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Executive Summary
Problem
• Cross-layer techniques are challenging to implement because they 

require full-stack changes
• Existing open-source infrastructures for implementing cross-layer 

techniques are not designed to provide key features:
Key Idea – Provide:
• Rich dynamic HW/SW interfaces
• Low-overhead metadata management
• Interfaces to key hardware components (e.g., prefetcher)
Our goal is twofold:
1. Develop an efficient and flexible framework to enable rapid 

implementation of new cross-layer techniques
2. Perform a detailed limit study to quantify the overheads associated with 

general metadata systems
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Outline

•Background on Expressive Memory
•MetaSys
• Software Interface
• Key Structures

•FPGA Implementation
•Evaluation
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Metadata: Data Semantics

Memory address space
0x000000

0xFFFFFF

Program information
DataCaches

Memory
Controller

OS

Prefetcher

1. Data Value Properties: 
INT, FLOAT, CHAR,…
COMPRESSIBLE

2. Access Properties:
Read-Write Characteristics
Access Pattern 
Access Intensity (“Hotness”)

3. Data Locality:
Working Set
Reuse

4. …
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The ATOM

Atom: X 
Program

Attributes Mapping

State

Valid/invalid at 
current execution 
point

Unique 
Atom 
ID

Atom

1. Data Value Properties: 
INT, FLOAT, CHAR,…
COMPRESSIBLE

2. Access Properties:
Read-Write Characteristics
Access Pattern 
Access Intensity

3. Data Locality:
Working Set
Reuse

4. …

An abstraction to express data semantics
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The Software Interface

AtomAtom
Program

Attributes Mapping

State

1. CREATE 2. MAP/UNMAP

3. ACTIVATE/DEACTIVATE

Three Atom operators

Create ID, Metadata Map ID, Start Addr., Size
Map2D ID, …

Activate ID
Deactivate ID
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Metadata Mapping Table
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FPGA Prototype
Prototype on Xilinx Zedboard
within a real RISC-V system (Rocket Chip)

Zedboard Rocket Chip
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MetaSys in Rocket Chip
Implement two main components:

1. Atom Controller
• Manages the attribute table (CREATE – (DE)ACTIVATE)
• Performs atom mapping (MAP/UNMAP)

• Physical address à Atom ID

2. Metadata Lookup Unit
• Responds to clients:

• Provides atom attributes
• Contains the metadata mapping cache
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Changes in Rocket Chip

Optimization 
Client

User 
Program

Instructions

Lookup IO
I: Address
O: Attributes
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Source on Github
https://github.com/CMU-SAFARI/MetaSys

https://github.com/CMU-SAFARI/MetaSys
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Outline
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Characterizing Metadata Management
Our goal is twofold:
1. …
2. Perform a detailed limit study to quantify the 

overheads associated with general metadata 
systems

Quantify the overheads of 
performing lookups in MetaSys
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Evaluation Methodology
Run workloads on MetaSys prototype (Zedboard):

Microbenchmarks: Represent a variety of memory access patterns
Polybench: Scientific computation kernels
Ligra: Graph workloads
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Performance Overhead

Metadata lookups occur low performance overheads
2.7% on average
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MMC hit rate 

MMC can cover ~81% of all memory requests on 
average

MMC hit rate correlates with locality of application 
requests
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Impact of MMC size

Workloads with low temporal and spatial locality 
are not sensitive to MMC size
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Impact of Tagging Granularity

Performance impact increases with finer granularity
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Impact of Tagging Granularity on TLB misses

Fine tagging granularities increase TLB misses 
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Effect of Contention

Multiple clients do not significantly affect 
performance

(0.3% overhead on average)

One Client: All memory requests originating from rocket core
Two Clients: One client + all memory requests originating from the page table walker
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