
MLWeaving: Software/Hardware Co-design

Our Approach (MLWwaving):

Experiment

(a) Time vs. Precision

▪ Hardware: an Intel Broadwell CPU (14 cores, 35MB LLC, 60 GB/s
memory bandwidth) and an Intel Arria 10 FPGA (directly access the CPU
memory via one QPI and two PCIe, with memory bandwidth: 15GB/s.

▪ Dataset: Epsilon (40,000 samples, 2000 features).
▪ Hogwild (ModelAverage): state-of-the-art parallel implementations of

SGD on CPUs, using 14 cores, AVX2 and 8-bit dataset.

MLWeaving:A One-Size-Fits-All
System for Any-precision Learning

Zeke Wang, Kaan Kara, Hantian Zhang, Gustavo Alonso, Onur Mutlu, Ce Zhang

Existing Approach:

MLWeaving memory layout (software)

(b) Memory traffic vs. Precision

One hardware design and one memory layout for any precision.

1, MLWeaving can roughly achieve linear
speedup (time or memory traffic), when a lower
number of bits is used, as shown in Figures a, b.
2, MLWeaving on an FPGA can achieve 11X
speedup over its CPU rivals in Figure c.

Stochastic Gradient Decent (SGD):
For e = 1 to E do /*E
epochs*/
For i = 1 to N do /*N

samples (റ𝑎i,bi)*/
ax = Qs(റ𝑎i)* റ𝑥; /*dot

product*/
scale = γ*df(ax, bi); /*serial part*/
റ𝑔 = scale*Qs(റ𝑎i); /*gradient

comp*/
റ𝑥 = റ𝑥 - റ𝑔; /*model

update*/

Bit-level flexibility of precision from software side

A~Z (a~z) is binary,
0 or 1.

MLWeaving arithmetic (hardware)

Directly consume the data from MLWeaving
memory layout with bit-serial multipliers.

Problem: Linear model training using low-precision SGD.

1, One hardware design for each precision.

2, One quantized dataset for each precision.

x: model,
റ𝑔: gradient,
Γ: learning rate,
df: derivative of
loss function

(c) MLWeaving vs. CPU rivals

Findings:

