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Executive Summary

Problem:
* Read disturbance in DRAM (e.g. RowHammer) worsens with technology node scaling
» Existing solutions perform preventive refresh, inducing significant overheads

Motivation: Reducing preventive refresh latency to reduce its overheads.
* No prior work studies i) the effect of preventive refresh latency on RowHammer or
ii) the implications of reducing preventive refresh latency on existing solutions

Goal:
 Tounderstand the impact of preventive refresh latency on RowHammer

* To leverage this understanding to reduce the overheads of existing solutions

Experimental Characterization: 388 DDR4 DRAM chips from three major vendors
* The latency of a vast majority of preventive refresh can be significantly reduced
without jeopardizing the data integrity of a DRAM chip

PaCRAM: Partial Charge Restoration for Aggressive Mitigation
* Reduces the latency of preventive refreshes issued by the existing solution
« Adjusts the aggressiveness of the existing solution

Evaluation: By reducing the existing solutions’ performance and energy overheads,
improves system performance and energy efficiency with small additional area cost
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DRAM Organization

Memory
Channel

(|

Memory
Controller

}\

-

CPU

)

SAFARI (> kasirga

A
\Sense Amplifier

[Hassan+, MICRO’21]



DRAM Access
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DRAM Cell Leakage

Each cell encodes information in leaky capacitors
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Stored data is corrupted if too much charge leaks
(i.e., the capacitor voltage degrades too much)
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DRAM Refresh
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Periodic refreshes preserve stored data
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RowHammer Vulnerability

4 DRAM Bank )

x Row O Victim Row

x Row 1 x Victim Row
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Repeatedly opening (activating) and closing (precharging)
a DRAM row causes RowHammer bitflips in nearby cells
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RowHammer Bitflips
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RowHammer-Preventive Refresh
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Preventively refreshing potential victim rows
mitigates RowHammer bitflips
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A Closer Look

Charge Charge
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Preventive Refresh has a non-negligible latency
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Problem and Motivation
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Problem

« RowHammer worsens as DRAM chip density increases

 RowHammer bitflips occur at much lower activation counts

The minimum activation count needed to induce the first bitflip (Ngry)

>

139K 9.6K <1K
[Kim+, ISCA'14] [Kim+, ISCA'20] [Luo+, ISCA'23]

Mitigation mechanisms against RowHammer attacks
induce higher overheads as RowHammer worsens
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Reducing Mitigation Overhead

Reduced Charge Restoration Latency
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Reducing Charge Restoration Latency
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The charge of the cell are partially restored
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Partial Charge Restoration

Partial charge restoration
might affect the voltage level of the cell
and thus affect the RowHammer vulnerability

To robustly perform partial charge restoration,
we need to understand the DRAM chip’s limit
with rigorous characterization
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Our Goal

To understand the impact of
charge restoration latency on RowHammer

To leverage this understanding to
reduce the overheads of existing solutions
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Experimental Characterization of Real DRAM Chips
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DRAM Testing Infrastructure

e DRAM Bender™ on a Xilinx Alveo U200

FPGA Board
(programmed with DRAM Bender)
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Fine-grained control over DRAM commands,
timing parameters (£1.5ns), and temperature (£0.5°C)

— *0Olgun et al., TCAD, 2023
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https://github.com/CMU-SAFARI/DRAM-Bender

Tested DRAM Chips

388 DDR4 DRAM chips from SK Hynix, Micron, and Samsung

Chinb Mfr Module  #Chips Form Die | Die Chip Date
P : IDs (#Modules) Factor Density Rev. Org. Code
HO 8 (1) SO-DIMM 4Gb M x8 N/A

HI 8 (1) SO-DIMM 4Gb X x8 N/A

H2 8 (1) SO-DIMM 4Gb A x8 N/A

Mir. H H3 32 (1) R-DIMM 8Gb M x4 N/A
(SK Hynix)| H4-5 32 (2) R-DIMM 8Gb D x8 2048
H6 32 (1) R-DIMM 8Gb A x4 N/A

H7-8 32 (2) U-DIMM 16Gb C x8 2136

MO-1-2 48 (3) R-DIMM  8Gb B | x4 N/A

M3 16 (1) SO-DIMM 16Gb ' F | x8 2237

Mfr. M M4 4(1) SO-DIMM 16Gb E x16 2046
(Micron) M5 32 (1) R-DIMM 16Gb E x4 2014
M6 4(1) SO-DIMM 16Gb B xI16 2126

SO-1 32(2) U-DIMM  4Gb F T x8 N/A

S2-3-4 24 (3)  SO-DIMM = 4Gb E ' x8 1708

S5 4(1) SO-DIMM  4Gb C ' x16 N/A

Mifr. S S6-7-8-9 32 (4) U-DIMM 8Gb D x8 2110
(Samsung) S10 16 (1) R-DIMM  8Gb C x8 1809
S11 8 (1) R-DIMM  8Gb B | x8 2052

S12 8 (1) U-DIMM 8Gb A x8 2212

S13 8 (1) U-DIMM 16Gb B x8 23I5
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Key Takeaway from Real Chip Experiments

Charge restoration latency
can be significantly reduced
for a vast majority of preventive refreshes
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Experiment Algorithm
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RowHammer Vulnerability Metric

Normalized RowHammer Threshold

Ngpy with Partial Charge Restoration

Normpy =
RH Npy with Full Charge Restoration
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Effect of Partial Charge Restoration
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Effect of Partial Charge Restoration
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Charge restoration latency
can be significantly reduced
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Repeated Partial Charge Restorations

Partial Charge Restoration causes
cells to be partially restored

Repeated Partial Charge Restorations

might induce bitflips
N Partial
1Initialize 7 Charge 1 RowHammer ];:ltl;(:k t—’
Restorations: Ref b ' IIps |time
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Repeated Partial Charge Restorations
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Repeated Partial Charge Restorations
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Partial charge restoration
can be consecutively performed many times
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Repeated Partial Charge Restorations
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After 15K/15K/1K partial charge restoration,
a single full charge restoration is needed
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Key Takeaway from Real Chip Experiments

Charge restoration latency
can be significantly reduced
for a vast majority of preventive refreshes
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Outline

PaCRAM: Partial Charge Restoration for Aggressive Mitigation
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. Partial Charge Restoration for
PaCRAM: Aggressive Mitigation

* Key Experimental Takeaway: Charge restoration latency can be
significantly reduced for a vast majority of preventive refreshes

* Key Idea: Reduce preventive refresh overhead
by reducing charge restoration latency of preventive refreshes

 PaCRAM: Partial Charge Restoration for Aggressive Mitigation
* Reduces the latency of preventive refreshes issued by the existing solution
* Configures the existing solution with the reduced RowHammer threshold

* Guarantees that any victim is not refreshed by more than a safe number of
consecutive partial charge restorations

PaCRAM significantly reduces the performance
and energy overhead of existing solutions
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. Partial Charge Restoration for
PaCRAM: Aggressive Mitigation

* PaCRAM is implemented in the memory controller

Reduced DRAM Commands, Address
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Evaluation Methodology

* Cycle-level simulations using Ramulator 2.0 [Luo+, CAL 2023]

 System Configuration:
I or 4 cores, 3.2GHz clock frequency,

4-wide 1ssue, 128-entry instruction window

DDRS5, 1 channel, 2 rank, 8 bank groups,

2 banks/bank group, 64K rows/bank

64-entry read and write requests queues,

Memory Ctrl. Scheduling policy: FR-FCFS [228, 229]
Address mapping: MOP [230]

Last-Level Cache  2MB per core

Processor

DRAM

 Workloads: 62 single-core and 60 four-core
multiprogrammed workloads from 5 benchmark suites

* Npy: {1K, 512, 256, 128, 64, 32} hammers

The minimum hammer count needed to induce the first bitflip
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Configurations

e Paired with 5 state-of-the-art solutions
« PARA [Kim+, [SCA'14]
 RFM [JEDEC 2020]
* PRAC [JEDEC 2024]
* Hydra [Qureshi+, [SCA'22]
e Graphene [Park+, MICRO’20]

* Configured using experimental characterization data

MIfrrS = PaCRAM-S Charge Restoration Latency
M fl‘. H 9 Pa C RAM = H Charge Restoration Latency
M fl". M 9 Pa C RAM - M Charge Restoration Latency
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Configurations

e Paired with 5 state-of-the-art solutions
« PARA [Kim+, [SCA'14]
 RFM [JEDEC 2020]
* PRAC [JEDEC 2024]
* Hydra [Qureshi+, [SCA'22]
e Graphene [Park+, MICRO’20]

* Configured using experimental characterization data

Mfr.S = PaCRAM-S 55%
Mfr.H - PaCRAM-H 64%
Mfr. M > PaCRAM-M EZE} 82%
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Implication on Future Solutions

PaCRAM's benefits
 PARA L 1anease as Npy reduces
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Implication on Future Solutions

16.28% 2.87%
Speedup Speedup

PaCRAM significantly reduces (11% on average)
the performance overhead of existing solutions

3.16% 6.77%
Speedup Speedup
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Implication on Future Solutions

18.10% 14.71% 1.96%
Reduction Reduction Reduction

PaCRAM significantly reduces (9% on average)
the energy overhead of existing solutions

2.66% 5.55%
Reduction Reduction
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More in the Extended Version

* Effect of partial charge restoration on
* Lowest observed Ny of DRAM modules
* RowHammer Bit-Error-Rate
« Half-Double access pattern
* Data retention time

* Combined effect of partial charge restoration and
temperature

* Algorithms and details of our experiments

* Detailed implementation of PaCRAM

 Hardware complexity analysis
(0.09% area overhead on a high-end Intel Xeon Processer)

* Profiling cost analysis

* Reducing charge restoration latency for
periodic refreshes

SAFARI
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More in the Extended Version
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Understanding RowHammer Under Reduced Refresh Latency:
Experimental Analysis of Real DRAM Chips and Implications on Future Solutions
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Oguzhan Canpolat®’ Nisa Bostanci® Mohammad Sadrosadati® Oguz Ergin*' Onur Mutlu®
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Read disturbance in modern DRAM chips is a widespread  cell causes physically nearby DRAM cells to lose their charge
weakness that is used for breaking memory isolation, one of  (i.e., charge leakage) and exhibit bitflips. RowHammer is a
the fundamental building blocks of system security and privacy. ~ prime example of such DRAM read disturbance phenomena

RowHammer is a prime example of read disturbance in DRAM where a row of DRAM cells (i.e., a DRAM row) can experi-

where repeatedly accessing ence bitflips when another physically nearby DRAM row (i.e.

https://arxiv.org/pdf/2502.11745
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https://arxiv.org/pdf/2502.11745

PaCRAM is Open Source and Artifact Evaluated
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Conclusion

The first rigorous experimental characterization

on the effect of preventive refresh latency on RowHammer
388 DDR4 DRAM chips from three major vendors

The latency of a vast majority of preventive refresh
can be significantly reduced without jeopardizing
the data integrity of a DRAM chip

PaCRAM: Partial Charge Restoration for

Aggressive Mitigation

* Reduces the latency of preventive refreshes issued by the existing solution
* Adjusts the aggressiveness of the existing solution

PaCRAM significantly reduces the performance
and energy overheads of existing solutions
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Preventive Refresh Overhead
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Mitigation mechanisms against RowHammer attacks
induce higher overheads as RowHammer worsens
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Effect of Partial Charge Restoration
on Lowest Observed Niy of DRAM Modules
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Charge restoration latency
can be reduced without significantly affecting
the Lowest Observed Niy of DRAM Modules
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Nr4 Reduction Distribution
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RowHammer Threshold with
Full Charge Restoration

Rows that are highly vulnerable with full charge restoration
do not exhibit the largest Ny, reductions
with partial charge restoration
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Effect of Partial Charge Restoration

on RowHammer Bit-Error-Rate (BER)
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Charge restoration latency
can be reduced without significantly affecting

RowHammer Bit-Error-Rate
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Combined Effect of Partial Charge Restoration

and Temperature

©

§= Temperature (°C): 50 EH65 HS80

o 1.2 T
© S 1.04+
G) _: * :
N 0.8 71
c = 0.6 11
= o051l
S 0.2
Z «© 0-H

= S

3 -

O

a4

Charge Restoration Latency

No significant impact of temperature
on the effect of charge restoration latency
on RowHammer vulnerability
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Effect of Partial Charge Restoration
on Data Retention Time
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Charge restoration latency can be significantly reduced
to a safe minimum value
without causing data retention failures
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Effect of Partial Charge Restoration
on Half-Double Access Pattern
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Charge restoration latency
can be significantly reduced
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Detailed Implementation of PACRAM

I b |
! i
: I
I |
: Activated Activated :
: Row Address Row Address |
: Memory :
1 | Request Existing Nry : DRAM
| | Scheduler RowHammer PaCRAM : Chip
: Mitigation ! (or module)
: Solution Preventive |
I . Refresh :
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: Refresh I
|
! I
|
| Memory Controller :
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Detailed Implementation of PACRAM

PaCRAM

Number of Rows

t—%

F P P F P F F F P

Fully Restored Bit Vector (FR)

e F State: the row has to be refreshed
using full charge restoration

P State: the row can be refreshed
using partial charge restoration
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Determining Preventive Refresh Latency

Activated
Row Address
PaCRAM
F P P F P F F F P
Fully Refptored Bit Vector (FR)

F = Full Charge Restoration Latency
P - Partial Charge Restoration Latency
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PaCRAM’s Row State Transition

 F State =2 P State

* When the row is refreshed
using full charge restoration

o After fully restoring a row,
PaCRAM uses partial charge restoration

* P State = F State

* PaCRAM periodically resets each rows state to F state
* Full Charge Restoration Interval
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Full Charge Restoration Interval

* To Guarantee that any victim is not refreshed
by more than a safe number (Npcg) of consecutive
partial charge restorations

 PACRAM assumes the worst case where a DRAM row
is accessed as frequently as possible

* The smallest time window that can contain
Npcr preventive refreshes

Time to Receive One

Preventive Refresh
.|.

Attack Time Preventive
Refresh Latency
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Hardware Complexity Analysis of PACRAM

* Chip area and access latency analysis using CACTI

 PACRAM requires 1 bit for each DRAM row
(Fully Restored Bit Vector)

* For a DRAM module with 32 banks and 64K row/bank,
* 256 KB of SRAM
* 0.09% of a high-end Intel Xeon processor
* 1.35% of the memory controller area
* Access latency of 0.27ns (<< row activation latency)

PaCRAM introduces a small additional area overhead
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PaCRAM with on-DRAM-die
RowHammer Mitigation Mechanisms

* On-DRAM-die mitigation mechanism
* PRAC
* Chronus

* PaCRAM can be implemented inside DRAM chip

* On-DRAM-die mitigation mechanism inserts
a Back-Off signal to request a preventive refresh

* PaCRAM stores the preventive refresh latency
in the mode register (MR)

 Memory controller checks the latency value in MR
and issues a preventive refresh with the latency
provided by PaCRAM
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Profiling Cost Analysis

* For PaCRAM to work robustly,
* How much charge restoration latency can be reduced

* How RowHammer threshold changes
with partial charge restoration

 How many partial charge restorations
we can perform consecutively

* Profiling

* The system perform profiling
the very first time DRAM is initialized

* DRAM manufacturers perform profiling
and store metadata in SPD

* The system can perform online profiling

SAFARI (> kasirga
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Effect of Charge Restoration Latency
on System Performance
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System performance first increases, then decreases
as charge restoration latency decreases
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Effect of Charge Restoration Latency
on System Performance

1.24|PaCRAM-H + RFM| 1

|PaCRAM-H + Hydral|

—= i |1.05
1

1
1
I 1 1 1 1 I 1 1 | 1 1 |
Q) 1.14¢ i ‘7»:5 —::l 1 I 1 I 1 o I I Lomic 1
O e — e QS e i N | g\ =z
- i i e B m——— N ——— AR m—————
o232 02256 wex32 =0:256 0232 02256 =02256
(q] 0.Hieu6a =512 1 | i “es64 «=512 | |} | les64 <0=512 & | 1 512 1 )
E 0.8-!" 128 -+~ 1K ! I E 0.957;-+-128 -+~ 1K i 1 i 095'!---128 1K ! 1 i j=e=128 1K ! I !
1.29|PaCRAM-M + RFM]| 1 PaCRAM-M + PRAC| 1 PaCRAM-M + Hydra|! ; PaCRAM-M + Graphene
— I 05-
1 1 l I [0 I 1.05 1 1 il 1.05 I 1 1 il 1 1 [ |
@] 1 A 1.1 e Qa0 I 1 o I : I _—e—t s /{_.—-"LJ
e R | e g o | R I o~ =]
St S T a1 [ e S | B b S ] BEUTS (el A P
(D] =e=32 02256 : 09_: 232 -=256 | ! : =e=32 =e:256 | ! : =32 =2=256 | ! : =256 | ! :
¥ il 077 i-e64 -o-512 1 ) w0264 =2-512 1 |y =ex64 <0-512 | I 512 1 Py
I [=e=128 <+-1K | 1 1]10.95%j-¢=128 ---1K | 1 1]0.959}=¢-128 ---1K | T K |
il 0.8 i 1 1 L 1 1 1 I 1 1 i 1 1
E 12'||Fasz|b|-§ + RFMI : 1.05 a -S + : : : -S + Grapnene
Q ? N T | e | : I T
st | i | Lt ! P
% 2 Lof == = EER | oo =T S e
>N =e=32 -+-256 | | je=32 =+-256 | ¢ | =ex32 =:256 | ! =256 | Wo |
W i=e=64 =512 1) 0-Hiee6a =512 13| i i=e=64 =0=512 | i 512 1 \e
“e=128 ---1K |} I 0 8_:-- 128 «--1K | : I 10.95§j-e=128 ---1K | I K N g
1.00 0.75 0.50 0.25 1.00 0.75 050 025 1.00 0.75 050 0.25 0.75 0.50 0.25

SAFARI (> Kasirga

arge Restoration Latency

64




Reducing Periodic Refresh Latency

Normalized charge restoration latency
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DRAM chip cgpacity (Gb)

PaCRAM improves the system performance and energy
efficiency by reducing periodic refresh overhead
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