
MetaSys
A Practical Open-Source Metadata Management System

to Implement and Evaluate
Cross-Layer Optimizations

Nandita Vijaykumar
Ataberk Olgun, Konstantinos Kanellopoulos, F. Nisa Bostanci

Hasan Hassan, Mehrshad Lotfi, Phillip B. Gibbons, Onur Mutlu

2

Executive Summary
Problem
• Cross-layer techniques are challenging to implement because they

require full-stack changes
• Existing open-source infrastructures for implementing cross-layer

techniques are not designed to provide key features:
Key Idea – Provide:
• Rich dynamic HW/SW interfaces
• Low-overhead metadata management
• Interfaces to key hardware components (e.g., prefetcher)
Our goal is twofold:
1. Develop an efficient and flexible framework to enable rapid

implementation of new cross-layer techniques
2. Perform a detailed limit study to quantify the overheads associated with

general metadata systems

3

Outline

•Background on Expressive Memory
•MetaSys
• Software Interface
• Key Structures

•FPGA Implementation
•Evaluation

4

Data
Structures

Code
Optimizations Access Patterns

Integer Float

CharData Type

Instructions
Memory

Addresses

Higher-level information is not visible to HW

100011111…
101010011…

Hardware
Software

5

Data
Structures

Access Patterns

Integer Float

CharData
Type/Layou
t

With a richer abstraction:
SW can provide program information
can significantly help hardware

Hardware
Software

Prefetch
er

Data
Compression

Data
Placemen

t

6

Outline

•Background on Expressive Memory
•MetaSys
• Software Interface
•Key Structures

•FPGA Implementation
•Evaluation

7

Metadata: Data Semantics

Memory address space
0x000000

0xFFFFFF

Program information
DataCaches

Memory
Controller

OS

Prefetcher

1. Data Value Properties:
INT, FLOAT, CHAR,…
COMPRESSIBLE

2. Access Properties:
Read-Write Characteristics
Access Pattern
Access Intensity (“Hotness”)

3. Data Locality:
Working Set
Reuse

4. …

8

The ATOM

Atom: X
Program

Attributes Mapping

State

Valid/invalid at
current execution
point

Unique
Atom
ID

Atom

1. Data Value Properties:
INT, FLOAT, CHAR,…
COMPRESSIBLE

2. Access Properties:
Read-Write Characteristics
Access Pattern
Access Intensity

3. Data Locality:
Working Set
Reuse

4. …

An abstraction to express data semantics

9

The Software Interface

AtomAtom
Program

Attributes Mapping

State

1. CREATE 2. MAP/UNMAP

3. ACTIVATE/DEACTIVATE

Three Atom operators

Create ID, Metadata Map ID, Start Addr., Size
Map2D ID, …

Activate ID
Deactivate ID

10

Metadata Mapping Table
Memory
Address

Atom
ID

Metadata
Mapping
Cache

Metadata
Lookup Unit

TLB

Optimization
Client

MetaSys Key Structures

Resides in Main Memory Attribute Table

Atom ID

Attributes
Virtual Address

Metadata
Mapping
Cache

11

Outline

•Background on Expressive Memory
•MetaSys
• Software Interface
• Key Structures

•FPGA Implementation
•Evaluation

12

FPGA Prototype
Prototype on Xilinx Zedboard
within a real RISC-V system (Rocket Chip)

Zedboard Rocket Chip

13

MetaSys in Rocket Chip
Implement two main components:

1. Atom Controller
• Manages the attribute table (CREATE – (DE)ACTIVATE)
• Performs atom mapping (MAP/UNMAP)

• Physical address à Atom ID

2. Metadata Lookup Unit
• Responds to clients:

• Provides atom attributes
• Contains the metadata mapping cache

14

Changes in Rocket Chip

Optimization
Client

User
Program

Instructions

Lookup IO
I: Address
O: Attributes

15

Source on Github
https://github.com/CMU-SAFARI/MetaSys

https://github.com/CMU-SAFARI/MetaSys

16

Outline

•Background on Expressive Memory
•MetaSys
• Software Interface
• Key Structures

•FPGA Implementation
•Evaluation

17

Characterizing Metadata Management
Our goal is twofold:
1. …
2. Perform a detailed limit study to quantify the

overheads associated with general metadata
systems

Quantify the overheads of
performing lookups in MetaSys

18

Evaluation Methodology
Run workloads on MetaSys prototype (Zedboard):

Microbenchmarks: Represent a variety of memory access patterns
Polybench: Scientific computation kernels
Ligra: Graph workloads

19

Performance Overhead

Metadata lookups occur low performance overheads
2.7% on average

20

MMC hit rate

MMC can cover ~81% of all memory requests on
average

MMC hit rate correlates with locality of application
requests

21

Impact of MMC size

Workloads with low temporal and spatial locality
are not sensitive to MMC size

22

Impact of Tagging Granularity

Performance impact increases with finer granularity

23

Impact of Tagging Granularity on TLB misses

Fine tagging granularities increase TLB misses

24

Effect of Contention

Multiple clients do not significantly affect
performance

(0.3% overhead on average)

One Client: All memory requests originating from rocket core
Two Clients: One client + all memory requests originating from the page table walker

25

Executive Summary
Problem
• Cross-layer techniques are challenging to implement because they

require full-stack changes
• Existing open-source infrastructures for implementing cross-layer

techniques are not designed to provide key features:
Key Idea – Provide:
• Rich dynamic HW/SW interfaces
• Low-overhead metadata management
• Interfaces to key hardware components (e.g., prefetcher)
Our goal is twofold:
1. Develop an efficient and flexible framework to enable rapid

implementation of new cross-layer techniques
2. Perform a detailed limit study to quantify the overheads associated with

general metadata systems

MetaSys: A Practical Open-Source
Metadata Management System

to Implement and Evaluate
Cross-Layer Optimizations

Nandita Vijaykumar
Ataberk Olgun, Konstantinos Kanellopoulos, F. Nisa Bostanci

Hasan Hassan, Mehrshad Lotfi, Phillip B. Gibbons, Onur Mutlu

27

Backup

28

Backup

29

Backup

30

Backup

31

Backup

32

Backup

33

Backup

34

Backup

35

Backup

36

Backup

37

Backup

38

Backup

