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Executive Summary
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Observation: Large Language Model (LLM) decoding kernels have different and  
dynamically changing computation and memory bandwidth demands at runtime

Problem: Existing heterogeneous LLM systems have two shortcomings:
− Static scheduling that fails to dynamically cater to changing kernel demands
− Support only one type of Processing-In-Memory (PIM) device with a certain 

computation throughput and memory bandwidth capability

Goal: Design a heterogeneous system that caters to different and dynamically 
changing computation and memory demands in LLM decoding

Key Idea: Enable online dynamic task scheduling on a heterogeneous architecture 
via online identification of LLM decoding kernel properties

Key techniques: A new computing system called PAPI:
– Dynamic LLM kernel scheduling to the most suitable hardware units at runtime 
– Hybrid PIM units to meet the diverse LLM kernel demands

Key Results: PAPI outperforms a state-of-the-art PIM-enabled LLM computing 
system and a pure PIM system by 1.8X and 11.1X, respectively
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…

Fully-connected (FC) kernels
• Pretrained by LLM training
• Used for token generation

Attention kernels
• Encoded from input tokens

• Different data across requests

LLM Structure
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Serial Decoding
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LLM LLMLLM LLM

Request A

• Low hardware utilization
• Low throughput



Parallel Decoding
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Token-Level Parallelism
(TLP)

Decode tokens of one request in parallel

Request-Level Parallelism
(RLP)

Decode different requests in parallel

LLM LLM

Requests A & BRequest A

LLM LLM

Do TLP and RLP benefit all kernels in LLM decoding?

• Higher hardware utilization
• Higher throughput
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Key Observations

1 LLM kernels have different computation and memory 
bandwidth demands across different RLP & TLP levels

3 LLM kernels have dynamically changing 
RLP and TLP levels

2 Memory-bound kernels exhibit different 
computation demands depending on kernel type



1. Different Computation and Memory 
Bandwidth Demands due to RLP/TLP

11

LLM kernels have different computation and memory 
bandwidth demands across different RLP & TLP levels

RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

Roofline model of LLM kernels with six RLP and four TLP 
configurations on an NVIDIA A100 GPU system:
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• FC kernels benefit from RLP & TLP

Compute-BoundFC

Attention 
#1

Attention 
#2

• Attention kernels benefit from TLP
• TLP is usually much smaller than RLP

Memory-Bound

Why Different Computation & Memory 
Demands in Parallel Decoding?
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2. Different Computation and Memory 
Bandwidth Demands due to Kernel Type

> 60 FLOPs/Byte

< 10 FLOPs/Byte

> 30 FLOPs/Byte

< 10 FLOPs/Byte

Memory-bound kernels exhibit different 
computation demands depending on kernel type
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3. Dynamically Changing RLP and TLP 
Levels
• Parallelism levels (RLP & TLP) vary dynamically in real-world scenarios

– E.g., request-level parallelism (RLP) decreases at runtime when 
using static batching

Decoding Cycles of Requests in One Batch
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In the Paper: Analysis of Dynamic 
Parallelism Levels
• Initial RLP:

– Service level objective
– Memory capacity limits
– Dynamic batching

• Runtime RLP:
− Static batching
− Mixed continuous batching

• TLP:
− Speculative decoding

LLM kernels have dynamically changing 
RLP and TLP levels
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In the Paper: Analysis of Dynamic 
Parallelism Levels

https://arxiv.org/pdf/2502.15470



State-of-the-Art in LLM Inference
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PIM-
Enabled
Memory

Computation-centric accelerator 
(e.g., GPU)

Memory-centric computing device
(e.g., HBM-PIM)

Attention kernels FC kernels

Map Map

A PIM-enabled LLM computing system: 
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Major Shortcomings

1 Static scheduling leads to sub-optimal performance 
across different parallelism levels

2 Prior approaches support only one type of PIM device with 
a certain computation and memory bandwidth capability



Shortcoming 1: Static Scheduling (I) 

PIM-
Enabled
Memory

Computation-centric
accelerator
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Attention
kernels

FC kernels

State-of-the-art typically uses static scheduling:

Memory-centric 
computing device



Shortcoming 1: Static Scheduling (II) 

Static scheduling leads to sub-optimal performance
across different parallelism levels
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• Static scheduling works well for memory-bound attention kernels
• Static scheduling fails for FC kernels that switch between being 

compute-bound or memory-bound
RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

Memory
Bound

Compute
Bound

Compute
Bound

Memory
Bound
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Prior approaches support only one type of PIM device 
with a certain computation and memory bandwidth capability

Prior works leverage 
only one type of PIM device with 

a fixed computation and memory bandwidth

Memory-bound FC kernels and attention 
kernels have varying computation 
and memory bandwidth demands

Shortcoming 2: One-Size-Fits-All Approach
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Our Goal

Design a heterogeneous system that caters to 
varying parallelism levels in real-world LLM inference 

with different and dynamically changing 
computation and memory demands 
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PAPI’s Key Idea

Enable online dynamic task scheduling in a 
heterogeneous PIM-enabled architecture via online 

identification of kernel properties in LLM decoding
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PAPI’s Key Components

Hybrid PIM units 
to cater to different parallelism levels of 

FC and attention kernels

Dynamic LLM kernel scheduling
to cater to dynamically changing 

parallelism levels

A new PIM-enabled computing system design
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PAPI’s Architecture

Handles memory-bound or 
compute-bound FC kernels
• Execution of FC kernels
• Dynamic scheduling

Handles memory-bound 
attention kernels
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PAPI’s Architecture

Hybrid PIM units handle memory-bound FC & attention 
kernels with different computational and memory demands
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Scheduler
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Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed 
Interconnect

High-Performance Processor

Attn-PIM Devices

High-Performance Processor

When FC kernels are compute-bound:
Assign FC kernels to PUs

When FC kernels are memory-bound:
Assign FC kernels to FC-PIM

FC-
PIM

Processing
Units (PUs)

Scheduler

Host CPU

Scheduler
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Hybrid PIM Units (I)

Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed 
Interconnect

Scheduler

High-Performance Processor

Host CPU

Attn-PIM devices store KV cache;
separated from

the High-Performance Processor

FC-PIM device placed in 
the High-Performance Processor

FC-
PIM

Attn-
PIM

Attn-
PIM

Attn-
PIM
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Hybrid PIM Units (II)
Floating-Point Processing Units (FPU)

FC-PIM

Bank Groups (BGs)

Bank 1 Bank 2

Bank 3 Bank 4
BG C

BG B

BG A

Attn-PIMs

Bank 1 Bank 2

Bank 3 Bank 4

BG A

BG D

BG B
BG C

Higher Computation Capability
to cater to FC kernels

Higher Memory Capacity
to cater to attention kernels

BG A

BG D

BG B
BG C

More FPUs per Bank

More Bank Groups per Stack
More Attn-PIM Devices



PAPI Runtime Scheduler
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①Monitor Parallelism Levels
• RLP & TLP

② Arithmetic Intensity Predictor
• Estimate arithmetic intensity of FC kernels

• Compare with memory-boundedness threshold

③ Schedule the FC Kernels
• Map FC kernels to either FC-PIM or PUs

Offline: identify memory-boundedness threshold 
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Evaluation Methodology
Performance and Energy Analysis:
− Simulation using AttAcc [ASPLOS’24] and Ramulator 2 [IEEE CAL’23]

Baselines:
− AttAcc [ASPLOS’24]

− GPU+HBM-PIM (NVIDIA A100 GPU + Samsung’s HBM-PIM)
− PIM-only (PIM devices in AttAcc)

Workloads: Three transformer-based LLMs
– LLaMA-65B, GPT-3 66B, GPT-3 175B

Datasets: Dolly
− Creative-writing tasks
− General-QA tasks
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LLAMA-65B GPT-3 66B GPT-3 175B

Initial RLP

TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4

PAPI improves performance by 1.8X, 1.9X, and 11.1X
compared to AttAcc, GPU+HBM-PIM, and PIM-only, respectively
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LLAMA-65B GPT-3 66B GPT-3 175B

Batch size

Spe=1 Spe=2 Spe=4 Spe=1 Spe=2 Spe=4 Spe=1 Spe=2 Spe=4

PAPI improves energy efficiency by 3.4X, 3.4X, and 1.2X
compared to AttAcc, GPU+HBM-PIM, and PIM-only, respectively

Initial RLP

AttAcc GPU+HBM-PIM PIM-only PAPI
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More in the Paper 

• Details on PAPI’s implementation
– PAPI’s heterogeneous architecture
– PAPI’s runtime scheduler
– System integration
– Data partitioning across PIM devices (both Attn-PIM & FC-PIM)

• Detailed evaluation results
– PAPI’s speedup across different RLP & TLP levels
– Ablation study for PAPI’s speedup

• Area/power analysis
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More in the Paper 
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https://arxiv.org/pdf/2502.15470
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Conclusion

LLM kernels have different computation and memory 
bandwidth demands across different RLP & TLP levels

LLM kernels have dynamically changing RLP and TLP levels

Memory-bound kernels exhibit different computation 
demands depending on kernel type
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•PAPI
• A new PIM-enabled heterogeneous system design 
• that caters to varying demands of LLM kernels 
• by scheduling them dynamically to computation-

centric processing units and hybrid PIM units
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PAPI largely improves both performance and energy 
efficiency over best prior LLM decoding system

• 1.8× speedup
• 3.4× energy efficiency increase
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Backup Slides

• Interconnections in PAPI

• Identify memory-boundedness threshold

• Energy breakdown & power analysis 

• Estimated arithmetic intensity

• Execution time breakdown in LLM decoding

• The process of dynamic scheduling
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Interconnections in PAPI

Attn-PIM & high-performance processor: 
a standard interconnect like PCIe

Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed 
Interconnect

Scheduler

High-Performance Processor

Attn-PIM Devices

FC-
PIM

Processing
Units (PUs)

Scheduler

Host CPU

FC-PIM units & PUs: 
High-speed interconnect

Attention kernel involves
small data transfers (Byte-level Q vector)

FC kernels with large weight parameters’ 
transfers from FC-PIM to PUs 
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Identify memory-boundedness threshold 

We evaluate when FC kernels becomes memory-bound by 
testing different configurations

① Run FC kernels 
• With different TLP and RLP levels 

• On PUs and FC-PIM unit, respectively

②Measure arithmetic intensity and execution time 
for each case

③ Figure out threshold
• Under what conditions FC-PIM unit faster than PUs 



46

Energy Breakdown & Power Analysis
• DRAM access costs the most energy consumption when 

executing the FC kernels
• Leveraging data reuse can reduce the number of DRAM access
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Estimated Arithmetic Intensity

Arithmetic Intensity ≈ RLP×TLP
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Execution Time Breakdown in LLM 
Decoding
• LLM decoding in pure PIM system:

• Attention kernels: 0.3~1% of the execution time
• FC kernels dominate the total execution time

• Similar within the PIM-enabled heterogeneous LLM systems 

It is valuable to speedup FC kernels

The execution time breakdown per token in the decoding stage 
Of LLaMA-65B model (Initial RLP = 4, TLP=4)



PIM--PIMPIMPU---RESULT

011124555RLP

111111111TLP

Reschedule

011124555Estimated
value

Today is sunny <eos>

It is a good work <eos>

Have a nice day .

How are you ? <eos>

Here is a cute dog , look ! <eos>

Output tokens of requests

<eos>

The Process of Dynamic Scheduling
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• Assume the memory-boundedness threshold α=3 in this case


