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PIM-Opt: Summary

Problem: Modern machine learning (ML) training is a data-intensive workload and
processor-centric architectures commonly used for ML training suffer from the data
movement bottleneck

Goal: Understand the capabilities of popular distributed Stochastic Gradient Descent (SGD)
algorithms on real-world Processing-In-Memory (PIM) systems to accelerate distributed
ML training workloads

Contributions:
* Implementation, analysis, and training of linear ML models on two large datasets using
distributed SGD algorithms on a real-world PIM system (i.e., UPMEM)
* Demonstrate scalability challenges of the UPMEM PIM system
 Discuss implications for future PIM hardware design
 Highlight the need for a shift towards an algorithm-hardware codesign

Evaluation:
* Comparison of the UPMEM PIM to state-of-the-art CPU and GPU
* YFCC100M-HNfc6 dataset: UPMEM PIM is up to 1.9x/3.2x faster than the CPU/GPU
* Criteo 1TB Click Logs dataset: UPMEM PIM is up to 9.3x/10.7x faster than the CPU/GPU
* Scalability challenges of the UPMEM PIM
* YFCC100M-HNfc6 (Criteo 1TB Click Logs) dataset: Speedup of 7.4x (3.9x) while the
achieved test accuracy (AUC score) decreases from 95.5% (0.74) to 92.2% (0.72)
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Models & ML Training

* Two of the most commonly trained linear binary
classification models:
* Logistic Regression (LR)
 Support Vector Machines (SVM)

* The goal of machine learning (ML) training is to find an

optimal ML model by minimizing an objective function over
a training dataset

* Regularization techniques are used

* Prevent overfitting on the training dataset
* Control the model complexity
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Algorithms

* Stochastic Gradient Descent (SGD) is perhaps the most
important and commonly deployed optimization algorithm for
modern ML training

* SGD is the main building block of most distributed optimization
algorithms

* Variants of SGD such as mini-batch SGD allow for parallelization
by batching the training samples in each iteration
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Distributed Optimization Algorithms

Decentralized Topology

Popular centralized optimization algorithms:

- Mini-batch SGD with Model Averaging (MA-SGD)

- Mini-batch SGD with Gradient Averaging (GA-SGD)

- Distributed Alternating Direction Method of Multipliers (ADMM)
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2,560-DPU UPMEM PIM System

== B - 20 UPMEM DIMMs
. i ' of 16 chips each
= (40 ranks)

S

P'm@%}  Dual x86 socket
« UPMEM DIMMs

coexist with regular
DDR4 DIMMs

- 2 memory
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- 2 conventional
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one channel of
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UPMEM PIM System Architecture
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Key Problem

| 1

The data movement bottleneck is a key limiter of
large-scale Machine Learning training

Data Movement



Motivation

Processing-In-Memory is a promising solution
to perform large-scale ML Training

@ How do we start?

By identifying key characteristics covering the design space
of both hardware and optimization algorithms

SAFARI
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Motivation
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The communication-efficient ADMM optimization
algorithm is attractive for distributed ML training
on the UPMEM PIM system
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UPMEM PIM System Implementation
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UPMEM PIM System Implementation

* Task Parallelism:
- Every DPU is a worker
- Every DPU uses 16 tasklets collaboratively to implement
the mini-batch SGD optimizer
- Features of the training samples & model parameters are
evenly distributed among tasklets

* LUT-based Methods:
- Training of Logistic Regression involves computing the exponential
function to evaluate the sigmoid
- UPMEM PIM system does not support transcendental functions
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System Configurations

* UPMEM PIM System:
- 2X Intel Xeon Silver 4215
8-core processor (@ 2.50GHz
- 2560 DPUs (@ 350 MHz
- 20x8 GB UPMEM PIM modules

* CPU Baseline System:
- 2x AMD EPYC 7742
64-core processor (@ 2.25GHz

* GPU Baseline System:
- 2x Intel Xeon Gold 5118
12-core processor (@ 2.30GHz
- 1x NVIDIA A100 (PCle, 80 GB)

SA FA RI Image source: https://gzhls.at/i/35/19/2113519-13.jpg (AMD EPYC), https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/atoo/nvidia-a100-80-gb-og- 1 7
social-1200x 630.jpg (NVIDIA A100)
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Baseline Implementations

* CPU Baseline Implementation:
- Implementations use PyTorch
- We implement MA-SGD, GA-SGD, and ADMM, to train LR and
SVM models, using the optimizers and communication libraries
provided by PyTorch
- Each CPU thread is a worker

* GPU Baseline Implementation:
- Implementations use PyTorch
- We only implement mini-batch SGD on the GPU

- For fair comparison, we do not use a cluster of GPUs for our baseline
because the UPMEM PIM system is a single-server node
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Experiment Implementation Details
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Abstract

Modern Machine Learning (ML) training on large-scale datasets
is a very time-consuming workload. It relies on the optimization
algorithm Stochastic Gradient Descent (SGD) due to its effectiveness,
simplicity, and generalization performance (i.e., test performance
on unseen data). Processor-centric architectures (e.g., CPUs, GPUs)
commonly used for modern ML training workloads based on SGD
are bottlenecked by data movement between the processor and
memory units due to the poor data locality in accessing large train-
ing datasets. As a result, processor-centric architectures suffer from
low performance and high energy consumption while executing
ML training workloads. Processing-In-Memory (PIM) is a promising
solution to alleviate the data movement bottleneck by placing the

main building block of most centralized and decentralized optimiza-
tion algorithms that have been introduced to accommodate the con-
tinuously increasing demand for scalability and high-performance
training of ML models on large-scale datasets.

Training ML models on growing datasets [55, 190, 193] is a time-
consuming task that demands both high computational power and
memory bandwidth [42, 74, 75, 81]. The low data reuse during ML
training on large-scale datasets leads to poor data locality. As a
result, processor-centric architectures (e.g., CPU, GPU) commonly
used by the ML community repeatedly need to move training sam-
ples between the processor and off-chip memory. This not only
degrades performance [96] but is also a major source of the overall
system’s energy consumption [17]. This phenomenon is referred to

https://arxiv.org/pdf/2404.07164v2
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PIM Performance Comparison
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PIM Performance Comparison

The UPMEM PIM is a viable alternative to the CPU and the GPU
for training small dense models on large-scale datasets
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PIM Performance Breakdown

The UPMEM PIM is less suitable for ML models and optimization
algorithms that require frequent communication and synchronization
between PIM and the parameter server
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Criteo
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PIM Strong Scaling

Nr. DPUs
T 256 B 512 B 1024 B 2048

The scalability potential of the UPMEM PIM for training
high-dimensional sparse models is limited by its lack of
direct inter-DPU communicatipn
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Abstract

Modern Machine Learning (ML) training on large-scale datasets
is a very time-consuming workload. It relies on the optimization
algorithm Stochastic Gradient Descent (SGD) due to its effectiveness,
simplicity, and generalization performance (i.e., test performance
on unseen data). Processor-centric architectures (e.g., CPUs, GPUs)
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memory units due to the poor data locality in accessing large train-
ing datasets. As a result, processor-centric architectures suffer from
low performance and high energy consumption while executing
ML training workloads. Processing-In-Memory (PIM) is a promising
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main building block of most centralized and decentralized optimiza-
tion algorithms that have been introduced to accommodate the con-
tinuously increasing demand for scalability and high-performance
training of ML models on large-scale datasets.

Training ML models on growing datasets [55, 190, 193] is a time-
consuming task that demands both high computational power and
memory bandwidth [42, 74, 75, 81]. The low data reuse during ML
training on large-scale datasets leads to poor data locality. As a
result, processor-centric architectures (e.g., CPU, GPU) commonly
used by the ML community repeatedly need to move training sam-
ples between the processor and off-chip memory. This not only
degrades performance [96] but is also a major source of the overall
system’s energy consumption [17]. This phenomenon is referred to

https://arxiv.org/pdf/2404.07164v2
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Implications for PIM Hardware Design

* Our evaluation demonstrates that a real-world PIM system
(i.e., UPMEM) can be a viable alternative to state-of-the-art
processor-centric architectures for many distributed ML training
workloads

* We argue that future PIM architectures should add interconnects
and/or shared memory among PIM processing units
* Enables implementation of decentralized optimization algorithms
* Decentralized parallel SGD algorithms are a promising solution to
overcome scalability challenges of the real-world PIM system

* We posit that a shift towards an algorithm-hardware codesign
perspective is necessary in the context of ML training using PIM
due to the high complexity of the design space
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Conclusion

* We evaluate and train ML models on large-scale datasets with centralized
optimization algorithms on a real-world PIM system (i.e., UPMEM)

* We show that it is important to carefully choose the distributed optimization
algorithm that best fits the real-world PIM system and analyze tradeoffs

* We demonstrate that commercial general-purpose PIM systems can be a viable
alternative to state-of-the-art processor-centric architectures (e.g., CPU, GPU)
for many distributed ML training workloads on large-scale datasets

* Our results demonstrate the necessity of adjust PIM architectures to enable
decentralized parallel SGD algorithms to overcome scalability challenges for
many distributed ML training workloads

* Future work:
- Larger models: Deep neural networks, large language models, ...
- New compute paradigms and accelerators
- Rethinking the full stack
- Algorithm-hardware codesign
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Mini-batch SGD with Model Averaging (MA-SGD)
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Mini-batch SGD with Gradient Averaging (GA-SGD)

o Mini-batch SGD
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Alternating Direction Method of Multipliers (ADMM)

Computation of
Global Model &
Auxiliary Variables
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2,560-DPU UPMEM PIM System
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PIM Programming and Execution Model

UPMEM PIM Chip
* DPU programs are writtenin C

- UPMEM SDK
Bank - Runtime libraries
DRAM A . .
(MRAM) g;T\XB * Execution model of a DPU is
based on the Single-Program-
High Bandwidth Multiple-Data (SPMD) paradigm
Internal Data Bus
DRAM Processing . Eacth [I)<IIDUt canrun up to
Unit (DPU) 4 tasiiets
- Assigned statically at
Working Memory compile-time
Memory (WRAM) 64KB
Fine-grained » Tasklets assigned to the same

Multi-threaded Pipeline

DPU share MRAM and WRAM
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UPMEM PIM System Implementation

* Data Partitioning:
- For both MA-SGD and ADMM, each DPU’s partition consists of multiple
mini-batches of the training data
- For GA-SGD, each partition consists of a fraction of all the mini-batches of
the training data

* Synchronization:

- For MA-SGD, each DPU only processes one mini-batch from its assigned
training data partition and updates its local model before synchronization
on the host

- For GA-SGD, each DPU computes intermediate gradients from its
assigned fraction of one mini-batch before synchronization on the host

- For ADMM, each DPU processes all assigned mini-batches and updates its
local model for every mini-batch
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Experiment Implementation Details

e Data Format:

- UPMEM PIM system uses quantized training data and models
both represented 32-bit fixed-point format
-> Floating-point operations are not natively supported
=> Quantization is necessary to enable fixed-point operations

- Baseline implementations use the FP32 floating-point format

-> Natively supported
-> Higher accuracy
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Experiment Implementation Details

* Regularization:
- Apply standard regularization techniques
- Achieve lower generalization errors

* Batch Size:
- For each experiment, we tune the batch size to ensure
- High accuracy
- High performance in terms of total training time
- Fair comparison of algorithms & architectures
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Experiment Implementation Details

* Hyperparameter Tuning:
For all evaluated workloads, we tune the learning rates and

regularization terms
All tested hyperparameters along with our complete codebase

are open source at
https://github.com/CMU-SAFARI/PIM-Opt

 Datasets:
YFCC100M-HNfc6: Small and dense model

Criteo 1 TB Click Logs: Large and sparse model

42
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System Configurations

UPMEM PIM System

Processor

2x Intel Xeon Silver 4215 8-core processor @ 2.50GHz

Main Memory

256 GB total capacity
4x64 GB DDR4 (RDIMMs)

PIM-Enabled

160 GB total capacity
20x8 GB UPMEM PIM modules,
2560 DPUs,

Memory 2 ranks per module, 8 chips per rank, 8 DPUs per chip
350 MHz DPU clock frequency
CPU Baseline System
Processor 2x AMD EPYC 7742 64-core processor @ 2.25GHz

Main Memory

1TB total capacity
32x32 GB DDR4 (RDIMMs)

GPU Baseline System

Processor

2x Intel Xeon Gold 5118 12-core processor @ 2.30GHz

Main Memory

512 GB total capacity
16x32 GB DDR4 (RDIMM:s)

GPU

1x NVIDIA A100 (PCle, 80 GB)
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Experiment Implementation Details

* Hyperparameter Tuning:
- For all evaluated workloads, we tune the learning rates and
regularization terms
- All tested hyperparameters along with our complete codebase

are open source at
https://github.com/CMU-SAFARI/PIM-Opt

* Initialization:
- Forall implementations, the training data & model parameters
initially reside in main memory
- For UPMEM PIM system and experiments, the
initialization phase includes transferring the data from the main
memory to the PIM DRAM bank and the
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Datasets

* YFCC100M-HNfc6:
- Popular multimedia dataset that consists of 97M samples
- Each sample has 4096 floating-point dense features and a

collection of tags
- We randomly sample and shuffle data points and turn this

subset into a binary classification task
- The total size of model parameters is 4 KB

SAFARI
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Datasets

Criteo 1TB Click Logs (Criteo):

Criteo is a popular click-through rate prediction dataset that
consists of 4.37 b high-dimensional sparse samples with 1M
features

Each data point consists of label and 39 categorical

While data points only consist of 40 parameters, the
models/gradients consist of 1M variables

The dataset is highly imbalanced

We randomly sample and shuffle the dataset

We use the area under the receiver operating characteristics
curve (AUC score) to assess the generalization capabilities of
models trained on Criteo

The total size of the model parameters is 4MB
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Datasets Configurations

YFCC100M-HNfcé6

# Workers # Training samples Training size (GB) # Test samples Test size (GB)
256 DPUs 851’968 13.96 212°992 3.49
512 DPUs 1°703°936 27.92 425’984 6.98
1024 DPUs 3°407°872 55.83 851’968 13.96
2°048 DPUs 6°815°744 111.67 1’703°936 27.92
128 CPU threads 6°815'744 111.67 1’703°936 27.92
1 GPU 6°815°744 111.67 1’703°936 27.92

Criteo

# Workers # Training samples Training size (GB) # Test samples Test size (GB)
256 DPUs 50°331°648 8.05 178°236’537 28.52
512 DPUs 100°663°296 16.11 178236537 28.52
1’024 DPUs 201°326°592 32.21 178236537 28.52
2°048 DPUs 402°653°184 64.42 178236537 28.52
128 CPU threads 402°653°184 64.42 178236537 28.52
1 GPU 402°653’184 64.42 178°236°537 28.52

SAFARI
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PIM Performance Comparison
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* Difference in total training time between MA-SGD and ADMM is
significantly lower on the UPMEM PIM compared to the CPU

* GA-SGD is slower than ADMM for all configurations of LR, SVM, the
UPMEM PIM, and the CPU
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YFCC100M: Performance Comparison
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YFCC100M: Batch Size
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YFCC100M: Weak Scaling
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YFCC100M: Strong Scaling
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Criteo: PIM Performance Breakdown
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Criteo: PIM Performance Comparison
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Criteo: Batch Size
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Criteo: Weak Scaling
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