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Abstract
Recent research efforts propose remote memory systems that
pool memory from multiple hosts. These systems rely on
the virtual memory subsystem to track application memory
accesses and transparently offer remote memory to applica-
tions. We outline several limitations of this approach, such
as page fault overheads and dirty data amplification. Instead,
we argue for a fundamentally different approach: leverage the
local host’s cache coherence traffic to track application memory
accesses at cache line granularity. Our approach uses emerg-
ing cache-coherent FPGAs to expose cache coherence events
to the operating system. This approach not only accelerates
remote memory systems by reducing dirty data amplification
and by eliminating page faults, but also enables other use
cases, such as live virtual machine migration, unified virtual
memory, security and code analysis. All of these use cases
open up many promising research directions.

CCS Concepts • Hardware → Hardware accelerators;
• Software and its engineering→Distributedmemory.
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1 Introduction
Modern networks offer microsecond-scale latencies. These
networks enable remote memory systems that transparently
pool memory from multiple hosts [8, 69], decreasing per-
server memory over-provisioning and improving overall
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Figure 1. An FPGA connected to a CPU through a coherent
point-to-point (p2p) interconnect. Both the CPU and the
FPGA have DRAM attached, called CPU-Mem and FPGA-
Mem, respectively. The FPGA has a NIC to connect to the
network.

memory utilization. These systems use the Virtual Memory
Subsystem (VMS) in the operating system (OS) as the primary
mechanism for two major tasks: (1) demand paging memory
pages from remote hosts to cache them in local DRAM and (2)
eviction of memory pages cached locally back to the remote
host that owns the pages. Eviction uses the VMS for dirty
data tracking, which improves network utilization by writing
only the modified (dirty) pages back to the remote host.
However, using the VMS to implement remote memory

systems is antithetical to the VMS’ primary purpose and re-
sults in high overheads (§2). We describe three major reasons
for these overheads: (1) The key VMS limitation is that it uses
4KB or larger pages, while applications access and modify
data at a finer granularity. This results in high amplifica-
tion for dirty data tracking and high network utilization for
both demand paging and eviction. Most of the data cached
through demand paging remains unmodified compared to
the original data in the remote host, yet a large fraction of
it is marked dirty by page-granularity dirty data tracking
and has to be copied over the network during eviction. For
example, we show that between 76% and 96% of a 4KB page,
on average across the modified pages, is incorrectly marked
dirty due to page-granularity tracking. This amplification is
even higher for larger pages (99% for 2MB pages). (2) Applica-
tions incur expensive page faults for demand paging, which
are the main bottleneck for remote memory accesses [8], and
additional write page faults, caused by write-protecting the
pages for dirty data tracking. For Redis, a key-value store,
write page faults decrease throughput by 13%, while increas-
ing latency by 15%. (3) Applications incur additional delays
indirectly caused by using the VMS, during the time when
the OS is write-protecting pages, flushing TLBs, etc. The
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time an application needs to be paused to write-protect its
pages increases proportionally to the size of its memory.

To enable fast and efficient remote memory, the OS needs
new low-overhead, fine-grained mechanisms to gain visibil-
ity into application memory read/write behavior. Our central
insight is to use the hardware Cache Coherence (CC) pro-
tocol, which already tracks application reads and writes to
memory at cache line granularity. Project PBerry leverages
information from hardware coherence mechanisms to aug-
ment the VMS for demand paging and dirty data tracking,
thereby reducing remote memory overheads. For example,
we show how PBerry uses cache line miss requests to reduce
the number of page faults incurred for demand paging re-
mote memory (§5). Furthermore, tracking CC events enables
monitoring application memory accesses at cache line gran-
ularity, allowing PBerry to decouple memory access tracking
from the VMS page size, thereby eliminating the key limi-
tation of the VMS. Tracking cache line write-backs allows
PBerry to reduce dirty data amplification by 50-95% com-
pared to 4KB VMS pages.

To gain access to the CC protocol, PBerry relies on emerg-
ing cache-coherent FPGAs [58] (Figure 1). These FPGAs
share coherent memory with a CPU through a point-to-point
interconnect, such as Intel UPI [54], CXL [72] or CCIX [1]
(§3). The FPGA not only gets to participate in the CC proto-
col, but it is also able to observe and influence its behavior
with small changes to the coherence blocks on the FPGA.
Using these capabilities, we build PBerry (§4) and describe
the implementation of an efficient remote memory system
(§5). While our focus is on remote memory, we believe that
PBerry can benefit a wide variety of use cases, such as those
in unified virtual memory, security and live virtual machine
migration (§6), which open up a myriad of promising re-
search directions. Finally, we present preliminary emulation
results, which show that PBerry can reduce the dirty data
amplification by 50-95% and eliminate write page faults (§7).

2 Current systems limitations
Recent remote memory systems [7, 8, 28, 70] rely on virtual
memory for two tasks: (1) demand paging from a remote host,
which caches remote pages in local memory (remote memory
caching) and (2) eviction from the local memory back to the
remote host (local memory reclamation). Virtual memory is
additionally used for tracking application modifications to
pages cached in local memory (dirty data tracking) to reduce
the amount of data written back to the remote host, as only
dirty pages need to be written back.

As remote memory operates at microsecond latencies [7]
in contrast to traditional millisecond-latency devices [11],
the overhead of page faults in caching remote pages is pro-
hibitive [25, 46]: e.g., for each GB of memory accessed from
a remote host, an application can experience a 44% degrada-
tion in performance due to page faults [8]. In addition, we

identify three major problems in using virtual memory for
dirty data tracking:
(1) Dirty data amplification.Memorymanagement on cur-
rent operating systems assumes a fixed page granularity (e.g.,
4 KB for regular pages, 2 MB or 1 GB for large pages). Using
virtual memory for tracking dirty data results in dirty data
amplification, because an entire page is marked dirty, even if
only a small part of it was actually modified. This impacts
systems that copy the dirty data over the network (e.g., re-
mote memory, live migration), as the network bandwidth
and additional power are wasted by copying unnecessary
data. Dirty data amplification also impacts persistent mem-
ory applications, which can flush modified data at cache line
granularity [36], but are restricted to tracking dirty data at
page granularity through virtual memory. To overcome this
challenge, the Linux community added a go-faster flag to
mmap. This allows applications to manage their own dirty
cache lines, resulting in a 10X performance improvement
compared to a traditional msync that flushes pages [24], de-
spite heavy criticism that go-faster breaks POSIX semantics.
We use Pin [4] to quantify the dirty data amplification

for 1) Redis [5], a data structure server, running a random
and a sequential workload, and 2) Metis [50], an in-memory
MapReduce framework running linear regression and his-
togram. We consider three granularities for dirty data track-
ing (4KB page, 2MB page and 64B cache line); for each one
we report the amplification as the percentage of the block
(i.e., page or cache line) that is clean, but incorrectly re-
ported as dirty (due to actually considering the entire block
as dirty). Table 1 shows that even regular 4KB pages cause
large amplification (82-96%). Large pages increase the am-
plification to over 99%. In practice, systems that use virtual
memory for dirty data tracking choose to break large pages
into 4 KB pages during tracking to reduce the dirty data
amplification, despite overheads due to TLB flushes, TLB
misses and additional translations (e.g., live migration [74]).
Instead, tracking at cache line granularity (64B) results in
much smaller amplification (17-60%) and less dirty data.

Application Mem Amplif. % Amplif. % Amplif. %
(GB) (4 KB) (2 MB) (64 B)

Redis-random 3.93 96.82 99.997 31.70
Redis-seq 0.13 82.91 99.83 17.18

Linear regression 40 91.73 99.98 18.81
Histogram 40 88.02 99.95 60.20

Table 1. Dirty data amplification at different granularities.

(2) Application slowdowndue towrite page faults.When
dirty data tracking is enabled, writable pages need to be
write-protected, which leads to additional page faults, called
write page faults, which are necessary to remove the write-
protection. Therefore, applications experience lower through-
put and higher latency, e.g., for Redis we see a 13.3% decrease
in throughput and a 15.24% increase in latency due to write
page faults (§7).
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(3) Applicationpause timewhilewrite-protecting pages.
Write-protecting pages requires finding and modifying page
table entries and flushing the TLBs. Thus, the OS needs
to pause the application during this time. Write-protecting
pages can be done in batches, to minimize the impact on the
application. However, the total time spent write-protecting
pages increases proportionally to the size of the application’s
in-memory data and can be prohibitive for latency-critical
applications. For example, Metis running linear regression
on 40 GB data is paused for 7 ms, while the OS is write-
protecting all pages (§7).

3 Cache-coherent FPGAs (ccFPGAs)
Field Programmable Gate Arrays (FPGAs) are integrated
circuits that consist of programmable logic blocks. Unlike
Application-Specific Integrated Circuits (ASICs) that are de-
signed once and manufactured for a specific purpose, FPGAs
can be re-configured after manufacturing, and their usage
can evolve over time between different applications or dif-
ferent versions of the same application. In this paper, we
focus our attention on cache-coherent FPGAs (ccFPGAs):
those that share memory with a CPU and access to such
memory employs a cache-coherence protocol to keep the
memory consistent across the CPU and the FPGA. For such
architectures, the FPGA is connected to the CPU using a
point-to-point interconnect implementing a cache coher-
ence protocol (Fig. 1), such as MESI [61] or one of its vari-
ants. Various such platforms have been proposed, such as
IBM’s CAPI [59] for the POWER8/POWER9, the Convey
Computer [21] and Enzian, a research computer [2]. Other
cache-coherent interconnects between a CPU and an FPGA
are expected to become available commercially in the near
future: Intel UPI [54] connecting an Intel Xeon to a Stratix
X FPGA [37, 47], CCIX [1] connecting an AMD/ARM CPU
to a Xilinx FPGA, and the new interconnect based on the
CXL [72] specification. The FPGA might have its own mem-
ory attached (FPGA-Mem), but this is not required (§4.1). We
call the main system memory CPU-Mem. We assume the
FPGA package contains network interface card (NIC) logic
and an open implementation of the coherence protocol.

4 Project PBerry
PBerry’s key goal is to enable fast and transparent applica-
tionmemory access tracking at cache line granularity. PBerry
also accelerates local and remote data copy. We present the
PBerry design: an FPGA module (§4.1), a software compo-
nent (§4.2) and a software emulation component (§4.3). We
discuss a few alternative choices and outline their tradeoffs.
We describe how to use PBerry for remote memory in §5.

4.1 PBerry FPGA Module (PBF)
The PBerry FPGA Module (PBF) runs on a cache-coherent
FPGA, which already implements a memory agent that man-
ages memory attached to the FPGA (FPGA-Mem) or a cache

agent that manages coherent CPU memory shared with the
FPGA. We discuss two alternative solutions, one based on
the memory agent and one based on the cache agent.
Memory agent solution. Consider an application running
on the CPU and accessing data from FPGA-Mem. Last Level
Cache (LLC) misses and write-backs from the CPU are trans-
mitted over the coherent link to the memory agent responsi-
ble for FPGA-Mem. The memory agent tracks the coherence
traffic in order to respond to requests from CPU caches. PBF
uses the memory agent to discover information about mem-
ory accesses and then stores and exposes these events to
the OS (§4.1.2). For example, tracking cache line write-backs
allows PBF to identify dirty data at cache line granularity.
However, a cache line write-back is asynchronous, as it oc-
curs when the CPU cache evicts the cache line. Therefore,
PBF might have stale information about a cache line that
is still cached in the CPU caches. To determine the ground
truth during a page eviction, PBF snoops the cache line, in-
validating it in the CPU cache and forcing the write-back
to happen. The downside of the memory agent approach is
that PBF’s visibility is limited to data in FPGA-Mem, which
is limited in size and incurs higher CPU access latency.
Cache agent solution. An alternative PBF implementation
is to extend the cache agent on the FPGA instead of the
memory agent. In this scenario, PBF uses the cache agent to
mimic having a large cache that can fit the tracked memory
regions, by modifying the FPGA cache structure to house
only the cache line tags, without storing the cache line data.
PBF issues a read snoop request for each cache line that
needs to be tracked and effectively “caches” it (in reality only
its tag is stored). A subsequent CPU access to a cache line
will result in a coherence transaction sent to PBF, which
marks the cache line as accessed or dirty, depending on the
type of transaction received (read or write, respectively), and
invalidates the cache line. PBF needs to re-snoop that cache
line later to enable tracking again. This approach allows PBF
to track memory from both CPU-Mem and FPGA-Mem, but
it requires changing the cache agent and the cache structure
to allow storing only tags, without data. Therefore, in the
rest of this paper we focus on the memory agent solution.

4.1.1 PBF primitives
PBF can track three different types of pages: application
data pages, application code pages, and kernel pages (such
as page table pages). We propose an interface that exposes
the following PBF interactions with the cache coherence
protocol to the OS: (1) Read tracking - PBF keeps track
of cache lines requested by applications in shared mode
and discovers the application’s access pattern. (2) Write
tracking - PBF keeps track of cache lines that have been
evicted from the CPU caches with modified data (dirty data
tracking). (3) Local copy - PBF can copy cache lines in the
background to a new location in local memory. This feature
can enable an efficient cache line granularity copy-on-write
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mechanism. (4) Remote copy - PBF can also copy cache
lines or pages to a remote host. This is useful for enabling
use cases such as remote memory or live migration. (5) In-
place transform - PBF can transform cache lines in local
memory. PBF avoids races with a CPU requesting the cache
line being transformed by delaying the return of the cache
line to the CPU or by aborting the transformation. This is
useful for modifying the layout of the data in memory, for
compression [63, 78], deduplication [80], etc.

4.1.2 Data structures used for tracking application
reads and writes

PBF uses two Bloom filters [14] to collect the addresses of
the tracked cache lines in a space-efficient manner: a regular
Bloom filter for cache line addresses and a counting Bloom
filter for page addresses. In addition, PBF uses a buffer shared
with a software daemon (§4.2) to communicate the addresses
to the OS. The buffer contains the physical address and the
size of the data (cache line or page). This buffer could grow
arbitrarily large, so we limit its size by changing the granu-
larity at which PBF reports dirty data as follows. If the cache
line address has not been reported before (it is not in the
cache line Bloom filter), but the corresponding page has been
reported a threshold N times (in the page counting Bloom
filter), then PBF writes the page address in the buffer and
gives up on the cache line granularity tracking for that page.
Otherwise, PBF adds the cache line address to the buffer. This
works well because applications generally access only a few
cache lines out of a page. For example, in the Redis-random
workload, 78% of pages have fewer than 5 dirty cache lines.
For this workload, PBF could select the threshold to be 5.
Subsequently, for all pages with more than 5 cache lines
reported, PBF will choose page granularity. Our approach
admits false positives, due to the use of Bloom filters. A false
positive results in reporting at page granularity instead of
cache line granularity, which can impact performance, but
not correctness.

4.2 PBerry kernel daemon (PBK)
PBerry supports a wide variety of use cases (§6), which are
all enabled by the PBF primitives (§4.1.1). PBerry’s software
component, the PBK software daemon that runs in kernel
mode, manages PBF and uses the primitives to implement
the various use cases. We describe how PBK implements
remote memory in §5. Across use cases, PBK fulfills the fol-
lowing responsibilities: (1) PBK loads the PBF bitstream on
the cache-coherent FPGA. (2) It configures the communica-
tion channels with PBF. These channels consists of shared
buffers that PBF uses to communicate accessed and dirty
data addresses (§4.1.2). A separate buffer is also used for
reporting errors encountered by PBF. (3) PBK configures any
PBF parameters and policies necessary for a particular use
case. (4) It also sends control commands, such as requesting
which memory range to track or to copy. PBK’s role is to

manage only the control path. The data path is low-latency
because PBF handles it in hardware.

4.3 Emulating PBF (PBSim)
To understand PBF’s benefits and overheads, we designed
and implemented PBSim, an emulator for PBF’s write track-
ing primitive (§4.1.1). PBSim uses the ptrace Linux function-
ality [39] to identify an application’s dirty data at cache line
granularity. To track an application, PBSim becomes the ap-
plication’s tracer and pauses it to copy its entire memory.
Subsequently, PBSim resumes the application, then contin-
uously “diffs” its own copy with the application’s memory,
to determine dirty cache lines. This approach identifies the
virtual addresses of the dirty cache lines, unlike PBF, which
identifies physical addresses. In order to accurately mimic
PBF’s behavior, PBSim uses the application’s pagemap file
(via procfs) to translate the virtual addresses to physical ad-
dresses. In addition, PBF tracks data located in FPGA-Mem,
which incurs higher latency compared to CPU-Mem. To
capture this effect, PBSim runs on one NUMA node, while
executing the application on a separate NUMA node. PBSim
reports the emulated time of the application, which is the
time the application spends actually executing, discarding the
time elapsed while the application was paused by PBSim.

5 Using PBerry for remote memory
Virtual memory performs two functions for remote mem-
ory: (1) dirty data tracking for memory reclamation and (2)
demand paging. PBerry’s software component, PBK (§4.2),
implements both functions and uses PBF primitives to accel-
erate them. Similar to prior systems [7, 28, 70], PBK caches
remote memory in the local host’s memory. Unlike prior
systems, PBK primarily uses FPGA-Mem as the software-
managed cache. This enables PBF read and write tracking
at cache line granularity (§4.1.1), reducing the amplification
and eliminating page faults. However, accessing pages in
FPGA-Mem incurs higher latencies. To reduce latency over-
heads, pages that are not tracked, such as read-only pages or
pages with frequent updates to many cache lines, are cached
in CPU-Mem.
Memory reclamation and dirty data tracking. PBK han-
dles memory reclamation and reclaims enough local memory
so that demand paging from remote hosts can always allocate
memory. PBK also sets up PBF for write tracking memory
regions in FPGA-Mem. PBF collects the addresses of the dirty
cache lines from write-backs to memory, using the memory
agent solution (§4.1). PBK also uses the PBF remote copy
primitive (§4.1.1) to reclaim memory pages, which works as
follows. PBK specifies a memory range in FPGA-Mem, and
PBF aggregates the dirty cache lines in the specified range
and writes them to the remote host using its remote copy
primitive.
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Demand paging. PBK manages demand paging allocations
proactively, marking remote pages as present in FPGA-Mem,
but does not fetch the remote data. Doing so avoids a later
page fault, when the application accesses that page. Instead,
the application access generates a cache miss for FPGA-Mem,
which is routed to PBF. PBF detects the cache miss and fulfills
the cache line request from the remote host. This approach
is analogous to the Critical Word First technique [32], used
in hardware cache hierarchies. Critical Word First refers
to fetching the word on which the miss occurred first and
loading it directly into a CPU register, while fetching the rest
of the cache line in the background. Similarly, PBF fetches
the Critical Cache Line First, pre-fetching the rest of the page
asynchronously.
Implementing the Critical Cache Line First approach is

challenging because (1) PBF needs to respond to the cache
coherence request within a limited amount of time, depend-
ing on the cache coherence protocol and (2) PBF needs to be
able to effectively handle failures of the network or of the
remote host. Not responding to the cache coherence proto-
col in time can trigger a machine check exception, which is
notoriously hard to handle due to potential deadlocks and
system instability [42]. To address these challenges, we pro-
pose a solution that falls back to software to handle errors.
PBK moves page table pages to FPGA-Mem and PBF tracks
coherence events for those pages. Before an application ac-
cesses a data page, it needs to obtain the virtual to physical
address translation information, thus a read access will be
generated to the page tables, which is intercepted by PBF.
Then, PBF can delay responding to the cache miss event and
pre-fetch the necessary pages (based on the requested page
table entries [13]) from the remote host. If the prefetch fails
for any reason, including timeout, PBF modifies the page
table entries to mark the missing pages as not present before
allowing the response to return to the CPU. This will force
the data access to cause a page fault and PBK will handle the
failure scenario. When a remote memory page is reclaimed
from the local cache, a TLB shootdown ensures that there
are no remaining cached translations of this page in any
TLB, and that a future reference will have to access memory
through PBF.1

6 Other use cases
We list multiple use cases for PBerry (Table 2), grouped by
the PBF primitives used and types of pages tracked (§4.1.1).
Each use case opens new research directions.

Pre-copy live virtual machine (or process) migration [3, 20]
employs dirty data tracking in a similar fashion to remote
memory. Post-copy live virtual machine (or process) migra-
tion [34] uses demand paging from a remote host. Both use

1A TLB shootdown is necessary when reclaiming a page in a virtual mem-
ory based remote memory system too, so it is not an additional overhead
introduced by PBerry.

cases can benefit from PBerry accelerating dirty data track-
ing and demand paging.

PBF write tracking of application data pages enables ef-
ficient dirty data tracking at a cache line granularity without
employing any page faults. This can be used to realize an
efficient copy-on-write. Combined with PBF’s ability to copy
data, it can achieve more efficient unified virtual memory
(UVM).2 Read tracking enables PBF to determine the applica-
tion’s access pattern, which is useful in implementing smart
prefetchers for remote memory and in detecting security at-
tacks, such as RowHammer [41] or cache-based side-channel
attacks [19, 30].
PBF can also track read accesses to application code

pages, which enables tracing and code coverage analysis [77].
Allowing PBF to modify these code pages enables dynamic
code rewriting [62]. PBF can also be used for replicating data
between hosts [82] or within a host [18], checkpointing [16],
persistent memory logging [79], memory compression [63]
and encryption [33], near-memory processing [55], offload-
ing memory management tasks, etc.

Use case Page type(s) PBF primitives
Rem. mem. swapping/ data, page tables WT,RC

memory reclamation (§5)
Rem. mem. caching (§5) data, page tables RT, RC, IPT

Live migration data, page tables RT, WT, RC, IPT
Copy-on-write data WT, LC

Unified virtual memory data WT, LC, RC
Security attack detection data RT, WT
Tracing code analysis code RT
Binary translation code IPT

Dynamic code rewriting code IPT
Replication data WT, LC, RC

Checkpointing data WT, LC, RC
Persistent memory data WT, LC, RC, IPT

Compression data RT, WT, IPT
Encryption data RT, WT, IPT

Near-memory compute data RT, WT, IPT
WT = Write Tracking, RT = Read Tracking, RC = Remote Copy,

LC = Local Copy, IPT = In-Place-Transform
Table 2. Example PBerry use cases.

7 Preliminary results
We evaluate PBerry’s potential to accelerate dirty data track-
ing for remote memory reclamation. We use PBSim (§4.3)
to emulate PBF write tracking (§4.1.1). We use page write-
protection as a baseline. We want to understand (1) what
is the dirty data amplification reduction from tracking data
at cache line granularity instead of 4KB page granularity?
(2) what is the application execution time with and with-
out write page faults? and (3) what is the time spent by the
baseline to write-protect pages?

We measure Redis with a random and a sequential work-
load, and Metis running linear regression and histogram. We
2CUDA provides UVM for transparent data movement between CPU and
GPU [29]
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use the Memtier client with 1:1 get and set to drive Redis. We
change the distribution of keys, and keep all other arguments
unchanged between the different experiments. We use a host
with 2 Intel Skylake processors running at 2.2GHz, with 56
cores (incl. hyperthreading), 187GB DRAM, running Linux
kernel 4.4. We report the results in Table 3. We show the
memory used by each application, and the reduction in the
dirty data amplification with PBerry compared to baseline
4KB page granularity. Our results show that PBerry signifi-
cantly reduces the dirty data amplification (by 50-95% for the
applications we study). Next, we report the application exe-
cution time as indicated by PBSim. This is the emulated time,
obtained by removing the time the application is paused for
PBSim to copy the application data (§4.3).We compare PBSim
with a version that write protects pages (PBSim+WP). We
observe an increase in the execution time of the application
when using write page faults to detect dirty data compared
to our approach that does not rely on page faults: e.g., the
execution time for Redis-random increases from 168s to 231s.
Finally, we report the time spent write protecting all pages
(WP) in the PBSim+WP experiment. WP time quickly in-
creases with the size of the memory that needs to be write
protected,3 up to 7.3 ms for 40GB.

Application Mem % Amplif. PBSim PBSim WP
(GB) reduction (s) +WP(s) (ms)

Redis-random 3.93 89 168 231 0.2
Redis-seq 0.13 50 69 72 0.2
Lin. regr. 40 95 38 39 7.3
Histogram 40 50 38 39 7.2
Table 3. Dirty data tracking results using PBSim.

8 Related work
FPGAs are increasingly being used in the datacenter to ac-
celerate applications like databases [31, 60, 73], key-value
stores [15, 44], machine learning [49, 71], andweb search [64].
FPGAs are also being used to efficiently manage infrastruc-
ture, to enable bump-in-the-wire architectures and software
defined networks, e.g., Mellanox’s hybrid NIC [51], NetF-
PGA [26] and Microsoft’s Project Catapult [6, 52, 53]. FPGA
sharing [40] and virtualization will drive down costs by im-
proving utilization. New programming abstractions are im-
proving adoption by simplifying the FPGA development pro-
cess [10, 43]. Cache-coherent FPGAs have been previously
used to accelerate Fast Fourier Transform [27] and to pro-
vide a prototyping platform for innovation in the memory
subsystem of POWER servers [76].

Seminal distributed shared memory work [9, 12, 45, 65, 66]
uses software techniques based on virtual memory or hard-
ware techniques based on cache coherence. Unlike this work,
we do not provide cache coherence across hosts. Instead, we
3We under-approximate WP, as we only measure the first time each page is
write-protected.

use a cache-coherent FPGA attached to the local host to track
applications’ memory accesses.
Identifying sub-page granularity memory accesses can

be achieved using a variety of approaches. First, the appli-
cation can report its memory accesses by using a specific
API [22, 23, 57], or it can rely on source code annotations or
compiler support. These methods require changing the appli-
cation or at least recompiling the source code, which is not al-
ways feasible. Second, run-time techniques, such as dynamic
binary instrumentation [4, 17], can be used to instrument
memory reads and writes transparently at run-time, without
modifying the application or re-compiling the source code,
but incur prohibitive overheads [48]. Lastly, hardware sup-
port can lower the overhead but still achieve transparency.
Prior hardware extensions [56, 67, 68, 75, 81, 83] enable fine-
grain dirty data tracking. Intel recently added Page Modifi-
cation Logging (PML) [38], to log page updates in hardware
and make them available to a hypervisor in batches of up to
512 entries. Per-page dirty bits and PML still incur dirty data
amplification as they track data at page granularity. Intel
also announced sub-page protection [35] that enables write-
protecting 128-byte blocks within a page. This technique
makes dirty tracking worse, since it can cause as many as
32 page faults for a 4KB page instead of a single page-wide
fault, while PBerry eliminates the need for page faults by
using the cache coherence protocol.

9 Conclusion
We introduced Project PBerry, a software-hardware co-designed
system based on exposing cache coherence events from the
local host to the operating system. PBerry relies on cache-
coherent FPGAs to track cache misses and cache line write-
backs in order to accelerate remote memory. We also dis-
cussed other use cases that PBerry enables beyond remote
memory, such as live migration, unified virtual memory, se-
curity and code analysis. These use cases open up a myriad
of new research directions.
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