
Polynesia:
Enabling High-Performance and Energy-Efficient

Hybrid Transactional/Analytical Databases
with Hardware/Software Co-Design

ICDE
2022

Amirali Boroumand Saugata Ghose
Geraldo F. Oliveira Onur Mutlu

Traditionally, new transactions (updates) are propagated to the
analytical database using a periodic and costly process

To support real-time analysis: a single hybrid DBMS is used
to execute both transactional and analytical workloads

Transactions

Hybrid DBMS
(HTAP System)

Analytics

Data
Migration

Analytics

Transactional
DBMS

Transactions

Analytical
DBMS

hours/days

HTAP: Supporting Real-Time Analysis

2

Ideal HTAP System Properties

2 Data Freshness and Consistency Guarantees
• Guarantee access to the most recent version of data for

analytics while ensuring that transactional and analytical
workloads have a consistent view of data

1 Workload-Specific Optimizations
• Transactional and analytical workloads must benefit from their

own specific optimizations

3 Performance Isolation
• Latency and throughput of transactional and analytical

workloads are the same as if they were run in isolation

An ideal HTAP system should have three properties:

Achieving all three properties at the same time
is very challenging

3

11 State-of-the-art HTAP systems do not achieve
all of the desired HTAP properties1

Data freshness and consistency mechanisms are
data-intensive and cause a drastic reduction in throughput2
These systems fail to provide performance isolation

because of high resource contention3

Take advantage of custom algorithm and
processing-in-memory (PIM) to address these challenges4

Problem and Goal
Problems:

Goal:

4

Key idea: partition computing resources into
two types of isolated and specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island1
Avoid high resource contention2
Design efficient data freshness and consistency
mechanisms without incurring high data movement costs 3

Polynesia

5

• Leverage processing-in-memory (PIM) to reduce data movement
• PIM mitigates data movement overheads by

placing computation units nearby or inside memory

Designed to sustain
bursts of updates

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate
data movement bottleneck Conventional multicore CPUs

with multi-level caches

Polynesia: High-Level Overview

6

Transactional Engine

CPU CPU CPU CPU

Shared Last-Level Cache (LLC)

Processor

Transactional Island
Memory

Controller

TSV

3D-Stacked
Memory

Off-Chip
Link

Vault

DRAM
Banks

Analytical Island

Analytical Engine
PIM
Core

PIM
Core

PIM
Core

PIM
Core

Update Propagation
Mechanism

Update Gathering
and Shipping Unit

Update
Application Unit

Consistency
Mechanism

Copy
Unit

Designed to sustain
bursts of updates

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate
data movement bottleneck Conventional multicore CPUs

with multi-level caches

Polynesia: High-Level Overview

7

Transactional Engine

CPU CPU CPU CPU

Shared Last-Level Cache (LLC)

Processor

Transactional Island
Memory

Controller

TSV

3D-Stacked
Memory

Off-Chip
Link

Vault

DRAM
Banks

Analytical Island

Analytical Engine
PIM
Core

PIM
Core

PIM
Core

PIM
Core

Update Propagation
Mechanism

Update Gathering
and Shipping Unit

Update
Application Unit

Consistency
Mechanism

Copy
Unit

Key Results

8

Polynesia achieves 91.6% the transactional throughput of
an ideal system by employing

custom PIM logic for data freshness/consistency,
which significantly reduces

resource contention and data movement

Polynesia improves analytical throughput by 63.8% over
an optimized multiple-instance system, by eliminating

data movement, and using custom logic for update
propagation and consistency

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x)

over prior HTAP systems

Conclusion
• Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing
islands
– Enables workload-specific optimizations and performance isolation

• Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption

9

Polynesia:
Enabling High-Performance and Energy-Efficient

Hybrid Transactional/Analytical Databases
with Hardware/Software Co-Design

ICDE
2022

Amirali Boroumand Saugata Ghose
Geraldo F. Oliveira Onur Mutlu

Executive Summary
• Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

• Problem: HTAP systems cannot achieve all three HTAP properties

• Key Idea: Divide the system into transactional and analytical processing
islands
– Enables workload-specific optimizations and performance isolation

• Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption

11

Outline
Introduction1

Limitations of HTAP Systems2
Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

12Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Outline
Introduction1

Limitations of HTAP Systems2
Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

13Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Real-Time Analysis
An explosive interest in many applications domains to perform

data analytics on the most recent version of data
(real-time analysis)

Use transactions to record
each periodic sample of data

from all sensors

Run analytics across
sensor data to make

real-time steering decisions

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

Self-Driving Cars

14Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Outline

15

Introduction1
Limitations of HTAP Systems2

Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

1

1
2

Main Replica

Transactions Analytics

Single-Instance

Replica Replica Replica

Transactions Analytics Analytics

Multiple-Instance

We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation

because of high resource contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:

16Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

1

1
2

Replica Replica Replica

Transactions Analytics Analytics

Multiple-Instance

We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation

because of high resource contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:

Main Replica

Transactions Analytics

Single-Instance

17Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Since both analytics and transactions work on the same data
concurrently, we need to ensure that the data is consistent

There are two major mechanisms to ensure consistency:

1 Snapshotting

2
Multi-Version
Concurrency

Control (MVCC)

Main Replica

Transactions

Transactional
Data

Column

Snapshot

Analytical
Snapshot

Analytics

Transactions
Analytics

Main Replica

T3: 84

4
1

8
3

2
3

T1: 54

T1: 12 T2: 13

T1: 10 T2: 7

Transaction
Updates

Time-stamped
version chain

Single-Instance: Data Consistency

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● 18

Drawbacks of Snapshotting and MVCC

19

Throughput loss comes from
memcpy operation:

generates a large amount of
data movement0

0.2
0.4
0.6
0.8

1

128 256 512

N
or

m
al

iz
ed

Tr

an
sa

ct
io

na
l

T
hr

ou
gh

pu
t

Number of Analytical Queries

Zero-Cost-Snapshot Snapshot

75%
43%

0
0.2
0.4
0.6
0.8

1

2M 4M 8M

N
or

m
al

iz
ed

A

na
ly

ti
ca

l
T

hr
ou

gh
pu

t

Number of Transactions

Zero-Cost-MVCC MVCC

42%
Throughput loss comes from

long version chains:

expensive time-stamp
comparison and

a large number of random
memory accesses

We evaluate the throughput loss caused by Snapshotting and MVCC:

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

1

1
2

We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation

because of high resource contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:

Main Replica

Transactions Analytics

Single-Instance

20

Replica Replica Replica

Transactions Analytics Analytics

Multiple-Instance

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

One of the major challenges in multiple-instance systems is
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation
and apply those updates to analytical replicas

Replica

Analytical
Replica

Analytical
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness

21Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Transactional throughput reduces by up to 21.2% during the
update gathering & shipping process

0
5E-13
1E-12

1.5E-12
2E-12

8M 16M 32M 8M 16M 32M 8M 16M 32M

Update/Read: 50%/50% Update/Read: 80%/20% Update/Read: 100%/0%

T
xn

T
hr

ou
gh

pu
t

(T
xn

/s
)

Zero-Cost-Update-Propagation Update-Gathering&Shipping Update-Propagation

Cost of Update Propagation

Transactional throughput reduces by up to 64.2% during the
update application process

We evaluate the throughput loss caused by Update Propagation:

22Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Outline

23

Introduction1
Limitations of HTAP Systems2

Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Key idea: partition computing resources into
two types of isolated and specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island1
Avoid high resource contention2
Design efficient data freshness and consistency
mechanisms without incurring high data movement costs 3

Polynesia

24Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Outline

25

Introduction1
Limitations of HTAP Systems2

Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

One of the major challenges in multiple-instance systems is
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation
and apply those updates to analytical replicas

Replica

Analytical
Replica

Analytical
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness

26Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Outline

27

Introduction1
Limitations of HTAP Systems2

Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Outline

28

Introduction1
Limitations of HTAP Systems2

Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Efficient analytical query execution strongly depends on:

1 Data layout and data placement

2 Task scheduling policy

3 How each physical operator is executed

The execution of physical operators of analytical queries
significantly benefit from PIM

Without PIM-aware data placement/task scheduler,
PIM logic for operators alone cannot provide throughput

Analytical Engine: Query Execution

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● 29

1 Data layout and data placement

Colum
n 1

Colum
n 2

Colum
n 3

Colum
n 4

Interconnect

Vault 4Vault 3

Vault 1 Vault 2

Local

Interconnect

Vault 4Vault 3

Vault 1 Vault 2
Distributed

Interconnect

Vault 4Vault 3

Vault 1 Vault 2
Hybrid

Vault G
roup A

Vault G
roup B

Limits the area/power/bandwidth
available to the

analytical engine inside a vault

Creates
inter-vault communication overheads

Increases the aggregate bandwidth for
servicing each query by 4 times,

and provides up to 4 times the power/area
for PIM logic compared to Local

Problem: how to partition analytical data across vaults
of the 3D-stacked memory

Analytical Engine: Data Placement

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● 30

Efficient analytical query execution strongly depends on:

1 Data layout and data placement

2 Task scheduling policy

3 How each physical operator is executed

We design a pull-based task assignment strategy, where PIM threads
cooperatively pull tasks from the task queue at runtime

We employ the top-down Volcano (Iterator) execution model to
execute physical operations (e.g., scan, filter, join) while respecting
operator’s dependencies

Analytical Engine: Query Execution

31Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Outline

32

Introduction1
Limitations of HTAP Systems2

Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Methodology
• We adapt previous transactional/analytical engines with

our new algorithms
– DBx1000 for transactional engine
– C-store for analytical engine

• We use gem5 to simulate Polynesia
– Available at: https://github.com/CMU-SAFARI/Polynesia

• We compare Polynesia against:
– Single-Instance-Snapshot (SI-SS): modeled after Hyper
– Single-Instance-MVCC (SI-MVCC): modeled after AnkerDB
– Multiple-Instance + Polynesia’s new algorithms (MI+SW)
– MI+SW+HB: MI+SW with a 256 GB/s main memory device
– Ideal-Txn: the peak transactional throughput if transactional

workloads run in isolation
33Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion

● ●

https://github.com/CMU-SAFARI/Polynesia

0

0.2

0.4

0.6

0.8

1

8M 16M 32M

N
or

m
al

. T
ra

ns
ac

ti
on

al

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW MI+SW+HB

Polynesia Ideal-Txn

0

0.5

1

1.5

2

8M 16M 32MN
or

m
al

. A
na

ly
ti

ca
l

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW
MI+SW+HB Polynesia

End-to-End System Analysis (2/6)

Both MI+SW and MI+SW+HB fall
significantly short of Ideal-Txn because of

lack of performance isolation and overhead
of update propagation

34Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

End-to-End System Analysis (3/6)

Polynesia comes within 8.4% of ideal Txn
because it uses custom PIM logic for

data freshness/consistency mechanisms
which significantly reduce resource

contention and data movement

35Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

0

0.2

0.4

0.6

0.8

1

8M 16M 32M

N
or

m
al

. T
ra

ns
ac

ti
on

al

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW MI+SW+HB

Polynesia Ideal-Txn

0

0.5

1

1.5

2

8M 16M 32MN
or

m
al

. A
na

ly
ti

ca
l

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW
MI+SW+HB Polynesia

0

0.2

0.4

0.6

0.8

1

8M 16M 32M

N
or

m
al

. T
ra

ns
ac

ti
on

al

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW MI+SW+HB

Polynesia Ideal-Txn

0

0.5

1

1.5

2

8M 16M 32MN
or

m
al

. A
na

ly
ti

ca
l

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW
MI+SW+HB Polynesia

End-to-End System Analysis (4/6)

MI+SW+HB is the best software-only HTAP
for analytical workloads, because it provides
workload-specific optimizations, but it still

loses 35.3% of the analytical throughput
due to high resource contention

36Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

0

0.2

0.4

0.6

0.8

1

8M 16M 32M

N
or

m
al

. T
ra

ns
ac

ti
on

al

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW MI+SW+HB

Polynesia Ideal-Txn

0

0.5

1

1.5

2

8M 16M 32MN
or

m
al

. A
na

ly
ti

ca
l

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW
MI+SW+HB Polynesia

End-to-End System Analysis (5/6)

Polynesia improves over MI+SW+HB by 63.8%,
by eliminating data movement, and using
custom logic for update propagation and

consistency

37Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

End-to-End System Analysis (6/6)

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x)

over prior HTAP systems

38Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

0

0.2

0.4

0.6

0.8

1

8M 16M 32M

N
or

m
al

. T
ra

ns
ac

ti
on

al

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW MI+SW+HB

Polynesia Ideal-Txn

0

0.5

1

1.5

2

8M 16M 32MN
or

m
al

. A
na

ly
ti

ca
l

T
hr

ou
gh

pu
t

Number of Transactions

SI-MVCC MI+SW
MI+SW+HB Polynesia

More in the Paper
• Real workload analysis

• Effect of the update propagation technique

• Effect of the consistency mechanism

• Effect of the analytical engine

• Effect of the dataset size

• Energy analysis

• Area analysis

39Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

More in the Paper
• Real workload analysis

• Effect of the update propagation technique

• Effect of the consistency mechanism

• Effect of the analytical engine

• Effect of the dataset size

• Energy analysis

• Area analysis

40Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Outline

41

Introduction1
Limitations of HTAP Systems2

Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

• Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

• Problem: HTAP systems cannot achieve all three HTAP properties

• Key Idea: Divide the system into transactional and analytical processing
islands
– Enables workload-specific optimizations and performance isolation

• Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems:
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption

Conclusion

42Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Polynesia: Enabling High-Performance and
Energy-Efficient Hybrid Transactional/Analytical
Databases with Hardware/Software Co-Design

ICDE
2022

Amirali Boroumand Saugata Ghose
Geraldo F. Oliveira Onur Mutlu

Analytical Replica
C1 C2 C3C1 C2 C3

Row 1
Row 2
Row 3

Transactional Replica

Update: Row 2, Column 1 and 3

1 A simple tuple update in row-wise layout leads to
multiple random accesses in column-wise layout

2 Updates change encoded value in the dictionary à (1) Need to
reconstruct the dictionary, and (2) recompress the column

Compressed
Column

Dictionary

2
1
0
3

ID Value
0
1
2
3

ann
car
cat
ear

Update Propagation: Update Application
Goal: perform the necessary format conversation and

apply transactional updates to analytical replicas

44Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Limitations of State-of-the-Art

45

We extensively study state-of-the-art HTAP
systems and observe two key problems:

Data freshness and consistency mechanisms generate
a large amount of data movement which causes

a drastic reduction in transactional/analytical throughput
1

They fail to provide performance isolation
because of the high resource contention

between transactional and analytical workloads
2

46

FIFOs

C

C

C

C

C

C

C

Comparators

Merge Unit

FE

R
B

P

P

P

P

Probe Units

FE Engine

Hash Unit Copy Unit

F F F F W W W W

Mem Ctrl Mem Ctrl

Index

Tracking Buffer

To avoid these bottlenecks, we design
a new hardware accelerator, called update shipping unit

A 3-level comparator
tree to merge

updates
Decoupled hash computation from

the bucket traversal to allow for
concurrent lookups

Multiple fetch and write-back units to
issue multiple memory accesses

concurrently

Update Gathering & Shipping: Hardware

Update Application

47

Like other relational analytical DBMSs, our analytical engine
uses the column-wise data layout and dictionary encoding

Analytical Replica

C1 C2 C3 C4 C5

Compresse
d ColumnDictionary

Id Value

1

3

0

2

4

car
ann

cat
ear
man0

1

3

4

0

2

3

Update Gathering & Shipping: Algorithm

48

Merge / Sort

Update
Log1

…

Update
Log 2

Update
Log N

Scan and Merge

2

Hash

Target
ColumnUpdatek

Find Target Column

3

Copy

Columni
BufferUpdatek

Transfer Updates

Our update shipping algorithm has three major stages:

Two major bottlenecks that keep us from meeting
data freshness and performance isolation

These primitives generate a large amount of data movement and
account for 87.2% of our algorithm’s execution time

Single-Instance: High Cost of Consistency

49

Since both analytics and transactions work on the same data
concurrently, we need to ensure that the data is consistent

There are two major mechanisms to ensure consistency:

1 Snapshotting (Snapshot Isolation)

2 Multi-Version Concurrency Control (MVCC)

50

Several HTAP systems use snapshotting
to provide consistency via Snapshot Isolation (SI)

Snapshotting

These systems explicitly create snapshots from
the most recent version of data and let the analytics run on the

snapshot while transactions continue updating data

Main Replica

Transactions

Transactional
Data

Snapshot

Analytical
Snapshot

Analytics

51

MVCC avoids making full copies of data by keeping
several versions of the

Multi-Version Concurrency Control (MVCC)

When updates happen, MVCC creates a new time-stamped
version of data and keeps the old version in a version chain

alongside the data

1

4

1

0

3

2

3

0

2

3

4

5

Column

13

54

12

10 7

84

Main Replica

Transactions Analytics

Transaction
Updates

52

We find that this approach requires frequent snapshot creation to
sustain data freshness under high transactional update rate

Snapshotting: Drawbacks

0
0.2
0.4
0.6
0.8

1

128 256 512N
or

m
al

iz
ed

 T
xn

T

hr
ou

gh
pu

t

Number of Analytical Queries

Zero-Cost-Snapshot Snapshot

74.6%

The overhead comes from Memcpy operation which generates a large
amount of data movement and introduces significant interference

43.4%

Two Txn threads
Each 1M Txn queries

Write/read 50%

More Insights on Data Freshness Challenges

53

We need to take advantage of PIM logic
to reduce data movement and resource contention

Our analysis shows that simply providing higher bandwidth
(8x) to CPU cores does not address the challenges

We find that simply offloading them to general purpose PIM
cores does not address the challenges

We need to design custom algorithm and hardware to
efficiently execute update shipping/application process

54

Multi-Version Concurrency Control (MVCC)

We find that long version chains are the root cause of the issue

0
0.2
0.4
0.6
0.8
1

2M 4M 8M

N
or

m
al

ize
d

An
al

yt
ic

al

Th
ro

ug
hp

ut

Number of Transactions

Zero-Cost-MVCC MVCC

We observe that MVCC overhead leads to 42.4% performance loss
over zero-cost MVCC

Frequent transactional updates create lengthy version chains1
Scan-heavy analytics traverses a lengthy version chain upon
accessing a data tuple
2

• Expensive time-stamp comparison + a very large number of
random memory accesses

Analytical Islands Key Components

55

Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency
Mechanism

Data Freshness
Mechanism

We co-design new algorithms and efficient hardware support for the
three key components of an analytical island

Design two algorithms:
(1) update shipping and (2) update application

Design custom PIM logic
for both algorithms

Data Freshness
Mechanism

Analytical Islands Key Components

56

Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency
Mechanism

Data Freshness
Mechanism

We co-design new algorithms and efficient hardware support for the
three key components of an analytical island

Develop an algorithm relies on a combination of
versioning and snapshotting to maintain data

consistency

Design an in-memory copy unit that
enables highly efficient snapshot creation

Consistency
Mechanism

Designed to sustain
bursts of updates

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate
data movement bottleneck Conventional multicore CPUs

with multi-level caches

Polynesia: High-Level Overview

57Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Transactional Engine

CPU CPU CPU CPU

Shared Last-Level Cache (LLC)

Processor

Transactional Island
Memory

Controller

TSV

3D-Stacked
Memory

Off-Chip
Link

Vault

DRAM
Banks Analytical Engine

PIM
Core

PIM
Core

PIM
Core

PIM
Core

Consistency
Mechanism

Copy
Unit

Update Propagation
Mechanism

Update Gathering
and Shipping Unit

Update
Application Unit

Analytical Island

One of the major challenges in multiple-instance systems is
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation
and apply those updates to analytical replicas

Replica

Analytical
Replica

Analytical
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness

58Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

We co-design a new software/hardware accelerator, called
update gathering & shipping unit

Update Gathering & Shipping

Merge Unit

Final
Log

=

=

=

=

=

=

=

Comparator tree

Input log
queues

Hash Lookup Unit

Front-End
Engine

Reorder
Buffer

Read/
Write

Probe Units

Copy Unit

Hash Index

Fetch
Unit

Fetch
Unit

Fetch
Unit

Fetch
Unit

Tracking Buffer

Write-Back UnitWrite-Back UnitWrite-Back Unit
Writeback

Unit

Mem. Ctrl.

Memory Address

59Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

A 3-level comparator
tree to merge

updates
Decoupled hash computation from

the hash bucket traversal to allow for
concurrent hash lookups

Multiple fetch and write-back units
to issue multiple memory accesses

concurrently

We co-design a new software/hardware accelerator, called
update application unit

Update Application

Hash Lookup Unit

Front-End
Engine

Probe Units

Merge Unit

=

=

=

=

=

=

=

Comparator TreeFIFOs

Sort Unit

1024-Bitonic
Sorter Network

FIFOs

60Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

A 1024-value bitonic sorter,
whose basic building block is a

network of comparators

Designed to sustain
bursts of updates

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate
data movement bottleneck Conventional multicore CPUs

with multi-level caches

Polynesia: High-Level Overview

61Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Transactional Engine

CPU CPU CPU CPU

Shared Last-Level Cache (LLC)

Processor

Transactional Island
Memory

Controller

TSV

3D-Stacked
Memory

Off-Chip
Link

Vault

DRAM
Banks Analytical Engine

PIM
Core

PIM
Core

PIM
Core

PIM
Core

Update Propagation
Mechanism

Update Gathering
and Shipping Unit

Update
Application Unit

Analytical Island

Consistency
Mechanism

Copy
Unit

Consistency Mechanism
For each column, there is a chain of snapshots where each

chain entry corresponds to a version of the column

Unlike chains in MVCC, each
version is associated with a

column, not a row

Snapshot
V1

Snapshot
V2

Compressed
Column

Snapshot
V3

Updates

Polynesia creates a new snapshot only if
(1) any of the columns are dirty, and

(2) no current snapshot exists for the same column
62Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion

● ●

Polynesia does not create a snapshot
every time a column is updated.

Instead, Polynesia marks the column
as dirty

Analytical Islands Key Components

63

Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency
Mechanism

Data Freshness
Mechanism

We co-design new algorithms and efficient hardware support for the
three key components of an analytical island

A custom data placement and task
scheduler aware of 3D-stacked memory

Simple PIM cores to
execute execution engine

Exec. Engine

A Polynesia HW Implementation

64

We implement an instance of Polynesia that supports
relational transactional and analytical workloads

CPU CPU
CPU CPU LL

C

Processor
DRAM Layer

Logic Layer

DRAM Layer

Update
App.
Unit

Copy
Unit

PIM
Cores

M
em

ory
C

trl

Update
Ship.
Unit

Transactional Island
HW Resources

Analytical Island
HW Resources

Consistency Mechanism: Requirements

65

Consistency mechanism must not compromise either the
throughput of analytical queries or the update propagation rate

1 Updates must be applied all the time and should not be
blocked by analytical queries à Data freshness property

2 Analytics must be able to run all the time and should not be
blocked by update propagation process à Performance
isolation property

Consistency mechanism has to satisfy two requirements:

Analytical Engine: Query Execution

66

Select A.id, B.id
From A JOIN B
ON A.id = B.id

Where A.value > 55

σ

π

A B

Parser Volcano
execution

model

High degree of inter- and
intra-operator parallelism

Algebraic Query PlanQuery

A1

σ
A2

σ
Operator 1

Task

Operator 2

Analytical Engine: Data Placement

67

DSM Data Layout

C1 C2 C3 C4 C5

Compressed
Column Dictionary

Id Value

1

3

0

2

4

car
ann

cat
ear
man0

1

3

4

0

2

3

DRAM Layer

Logic Layer

DRAM LayerData
Placement

Limited power and area budget

Vaults

Analytical Engine: Task Scheduler

68

For each query, the scheduler makes three key decisions:

1 Decides how many tasks to create

2 Finds how to map these tasks to the available resources
(PIM threads)

3 Guarantees that dependent tasks are executed in order

Task Scheduler: Initial Hueristic

69

Select A.id, B.id
From A JOIN B
ON A.id = B.id

Where A.value > 55
Where B.value < 70

Query

Query Plan

σ

π

A B

σ

A
3

σ

A
4

σ

A
2

σ

A
1

σ

B2

σ

B1

σ

Task1 Task2 Task3

Global Work Queue

Scheduler

Our scheduler heuristic that generates tasks by disassembling
the operators of the query plan into operator instances

(1) which vault groups the input tuples
reside in, (2) the number of available PIM

threads in each vault group

Task Scheduler: Initial Heuristic

70

We find that this heuristic is not optimized for PIM and
leads to sub-optimal performance due to three reasons:

1 The heuristic requires a dedicated runtime component
to monitor and assign tasks

2 The heuristic’s static mapping is limited to using only
the resources available within a single vault group

3 This heuristic is vulnerable to load imbalance

• The runtime component must be executed on a general-purpose
PIM core

• Can lead to performance issues for queries that operate on very
large columns

• Some PIM threads might finish their tasks sooner and wait idly
for straggling threads

Task Scheduler: Optimized
Hueristic

71

We optimize our heuristic to address these challenges:

1 We design a pull-based task assignment strategy, where PIM
threads cooperatively pull tasks from the task queue at runtime

• We introduce a local task queue for each vault group
• This eliminates the need for a runtime component (first challenge)

and allows PIM thread to dynamically load balance (third challenge)

2 We optimize the heuristic to allow for finer-grained tasks
• Partition input tuples into fixed-size segments (i.e., 1000 tuples)

and create an operator instance for each partition

3 We optimize the heuristic to allow a PIM thread to steal tasks
from a remote vault if its local queue is empty
• This enables us to potentially use all available PIM threads to

execute tasks

Analytical Engine: Hardware Design

72

Given area and power constraints, it can be difficult to add enough
PIM logic to each vault to saturate the available vault bandwidth

Our new data placement strategy and scheduler enables us to
expose greater intra-query parallelism

DRAM Layer
Logic Layer

DRAM Layer

Analytical Island
HW Resources

Update
App. Unit

Copy Unit
PIM

Cores

Update
Ship. Unit

Simple programmable in-order
PIM cores to exploit the
available vault bandwidth

Wrap up: Single-Instance Systems

73

While single-instance design enables high data freshness,
we find that it suffers from two major challenges:

1 High Cost of Consistency and Synchronization

2 Limited Performance Isolation

74

Our mechanism relies on a combination of snapshotting and
versioning to provide snapshot isolation for analytics

Our consistency mechanism is based on
two key observations:

Updates are applied at a column granularity1
Snapshotting a column is cost effective using PIM2

Consistency Mechanism: Algorithm

CPU Memory

Find the target
columns for updates

Ship the updates

Data Movement

Timeline

Updates from different
transactional threads

Update LogsScan and Merge

Analytical Replica

High update
rate

Frequent update
gathering & shipping

Higher data movement
overhead

Update Propagation: Update Gathering & Shipping

Goal: gather updates from transactional threads and
ship them to analytical the replica

75Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

1 Update Shipping: gather updates from transactional islands,
find the target location in analytical island, and ship them

2 Update Application: performs format conversion and
applies the update to the analytical replica

Data Freshness Mechanism:

Transactions Analytics

Replica

Transaction Island

Data Freshness
Mechanism

Updates

Analytical Island

Replica

HWHW

Exec. EngineExec. Engine

Data Freshness Mechanism

76Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Analytical Engine: Hardware

Vault

Analytical Engine
PIM
Core

PIM
Core

PIM
Core

PIM
Core

Consistency
Mechanism

Copy
Unit

Update Propagation
Mechanism

Update Gathering
and Shipping Unit

Update
Application Unit

Memory
ControllerTransactional Engine

CPU CPU CPU CPU

Shared Last-Level Cache (LLC)

3D-Stacked
Memory

TSV

Processor

Off-Chip
Link

DRAM
Banks

Given area and power constraints, it can be difficult to add
enough

PIM logic to each vault to saturate the available vault bandwidth

Our new data placement strategy and scheduler enables us to
expose greater intra-query parallelism

Simple programmable
in-order PIM cores to exploit
the available vault bandwidth

77Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Efficient analytical query execution strongly depends on:

1 Data layout and data placement

2 Task scheduling policy

3 How each physical operator is executed

We design a pull-based task assignment strategy, where PIM threads
cooperatively pull tasks from the task queue at runtime

We employ the top-down Volcano (Iterator) execution model to
execute physical operations (e.g., scan, filter, join) while respecting
operator’s dependencies

Analytical Engine: Query Execution

78Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

