
PAPI: Exploiting Dynamic Parallelism
in Large Language Model Decoding with

a Processing-In-Memory-Enabled Computing System

Yintao He Haiyu Mao Christina Giannoula
Mohammad Sadrosadati Juan Gómez-Luna Huawei Li

Xiaowei Li Ying Wang Onur Mutlu

ASPLOS 2025

Executive Summary

2

Observation: Large Language Model (LLM) decoding kernels have different and
dynamically changing computation and memory bandwidth demands at runtime

Problem: Existing heterogeneous LLM systems have two shortcomings:
− Static scheduling that fails to dynamically cater to changing kernel demands
− Support only one type of Processing-In-Memory (PIM) device with a certain

computation throughput and memory bandwidth capability

Goal: Design a heterogeneous system that caters to different and dynamically
changing computation and memory demands in LLM decoding

Key Idea: Enable online dynamic task scheduling on a heterogeneous architecture
via online identification of LLM decoding kernel properties

Key techniques: A new computing system called PAPI:
– Dynamic LLM kernel scheduling to the most suitable hardware units at runtime
– Hybrid PIM units to meet the diverse LLM kernel demands

Key Results: PAPI outperforms a state-of-the-art PIM-enabled LLM computing
system and a pure PIM system by 1.8X and 11.1X, respectively

Background1
Observations & Motivation2

PAPI’s Overview

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

3

4

Decoding

LLM Inference

4

the

LLM

of

LLM

Sam did his PhD

LLM

at

LLM

University

LLM

at the University of Toronto

Prefilling
(Encodes contextual information

from the input in parallel)
(Generates output tokens in serial or parallel)

An example:

5

LLM

QKV generation

Multi-head
attention

Projection

Feed forward
networks

Decoder 1

Decoder 2

Decoder N

…

Fully-connected (FC) kernels
• Pretrained by LLM training
• Used for token generation

Attention kernels
• Encoded from input tokens

• Different data across requests

LLM Structure

Decoding

LLM Inference

6

the

LLM

of

LLM

Sam did his PhD

LLM

at

LLM

University

LLM

at the University of Toronto

Prefilling
(Encodes contextual information

from the input in parallel)
(Generates output tokens in serial or parallel)

An example:

Serial Decoding

7

LLM LLMLLM LLM

Request A

• Low hardware utilization
• Low throughput

Parallel Decoding

8

Token-Level Parallelism
(TLP)

Decode tokens of one request in parallel

Request-Level Parallelism
(RLP)

Decode different requests in parallel

LLM LLM

Requests A & BRequest A

LLM LLM

Do TLP and RLP benefit all kernels in LLM decoding?

• Higher hardware utilization
• Higher throughput

Background1
Observations & Motivation2

PAPI’s Overview

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

9

4

10

Key Observations

1 LLM kernels have different computation and memory
bandwidth demands across different RLP & TLP levels

3 LLM kernels have dynamically changing
RLP and TLP levels

2 Memory-bound kernels exhibit different
computation demands depending on kernel type

1. Different Computation and Memory
Bandwidth Demands due to RLP/TLP

11

LLM kernels have different computation and memory
bandwidth demands across different RLP & TLP levels

RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

Roofline model of LLM kernels with six RLP and four TLP
configurations on an NVIDIA A100 GPU system:

Memory
Bound

Compute
Bound

Compute
Bound

Memory
Bound

12

• FC kernels benefit from RLP & TLP

Compute-BoundFC

Attention
#1

Attention
#2

• Attention kernels benefit from TLP
• TLP is usually much smaller than RLP

Memory-Bound

Why Different Computation & Memory
Demands in Parallel Decoding?

RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

Memory
Bound

Compute
Bound

Compute
Bound

Memory
Bound

13

2. Different Computation and Memory
Bandwidth Demands due to Kernel Type

> 60 FLOPs/Byte

< 10 FLOPs/Byte

> 30 FLOPs/Byte

< 10 FLOPs/Byte

Memory-bound kernels exhibit different
computation demands depending on kernel type

0 250 500 750 1000 1250 1500 1750 2000
Decoding Cycles

14

3. Dynamically Changing RLP and TLP
Levels
• Parallelism levels (RLP & TLP) vary dynamically in real-world scenarios

– E.g., request-level parallelism (RLP) decreases at runtime when
using static batching

Decoding Cycles of Requests in One Batch

N
um

be
r o

f R
eq

ue
st

s
in

 a
 B

at
ch

15

In the Paper: Analysis of Dynamic
Parallelism Levels
• Initial RLP:

– Service level objective
– Memory capacity limits
– Dynamic batching

• Runtime RLP:
− Static batching
− Mixed continuous batching

• TLP:
− Speculative decoding

LLM kernels have dynamically changing
RLP and TLP levels

16

In the Paper: Analysis of Dynamic
Parallelism Levels

https://arxiv.org/pdf/2502.15470

State-of-the-Art in LLM Inference

17

PIM-
Enabled
Memory

Computation-centric accelerator
(e.g., GPU)

Memory-centric computing device
(e.g., HBM-PIM)

Attention kernels FC kernels

Map Map

A PIM-enabled LLM computing system:

18

Major Shortcomings

1 Static scheduling leads to sub-optimal performance
across different parallelism levels

2 Prior approaches support only one type of PIM device with
a certain computation and memory bandwidth capability

Shortcoming 1: Static Scheduling (I)

PIM-
Enabled
Memory

Computation-centric
accelerator

19

Attention
kernels

FC kernels

State-of-the-art typically uses static scheduling:

Memory-centric
computing device

Shortcoming 1: Static Scheduling (II)

Static scheduling leads to sub-optimal performance
across different parallelism levels

20

• Static scheduling works well for memory-bound attention kernels
• Static scheduling fails for FC kernels that switch between being

compute-bound or memory-bound
RLP (4, 8, 16, 32, 64, 128) TLP (2, 4, 6, 8)

Memory
Bound

Compute
Bound

Compute
Bound

Memory
Bound

21

Prior approaches support only one type of PIM device
with a certain computation and memory bandwidth capability

Prior works leverage
only one type of PIM device with

a fixed computation and memory bandwidth

Memory-bound FC kernels and attention
kernels have varying computation
and memory bandwidth demands

Shortcoming 2: One-Size-Fits-All Approach

22

Our Goal

Design a heterogeneous system that caters to
varying parallelism levels in real-world LLM inference

with different and dynamically changing
computation and memory demands

Background1
Observations & Motivation2

PAPI’s Overview

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

23

4

24

PAPI’s Key Idea

Enable online dynamic task scheduling in a
heterogeneous PIM-enabled architecture via online

identification of kernel properties in LLM decoding

25

PAPI’s Key Components

Hybrid PIM units
to cater to different parallelism levels of

FC and attention kernels

Dynamic LLM kernel scheduling
to cater to dynamically changing

parallelism levels

A new PIM-enabled computing system design

26

PAPI’s Architecture

Handles memory-bound or
compute-bound FC kernels
• Execution of FC kernels
• Dynamic scheduling

Handles memory-bound
attention kernels

27

PAPI’s Architecture

Hybrid PIM units handle memory-bound FC & attention
kernels with different computational and memory demands

Background1
Observations & Motivation2

PAPI’s Overview

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

28

4

Scheduler

29

Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed
Interconnect

High-Performance Processor

Attn-PIM Devices

High-Performance Processor

When FC kernels are compute-bound:
Assign FC kernels to PUs

When FC kernels are memory-bound:
Assign FC kernels to FC-PIM

FC-
PIM

Processing
Units (PUs)

Scheduler

Host CPU

Scheduler

30

Hybrid PIM Units (I)

Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed
Interconnect

Scheduler

High-Performance Processor

Host CPU

Attn-PIM devices store KV cache;
separated from

the High-Performance Processor

FC-PIM device placed in
the High-Performance Processor

FC-
PIM

Attn-
PIM

Attn-
PIM

Attn-
PIM

31

Hybrid PIM Units (II)
Floating-Point Processing Units (FPU)

FC-PIM

Bank Groups (BGs)

Bank 1 Bank 2

Bank 3 Bank 4
BG C

BG B

BG A

Attn-PIMs

Bank 1 Bank 2

Bank 3 Bank 4

BG A

BG D

BG B
BG C

Higher Computation Capability
to cater to FC kernels

Higher Memory Capacity
to cater to attention kernels

BG A

BG D

BG B
BG C

More FPUs per Bank

More Bank Groups per Stack
More Attn-PIM Devices

PAPI Runtime Scheduler

32

①Monitor Parallelism Levels
• RLP & TLP

② Arithmetic Intensity Predictor
• Estimate arithmetic intensity of FC kernels

• Compare with memory-boundedness threshold

③ Schedule the FC Kernels
• Map FC kernels to either FC-PIM or PUs

Offline: identify memory-boundedness threshold

Background1
Observations & Motivation2

PAPI’s Overview

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

33

4

Evaluation Methodology
Performance and Energy Analysis:
− Simulation using AttAcc [ASPLOS’24] and Ramulator 2 [IEEE CAL’23]

Baselines:
− AttAcc [ASPLOS’24]

− GPU+HBM-PIM (NVIDIA A100 GPU + Samsung’s HBM-PIM)
− PIM-only (PIM devices in AttAcc)

Workloads: Three transformer-based LLMs
– LLaMA-65B, GPT-3 66B, GPT-3 175B

Datasets: Dolly
− Creative-writing tasks
− General-QA tasks

34

0

0.5

1

1.5

2

2.5

3

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

spe=1 spe=2 spe=4 spe=1 spe=2 spe=4 spe=1 spe=2 spe=4

Sp
ee

du
p

A100+AttAcc A100+HBM-PIM AttAcc-only PAPI

Performance Analysis

35

LLAMA-65B GPT-3 66B GPT-3 175B

Initial RLP

TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4 TLP=1 TLP=2 TLP=4

PAPI improves performance by 1.8X, 1.9X, and 11.1X
compared to AttAcc, GPU+HBM-PIM, and PIM-only, respectively

AttAcc GPU+HBM-PIM PIM-only PAPI

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

0

1

2

3

4

5

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

spe=1 spe=2 spe=4 spe=1 spe=2 spe=4 spe=1 spe=2 spe=4

En
er

gy
 E

ff
ic

ie
nc

y

A100+AttAcc A100+HBM-PIM AttAcc-only PAPI

Energy Analysis

36

LLAMA-65B GPT-3 66B GPT-3 175B

Batch size

Spe=1 Spe=2 Spe=4 Spe=1 Spe=2 Spe=4 Spe=1 Spe=2 Spe=4

PAPI improves energy efficiency by 3.4X, 3.4X, and 1.2X
compared to AttAcc, GPU+HBM-PIM, and PIM-only, respectively

Initial RLP

AttAcc GPU+HBM-PIM PIM-only PAPI

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

More in the Paper

• Details on PAPI’s implementation
– PAPI’s heterogeneous architecture
– PAPI’s runtime scheduler
– System integration
– Data partitioning across PIM devices (both Attn-PIM & FC-PIM)

• Detailed evaluation results
– PAPI’s speedup across different RLP & TLP levels
– Ablation study for PAPI’s speedup

• Area/power analysis

37

More in the Paper

38

https://arxiv.org/pdf/2502.15470

Background1
Observations & Motivation2

PAPI’s Overview

PAPI’s Implementation

Evaluation

Conclusion

3

5

6

Outline

39

4

40

Conclusion

LLM kernels have different computation and memory
bandwidth demands across different RLP & TLP levels

LLM kernels have dynamically changing RLP and TLP levels

Memory-bound kernels exhibit different computation
demands depending on kernel type

K
ey

 F
in

di
ng

s

•PAPI
• A new PIM-enabled heterogeneous system design
• that caters to varying demands of LLM kernels
• by scheduling them dynamically to computation-

centric processing units and hybrid PIM units

Ke
y

R
es

ul
ts

41

PAPI largely improves both performance and energy
efficiency over best prior LLM decoding system

• 1.8× speedup
• 3.4× energy efficiency increase

Ke
y

Co
nt

rib
ut

io
n

Conclusion

PAPI: Exploiting Dynamic Parallelism
in Large Language Model Decoding with

a Processing-In-Memory-Enabled Computing System

Yintao He Haiyu Mao Christina Giannoula
Mohammad Sadrosadati Juan Gómez-Luna Huawei Li

Xiaowei Li Ying Wang Onur Mutlu

ASPLOS 2025

Backup Slides

• Interconnections in PAPI

• Identify memory-boundedness threshold

• Energy breakdown & power analysis

• Estimated arithmetic intensity

• Execution time breakdown in LLM decoding

• The process of dynamic scheduling

43

44

Interconnections in PAPI

Attn-PIM & high-performance processor:
a standard interconnect like PCIe

Attn-
PIM

Attn-
PIM

Attn-
PIM

Interconnect

FC-
PIM

Processing
Units (PUs)

High-Speed
Interconnect

Scheduler

High-Performance Processor

Attn-PIM Devices

FC-
PIM

Processing
Units (PUs)

Scheduler

Host CPU

FC-PIM units & PUs:
High-speed interconnect

Attention kernel involves
small data transfers (Byte-level Q vector)

FC kernels with large weight parameters’
transfers from FC-PIM to PUs

45

Identify memory-boundedness threshold

We evaluate when FC kernels becomes memory-bound by
testing different configurations

① Run FC kernels
• With different TLP and RLP levels

• On PUs and FC-PIM unit, respectively

②Measure arithmetic intensity and execution time
for each case

③ Figure out threshold
• Under what conditions FC-PIM unit faster than PUs

46

Energy Breakdown & Power Analysis
• DRAM access costs the most energy consumption when

executing the FC kernels
• Leveraging data reuse can reduce the number of DRAM access

47

Estimated Arithmetic Intensity

Arithmetic Intensity ≈ RLP×TLP

48

Execution Time Breakdown in LLM
Decoding
• LLM decoding in pure PIM system:

• Attention kernels: 0.3~1% of the execution time
• FC kernels dominate the total execution time

• Similar within the PIM-enabled heterogeneous LLM systems

It is valuable to speedup FC kernels

The execution time breakdown per token in the decoding stage
Of LLaMA-65B model (Initial RLP = 4, TLP=4)

PIM--PIMPIMPU---RESULT

011124555RLP

111111111TLP

Reschedule

011124555Estimated
value

Today is sunny <eos>

It is a good work <eos>

Have a nice day .

How are you ? <eos>

Here is a cute dog , look ! <eos>

Output tokens of requests

<eos>

The Process of Dynamic Scheduling

49

• Assume the memory-boundedness threshold α=3 in this case

