

• deq.c %r: dequeues a configuration value from the config FIFO to

the register r.
• enq.d %r: enqueues the value of the register r into the input FIFO.

• deq.d %r: dequeues the head of the output FIFO to the register r.
To set up the NPU, the program executes a series of enq.c instructions

to send configuration parameters—number of inputs and outputs,

network topology, and synaptic weights—to the NPU. The operating

system uses deq.c instructions to save the NPU configuration during

context switches. To invoke the NPU, the program executes enq.d
repeatedly to send inputs to the configured neural network. As soon

as all of the inputs of the neural network are enqueued, the NPU starts

computation and puts the results in its output FIFO. The program

executes deq.d repeatedly to retrieve the output values.

Instead of special instructions, an alternative design could use

memory-mapped IO to communicate with the NPU. This design

would require special fence instructions to prevent interference be-

tween two consecutive invocations and could impose a large overhead

per NPU invocation.

5.2. Speculative NPU-Augmented Architecture

Scheduling and issue. To ensure correct communication with the

NPU, the processor must issue NPU instructions in order. To ac-

complish this, the renaming logic implicitly considers every NPU

Lower Cost of
Implementation

CPU GPU FPGA
Approximate
Digital ASIC

FPAA Analog ASIC
Digital
ASIC

Lower Energy/Higher Performance
Lower Accuracy

Figure 4: Design space of NPU implementations. This paper focuses
on a precise digital ASIC design.

instruction to read and write a designated “dummy” architectural

register. The scheduler will therefore treat all NPU instructions as

dependent. Furthermore, the scheduler only issues an enqueue in-

struction if the corresponding FIFO is not full. Similarly, a dequeue

instruction is only issued if the corresponding FIFO is not empty.

Speculative execution. The processor can execute enq.d and deq.d
instructions speculatively. Therefore, the head pointer of the input

FIFO can only be updated—and consequently the entries recycled—

when: (1) the enqueue instruction commits; and (2) the NPU finishes

processing that input. When an enq.d instruction reaches the commit

stage, a signal is sent to the NPU to notify it that the input FIFO head

pointer can be updated.

To ensure correct speculative execution, the output FIFO maintains

two head pointers: a speculative head and a non-speculative head.

When a dequeue instruction is issued, it reads a value from the output

FIFO and the speculative head is updated to point to the next output.

However, the non-speculative head is not updated to ensure that the

read value is preserved in case the issue of the instruction was a result

of misspeculation. The non-speculative head pointer is only updated

when the instruction commits, freeing the slot in the output FIFO.

In case of a flush due to branch or dependence misspeculation, the

processor sends the number of squashed enq.d and deq.d instructions

to the NPU. The NPU adjusts its input FIFO tail pointer and output

FIFO speculative head pointer accordingly. The NPU also resets its

internal control state if it was processing any of the invalidated inputs

and adjusts the output FIFO tail pointer to invalidate any outputs

that are based on the invalidated inputs. The rollback operations are

performed concurrently for the input and output FIFOs.

The enq.c and deq.c instructions, which are only used to read and

write the NPU configuration, are not executed speculatively.

Interrupts. If an interrupt were to occur during an NPU invocation,

the speculative state of the NPU would need to be flushed. The

remaining non-speculative data in the input and output FIFOs would

need to be saved and then restored when the process resumes. One

way to avoid this complexity is to disable interrupts during NPU

invocations; however, this approach requires that the invocation time

is finite and ideally short as to not delay interrupts for too long.

Context switches. The NPU’s configuration is architectural state,

so the operating system must save and restore the configuration data

on a context switch. The OS reads out the current NPU configuration

using the deq.c instruction and stores it for later reconfiguration when

the process is switched back in. To reduce context switch overheads,

the OS can use the same lazy context switch techniques that are

typically used with floating point units [33].

6. Neural Processing Unit

There are many implementation options for NPUs with varying trade-

offs in performance, power, area, and complexity, as illustrated by

Figure 4. At one extreme are software implementations running on

a CPU or GPU [20, 34]. Since these implementations have higher

computation and communication overheads, they are likely more

suitable for very large candidate regions, when the invocation cost

453

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Bus
Scheduler

Scheduling Buffer

Output FIFO

Input FIFO

Config FIFO

Scaling
Unit

(a) 8-PE NPU

Multiply-Add
Unit

Sigmoid
Unit

Weight Buffer

Output Register File

Input FIFO

Controller

Accumulator
Registers

(b) Single processing engine

Figure 5: Reconfigurable 8-PE NPU.

can be better amortized. Next on the scale are FPGA-based imple-

mentations [50]. Digital ASIC designs are likely to be lower-latency

and more power-efficient than FPGA-based implementations [9, 37].

Since neural networks are themselves approximable, their implemen-

tation can also be approximate. Therefore, we can improve efficiency

further and use approximate digital circuits (e.g., sub-critical voltage

supply). In the extreme, one can even use custom analog circuitry

or FPAAs [3, 42, 44]. In fact, we believe that analog NPUs have

significant potential and we plan to explore them in future work. We

focus on an ASIC design operating at the same critical voltage as

the main core. This implementation represents a reasonable trade-off

between efficiency and complexity; it is able to accelerate a wide

variety of applications without the complexity of integrating analog

or sub-critical components with the processor.

6.1. Reconfigurable Digital NPU

The Parrot transformation produces different neural network topolo-

gies for different code regions. Thus, we propose a reconfigurable

NPU design that accelerates the evaluation of a range of neural

topologies. As shown in Figure 5a, the NPU contains eight identical

processing engines (PEs) and one scaling unit. Although the design

can scale to larger numbers of PEs, we find that the speedup gain

beyond 8 PEs is small (see Section 7). The scaling unit scales the

neural network’s inputs and outputs if necessary using scaling factors

defined in the NPU configuration process.

The PEs in the NPU are statically scheduled. The scheduling infor-

mation is part of the configuration information for the NPU, which

is based on the neural network topology derived during the training

process. In the NPU’s schedule, each neuron in the neural network

is assigned to one of the eight PEs. The neural network’s topology

determines a static schedule for the timing of the PE computations,

bus accesses, and queue accesses.

The NPU stores the bus scheduling information in its circular

scheduling buffer (shown in Figure 5a). Each entry in this buffer

schedules the bus to send a value from a PE or the input FIFO to a set

of destination PEs or the output FIFO. Every scheduling buffer entry

consists of a source and a destination. The source is either the input

FIFO or the identifier of a PE along with an index into its output

register file (shown in Figure 5b). The destination is either the output

FIFO or a bit field indicating the destination PEs.

Figure 5b shows the internal structure of a single PE. Each PE

performs the computation for all of its assigned neurons. Namely,

because the NPU implements a sigmoid-activation multilayer percep-

tron, each neuron computes its output as y = sigmoid(∑i(xi ×wi))
where xi is an input to the neuron and wi is its corresponding weight.

The weight buffer, a circular buffer, stores the weights. When a PE

receives an input from the bus, it stores the value in its input FIFO.

When the neuron weights for each PE are configured, they are placed

into the weight buffer; the compiler-directed schedule ensures that

the inputs arrive in the same order that their corresponding weights

appear in the buffer. This way, the PE can perform multiply-and-add

operations in the order the inputs enter the PE’s input FIFO.

Each entry in the weight buffer is augmented by one bit indicating

whether a neuron’s multiply-add operation has finished. When it

finishes, the PE applies the sigmoid function, which is implemented

as a lookup table, and write the result to its output register file. The

per-neuron information stored in the weight buffer also indicates

which output register should be used.

6.2. NPU Configuration

During code generation (Section 4.3), the compiler produces an NPU

configuration that implements the trained neural network for each

candidate function. The static NPU scheduling algorithm first assigns

an order to the inputs of the neural network. This order determines

both the sequence of enq.d instructions that the CPU will send to the

NPU during each invocation and the order of multiply-add operations

among the NPU’s PEs. Then, the scheduler takes the following steps

for each layer of the neural network:

1. Assign each neuron to one of the processing engines.

2. Assign an order to the multiply-add operations considering the

order assigned to the inputs of the layer.

3. Assign an order to the outputs of the layer.

4. Produce a bus schedule reflecting the order of operations.

The ordering assigned for the final layer of the neural network dictates

the order in which the program will retrieve the NPU’s output using

deq.d instructions.

7. Evaluation

To evaluate the effectiveness of the Parrot transformation, we apply

it to several benchmarks from diverse application domains. For each

benchmark, we identify a region of code that is amenable to the

Parrot transformation. We evaluate whole-application speedup and

energy savings using cycle-accurate simulation and a power model.

We also examine the resulting trade-off in computation accuracy. We

perform a sensitivity analysis to examine the effect of NPU PE count

and communication latency on the performance benefits.

7.1. Benchmarks and the Parrot Transformation

Table 1 lists the benchmarks used in this evaluation. These bench-

marks are all written in C. The application domains—signal pro-

cessing, robotics, gaming, compression, machine learning, and im-

age processing—are selected for their usefulness to general appli-

cations and tolerance to imprecision. The domains are commen-

surate with evaluations of previous work on approximate comput-

ing [1, 11, 28, 29, 41, 43].

Table 1 also lists the input sets used for performance, energy, and

accuracy assessment. These input sets are different from the ones

used during the training phase of the Parrot transformation. For

applications with random inputs we use a different random input set.

For applications with image input, we use a different image.

454

Table 1: The benchmarks evaluated, characterization of each transformed function, 0 data, and the result of the Parrot transformation.

�������	�
� ���
������	�
�
����	���	

��
������	�
��
�����

��
��
�

��

��
������
�����

��
������� �
���	���	�
��

�������!
����	���	

"������"�	#
�$�
�
�
�
! ""�%��

���
��
%�	��� ���
�

��	

�������$&'

'(���	

'��!

$(����

�
)��

�������	

���������		
����	������

������	
���������

����	������	
��������	�����	
 ��!��

� � � "�
"�#$�	������	
��������	�����	
 ��!��

%	�&	�	�&	�	�&	� �'�����
()���	
�����)	
*����

#'��+

,�)��	
���������	���	
��-����	���

��!����� %����	.�/�0	������	

���������

� � � %�� %����	.�/�0	������	

���������

�	�&	�	�&	� �'��1$"
()���	
�����)	
*����

#'1�+

�������	
����������	
�������

"2	3�����
%����	������	�����	
��	"2	�������	

���������

"� � �" %/�#4
%�����	������	
�����	��	"2	�������	

���������

%�	�&	"�	�&	�	�&	� �'��1"� 5���	
���

#'"�+

6�*3	�������
��7������
������������	
����	
,��� " � � %/�1#

�8�	1%��1%������	

����	,���� $�	�&	%$	�&	$� �'���4�

,���	
2��� 4'1$+

9�����	
���������

5��8��	
:������

������������	
����	
,���

% � � �$
1����	�����	��	
������	.�/	�/	!0	
;����

$	�&	�	�&	�	�&	% �'��%$4 ,���	
2���

$'%�+

��!�	��	
������

,���	
���������

������������	
����	
,��� " � % ��

<�	1%��1%������	

����	,��� 4	�&	�	�&	% �'���"�

,���	
2��� "'��+

Code annotation. The C source code for each benchmark was an-

notated as described in Section 3: we identified a single pure function

with fixed-size inputs and outputs. No algorithmic changes were

made to the benchmarks to accommodate the Parrot transformation.

There are many choices for the selection of target code and, for some

programs, multiple NPUs may even have been beneficial. For the

purposes of this evaluation, however, we selected a single target re-

gion per benchmark that was easy to identify, frequently executed as

to allow for efficiency gains, and amenable to learning by a neural

network. Qualitatively, we found it straightforward to identify a

reasonable candidate function in each benchmark.

Table 1 shows the number of function calls, conditionals, and loops

in each transformed function. The table also shows the number of

x86-64 instructions for the target function when compiled by GCC
4.4.6 at the -O3 optimization level. We do not include the statistics

of the standard library functions in these numbers. In most of these

benchmarks, the target code contains complex control flow including

conditionals, loops, and method calls. In jmeint, the target code con-

tains the bulk of the algorithm, including many nested method calls

and numerous conditionals. In jpeg, the transformation subsumes

the discrete cosine transform and quantization phases, which contain

function calls and loops. In fft, inversek2j, and sobel, the target code

consists mainly of arithmetic operations and simpler control flow. In

kmeans, the target code is the 0 distance calculation, which is simple

and fine-grained yet frequently executed. In each case, the target

code is side-effect-free and the number of inputs/outputs are statically

identifiable.

Training data. To train the NPU for each application, we have

used either (1) typical program inputs (e.g., sample images) or (2)

a limited number of random inputs. For the benchmarks that use

random inputs, we determined the permissible range of parameters

in the code and generated uniform random inputs in that range. For

the image-based benchmarks, we used three standard images that

are used to evaluate image processing algorithms (lena, mandrill, and

peppers). For kmeans, we supplied random inputs to the code region

to avoid overtraining on a particular test image. Table 1 shows the

specific image or application input used in the training phase for each

benchmark. We used different random inputs and different images

for the final accuracy evaluation.

Neural networks. The “Neural Network Topology” column in Ta-

ble 1 shows the topology of the trained neural network discovered by

the training stage described in Section 4.2. The “NN MSE” column

shows the mean squared error for each neural network on the test

subset of the training data. For example, the topology for jmeint
is 18 → 32 → 8 → 2, meaning that the neural network takes in 18

inputs, produces 2 outputs, and has two hidden layers with 32 and 8

neurons respectively. As the results show, the compilation workflow

was able to find a neural network that accurately mimics each original

function. However, different topologies are required to approximate

different functions.

Different applications require different neural network topologies, so the
NPU structure must be reconfigurable.

Output quality. We use an application-specific error metric, shown

in Table 1, to assess the quality of each benchmark’s output. In all

cases, we compare the output of the original untransformed applica-

tion to the output of the transformed application. For fft and inversek2j,
which generate numeric outputs, we measure the average relative

error. jmeint calculates whether two three-dimensional triangles inter-

sect; we report the misclassification rate. For jpeg, kmeans, and sobel,
which produce image outputs, we use the average root-mean-square

image difference. The column labeled “Error” in Table 1 shows the

whole-application error of each benchmark according to its error

metric. Unlike the “NN MSE” error values, this application-level

error assessment accounts for accumulated errors due to repeated

execution of the transformed function.

Application average error rates range from 3% to 10%. This

quality-of-service loss is commensurate with other work on quality

trade-offs. Among hardware approximation techniques, Truffle [11]

shows similar error (3–10%) for some applications and much greater

error (above 80%) for others in a moderate configuration. The evalu-

ation of EnerJ [41] also has similar error rates; two thirds of the ap-

plications exhibit error greater than 10% in the most energy-efficient

configuration. Green [2], a software technique, has error rates below

1% for some applications but greater than 20% for others. A case

study by Misailovic et al. [30] explores manual optimizations of a

video encoder, x264, that trade off 0.5–10% quality loss.

455

Table 2: Microarchitectural parameters for the core, caches, memory, NPU, and each PE in the NPU.

Core

Architecture x86-64
Fetch/Issue Width 4/6

INT ALUs/FPUs 3/2
Load/Store FUs 2/2

ROB Entries 96
Issue Queue Entries 32

INT/FP Physical Registers 256/256
Branch Predictor Tournament, 48 KB
BTB Sets/Ways 1024/4

RAS Entries 64
Load/Store Queue Entries 48/48

Dependence Predictor 4096-entry Bloom Filter

Caches and Memory

L1 Cache Size 32 KB instruction, 32 KB data
L1 Line Width 64 bytes

L1 Associativity 8
L1 Hit Latency 3 cycles

ITLB/DTLB Entries 128/256
L2 Cache Size 2 MB
L2 Line Width 64 bytes

L2 Associativity 8
L2 Hit Latency 12

Memory Latency 50 ns (104 cycles)

NPU

Number of PEs 8
Bus Schedule FIFO 512×20-bit

Input FIFO 128×32-bit
Output FIFO 128×32-bit
Config FIFO 8×32-bit

NPU PE

Weight Cache 512×33-bit
Input FIFO 8×32-bit

Output Register File 8×32-bit
Sigmoid Unit LUT 2048×32-bit
Multiply-Add Unit 32-bit Single-Precision FP

�� ��� ��� ��� ��� ��� 	��
�� ��� ��� ����
�����

��

���

���

	��

���

����

��
��

��
	

��
��

��
�	

��
	��

��
�

��
	�

�
����������
������
����
������
�����

Figure 6: Cumulative distribution function (CDF) plot of the applica-
tions’ output error. A point (x,y) indicates that y fraction of
the output elements see error less than or equal to x.

The Parrot transformation degrades each application’s average output
quality by less than 10%, a rate commensurate with other approximate
computing techniques.

To study the application level quality loss in more detail, Figure 6

depicts the CDF (cumulative distribution function) plot of final er-

ror for each element of application’s output. The output of each

benchmark consists of a collection of elements—an image consists

of pixels; a vector consists of scalars; etc. The error CDF reveals the

distribution of output errors among an application’s output elements

and shows that very few output elements see large quality loss.

The majority (80% to 100%) of each transformed application’s output
elements have error less than 10%.

7.2. Experimental Setup

Cycle-accurate simulation. We use the MARSSx86 cycle-accurate

x86-64 simulator [35] to evaluate the performance effect of the Par-

rot transformation and NPU acceleration. Table 2 summarizes the

microarchitectural parameters for the core, memory subsystem, and

NPU. We configure the simulator to resemble Intel’s Penryn microar-

chitecture, which is an aggressive out-of-order design. We augment

MARSSx86 with a cycle-accurate NPU simulator and add support

for NPU queue instructions through unused x86 opcodes. We use

C assembly inlining to add the NPU invocation code. We compile

the benchmarks using GCC version 4.4.6 with the -O3 flag to enable

aggressive compiler optimizations. The baseline in all of the reported

results is the execution of the entire benchmark on the core without

the Parrot transformation.

Energy modeling. MARSSx86 generates an event log during the

cycle-accurate simulation of the program. The resulting statistics

are sent to a modified version of McPAT [27] to estimate the energy

consumption of each execution. We model the energy consumption

of an 8-PE NPU using the results from McPAT and CACTI 6.5 [31]

for memory arrays, buses, and steering logic. We use the results

from Galal et al. [17] to estimate the energy of multiply-and-add

operations. We model the NPU and the core at the 45 nm technology

node. The NPU operates at the same frequency and voltage as the

main core. We use the 2080 MHz frequency and Vdd = 0.9 V settings

because the energy results in Galal et al. [17] are for this frequency

and voltage setting.

7.3. Experimental Results

Dynamic instruction subsumption. Figure 7 depicts dynamic in-

struction count of each transformed benchmark normalized to the

instruction count for CPU-only execution. The figure divides each

application into NPU communication instructions and application in-

structions. While the potential benefit of NPU acceleration is directly

related to the amount of CPU work that can be elided, the queuing

instructions and the cost of neural network evaluation limit the actual

benefit. For example, inversek2j exhibits the greatest potential for

benefit: even accounting for the communication instructions, the

transformed program executes 94% fewer instructions on the core.

Most of the benchmark’s dynamic instructions are in the target region

for the Parrot transformation and it only communicates four values

with the NPU per invocation. This is because inversek2j is an ideal

case: the entire algorithm has a fixed-size input ((x,y) coordinates of

the robot arm), fixed-size output ((θ1,θ2) angles for the arm joints),

and tolerance for imprecision. In contrast, kmeans is representative of

applications where the Parrot transformation applies more locally: the

target code is “hot” but only consists of a few arithmetic operations

and the communication overhead is relatively high.

Performance and energy benefits. Figure 8a shows the applica-

tion speedup when an 8-PE NPU is used to replace each benchmark’s

target function. The rest of the code runs on the core. The baseline

is executing the entire, untransformed benchmark on the CPU. The

plots also show the potential available speedup: the hypothetical

speedup if the NPU takes zero cycles for computation. Among the

benchmarks inversek2j sees the highest speedup (11.1×) since the

Parrot transformation substitutes the bulk of the application with a

relatively small NN (2 → 8 → 2). On the other hand, kmeans sees

a 24% slowdown even though it shows a potential speedup of 20%

in the limit. The transformed region of code in kmeans consists of

26 mostly arithmetic instructions that can efficiently run on the core

456

0

0.25

0.50

0.75

1.00

fft inversek2j jmeint jpeg kmeans sobel geomean

N
o

rm
al

iz
ed

 #
 o

f
D

yn
am

ic
 In

st
ru

ct
io

ns

Other Instructions
NPU Queue Instructions

Figure 7: Number of dynamic instructions after Parrot transformation
normalized to the original program.

0

1

2

3

4

5

fft inversek2j jmeint jpeg kmeans sobel geomean

3.4

2.5

1.2

1.9

4.5
 15.8

3.8

2.3
1.9

.8

1.61.7

11.1

3.6

A
p

p
lic

at
io

n
S

p
ee

d
up

Core + NPU
Core + Ideal NPU

(a) Total application speedup with 8-PE NPU

0

1

2

3

4

5

6

7

fft inversek2j jmeint jpeg kmeans sobel geomean

3.9

2.4

1.4

2.4

5.8

 25.2

3.2 3.0

2.2

1.1

2.12.3

21.1

3.1

A
p

p
lic

at
io

n
E

ne
rg

y
R

ed
uc

ti
o

n

Core + NPU
Core + Ideal NPU

(b) Total application energy saving with 8-PE NPU

Figure 8: Performance and energy improvements.

while the NN (6 → 8 → 4 → 1) for this benchmark is comparatively

complex and involves more computation (84 multiply-adds and 12

sigmoids) than the original code. On average, the benchmarks see a

speedup of 2.3× through NPU acceleration.

Figure 8b shows the energy reduction for each benchmark. The

baseline is the energy consumed by running the entire benchmark on

the unmodified CPU and the ideal energy savings for a hypothetical

zero-energy NPU. The Parrot transformation elides the execution of

significant portion of dynamic instructions that otherwise would go

1

10

100

fft inversek2j jmeint jpeg kmeans sobel geomean

19.923.9

64.7

21.9

74.0

5.6
4.5

A
p

p
lic

at
io

n
S

lo
w

d
o

w
n

Figure 9: Slowdown with software neural network execution.

through power-hungry stages of the OoO pipeline. The reduction in

the number of dynamic instructions and the energy-efficient design

of the NPU yield a 3.0× average application energy reduction.

For the applications we studied, the Parrot transformation and NPU
acceleration provided an average 2.3× speedup and 3.0× energy re-
duction.

Results for a hypothetical zero-cost NPU suggest that, in the limit, more
efficient implementation techniques such as analog NPUs could result
in up to 3.4× performance and 3.7× energy improvements on average.

Software neural network execution. While our design evaluates

neural networks on a dedicated hardware unit, it is also possible to run

transformed programs entirely on the CPU using a software library

for neural network evaluation. To evaluate the performance of this

all-software configuration, we executed each transformed benchmark

using calls to the widely-used Fast Artificial Neural Network (FANN)

library [15] in place of NPU invocations. Figure 9 shows the slow-

down compared to the baseline (untransformed) execution of each

benchmark. Every benchmark exhibits a significant slowdown when

the Parrot transformation is used without NPU acceleration. jmeint
shows the highest slowdown because 1079 x86 instructions—which

take an average of 326 cycles on the core—are replaced by 928 multi-

plies, 928 adds, and 42 sigmoids. FANN’s software multiply-and-add

operations involve calculating the address of the neuron weights and

loading them. The overhead of function calls in the FANN library

also contributes to the slowdown.

The Parrot transformation requires efficient neural network execution,
such as hardware acceleration, to be beneficial.

Sensitivity to communication latency. The benefit of NPU-based

execution depends on the cost of each NPU invocation. Specifically,

the latency of the interconnect between the core and the NPU can

affect the potential energy savings and speedup. Figure 10 shows

the speedup for each benchmark under five different communication

latencies. In each configuration, it takes n cycles to send data to the

NPU and n cycles to receive data back from the NPU. In effect, 2n
cycles are added to the NPU invocation latency. We imagine a design

with pipelined communication, so individual enqueue and dequeue

instructions take one extra cycle each in every configuration.

The effect of communication latency varies depending on the

application. In cases like jpeg, where the NPU computation latency

is significantly larger than the communication latency, the speedup is

mostly unaffected by increased latency. In contrast, inversek2j sees

457

0

1

2

3

4

5

fft inversek2j jmeint jpeg kmeans sobel geomean

1.8
1.4

0.5

1.61.5

6.9

3.1

2.3
1.9

0.8

1.61.7

11.1

3.6

A
p

p
lic

at
io

n
S

p
ee

d
up

1 Cycle 2 Cycles 4 Cycles 8 Cycles 16 Cycles

Figure 10: Sensitivity of the application’s speedup to NPU communi-
cation latency. Each bar shows the speedup if communi-
cating with the NPU takes n cycles.

0%

10%

20%

30%

40%

50%

1->2 PEs 2->4 PEs 4->8 PEs 8->16 PEs 16->32 PEs

G
eo

m
et

ri
c

M
ea

n
S

p
ee

d
up

 G
ai

n

Figure 11: Performance gain per doubling the number of PEs.

a significant reduction in speedup from 11.1× to 6.9× when the

communication latency increases from one cycle to 16 and becomes

comparable to the computation latency. For kmeans, the slowdown

becomes 48% for a latency of 16 cycles compared to 24% when the

communication latency is one cycle.

For some applications with simple neural network topologies, a tightly-
coupled, low-latency NPU–CPU integration design is highly beneficial.
Other applications we studied can tolerate a higher-latency interconnect.

Number of PEs. Figure 11 shows the geometric mean speedup

gain from doubling the number of PEs in the NPU. Doubling the

number of PEs beyond eight yields less than 5% geometric mean

speedup gain, which does not justify the complexity of adding more

than eight PEs for our benchmarks.

8. Limitations and Future Directions

Our results suggest that the Parrot transformation and NPU accelera-

tion can provide significant performance and energy benefits. How-

ever, further research must address three limitations to the Parrot

transformation as described in this work: (1) applicability; (2) pro-

grammer effort; and (3) quality and error control.

Applicability. Since neural networks inherently produce approxi-

mate results, not all code regions can undergo the Parrot transforma-

tion. As enumerated in Section 3.1, a target code region must satisfy

the following conditions:

• The region must be hot in order to benefit from acceleration.

• The region must be approximable. That is, the program must

incorporate application-level tolerance of imprecision in the results

of the candidate region.

• The region must have a bounded number of statically identifiable

inputs and outputs.

Although these criteria form a basis for programmers or compilers to

identify nominees for the Parrot transformation, they do not guarantee

that the resulting neural network will accurately approximate the code

region. There is no simple criterion that makes a certain task (here

a candidate region) suited for learning by a neural network. How-

ever, our experience and results suggest that empirical assessment

is effective to classify a wide variety of approximate functions as

NPU-suitable. Follow-on work can improve on empirical assessment

by identifying static code features that tend to indicate suitability for

learning-based acceleration.

Programmer effort. In this paper, the Parrot transformation re-

quires programmers to (1) identify approximable code regions and

(2) provide application inputs to be used for training data collection.

As with the other approaches that ensure the safety of approximate

computation and avoid catastrophic failures [41], the programmer

must explicitly provide information for the compiler to determine

which code regions are safe to approximate. As Section 3.2 outlines,

future work should explore allowing the compiler to automatically

infer which blocks are amenable to approximation.

Because NPU acceleration depends on representative test cases,

it resembles a large body of other techniques that use programmer-

provided test inputs, including quality assurance (e.g., unit and in-

tegration testing) and profile-driven compilers. Future work should

apply traditional coverage measurement and improvement techniques,

such as test generation, to the Parrot transformation. In general, how-

ever, we found that it was straightforward to provide sufficient inputs

for the programs we examined. This is in part because the candi-

date function is executed many times in a single application run, so

a small number of inputs can suffice. Furthermore, as Section 4.2

mentions, an on-line version of the Parrot transformation workflow

could use samples of post-deployment inputs if representative tests

are not available pre-deployment.

Quality and error control. The results in this paper suggest that

NPU acceleration can effectively approximate code with accuracy

that is commensurate with state-of-the art approximate computing

techniques. However, there is always a possibility that, for some

inputs, the NPU computes a significantly lower-quality result than

the average case. In other words, without exhaustively exploring

the NPU’s input space, it is impossible to give guarantees about its

worst-case accuracy.

This unpredictability is common to other approximation tech-

niques [11,41]. As long as the frequency of low-quality results is low

and the application can tolerate these infrequent large errors, approxi-

mation techniques like NPUs can be effective. For this reason, future

research should explore mechanisms to mitigate the frequency of

such low-quality results. One such mechanism is to predict whether

the NPU execution of the candidate region will be acceptable. For

example, one embodiment would check whether an input falls in the

range of inputs seen previously during training. If the prediction is

negative, the original code can be invoked instead of the NPU. Alter-

natively, the runtime system could occasionally measure the error by

comparing the NPU output to the original function’s output. In case

the sampled error is greater than a threshold, the neural network can

be retrained. These techniques are similar in spirit to related research

on estimating error bounds for neural networks [46].

9. Related Work
This work represents a convergence of three main bodies of research:

approximate computing, general-purpose configurable acceleration,

458

and hardware neural networks. Fundamentally, the Parrot transfor-

mation leverages hardware neural networks to create a new class of

configurable accelerators for approximate programs.

Approximate computing. Many categories of “soft” applications

have been shown to be tolerant to imprecision during execution [7,14,

28,49]. Prior work has explored relaxed hardware semantics and their

impact on these applications, both as (1) extensions to traditional

architectures [1, 8, 11, 29] and (2) in the form of fully approximate

processing units [4, 24, 26, 32].

In the former category (1), a conventional processor architecture

is extended to enable selective approximate execution. Since all the

instructions, both approximate and precise, still run on the core, the

benefits of approximation are limited. In addition, these techniques’

fine granularity precludes higher-level, algorithmic transformations

that take advantage of approximation. The Parrot transformation

operates at coarser granularities—from small functions to entire

algorithms—and potentially increases the benefits of approximation.

Furthermore, NPU acceleration reduces the number of instructions

that go through the power-hungry frontend stages of the processor

pipeline. In the latter category (2), entire processing units carry

relaxed semantics and thus require vastly different programming

models. In contrast, NPUs can be used with conventional imperative

0 languages and existing code. No special code must be written to

take advantage of the approximate unit; only lightweight annotation

is required.

Some work has also exposed relaxed semantics in the program-

ming language to give programmers control over the precision of

software [2, 8, 41]. As an implementation of approximate semantics,

the Parrot transformation dovetails with these programming models.

General-purpose configurable acceleration. The Parrot transfor-

mation extends prior work on configurable computing, synthesis,

specialization, and acceleration that focuses on compiling traditional,

imperative code for efficient hardware structures. One research di-

rection seeks to synthesize efficient circuits or configure FPGAs to

accelerate general-purpose code [6, 13, 38, 39]. Similarly, static spe-

cialization has shown significant efficiency gains for irregular and

legacy code [47, 48]. More recently, configurable accelerators have

been proposed that allow the main CPU to offload certain code to a

small, efficient structure [18,19]. These techniques, like NPU acceler-

ation, typically rely on profiling to identify frequently executed code

sections and include compilation workflows that offload this “hot”

code to the accelerator. This work differs in its focus on accelerating

approximate code. NPUs represent an opportunity to go beyond

the efficiency gains that are possible when strict correctness is not

required. While some code is not amenable to approximation and

should be accelerated only with correctness-preserving techniques,

NPUs can provide greater performance and energy improvements in

many situations where relaxed semantics are appropriate.

Neural networks. There is an extensive body of work on hard-

ware implementation of neural networks (neural hardware) both

digital [9, 37, 50] and analog [3, 25, 42, 44]. Recent work has pro-

posed higher-level abstractions for implementation of neural net-

works [23]. Other work has examined fault-tolerant hardware neural

networks [22, 45]. In particular, Temam [45] uses datasets from the

UCI machine learning repository [16] to explore fault tolerance of a

hardware neural network design. That work suggests that even faulty

hardware can be used for efficient simulation of neural networks. The

Parrot algorithmic transformation provides a compiler workflow that

allows general-purpose approximate applications to take advantage

of this and other hardware neural networks.

An early version of this work [12] proposed the core idea of

automatically mapping approximable regions of imperative code

to neural networks. A more recent study [5] showed that 5 of 13

applications from the PARSEC suite can be manually reimplemented

to make use of various kinds of neural networks, demonstrating that

some applications allow higher-level algorithmic modifications to

make use of hardware neural networks (and potentially an architecture

like NPUs). However, that work did not prescribe a programming

model nor a preferred hardware architecture.

10. Conclusion

This paper demonstrates that neural accelerators can successfully

mimic diverse regions of approximable imperative code. Using this

neural transformation and the appropriate hardware accelerator, sig-

nificant application-level energy and performance savings are achiev-

able. The levels of error introduced are comparable to those seen in

previous approximate computing techniques. For the technique to

be effective, two challenges must be met. First, the program trans-

formation must consider a range of neural network topologies; a

single topology is ineffective across diverse applications. Second,

the accelerator must be tightly coupled with a processor’s pipeline to

accelerate fine-grained regions of code. With these requirements met,

our application suite ran 2.3× faster on average while using 3.0×
less energy and maintaining accuracy greater than 90% in all cases.

Traditionally, hardware implementations of neural networks have

been confined to specific classes of learning applications. In this

paper, we show that the potential exists to use them to accelerate

general-purpose code that can tolerate small errors. In fact, the

transformation was successful for every approximable code region

that we tested. This acceleration capability aligns with both transistor

and application trends, as transistors become less reliable and as

imprecise applications grow in importance. NPUs may thus form a

new class of trainable accelerators with potential implementations in

the digital and analog domains.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable

comments. We thank our shepherd, Mike Schlansker, for his feedback

and encouragement. We also thank Brandon Lucia, Jacob Nelson,

Ardavan Pedram, Renée St. Amant, Karin Strauss, Xi Yang, and the

members of the Sampa group for their feedback on the manuscript.

This work was supported in part by NSF grant CCF-1016495 and

gifts from Microsoft.

References

[1] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Trans. Comput., vol. 54, no. 7,
2005.

[2] W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in
PLDI, 2010.

[3] B. E. Boser, E. Säckinger, J. Bromley, Y. Lecun, L. D. Jackel, and
S. Member, “An analog neural network processor with programmable
topology,” J. Solid-State Circuits, vol. 26, pp. 2017–2025, 1991.

[4] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V.
Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC architec-
tures based on probabilistic CMOS (PCMOS) technology,” in DATE,
2006.

459

[5] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere,
S. Qiu, M. Sebag, and O. Temam, “Benchnn: On the broad potential
application scope of hardware neural network accelerators?” in IISWC,
Nov. 2012.

[6] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruction
set customization,” in MICRO, 2004.

[7] M. de Kruijf and K. Sankaralingam, “Exploring the synergy of emerging
workloads and silicon reliability trends,” in SELSE, 2009.

[8] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An archi-
tectural framework for software recovery of hardware faults,” in ISCA,
2010.

[9] H. Esmaeilzadeh, P. Saeedi, B. Araabi, C. Lucas, and S. Fakhraie,
“Neural network stream processing core (NnSP) for embedded systems,”
in ISCAS, 2006.

[10] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Towards neural
acceleration for general-purpose approximate computing,” in WEED,
Jun. 2012.

[13] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, “Bridging the computa-
tion gap between programmable processors and hardwired accelerators,”
in HPCA, 2009.

[14] Y. Fang, H. Li, and X. Li, “A fault criticality evaluation framework of
digital systems for error tolerant video applications,” in ATS, 2011.

[15] FANN, “Fast artificial neural network library,” 2012. Available:
http://leenissen.dk/fann/wp/

[16] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
Available: http://archive.ics.uci.edu/ml

[17] S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,”
IEEE Trans. Comput., vol. 60, no. 7, pp. 913–922, 2011.

[18] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in HPCA, 2011.

[19] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” in MICRO, 2011.

[20] A. Guzhva, S. Dolenko, and I. Persiantsev, “Multifold acceleration of
neural network computations using GPU,” in ICANN, 2009.

[21] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in ISCA, 2010.

[22] A. Hashmi, H. Berry, O. Temam, and M. H. Lipasti, “Automatic ab-
straction and fault tolerance in cortical microarchitectures,” in ISCA,
2011.

[23] A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti, “A case for neuro-
morphic ISAs,” in ASPLOS, 2011.

[24] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED, 1999.

[25] A. Joubert, B. Belhadj, O. Temam, and R. Heliot, “Hardware spiking
neurons design: Analog or digital?” in IJCNN, 2012.

[26] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in DATE,
2010.

[27] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling

framework for multicore and manycore architectures,” in MICRO, 2009.
[28] X. Li and D. Yeung, “Exploiting soft computing for increased fault

tolerance,” in ASGI, 2006.
[29] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Sav-

ing refresh-power in mobile devices through critical data partitioning,”
in ASPLOS, 2011.

[30] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard, “Quality of
service profiling,” in ICSE, 2010.

[31] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimiz-
ing NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in MICRO, 2007.

[32] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochastic
processors,” in DATE, 2010.

[33] NetBSD Documentation, “How lazy FPU context switch works,” 2011.
Available: http://www.netbsd.org/docs/kernel/lazyfpu.html

[34] K.-S. Oh and K. Jung, “GPU implementation of neural networks,” Pat-
tern Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[35] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system
simulator for x86 CPUs,” in DAC, 2011.

[36] A. Pedram, R. A. van de Geijn, and A. Gerstlauer, “Codesign tradeoffs
for high-performance, low-power linear algebra architectures,” Comput-
ers, IEEE Transactions on, vol. 61, no. 12, Dec. 2012.

[37] K. Przytula and V. P. Kumar, Eds., Parallel Digital Implementations of
Neural Networks. Prentice Hall, 1993.

[38] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundarara-
jan, “CHiMPS: A high-level compilation flow for hybrid CPU-FPGA
architectures,” in FPGA, 2008.

[39] R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” in MICRO, 1994.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. MIT Press, 1986,
vol. 1, pp. 318–362.

[41] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general
low-power computation,” in PLDI, 2011.

[42] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog
neural networks,” in IJCNN, 2008.

[43] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in FSE, 2011.

[44] S. Tam, B. Gupta, H. Castro, and M. Holler, “Learning on an analog
VLSI neural network chip,” in SMC, 1990.

[45] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in ISCA, 2012.

[46] N. Townsend and L. Tarassenko, “Estimations of error bounds for neural-
network function approximators,” IEEE Transactions on Neural Net-
works, vol. 10, no. 2, Mar. 1999.

[47] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Reducing
the energy of mature computations,” in ASPLOS, 2010.

[48] G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, S. Swanson, and
M. Taylor, “QsCores: Trading dark silicon for scalable energy efficiency
with quasi-specific cores,” in MICRO, 2011.

[49] V. Wong and M. Horowitz, “Soft error resilience of probabilistic infer-
ence applications,” in SELSE, 2006.

[50] J. Zhu and P. Sutton, “FPGA implementations of neural networks: A
survey of a decade of progress,” in FPL, 2003.

460

Designing a Programmable Wire-Speed Regular-Expression Matching Accelerator

Jan van Lunteren1 Christoph Hagleitner1 Timothy Heil2 Giora Biran3 Uzi Shvadron3 Kubilay Atasu1

1IBM Research - Zurich, Switzerland
2IBM Systems and Technology Group, Rochester, MN, USA∗

3IBM Research and Development Labs, Haifa, Israel

{jvl,hle,kat}@zurich.ibm.com timheil@microsoft.com {gbiran,shvadron}@il.ibm.com

Abstract

A growing number of applications rely on fast pattern matching

to scan data in real-time for security and analytics purposes. The

RegX accelerator in the IBM Power Edge of NetworkTM (PowerEN)

processor supports these applications using a combination of fast pro-

grammable state machines and simple processing units to scan data

streams against thousands of regular-expression patterns at state-of-

the-art Ethernet link speeds. RegX employs a special rule cache and

includes several new micro-architectural features that enable various

instruction dispatch and execution options for the processing units.

The architecture applies RISC philosophy to special-purpose comput-

ing: hardware provides fast, simple primitives, typically performed

in a single cycle, which are exploited by an intelligent compiler and

system software for high performance. This approach provides the

flexibility required to achieve good performance across a wide range

of workloads. As implemented in the PowerENTMprocessor, the ac-

celerator achieves a theoretical peak scan rate of 73.6 Gbit/s, and

a measured scan rate of about 15 to 40 Gbit/s for typical intrusion

detection workloads.

1. Introduction

Increasing network speeds drive network intrusion detection sys-

tems to demand ever greater throughputs. Spiraling sophistication

and numbers of attacks have led to a steady rise in the number and

complexity of intrusion detection signature sets. At the same time,

new applications, such as text analytics for business intelligence, are

emerging that also rely increasingly on deep inspection of packet

contents.

As a result, regular-expression matching algorithms have re-gained

the attention of the research community in recent years. Although

the basic research in the field has existed for many decades, the new

requirements imposed by fast growing network link speeds and for

supporting larger and more complex pattern sets have fostered re-

search into innovative approaches. These are primarily focused on

hardware accelerators [11], FPGAs [19, 8] and GPUs [25], because

conventional software implementations running on general-purpose

CPUs are typically not capable of realizing the target scan rates that

can be on the order of several tens of Gbit/s. Most of this work is

based on either non-deterministic finite automata (NFAs) or deter-

ministic finite automata (DFAs) [14]. The main advantage of DFAs

over NFAs is the lower processing complexity, which makes them

more suitable for hardware implementations. The main disadvan-

tage of DFAs is the storage requirements, which can be substantially

larger than those of NFAs. Various methods have been developed

for remedying the latter issue, several of which will be discussed in

Section 10.

∗currently with Microsoft IEB

Our contribution presented in this paper consists of the complete

design of a novel high-performance regular-expression accelerator

called RegX, which includes a hardware implementation as part of

the IBM PowerENTM processor in 45 nm SOI technology, a full

software stack, and results measured on the actual hardware. RegX

uses programmable state machines, called B-FSMs [30], to perform

the basic input scanning using a DFA approach to achieve low pro-

cessing complexity and high scan rates. The use of multiple parallel

B-FSM engines allows to exploit NFA-like properties – multiple

parallel states and transitions – to optimize the storage efficiency.

RegX combines the B-FSMs with small dedicated processing ele-

ments, called local result processors (LRPs). The LRPs provide more

advanced processing capabilities for regular-expression matching

based on various bit manipulation, count, shift and test operations.

The LRP can be viewed as an additional NFA-like mechanism to

improve the storage efficiency, whereby problematic NFA states can

be offloaded from the B-FSMs. The RegX accelerator is operated

under tight control of a sophisticated compiler in a RISC fashion,

allowing a range of algorithms, including those developed as part

of related work (see Section 10), to be programmed efficiently on

the accelerator to achieve good performance for a wide range of

workloads.

In this paper, we present the following novel architectural and

micro-architectural features of the RegX accelerator:

• The LRP design for regular-expression scanning, in particular

its ability to handle eight instructions fully in parallel in every

cycle. The LRP supports self-running instructions, which are a

new concept to dynamically instantiate autonomously running

counters and shift registers within the LRP register file.

• The transition-rule caches, including the global/local address trans-

lation and the cache line placement by a software application de-

noted as upload manager. The upload manager exploits hardware-

based profiling to optimize the selection and placement of the most

frequently used cache lines.

• The transition-rule cache organization into two banks, used for

performing regular and default transition-rule lookups in parallel.

• The physical/logical lane concept involving a time-interleaved pro-

cessing of multiple streams using multiple B-FSMs and LRPs that

can sustain the maximum scan rate of one input character per cycle

for each stream when the B-FSMs process out of the rule-caches,

without requiring a back-pressure mechanism and independently

of the input characteristics. This was key to maximize the single-

channel and aggregate scan throughput, while enabling flexible

allocation of the scanner resources to the input streams.

The remainder of this paper is organized as follows. Section 2

outlines the design objectives. Section 3 describes the architectural

features of RegX and explains the motivations behind its design.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.49

461

Sections 4 and 5 discuss the key elements: the B-FSM engines and

the LRP. Section 6 describes how the RegX compiler takes advantage

of the architectural features, and Section 7 reveals how these features

are implemented for high throughput in the PowerENTM processor.

Section 8 describes how the upload manager software manages the

RegX cache hierarchy. Section 9 presents performance figures for this

implementation. Section 10 discusses related work, and Section 11

concludes the paper.

2. Design Objectives

The RegX accelerator was designed to meet the demands of modern

high-performance intrusion detection systems and analytics applica-

tions. These systems require:

1. Large, complex pattern sets: The RegX accelerator supports typi-

cal pattern sets used in commercial and non-commercial state-of-

the-art network intrusion detection systems. These can include

several thousands of patterns and involve a mixture of simple

string patterns and more complex regular expression patterns.

2. Multiple contexts: The pattern set may be divided into hundreds of

contexts. A context represents a set of patterns which are scanned

at one time, and typically targets a specific portion of the input

data stream, for example, selected packet protocols. All contexts

should be simultaneously active, available for scanning with low

latency, and it should be possible to use different contexts in

parallel.

3. High scan rates: The RegX accelerator detects all matches based

on a single-pass on-the-fly processing of the input stream. Aggre-

gate scan rates of about 20 Gbit/s are targeted for typical network

intrusion detection workloads. The actual scan rate should be as

independent of the input stream characteristics as possible in order

to minimize the vulnerability to denial-of-service (DoS) attacks.

4. Parallel and interleaved scan operations: The RegX accelerator

processes multiple input streams fully in parallel. Parallel scans

can be submitted from one or more threads, from the same or

different processes, on multiple virtual partitions. Furthermore,

multi-session support enables the processing of millions of input

streams in an interleaved fashion by storing the complete scan-

ner state when switching from one input stream to another, and

restoring that state when switching back to the original stream.

5. Incremental and dynamic pattern updates: The architecture sup-

ports incremental updates of the pattern set, involving the addition

and removal of one or several patterns. The internal scanner data

structures can be updated dynamically without interrupting the

ongoing scan operations.

3. RegX Architecture Overview

3.1. Processor Bus Interface

The RegX accelerator was designed as a coprocessor directly attached

to the processor bus (PBus) as shown in Fig. 1. It provides high-

performance regular-expression matching support to software threads

running on general-purpose cores. To initiate a scan, a thread sends

a command to the RegX accelerator over the PBus in the form of

a co-processor request block (CRB). The CRB includes pointers to

(1) input data, (2) an indication of which context should be used

for scanning, and (3) an output buffer. The RegX accelerator will

read the input data, scan it against the compiled pattern data, write

the scan results into the output buffer, and then notify the software

thread.

���������
���������

��	�

���������

�����������������

�����
���������� ���� ��������

���

���������

���������
���������
���������

���������
���������

���������
���������

���������
���������

�����
�������������������

���������

���������
���������

��	�

�����
�������������������

���������

���������
���������

��������
���

���������
��	�

�����
����������

���������
���������
���������
���������

Figure 1: PBus attached RegX accelerator.

Software communicates with the accelerator using normal virtual

addresses, without the need for any special handling (e.g., DMA

data to specific locations, pin pages, flush caches). The accelerator

performs coherent memory accesses, ensuring that input data, pattern

data and output buffers are correctly read and written, regardless of

where they are cached in the system.

The algorithmic core of RegX is the B-FSM, which will be dis-

cussed in Section 4. The B-FSM is a programmable state machine

that executes very compact representations of DFAs which define

the regular-expression matching functions. These DFAs are created

using conventional algorithms that map multiple regular expressions

on a single DFA.

Four B-FSMs are combined into a lane, the minimum set of re-

sources that will be allocated to execute a single scan command. The

four B-FSMs dispatch instructions to a local result processor (LRP),

which is discussed in Section 5 and is also contained in the lane.

The instructions are embedded within the compiled DFA structures,

and operate on a small register file in the LRP. The compiler uses

the LRP to split problematic patterns across multiple B-FSMs. The

LRP determines when the complete pattern has been matched by

identifying when the pieces have been found in the correct order by

the B-FSMs. Information flow is one way only; no results flow back

from the LRP to the B-FSMs, which greatly eases implementation.

The contents of the LRP register file combined with the state of the

four B-FSMs form the overall session state of a given lane. This

session state is stored to and retrieved from main memory to support

multiple sessions.

3.2. Handling the State Explosion Problem

A major challenge faced by practically all DFA-based pattern scanner

designs is the so-called state explosion problem that occurs when

certain combinations of regular-expression patterns are mapped onto

the same DFA, which can result in extremely large DFAs owing to the

properties of these patterns [26, 17]. Although no de facto solution

exists that completely eliminates this problem, several approaches

have been proposed in the literature to address this problem, as will be

discussed in Section 10. Two of these approaches are quite effective:

1) the distribution of patterns over multiple parallel DFAs [29, 33, 22]

and 2) the extension of DFAs with memory and instructions to operate

on it [17, 26, 24]. The RegX architecture was designed specifically

to support these two approaches using its lane concept and LRPs.

In addition, these mechanisms are flexible enough to extend readily

to other algorithms presented in related work. This subsection will

illustrate how the lane and LRP concepts can be used to deal with

the state explosion problem, whereas Section 10 will compare these

concepts in more detail with related work.

The effectiveness of multiple B-FSMs and the LRP for address-

ing the state explosion problem can be illustrated by an example.

Consider the following three regular-expression patterns: ab.*cd,

ef[^\n]*gh and k.lm. The pattern ab.*cd will match if the input

462

stream contains the string ab, followed by the string cd. There can

be zero or more characters of any type in between, as defined by the

combination of the dot metasymbol ‘.’ and the Kleene star ‘*’. The

second pattern is similar, except that there are no newline characters

(\n) allowed between the strings ef and gh. The third pattern is

also similar, except that there should be exactly one character of

any type between the strings k and lm. For these patterns, standard

algorithms can be used to generate the (obviously unreadable) DFA

shown in Fig. 2(a). This DFA contains about 50 states and almost

250 transitions — a large expansion over the original three small

patterns. This is caused in this case by the ‘.*’, ‘[^\n]*’ and ‘.’

parts of the patterns, which allow a multitude of different overlaps

to occur between potentially matching strings, which all have to be

covered in the DFA for correct detection. The problem can easily

grow worse. For example, increasing the number of dot metasymbols

in the third pattern results in even larger DFA sizes. Two dot symbols

(k..lm) result in a DFA with about 500 transitions, whereas three,

four, five, six, and seven dot symbols require DFAs with about 1000,

2000, 4000, 8500, 17000 transitions, respectively, nicely illustrating

the exponential nature of the state explosion problem.

By splitting the patterns among multiple B-FSMs, the compiler

can separate problematic patterns. The benefit of this is that the

accumulated DFA size can be reduced because the number of possible

overlaps that have to be covered by each individual DFA is decreased.

This is illustrated in Fig. 2(b), which shows separate DFAs for the

three patterns involved in this example, that are executed in parallel

by different B-FSMs to process a given input stream and involve a

total of 34 transitions. This reduction comes, however, at the cost

of using multiple B-FSMs in parallel, which consume additional

computation per character, more memory bandwidth and a larger

session state. Note that the transitions to the initial state S0 have been

omitted because these are covered by default transitions according to

the B-FSM concept that will be discussed in Section 4.

The LRP is a second weapon against the state explosion problem.

A part of the scan state can be transferred from the DFAs to registers

inside the LRP, which can be manipulated alongside the conventional

DFA processing inside the B-FSMs. Using the LRP, problematic

regular expressions that cause state explosion can be split into smaller

non-problematic subpatterns that can be scanned more efficiently by

the B-FSM engines. Rather than generating a match report directly,

each of the subpatterns will typically dispatch an LRP instruction.

The LRP then checks if these subpatterns are found in the right order

and at the right distance to determine whether the original pattern

was matched. The LRP instructions are stored in the DFA alongside

the state transition rules and are conceptually attached to transitions

in the DFA. When an associated transition rule matches, the attached

LRP instruction is dispatched. The LRP instructions perform simple

operations on general-purpose registers (GPRs) inside the LRP, and

can generate a match report when the desired GPR state is reached.

This is explained in detail in Section 5.

Fig. 2(c) shows a DFA that scans the input stream against the sub-

patterns ab, cd, ef, gh, k, lm and \n (newline) that were split from

the original three patterns. The set, test and reset instructions that

operate on the GPR shown in Fig. 2(c) allow the LRP to determine the

right order of occurrence of these subpatterns, as will be explained in

Section 5. By comparing Figs. 2(a) and (c), which both implement

the same match function, it is clear that the LRP drastically reduces

the size of the DFA. LRP instructions consume storage in the B-FSM

rule tables, and the LRP register bits will increase the session state.

��

��

�

��

�

��

�

�

�

�

���

�

�

�

�

���

�

��

�����	

�	

�

��

� �

�

�

�

�

���

�

�

�

�

�

�

�

�

�����
	

��

�

��	

�� �

��

�

���

�

������	

��

�

�

�

������	

���

�

���

�����	

���

�

���

� ���

�

��� �

���

�

���

�

��������	

�

�

�

�

��������	

���

�

��

���

�

��	

�������	

���

���

�

�

�

� ���

�

�

�

�

�

�

�

�

�����	

�

�

�

�����	

�

�

�

�����
	

���

�

�

�

������
	

�

�

�

������
	

�

�����
	

��

�

���

�

�

�

�������	

�

�

�

�������	

�

�

�

��������
	

�

��	

�

�

�

�������
	

�

�

�

��������
	

�

��� �������
	 �

�

���

�

�

�

���

��

�

�������	

���

�

���

�

��

��

�

�������	

�

�

��

�

��������	

�

�

���

�

��

���

�������	

���

�

���

� ���

�

�

�

�

������	

���

�

�

�

�

�������	

�

�

�

�

��������	

���

�

�

�

�

���������	

�

��

�

�������	

�

�

��

�

�������	

�

�

��

�

�������
	

�

�

��	

��

�

�������
	

�

�

��

�

��������
	

�

�

�

���������
	 ��

�

���

�

�

�

�����	

�

�

�

�������	

��

�

��������	

�

�

��

�

��

�

���������	

�

�

�

��

�

�������	

�

�

(a) Original DFA

��

��

��

�

��

��

�� �

����	

��

�

�

���	

�

���	

��

��

��

�

��

��

�� �

������	

��

�

�

�����	

�

�����	

��

��

�

��

���� ��

�

�

��

�

�����

�

��

��

��

�

��

�

��

�

(b) Distribution over multiple B-FSMs

���

������	�����������

�� ��

��

��

�

��

�

��

�

��

��

��

�

��

�
������

�	

�	
�������	

�

�����

��

�
������

���

�
�����	

���

������	

���

�
�������

(c) Exploitation of LRP

Figure 2: Handling the state-explosion problem.

463

The trade-offs involved in exploiting the two mechanisms described

above are made by the compiler, which is discussed in Section 6.

4. B-FSM Engine

This section briefly reviews the B-FSM technology published in

[29, 30]. It also presents a new way of default rule handling that

enables more efficient sharing of the rule-caches between multiple

pattern contexts and denser rule encoding.

4.1. B-FSM Concept

The B-FSM is a programmable state machine that is based on an

optimized version of the Balanced Routing Table (BaRT) search

algorithm [28], hence the name BART-based FSM (B-FSM). It is

programmed using a compiled DFA specification, comprised of state

transition rules which define flexible conditions for the current state

and input and have priorities. This is illustrated in Fig. 3 for an

artificial regular expression a[bB][^c][0-8]*9, which detects all

strings in an input stream that start with an a, followed by a b (case-

insensitive), followed by a character that is not a c, followed by

zero or more digits in the range from 0 to 8, and ending with a 9.

Fig. 3(a) shows the DFA that was created for this pattern and Fig. 3(b)

a corresponding set of transition rules.

In each cycle, the B-FSM determines the highest-priority transition

rule that matches the current state and input value, and branches to

the next state indicated by that rule. For example, if the B-FSM is in

state S3 and the current input character is a 9, then rules R0, R6 and R7

would all match. Based on its priority, rule R7 is selected, resulting

in a transition to state S5 which is consistent with the DFA shown in

Fig. 3(a). The correctness of the transition-rule-based specification

of the given DFA can be verified in a similar fashion for any state

and input value combination. As this example shows, transition rules

can involve flexible input conditions including exact match, case-

insensitive match, character classes, and negated versions of those

conditions.

Fig. 4(a) shows a block diagram of the B-FSM engine. Testing

all transition rules for every character is impractical, so the B-FSM

organizes the transition rules into multiple hash tables. The B-FSM

accesses the hash tables using three registers: (1) the table register

indicates which hash table holds the rules of the current state; (2) the

state register indicates where in the hash table the rules are stored,

and (3) the mask register defines the size and shape of the rules in the

hash table.

The B-FSM follows the four-step process for each character il-

lustrated in Fig. 4(a): (1) given the three registers and the current

character, use a hash function to generate an index into the hash table,

(2) read one line containing a fixed number of rules from the hash

table, (3) test the current state and character against those rules to

determine the matching rule, and (4) update the registers to the next

state as indicated by the rules. If no matching rule is found in step (3),

then a default rule will be selected, as discussed in the next section.

Each hash table contains a fixed number of lines (128 in RegX), and

each line contains a fixed number of rules (3 in RegX).

The hash function is simple. Each bit in the mask corresponds to

one bit of the table index. The corresponding mask bit determines

if the index bit is taken from the state vector, or the character. For

instance, if the low-order bit of the mask is 1, the low-order bit of the

index comes from the character, otherwise it comes from the state

vector. By setting many mask bits to one, states with many transition

rules can be spread over many lines. By setting few mask bits to one,

������
�

����

�����

�

�

��

��

��

���� �
�

�

�

�

�����

�

�������

����

���������

�

����

��

�����

��

(a) DFA

rule current state input → next state priority
R0 * * → S0 0
R1 * a → S1 1
R2 S1 [bB] → S2 2
R3 S2 [^a] → S4 2
R4 S2 a → S3 2
R5 S2 c → S0 3
R6 S3 [0-9] → S4 2
R7 S3 9 → S5 3
R8 S3 [bB] → S2 3
R9 S4 [0-9] → S4 2
R10 S4 9 → S5 3

(b) Transition rules

Figure 3: Example DFA and transition rules.

small states can be held compactly in one or a few lines. Note also

that rules from multiple states can share a single line.

Fig. 4(b) illustrates a rule line format used by the RegX accelerator.

The line may contain three rules or it may contain two rules and an

LRP instruction attached to one or more of the rules, which is defined

by the line type. In this way, LRP instructions only consume storage

when actually used. An additional shared field provides another

option for attaching data to the rule vectors.

The rules themselves are shown in Fig. 4(c). The test part checks

the current state and character against the rule to determine if the

rule matches. If the rule matches, the result part defines the next

state. If the result flag is set, a rule match represents a pattern match

and a match report will be generated. The transition rule priorities

in Fig. 3(b) are encoded in the order of rules within a line. When

multiple rules match, the first matching rule is selected.

The compiler converts the transition rules for each state of Fig. 3

into B-FSM states by selecting a compact mask based on the number

and type of the transition rules in each state. It then assigns table IDs,

state vectors and masks to states such that states pack efficiently into

the tables, without placing more than three rules (or two rules and an

LRP instruction) on any one line.

464

�������
 ��������

���!����"

#�$������"

%��������"

	
��

���������
����������

�����

���

	
��
�����

��
���

�����
	
��

#�����������	��
�����

&���	����	��
����� �������

 ��������

�	���%�������

����"���!����"

����"#�$������"

����"%��������"

	
��
�����

������ ������ �����	
���������
���������
��������	

� �
�

�

(a) Block diagram

�	���'

�	���' �	���(�	���)������
�

�	���(�����	�����������
�

������

������ �	�����
���������

������ ���������

��
	��	��
�
�

����
���!

����
�����

����
��$����������

���	��
����

(b) Line format (c) Rule vector

Figure 4: B-FSM engine.

For more details on the B-FSM, including the integration of in-

structions inside the data structure, the reader is referred to [30].

4.2. Enhanced Default Rule Handling

Default rules are transition rules that involve a “don’t care” state

condition and consequently apply to all states. Examples of such

rules are rules R0 and R1 in Fig. 3(b), which cover multiple transitions

in the DFA in Fig. 3(a) that are represented using dotted and dashed

lines, respectively. Because the default rules only depend on the

input, a simple lookup on the input value can be used to determine

the highest-priority matching default rule, which will then be used by

the rule selector if no regular matching transition rule is found.

In Fig. 4(a), the original default lookup table described in [29]

has been replaced by a default-rule memory in which the default

rules are stored using the same hash concept as the regular rules,

and which is accessed in parallel. The rule selector will now select

the matching rule from the regular transition rules and default rules

retrieved from the two rule memories, which are tested in parallel.

Because the default rules have the lowest priority, these are only

selected if no matching regular rule is found. Although this results

in exactly the same default rule being selected as with the original

scheme based on a table lookup, the new approach enables default

rules from different pattern contexts to be resident at the same time in

the default-rule memory. Another advantage is that LRP instructions

can now be attached to default rules in the same storage-efficient

way as to regular transition rules (see [30]). This type of instruction

is called a default instruction and is handled slightly different from

regular instructions: if the highest-priority matching default rule in a

given cycle has a default instruction attached, then that instruction

will always be dispatched to the LRP regardless of whether a higher-

priority matching regular rule exists. This allows the LRP to execute

certain instructions when particular input values occur, without the

need to attach these instructions to all transitions in the DFA that

involve those input values.

Analysis of DFAs compiled for actual intrusion detection pattern

sets revealed that many states exist for which the transition rules

defined cover the entire input value space. An example of such a

state is state S2 in Fig. 3(b). As a result, the B-FSM will always

find a matching regular transition rule for those states, rendering the

default-rule lookup useless. A storage optimization technique called

dual-hash was developed to exploit this. It is based on mapping the

lowest-priority rules for such a state in a separate hash table stored

in the default-rule memory. A special instruction will indicate how

this table is accessed in parallel to the regular transition-rule memory

lookup by providing additional table and mask vectors. The rule

selection is done as before. The main advantage is that the mapping

and lookup of the transition rules on two parallel hash tables allow a

further compression of the data structure.

5. Local Result Processor (LRP)

The LRP constitutes an important feature of the RegX accelerator

targeted at fighting the state-explosion problem as described in Sec-

tion 3.2. In addition, it allows scanner features to be supported that

cannot be implemented using standard DFAs.

Fig. 5 shows a high-level block diagram of the LRP. It contains

a register file comprised of general-purpose registers (GPRs) that

465

�������
&������'

 ������
�	�
���
��������
*���

+ ��*,

�������
&������(

�������
&������-

."

�����
��� �����
��� �����
���."

��������
������

."

�������
&������'

�������
&������(

�������
&������-

�������
&������'

�������
&������(

��������
������

�������
&������-

�������
&������'

�������
&������(

 ������
�	�
���
��������
*���

+ ��*,

��������
������

�������
&������-

�������
&������'

�������
&������(

Figure 5: Local Result Processor.

can be manipulated using the LRP instruction set, which includes

operations such as set, reset, load immediate, count and shift. These

instructions also have conditional versions that are only executed if

the conditions specified are tested positively against selected bits or

bytes in the GPRs. In addition, the register file also includes multiple

offset registers (OFRs) for storing copies of the input stream read

pointer (offset) that can be processed and tested at a later stage.

The LRP contains eight identical command units that simulta-

neously handle the maximum of four default instructions and four

regular LRP instructions that the four B-FSM engines in a single

lane can dispatch in each cycle to the LRP as described in Section 4.

The compiler ensures that these maximum numbers will never be

exceeded for each lane, for example, by adapting the distribution of

the patterns over the B-FSMs in a lane or by allocating additional

lanes to scan a given pattern set. As a result, the LRP can sustain

the full peak scan rate of the RegX accelerator without requiring a

back-pressure algorithm. Moreover, at the same time the input stream

characteristics cannot impact the overall scan throughput by influenc-

ing the LRP operation. The actual load of the LRP depends on the

type of patterns, in particular if there are many complex patterns or

pattern combinations that have to be split and processed by the LRP.

The basic LRP operation will now be illustrated using the exam-

ple introduced in Section 3.2 involving the three regular-expression

patterns ab.*cd, ef[^\n]*gh and k.lm. Fig. 2(c) shows a DFA

for detecting matches against the subpatterns ab, cd, ef, gh, k, lm

and \n (newline) that are split from these three patterns. This DFA is

extended with several LRP instructions operating on a GPR (only 8

bits shown) to allow the detection of matches on the original patterns.

If, for example, a match on ab is detected, then the corresponding

transition from state S1 to S8 will result in a set instruction on bit 7.

If a string cd is detected at a later stage (transition from state S2 to

S9), a test instruction is performed on the same bit. A positive test

result would then imply that the string ab had already been found

before and that a match is detected on the pattern ab.*cd. The LRP

is used in a similar way to check for matches against the pattern

ef[^\n]*gh, now involving a set and test operation on GPR bit 6.

The only difference is that newline characters are not allowed to oc-

cur between the two subpatterns, as represented by [^\n]*. This is

enforced by a default instruction that resets bit 6 each time a newline

character occurs (see the transition from S0 to S7). As a result, bit 6

will equal one only if the first subpattern ef was detected in the input

stream not followed by a newline character. If the second subpattern

gh is found, then a positive test on bit 6 (transition from state S4 to

S11) indicates a match on the original pattern ef[^\n]*gh.

As this example shows, often only one or a few bits in a given GPR

will be allocated to maintain state for a particular regular-expression

pattern. To make efficient use of the available GPR bits, multiple

���� �� ���

�������

	
�����������
�������

	
��	
����	�
���

Figure 6: General-purpose register with self-running tag.

Table 1: Self-running instruction vectors.

bits bits

15-12 instruction 15-12 instruction

0xxxb nop

1000b 6-bit shift reg. 1100b 30-bit shift reg.

1001b 12-bit shift reg. 1101b 36-bit shift reg.

1010b 18-bit shift reg. 1110b 8-bit counter

1011b 24-bit shift reg. 1111b 12-bit counter

patterns can share a single GPR. This is realized by allowing instruc-

tions to select one or several GPR bits in a flexible way with selection

masks, and by allowing multiple instructions to operate in parallel on

the same GPR. Multiple instructions of specific types may operate

on the same GPR bit position. In that case, a priority order is defined

(e.g., set takes precedence over reset, which has priority over shift)

that clearly specifies how each bit position will be updated. For other

instruction types, the compiler stack (see Section 6), which performs

the actual bit allocation and instruction generation, guarantees that

no conflicts can occur on the same GPR bits.

Note that the three artificial regular expressions used in the above

example, although representative for actual cases, are only intended

to illustrate the basic operation of the LRP. Actual pattern sets can

include more complex patterns that require multiple splits and involve

different types of overlaps of the split portions requiring special

handling using instructions beyond simple set and test operations

(see for example [2]). This topic, however, is outside the scope of

this paper.

Since only the LRP has enough information to know when a com-

plex pattern has been matched, the LRP generates the match report in

these cases. The B-FSM dispatches a match report instruction to the

LRP, which may conditionally check GPR state prior to generating

the match report. Additional forms of the match instruction can also

copy instruction data and/or GPR contents to the match report for

further processing by a so-called software result processor (SRP).

5.1. Self-Running Register Operation

Certain pattern forms benefit from operations, that are performed for

every input character in certain states. For example, incrementing a

GPR for every character can be used to measure the distance between

two (sub)patterns, or the length of a matching string. For these

cases, the LRP has been extended with autonomously self-running

instructions.

Every GPR can be placed into a self-running mode by storing a

special code in the high-order bits of the GPR, as shown in Fig. 6.

Bit 15 enables self-running operation. When enabled, bits 12 to 14

indicate the operation performed for each input character. Otherwise

bits 0 to 14 may be used as normal GPR bits. The LRP supports

autonomous counters and shift registers of various sizes, as listed in

Table 1. As shown in Fig. 7, the LRP supports shift registers of up to

36 bits by daisy-chaining the shift registers across adjacent GPRs.

466

 !	�

 !	�

	
����"�#

 !	�%�����/

%�����()

	
����"�#

 !	�

	
����"�#

%�����(0

%�����)1

	
����"�#

 !	�

	
����"�#

%�����2'

%�����2/

	
����"�#

 !	�%�����()

 !	�%�����()

 !	�%�����)1

 !	�%�����)1 !	�%�����()

 !	�%�����()

 !	�

GPR[n] GPR[n+1] GPR[n+2]

Figure 7: Daisy-chained self-running shift registers.

�(''''

�('''''

�(�3'/

�(�3'-

�(�) �2 �1 �4 �/ �- �0

�
5
6�
%

6�7�%

8����	���
��������
89�����	���
��������

Figure 8: Lane count and LRP impact on storage efficiency.

Configuration and activation of a self-running instruction on a

given GPR are done by writing the self-running mode flag bit, the self-

running instruction vector and an initial value of the GPR bits covered

by the self-running instruction using a regular GPR instruction. The

self-running mode can be deactivated by resetting the flag bit. During

the self-running operation, regular LRP instructions can be used to

write and test GPR bits in the self-running region of the GPR, for

example, to write one or several bits into a shift register or to test

whether a counter has reached a certain value.

A self-running shift operation will now be illustrated using a varia-

tion of the third pattern in the example introduced in Section 3.2 in-

volving two dot symbols, (k..lm) as this allows interleaved matches.

This pattern is matched if the input stream contains a k character

at exactly four character positions before the lm subpattern is de-

tected (counting back from the position of the last character m). The

interesting property of this pattern is that it can match several in-

terleaved strings in the input stream: For example, the input string

abckkklmlmdef will result in two matches, one caused by the under-

lined characters and one caused by the characters in bold font. A self-

running shift operation involving 6 bits (as shown in Fig. 2(c)) can be

used to efficiently handle this pattern, while supporting interleaved

matching. Each time a k is detected in the input stream, a default

instruction (attached to the transition from S0 to S6 in Fig. 2(c)), will

set bit 3 in the self-running shift register portion of the GPR. It will

also set bits 12 to 15 to enable 6-bit shift-register operation. After

four cycles, this set bit will have been shifted towards bit position 0.

If a subpattern lm is detected (transition from S5 to S12), then this

bit 0 is tested. If it equals one, it implies that a k character occurred

exactly four characters earlier and a match will be reported on the

pattern k..lm. Note that variations of this pattern involving one to

seven dot symbols as mentioned in Section 3.2 are all matched using

the same DFA shown in Fig. 2(c), only differing in the bit position

involved in the set instruction attached to the transition from state S0

to state S6.

This concept of self-running register operation enables a flexible

and dynamic allocation of the available register resources for use

as variable-width counters and shift registers, or as general-purpose

registers, while these can all be operated using standard instructions

such as set, reset and load.

6. Pattern Compilation

The compilation of the patterns into a data structure that can be exe-

cuted by the B-FSMs and LRPs in the RegX accelerator is performed

in a two-step process by the so-called pattern compiler and B-FSM

compiler.

The pattern compiler converts the pattern sets into an interme-

diate structure comprised of multiple DFAs that can include LRP

instructions. This conversion includes a preprocessing step in which

complex regular expressions are split into simpler subpatterns while

accompanying instructions are generated that allow the LRP to deter-

mine whether the original pattern was matched based on the detection

of these subpatterns, as was illustrated in Section 5. This step also

allocates the LRP register bits used by these instructions. By consider-

ing constraints arising from the instruction generation (e.g., maximum

number of parallel instructions, available register bits) in combination

with other pattern-set-related properties, the pattern compiler will

then select the number of lanes and B-FSM engines that will be used

to scan the pattern set. If the compiler decides to use more than one

lane, it will break the context into multiple so-called sub-contexts,

each of which is compiled on a separate lane. This is followed by an

intelligent distribution of the patterns in the (sub)contexts over the

B-FSM engines in those lanes, aiming to optimize storage efficiency

and performance [22]. Finally, the pattern compiler will use standard

techniques [14] to create DFAs from the regular-expression patterns

that are allocated to each B-FSM.

In the next step, the B-FSM compiler will convert each DFA into a

B-FSM data structure comprised of linked hash tables as described

in Section 4, by applying state encoding and hash function selection

for each individual state. A range of optimizations ensures a high

compression of the data structure while supporting flexible transition

conditions and efficient integration of LRP instructions. For more

details, refer to [29, 30].

To illustrate the compiler’s capability to improve the storage-

efficiency by exploiting multiple lanes and the LRP, several com-

pilation experiments were performed using the publicly available

Linux layer-7 application protocol classifier [1]. Fig. 8 shows the

accumulated size of the DFAs generated by the pattern compiler,

expressed in transition rule count, for compiles involving one to eight

lanes, with and without LRP support. These results show that al-

ready for this relatively small pattern set very large improvements in

storage efficiency can be obtained. For example, compiling at two

lanes with LRP support results in a rule reduction by over a factor

34 compared with a single-lane compile without LRP. The resulting

B-FSM structure consumes about 128 KB.

7. PowerEnTM RegX Implementation

The RegX accelerator has been implemented in the IBM PowerENTM

processor, which closely couples general-purpose processor cores,

hardware accelerators and I/O in a system on a chip (SoC) [10, 13].

The chip has been realized in 45-nm SOI technology and measures

467

���

�
���

�����
������

�����
�
��������
���������

��

��

�����
������

�����
������

�����
������

�����
������

�����
������

�����
������

�����
������

��� ���

�
���

�
���

�
���

Figure 9: PowerENTM RegX floorplan.

a total of 410 mm2, out of which 15.4 mm2 is used to implement

the RegX accelerator (Fig. 9). RegX runs at a nominal frequency of

2.3 GHz, although some portions are clocked at half speed.

7.1. Data Engine and Algorithmic Engine

The RegX engine comprises two main parts: a data engine (DE) and

an algorithmic engine (AE). These are illustrated in Fig. 10. The

data engine enqueues and schedules the scan commands it receives

from the PBus, and fetches and transmits the input data involved in

those scans to the algorithmic engine. The data engine also controls

the storage and retrieval of the scan state when switching between

different sessions and the writing of the scan results into the output

buffers. The algorithmic engine contains the lanes with the B-FSMs

and the LRPs and performs the scanning function. The area is almost

equally divided between the algorithmic engine and the data engine.

7.2. Multiple Lanes

RegX contains four independent physical lanes, each with four B-

FSMs and two LRPs. To process a character as discussed in Section 4,

the B-FSM reads the DFA rules in one cycle and computes the next

state in the next cycle in a pipelined fashion. This makes it easy

to run two independent scans on the same physical lane in a time-

multiplexed fashion. Hence the AE has two logical lanes overlaid on

each of the four physical lanes, and can process 8 scans simultane-

ously.

To ease timing and render wiring less complicated, the LRPs run

at half the main clock, and are physically duplicated on each physical

lane to support the two logical lanes. This makes it possible to

implement the LRP functionality at the target frequency without

stalls or hazards. The LRPs can execute all the instructions that the

B-FSMs can dispatch every cycle. The LRP register file consists of

eight 16-bit GPRs comprising a total of 128 bits.

In total there are eight logical lanes with 32 logical B-FSMs and

eight LRPs, which can scan eight independent input streams in paral-

lel. Each logical lane can process one byte every other cycle, each

physical lane can process a byte every cycle, and the peak throughput

is four bytes per cycle, yielding a theoretical peak throughput of

73.6 Gbit/s at 2.3 GHz. The peak scan rate for a single stream is one

byte every other cycle or 9.2 Gbit/s.

7.3. B-FSM Cache Hierarchy

As shown in Fig. 4(a), the B-FSM must access both transition rules

and default rules for each character scanned. The two rule memories

are implemented as a two-level memory hierarchy. The L1 rule cache

consists of the two SRAM banks for each B-FSM shown in Fig. 10,

with one bank caching the default rules and the other bank caching

the regular transition rules. Each bank contains 16 KB of storage for

a total of 512 KB of L1 rule cache over the 16 physical B-FSMs. If

the required rules are not in the L1 rule cache, then they are fetched

from main memory over the PBus – resulting in a penalty of as much

as 400 cycles. To reduce this penalty, scans are removed from the

logical lane during the miss, and the logical lane is reallocated to

another scan if one is available. Because the set of transition rules is

typically much larger than the set of default rules, the banks used for

each rule type can be selected on a per-context basis: By placing the

default rules on one bank for some contexts and on the other bank

for others, the space pressure on the two banks can be balanced.

The L1 rule cache must be accessed in a single 2.3 GHz cycle,

including both tag access and compare, which is faster than the L1

data cache in the processor core. This severely limits the number of

tags and the associativity that could be implemented for a hardware-

managed cache. For this reason, each of the two rule cache banks

is divided into two regions. A 14 KB locked area is managed by

the upload manager software (see Section 8). The remaining 2 KB

comprise the temporary area, which is implemented as a two-way

set-associative cache with 64 B lines.

The locked area is kept tagless by exposing this region to the B-

FSM architecture as an addressable memory area. When the upload

manager places a state in the locked area, it modifies all rules that

transition to that state so that they point directly at the physical

location in the locked area. A special flag in the next state information

of the rule indicates that the next state is in the locked area, rather

than in the global rule memory. When the B-FSM detects it is in

a locked state, it can deterministically compute the SRAM index

directly from the state information. Because rules can be updated

to point to almost any location in the locked area, the locked area is

nearly fully-associative.

There are a number of cases where the B-FSM state is exposed to

software. For instance, state is saved and restored from main memory

to support multiple sessions. Also, matches are reported using the

B-FSM state that generated the match. Because the locked area is

exposed as a new architected location, the upload manager effectively

changes the address or name of a state when it moves a state into the

locked area. To make this transparent to software, the RegX hardware

will translate locked addresses to and from global addresses as needed.

Hence, match reports and session state are always stored to memory

in global form. When B-FSM state is read back in for the next

packet in a session, it is converted from global form to locked form if

the state is in the locked area. This translation process is managed

by the global/local address translation unit (GLAT) in the RegX

accelerator. The upload manager configures this table to indicate the

global address corresponding to locked states in the locked area.

8. Upload Manager

The main task of the upload manager is to place the most frequently

accessed transition rules into the locked area. This approach was

chosen after initial experiments with the RegX architecture revealed

that pure hardware managed rule caches did not result in good per-

formance for large target workloads. The limitation of two-way

set-associativity was simply insufficient to handle workloads involv-

ing frequent switches between large numbers of competing pattern

contexts.

468

&����*����
5���

%�����
5���

5�
:������

&����*����
5���

�������
;	�	�

$������
���
	�

�
�
	�
���
��
���
��

	
����	�
�

��*%�
'

6��

	
����!�������

�
��
��
���
��

��*%�
(

��*%�
)

��*%�
2

���!%�	���&$����	������
������

��*%�

%
�
�
�

%
�
�
�

'�()

Figure 10: PowerENTM RegX block diagram.

The placement algorithm is driven by a statistical profile of rule

access patterns, produced by dedicated performance counters embed-

ded within the RegX unit. A profile indicates the fraction of rule

accesses performed to every state in all active pattern contexts. Sig-

nificant changes in the profile over time will trigger a re-placement

of the locked states.

An optimal placement of the B-FSM states is similar to the bin

packing problem, known to be NP-hard. However, state placement

has both additional degrees of freedom, and additional constraints.

While general solutions such as linear programming can be effective,

the run time of such solutions would be impractical. The heuristic

approach described here was found to give results similar to highly-

associative hardware caches, and still have reasonable runtime.

The algorithm uses the following steps to select a placement from

a profile.

1. Context replication: If a pattern context is used frequently, it may

benefit from being placed on multiple physical lanes. A single

physical lane allows two scans of the same context to proceed in

parallel (18.4 Gb/s peak throughput). By replicating the context

on multiple lanes, the peak throughput for a single pattern context

is increased, at the cost of using more rule cache. Replicated

contexts must be cached on each physical lane they are placed on,

and they must be laid out in exactly the same way on each physical

lane. A very simple algorithm is used based on the fraction of

characters scanned by each context.

2. Placed context size estimation: This step estimates the amount of

space used by each context in the set. For this step, we treat the

entire locked cache area as if it were one large cache, and simply

fill it up, ignoring most constraints. DFA states are given priority

based on the access density of the state:

AccessDensity = FractionO f Accesses/SizeO f State (1)

The basic concept is that we will maximize the number of accesses

that are locked, if we maximize the number of accesses per byte

of storage. Hence, small states are locked before large states, and

frequently accessed states are locked before rarely accessed states.

The result of this step is an estimate of the number of bytes that

will be locked for each (sub)context.

3. Physical lane and B-FSM mapping: This step assigns physical

lanes to the contexts, and selects how the contexts will be laid out

on the lane. The RegX unit has the ability to alter which physical

B-FSM is used for each logical B-FSM in each (sub)context.

This step attempts to balance the cache space pressure of the con-

texts, based on the size estimates from step 2, with load balancing

across the physical lanes, known from profile. A greedy algorithm

processes contexts one at a time, starting with the most frequently

used. The number of possible layouts of a context is relatively

small – for an unreplicated context, four physical lanes times 24

B-FSM mappings. Evaluation is fast so we essentially evaluate

them all and pick the best.

4. Physical state placement: After step 3, the B-FSM for each DFA

state is known. We process all states greedily, following the access

density function of Step 2. The algorithm attempts to find a good

fit for each state avoiding fragmentation. States which do not fit

at all are not locked.

Once the placement has been determined, the respective rules are

loaded into the locked area. The replacement of the existing content

is entirely transparent to the application, and can occur while searches

are running.

To load a state into the local memory, the upload manager first

copies the rules from global memory into the B-FSM cache. Then it

programs the global-local address translation unit so that the RegX

knows how to perform global/local translation for the new state (as

per Section 7.3). Finally, it updates the rules in global memory to

point to the copy of the state in the B-FSM cache. During some parts

of this process, scans may be using both the cached copy and the

global copy, which is fine since both copies are semantically identical.

Unloading a cache state follows a similar process in reverse.

9. Performance Evaluation

9.1. Context Size

The pattern matching throughput of a single context is largely driven

by a trade-off between the rule miss rate and the number of sub-

contexts. Fig. 11 shows results for a synthetic context made up

entirely of simple fixed-string patterns. These string patterns consist

of patterns made up of uniform distributions of upper- and lower-

case letters and digits. Each pattern is a case-sensitive unanchored

string that is 10 characters long. Example patterns are: GGdTOObQHh,

tw3XAPWgNi, VgfkkGAkZ6. Using synthetic workloads allows us to

uniformly vary key parameters (e.g., pattern size, number of patterns),

and make the set publicly available [15]. In addition, we also show

results for large complex pattern sets, which are not widely available

at this time.

The input data stream can strongly affect the rule miss rate. Most

of the input characters are chosen from a random uniform distribution

over letters and digits. However, random data does not stress the

B-FSMs realistically because they will not tend to traverse a wide

variety of DFA states. By interspersing byte sequences that match

the initial pieces of the patterns, the B-FSMs are driven to explore a

much wider variety of states, stressing the rule cache hierarchy. The

sequence intervals are chosen from an exponential distribution with

a mean of 100 characters, and the sequence length is chosen from

an exponential distribution with a mean of 2. The target pattern for

the pattern-based sequence is random uniform over all patterns in the

pattern context. All scans are 1000 B long.

469

'

('

)'

2'

1'

4'

' (''')''' 2''' 1'''
�������

!
"�
�#

(�6���
)�6����
2�6����
1�6����

'"'<

'"4<

("'<

("4<

)"'<

' (''')''' 2''' 1'''
�������

$
��
��
�
�
 �
$
��
�

(�6���
)�6����
2�6����
1�6����

'

)''''

1''''

/''''

0''''

('''''

' (''')''' 2''' 1'''
�������

$
��
�

(�6���
)�6����
2�6����
1�6����
6�����

(a) (b) (c)

Figure 11: Results for simple string patterns.

'

('

)'

2'

1'

4'

' 4'' (''' (4'')'''
�������

!
"�
�#

(�6���
)�6����
2�6����
1�6����

'"'<

'"4<

("'<

("4<

)"'<

' 4'' (''' (4'')'''
�������

$
��
��
�
�
 �
$
��
�

(�6���
)�6����
2�6����
1�6����

'

)''''

1''''

/''''

0''''

('''''

' 4'' (''' (4'')'''
�������

$
��
�

(�6���
)�6����
2�6����
1�6����

(a) (b) (c)

Figure 12: Results for complex patterns.

Returning to Fig. 11, the number of patterns in the context is

plotted on the X-axis. The Y-axis of graph (a) contains the measured

throughput. Throughout this section, performance is the average

of three identical measurements. Individual measurements typically

vary by less than 1%. Graph (b) plots the miss rate, which is measured

as DFA rule misses per logical character scanned. With a single sub-

context, a single logical character could theoretically generate up

to 8 misses (2 banks times 4 B-FSMs), and 16 misses with two

sub-contexts. Hence miss rates above 100% are possible in extreme

situations. Graph (c) plots the size of the context in terms of DFA

rules. As described previously, three rules fit in a 16 B line, yielding

5.3 B/rule. However, the size of the contexts in bytes is larger than

this because of LRP commands and inefficiencies in packing. In

general, the contexts use six to seven bytes per rule.

We plot four curves for each of 1 to 4 sub-contexts. Performance

for a single sub-context is a constant 45 Gbit/s up to 600 patterns.

In this range, there are no rule misses. Beyond this, performance

starts to fall because of increasing miss rates as the context grows. At

1000 patterns, performance is better with two sub-contexts. The total

context size drops by 35% and the miss rate drops back to zero, more

than offsetting the cost of scanning every character twice. This trend

continues with 3 and 4 sub-contexts. The context grows to the point

where rule misses become a significant hinderance to performance,

at which point another sub-context is added. The result is a gentle

performance degradation from 45 Gbit/s with small contexts (<600

patterns) on one sub-context to 17 Gbit/s with 3500 patterns on 4

sub-contexts.

Results are similar for the complex pattern set, see Fig. 12.

The complex pattern sets consist of a mix of simple strings, ex-

tended string-like elements and separator elements. The extended

string-like elements contain broad character classes ([a-z], [A-Z],

[0-9]), alternatives ((abc|xyz|123)) and optional components

(abc(123)?). They represent 35% of all string elements. In ad-

dition, 20% of the patterns contain multiple such string-like ele-

Table 2: Example patterns from the complex pattern sets.

Example Pattern Description

6zfe4tOikumP Simple string pattern

cbPvd(WT)? Extended string pattern with op-
tional element

ˆjVC6(Wj|zq|A7)vX[ˆ\n\r]*
3FFh3GAOz

Two string elements with separa-
tor, front-anchored

E[a-z]kRqDMf.*xbgyHH.*
9Ia3UbnPdhW4tq[A-Z]

Three string elements with separa-
tors

ments separated by wildcards and repeat constructs (., .*, [ˆ"]*",

[ˆ\n\r]*, ...). Of the patterns, 50% are case insensitive, and 20%

are front-anchored (ˆ). Table 2 shows several example patterns from

the complex pattern sets.

About 500 complex patterns fit into a single sub-context, as com-

pared to about 1000 for the string patterns. One significant difference

with the complex set is that sub-contexts are borderline LRP-resource

bounded. The string patterns did not use the LRP at all, and the num-

ber of sub-contexts was completely determined by the performance

trade-off. The complex patterns make heavy use of the LRP, and as

the LRP has limited state, the number of sub-contexts is dictated by

the amount of LRP state needed to efficiently represent the patterns.

As a result, sub-contexts cannot grow overly large, and miss rates are

typically low (Fig. 12(c)).

9.2. Multiple Contexts

RegX can support even larger numbers of patterns using multiple

contexts. Fig. 13 shows the throughput (a) and miss rate (b) when

running multiple contexts. Each context contains 1000 string or

complex patterns. To facilitate the comparison with the preceding

graphs, the total pattern count is plotted on the X-axis. For instance,

4000 patterns represent four contexts, each with 1000 patterns.

The string contexts use a single sub-context each, whereas the

complex contexts use two sub-contexts each. The input data is as be-

fore, but distributed among the contexts in a random uniform fashion.

470

'

('

)'

2'

1'

4'

' (''')''' 2''' 1''' 4''' /''' -''' 0'''
%������������

!
"�
�#

%�����

���
���

Figure 13: Results for multiple contexts.

This is a worst-case scenario. Real-world workloads typically use a

few contexts much more frequently than others.

First of all, performance for the string patterns is completely flat

around 32 Gbit/s. Why? The answer has to do with how the up-

load manager assigns physical lanes to sub-contexts. With a sin-

gle active sub-context, the context is placed on all four physical

lanes to maximize throughput. When the workload changes to two

contexts/sub-contexts, the upload manager places one context on

two physical lanes, and the second on the other two physical lanes.

As a result, the rule pressure on the B-FSM caches does not in-

crease, and performance is unchanged. Similar reasoning applies to

4 contexts/sub-contexts.

Typically two large sub-contexts fit on one physical lane. This is

due to the flexible assignment of default rules and transition rules

to the two rule caches in each B-FSM: The small default rule set

packs efficiently with the larger transition rule set from another sub-

context. As a result, up to 8 contexts, 8000 patterns, fit on the

engine with minimal performance loss. The complex pattern results

follow a similar trend, but the complex contexts are about twice the

size. Performance remains relatively flat up to 8 sub-contexts, four

contexts, and then tapers off as the miss rates increase.

9.3. Worst-Case Performance

For small and medium-sized pattern sets that fit entirely into the rule

caches, RegX delivers a constant, maximal scan rate that is essentially

independent of the input stream and patterns, and is only affected

by the number of sub-contexts used, as the latter determines the

memory bandwidth consumed per input character. For large pattern

sets containing several thousand patterns that exceed the size of the

rule caches, the scan rate depends primarily on the rule miss rate.

The latter is influenced by the input stream characteristics, as these

affect which portions of the data structure, cached or non-cached, are

accessed in each step. The worst-case scenario would be almost no

hits in the transition-rule caches, in which case the scan rate would

drop below 1 Gbit/s. However, this is an inherent problem that is

common to all scanner designs based on a memory hierarchy.

The use of a hardware- and software-managed cache structure in

RegX controlled by the upload manager makes it unlikely that the

worst-case situation will ever occur for typical intrusion detection

pattern sets which have a relatively narrow working set (e.g., usually

very few matches are found). Furthermore, it will be very hard to

create a DoS attack to exploit this, because one would have to create

special input streams targeted at the pattern sets used, that adapt at the

unknown rate of the upload manager to create a worst-case situation.

At the same time, the upload manager can actively monitor for the

occurrence of DoS attacks, and react accordingly.

10. Related Work

To the best of our knowledge, this RegX paper is the first publica-

tion that combines a hardware implementation, an upload manager,

a software-based extension (SRP), and a compiler to consistently

achieve scan rates of 20 Gbps for large pattern sets and a wide range

of workloads. This section will compare the new architectural and

micro-architectural features of the RegX accelerator, as listed in

Section 1, with their counterparts in related work.

As outlined in Section 1, most work on regular-expression scan-

ners is based on either NFAs or DFAs. Although NFA-based hard-

ware acceleration has been investigated, in particular using FPGAs

[27, 20, 23, 32], these approaches typically do not scale efficiently

to larger pattern sets, involve large session states, which renders

multi-session support more difficult, and cannot support fast dynamic

pattern updates because of high reconfiguration times. Therefore, this

section will focus primarily on DFA-based pattern scanning, which

is also the underlying processing model of the B-FSM engines in the

RegX accelerator.

Various methods have been proposed for DFA compression. These

include techniques for regular expression rewriting [33], merging of

non-equivalent states [6], and character class support and alphabet

reduction [9, 3, 30, 5], which are compared with the B-FSM concept

in more detail in [30]. Storage optimizations based on the removal of

redundant transitions by replacing these with default transitions or

related concepts [12, 16, 18, 4] try to exploit the property that DFAs

for regular-expression matching typically involve many states that

transit to identical next states based on the same input characters. The

B-FSM engines use this default-transition concept in two ways: based

on the enhanced default-rule handling presented in Section 4.2 and

using so-called common rules [30]. Both concepts are implemented

in the B-FSM such that exactly two independent memory accesses

are required to process each input character, which are performed

fully in parallel in a single cycle on the two memory banks that make

up the rule cache. This results in a constant scan rate when the B-

FSMs operate directly out of the rule caches. In contrast, the default-

transition mechanisms applied by the schemes presented in [4, 18]

involve a variable number of transitions for each input character,

with the actual number being influenced by the input characteristics,

resulting in a non-deterministic scan rate.

Besides the above methods that target compact representations of

given DFAs, other approaches have been proposed that try to optimize

the DFAs themselves. These include the distribution of patterns over

multiple parallel DFAs such that the aggregate DFA size is minimized

[29, 33, 22] and the extension of DFAs with memory and instruction

execution logic [17, 26, 24]. These approaches combine the DFA

concept with NFA-like features to achieve good compression [7, 31,

21]. The approaches involving parallel DFAs allow the separation of

problematic pattern combinations that cause a state explosion when

mapped together on the same DFA, whereas the approaches involving

memory and instruction execution logic allow individual problematic

patterns to be split into simpler subpatterns (see Section 3.2). Both

types of approaches are supported by the RegX accelerator through

its lane concept in which four B-FSM engines connected to an LRP

are used to scan a given input stream, whereas multiple lanes can be

allocated to a single scan operation. The RegX lane concept differs

from the related work that is referred to above in two essential aspects:

(1) a single LRP can execute instructions originating from multiple

DFAs, and (2) each LRP can process eight instructions in parallel

in a single cycle (the compiler guarantees that this will never be

471

exceeded), allowing it to sustain the maximum scan rate of a single

lane without requiring any back-pressure mechanism. In contrast, the

related work that we are aware of only involves configurations with a

single processing unit per DFA, and these processing units execute

instructions in a serial fashion, which can cause variations in the scan

rate and makes it dependent on the input characteristics.

A key feature of the entire RegX design that distinguishes it from

other pattern scanners is that the applied algorithms and mechanisms

(including the B-FSMs, the LRPs, and the rule caches) were designed

to process each input character in a constant number of cycles that

is independent of the input characteristics when operating out of the

rule caches. Moreover, they were designed such that a maximum

aggregate scan rate of one character per cycle can be sustained by

applying pipelining techniques. This enabled a simpler and more

efficient scheduling of the processing of multiple streams in paral-

lel, and rendered RegX less vulnerable to DoS attacks than other

schemes that involve scan rates that depend on input characteristics,

for example, because of the type of DFA compression or instruction

execution logic they used.

11. Conclusion

This paper has presented a new regular-expression accelerator, called

RegX, which targets state-of-the-art network intrusion detection sys-

tems. The RegX accelerator is a complete design that has been

implemented as part of the IBM PowerENTM processor in 45 nm

SOI technology, and for which a corresponding software stack has

been created. RegX combines several novel (micro)-architectural

features that are exploited by the software stack to obtain a theoreti-

cal scan performance of 73.6 Gbit/s. Hardware measurements were

presented showing scan rates on the order of 15 to 40 Gbit/sec for

typical intrusion detection workloads.

Acknowledgment

The authors would like to thank Charlotte Bolliger and Anne-Marie

Cromack for their help with the preparation of this manuscript.

References

[1] “Application layer packet classifier for linux.” [Online]. Available:
http://l7-filter.sourceforge.net/

[2] K. Atasu et al., “Hardware-accelerated regular expression matching
with overlap handling on IBM PowerEN processor,” Research Report
RZ3833, 2012. Available: http://domino.research.ibm.com/library/
cyberdig.nsf/papers/ACA8409641D63C4A85257A8C004E0F9F

[3] M. Bando et al., “Range hash for regular expression pre-filtering,”
in Proc. Architectures for Networking and Communications Systems,

ANCS, 2010, pp. 1–12.
[4] M. Becchi and P. Crowley, “An improved algorithm to accelerate regu-

lar expression evaluation,” in Proc. Architectures for Networking and

Communications Systems, ANCS, 2007, pp. 145–154.
[5] M. Becchi and P. Crowley, “Efficient regular expression evaluation -

theory to practice,” in Proc. Architectures for Networking and Commu-

nications Systems, ANCS, 2008, pp. 50–59.
[6] M. Becchi and S. Cadambi, “Memory-efficient regular expression search

using state merging,” in Proc. IEEE INFOCOM, 2007, pp. 1064–1072.
[7] M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep

packet inspection,” in Proc. of the ACM CoNEXT conference, 2007, pp.
1–12.

[8] J. Bispo et al., “Regular expression matching for reconfigurable packet
inspection,” in Proc. of IEEE Intl. Conf. on Field Programmable Tech-

nology (FPT), 2006, pp. 119 –126.
[9] B. Brodie, R. Cytron, and D. Taylor, “A scalable architecture for high-

throughput regular-expression pattern matching,” in Proc. 33rd Int.

Symp. on Computer Architecture ISCA, 2006, pp. 191–202.

[10] J. Brown et al., “IBM Power Edge of Network processor: A wire-speed
system on a chip,” IEEE Micro, vol. 31, no. 2, pp. 76 –85, 2011.

[11] Cavium Networks, “Nitrox DPI CN17XX L7 Content Processor Family,”
Product Brief, 2009.

[12] D. Ficara et al., “Differential encoding of DFAs for fast regular expres-
sion matching,” IEEE/ACM Transactions on Networking, vol. 19, no. 3,
pp. 683–694, 2011.

[13] H. Franke et al., “Introduction to the wire-speed processor and architec-
ture,” IBM J. of Res. Develop., vol. 54, no. 1, pp. 3:1 –3:11, 2010.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata

Theory, Languages, and Computation, 3rd ed. Addison-Wesley Long-
man Publishing Co., Inc., 2006.

[15] IBM, “PowerEN PME Public Pattern Sets Wiki,” 2012. Available:
https://www.ibm.com/developerworks/mydeveloperworks/wikis/
home?lang=en#/wiki/PowerEN%20PME%20Public%20Pattern%20
Sets/page/Welcome

[16] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection,” in Proc. Architectures for Networking

and Communications Systems, ANCS, 2006, pp. 81–92.
[17] S. Kumar et al., “Curing regular expressions matching algorithms from

insomnia, amnesia, and acalculia,” in Proc. Architectures for Networking

and Communications Systems, ANCS, 2007, pp. 155–164.
[18] S. Kumar et al., “Algorithms to accelerate multiple regular expressions

matching for deep packet inspection,” in Proc. ACM SIGCOMM, 2006,
pp. 339–350.

[19] C.-H. Lin et al., “Optimization of pattern matching circuits for reg-
ular expression on FPGA,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 15, no. 12, pp. 1303 –1310, 2007.
[20] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling PCRE to FPGA for

accelerating SNORT IDS,” in Proc. Architectures for networking and

Communications Systems, ANCS, 2007, pp. 127–136.
[21] H. Nakahara, T. Sasao, and M. Matsuura, “A regular expression match-

ing circuit based on a decomposed automaton,” in ARC’11, Lecture

Notes in Computer Science, 2011, vol. 6578, pp. 16–28.
[22] J. Rohrer et al., “Memory-efficient distribution of regular expressions for

fast deep packet inspection,” in Proc. Int. Conf. on Hardware Software

Codesign, CODES+ISSS, 2009, pp. 147–154.
[23] R. Sidhu and V. Prasanna, “Fast regular expression matching using

FPGAs,” in Proc. 9th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines, FCCM, 2001, pp. 227–238.
[24] R. Smith, C. Estan, and S. Jha, “XFA: Faster signature matching with

extended automata,” in Proc. IEEE Symp. on Security and Privacy, SP,
2008, pp. 187–201.

[25] R. Smith et al., “Evaluating GPUs for network packet signature match-
ing,” in Proc. IEEE Int. Symp. Performance Analysis of Systems and

Software, ISPASS, 2009, pp. 175–184.
[26] R. Smith et al., “Deflating the big bang: fast and scalable deep packet in-

spection with extended finite automata,” Comput. Commun. Rev., vol. 38,
pp. 207–218, 2008.

[27] I. Sourdis et al., “Regular expression matching in reconfigurable hard-
ware,” Journal of Signal Processing Systems, vol. 51, pp. 99–121, 2008.

[28] J. van Lunteren, “Searching very large routing tables in wide embedded
memory,” in Proc. IEEE Globecom, 2001, pp. 3–1615.

[29] J. van Lunteren, “High-performance pattern-matching for intrusion
detection,” in Proc. IEEE INFOCOM, 2006, pp. 1–13.

[30] J. van Lunteren and A. Guanella, “Hardware-accelerated regular ex-
pression matching at multiple tens of Gb/s,” in Proc. IEEE INFOCOM,
2012, pp. 1737–1745.

[31] Y.-H. Yang and V. Prasanna, “Space-time tradeoff in regular expression
matching with semi-deterministic finite automata,” in INFOCOM, 2011

Proceedings IEEE, april 2011, pp. 1853 –1861.
[32] Y.-H. Yang, W. Jiang, and V. Prasanna, “Compact architecture for high-

throughput regular expression matching on FPGA,” in Proc. Architec-

tures for Networking and Communications Systems, ANCS, 2008, pp.
30–39.

[33] F. Yu et al., “Fast and memory-efficient regular expression matching
for deep packet inspection,” in Proc. Architectures for Networking and

Communications Systems, ANCS, 2006, pp. 93–102.

472

Author Index

Aamodt, Tor M. .. 72 Govindan, Madhu S. Sibi... 212

Ailamaki, Anastasia... 188 Greiner, Dan... 25

Alisafaee, Mohammad... 341 Grot, Boris.. 177

Allen-Ware, Malcolm.. 224 Gupta, Meeta S. ... 199

Annavaram, Murali.. 37, 119 Hagleitner, Christoph... 461

Atasu, Kubilay... 461 Hardy, Damien... 48

Atta, Islam.. 188 Hashemi, Milad.. 305

Balasubramonian, Rajeev.. 13 Hayes, Timothy.. 166

Bertran, Ramon.. 199 Heil, Timothy... 461

Bhattacharjee, Abhishek.. 143, 258 Horowitz, Mark.. 131

Bianchini, Ricardo... 143 Huang, Wei.. 224

Biran, Giora.. 461 Illikkal, Ramesh... 13

Bircher, W. Lloyd.. 212 Iyer, Ravi.. 13

Bose, Pradip... 199 Jacobi, Christian... 25

Brock, Bishop.. 224 Jaleel, Aamer.. 258

Burger, Doug.. 449 Jeon, Hyeran.. 37

Buyuktosunoglu, Alper.. 199, 224 Jiang, Lei.. 1

Cadambi, Srihari.. 107 John, Lizy Kurian... 212

Cammarota, Rosario.. 389 Kandemir, Mahmut.. 294

Carpenter, Paul M. .. 401 Keckler, Stephen W. ... 96

Cazorla, Francisco J. ... 401 Ketterlin, Alain.. 437

Ceze, Luis.. 449 Khailany, Brucek... 96

Chatterjee, Niladrish.. 13 Khubaib.. 305

Chen, Lizhong.. 270 Kim, Hyesoon.. 247

Childers, Bruce R. ... 1 Kim, Taesu... 389

Cho, Sangyeun... 351 Kim, Youngtaek... 212

Clauss, Philippe.. 437 Kodi, Avinash Karanth.. 282

Cristal, Adrian.. 166 Krashinsky, Ronny... 96

Dally, William J. ... 96 Kuk, William.. 224

Das, Chita R. ... 294 Kultursay, Emre... 294

Das, Reetuparna... 317 Kumar, Snehasish.. 376

Davis, Al.. 13 Ladas, Nikolas.. 48

Demetriades, Socrates.. 351 Lee, Benjamin C. .. 131, 413

Deng, Qingyuan... 143 Lefurgy, Charles.. 224

Diamos, Gregory.. 107 Lo, David... 131

Dreslinski, Ronald.. 317 Loh, Gabe H. ... 235

Duong, Nam... 389 Loh, Gabriel H. ... 247

Dwarkadas, Sandhya.. 376 Lotfi-Kamran, Pejman.. 177

Ebrahimi, Eiman.. 155 Louri, Ahmed... 282

Esmaeilzadeh, Hadi.. 449 Lukefahr, Andrew.. 317

Falsafi, Babak... 177 Lunteren, Jan Van.. 461

Fang, Zhen... 13 Mahlke, Scott... 84, 317

Floyd, Michael... 224 Malladi, Krishna T. ... 131

Gebhart, Mark.. 96 Manne, Srilatha.. 212

Gonzalez, Marc.. 199 Matthews, Eric... 376

Gopalakrishnan, Liji.. 131 Meisner, David... 143

473

Author Index

Miftakhutdinov, Rustam.. 155 Sharifi, Akbar... 294

Moretó, Miquel.. 401 Sheikh, Rami.. 329

Morris, Randy.. 282 Shevgoor, Manjunath... 13

Moshovos, Andreas.. 188 Shriraman, Arrvindh.. 376

Muzahid, Abdullah.. 363 Shvadron, Uzi.. 461

Nicopoulos, Chrysostomos.. 60 Sideris, Isidoros.. 48

O’Connor, Mike... 72, 247 Sim, Jaewoong... 247

Padmanabha, Shruti... 317 Slegel, Timothy.. 25

Palomar, Oscar... 166 Sleiman, Faissal M. ... 317

Pant, Sanjay.. 212 Suleman, M. Aater... 305

Panteli, Andreas... 60 Thottethodi, Mithuna... 247

Park, Hyunchul.. 84, 425 Torrellas, Josep.. 363

Park, Jason Jong Kyu... 84 Tözün, Pınar... 188

Park, Yongjun.. 84 Tuck, James.. 329

Patt, Yale N. .. 155, 305 Unsal, Osman... 166

Pham, Binh... 258 Vaidyanathan, Viswanathan.. 258

Pinkston, Timothy M. ... 270 Valero, Mateo.. 166, 389

Prodromou, Andreas.. 60 Veidenbaum, Alexander V. ... 389

Qi, Shanxiang... 363 Wang, Cheng.. 425

Qureshi, Moinuddin K. ... 235 Wenisch, Thomas F. ... 143, 317

Radojković, Petar... 401 Wilkerson, Chris.. 305

Rajamani, Karthick.. 224 Wong, Daniel... 119

Ramirez, Alex.. 401 Wu, Haicheng.. 107

Rogers, Timothy G. ... 72 Wu, Weidan... 413

Rong, Hongbo.. 425 Wu, Youfeng.. 425

Rotenberg, Eric.. 329 Yalamanchili, Sudhakar... 107

Sampson, Adrian.. 449 Yang, Jun... 1

Sazeides, Yiannakis... 48, 60 Zhang, Youtao.. 1

Schulte, Michael.. 212 Zhao, Dali.. 389

Shaeffer, Ian... 131 Zhao, Hongzhou... 376

Shannon, Lesley... 376

474

IEEE Computer Society
Technical & Conference

Activities Board

T&C Board Vice President

Paul R. Croll
Computer Sciences Corporation

IEEE Computer Society Staff

Evan Butterfield, Director of Products and Services
Lynne Harris, CMP, Senior Manager, Conference Support Services

Alicia Stickley, Senior Manager, Publishing Operations
Silvia Ceballos, Manager, Conference Publishing Services

Patrick Kellenberger, Supervisor, Conference Publishing Services

IEEE Computer Society Publications

The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of authoritative
computer science and engineering texts. These books are available from most retail outlets. Visit the CS Store at
http://www.computer.org/portal/site/store/index.jsp for a list of products.

IEEE Computer Society Conference Publishing Services (CPS)
The IEEE Computer Society produces conference publications for more than 300 acclaimed international
conferences each year in a variety of formats, including books, CD-ROMs, USB Drives, and on-line publications.
For information about the IEEE Computer Society’s Conference Publishing Services (CPS), please e-mail:
cps@computer.org or telephone +1-714-821-8380. Fax +1-714-761-1784. Additional information about Conference
Publishing Services (CPS) can be accessed from our web site at: http://www.computer.org/cps

Revised: 18 January 2012

CPS Online is our innovative online collaborative conference publishing system designed to speed the delivery of
price quotations and provide conferences with real-time access to all of a project's publication materials during
production, including the final papers. The CPS Online workspace gives a conference the opportunity to upload
files through any Web browser, check status and scheduling on their project, make changes to the Table of Contents
and Front Matter, approve editorial changes and proofs, and communicate with their CPS editor through discussion
forums, chat tools, commenting tools and e-mail.

The following is the URL link to the CPS Online Publishing Inquiry Form:
http://www.computer.org/portal/web/cscps/quote

476

