
Reducing Solid State Drive Read Latency by Optimizing Read-Retry
Extended Abstract

Jisung Park∗ Myungsuk Kim† Myoungjun Chun† Lois Orosa∗ Jihong Kim† Onur Mutlu∗
∗ETH Zürich †Seoul National University

1. Motivation
This work tackles the performance degradation of modern
NAND flash-based SSDs due to a large number of read-retry
operations essential to ensuring the reliability of stored data.
While 3D NAND technology and multi-level cell (MLC) tech-
niques enable continuous increase of storage density, they
also negatively affect the reliability of modern NAND flash
chips. NAND flash memory stores data as the threshold volt-
age (VTH) of each flash cell, which depends on the amount of
charge in the cell. New cell designs and organizations in 3D
NAND flash memory cause a flash cell to more easily leak
its charge [3, 4, 20, 21]. In addition, MLC technology sig-
nificantly reduces the margin between different VTH levels to
store multiple bits in a single cell. Consequently, the VTH level
of a 3D NAND flash cell with advanced MLC techniques (e.g.,
triple-level cell (TLC) [16] or quad-level cell (QLC) [15, 17])
can quickly shift beyond the read-reference voltage VREF after
programming, which results in an error when reading the cell.

To provide reliability guarantees for stored data, a mod-
ern SSD commonly adopts two main approaches. First, a
modern SSD employs a strong error-correcting code (ECC)
that can detect and correct several tens of raw bit errors
(e.g., 72 bits per 1-KiB codeword [24]). Second, when
ECC fails to correct all bit errors, the SSD controller per-
forms a read-retry operation [6] that reads the erroneous page
again with slightly-adjusted VREF values. Since bit errors
occur due to shift of the VTH levels of flash cells beyond
the VREF values, sensing the cells with appropriately-shifted
VREF values can greatly reduce the number of raw bit er-
rors [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 19, 20, 21, 25].

Even though read-retry is essential to ensuring the reliability
of modern NAND flash memory, it comes at the cost of signif-
icant performance degradation. A read-retry operation repeats
a retry step that reads the target page while adjusting VREF,
until it finds a VREF value that allows the page’s raw bit-error
rate (RBER) to be lower than the ECC correction capability.
Recent work [25] shows that a modern SSD with long reten-
tion ages (i.e., how long data is stored) and high program/erase
(P/E) cycles (i.e., how many program/erase operations are per-
formed) suffers from a large number of read-retry operations,
which in turn increases the read latency linearly with the num-
ber of retry steps. Our experimental characterization using
160 real 3D TLC NAND flash chips, in this work, shows that a
read frequently incurs multiple retry steps even under modest
operating conditions (e.g., on average 4.5 retry steps under
a 3-month data retention age at zero P/E cycles, i.e., at the
beginning of SSD lifetime).

Considering that (1) read-retry operations would occur even
more frequently in newer NAND flash memory, and (2) many
key applications in modern computing systems (e.g., key-value

stores and graph analytics) require high read performance on
storage devices, it is important to minimize the performance
overhead of read-retry operations.

2. Limitations of the State of the Art
To mitigate the performance overhead of read-retry operations,
prior works [9, 10, 19, 21, 25] propose to keep track of pre-
optimized VREF values for each page to use them for future
read requests. For example, Shim et al. [25] propose to read
a page using VREF values that have been recently used for a
read-retry operation on other pages exhibiting similar error
characteristics with the page to read. By starting a read (and
retry) operation with the VREF values close to the optimal read-
reference voltage (VOPT) values, their proposal significantly
reduces the number of retry steps in modern NAND flash-
based SSD.

Although prior techniques are effective at reducing the num-
ber of retry steps on an erroneous page, read-retry is a fun-
damental problem hard to completely avoid in modern SSDs.
For example, the state-of-the-art technique described above
can reduce about 70% of retry steps, but every read incurs at
least three retry steps in an aged SSD [25]. This is because,
in modern NAND flash memory, the VTH levels of flash cells
change quickly and significantly over time, which makes it
extremely difficult to identify the exact VREF values that can
avoid read-retry before reading the target page.

3. Key Insights
We identify new opportunities to reduce the read-retry latency
by exploiting two advanced features in modern SSDs: (1)
the CACHE READ command [18, 22, 23] and (2) strong ECC
engine. First, we find that it is possible to reduce the total exe-
cution time of a read-retry operation using the CACHE READ
command that allows a NAND flash chip to perform consec-
utive reads in a pipelined manner. Since each retry step is
effectively the same as a regular page read, the CACHE READ
also enables concurrent execution of consecutive retry steps.

Second, we find that a large ECC-capability margin exists
in the final retry step. This may sound contradictory as a
read-retry occurs only when the page’s RBER exceeds the
ECC capability, i.e., when there is no ECC-capability margin.
However, when a read-retry operation succeeds, the page is
eventually read without any uncorrectable error, which means
that there always exists a positive ECC-capability margin in
the final retry step. We hypothesize that the ECC-capability
margin is large due to two reasons. First, a modern SSD uses
a strong ECC that can correct several tens of raw bit errors
in a codeword. Second, in the final retry step, the page can
be read by using near-optimal VREF values that drastically
decrease the page’s RBER. If we can leverage the large ECC-



capability margin to reduce the page-sensing latency tR, we
can optimize the latency of every retry step. Doing so can
allow not only the final retry step to quickly read the page
without uncorrectable errors but also the earlier retry steps
(which would fail anyway with the default tR) to be finished
more quickly. To validate our hypothesis, we characterize
(1) the ECC-capability margin in each retry step and (2) the
impact of reducing tR on the page’s RBER, using 160 real
3D TLC NAND flash chips. The results show that we can
safely reduce tR of each retry step by 25% even under the
worst operating conditions prescribed by manufacturers (e.g.,
a 1-year data retention age [13] at 1.5K P/E cycles [24]).

The optimization opportunities that we identify enable new
techniques that reduce the latency of each retry step without
increasing the number of retry steps. Such techniques can
effectively complement existing techniques [9, 10, 19, 21, 25]
that aim to reduce the number of retry steps on an erroneous
page.

4. Main Artifacts

We develop two new read-retry mechanisms that effectively
reduce the read-retry latency. First, we propose Pipelined
Read Retry (PR2) that performs consecutive retry steps in a
pipelined manner using the CACHE READ command. Unlike
the regular read-retry mechanism that starts a retry step after
finishing the previous step, PR2 performs page sensing of a
retry step during data transfer of the previous step, which
removes data transfer and ECC decoding from the critical path
of a read-retry operation, reducing the latency of a retry step
by 28.5%.

Second, we introduce Adaptive Read Retry (AR2) that per-
forms each retry step with reduced page-sensing latency (tR),
leading to a further 25% latency reduction even under the
worst operating conditions. Since reducing tR inevitably in-
creases the read page’s RBER, an excessive tR reduction can
potentially cause the final retry step to fail to read the page
without uncorrectable errors. This, in turn, introduces one or
more additional retry steps, which could increase the overall
read latency. To avoid increasing the number of retry steps,
AR2 uses the best tR value for a certain operating condition
that we find via extensive and rigorous characterization of 160
real 3D NAND flash chips.

Our two techniques require only small modifications to
the SSD controller or firmware but no change to underlying
NAND flash chips. This makes our techniques easy to inte-
grate into an SSD along with existing read-retry mitigation
techniques that aim to reduce the number of retry steps.

We evaluate our techniques using MQSim [1, 26], an open-
source multi-queue SSD simulator. We extend MQSim to
simulate more realistic read-retry characteristics in modern
SSDs based on our real-device characterization results. We
also evaluate the performance improvement of our techniques
when combined with a state-of-the-art technique [25]. We
use six real-world workloads with different I/O characteristics
while varying the data retention age and P/E-cycle count.

5. Key Results and Contributions

Our main evaluation results show that PR2 and AR2, when
combined, significantly improve the SSD response time, by up
to 50.8% (35.7% on average) over a high-end SSD. Compared
to a state-of-the-art baseline [25], our proposal further reduces
SSD response time by up to 31.5% (21.8% on average) in
read-dominant workloads.

This paper makes the following key contributions:
• To our knowledge, this work is the first to identify new

opportunities to reduce the latency of each retry step by
exploiting advanced architectural features in modern SSDs.

• Through extensive and rigorous characterization of 160 real
3D TLC NAND flash chips, we make three new observa-
tions on modern NAND flash memory. First, a read-retry
operation with multiple retry steps frequently occurs even
under modest operating conditions. Second, when a read-
retry occurs, there is a large ECC-capability margin in the
final retry step even under the worst operating conditions.
Third, there is substantial margin in read-timing parameters,
which enables safe reduction of the read-retry latency.

• Based on our findings and characterization results, we pro-
pose two new techniques, PR2 and AR2, which effectively
reduce the latency of each retry step, thereby reducing over-
all read latency and thus improving application performance.
Our techniques require only very small changes to the SSD
controller or firmware. By reducing the latency of each retry
step while keeping the same number of retry steps during
a flash read, our proposal effectively complements existing
techniques [9, 10, 19, 21, 25] that aim to reduce the number
of retry steps, as we empirically demonstrate in the paper.

Why ASPLOS? Our work emphasizes the synergy between
two fundamental aspects of storage systems: (1) firmware
(i.e., system software) and (2) architecture. Read-retry is an
essential mechanism in SSD firmware to ensure the reliabil-
ity of storage systems, but it can significantly degrade SSD
I/O performance that is critical to data-intensive applications.
Through extensive real-device characterizations, we introduce
new opportunities to significantly reduce read-retry latency
by exploiting advanced architectural features widely adopted
in modern SSDs. Therefore, this work emphasizes the impor-
tance and effectiveness of optimizations based on comprehen-
sive understanding of the storage firmware, architecture, and
device characteristics.

Citation for Most Influential Paper Award. This paper pro-
poses new techniques to optimize the read-retry mechanism,
which is essential to ensuring the reliability of modern NAND
flash-based SSDs at the expense of significant latency over-
head. This work is the first to demonstrate that the large
reliability margin in modern SSDs can be used to improve the
read latency, which has impacted many real SSD designs and
inspired many creative follow-on works to achieve high I/O
performance by better exploiting the performance-reliability
trade-off.

2



References
[1] MQSim GitHub repository. https://github.com/CMU-

SAFARI/MQSim.
[2] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu.

Error characterization, mitigation, and recovery in flash-memory-based
solid-state drives. Proc. IEEE, 2017.

[3] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu.
Errors in flash-memory-based solid-state drives: Analysis, mitigation,
and recovery. arXiv, 2017.

[4] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu.
Reliability issues in flash-memory-based solid-state drives: Experimen-
tal analysis, mitigation, recovery. In Inside Solid State Drives. Springer,
2018.

[5] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch. Vulnerabilities in MLC NAND flash memory programming:
Experimental analysis, exploits, and mitigation techniques. In HPCA,
2017.

[6] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Error patterns
in MLC NAND flash memory: Measurement, characterization, and
analysis. In DATE, 2012.

[7] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Threshold
voltage distribution in MLC NAND flash memory: Characterization,
analysis, and modeling. In DATE, 2013.

[8] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. Read disturb
errors in MLC NAND flash memory: Characterization, mitigation, and
recovery. In DSN, 2015.

[9] Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu. Data
retention in MLC NAND flash memory: Characterization, optimiza-
tion, and recovery. In HPCA, 2015.

[10] Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai. Program interfer-
ence in MLC NAND flash memory: Characterization, modeling, and
mitigation. In ICCD, 2013.

[11] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Crista,
Osman S. Unsal, and Ken Mai. Error analysis and retention-aware
management for NAND flash memory. Intel Tech. J., 2013.

[12] Yu Cai, Gulay Yalcin, Onur Mutlu, F. Erich Haratsch, Osman Unsal,
Adrian Cristal, and Ken Mai. Neighbor-cell assisted error correction
for MLC NAND flash memories. In SIGMETRICS, 2014.

[13] Alvin Cox. JEDEC SSD endurance workloads. In FMS, 2011.
[14] Aya Fukami, Saugata Ghose, Yixin Luo, Yu Cai, and Onur Mutlu.

Improving the reliability of chip-off forensic analysis of NAND flash
memory devices. In DFRWS EU, 2014.

[15] Hwang Huh, Wanik Cho, Jinhaeng Lee, Yujong Noh, Yongsoon
Park, Sunghwa Ok, Jongwoo Kim, Kayoung Cho, Hyunchul Lee,
Geonu Kim, Kangwoo Park, Kwanho Kim, Heejoo Lee, Sooyeol Chai,
Chankeun Kwon, Hanna Cho, Chanhui Jeong, Yujin Yang, Jayoon
Goo, Jangwon Park, Juhyeong Lee, Heonki Kim, Kangwook Jo, Che-
oljoong Park, Hyeonsu Nam, Hyunseok Song, Sangkyu Lee, Woopyo
Jeong, Kun-Ok Ahn, and Tae-Sung Jung. A 1Tb 4b/cell 96-stacked-
WL 3D NAND flash memory with 30MB/s program throughput using
peripheral circuit under memory cell array technique. In ISSCC, 2020.

[16] Dongku Kang, Woopyo Jeong, Chulbum Kim, Doo-Hyun Kim,
Yong Sung Cho, Kyung-Tae Kang, Jinho Ryu, Kyung-Min Kang,
Sungyeon Lee, Wandong Kim, Hanjun Lee, Jaedoeg Yu, Nayoung
Choi, Dong-Su Jang, Jeong-Don Ihm, Doogon Kim, Young-Sun Min,
Moo-Sung Kim, An-Soo Park, Jae-Ick Son, In-Mo Kim, Pansuk Kwak,
Bong-Kil Jung, Doo-Sub Lee, Hyunggon Kim, Hyang-Ja Yang, Dae-
Seok Byeon, Ki-Tae Park, Kye-Hyun Kyung, and Jeong-Hyuk Choi.
256Gb 3b/cell V-NAND flash memory with 48 stacked WL layers. In
ISSCC, 2016.

[17] Doo-Hyun Kim, Hyunggon Kim, Sungwon Yun, Youngsun Song, Jisu
Kim, Sung-Min Joe, Kyung-Hwa Kang, Joonsuc Jang, Hyun-Jun Yoon,
Kanabin Lee, Minseok Kim, Joonsoo Kwon, Jonghoo Jo, Sehwan
Park, Jiyoon Park, Jisoo Cho, Sohyun Park, Garam Kim, Jinbae Bang,
Heejin Kim, Jongeun Park, Deokwoo Lee, Seonyong Lee, Hwajun
Jang, Han-Jun Lee, Donghyun Shin, Jungmin Park, Jungkwan Kim,
Jongmin Kim, Kichang Jang, Il Han Park, Seung Hyun Moon, Myung-
Hoon Choi, Pansuk Kwak, Joo-Yong Park, Youngdon Choi, Sang-Lok
Kim, Seungjae Lee, Dongku Kang, Jeong-Don Lim, Dae-Seok Byeon,
Kiwhan Song, Junghwan Choi, Sang Joon Hwang, and Jaeheon Jeong.
A 1Tb 4b/cell NAND flash memory with tPROG=2ms, tR=110µs and
1.2Gb/s high-speed IO rate. In ISSCC, 2020.

[18] Nancy Leong, Sachit Chandra, and Hounien Chen. Random cache read
using a double memory, 2008. US Patent 7,423,915.

[19] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu.
Enabling accurate and practical online flash channel modeling for
modern MLC NAND flash memory. IEEE JSAC, 2016.

[20] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu.
Heatwatch: Improving 3D NAND flash memory device reliability by
exploiting self-recovery and temperature awareness. In HPCA, 2018.

[21] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu.
Improving 3D NAND flash memory lifetime by tolerating early reten-
tion loss and process variation. In SIGMETRICS, 2018.

[22] Macronix. Technical note: Improving NAND throughput with
two-plane and cache operations, 2013. https://www.macronix.
com/Lists/ApplicationNote/Attachments/1907/
AN0268V1_Improving%20NAND%20Throughput%20with%
20Two-Plane%20and%20Cache%20Operations.pdf.

[23] Micron. Technical note: NAND flash performance increase
using the Micron PAGE READ CACHE MODE command,
2004. https://www.micron.com/-/media/client/
global/Documents/Products/Technical%20Note/
NAND%20Flash/tn2901.pdf.

[24] Micron. Product flyer: Micron 3D NAND flash memory, 2016.
https://www.micron.com/-/media/client/global/
documents/products/product-flyer/3d_nand_
flyer.pdf?la=en.

[25] Youngseop Shim, Myungsuk Kim, Myoungjun Chun, Jisung Park,
Yoona Kim, and Jihong Kim. Exploiting process similarity of 3D flash
memory for high performance SSDs. In MICRO, 2019.

[26] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu. MQSim: a framework for enabling realistic
studies of modern multi-queue SSD devices. In FAST, 2018.

3

https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/MQSim
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.micron.com/-/media/client/global/Documents/Products/Technical%20Note/NAND%20Flash/tn2901.pdf
https://www.micron.com/-/media/client/global/Documents/Products/Technical%20Note/NAND%20Flash/tn2901.pdf
https://www.micron.com/-/media/client/global/Documents/Products/Technical%20Note/NAND%20Flash/tn2901.pdf
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions

