PIM-Opt

Demystifying Distributed Optimization Algorithms
on a Real-World Processing-In-Memory System

Steve Rhyner HaocongLuo Juan Gémez-Luna Mohammad Sadrosadati

Jiawei Jiang Ataberk Olgun Harshita Gupta Ce Zhang Onur Mutlu

SAFARI ETHziirich) CHICAGO

SAFARI Research Group

NVIDIA.

PIM-Opt: Summary

Problem: Modern machine learning (ML) training is a data-intensive workload and
processor-centric architectures commonly used for ML training suffer from the data
movement bottleneck

Goal: Understand the capabilities of popular distributed Stochastic Gradient Descent (SGD)
algorithms on real-world Processing-In-Memory (PIM) systems to accelerate distributed
ML training workloads

Contributions:
* Implementation, analysis, and training of linear ML models on two large datasets using
distributed SGD algorithms on a real-world PIM system (i.e., UPMEM)
* Demonstrate scalability challenges of the UPMEM PIM system
 Discuss implications for future PIM hardware design
 Highlight the need for a shift towards an algorithm-hardware codesign

Evaluation:
* Comparison of the UPMEM PIM to state-of-the-art CPU and GPU
* YFCC100M-HNfc6 dataset: UPMEM PIM is up to 1.9x/3.2x faster than the CPU/GPU
* Criteo 1TB Click Logs dataset: UPMEM PIM is up to 9.3x/10.7x faster than the CPU/GPU
* Scalability challenges of the UPMEM PIM
* YFCC100M-HNfc6 (Criteo 1TB Click Logs) dataset: Speedup of 7.4x (3.9x) while the
achieved test accuracy (AUC score) decreases from 95.5% (0.74) to 92.2% (0.72)

SAFARI https://github.com/CMU-SAFARI/PIM-Opt 2

https://github.com/CMU-SAFARI/PIM-Opt

Outline

Background
Motivation
UPMEM PIM System Implementation
Methodology
Evaluation & Key Results
Implications for PIM Hardware Design

Conclusion

SAFARI

Models & ML Training

* Two of the most commonly trained linear binary
classification models:
* Logistic Regression (LR)
 Support Vector Machines (SVM)

* The goal of machine learning (ML) training is to find an

optimal ML model by minimizing an objective function over
a training dataset

* Regularization techniques are used

* Prevent overfitting on the training dataset
* Control the model complexity

SAFARI 4

Algorithms

* Stochastic Gradient Descent (SGD) is perhaps the most
important and commonly deployed optimization algorithm for
modern ML training

* SGD is the main building block of most distributed optimization
algorithms

* Variants of SGD such as mini-batch SGD allow for parallelization
by batching the training samples in each iteration

SAFARI 5

Distributed Optimization Algorithms

Decentralized Topology

Popular centralized optimization algorithms:

- Mini-batch SGD with Model Averaging (MA-SGD)

- Mini-batch SGD with Gradient Averaging (GA-SGD)

- Distributed Alternating Direction Method of Multipliers (ADMM)

SAFARI

2,560-DPU UPMEM PIM System

== B - 20 UPMEM DIMMs
. i ' of 16 chips each
= (40 ranks)

S

P'm@%} Dual x86 socket
« UPMEM DIMMs

coexist with regular
DDR4 DIMMs

- 2 memory
controllers/socket
(3 channels each)

- 2 conventional
DDR4 DIMMSs on
one channel of
one controller

SAFARI 7

UPMEM PIM System Architecture

Host CPU

Core

Corel @ @ @ |Core

Memory
Controller Controller

Memory

DDR4
Channel

DDR4
Channel

UPMEM PIM Chip

Bank

DRAM Array
(MRAM) 64MB

|
Main Memory
Module

UPMEM PIM
Module

Internal Data Bus

High Bandwidth I

DRAM Processing

Unit (DPU)

cee Fine-grained
Multi-threaded Pipeline
~

TGN | Working Memory
Memory (WRAM) 64KB

SAFARI

Outline

Background
Motivation
UPMEM PIM System Implementation
Methodology
Evaluation & Key Results
Implications for PIM Hardware Design

Conclusion

SAFARI

Key Problem

| 1

The data movement bottleneck is a key limiter of
large-scale Machine Learning training

Data Movement

Motivation

Processing-In-Memory is a promising solution
to perform large-scale ML Training

@ How do we start?

By identifying key characteristics covering the design space
of both hardware and optimization algorithms

SAFARI

11

Motivation

| MA-SGD EEE GA-SGD I ADMM|£ 64X higher }

v

— — =

The communication-efficient ADMM optimization
algorithm is attractive for distributed ML training
on the UPMEM PIM system

SAFARI 12

Outline

Background
Motivation
UPMEM PIM System Implementation
Methodology
Evaluation & Key Results
Implications for PIM Hardware Design

Conclusion

SAFARI

UPMEM PIM System Implementation

Host-side UPMEM-side

Distribute Partitions of
Training Data to DPUs

>— DPU Set \ 4

¢ momen]| ((BpEanen.-(aaanonon

Inter-DPU Synchronization

|

Distribute Global Model » Updated Global Model
to DPUs

<€
SAFARI 14

UPMEM PIM System Implementation

* Task Parallelism:
- Every DPU is a worker
- Every DPU uses 16 tasklets collaboratively to implement
the mini-batch SGD optimizer
- Features of the training samples & model parameters are
evenly distributed among tasklets

* LUT-based Methods:
- Training of Logistic Regression involves computing the exponential
function to evaluate the sigmoid
- UPMEM PIM system does not support transcendental functions

SAFARI 15

Outline

Background
Motivation
UPMEM PIM System Implementation
Methodology
Evaluation & Key Results
Implications for PIM Hardware Design

Conclusion

SAFARI

System Configurations

* UPMEM PIM System:
- 2X Intel Xeon Silver 4215
8-core processor (@ 2.50GHz
- 2560 DPUs (@ 350 MHz
- 20x8 GB UPMEM PIM modules

* CPU Baseline System:
- 2x AMD EPYC 7742
64-core processor (@ 2.25GHz

* GPU Baseline System:
- 2x Intel Xeon Gold 5118
12-core processor (@ 2.30GHz
- 1x NVIDIA A100 (PCle, 80 GB)

SA FA RI Image source: https://gzhls.at/i/35/19/2113519-13.jpg (AMD EPYC), https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/atoo/nvidia-a100-80-gb-og- 1 7
social-1200x 630.jpg (NVIDIA A100)

https://gzhls.at/i/35/19/2113519-l3.jpg
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/nvidia-a100-80-gb-og-social-1200x630.jpg
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/nvidia-a100-80-gb-og-social-1200x630.jpg

Baseline Implementations

* CPU Baseline Implementation:
- Implementations use PyTorch
- We implement MA-SGD, GA-SGD, and ADMM, to train LR and
SVM models, using the optimizers and communication libraries
provided by PyTorch
- Each CPU thread is a worker

* GPU Baseline Implementation:
- Implementations use PyTorch
- We only implement mini-batch SGD on the GPU

- For fair comparison, we do not use a cluster of GPUs for our baseline
because the UPMEM PIM system is a single-server node

SAFARI 18

Experiment Implementation Details

PIM-Opt: Demystifying Distributed Optimization Algorithms
on a Real-World Processing-In-Memory System

Steve Rhyner! ~ Haocong Luo!

Juan Gémez-Luna?

Mohammad Sadrosadati!

Jiawei Jiang® Ataberk Olgun' Harshita Gupta! Ce Zhang* Onur Mutlu!

'ETH Zurich INVIDIA 3Wuhan University *#University of Chicago

Abstract

Modern Machine Learning (ML) training on large-scale datasets
is a very time-consuming workload. It relies on the optimization
algorithm Stochastic Gradient Descent (SGD) due to its effectiveness,
simplicity, and generalization performance (i.e., test performance
on unseen data). Processor-centric architectures (e.g., CPUs, GPUs)
commonly used for modern ML training workloads based on SGD
are bottlenecked by data movement between the processor and
memory units due to the poor data locality in accessing large train-
ing datasets. As a result, processor-centric architectures suffer from
low performance and high energy consumption while executing
ML training workloads. Processing-In-Memory (PIM) is a promising
solution to alleviate the data movement bottleneck by placing the

main building block of most centralized and decentralized optimiza-
tion algorithms that have been introduced to accommodate the con-
tinuously increasing demand for scalability and high-performance
training of ML models on large-scale datasets.

Training ML models on growing datasets [55, 190, 193] is a time-
consuming task that demands both high computational power and
memory bandwidth [42, 74, 75, 81]. The low data reuse during ML
training on large-scale datasets leads to poor data locality. As a
result, processor-centric architectures (e.g., CPU, GPU) commonly
used by the ML community repeatedly need to move training sam-
ples between the processor and off-chip memory. This not only
degrades performance [96] but is also a major source of the overall
system’s energy consumption [17]. This phenomenon is referred to

https://arxiv.org/pdf/2404.07164v2

SAFARI

19

https://arxiv.org/pdf/2404.07164v2

Outline

Background
Motivation
UPMEM PIM System Implementation
Methodology
Evaluation & Key Results
Implications for PIM Hardware Design

Conclusion

SAFARI

YFCC100M-HNfc6
Dataset

PIM Performance Comparison

| |
[= [

3

ﬂAA-SGD on the UPMEM PIM significantly outperforms

ADMM on the UPMEN Pit-and on tha)
e ADMM on the UP U exhibits

comparable performance for both LR and SVM

SAFARI

22

PIM Performance Comparison

The UPMEM PIM is a viable alternative to the CPU and the GPU
for training small dense models on large-scale datasets

SAFARI 23

PIM Performance Breakdown

The UPMEM PIM is less suitable for ML models and optimization
algorithms that require frequent communication and synchronization
between PIM and the parameter server

SAFARI 24

Criteo
Dataset

PIM Strong Scaling

Nr. DPUs
T 256 B 512 B 1024 B 2048

The scalability potential of the UPMEM PIM for training
high-dimensional sparse models is limited by its lack of
direct inter-DPU communicatipn

SAFARI

26

More in the Paper

PIM-Opt: Demystifying Distributed Optimization Algorithms
on a Real-World Processing-In-Memory System

Steve Rhyner! ~ Haocong Luo!

Juan Gémez-Luna?

Mohammad Sadrosadati!

Jiawei Jiang® Ataberk Olgun! Harshita Gupta! Ce Zhang* Onur Mutlu!

1ETH Zurich ~ 2NVIDIA

Abstract

Modern Machine Learning (ML) training on large-scale datasets
is a very time-consuming workload. It relies on the optimization
algorithm Stochastic Gradient Descent (SGD) due to its effectiveness,
simplicity, and generalization performance (i.e., test performance
on unseen data). Processor-centric architectures (e.g., CPUs, GPUs)
commonly used for modern ML training workloads based on SGD
are bottlenecked by data movement between the processor and
memory units due to the poor data locality in accessing large train-
ing datasets. As a result, processor-centric architectures suffer from
low performance and high energy consumption while executing
ML training workloads. Processing-In-Memory (PIM) is a promising
solution to alleviate the data movement bottleneck by placing the

*Wuhan University

4University of Chicago

main building block of most centralized and decentralized optimiza-
tion algorithms that have been introduced to accommodate the con-
tinuously increasing demand for scalability and high-performance
training of ML models on large-scale datasets.

Training ML models on growing datasets [55, 190, 193] is a time-
consuming task that demands both high computational power and
memory bandwidth [42, 74, 75, 81]. The low data reuse during ML
training on large-scale datasets leads to poor data locality. As a
result, processor-centric architectures (e.g., CPU, GPU) commonly
used by the ML community repeatedly need to move training sam-
ples between the processor and off-chip memory. This not only
degrades performance [96] but is also a major source of the overall
system’s energy consumption [17]. This phenomenon is referred to

https://arxiv.org/pdf/2404.07164v2

SAFARI

27

https://arxiv.org/pdf/2404.07164v2

Outline

Background
Motivation
UPMEM PIM System Implementation
Methodology
Evaluation & Key Results
Implications for PIM Hardware Design

Conclusion

SAFARI

Implications for PIM Hardware Design

* Our evaluation demonstrates that a real-world PIM system
(i.e., UPMEM) can be a viable alternative to state-of-the-art
processor-centric architectures for many distributed ML training
workloads

* We argue that future PIM architectures should add interconnects
and/or shared memory among PIM processing units
* Enables implementation of decentralized optimization algorithms
* Decentralized parallel SGD algorithms are a promising solution to
overcome scalability challenges of the real-world PIM system

* We posit that a shift towards an algorithm-hardware codesign
perspective is necessary in the context of ML training using PIM
due to the high complexity of the design space

SAFARI 29

Outline

Background
Motivation
UPMEM PIM System Implementation
Methodology
Evaluation & Key Results
Implications for PIM Hardware Design

Conclusion

SAFARI

Conclusion

* We evaluate and train ML models on large-scale datasets with centralized
optimization algorithms on a real-world PIM system (i.e., UPMEM)

* We show that it is important to carefully choose the distributed optimization
algorithm that best fits the real-world PIM system and analyze tradeoffs

* We demonstrate that commercial general-purpose PIM systems can be a viable
alternative to state-of-the-art processor-centric architectures (e.g., CPU, GPU)
for many distributed ML training workloads on large-scale datasets

* Our results demonstrate the necessity of adjust PIM architectures to enable
decentralized parallel SGD algorithms to overcome scalability challenges for
many distributed ML training workloads

* Future work:
- Larger models: Deep neural networks, large language models, ...
- New compute paradigms and accelerators
- Rethinking the full stack
- Algorithm-hardware codesign

SAFARI https://github.com/CMU-SAFARI/PIM-Opt 31

https://github.com/CMU-SAFARI/PIM-Opt

PIM-Opt

Demystifying Distributed Optimization Algorithms
on a Real-World Processing-ln-Memory System

ELE

NVIDIA

Backup Slides

Mini-batch SGD with Model Averaging (MA-SGD)

SAFARI

Mini-batch SGD with Gradient Averaging (GA-SGD)

o Mini-batch SGD

SAFARI

Alternating Direction Method of Multipliers (ADMM)

Computation of
Global Model &
Auxiliary Variables

SAFARI 36

2,560-DPU UPMEM PIM System

Main Memory

PIM-en
PIM-enabled Memory m .

ab Ied\

Main Memory

:‘.’ & o | L'
q 0 a, N 3 ~ 4
G Lo BN 4
P o ~ :
;

PIM-enabIe

20 UPMEM DIMMs of 16
chips each (40 ranks)

Dual x86 socket
UPMEM DIMMs coexist with
regular DDR4 DIMMs

- 2memory controllers/socket
(3 channels each)

- 2 conventional DDR4 DIMMs
on one channel of one
controller

SAFARI

PIM Programming and Execution Model

UPMEM PIM Chip
* DPU programs are writtenin C

- UPMEM SDK
Bank - Runtime libraries
DRAM A . .
(MRAM) g;T\XB * Execution model of a DPU is
based on the Single-Program-
High Bandwidth Multiple-Data (SPMD) paradigm
Internal Data Bus
DRAM Processing . Eacth [I)<IIDUt canrun up to
Unit (DPU) 4 tasiiets
- Assigned statically at
Working Memory compile-time
Memory (WRAM) 64KB
Fine-grained » Tasklets assigned to the same

Multi-threaded Pipeline

DPU share MRAM and WRAM

SAFARI 38

UPMEM PIM System Implementation

* Data Partitioning:
- For both MA-SGD and ADMM, each DPU’s partition consists of multiple
mini-batches of the training data
- For GA-SGD, each partition consists of a fraction of all the mini-batches of
the training data

* Synchronization:

- For MA-SGD, each DPU only processes one mini-batch from its assigned
training data partition and updates its local model before synchronization
on the host

- For GA-SGD, each DPU computes intermediate gradients from its
assigned fraction of one mini-batch before synchronization on the host

- For ADMM, each DPU processes all assigned mini-batches and updates its
local model for every mini-batch

SAFARI 39

Experiment Implementation Details

e Data Format:

- UPMEM PIM system uses quantized training data and models
both represented 32-bit fixed-point format
-> Floating-point operations are not natively supported
=> Quantization is necessary to enable fixed-point operations

- Baseline implementations use the FP32 floating-point format

-> Natively supported
-> Higher accuracy

SAFARI 40

Experiment Implementation Details

* Regularization:
- Apply standard regularization techniques
- Achieve lower generalization errors

* Batch Size:
- For each experiment, we tune the batch size to ensure
- High accuracy
- High performance in terms of total training time
- Fair comparison of algorithms & architectures

SAFARI 41

Experiment Implementation Details

* Hyperparameter Tuning:
For all evaluated workloads, we tune the learning rates and

regularization terms
All tested hyperparameters along with our complete codebase

are open source at
https://github.com/CMU-SAFARI/PIM-Opt

 Datasets:
YFCC100M-HNfc6: Small and dense model

Criteo 1 TB Click Logs: Large and sparse model

42

SAFARI

https://github.com/CMU-SAFARI/PIM-Opt

System Configurations

UPMEM PIM System

Processor

2x Intel Xeon Silver 4215 8-core processor @ 2.50GHz

Main Memory

256 GB total capacity
4x64 GB DDR4 (RDIMMs)

PIM-Enabled

160 GB total capacity
20x8 GB UPMEM PIM modules,
2560 DPUs,

Memory 2 ranks per module, 8 chips per rank, 8 DPUs per chip
350 MHz DPU clock frequency
CPU Baseline System
Processor 2x AMD EPYC 7742 64-core processor @ 2.25GHz

Main Memory

1TB total capacity
32x32 GB DDR4 (RDIMMs)

GPU Baseline System

Processor

2x Intel Xeon Gold 5118 12-core processor @ 2.30GHz

Main Memory

512 GB total capacity
16x32 GB DDR4 (RDIMM:s)

GPU

1x NVIDIA A100 (PCle, 80 GB)

SAFARI

Experiment Implementation Details

* Hyperparameter Tuning:
- For all evaluated workloads, we tune the learning rates and
regularization terms
- All tested hyperparameters along with our complete codebase

are open source at
https://github.com/CMU-SAFARI/PIM-Opt

* Initialization:
- Forall implementations, the training data & model parameters
initially reside in main memory
- For UPMEM PIM system and experiments, the
initialization phase includes transferring the data from the main
memory to the PIM DRAM bank and the

SAFARI 44

https://github.com/CMU-SAFARI/PIM-Opt

Datasets

* YFCC100M-HNfc6:
- Popular multimedia dataset that consists of 97M samples
- Each sample has 4096 floating-point dense features and a

collection of tags
- We randomly sample and shuffle data points and turn this

subset into a binary classification task
- The total size of model parameters is 4 KB

SAFARI

45

Datasets

Criteo 1TB Click Logs (Criteo):

Criteo is a popular click-through rate prediction dataset that
consists of 4.37 b high-dimensional sparse samples with 1M
features

Each data point consists of label and 39 categorical

While data points only consist of 40 parameters, the
models/gradients consist of 1M variables

The dataset is highly imbalanced

We randomly sample and shuffle the dataset

We use the area under the receiver operating characteristics
curve (AUC score) to assess the generalization capabilities of
models trained on Criteo

The total size of the model parameters is 4MB

SAFARI

Datasets Configurations

YFCC100M-HNfcé6

Workers # Training samples Training size (GB) # Test samples Test size (GB)
256 DPUs 851’968 13.96 212°992 3.49
512 DPUs 1°703°936 27.92 425’984 6.98
1024 DPUs 3°407°872 55.83 851’968 13.96
2°048 DPUs 6°815°744 111.67 1’703°936 27.92
128 CPU threads 6°815'744 111.67 1’703°936 27.92
1 GPU 6°815°744 111.67 1’703°936 27.92

Criteo

Workers # Training samples Training size (GB) # Test samples Test size (GB)
256 DPUs 50°331°648 8.05 178°236’537 28.52
512 DPUs 100°663°296 16.11 178236537 28.52
1’024 DPUs 201°326°592 32.21 178236537 28.52
2°048 DPUs 402°653°184 64.42 178236537 28.52
128 CPU threads 402°653°184 64.42 178236537 28.52
1 GPU 402°653’184 64.42 178°236°537 28.52

SAFARI

47

PIM Performance Comparison

[1.5x higher] —e— MASGD = GA-SGD -+ ADMM
. ~Tom

= —i
o [y 97
o~ | 96 |
b 05 | h h
> : 8x hich 94 H -4 :) J
- | ~ 921 1,
: § 1 1 1 1 1
8 0 200 400 600/800 1000 1200 00 200 300 400 500 600 700 800
&, 97 I 97 |
P—

D 96 : o= Last epoch 96 i y 4-5X hlgher J
nilao 95 I Test Accuracy: 96.51% 95 } i
0 @) 94 F I Finishes at 3761s i I
P I 94 | 1

93 i 93 1 |

1]]]]] | i I L |]]
0 200 400 600 800 1000 1200 0O 100 200 300 400 500 600 700 800

Total Training Time (s)

* Difference in total training time between MA-SGD and ADMM is
significantly lower on the UPMEM PIM compared to the CPU

* GA-SGD is slower than ADMM for all configurations of LR, SVM, the
UPMEM PIM, and the CPU

SAFARI 48

YFCC100M: Performance Comparison

—eo— MA-SGD GA-SGD —+— ADMM —+— mini-batch SGD
LR SVM
97 | 97 I
96 I 4 96 &
- 95 | 95
= o4t 94 |
~ B3t 93 |
Q\ 92 | 92
— 1 1 1 1 | 1 1 | 1 1 1 1
> 0 50 100 150 20 250 300 0 50 100 150 200 250 300
S 97 | 97 }
© 96 {’ = —e —*——1 96 f-“ - =S 2
.. = Last epoch i Last epoch
- o a5 Test'Accuracy: 96.51% o5 t Test'Accuracy: 96.51%
J N Finishes at 3761s | Finishes at 3731s
o Y 94
< 93 i 1 1 L | 1 1 93 ’ 1 1 | 1 1 1
1;'; 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Q 97 | 97 |
- o 96 96 | W—‘—‘
o 95 95
O oat 94 -
93 93
] 1 1 1 1 1 1 1 1 | 1 1 1 |
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Total Training Time (s)

SAFARI

YFCC100M: Batch Size

1000
800
600
400
200

Total Training
Time (s)

o

O O
Ul O

O
w

Test Accuracy (%)
O O
N NN

SAFARI

SVM MA-SGD

64

300

200

100

BN CPU B PIM

SVM GA-SGD

4K 8K 16K 32K

4K 8K 16K 32K
Batch Size

150

100

50

LR ADMM

64

64

50

YFCC100M: Weak Scaling

Nr. DPUs
B 256 W 512 B 1024 I 2048

LR (Weak Scaling) SVM (Weak Scaling)

N
o
o

Time (s)
|—I
o
o

Total Training

97.0F
96.0
95.0
94.0F

Test
Accuracy (%)

©
w
o

MA-SGD GA-SGD ADMM MA-SGD GA-SGD ADMM
Optimization Algorithm

SAFARI 51

YFCC100M: Strong Scaling

/1 256 EEE 512

Nr. DPUs

BN 1024 W 2048

LR (Strong Scaling)

SVM (Strong Scaling)

150}

Total Training
Time (s)
=
o
o

o

(%))
o

L_L_h

©
o
o

Test
Accuracy (%)

©
=
o

95.0t
94.0t
93.0f
920

MA-SGD GA-SGD ADMM

SAFARI

MA-SGD GA-5GD ADMM
Optimization Algorithm

52

Criteo: PIM Performance Breakdown

B MA-SGD [GA-SGD e ADMM

LR

SVM

104L

102L

100_

Per Global Epoch
Training Time (s)

-2
10 Comm./Sync. PIM PIM Data Total
Para. Server Comp. Movement

SAFARI

Comm./Sync. PIM PIM Data Total
Para. Server Comp. Movement

53

Criteo: PIM Performance Comparison

AUC Score

PIM

CPU

0.75
0.74
0.73
0.72
0.71
0.70
0.69

0.76
0.75
0.74
0.73
0.72

SAFARI

Total Training Time (s)

—e— MA-SGD GA-SGD —+— ADMM

LR SVM
= 0.75 F
B 0.74 |
B 0.73

0.72

B 0.71
B 0.70 |
- i i i i-10.69 E i i i i
0 1000 2000 3000 4000 0 1000 2000 3000 4000
B 0.76 |
I o . == 0.75 —%::::rvﬁ‘
B 0.74 |
B 0.73 F
A
- |] |] 072 -] |] |
0 1000 2000 3000 4000 0 1000 2000 3000 4000

54

Criteo: Batch Size

SVM MA-SGD

6000
5000
4000
3000
2000
1000

ining
Time (s)

Total Tra

0.76
0.75
0.74
0.73
0.72
0.71

AUC Score

SAFARI

6000
5000
4000
3000
2000
1000

0.76
0.75
0.74
0.73
0.72

B CPU EE PIM

SVM GA-SGD

131K 262K 524K 1048K

131K 262K 524K 1048K
Batch Size

2500
2000
1500
1000

500

0.75
0.74
0.73
0.72
0.71

LR ADMM

1K

2K

4K

8K

55

Criteo: Weak Scaling

Nr. DPUs

T 256 B 512 B 1024 B 2048
o LR (Weak Scaling) SVM (Weak Scaling)
c 6000 :
£Ww
|'-£ . 4000
— £ 2000
g -
s 0

AUC Score
o
~J
N

MA-SGD GA-SGD ADMM MA-SGD GA-SGD ADMM
Optimization Algorithm

SAFARI 56

	Default Section
	Slide 1
	Slide 2: PIM-Opt: Summary
	Slide 3: Outline
	Slide 4: Models & ML Training
	Slide 5: Algorithms
	Slide 6: Distributed Optimization Algorithms
	Slide 7: 2,560-DPU UPMEM PIM System
	Slide 8: UPMEM PIM System Architecture
	Slide 9: Outline
	Slide 10: Key Problem
	Slide 11: Motivation
	Slide 12: Motivation
	Slide 13: Outline
	Slide 14: UPMEM PIM System Implementation
	Slide 15: UPMEM PIM System Implementation
	Slide 16: Outline
	Slide 17: System Configurations
	Slide 18: Baseline Implementations
	Slide 19: Experiment Implementation Details
	Slide 20: Outline
	Slide 21: YFCC100M-HNfc6 Dataset
	Slide 22: PIM Performance Comparison
	Slide 23: PIM Performance Comparison
	Slide 24: PIM Performance Breakdown
	Slide 25: Criteo Dataset
	Slide 26: PIM Strong Scaling
	Slide 27: More in the Paper
	Slide 28: Outline
	Slide 29: Implications for PIM Hardware Design
	Slide 30: Outline
	Slide 31: Conclusion
	Slide 32
	Slide 33: Backup Slides
	Slide 34: Mini-batch SGD with Model Averaging (MA-SGD)
	Slide 35: Mini-batch SGD with Gradient Averaging (GA-SGD)
	Slide 36: Alternating Direction Method of Multipliers (ADMM)
	Slide 37: 2,560-DPU UPMEM PIM System
	Slide 38: PIM Programming and Execution Model
	Slide 39: UPMEM PIM System Implementation
	Slide 40: Experiment Implementation Details
	Slide 41: Experiment Implementation Details
	Slide 42: Experiment Implementation Details
	Slide 43: System Configurations
	Slide 44: Experiment Implementation Details
	Slide 45: Datasets
	Slide 46: Datasets
	Slide 47: Datasets Configurations
	Slide 48: PIM Performance Comparison
	Slide 49: YFCC100M: Performance Comparison
	Slide 50: YFCC100M: Batch Size
	Slide 51: YFCC100M: Weak Scaling
	Slide 52: YFCC100M: Strong Scaling
	Slide 53: Criteo: PIM Performance Breakdown
	Slide 54: Criteo: PIM Performance Comparison
	Slide 55: Criteo: Batch Size
	Slide 56: Criteo: Weak Scaling

