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Time series analysis is a key technique for extracting and

predicting events in domains as diverse as epidemiology, ge-

nomics, neuroscience, environmental sciences, economics,

and more. Matrix pro�le, the state-of-the-art algorithm to

perform time series analysis, computes the most similar sub-

sequence for a given query subsequence within a sliced time

series. Matrix pro�le has low arithmetic intensity, but it typi-

cally operates on large amounts of time series data. In current

computing systems, this data needs to be moved between the

o�-chip memory units and the on-chip computation units for

performing matrix pro�le. This causes a major performance

bottleneck as data movement is extremely costly in terms of

both execution time and energy.

In this work, we present NATSA, the �rst Near-Data Pro-

cessing accelerator for time series analysis. The key idea

is to exploit modern 3D-stacked High Bandwidth Memory

(HBM) to enable e�cient and fast specialized matrix pro�le
computation near memory, where time series data resides.

NATSA provides three key bene�ts: 1) quickly computing

the matrix pro�le for a wide range of applications by building

specialized energy-e�cient �oating-point arithmetic process-

ing units close to HBM, 2) improving the energy e�ciency

and execution time by reducing the need for data movement

over slow and energy-hungry buses between the computa-

tion units and the memory units, and 3) analyzing time series

data at scale by exploiting low-latency, high-bandwidth, and

energy-e�cient memory access provided by HBM. Our exper-

imental evaluation shows that NATSA improves performance

by up to 14.2× (9.9× on average) and reduces energy by up to

27.2× (19.4× on average), over the state-of-the-art multi-core

implementation. NATSA also improves performance by 6.3×
and reduces energy by 10.2× over a general-purpose NDP

platform with 64 in-order cores.

1. Introduction
A time series is a chronologically ordered set of samples of

a real-valued variable that can contain millions of observa-

tions. Time series analysis is used to analyze information

in a wide variety of domains [92]: epidemiology, genomics,

neuroscience, medicine, environmental sciences, economics,

and more. Time series analysis includes �nding similarities

(motifs [25]) and anomalies (discords [48]) between every two

subsequences (i.e., slices of consecutive data points) of the time

series [101, 109]. There are two major approaches for motif

and discord discovery: approximate and exact algorithms [65].

Approximate algorithms [25] are faster than exact algorithms,

but they can provide inaccurate results or limited discord de-

tection, which cannot be tolerated by many applications (e.g.,

vehicle safety systems [85]). Unlike approximate algorithms,

exact algorithms [67] do not yield false positives or discor-

dant dismissals, but can be very time-consuming on large

time series data. Thus, anytime versions (aka interruptible

algorithms) of exact algorithms are proposed to provide ap-

proximate solutions quickly [108, 112] and can return a valid

result even if the user stops their execution early.

The state-of-the-art exact anytime method for motif and

discord discovery is matrix pro�le [108], which is based on Eu-

clidean distances and �oating-point arithmetic. Fig. 1 depicts

a naive example of anomaly detection using matrix pro�le,
where the sinusoidal signal has an anomaly between values

250 and 270. Thematrix pro�le output of this time series shows

low values for the periodic subsequences of it as they are very

similar to the other subsequences, and higher values for the

anomalies and their neighboring subsequences.
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Figure 1: A time series (upper �gure) including anomalies and
its matrix pro�le output (lower �gure). Anomalies appear as
higher Euclidean distance values in the pro�le.

We evaluate a recent CPU implementation of the matrix pro-
�le algorithm [112] on a real multi-core machine (Intel Xeon

Phi KNL [95]) and observe that its performance is heavily

bottlenecked by data movement. In other words, the amount

of computation per data access is not enough to hide the mem-

ory latency and thus time series analysis is memory-bound.

This overhead caused by data movement limits the potential

bene�ts of acceleration e�orts that do not alleviate data the

movement bottleneck in current time series applications.

Several CPU and GPU implementations of matrix pro�le
have been proposed in the literature [44, 108, 112, 113]. How-

ever, these acceleration e�orts still require transferring the

time series data from the main memory to the CPU/GPU cores,

leading to the data movement bottleneck. Near-Data Process-

ing (NDP) [5–7, 12, 16–19, 23, 24, 26, 30, 31, 33, 34, 40, 40–43,

49, 50, 50, 51, 51, 52, 57, 60, 62, 68, 78, 79, 86–90, 93, 94, 103] is a

promising approach to alleviate data movement by placing

processing units close to memory. As a result, NDP solutions

have the potential to improve system performance and energy
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e�ciency when they are carefully designed with low-cost and

low-overhead near data processing cores for memory-bound

applications [6, 7, 16, 17, 30, 31, 33, 34, 38, 43, 52, 57, 68, 70, 72].

Our goal in this work is to enable high-performance and

energy-e�cient time series analysis for a wide range of ap-

plications, by minimizing the overheads of data movement.

This can enable e�cient time series analysis on large-scale

systems as well as embedded and mobile devices, where power

consumption is a critical constraint (e.g., heart beat analysis

on a mobile medical device to predict a heart attack [58]). To
this end, we propose NATSA, the �rst Near-Data Processing

Accelerator for Time Series Analysis. The key idea of NATSA

is to exploit modern 3D-stacked High Bandwidth Memory

(HBM) [55,56] along with specialized custom processing units

in the logic layer of HBM, to enable energy-e�cient and fast

matrix pro�le computation near memory, where time series

data resides. NATSA supports a wide range of time series ap-

plications thanks to matrix pro�le’s generality and �exibility.

Our evaluation shows that NATSA provides up to 14.2×
(9.9× on average) higher performance and up to 27.2× (19.4×
on average) lower energy consumption compared to a state-

of-the-art multi-core system. NATSA consumes 11.0× and

4.1× less energy over optimized implementations of matrix
pro�le on an Intel Xeon Phi KNL [27] and NVIDIA GTX 1050

GPU [44], respectively. NATSA has 9.6× and 1.8× smaller

area than these two accelerators, at equivalent performance

points. NATSA outperforms a general-purpose NDP platform

by 6.3× while consuming 10.2× less energy.

This work makes the following contributions:
• We propose NATSA, the �rst near-data processing accel-

erator for accelerating time series analysis using modern

3D-stacked High Bandwidth Memory (HBM).

• We propose a new workload partitioning scheme that pre-

serves the anytime property of the algorithm, while provid-

ing load balancing among near-data processing units.

• We perform a detailed analysis of NATSA in terms of both

performance and energy consumption. We compare dif-

ferent versions of NATSA (DDR4 [46] and HBM [55]) with

four di�erent architectures (8-core CPU, 64-core CPU, GPUs

and NDP-CPU) and �nd that NATSA provides the highest

performance and lowest energy consumption.

2. Background
2.1. Time Series Analysis: The matrix pro�le
A time series T is a sequence of n data points ti, where 1 ≤
i ≤ n, collected over time. A subsequence of T , also called a

window, is denoted by Ti,m, where i is the index of the �rst

data point, andm is the number of samples in the subsequence,

with 1 ≤ i, and m ≤ n− i.
The state-of-the-art exact anytime method for time series

analysis is matrix pro�le [108]. When analyzing a time series,

the pro�le is maintained as another time series that represents

the most similar neighbor for a particular subsequence of the

original time series. The similarity between two subsequences

Ti,m and Tj,m can be calculated using the z-normalized Eu-
clidean distance, which is de�ned as follows.

di,j =

√
2m
(

1 − Qi,j −mµiµj

mσiσj

)
(1)

where Qi,j is the dot product of Ti,m and Tj,m; µx and σx are

the mean and the standard deviation of the points in Tx,m,

respectively. These statistics are computed in O(n) time [81].

Using the distance in Eq. 1, the matrix pro�le algorithm

solves the similarity search problem in three steps. First, it

builds a symmetric (n − m + 1) × (n − m + 1) matrix D,

called distance matrix. Each cell in D, di,j , stores the distance

between two subsequences, Ti,m and Tj,m. Second, it creates

an array P of size n − m + 1, called pro�le. Each cell Pi in

P keeps the minimum distance recorded in the ith
row of

D. Third, it allocates an array I that is of the same size as P ,

called pro�le index, such that Ii = j if Pi = di,j . This way,

P contains the minimum distances between subsequences,

while I is the vector of “pointers” to the location of these

subsequences within the time series.

Fig. 2 depicts an example of the distance matrix D, the

pro�le P , and the pro�le index I . The neighboring subse-

quences of Ti,m are highly similar to it (i.e., di,i+1 ≈ 0) due

to overlapping between them. The algorithm excludes these

subsequences from the computation to avoid false positives,

by de�ning an exclusion zone for each subsequence. It follows

the approach in [112], where the exclusion zone of Ti,m is

Ti, m
4

(i.e., ends at ti+ m
4

of the time series).

d1,1 d1,2 d1,3 d1,4 ... d1,n-m+1

d2,1 d2,2 ... di,j ... ...

d3,1 ... d3,3 ... ... ...

d4,1 ... ... d4,4 ... ...

... ... ... ... ... ...

dn-m+1,1 ... ... ... ... dn-m+1,

  
n-m+1

min(D1)

min(D2) j | d2,j = P2

... ...

... ...

... ...

min(Dn-m+1)

j | d1,j = P1 j | d1,j = P1 D1

D2

D3

D4

...

Dn-m+1

Ti,m Tj,m P I

j | dn-m+1,j 
= Pn-m+1

j | dn-m+1,j 
= Pn-m+1

Figure 2: Example of distance matrix (D), pro�le (P), and pro-
�le index (I).Pi holds theminimumdistance calculated in row
Di, and Ii holds the index j of the subsequence that results in
that distance. The cells in the exclusion zone are coloured red.

2.2. The SCRIMP Implementation
The state-of-the-art CPU-based implementation of the ma-
trix pro�le algorithm is SCRIMP [112]. We use an optimized

version of SCRIMP [27] as baseline for our work, since it has

the best convergence properties and takes advantage of mul-

tithreading and vectorization. The key mechanism behind

optimized SCRIMP is that the dot product in Eq. 1 can be

calculated incrementally in the diagonals of D as follows:

Qi,j = Qi−1,j−1 − ti−1tj−1 + ti+m−1tj+m−1 (2)

According to Eq. 2, except for the �rst dot product, the remain-

ing cells of a diagonal can be calculated using the values from

the immediate upper left cells. This fact signi�cantly reduces

the number of multiplications and additions needed.

Algorithm 1, optimized SCRIMP [27], exploits both thread-

level parallelism and vectorization. First, it precalculates the

means and standard deviations of every subsequence of the

time series (line 1), and initializes the pro�le vector (lines 3-4).
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Second, it computes the diagonals (see Fig. 2) using the loop

in line 5. The variable nDiag is the number of diagonals of

D assigned to each thread. These diagonals can be ordered

in the diag vector (line 6) a) randomly, enabling the anytime
property of the algorithm, or b) sequentially, discarding the

anytime property but allowing for optimizations [112] (e.g.,

exploiting data locality of consecutive diagonals).

Algorithm 1 Optimized SCRIMP [27]

1: µ, σ ← precalculateMeansDevs(T,m);
2: vectFact← vector_width/sizeof(datatype);
3: for i← 0 to size(P )− 1 do
4: Pi ←∞;
5: for idx← tid ∗ nDiag to (tid+ 1) ∗ nDiag − 1 do
6: i← 0; j ← diagidx;
7: q ← dotProduct(Ti,m, Tj,m); . Vectorized loop
8: d← dist(m, q, µi, σi, µj , σj);
9: if d < Pi then Pi ← d; Ii ← j;

10: if d < Pj then Pj ← d; Ij ← i;
11: i← i+ 1;
12: for j ← diagidx + 1 to size(P ) do
13: for k ← 0 to vectFact− 1 do . Vectorized loop
14: qsk ← ti+m−1+ktj+m−1+k − ti−1+ktj−1+k;
15: qs0 ← qs0 + q;
16: for k ← 1 to vectFact− 1 do
17: qsk ← qsk + qsk−1;
18: q ← qsvectF act−1;
19: for k ← 0 to vectFact− 1 do . Vectorized loop
20: dsk ← dist(m, qsk, µi+k, σi+k, µj+k, σj+k);
21: if dsk < Pi+k then Pi+k ← dsk; Ii+k ← j + k;
22: if dsk < Pj+k then Pj+k ← dsk; Ij+k ← i+ k;
23: i← i+ vectFact;

Note that only P and I are allocated in memory, since

storing D can lead to large memory consumption for large

series due to the n2
memory footprint (i.e., the values of D

are calculated on the �y, updating P and I when needed). For

each diagonal, the algorithm �rst computes the dot product

of the �rst pair of subsequences in line 7 using the dotProduct
function, which is vectorized. Second, it calculates the distance

according to Eq. 1 (line 8). Third, it checks and replaces the

corresponding pro�le element with the new distance provided

that the calculated one is smaller (lines 9-10).

The algorithm addresses the imposed data dependency due

to the dot product update between the elements in the diagonal

with the following steps: 1) it pre-computes the add terms in

Eq. 2 in batches of size vectFactor in a vectorized manner

(lines 13-14); 2) it adds the previous dot product to the �rst

new one (line 15); 3) it sequentially updates the remaining

dot products in the batch (lines 16-17) saving the last one

for the next iteration of the diagonal (line 18); 4) it computes

the distance as well as the pro�le update in a vectorized way

(lines 19-22). As a result, all loops are fully vectorized except

the one in lines 16-17.

2.3. NDP and 3D-Stacked Memory
Near-Data Processing (NDP) [5–7, 12, 16–19, 23, 24, 26, 30, 31,

33, 34, 40, 40–43, 49–52, 57, 60, 62, 68, 78, 79, 86–90, 93, 94, 103] is

a promising paradigm to reduce the data movement between

CPUs and memory by placing simple general-purpose proces-

sors [6, 16, 42] or application-speci�c accelerators [7, 16, 19,

43, 52, 111] in or close to the logic layer of 3D-stacked mem-

ory. Generally, NDP can provide performance bene�ts for

memory-bound applications when they exhibit one or more

of the following major properties: 1) requiring higher memory

bandwidth than available in the system, 2) being sensitive to

memory access latency [70], or 3) performing irregular mem-

ory accesses, such that they cannot e�ectively bene�t from

cache hierarchy of conventional CPU architectures.

Recent advances in die-stacking technologies have enabled

the integration of multiple layers of DRAM arrays in a single

package. A 3D-stacked memory consists of several memory

dies, one on top of each other, connected using Through-

Silicon Vias (TSV) [55,56]. NDP locates low-power processing

units inside the logic layer of 3D-stacked memory, to har-

ness the signi�cantly higher bandwidth and the lower latency

provided while consuming less energy. The most prominent

3D-stacked memory technologies are High Bandwidth Mem-

ory (HBM) [47] and Hybrid Memory Cube (HMC) [39], but

there are several others [35, 53].

3. Motivation
NATSA is motivated by two key observations: First, time

series motif and discord discovery are two of the most im-

portant analysis primitives for a wide variety of applications.

Besides the applications mentioned in Section 1, we can �nd

these primitives applied to bioinformatics [8, 10, 14] , speech

processing [32], robotics [80], weather prediction [64], ento-

mology [97], geophysics [21], �nance [20], communication

engineering [54], and electroencephalography [45].

Second, memory is the main bottleneck in time series anal-

ysis. We characterize the performance of a state-of-the-art

CPU-based multithreaded and vectorized implementation of

SCRIMP, developed in [27]. We run SCRIMP [27] on an In-

tel Xeon Phi 7210 processor, with 64 cores and 256 hardware

threads, using two types of memory (DDR4 and HBM) avail-

able in this architecture. In Fig. 3, we present the performance

results normalized to 1 thread (lines) and utilized memory

bandwidth (bars) of SCRIMP. We observe that, when using

DDR4, the performance of SCRIMP does not scale beyond 32

threads, whereas the higher memory bandwidth provided by

HBM enables SCRIMP to scale up to 128 threads. This shows

that SCRIMP’s performance saturates on many-core archi-

tectures, because the achievable bandwidth saturates when

the number of threads increases. To know the cause for this

memory boundedness we perform the next experiment.
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Figure 3: Memory bandwidth usage (bars) and normalized
performance (lines) of a parallel and vectorized version of
SCRIMP [27] running on an Intel Xeon Phi 7210.
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We perform the roo�ine analysis as we show in Fig. 4. We

observe that the arithmetic intensity of SCRIMP is signi�-

cantly low. The con�rms that the memory boundedness of

SCRIMP is due to the low arithmetic intensity of the algorithm,

which leads processing cores to be underutilized. Based on all

these observations, we conclude that the performance of the

state-of-the-art CPU-based implementation of the matrix pro-
�le, SCRIMP [27], is heavily bottlenecked by available memory

bandwidth and data movement. Our goal is to reduce the data

movement bottleneck of SCRIMP by building an NDP accel-

erator that matches the compute throughput of processing

elements with the available memory bandwidth.
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Figure 4: Roo�ine analysis of a parallel and vectorized ver-
sion of SCRIMP [27] running on an Intel Xeon Phi 7210.

4. NATSA Architecture
Our Near-Data Processing Accelerator for Time Series

Analysis, NATSA, is designed to 1) fully exploit the mem-

ory access parallelism and high memory bandwidth o�ered

by HBM, and 2) employ the required amount of computing

resources to provide a balanced solution. NATSA is built next

to the HBM memory and exploits the full HBM bandwidth

available. NATSA consists of multiple processing units (PUs)

that e�ciently compute the diagonals of matrix pro�le in a

parallel fashion. The PUs are designed to compute diagonals

using a vectorized approach to process a batch of elements of

a diagonal at the same time. Each PU includes energy-e�cient

�oating-point units [29], bitwise operators, and registers (See

Table 3 in Sect. 6.3). Each PU communicates with the HBM

memory via a controller connected to one of the 8 memory

channels provided by HBM.

4.1. NATSA Processing Units (PUs)
Each NATSA PU consists of four hardware components: the

Dot Product Unit (DPU), the Distance Compute Unit (DCU), the

Pro�le Update Unit (PUU), and the Dot Product Update Unit
(DPUU), as we show in Fig. 5. We share the �oating-point

arithmetic operators (e.g., multipliers) among those hardware

components to minimize idle cycles and enable reusability.

The control unit ( 1 in Fig. 5) is a state machine that orches-

trates the execution �ow of a PU. The multiplexers ( 2 in

Fig. 5) choose between the output of DPU and DPUU based on

a signal from the control unit, so that the DCU can take advan-

tage of Eq. 2, starting from the second element of the diagonal

all the way down to the last. We replicate those hardware

components to compute di�erent elements of a diagonal in

parallel, using the vectorized approach outlined in Section 2.2.

The diagonal assignment is pre-calculated in the host CPU,

which sends the indices of the to-be-computed diagonals to

each NATSA PU. Finally, each NATSA PU uses its own 1KB

scratchpad memory to temporarily store �xed-size auxiliary

data, such as the window size or con�guration parameters.
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Figure 5: NATSA design and integration next to HBM mem-
ory. NATSA is connected directly to the HBM interface.

The execution �ow through the hardware components of a

PU includes the following six steps:

1. Dot product computation of the �rst element of the
diagonal. The DPU calculates the dot product between the

�rst pair of subsequences of the diagonal (Ti,m and Tj,m)

by using the time series input T , and the window size, m,

which is used to signal the end of each subsequence. This

hardware component vectorizes the operation and outputs

the result, qi,j , for the next step.

2. Euclidean distance computation of the �rst element
of the diagonal. The DCU computes the �rst Euclidean

distance of each diagonal following Eq. 1, using the dot

product computed by the DPU qi,j. The values of µ and

σ are precomputed by the host CPU in negligible time

(O(n) [81]) with respect to the total execution time. This

simpli�es the design of the PU.

3. First pro�le update. If the Euclidean distance calculated

in the DCU, di,j , is lower than that stored in the pro�le for

both subsequences, the PUU updates the pro�le vector and

pro�le index vector, PP and II .

4. Dot product update. The dot product of the second and

successive cells in the diagonal is calculated from the pre-

vious cell. It is computed in the DPUU by subtracting the

�rst product and adding the new one to qi,j , as shown in

Eq. 2. This hardware component is replicated to enable

vectorization and is pipelined with the DCU and the PUU.

5. Second and successive Euclidean distance computa-
tions. The DCU computes again the Euclidean distance,

but now it obtains qi,j from the DPUU. The DPUU hard-

ware component is replicated for vectorization of the dot

product update calculations.

6. Second and successive pro�le updates. The PUU up-

dates the pro�le vector and pro�le index vector, if needed.

This hardware component is replicated to perform several

updates at a time.
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4.2. Workload Partitioning Scheme
Computing the diagonals of the distance matrix may lead to

load imbalance among the PUs, because those diagonals have

di�erent lengths. To avoid this imbalance, we propose a static

partition scheduling scheme which depends only on the size

of the time series and the exclusion zone.

The way we tackle this problem is by assigning a set of

pairs of diagonals to each NATSA PU such that the sum of

their elements is equal to the number of cells of the main

diagonal of the distance matrix minus the number of cells of

the exclusion zone, (n−m+ 1) −m/4.

Fig. 6 illustrates an example with two PUs, PU0 and PU1, a

distance matrix for a time series of n = 13 cells, a window size

of m = 4, and an exclusion zone of 1 diagonal (crossed out

rectangles). In this case, the number of elements that each pair

of diagonals assigned to a PU should have is (n−m+ 1) −
m/4 = 10−1 = 9. Comparing a subsequence with itself gives

zero distance value. As a consequence, the algorithm treats

the main diagonal as exclusion zone and avoids computing it.

The �rst diagonal of non-zero values, which starts in column

D2 and is represented with crossed out rectangles, belongs to

the exclusion zone (see Fig. 2), so NATSA PUs also skip it.

 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

D11  PU0 PU0 PU1 PU0 PU1 PU1 PU0 PU1 PU0 

D2    PU0 PU1 PU0 PU1 PU1 PU0 PU1 

D3     PU0 PU1 PU0 PU1 PU1 PU0 

D4      PU0 PU1 PU0 PU1 PU1 

D5       PU0 PU1 PU0 PU1 

D6        PU0 PU1 PU0 

D7         PU0 PU1 

D8          PU0 

D9           

D10           

Figure 6: Example of the diagonal scheduling scheme for two
processing units, denoted as PU0 (green) and PU1 (white). Ar-
rows show direction of computation.

Discarding the computation of the main diagonal and the

diagonals in the exclusion zone, both PUs have to compute the

diagonals from columnsD3 toD10. To perform this e�ciently

and maintain the anytime property of SCRIMP, in the �rst

step, PU0 is assigned the �rst and last diagonal (9 elements

in total), and PU1 is assigned the second and the penultimate

diagonal (totalling 9 elements as well). In the second step, PU0
computes the third and the third-to-last diagonal, whereas

PU1 computes the fourth and �fth diagonals.

Our proposed scheduling scheme can be used in two ways:

1) Randomly ordering the indices of diagonals that each PU

has to compute. Using this approach, we are able to preserve

the anytime property of the algorithm, since if the execution is

interrupted, the user obtains a partial exploration of the whole

time series (i.e., events from any point of the time series can be

detected). 2) Sequentially ordering the indices of diagonals that

each PU has to compute. This approach violates the anytime
property (i.e., only events up to the interruption point can be

detected), but allows for further optimizations (e.g., exploiting

data locality between consecutive diagonals).

Data mapping. Each PU has access to its corresponding

portion of the time series and statistic vectors, and works with

replicated pro�le and pro�le index vectors. This approach sim-

pli�es the overall architecture, enabling the use of many PUs

without having to synchronize between them. NATSA assigns

multiple diagonals to each PU with the speci�c scheduling

scheme described in this section.

4.3. Programming Interface
In this section, we introduce the API to invoke NATSA from a

host processor. While conventional loosely-coupled acceler-

ators (e.g., GPUs or FPGAs) have their own memory, where

data must be transferred to from the host’s memory, NATSA

is a tightly-integrated NDP accelerator, located between the

host CPU and main memory. Thus, there is no need to trans-

fer any data between the host memory and the accelerator

memory, as loosely-coupled accelerators require. The user is

responsible for 1) allocating the time series (T ) and 2) provid-

ing the window length (m). NATSA will provide the user the

pro�le vector (P ) and pro�le index vector (I) in return. The

size of the exclusion zone (
m
4 by default) can be also passed

as a parameter (exc).
Algorithm 2 outlines the NATSA API. First, NATSA function

precalculates the statistics (µ, σ) (line 2) in the host CPU and

allocates the private vectors (PP, II) to NATSA’s PUs (line 3).

Algorithm 2 NATSA API

1: function P, I ← NATSA(T,m, exc, conf )

2: µ, σ ← precalculateMeanDev(T,m)
3: PP, II ← allocatePrivateProfiles(T,m, exc)
4: idx← diagonalScheduling(T,m, exc)
5: start_accelerator(T,m, exc, conf, idx, PP, II)

6: P, I ← reduction(PP, II)

Second, NATSA function implements the diagonal schedul-

ing scheme presented in the previous section, setting the di-

agonals to be computed by each PU in idx (line 4). Third, it

initiates the accelerator (line 5), which starts the computation,

and the host CPU waits for all the processing units to �nish.

Once the computation �nishes, the host CPU performs the

�nal reduction of the private vectors (line 6) and the user can

�nd the results in the P and I vectors. The conf argument

(line 1), besides holding con�guration parameters for the ac-

celerator, allows for future extensions, such as using other

distance metrics (e.g., Pearson correlation [113]).

5. Methodology
We describe the simulation environment and the workload

we use to evaluate the performance of NATSA.

5.1. Simulation Environment
We simulate general-purpose cores using an in-house integra-

tion of ZSim [84], whose front-end is Pin [63], with Ramula-
tor [53] [82]. ZSim is a simulator which can model 1) general

purpose cores (both in-order and out-of-order cores), and 2)

the conventional cache hierarchy. Ramulator is a cycle-level

and extensible DRAM simulator that provides a wide variety

of memory models, including DDR4 [46] and HBM [55]. We

use McPAT [59] for power estimations.
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For the NATSA accelerator, we use the gem5 [15] and Al-
addin [91] integration developed in [96]. Aladdin provides

performance, area, and power estimations for a system-on-

chip accelerator by requiring the equivalent C implementa-

tion of the accelerator design. Aladdin estimates the perfor-

mance, power, and area of the accelerator within 0.9%, 4.9%,

and 6.6% compared to that provided by RTL �ows, but over

100× faster [91]. As Aladdin does not model the memory

subsystem, we need to simulate it using gem5.

For a fair comparison, we evaluate our baseline platform

(see the evaluated platforms below) in both ZSim and gem5

frameworks using the same workload (see Section 5.2). We

obtain up to 10% simulated time reduction using ZSim with

respect to gem5 (i.e., the baseline system performs slightly

better with ZSim). As a consequence, the performance ben-

e�ts of NATSA with respect to the baseline simulated using

gem5, would be even higher. However, we choose ZSim since

simulations of manycore systems with ZSim are orders of mag-

nitude faster than gem5 simulations [84], and this allows for

the evaluation of general-purpose core platforms with large

time series. For both general-purpose cores and accelerators,

we obtain the power consumption of the memory system us-

ing the Micron Power Calculator [2], which we feed with the

bandwidth usage from Ramulator and gem5, respectively.

Using these simulation environments, we de�ne several

representative hardware platforms for the evaluation:

• DDR4-OoO (Baseline): A conventional DDR4-based sys-

tem with eight four-wide out-of-order cores at 3.75GHz.

Each core has 32KB private L1 instruction/data caches and

a private 256KB L2 cache. The cores share an 8MB L3 cache.

The main memory is a dual channel 16GB DDR4-2400 with

38.4GB/s of memory bandwidth.

• DDR4-inOrder: A conventional architecture using 64 in-

order cores at 2.5GHz. Each core has only a single level of

private 32KB instruction/data caches. The main memory is

the same DDR4 as in the baseline system. We use this simple

core-cache con�guration to compare with the following

NDP general-purpose-core system.

• HBM-OoO: An NDP architecture with eight four-wide out-

of-order cores at 3.75GHz. Each core has 32KB private L1

instruction/data caches and a private 256KB L2 cache. The

main memory is a 4GB 3D-stacked HBM2 that provides a

throughput of 256GB/s.

• HBM-inOrder: An NDP architecture with 64 in-order

cores at 2.5GHz. Each core has a single level of private

32KB instruction/data caches. The main memory is a 4GB

3D-stacked HBM2 that provides a throughput of 256GB/s.

• NATSA: Our NDP accelerator with 48 PUs at 1GHz. Each

PU has access to a private scratchpad memory of 1KB. The

main memory is the same 4GB 3D-stacked HBM2 as in the

HBM-OoO and HBM-inOrder platforms.

5.2. Workload
We use two real datasets and �ve synthetic datasets to evaluate

the performance of NATSA against state-of-the-art architec-

tures. The two real datasets are electrocardiogram (ECG) and

seismology data obtained from [98] and [107]. We use these

real datasets to 1) verify the correctness of the matrix pro�le
computed by NATSA (the same approach used in [107]) and

2) evaluate the e�ect of using single-precision versus double-

precision (see Section 6.5). We generate the �ve synthetic

datasets of di�erent representative lengths [112] for perfor-

mance evaluation using MATLAB, as shown in Table 1.

Table 1: Synthetic time series for performance evaluation.
Time Series rand_128K rand_256K rand_512K rand_1M rand_2M
Length (n) 131072 262144 524288 1048576 2097152

6. Evaluation
In this section, we �rst evaluate NATSA’s performance, com-

paring it to the general-purpose platforms (DDR4-OoO, DDR4-

inOrder, HBM-OoO, and HBM-inOrder). Second, we compare

NATSA to both simulated and real architectures (e.g., many-

core CPUs and GPUs [44]) in terms of power consumption and

area. Third, we present a design space exploration of NATSA.

Fourth, we analyze the performance of general-purpose cores

and their bottlenecks. Finally, we evaluate SCRIMP in terms

of precision and sensitivity to subsequence lengths (m).

6.1. Performance of NATSA
We evaluate the performance of two NATSA designs using

single-precision (SP) and double-precision (DP), respectively.

We present normalized performance of NATSA-DP with re-

spect to the baseline platform (DDR4-OoO) in Fig. 7, using

double-precision data. NATSA achieves signi�cant perfor-

mance improvements, up to 14.2× (9.9× on average) over the

baseline system for large time series, and 6.3× over HBM-

inOrder for all sizes. We observe that NATSA’s speedup in-

creases as the time series length becomes larger. This is be-

cause the arithmetic intensity decreases when the ratio of time

series length (n) to window size (m) increases. Dot product

update (Section 2.2) causes the �rst dot product to take a sig-

ni�cant part of the computation for shorter diagonals (lower

n to m ratio). The cache hierarchy of the baseline system

accelerates the �rst dot product. Conversely, a greater n to

m ratio results in longer diagonals with the �rst dot product

being less signi�cant with respect to the total execution time,

reducing the observed bene�ts of a cache hierarchy.
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Figure 7: Speedup with respect to the baseline platform
(DDR4-OoO) using double precision data.

We evaluate the performance of the single-precision NATSA

design.
1

Table 2 presents the average execution time for the

1
We note that NATSA experiments are carried out with the gem5-Aladdin

simulation framework, and the other platforms are evaluated with the ZSim-

Ramulator framework (baseline system included). As mentioned in Section 5.1,

simulated times are slightly shorter for ZSim, so the actual gains of NATSA

would likely be even greater what we report.
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analyzed datasets. NATSA-SP, which provides higher per-

formance with similar area cost to NATSA-DP, outperforms

NATSA-DP by up to 1.75×, DDR4-OoO-DP by up to 24.9×
and HBM-inOrder-DP by up to 11.1× for large time series.

Table 2: Execution time (in seconds) for single-precision and
double-precision data.
Con�g

Dataset
rand_128K rand_256K rand_512K rand_1M rand_2M

DDR4-OoO-DP 14.72 77.55 414.55 2089.05 9810.30

DDR4-OoO-SP 6.46 44.47 207.85 1106.36 5206.75

HBM-inOrder-DP 14.95 64.20 262.33 1071.03 4347.38

HBM-inOrder-SP 8.16 35.68 130.23 625.27 2466.69

NATSA-DP 2.47 10.37 42.45 171.72 690.65

NATSA-SP 1.41 5.91 24.19 97.84 393.45

We conclude that NATSA provides the highest performance

compared to modern general-purpose platforms.

6.2. Power, Energy and Area Consumption
Power and Energy Consumption. We compare the power

and energy consumption of NATSA versus other existing hard-

ware platforms in Figures 8 and 9. We use McPAT and Micron

Power Calculators to evaluate energy consumption for the

general-purpose platforms, getting the number of stalls and

bandwidth usage from ZSim-Ramulator. For NATSA, we add

Aladdin’s energy estimations to the values obtained from the

Micron Power Calculator. We also obtain energy measure-

ments from real executions on GPUs using NVVP [4] and on

CPUs using PCM [1], to compare NATSA with real platforms.

Fig. 8 shows the dynamic power consumption of each sim-

ulated or real hardware platform. We observe that NATSA

has the lowest power consumption, and most of its power is

consumed by memory.
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Figure 8: Dynamic power consumption for simulated and real
hardware platforms.

Fig. 9 shows the energy consumption of each simulated or

real platform, for the computation of a time series of 524,288

elements (rand_512K) using double-precision. To calculate the

energy consumption, we compute the power-delay product

with the measured instantaneous power consumption and

the execution time. NATSA reduces energy consumption by

27.2× (19.4× on average) over the baseline platform (DDR4-

OoO), and by 10.2× over an NDP architecture with general-

purpose cores (HBM-inOrder). NATSA consumes 1.7×, 4.1×,

and 11.0× less energy than an NVIDIA Tesla K40c GPU [76],

NVIDIA GTX 1050 GPU [3], and Intel Xeon Phi KNL [95],

respectively. We conclude that NATSA is the most energy-

e�cient evaluated platform for matrix pro�le.
Area. We provide a scaled area comparison in Fig. 10. We

observe that NATSA requires 9.6×, 7.9×, 3×, and 1.8× less

area than an Intel Xeon Phi KNL (14nm), NVIDIA Tesla K40c

(28nm), Intel Core i7 (32nm), and NVIDIA GTX 1050 (14nm).

We conclude that NATSA (at 45nm technology node) is the
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Figure 9: Energy consumption for simulated and real hard-
ware platforms.

platform that requires the least area, while using the largest

technology node (i.e., 45nm) compared to other evaluated

architectures. Using a more recent and smaller technology

node (e.g., 15nm instead of 45nm) could additionally reduce

NATSA’s energy consumption by 4× and area by 3× [83].
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Figure 10: Area comparison of di�erent hardware platforms.

6.3. NATSA Design Space Exploration
We explore the key design choices of NATSA so that we deploy

the exact number of PUs that saturate the memory bandwidth

available, while minimizing the area and power consumption

of the accelerator. We evaluate the use of HBM memory,
2

where we �nd that 48 PUs make the accelerator balanced

between memory bandwidth and compute parallelism, as 64

PUs result in a memory-bound accelerator, whereas 32 PUs a

compute-bound one. Table 3 details the design parameters of

NATSA for HBM. NATSA has 48 PUs which run at a frequency

of 1GHz, fabricated at 45nm process. Implementations of

NATSA with lower technology nodes would provide smaller

area footprint and improved energy e�ciency. Table 3 shows

the components in a PU depending on the data precision: 1)

double-precision (DP), and 2) single-precision (SP).

Table 3: NATSA design components for 48 PUs.
Parameter/Component PU-DP NATSA-DP PU-SP NATSA-SP
Mem. bandwidth (GB/s) 5 240 5 240

Peak power (W) 0.1 4.8 0.08 3.84

Area (mm2
) 1.62 77.76 1.51 72.48

FP Multipliers/Adders 16/14 768/672 64/36 3072/1728

Integer Adders 16 768 64 3072

Bitwise Operators 2 96 2 96

Registers 108 5184 267 12816

6.4. Performance of General-Purpose Cores
We evaluate the speedup over the baseline (DDR4-OoO)

and memory bandwidth usage of SCRIMP, calculated using

the ZSim-Ramulator framework for the DDR4-OoO, DDR4-

inOrder, HBM-OoO and HBM-inOrder platforms using double-

precision time series of di�erent lengths (n), in Fig. 11.

We report execution time of the baseline (DDR4-OoO) on

top of the respective performance bars in Fig. 11. Based on

2
We also explore the use of DDR4 memory, where 8 PUs are enough to

saturate the available memory bandwidth and the performance obtained is

similar to the DDR4-inOrder platform (4% di�erence).
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these results, we make three key observations. First, the DDR4-

OoO platform does not use the peak available bandwidth of

DDR4 (i.e., 38.4GB/s). We reinforce this observation with our

HBM-OoO evaluation which replaces DDR4 with higher band-

width HBM. HBM-OoO platform improves performance by

only 7%, which means that providing more bandwidth does

not signi�cantly a�ect performance. This is because both plat-

forms are compute-bound when executing SCRIMP. Second,

the 64 lightweight cores of DDR4-inOrder slightly outperform

the 8 complex cores of DDR4-OoO when n ≥ 1048576 ele-

ments (i.e., rand_1M dataset). This is because shorter time

series can �t in the L3 cache. For long time series, the higher

parallelism provided by the in-order platform enables higher

memory-level parallelism [36, 69–73] and higher memory

bandwidth demand, where DDR4 bandwidth becomes a bot-

tleneck, resulting in a memory-bound system. Third, the

HBM-inOrder platform provides up to 2.25× speedup over the

baseline (DDR4-OoO), and consumes only 17% of the HBM’s

peak bandwidth with the largest dataset evaluated. In this case,

even though performance is improved, the application is still

compute-bound and simple NDP general-purpose cores can-

not fully exploit the bandwidth provided by HBM (256GB/s)
3

for the largest dataset we evaluate, which means that large

datasets can be comfortably accommodated.

We conclude that general-purpose platforms provide less

performance than NATSA’s balanced design because they do

not e�ectively exploit the memory bandwidth of HBM.

6.5. Accuracy and Sensitivity to Window Size

Accuracy. We explore how the accuracy of the SCRIMP im-

plementation is a�ected by changing the precision of the data

representation. We use real data obtained from [98] and [107],

as discussed in Section 5.2. Fig. 12 presents the output obtained

for an electrocardiogram (ECG) and for seismology data us-

ing two precision values. We observe that events are still

detectable even when reducing the precision from double to

single precision. This observation can be exploited to improve

performance and reduce energy consumption, by operating

on smaller arithmetic units and less memory footprint.

3
Based on the memory bandwidth usage and McPAT, we estimate that a

general-purpose based architecture would need 128 OoO cores (area 688mm
2
,

TDP 1137W, 18nm) or 384 in-order cores (area 164mm
2
, TDP 126W, 18nm) to

take full advantage of the maximum bandwidth provided by HBM.
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their pro�les, calculated by NATSA using double and single
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Sensitivity to the subsequence length. We also perform

a sensitivity analysis to the subsequence length (m). We ob-

serve that, when the proportion between m and n is less than

two orders of magnitude, the performance of SCRIMP in all

platforms is signi�cantly a�ected by m. For example, when

increasing m from 1,024 to 16,384 in a time series of 131,072

elements, the execution time of SCRIMP reduces by 41%. How-

ever, when the time series length is large enough compared to

the subsequence length, performance of SCRIMP is a�ected

by a smaller amount. For instance, when increasing m from

1,024 to 16,384 in a time series of 2,097,152 elements, the exe-

cution time of SCRIMP reduces by 13%. This is because the

computation of the �rst element of each diagonal involves the

dot product calculation without any reutilization.

7. Related Work
To our knowledge, this is the �rst work that proposes a near-

data processing accelerator for time series analysis. In this

section, we brie�y discuss prior work related to time series

motif discovery and application-speci�c NDP accelerators.

Multiple techniques exist for time series motif and discord

discovery [13, 22, 25, 28, 37, 61, 66, 67, 74, 75, 77, 99, 100, 102, 106,

110]. A survey on time series motif discovery algorithms can

be found in [101]. These implementations are approximate

or exact [65] in �nding motifs and discords, which a�ects the

time complexity of the algorithm. Exact motif and discord

discovery processing of exceptionally large time series can

be very time-consuming [113]. Consequently, anytime algo-

rithms [108] are proposed to return a valid solution even if

they are interrupted, and are expected to �nd better solutions

the longer they run. Matrix pro�le [108] is the state-of-the-

art exact anytime algorithm for time series motif and discord

discovery. There are several implementations of matrix pro-
�le, including STAMP [108], STOMP [44], SCRIMP [112] and

SCAMP [113]. SCRIMP is the state-of-the-art CPU-based im-

plementation. Prior acceleration approaches to time series

analysis [44, 112] mainly focus on accelerating STOMP and

PreSCRIMP [112] on GPUs. Recently, SCAMP [113] frame-

work combines a host (either a local machine or a server in a

compute cluster) and workers that follow the directions from

the host (either other CPUs in the cluster or accelerators such

as GPUs). A SCRIMP version tuned for a many-core CPU

(Intel Xeon Phi KNL) using vectorization can be found in [27].
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Recent works explore Near Data Processing [5–7, 12, 16–

19, 23, 24, 26, 30, 31, 33, 34, 40, 40–43, 49, 52, 57, 60, 62, 68, 78, 79,

86–90, 93, 94, 103] for various applications using accelerators

or general-purpose cores. In [26], ARM cores are used as NDP

compute units to improve data analytics operators (e.g., group,

join, sort). IMPICA [43] is an NDP pointer chasing accelerator.

Tesseract [6] is a scalable NDP accelerator for parallel graph

processing. TETRIS [31] is an NDP neural network accelerator.

Lee et al. [57] propose an NDP accelerator for similarity search.

GRIM-Filter [52] is an NDP accelerator for pre-alignment �l-

tering [9–11, 104, 105] in genome analysis [8]. Boroumand et

al. [16] analyze the energy and performance impact of data

movement for several widely-used Google consumer work-

loads, providing NDP accelerators for them. CoNDA [17]

provides e�cient cache coherence support for NDP accelera-

tors. Finally, an NDP architecture [38] has been proposed for

MapReduce-style applications.

8. Conclusion
We introduce NATSA, the �rst Near-Data-Processing (NDP)

accelerator for time series analysis. NATSA 1) exploits the

memory bandwidth of high-bandwidth memory (HBM) to

analyze time series data at scale for a wide range of applica-

tions, 2) improves energy e�ciency and execution time by

using specialized low-power arithmetic units close to HBM

memory, and 3) provides a novel workload scheduling scheme

to prevent load imbalance and preserve the anytime property.

NATSA outperforms the hardware platforms we evaluate in

terms of performance, energy consumption and area require-

ments. We conclude that NATSA is an e�cient NDP acceler-

ator for time series, and hope that this work inspires future

research directions in NDP for time series analysis.
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