
Steve Rhyner Haocong Luo Juan Gómez-Luna Mohammad Sadrosadati

Jiawei Jiang Ataberk Olgun Harshita Gupta Ce Zhang Onur Mutlu

Demystifying Distributed Optimization Algorithms
on a Real-World Processing-In-Memory System

PIM-Opt

2

PIM-Opt: Summary
Problem: Modern machine learning (ML) training is a data-intensive workload and
processor-centric architectures commonly used for ML training suffer from the data
movement bottleneck

Goal: Understand the capabilities of popular distributed Stochastic Gradient Descent (SGD)
algorithms on real-world Processing-In-Memory (PIM) systems to accelerate distributed
ML training workloads

Contributions:
• Implementation, analysis, and training of linear ML models on two large datasets using

distributed SGD algorithms on a real-world PIM system (i.e., UPMEM)
• Demonstrate scalability challenges of the UPMEM PIM system
• Discuss implications for future PIM hardware design
• Highlight the need for a shift towards an algorithm-hardware codesign

Evaluation:
• Comparison of the UPMEM PIM to state-of-the-art CPU and GPU

• YFCC100M-HNfc6 dataset: UPMEM PIM is up to 1.9x/3.2x faster than the CPU/GPU
• Criteo 1TB Click Logs dataset: UPMEM PIM is up to 9.3x/10.7x faster than the CPU/GPU

• Scalability challenges of the UPMEM PIM
• YFCC100M-HNfc6 (Criteo 1TB Click Logs) dataset: Speedup of 7.4x (3.9x) while the

achieved test accuracy (AUC score) decreases from 95.5% (0.74) to 92.2% (0.72)

https://github.com/CMU-SAFARI/PIM-Opt

https://github.com/CMU-SAFARI/PIM-Opt

3

Outline

Background

UPMEM PIM System Implementation

Methodology

Evaluation & Key Results

Implications for PIM Hardware Design

Conclusion

Background

Motivation

4

Models & ML Training

• Two of the most commonly trained linear binary
classification models:
• Logistic Regression (LR)
• Support Vector Machines (SVM)

• The goal of machine learning (ML) training is to find an
optimal ML model by minimizing an objective function over
a training dataset

• Regularization techniques are used
• Prevent overfitting on the training dataset
• Control the model complexity

5

Algorithms

• Stochastic Gradient Descent (SGD) is perhaps the most
important and commonly deployed optimization algorithm for
modern ML training

• SGD is the main building block of most distributed optimization
algorithms

• Variants of SGD such as mini-batch SGD allow for parallelization
by batching the training samples in each iteration

6

Distributed Optimization Algorithms

Popular centralized optimization algorithms:

- Mini-batch SGD with Model Averaging (MA-SGD)

- Mini-batch SGD with Gradient Averaging (GA-SGD)

- Distributed Alternating Direction Method of Multipliers (ADMM)

Centralized Topology Decentralized Topology

Worker Parameter
Server

7

2,560-DPU UPMEM PIM System

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled

memory

PIM-enabled

memory

PIM-enabled

memory

PIM-enabled

memory

• 20 UPMEM DIMMs
of 16 chips each
(40 ranks)

• Dual x86 socket

• UPMEM DIMMs
coexist with regular
DDR4 DIMMs
- 2 memory

controllers/socket
(3 channels each)

- 2 conventional
DDR4 DIMMs on
one channel of
one controller

8

x8

x8

UPMEM PIM System Architecture

Host CPU

Core Core Core

Memory
Controller

Memory
Controller

UPMEM PIM Chip

Bank

DRAM Array
(MRAM) 64MB

High Bandwidth
Internal Data Bus

DRAM Processing
Unit (DPU)

Working Memory
(WRAM) 64KB

Instruction
Memory

Fine-grained
Multi-threaded Pipeline

Main Memory
Module

UPMEM PIM
Module

UPMEM PIM Rank

DDR4
Channel

DDR4
Channel

9

Motivation

Outline

Background

UPMEM PIM System Implementation

Methodology

Evaluation & Key Results

Implications for PIM Hardware Design

Conclusion

Motivation

10

• Processor-centric design
- Highly-imbalanced systems
- Overly complex processors

• Applications are increasingly data hungry
• Stochastic Gradient Descent is memory-bound

Key Problem

Data Movement Bottleneck

Data Movement

SoC

DRAML2L1
CPU

CPU
CPUCPU

The data movement bottleneck is a key limiter of

large-scale Machine Learning training

11

Motivation

Processing-In-Memory is a promising solution
to perform large-scale ML Training

→ Alleviate the data movement bottleneck by placing
compute units inside or near memory

By identifying key characteristics covering the design space
of both hardware and optimization algorithms

How do we start?

Processing-In-Memory is a promising solution
to perform large-scale ML Training

→ Processing-In-Memory is a promising solution
to perform large-scale ML Training

12

Motivation

64.6x higher64.6x higher 1536.1x higher

→ Minimize the communication
between the parameter server and PIM

→ Minimize the total data movement
between the parameter server and PIM

The communication-efficient ADMM optimization
algorithm is attractive for distributed ML training

on the UPMEM PIM system

It is important to carefully choose

the optimization algorithms

that best fit PIM

The communication-efficient ADMM optimization
algorithm is attractive for distributed ML training

on the UPMEM PIM system

64x higher

13

Motivation

Outline

UPMEM PIM System Implementation

Background

Methodology

Evaluation & Key Results

Implications for PIM Hardware Design

Conclusion

UPMEM PIM System Implementation

14

UPMEM PIM System Implementation

Distribute Partitions of
Training Data to DPUs

UPMEM-side

DPU Program Invokation

Inter-DPU Synchronization

Distribute Global Model
to DPUs

Host-side

DPU Set
DPU DPU

Training Data Partitions

Local Models/Gradients

Updated Global Model

15

UPMEM PIM System Implementation

• Task Parallelism:
- Every DPU is a worker
- Every DPU uses 16 tasklets collaboratively to implement

the mini-batch SGD optimizer
- Features of the training samples & model parameters are

evenly distributed among tasklets

• LUT-based Methods:
- Training of Logistic Regression involves computing the exponential

function to evaluate the sigmoid
- UPMEM PIM system does not support transcendental functions
→ We use the TransPimLib library for efficient LUT-based
computation

16

Methodology

Motivation

Outline

Background

UPMEM PIM System Implementation

Evaluation & Key Results

Implications for PIM Hardware Design

Conclusion

Methodology

17

System Configurations
• UPMEM PIM System:

- 2x Intel Xeon Silver 4215
8-core processor @ 2.50GHz

- 2560 DPUs @ 350 MHz
- 20×8 GB UPMEM PIM modules

• CPU Baseline System:
- 2x AMD EPYC 7742

64-core processor @ 2.25GHz

• GPU Baseline System:
- 2x Intel Xeon Gold 5118

12-core processor @ 2.30GHz
- 1× NVIDIA A100 (PCIe, 80 GB)

Image source: https://gzhls.at/i/35/19/2113519-l3.jpg (AMD EPYC), https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/nvidia-a100-80-gb-og-
social-1200x630.jpg (NVIDIA A100)

https://gzhls.at/i/35/19/2113519-l3.jpg
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/nvidia-a100-80-gb-og-social-1200x630.jpg
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/nvidia-a100-80-gb-og-social-1200x630.jpg

18

Baseline Implementations

• CPU Baseline Implementation:
- Implementations use PyTorch
- We implement MA-SGD, GA-SGD, and ADMM, to train LR and

SVM models, using the optimizers and communication libraries
provided by PyTorch

- Each CPU thread is a worker

• GPU Baseline Implementation:
- Implementations use PyTorch
- We only implement mini-batch SGD on the GPU
→ PyTorch does not provide a way to limit the amount of GPU
resources the kernels use
→ Causing model averaging to be serialized on a single GPU

- For fair comparison, we do not use a cluster of GPUs for our baseline
because the UPMEM PIM system is a single-server node

19

Experiment Implementation Details

https://arxiv.org/pdf/2404.07164v2

https://arxiv.org/pdf/2404.07164v2

20

Motivation

Outline

Background

UPMEM PIM System Implementation

Evaluation & Key Results

Methodology

Implications for PIM Hardware Design

Conclusion

Evaluation & Key Results

YFCC100M-HNfc6
Dataset

21

22

PIM Performance Comparison

• GA-SGD on the UPMEM PIM outperforms GA-SGD on the CPU for
both LR and SVM

• GA-SGD on the UPMEM PIM outperforms mini-batch SGD on the
GPU for both LR and SVM

1.6x higher
1.9x higher

2.7x higher
3.2x higher

• MA-SGD on the UPMEM PIM significantly outperforms
MA-SGD on the CPU for both LR and SVM

• ADMM on the UPMEM PIM and on the CPU exhibits
comparable performance for both LR and SVM

23

PIM Performance Comparison

• GA-SGD on the UPMEM PIM outperforms GA-SGD on the CPU for
both LR and SVM

• GA-SGD on the UPMEM PIM outperforms mini-batch SGD on the
GPU for both LR and SVM

1.6x higher
1.9x higher

2.7x higher
3.2x higher

The UPMEM PIM is a viable alternative to the CPU and the GPU
for training small dense models on large-scale datasets

24

• Communication and synchronization between the parameter server
and PIM is a bottleneck for MA-SGD/GA-SGD

• For all combinations of optimization algorithms and models, PIM
computation takes more time than PIM data movement on the
UPMEM PIM

PIM Performance Breakdown

223.3x higher 14.1x higher

The UPMEM PIM is less suitable for ML models and optimization
algorithms that require frequent communication and synchronization

between PIM and the parameter server

Criteo
Dataset

25

26

PIM Strong Scaling

• For high-dimensional sparse models, for MA-SGD/ADMM on the UPMEM PIM
we observe good strong scalability in terms of total training time, but poor in
AUC Score

Reduction by
2.9x

Auc Score decreases
from 0.74 to 0.72

The scalability potential of the UPMEM PIM for training
high-dimensional sparse models is limited by its lack of

direct inter-DPU communication

27

More in the Paper

• Rigorous analysis of many combinations of algorithms, models,
architectures, and datasets

• For each YFCC100M-HNfc6 and Criteo 1TB Click Logs datasets, we
examine
- PIM performance breakdown
- PIM performance comparison & algorithm selection
- Batch size sensitivity analysis
- Impact of scaling

- Weak Scaling
- Strong Scaling

• Extended observations, takeaways, and implications for future
PIM hardware design

https://arxiv.org/pdf/2404.07164v2

https://arxiv.org/pdf/2404.07164v2

28

Motivation

Outline

Background

UPMEM PIM System Implementation

Methodology

Implications for PIM Hardware Design

Evaluation & Key Results

Conclusion

Implications for PIM Hardware Design

29

Implications for PIM Hardware Design

• Our evaluation demonstrates that a real-world PIM system
 (i.e., UPMEM) can be a viable alternative to state-of-the-art
 processor-centric architectures for many distributed ML training
 workloads

• We argue that future PIM architectures should add interconnects
 and/or shared memory among PIM processing units
• Enables implementation of decentralized optimization algorithms
• Decentralized parallel SGD algorithms are a promising solution to

overcome scalability challenges of the real-world PIM system

• We posit that a shift towards an algorithm-hardware codesign
 perspective is necessary in the context of ML training using PIM
 due to the high complexity of the design space

30

Motivation

Outline

Background

UPMEM PIM System Implementation

Methodology

Evaluation & Key Results

Conclusion

Implications for PIM Hardware Design

Conclusion

31

Conclusion
• We evaluate and train ML models on large-scale datasets with centralized

optimization algorithms on a real-world PIM system (i.e., UPMEM)

• We show that it is important to carefully choose the distributed optimization
algorithm that best fits the real-world PIM system and analyze tradeoffs

• We demonstrate that commercial general-purpose PIM systems can be a viable
alternative to state-of-the-art processor-centric architectures (e.g., CPU, GPU)
for many distributed ML training workloads on large-scale datasets

• Our results demonstrate the necessity of adjust PIM architectures to enable
decentralized parallel SGD algorithms to overcome scalability challenges for
many distributed ML training workloads

• Future work:
- Larger models: Deep neural networks, large language models, ...
- New compute paradigms and accelerators

- Rethinking the full stack
- Algorithm-hardware codesign

https://github.com/CMU-SAFARI/PIM-Opt

https://github.com/CMU-SAFARI/PIM-Opt

Demystifying Distributed Optimization Algorithms
on a Real-World Processing-In-Memory System

PIM-Opt

arXiv GitHub

Backup Slides

33

34

Mini-batch SGD with Model Averaging (MA-SGD)

Mini-batch SGD

Local Models

Model Averaging

Global Model

35

Mini-batch SGD with Gradient Averaging (GA-SGD)

Mini-batch SGD

Local Gradients

Gradient Averaging

Global Model

36

Alternating Direction Method of Multipliers (ADMM)

Mini-batch SGD

Local Models

Computation of
Global Model &

Auxiliary Variables

Auxiliary Variables

37

2,560-DPU UPMEM PIM System

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled

memory

PIM-enabled

memory

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

2560 DPUs*

160 GB

• 20 UPMEM DIMMs of 16
chips each (40 ranks)

• Dual x86 socket
• UPMEM DIMMs coexist with

regular DDR4 DIMMs
- 2 memory controllers/socket

(3 channels each)
- 2 conventional DDR4 DIMMs

on one channel of one
controller

38

PIM Programming and Execution Model
UPMEM PIM Chip

Bank

DRAM Array
(MRAM) 64MB

High Bandwidth
Internal Data Bus

DRAM Processing
Unit (DPU)

Working Memory
(WRAM) 64KB

Instruction
Memory

Fine-grained
Multi-threaded Pipeline

x8

• DPU programs are written in C
- UPMEM SDK

- Runtime libraries

• Execution model of a DPU is
based on the Single-Program-
Multiple-Data (SPMD) paradigm

• Each DPU can run up to
24 tasklets

- Assigned statically at
compile-time

• Tasklets assigned to the same
DPU share MRAM and WRAM

Fine-grained
Multi-threaded Pipeline

Working Memory
(WRAM) 64KB

DRAM Array
(MRAM) 64MB

39

UPMEM PIM System Implementation

• Data Partitioning:
- For both MA-SGD and ADMM, each DPU’s partition consists of multiple

mini-batches of the training data
- For GA-SGD, each partition consists of a fraction of all the mini-batches of

the training data

• Synchronization:
- For MA-SGD, each DPU only processes one mini-batch from its assigned

training data partition and updates its local model before synchronization
on the host

- For GA-SGD, each DPU computes intermediate gradients from its
assigned fraction of one mini-batch before synchronization on the host

- For ADMM, each DPU processes all assigned mini-batches and updates its
local model for every mini-batch

40

Experiment Implementation Details

• Data Format:

- UPMEM PIM system uses quantized training data and models
both represented 32-bit fixed-point format

 → Floating-point operations are not natively supported
 → Quantization is necessary to enable fixed-point operations

- Baseline implementations use the FP32 floating-point format
 → Natively supported
 → Higher accuracy

41

Experiment Implementation Details

• Regularization:
- Apply standard regularization techniques
 → Achieve lower generalization errors

• Batch Size:
- For each experiment, we tune the batch size to ensure
 → High accuracy
 → High performance in terms of total training time
 → Fair comparison of algorithms & architectures

42

Experiment Implementation Details

• Hyperparameter Tuning:
- For all evaluated workloads, we tune the learning rates and

regularization terms
- All tested hyperparameters along with our complete codebase

are open source at
https://github.com/CMU-SAFARI/PIM-Opt

• Datasets:
- YFCC100M-HNfc6: Small and dense model
- Criteo 1 TB Click Logs: Large and sparse model

https://github.com/CMU-SAFARI/PIM-Opt

43

System Configurations

44

Experiment Implementation Details

• Hyperparameter Tuning:
- For all evaluated workloads, we tune the learning rates and

regularization terms
- All tested hyperparameters along with our complete codebase

are open source at
https://github.com/CMU-SAFARI/PIM-Opt

• Initialization:
- For all implementations, the training data & model parameters

initially reside in main memory
- For UPMEM PIM system and GPU baseline experiments, the

initialization phase includes transferring the data from the main
memory to the PIM DRAM bank and the GPU global memory

https://github.com/CMU-SAFARI/PIM-Opt

45

Datasets

• YFCC100M-HNfc6:
- Popular multimedia dataset that consists of 97M samples
- Each sample has 4096 floating-point dense features and a

collection of tags
- We randomly sample and shuffle data points and turn this

subset into a binary classification task
- The total size of model parameters is 4 KB

46

Datasets

• Criteo 1TB Click Logs (Criteo):
- Criteo is a popular click-through rate prediction dataset that

consists of 4.37 b high-dimensional sparse samples with 1M
features

- Each data point consists of label and 39 categorical
- While data points only consist of 40 parameters, the

models/gradients consist of 1M variables
- The dataset is highly imbalanced
- We randomly sample and shuffle the dataset
- We use the area under the receiver operating characteristics

curve (AUC score) to assess the generalization capabilities of
models trained on Criteo

- The total size of the model parameters is 4MB

47

Datasets Configurations

48

PIM Performance Comparison

• Difference in total training time between MA-SGD and ADMM is
significantly lower on the UPMEM PIM compared to the CPU

• GA-SGD is slower than ADMM for all configurations of LR, SVM, the
UPMEM PIM, and the CPU

1.5x higher

39.8x higher
3.2x higher

4.5x higher

49

YFCC100M: Performance Comparison

50

YFCC100M: Batch Size

51

YFCC100M: Weak Scaling

52

YFCC100M: Strong Scaling

53

Criteo: PIM Performance Breakdown

54

Criteo: PIM Performance Comparison

55

Criteo: Batch Size

56

Criteo: Weak Scaling

	Default Section
	Slide 1
	Slide 2: PIM-Opt: Summary
	Slide 3: Outline
	Slide 4: Models & ML Training
	Slide 5: Algorithms
	Slide 6: Distributed Optimization Algorithms
	Slide 7: 2,560-DPU UPMEM PIM System
	Slide 8: UPMEM PIM System Architecture
	Slide 9: Outline
	Slide 10: Key Problem
	Slide 11: Motivation
	Slide 12: Motivation
	Slide 13: Outline
	Slide 14: UPMEM PIM System Implementation
	Slide 15: UPMEM PIM System Implementation
	Slide 16: Outline
	Slide 17: System Configurations
	Slide 18: Baseline Implementations
	Slide 19: Experiment Implementation Details
	Slide 20: Outline
	Slide 21: YFCC100M-HNfc6 Dataset
	Slide 22: PIM Performance Comparison
	Slide 23: PIM Performance Comparison
	Slide 24: PIM Performance Breakdown
	Slide 25: Criteo Dataset
	Slide 26: PIM Strong Scaling
	Slide 27: More in the Paper
	Slide 28: Outline
	Slide 29: Implications for PIM Hardware Design
	Slide 30: Outline
	Slide 31: Conclusion
	Slide 32
	Slide 33: Backup Slides
	Slide 34: Mini-batch SGD with Model Averaging (MA-SGD)
	Slide 35: Mini-batch SGD with Gradient Averaging (GA-SGD)
	Slide 36: Alternating Direction Method of Multipliers (ADMM)
	Slide 37: 2,560-DPU UPMEM PIM System
	Slide 38: PIM Programming and Execution Model
	Slide 39: UPMEM PIM System Implementation
	Slide 40: Experiment Implementation Details
	Slide 41: Experiment Implementation Details
	Slide 42: Experiment Implementation Details
	Slide 43: System Configurations
	Slide 44: Experiment Implementation Details
	Slide 45: Datasets
	Slide 46: Datasets
	Slide 47: Datasets Configurations
	Slide 48: PIM Performance Comparison
	Slide 49: YFCC100M: Performance Comparison
	Slide 50: YFCC100M: Batch Size
	Slide 51: YFCC100M: Weak Scaling
	Slide 52: YFCC100M: Strong Scaling
	Slide 53: Criteo: PIM Performance Breakdown
	Slide 54: Criteo: PIM Performance Comparison
	Slide 55: Criteo: Batch Size
	Slide 56: Criteo: Weak Scaling

