Full Paper

RUBIC@N: A Framework for Designing Efficient
SAFAR|] Deep Learning-Based Genomic Basecallers

SAFARS Research Group Gagandeep Singh!t Mohammed Alser! Alireza Khodamoradi? Kristof Denolf?

Can Firtinat Meryem Banu Cavlak! Henk Corporaal®> Onur Mutlu?
LETHziirich > AMDZ > TU/e 555

. " . . . } e Unstructured Pruning essw= Structured Pruning e Unstructured Pruning essis= Structured Pruning
Basecalling is the first step in the KEY OBSERVATION 1: Effect of Pruning _ 100 o Y o
° ° ° o\o y - j‘ - (a8] A : — N 2
genomics pipeline that converts Modern basecallers use complex Basecsllers ar(_etf)fte(ril adal.)t(id f:‘l(.)m :he -f_:’; 0 { s, S ¥ o 29 B
: : : : . speech recognition domain leading to RS a3 2% o 24 - 9%,* 22 g
noisy e!ectrlcal signals to nucleotide deep learning-based models SR et Ted = 5 80 7 N ERn LN
bases (l'e" A G G, T) 85% of weights can be pruned using 2 70 %7539 § -
unstructured pruning leading to 6.67x " (@) =
Nanopore Sequencer lower model size without any loss in OSSR ESS
CCGTCAGTA accuracy. Sparsity (%)
KEY OBSERVATION 2: Effect of Quantization 100 Acinetobacter Pittii 16-377-0801
AGTCGAGCT . @ 95 9.0b q913 0102 9117 0153 0157 ) 40
GTCCCACTA Current basecallers use floating-point 2; 90 | s 01 890% eo. 2 5
precision to represent each neural £ 3(5) 8 20 4
TTTCCGTCA network layer present in a basecaller. é ;(5) l % 1097
> GTAAGTCCA Basecallers can provide full accuracy o g 0+ - -
. ] . . © 0;3’ W v?‘ "o %?‘ czac\b N Ay § Vv % ™ ™ ) > © 4%
Squiggle with 4x lower bits for weights and 9 S GO AN A S G
activations. (a) R (b) <

Quantization bits (weight, activation) Quantization bits (weight,activation)

The accuracy and speed of basecalling have critical implications

. ) Our goal is to develop a comprehensive framework for specializing and optimizing
for all the steps in genome analysis

a deep learning-based basecaller that provides high efficiency and performance

RUBICON provides five key modules:

(1) QABAS: Quantization-aware basecalling
architecture search

(2) SkipClip: Skip connection removal by
teaching

(3) Pruning: Structured and unstructured
pruning with knowledge distillation

(4) Training: Model training with knowledge
distillation

(5) Basecalling: Integrated official ONT

basecalling modules

RUBICALL: A Hardware-
Optimized Basecaller

QABAS: Quantization-Aware
® @ Basecalling Architecture Search
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RUBICON Framework

RUBICALL is the first hardware-
optimized basecaller that uses mixed-
precision computation

* RUBICALL is developed using QABAS
and SkipClip from RUBICON

* QABAS automates the process of finding efficient and high-
performance hardware-aware genomics basecallers

* QABAS uses neural architecture search (NAS) to evaluate millions
of different basecaller architectures

/ 9 Quantized Basecaller Neural Architecture Search (QABAS) \

SkipClip: Skip Connection Removal by Teaching
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4: Evaluation & Key Results

Comparison of RUBICALL with State-of-the-art Basecallers

We evaluate RUBICALL using: Comparison to four basecallers: We map the resulting basecalled reads from each evaluated basecaller to the reference genome of
(1) Versal ACAP V(C2802, a cutting-edge spatial (1) Bonito-CTC, an expert-designed convolutional the same species using the state-of-the-art read mapper, minimap2
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Explainability Into QABAS Results

Precision for weight and activation KEY RESULTS

o e e S KEY OBSERVATION ® RUBICALL uses 6.88x and 2.94x lower model size and parameters than an expert-
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e (a) Bonito_CTC QABAS uses more bits in the initial designed basecaller (Bonito_CTC), respectively
Pl layers than the final layers in . . . . .
n RUBICALL. RUBICALL provides 16.56x higher basecalling throughput without any loss in

YOIV PIRARSRRRE &SSO $ PP PG L PISPP PG QABAS learns that the input to basecalling accuracy compared to Bonito_CTC by leveraging mixed precision computation
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Neural network layers

accurate basecaller (Bonito CRF-sup) at the expense of 2.55% lower accuracy

RUBICALL provides the highest-quality read mapping with largest number of
mapped bases and mapped reads than our evaluated basecallers

KEY OBSERVATION
RUBICALL has every layer quantized to a different quantization domain. The state-of-the-art basecallers use the same

floating-point precision for all the neural network layers, which leads to high processing and memory demands.




