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Ongoing climate change calls for fast and accurate weather
and climate modeling. However, when solving large-scale
weather prediction simulations, state-of-the-art CPU and GPU
implementations su�er from limited performance and high en-
ergy consumption. These implementations are dominated by
complex irregular memory access patterns and low arithmetic
intensity that pose fundamental challenges to acceleration. To
overcome these challenges, we propose and evaluate the use of
near-memory acceleration using a recon�gurable fabric with
high-bandwidth memory (HBM). We focus on compound sten-
cils that are fundamental kernels in weather prediction models.
By using high-level synthesis techniques, we develop NERO, an
FPGA+HBM-based accelerator connected through IBM CAPI2
(Coherent Accelerator Processor Interface) to an IBM POWER9
host system. Our experimental results show that NERO out-
performs a 16-core POWER9 system by 4.2× and 8.3× when
running two di�erent compound stencil kernels. NERO reduces
the energy consumption by 22× and 29× for the same two
kernels over the POWER9 system with an energy e�ciency of
1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt. We conclude that
employing near-memory acceleration solutions for weather pre-
diction modeling is promising as a means to achieve both high
performance and high energy e�ciency.

1. Introduction
Accurate weather prediction using detailed weather mod-

els is essential to make weather-dependent decisions in a
timely manner. The Consortium for Small-Scale Modeling
(COSMO) [38] built one such weather model to meet the
high-resolution forecasting requirements of weather services.
The COSMO model is a non-hydrostatic atmospheric pre-
diction model currently being used by a dozen nations for
meteorological purposes and research applications.

The central part of the COSMO model (called dynamical
core or dycore) solves the Euler equations on a curvilinear
grid and applies implicit discretization (i.e., parameters are
dependent on each other at the same time instance [26]) in the
vertical dimension and explicit discretization (i.e., a solution is
dependent on the previous system state [26]) in the horizontal
dimension. The use of di�erent discretizations leads to three
computational patterns [96]: 1) horizontal stencils, 2) tridi-
agonal solvers in the vertical dimension, and 3) point-wise
computation. These computational kernels are compound
stencil kernels that operate on a three-dimensional grid [48].
Vertical advection (vadvc) and horizontal di�usion (hdiff) are
such compound kernels found in the dycore of the COSMO
weather prediction model. These kernels are representative

of the data access patterns and algorithmic complexity of the
entire COSMO model. They are similar to the kernels used
in other weather and climate models [60, 79, 107]. Their per-
formance is dominated by memory-bound operations with
unique irregular memory access patterns and low arithmetic
intensity that often results in <10% sustained �oating-point
performance on current CPU-based systems [99].

Figure 1 shows the roo�ine plot [104] for an IBM 16-
core POWER9 CPU (IC922).1 After optimizing the vadvc
and hdiff kernels for the POWER architecture by follow-
ing the approach in [105], they achieve 29.1 GFLOP/s and
58.5 GFLOP/s, respectively, for 64 threads. Our roo�ine anal-
ysis indicates that these kernels are constrained by the host
DRAM bandwidth. Their low arithmetic intensity limits their
performance, which is one order of magnitude smaller than
the peak performance, and results in a fundamental memory
bottleneck that standard CPU-based optimization techniques
cannot overcome.
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486.4 GFLOP/s/socket (3.8GHz x 16 cores x 8 flops/cycle)

AD9V3 FPGA (0.97 TFLOP/s, 32GBps DRAM, 1.62 TBps BRAM, 200MHz)

AD9H7 FPGA (3.6  TFLOP/s, 410GBps HBM, 7.26 TBps BRAM, 400MHz)

Attainable performance is constra-
ined by memory bandwidth, as
CPU micro-architecture features
become ineffective for a given
arithmetic intensity and access
patterns do not favor the memory
hierarchy.

Roofline for POWER9 (16-core, SMT4) & [AD9V3,AD9H7] FPGAs

hdiff (P9 64 threads)

hdiff (P9 1 thread)

vadvc (P9 64 threads)

vadvc (P9 1 thread)

Arithmetic Intensity for hdiff

Arithmetic Intensity for vadvc

Figure 1: Roo�ine [104] for POWER9 (1-socket) showing ver-
tical advection (vadvc) and horizontal di�usion (hdiff) ker-
nels for single-thread and 64-thread implementations. The
plot shows also the roo�ines of the FPGAs used in our work.

In this work, our goal is to overcome the memory bot-
tleneck of weather prediction kernels by exploiting near-
memory computation capability on FPGA accelerators with
high-bandwidth memory (HBM) [5, 65, 66] that are attached

1IBM and POWER9 are registered trademarks or common law marks
of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM
or other companies.
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to the host CPU. Figure 1 shows the roo�ine models of the
two FPGA cards (AD9V3 [2] and AD9H7 [1]) used in this
work. FPGAs can handle irregular memory access patterns
e�ciently and o�er signi�cantly higher memory bandwidth
than the host CPU with their on-chip URAMs (UltraRAM),
BRAMs (block RAM), and o�-chip HBM (high-bandwidth
memory for the AD9H7 card). However, taking full advan-
tage of FPGAs for accelerating a workload is not a trivial
task. To compensate for the higher clock frequency of the
baseline CPUs, our FPGAs must exploit at least one order
of magnitude more parallelism in a target workload. This
is challenging, as it requires su�cient FPGA programming
skills to map the workload and optimize the design for the
FPGA microarchitecture.

Modern FPGA boards deploy new cache-coherent inter-
connects, such as IBM CAPI [93], Cache Coherent Intercon-
nect for Accelerators (CCIX) [24], and Compute Express Link
(CXL) [88], which allow tight integration of FPGAs with CPUs
at high bidirectional bandwidth (on the order of tens of GB/s).
However, memory-bound applications on FPGAs are limited
by the relatively low DDR4 bandwidth (72 GB/s for four in-
dependent dual-rank DIMM interfaces [11]). To overcome
this limitation, FPGA vendors have started o�ering devices
equipped with HBM [6,7,12,66] with a theoretical peak band-
width of 410 GB/s. HBM-equipped FPGAs have the potential
to reduce the memory bandwidth bottleneck, but a study of
their advantages for real-world memory-bound applications
is still missing.

We aim to answer the following research question:
Can FPGA-based accelerators with HBM mitigate the
performance bottleneck of memory-bound compound
weather prediction kernels in an energy e�cient way?
As an answer to this question, we present NERO, a near-HBM
accelerator for weather prediction. We design and imple-
ment NERO on an FPGA with HBM to optimize two kernels
(vertical advection and horizontal di�usion), which notably
represent the spectrum of computational diversity found in
the COSMO weather prediction application. We co-design a
hardware-software framework and provide an optimized API
to interface e�ciently with the rest of the COSMO model,
which runs on the CPU. Our FPGA-based solution for hdiff
and vadvc leads to performance improvements of 4.2× and
8.3× and energy reductions of 22× and 29×, respectively,
with respect to optimized CPU implementations [105].

The major contributions of this paper are as follows:
• We perform a detailed roo�ine analysis to show that rep-

resentative weather prediction kernels are constrained by
memory bandwidth on state-of-the-art CPU systems.

• We propose NERO, the �rst near-HBM FPGA-based accel-
erator for representative kernels from a real-world weather
prediction application.

• We optimize NERO with a data-centric caching scheme
with precision-optimized tiling for a heterogeneous mem-
ory hierarchy (consisting of URAM, BRAM, and HBM).

• We evaluate the performance and energy consumption of
our accelerator and perform a scalability analysis. We show
that an FPGA+HBM-based design outperforms a complete
16-core POWER9 system (running 64 threads) by 4.2× for
the vertical advection (vadvc) and 8.3× for the horizontal
di�usion (hdiff) kernels with energy reductions of 22×
and 29×, respectively. Our design provides an energy e�-
ciency of 1.5 GLOPS/Watt and 17.3 GFLOPS/Watt for vadvc
and hdiff kernels, respectively.

2. Background
In this section, we �rst provide an overview of the vadvc

and hdiff compound stencils, which represent a large frac-
tion of the overall computational load of the COSMO weather
prediction model. Second, we introduce the CAPI SNAP
(Storage, Network, and Analytics Programming) framework2

that we use to connect our NERO accelerator to an IBM
POWER9 system.
2.1. Representative COSMO Stencils

A stencil operation updates values in a structured multidi-
mensional grid based on the values of a �xed local neighbor-
hood of grid points. Vertical advection (vadvc) and horizon-
tal di�usion (hdiff) from the COSMO model are two such
compound stencil kernels, which represent the typical code
patterns found in the dycore of COSMO. Algorithm 1 shows
the pseudo-code for vadvc and hdiff kernels. The horizontal
di�usion kernel iterates over a 3D grid performing Laplacian
and �ux to calculate di�erent grid points. Vertical advection
has a higher degree of complexity since it uses the Thomas
algorithm [97] to solve a tri-diagonal matrix of the velocity
�eld along the vertical axis. Unlike the conventional stencil
kernels, vertical advection has dependencies in the vertical
direction, which leads to limited available parallelism.

Such compound kernels are dominated by memory-bound
operations with complex memory access patterns and low
arithmetic intensity. This poses a fundamental challenge to
acceleration. CPU implementations of these kernels [105]
su�er from limited data locality and ine�cient memory usage,
as our roo�ine analysis in Figure 1 exposes.
2.2. CAPI SNAP Framework

The OpenPOWER Foundation Accelerator Workgroup [8]
created the CAPI SNAP framework, an open-source envi-
ronment for FPGA programming productivity. CAPI SNAP
provides two key bene�ts [103]: (i) it enables an improved
developer productivity for FPGA acceleration and eases the
use of CAPI’s cache-coherence mechanism, and (ii) it places
FPGA-accelerated compute engines, also known as FPGA ac-
tions, closer to relevant data to achieve better performance.
SNAP provides a simple API to invoke an accelerated ac-
tion, and also provides programming methods to instantiate
customized accelerated actions on the FPGA side. These ac-
celerated actions can be speci�ed in C/C++ code that is then
compiled to the FPGA target using the Xilinx Vivado High-
Level Synthesis (HLS) tool [10].

2https://github.com/open-power/snap
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Algorithm 1: Pseudo-code for vertical advection and
horizontal di�usion kernels used by the COSMO [38]
weather prediction model.
1 Function verticalAdvection(�oat* ccol, �oat* dcol, �oat* wcon, �oat*

ustage, �oat* upos, �oat* utens, �oat* utensstage)
2 for c ← 2 to column – 2 do
3 for r ← 2 to row-2 do
4 Function forwardSweep(�oat* ccol, �oat* dcol, �oat* wcon,

�oat* ustage, �oat* upos, �oat* utens, �oat* utensstage)
5 for d ← 1 to depth do

/* forward sweep calculation */
6 end
7 end
8 Function backwardSweep(�oat* ccol, �oat* dcol, �oat*

wcon, �oat* ustage, �oat* upos, �oat* utens, �oat*
utensstage)

9 for d ← depth – 1 to 1 do
/* backward sweep calculation */

10 end
11 end
12 end
13 end
14 end
15 Function horizontalDiffusion(�oat* src, �oat* dst)
16 for d ← 1 to depth do
17 for c ← 2 to column – 2 do
18 for r ← 2 to row-2 do

/* Laplacian calculation */
19 lapCR = laplaceCalculate(c, r) /* row-laplacian */
20 lapCRm = laplaceCalculate(c, r – 1)
21 lapCRp = laplaceCalculate(c, r + 1)

/* column-laplacian */
22 lapCmR = laplaceCalculate(c – 1, r)
23 lapCpR = laplaceCalculate(c + 1, r) /* column-flux

calculation */
24 �uxC = lapCpR – lapCR
25 �uxCm = lapCR – lapCmR

/* row-flux calculation */
26 �uxR = lapCRp – lapCR
27 �uxRm = lapCR – lapCmR

/* output calculation */
28 dest[d][c][r] = src[d][c][r]–
29 c1 * (�uxCR – �uxCmR) + (�uxCR – �uxCRm)
30 end
31 end
32 end
33 end

3. Design Methodology
3.1. NERO, A Near HBM Weather Prediction Ac-

celerator
The low arithmetic intensity of real-world weather pre-

diction kernels limits the attainable performance on current
multi-core systems. This sub-optimal performance is due
to the kernels’ complex memory access patterns and their
ine�ciency in exploiting a rigid cache hierarchy, as quan-
ti�ed in the roo�ine plot in Figure 1. These kernels can-
not fully utilize the available memory bandwidth, which
leads to high data movement overheads in terms of latency
and energy consumption. We address these ine�ciencies
by developing an architecture that combines fewer o�-chip
data accesses with higher throughput for the loaded data.
To this end, our accelerator design takes a data-centric ap-
proach [13, 14, 27, 43, 52, 53, 63, 75, 89, 91] that exploits near
high-bandwidth memory acceleration.

Figure 2 shows a high-level overview of our integrated
system. An HBM-based FPGA is connected to a server system
based on an IBM POWER9 processor using the Coherent
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Figure 2: Heterogeneous platformwith an IBMPOWER9 sys-
tem connected to an HBM-based FPGA board via CAPI2.

Accelerator Processor Interface version 2 (CAPI2). The FPGA
consists of two HBM stacks3, each with 16 pseudo-memory
channels [3]. A channel is exposed to the FPGA as a 256-bit
wide port, and in total, the FPGA has 32 such ports. The
HBM IP provides 8 memory controllers (per stack) to handle
the data transfer to and from the HBM memory ports. Our
design consists of an accelerator functional unit (AFU) that
interacts with the host system through the power service
layer (PSL), which is the CAPI endpoint on the FPGA. An
AFU comprises of multiple processing elements (PEs) that
perform compound stencil computation. Figure 3a shows
the architecture overview of NERO. As vertical advection is
the most complex kernel, we depict our architecture design
�ow for vertical advection. We use a similar design for the
horizontal di�usion kernel.

The weather data, based on the atmospheric model reso-
lution grid, is stored in the DRAM of the host system ( 1 in
Figure 3a). We employ the double bu�ering technique be-
tween the CPU and the FPGA to hide the PCIe (Peripheral
Component Interconnect Express [72]) transfer latency. By
con�guring a bu�er of 64 cache lines, between the AXI4 inter-
face of CAPI2/PSL and the AFU, we can reach the theoretical
peak bandwidth of CAPI2/PCIe (i.e., 16 GB/s). We create a
specialized memory hierarchy from the heterogeneous FPGA
memories (i.e., URAM, BRAM, and HBM). By using a greedy
algorithm, we determine the best-suited hierarchy for our
kernel. The memory controller (shown in Figure 2) handles
the data placement to the appropriate memory type based on
programmer’s directives.

On the FPGA, following the initial bu�ering ( 2 ), the trans-
ferred grid data is mapped onto the HBM memory ( 3 ). As the
FPGA has limited resources we propose a 3D window-based
grid transfer from the host DRAM to the FPGA, facilitating
a smaller, less power-hungry deployment. The window size
represents the portion of the grid a processing element (PE
in Figure 2) would process. Most FPGA developers manually
optimize for the right window size. However, manual opti-
mization is tedious because of the huge design space, and it
requires expert guidance. Further, selecting an inappropriate
window size leads to sub-optimal results. Our experiments (in
Section 4.2) show that: (1) �nding the best window size is crit-
ical in terms of the area vs. performance trade-o�, and (2) the

3In this work, we enable only a single stack based on our resource and
power consumption analysis for the vadvc kernel.
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Figure 3: (a) Architecture overview of NERO with data �ow sequence from the host DRAM to the on-board FPGAmemory via
POWER9 cachelines. We depict a single processing element (PE) fetching data from a dedicated HBM port. The number of
HBM ports scales linearly with the number of PEs. Heterogeneous partitioning of on-chip memory blocks reduces read and
write latencies across the FPGA memory hierarchy. (b) Execution timeline with data �ow sequence from the host DRAM to
the onboard FPGA memory.

best window size depends on the datatype precision. Hence,
instead of pruning the design space manually, we formu-
late the search for the best window size as a multi-objective
auto-tuning problem taking into account the datatype preci-
sion. We make use of OpenTuner [20], which uses machine-
learning techniques to guide the design-space exploration.

Our design consists of multiple PEs (shown in Figure 2) that
exploit data-level parallelism in COSMO weather prediction
kernels. A dedicated HBM memory port is assigned to a
speci�c PE; therefore, we enable as many HBM ports as the
number of PEs. This allows us to use the high HBM bandwidth
e�ectively because each PE fetches from an independent port.
In our design, we use a switch, which provides the capability
to bypass the HBM, when the grid size is small, and map the
data directly onto the FPGA’s URAM and BRAM. The HBM
port provides 256-bit data, which is half the size of the CAPI2
bitwidth (512-bit). Therefore, to match the CAPI2 bandwidth,
we introduce a stream converter logic ( 4 ) that converts a
256-bit HBM stream to a 512-bit stream (CAPI compatible)
or vice versa. From HBM, a PE reads a single stream of data
that consists of all the �elds4 that are needed for a speci�c
COSMO kernel computation. The PEs use a �elds stream
splitter logic ( 5 ) that splits a single HBM stream to multiple
streams (512-bit each), one for each �eld.

To optimize a PE, we apply various optimization strategies.
First, we exploit the inherent parallelism in a given algorithm
through hardware pipelining. Second, we partition on-chip
memory to avoid the stalling of our pipelined design, since the
on-chip BRAM/URAM has only two read/write ports. Third,
all the tasks execute in a data�ow manner that enables task-
level parallelism. vadvc is more computationally complex
than hdiff because it involves forward and backward sweeps
with dependencies in the z-dimension. While hdiff performs
only Laplacian and �ux calculations with dependencies in the

4Fields represent atmospheric components like wind, pressure, velocity,
etc. that are required for weather calculation.

x- and y-dimensions. Therefore, we demonstrate our design
�ow by means of the vadvc kernel (Figure 3a). Note that we
show only a single port-based PE operation. However, for
multiple PEs, we enable multiple HBM ports.

We make use of memory reshaping techniques to con-
�gure our memory space with multiple parallel BRAMs or
URAMs [37]. We form an intermediate memory hierarchy
by decomposing (or slicing) 3D window data into a 2D grid.
This allows us to bridge the latency gap between the HBM
memory and our accelerator. Moreover, it allows us to exploit
the available FPGA resources e�ciently. Unlike traditionally-
�xed CPU memory hierarchies, which perform poorly with
irregular access patterns and su�er from cache pollution ef-
fects, application-speci�c memory hierarchies are shown to
improve energy and latency by tailoring the cache levels and
cache sizes to an application’s memory access patterns [98].

The main computation pipeline ( 7 ) consists of a forward
and a backward sweep logic. The forward sweep results are
stored in an intermediate bu�er to allow for backward sweep
calculation. Upon completion of the backward sweep, results
are placed in an output bu�er that is followed by a degridding
logic ( 6 ). The degridding logic converts the calculated results
to a 512-bit wide output stream ( 8 ). As there is only a single
output stream (both in vadvc and hdiff), we do not need
extra logic to merge the streams. The 512-bit wide stream goes
through an HBM stream converter logic ( 4 ) that converts
the stream bitwidth to HBM port size (256-bit).

Figure 3b shows the execution timeline from our host sys-
tem to the FPGA board for a single PE. The host o�oads the
processing to an FPGA and transfers the required data via
DMA (direct memory access) over the CAPI2 interface. The
SNAP framework allows for parallel execution of the host
and our FPGA PEs while exchanging control signals over the
AXI lite interface [4]. On task completion, the AFU notifies
the host system via the AXI lite interface and transfers back
the results via DMA.
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3.2. NERO Application Framework
Figure 4 shows the NERO application framework to sup-

port our architecture. A software-de�ned COSMO API ( 1 )
handles o�oading jobs to NERO with an interrupt-based
queuing mechanism. This allows for minimal CPU usage
(and, hence, power usage) during FPGA operation. NERO em-
ploys an array of processing elements to compute COSMO
kernels, such as vertical advection or horizontal di�usion.
Additionally, we pipeline our PEs to exploit the available
spatial parallelism. By accessing the host memory through
the CAPI2 cache-coherent link, NERO acts as a peer to the
CPU. This is enabled through the Power-Service Layer (PSL)
( 2 ). SNAP ( 3 ) allows for seamless integration of the COSMO
API with our CAPI-based accelerator. The job manager ( 4 )
dispatches jobs to streams, which are managed in the stream
scheduler ( 5 ). The execution of a job is done by streams that
determine which data is to be read from the host memory
and sent to the PE array through DMA transfers ( 6 ). The
pool of heterogeneous on-chip memory is used to store the
input data from the main memory and the intermediate data
generated by each PE.

CAPI2 POWER Service Layer (PSL)
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Stream 
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AXI DMA
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Figure 4: NERO application framework. We co-design our
software and hardware using the SNAP framework. COSMO
API allows the host to o�load kernels to our FPGA platform.

4. Results
4.1. System Integration

We implemented our design on an Alpha-Data ADM-
PCIE-9H7 card [1] featuring the Xilinx Virtex Ultrascale+
XCVU37P-FSVH2892-2-e [9] and 8GiB HBM2 (i.e., two stacks
of 4GiB each) [5] with an IBM POWER9 as the host system.
The POWER9 socket has 16 cores, each of which supports
four-thread simultaneous multi-threading. We compare our
HBM-based design to a conventional DDR4 DRAM [2] based
design. We perform the experiments for the DDR4-based
design on an Alpha-Data ADM-PCIE-9V3 card featuring the
Xilinx Virtex Ultrascale+ XCVU3P-FFVC1517-2-i [9].

Table 1 provides our system parameters. We have co-
designed our hardware and software interface around the
SNAP framework while using the HLS design �ow.

Table 1: System parameters and hardware con�guration for
the CPU and the FPGA board.

Host CPU 16-core IBM POWER9 AC922
@3.2 GHz, 4-way SMT

Cache-Hierarchy 32 KiB L1-I/D, 256 KiB L2, 10 MiB L3
System Memory 32GiB RDIMM DDR4 2666 MHz

HBM-based
FPGA Board

Alpha Data ADM-PCIE-9H7
Xilinx Virtex Ultrascale+ XCVU37P-2
8GiB (HBM2) with PCIe Gen4 x8

DDR4-based
FPGA Board

Alpha Data ADM-PCIE-9V3
Xilinx Virtex Ultrascale+ XCVU3P-2
8GiB (DDR4) with PCIe Gen4 x8

4.2. Evaluation
We run our experiments using a 256 × 256 × 64-point do-

main similar to the grid domain used by the COSMO weather
prediction model. We employ an auto-tuning technique to
determine a Pareto-optimal solution (in terms of performance
and resource utilization) for our 3D window dimensions. The
auto-tuning with OpenTuner exhaustively searches for every
tile size in the x- and y-dimensions for vadvc.5 For hdiff,
we consider sizes in all three dimensions. We de�ne our
auto-tuning as a multi-objective optimization with the goal
of maximizing performance with minimal resource utiliza-
tion. Section 3 provides further details on our design. Figure 5
shows hand-tuned and auto-tuned performance and FPGA
resource utilization results for vadvc, as a function of the
chosen tile size. From the �gure, we draw two observations.
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Figure 5: Performance and FPGA resource utilization of sin-
gle vadvc PE, as a function of tile-size, using hand-tuning
and auto-tuning for (a) single-precision (32-bit) and (b) half-
precision (16-bit). We highlight the Pareto-optimal solution
that we use for our vadvc accelerator (with a red circle). Note
that the Pareto-optimal solution changes with precision.

First, by using the auto-tuning approach and our careful
FPGA microarchitecture design, we can get Pareto-optimal
results with a tile size of 64 × 2 × 64 for single-precision
vadvc, which gives us a peak performance of 8.49 GFLOP/s.
For half-precision, we use a tile size of 32×16×64 to achieve
a peak performance of 16.5 GFLOP/s. We employ a similar
strategy for hdiff to attain a single-precision performance of
30.3 GFLOP/s with a tile size of 16×64×8 and a half-precision
performance of 77.8 GFLOP/s with a tile size of 64 × 8 × 64.

Second, in FPGA acceleration, designers usually rely on
expert judgement to �nd the appropriate tile-size and of-
ten adapt the design to use homogeneous tile sizes. How-

5vadvc has dependencies in the z-dimension; therefore, it cannot be
parallelized in the z-dimension.

5



ever, as shown in Figure 5, such hand-tuned implementations
lead to sub-optimal results in terms of either resource utiliza-
tion or performance.

We conclude that the Pareto-optimal tile size depends on
the data precision used: a good tile-size for single-precision
might lead to poor results when used with half-precision.

Figure 6 shows single-precision performance results for
the (a) vertical advection and (b) horizontal di�usion kernels.
For both kernels, we implement our design on an HBM- and
a DDR4-based FPGA board. To compare the performance
results, we scale the number of PEs and analyze the change in
execution time. For the DDR4-based design, we can accommo-
date only 4 PEs on the 9V3 board, while for the HBM-based
design, we can �t 14 PEs before exhausting the on-board
resources. We draw four observations from the �gure.
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Figure 6: Single-precision performance for (a) vadvc and (b)
hdiff, as a function of accelerator PE count on the HBM- and
DDR4-based FPGA boards. We also show the single socket
(64 threads) performance of an IBM POWER9 host system
for both vadvc and hdiff.

First, our full-blown HBM-based vadvc and hdiff imple-
mentations provide 120.7 GFLOP/s and 485.4 GFLOP/s perfor-
mance, which are 4.2× and 8.3× higher than the performance
of a complete POWER9 socket. For half-precision, if we use
the same amount of PEs as in single precision, our accel-
erator reaches a performance of 247.9 GFLOP/s for vadvc
(2.1× the single-precision performance) and 1.2 TFLOP/s for
hdiff (2.5× the single-precision performance). Our DDR4-
based design achieves 34.1 GFLOP/s and 145.8 GFLOP/s for
vadvc and hdiff, respectively, which are 1.2× and 2.5× the
performance on the POWER9 CPU.

Second, for a single PE, which fetches data from a single
memory channel, the DDR4-based design provides higher
performance than the HBM-based design. This is because the
DDR4-based FPGA has a larger bus width (512-bit) than an
HBM port (256-bit). This leads to a lower transfer rate for
an HBM port (0.8-2.1 GT/s6) than for a DDR4 port (2.1-4.3
GT/s). One way to match the DDR4 bus width would be
to have a single PE fetch data from multiple HBM ports in
parallel. However, using more ports leads to higher power
consumption (∼1 Watt per HBM port).

Third, as we increase the number of PEs, we observe a
linear reduction in the execution time of the HBM-based
design. This is because we can evenly divide the computation
between multiple PEs, each of which fetches data from a
separate HBM port.

6Gigatransfers per second.

Fourth, in the DDR4-based design, the use of only a single
channel to feed multiple PEs leads to a congestion issue that
causes a non-linear run-time reduction. As we increase the
number of accelerator PEs, we observe that the PEs compete
for a single memory channel, which causes frequent stalls.
This phenomenon leads to worse performance scaling char-
acteristics for the DDR4-based design as compared to the
HBM-based design.
4.3. Energy Analysis

We compare the energy consumption of our accelera-
tor to a 16-core POWER9 host system. For the POWER9
system, we use the AMESTER7 tool to measure the active
power8 consumption. We measure 99.2 Watts for vadvc, and
97.9 Watts for hdiff by monitoring built power sensors in
the POWER9 system.

By executing these kernels on an HBM-based board, we
reduce the energy consumption by 22× for vadvc and 29×
for hdiff compared to the 16-core POWER9 system. Figure 7
shows the energy e�ciency (GFLOPS per Watt) for vadvc
and hdiff on the HBM- and DDR4-based designs. We make
three major observations from the �gure.
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Figure 7: Energy e�ciency for (a) vadvc and (b) hdiff on
HBM- and DDR4-based FPGA boards. We also show the sin-
gle socket (64 threads) energy e�ciency of an IBM POWER9
host system for both vadvc and hdiff.

First, with our full-blown HBM-based designs (i.e., 14 PEs
for vadvc and 16 PEs for hdiff), we achieve energy e�ciency
values of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt for vadvc
and hdiff, respectively.

Second, the DDR4-based design is more energy e�cient
than the HBM-based design when the number of PEs is small.
This observation is inline with our discussion about perfor-
mance with small PE counts in Section 4.2. However, as we
increase the number of PEs, the HBM-based design provides
better energy e�ciency for memory-bound kernels. This is
because more data can be fetched and processed in parallel
via multiple ports.

Third, kernels like vadvc, with intricate memory access
patterns, are not able to reach the peak computational power
of FPGAs. The large amount of control �ow in vadvc leads to
large resource consumption. Therefore, when increasing the
PE count, we observe a high increase in power consumption
with low energy e�ciency.

7https://github.com/open-power/amester
8Active power denotes the di�erence between the total power of a

complete socket (including CPU, memory, fans, I/O, etc.) when an application
is running compared to when it is idle.
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We conclude that enabling many HBM ports might not
always be bene�cial in terms of energy consumption because
each HBM port consumes ∼1 Watt of power consumption.
However, data-parallel kernels like hdiff can achieve much
higher performance in an energy e�cient manner with more
PEs and HBM ports.
4.4. FPGA Resource Utilization

Table 2 shows the resource utilization of vadvc and hdiff
on the AD9H7 board. We draw two observations. First, there
is a high BRAM consumption compared to other FPGA re-
sources. This is because we implement input, �eld, and output
signals as hls::streams. In high-level synthesis, by default,
streams are implemented as FIFOs that make use of BRAM.
Second, vadvc has a much larger resource consumption than
hdiff because vadvc has higher computational complexity
and requires a larger number of �elds to perform the com-
pound stencil calculation. Note that for hdiff, we can accom-
modate more PEs, but in this work, we make use of only a
single HBM stack. Therefore, we use 16 PEs because a single
HBM stack o�ers 16 memory ports.

Table 2: FPGA resource utilization in our highest-
performing HBM-based designs for vadvc and hdiff.

Algorithm BRAM DSP FF LUT URAM
vadvc 81% 39% 37% 55% 53%
hdiff 58% 4% 6% 11% 8%

5. Related Work
To our knowledge, this is the �rst work to evaluate the ben-

e�ts of using FPGAs equipped with high-bandwidth memory
(HBM) to accelerate stencil computation. We exploit near-
memory capabilities of such FPGAs to accelerate important
weather prediction kernels.

Modern workloads exhibit limited locality and operate on
large amounts of data, which causes frequent data movement
between the memory subsystem and the processing units [27,
43, 75, 76]. This frequent data movement has a severe impact
on overall system performance and energy e�ciency. A way
to alleviate this data movement bottleneck [27, 43, 75, 76, 89]
is near-memory computing (NMC), which consists of placing
processing units closer to memory. NMC is enabled by new
memory technologies, such as 3D-stacked memories [5, 62,
65, 66, 81], and also by cache-coherent interconnects [24, 88,
93], which allow close integration of processing units and
memory units. Depending on the applications and systems of
interest (e.g., [13, 14, 15, 22, 23, 27, 29, 31, 40, 42, 49, 50, 53, 58, 61,
68, 69, 71, 74, 77, 87]), prior works propose di�erent types of
near-memory processing units, such as general-purpose CPU
cores [13, 16, 27, 28, 29, 39, 64, 69, 78, 83, 86], GPU cores [44, 52,
80, 106], recon�gurable units [41, 55, 57, 90], or �xed-function
units [14, 47, 49, 50, 53, 63, 70, 77].

FPGA accelerators are promising to enhance overall system
performance with low power consumption. Past works [17,
18, 19, 30, 36, 45, 54, 56, 57, 59, 67] show that FPGAs can be em-
ployed e�ectively for a wide range of applications. The recent

addition of HBM to FPGAs presents an opportunity to exploit
high memory bandwidth with the low-power FPGA fabric.
The potential of high-bandwidth memory [5, 66] has been
explored in many-core processors [44,82] and GPUs [44,108].
A recent work [102] shows the potential of HBM for FPGAs
with a memory benchmarking tool. NERO is the �rst work
to accelerate a real-world HPC weather prediction applica-
tion using the FPGA+HBM fabric. Compared to a previous
work [90] that optimizes only the horizontal di�usion kernel
on an FPGA with DDR4 memory, our analysis reveals that the
vertical advection kernel has a much lower compute intensity
with little to no regularity. Therefore, our work accelerates
both kernels that together represent the algorithmic diversity
of the entire COSMO weather prediction model. Moreover,
compared to [90], NERO improves performance by 1.2× on
a DDR4-based board and 37× on an HBM-based board for
horizontal di�usion by using a data�ow implementation with
auto-tuning.

Enabling higher performance for stencil computations has
been a subject of optimizations across the whole computing
stack [21, 32, 33, 34, 35, 46, 48, 51, 73, 85, 92, 95, 101]. Szus-
tak et al. accelerate the MPDATA advection scheme on
multi-core CPU [94] and computational �uid dynamics ker-
nels on FPGA [84]. Bianco et al. [25] optimize the COSMO
weather prediction model for GPUs while Thaler et al. [96]
port COSMO to a many-core system. Wahib et al. [100] de-
velop an analytical performance model for choosing an opti-
mal GPU-based execution strategy for various scienti�c appli-
cations, including COSMO. Gysi et al. [48] provide guidelines
for optimizing stencil kernels for CPU–GPU systems.

6. Conclusion
We introduce NERO, the �rst design and implementation

on a recon�gurable fabric with high-bandwidth memory
(HBM) to accelerate representative weather prediction ker-
nels, i.e., vertical advection (vadvc) and horizontal di�usion
(hdiff), from a real-world weather prediction application.
These kernels are compound stencils that are found in vari-
ous weather prediction applications, including the COSMO
model. We show that compound kernels do not perform
well on conventional architectures due to their complex data
access patterns and low data reusability, which make them
memory-bounded. Therefore, they greatly bene�t from our
near-memory computing solution that takes advantage of the
high data transfer bandwidth of HBM.

NERO’s implementations of vadvc and hdiff outper-
form the optimized software implementations on a 16-core
POWER9 with 4-way multithreading by 4.2× and 8.3×, with
22× and 29× less energy consumption, respectively. We
conclude that hardware acceleration on an FPGA+HBM fab-
ric is a promising solution for compound stencils present
in weather prediction applications. We hope that our re-
con�gurable near-memory accelerator inspires developers
of di�erent high-performance computing applications that
su�er from the memory bottleneck.
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