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Traditionally, new transactions (updates) are propagated to the 
analytical database using a periodic and costly process

To support real-time analysis: a single hybrid DBMS is used 
to execute both transactional and analytical workloads
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HTAP: Supporting Real-Time Analysis
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Ideal HTAP System Properties

2 Data Freshness and Consistency Guarantees
• Guarantee access to the most recent version of data for 

analytics while ensuring that transactional and analytical 
workloads have a consistent view of data

1 Workload-Specific Optimizations
• Transactional and analytical workloads must benefit from their 

own specific optimizations

3 Performance Isolation
• Latency and throughput of  transactional and analytical 

workloads are the same as if they were run in isolation

An ideal HTAP system should have three properties:

Achieving all three properties at the same time
is very challenging

3



11 State-of-the-art HTAP systems do not achieve 
all of the desired HTAP properties1

Data freshness and consistency mechanisms are 
data-intensive and cause a drastic reduction in throughput2
These systems fail to provide performance isolation 

because of high resource contention3

Take advantage of custom algorithm and 
processing-in-memory (PIM) to address these challenges4

Problem and Goal
Problems:

Goal:
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Key idea: partition computing resources into 
two types of isolated and specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island1
Avoid high resource contention2
Design efficient data freshness and consistency 
mechanisms without incurring high data movement costs 3

Polynesia
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• Leverage processing-in-memory (PIM) to reduce data movement
• PIM mitigates data movement overheads by 

placing computation units nearby or inside memory



Designed to sustain
bursts of updates  

Each island includes (1) a replica of data, (2) an optimized execution 
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate 
data movement bottleneck Conventional multicore CPUs 

with multi-level caches

Polynesia: High-Level Overview
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Key Results 
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Polynesia achieves 91.6% the transactional throughput of 
an ideal system by employing

custom PIM logic for data freshness/consistency,
which significantly reduces

resource contention and data movement

Polynesia improves analytical throughput by 63.8% over
an optimized multiple-instance system, by eliminating 

data movement, and using custom logic for update 
propagation and consistency

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x) 

over prior HTAP systems



Conclusion
• Context: Many applications need to perform real-time data analysis using 
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties: 

(1) data freshness and consistency, (2) workload-specific optimization, 
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing 
islands
– Enables workload-specific optimizations and performance isolation 

• Key Mechanism: Polynesia, a novel hardware/software cooperative design 
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of 

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption  
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Executive Summary
• Context: Many applications need to perform real-time data analysis using 
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties: 

(1) data freshness and consistency, (2) workload-specific optimization, 
(3) performance isolation

• Problem: HTAP systems cannot achieve all three HTAP properties 

• Key Idea: Divide the system into transactional and analytical processing 
islands
– Enables workload-specific optimizations and performance isolation 

• Key Mechanism: Polynesia, a novel hardware/software cooperative design 
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of 

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption  

11



Outline
Introduction1

Limitations of HTAP Systems2
Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

12Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



Outline
Introduction1

Limitations of HTAP Systems2
Polynesia: Overview3
Update Propagation4

Consistency Mechanism5
Analytical Engine6

Evaluation7
Conclusion8

13Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



Real-Time Analysis
An explosive interest in many applications domains to perform 

data analytics on the most recent version of data 
(real-time analysis) 

Use transactions to record
each periodic sample of data 

from all sensors

Run analytics across 
sensor data to make 

real-time steering decisions

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

Self-Driving Cars
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We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation 

because of high resource contention2

State-of-the-Art HTAP Systems
We study two major types of HTAP systems:
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Since both analytics and transactions work on the same data 
concurrently, we need to ensure that the data is consistent 

There are two major mechanisms to ensure consistency:

1 Snapshotting

2
Multi-Version 
Concurrency 
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Drawbacks of Snapshotting and MVCC
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Throughput loss comes from 
memcpy operation: 

generates a large amount of 
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long version chains: 
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We evaluate the throughput loss caused by Snapshotting and MVCC:
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We observe two key problems:

Data freshness and consistency mechanisms
are costly and cause a drastic reduction in throughput1
These systems fail to provide performance isolation 

because of high resource contention2
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We study two major types of HTAP systems:

Main Replica

Transactions Analytics

Single-Instance

20

Replica Replica Replica

Transactions Analytics Analytics

Multiple-Instance

Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



One of the major challenges in multiple-instance systems is 
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from 
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation 
and apply those updates to analytical replicas

Replica

Analytical 
Replica

Analytical 
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness 
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Transactional throughput reduces by up to 21.2% during the 
update gathering & shipping process
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Transactional throughput reduces by up to 64.2% during the
update application process

We evaluate the throughput loss caused by Update Propagation:
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Key idea: partition computing resources into 
two types of isolated and specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island1
Avoid high resource contention2
Design efficient data freshness and consistency 
mechanisms without incurring high data movement costs 3

Polynesia
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One of the major challenges in multiple-instance systems is 
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Efficient analytical query execution strongly depends on:

1 Data layout and data placement

2 Task scheduling policy

3 How each physical operator is executed

The execution of physical operators of analytical queries 
significantly benefit from PIM

Without PIM-aware data placement/task scheduler, 
PIM logic for operators alone cannot provide throughput

Analytical Engine: Query Execution
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1 Data layout and data placement
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available to the 

analytical engine inside a vault 

Creates 
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Increases the aggregate bandwidth for 
servicing each query by 4 times, 

and provides up to 4 times the power/area 
for PIM logic compared to Local

Problem: how to partition analytical data across vaults 
of the 3D-stacked memory

Analytical Engine: Data Placement
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Efficient analytical query execution strongly depends on:

1 Data layout and data placement

2 Task scheduling policy

3 How each physical operator is executed

We design a pull-based task assignment strategy, where PIM threads 
cooperatively pull tasks from the task queue at runtime

We employ the top-down Volcano (Iterator) execution model to 
execute physical operations (e.g., scan, filter, join) while respecting 
operator’s dependencies  

Analytical Engine: Query Execution
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Methodology
• We adapt previous transactional/analytical engines with 

our new algorithms
– DBx1000 for transactional engine
– C-store for analytical engine 

• We use gem5 to simulate Polynesia
– Available at: https://github.com/CMU-SAFARI/Polynesia

• We compare Polynesia against: 
– Single-Instance-Snapshot (SI-SS): modeled after Hyper 
– Single-Instance-MVCC (SI-MVCC): modeled after AnkerDB
– Multiple-Instance + Polynesia’s new algorithms (MI+SW)
– MI+SW+HB: MI+SW with a 256 GB/s main memory device
– Ideal-Txn: the peak transactional throughput if transactional 

workloads run in isolation  
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End-to-End System Analysis (2/6)

Both MI+SW and MI+SW+HB fall 
significantly short of Ideal-Txn because of 

lack of performance isolation and overhead 
of update propagation
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End-to-End System Analysis (3/6)

Polynesia comes within 8.4% of ideal Txn
because it uses custom PIM logic for 

data freshness/consistency mechanisms 
which significantly reduce resource 

contention and data movement
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End-to-End System Analysis (4/6)

MI+SW+HB is the best software-only HTAP 
for analytical workloads, because it provides 
workload-specific optimizations, but it still 

loses 35.3% of the analytical throughput
due to high resource contention
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End-to-End System Analysis (5/6)

Polynesia improves over MI+SW+HB by 63.8%, 
by eliminating data movement, and using 
custom logic for update propagation and 

consistency
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End-to-End System Analysis (6/6)

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x) 

over prior HTAP systems
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More in the Paper 
• Real workload analysis

• Effect of the update propagation technique 

• Effect of the consistency mechanism

• Effect of the analytical engine

• Effect of the dataset size

• Energy analysis

• Area analysis
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More in the Paper 
• Real workload analysis

• Effect of the update propagation technique 

• Effect of the consistency mechanism

• Effect of the analytical engine

• Effect of the dataset size

• Energy analysis

• Area analysis
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• Context: Many applications need to perform real-time data analysis using 
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties: 

(1) data freshness and consistency, (2) workload-specific optimization, 
(3) performance isolation

• Problem: HTAP systems cannot achieve all three HTAP properties 

• Key Idea: Divide the system into transactional and analytical processing 
islands
– Enables workload-specific optimizations and performance isolation 

• Key Mechanism: Polynesia, a novel hardware/software cooperative design 
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of 

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems:
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption  

Conclusion
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Analytical Replica
C1 C2 C3C1 C2 C3

Row 1
Row 2
Row 3

Transactional Replica

Update:  Row 2, Column 1 and 3

1 A simple tuple update in row-wise layout leads to 
multiple random accesses in column-wise layout

2 Updates change encoded value in the dictionary à (1) Need to 
reconstruct the dictionary, and (2) recompress the column

Compressed 
Column

Dictionary

2
1
0
3

ID Value
0
1
2
3

ann
car
cat
ear

Update Propagation: Update Application
Goal: perform the necessary format conversation and 

apply transactional updates to analytical replicas
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Limitations of State-of-the-Art
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We extensively study state-of-the-art HTAP 
systems and observe two key problems:

Data freshness and consistency mechanisms generate
a large amount of data movement which causes

a drastic reduction in transactional/analytical throughput
1

They fail to provide performance isolation 
because of the high resource contention

between transactional and analytical workloads 
2
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FIFOs
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Hash Unit Copy Unit
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Index

Tracking Buffer

To avoid these bottlenecks, we design 
a new hardware accelerator, called update shipping unit

A 3-level comparator 
tree to merge 

updates
Decoupled hash computation from 

the bucket traversal to allow for 
concurrent lookups

Multiple fetch and write-back units to 
issue multiple memory accesses 

concurrently

Update Gathering & Shipping:  Hardware



Update Application
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Like other relational analytical DBMSs, our analytical engine 
uses the column-wise data layout and dictionary encoding 

Analytical Replica
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d ColumnDictionary
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Update Gathering & Shipping:  Algorithm
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Merge / Sort

Update 
Log1

…

Update 
Log 2

Update 
Log N

Scan and Merge

2

Hash

Target 
ColumnUpdatek

Find Target Column

3

Copy

Columni
BufferUpdatek

Transfer Updates

Our update shipping algorithm has three major stages:

Two major bottlenecks that keep us from meeting 
data freshness and performance isolation

These primitives generate a large amount of data movement and 
account for 87.2% of our algorithm’s execution time



Single-Instance: High Cost of Consistency
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Since both analytics and transactions work on the same data 
concurrently, we need to ensure that the data is consistent 

There are two major mechanisms to ensure consistency:

1 Snapshotting (Snapshot Isolation)

2 Multi-Version Concurrency Control (MVCC)
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Several HTAP systems use snapshotting
to provide consistency via Snapshot Isolation (SI)

Snapshotting

These systems explicitly create snapshots from 
the most recent version of data and let the analytics run on the 

snapshot while transactions continue updating data

Main Replica

Transactions

Transactional 
Data

Snapshot

Analytical 
Snapshot

Analytics



51

MVCC avoids making full copies of data by keeping 
several versions of the

Multi-Version Concurrency Control (MVCC)

When updates happen, MVCC creates a new time-stamped 
version of data and keeps the old version in a version chain 

alongside the data

1
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We find that this approach requires frequent snapshot creation to 
sustain data freshness under high transactional update rate 

Snapshotting: Drawbacks
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More Insights on Data Freshness Challenges
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We need to take advantage of PIM logic
to reduce data movement and resource contention

Our analysis shows that simply providing higher bandwidth 
(8x) to CPU cores does not address the challenges

We find that simply offloading them to general purpose PIM 
cores does not address the challenges

We need to design custom algorithm and hardware to 
efficiently execute update shipping/application process
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Multi-Version Concurrency Control (MVCC)

We find that long version chains are the root cause of the issue
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We observe that MVCC overhead leads to 42.4% performance loss
over zero-cost MVCC

Frequent transactional updates create lengthy version chains1
Scan-heavy analytics traverses a lengthy version chain upon 
accessing a data tuple 
2

• Expensive time-stamp comparison + a very large number of 
random memory accesses



Analytical Islands Key Components
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Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency 
Mechanism

Data Freshness 
Mechanism

We co-design new algorithms and efficient hardware support for the 
three key components of an analytical island

Design two algorithms:
(1) update shipping and (2) update application

Design custom PIM logic
for both algorithms

Data Freshness 
Mechanism



Analytical Islands Key Components
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Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency 
Mechanism

Data Freshness 
Mechanism

We co-design new algorithms and efficient hardware support for the 
three key components of an analytical island

Develop an algorithm relies on a combination of 
versioning and snapshotting to maintain data 

consistency

Design an in-memory copy unit that 
enables highly efficient snapshot creation

Consistency 
Mechanism



Designed to sustain
bursts of updates  

Each island includes (1) a replica of data, (2) an optimized execution 
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate 
data movement bottleneck Conventional multicore CPUs 

with multi-level caches

Polynesia: High-Level Overview
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Transactional Engine
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Banks Analytical Engine
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One of the major challenges in multiple-instance systems is 
to keep analytical replicas up-to-date

To maintain data freshness (via Update Propagation):

1 Update Gathering and Shipping: gather updates from 
transactional threads and ship them to analytical the replica

2 Update Application: perform the necessary format conversation 
and apply those updates to analytical replicas

Replica

Analytical 
Replica

Analytical 
Replica

Transactional queries

Updates

Updates

Multiple-Instance HTAP System

Maintaining Data Freshness 
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We co-design a new software/hardware accelerator, called 
update gathering & shipping unit

Update Gathering & Shipping
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A 3-level comparator 
tree to merge 

updates
Decoupled hash computation from 

the hash bucket traversal to allow for 
concurrent hash lookups

Multiple fetch and write-back units 
to issue multiple memory accesses 

concurrently



We co-design a new software/hardware accelerator, called 
update application unit

Update Application

Hash Lookup Unit

Front-End 
Engine

Probe Units

Merge Unit

=

=

=

=

=

=

=

Comparator TreeFIFOs

Sort Unit

1024-Bitonic 
Sorter Network

FIFOs
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A 1024-value bitonic sorter, 
whose basic building block is a 

network of comparators



Designed to sustain
bursts of updates  

Each island includes (1) a replica of data, (2) an optimized execution 
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate 
data movement bottleneck Conventional multicore CPUs 

with multi-level caches

Polynesia: High-Level Overview
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Consistency Mechanism
For each column, there is a chain of snapshots where each

chain entry corresponds to a version of the column

Unlike chains in MVCC, each 
version is associated with a 

column, not a row

Snapshot
V1

Snapshot
V2

Compressed 
Column

Snapshot
V3

Updates

Polynesia creates a new snapshot only if 
(1) any of the columns are dirty, and

(2) no current snapshot exists for the same column 
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Polynesia does not create a snapshot 
every time a column is updated. 

Instead, Polynesia marks the column 
as dirty



Analytical Islands Key Components
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Analytical Islands

Replica

Analytics

PIM Logic

Exec. Engine

Updates

Consistency 
Mechanism

Data Freshness 
Mechanism

We co-design new algorithms and efficient hardware support for the 
three key components of an analytical island

A custom data placement and task 
scheduler aware of 3D-stacked memory

Simple PIM cores to
execute execution engine

Exec. Engine



A Polynesia HW Implementation
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We implement an instance of Polynesia that supports 
relational transactional and analytical workloads

CPU CPU
CPU CPU LL
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Consistency Mechanism: Requirements
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Consistency mechanism must not compromise either the 
throughput of analytical queries or the update propagation rate

1 Updates must be applied all the time and should not be 
blocked by analytical queries à Data freshness property

2 Analytics must be able to run all the time and should not be 
blocked by update propagation process à Performance 
isolation property

Consistency mechanism has to satisfy two requirements:  



Analytical Engine: Query Execution
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Select A.id, B.id
From A JOIN B 
ON A.id = B.id

Where A.value > 55
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Operator 2



Analytical Engine: Data Placement
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DSM Data Layout
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Analytical Engine:  Task Scheduler
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For each query, the scheduler makes three key decisions:

1 Decides how many tasks to create

2 Finds how to map these tasks to the available resources
(PIM threads)

3 Guarantees that dependent tasks are executed in order



Task Scheduler: Initial Hueristic
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Select A.id, B.id
From A JOIN B 
ON A.id = B.id

Where A.value > 55
Where B.value < 70 

Query

Query Plan
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Task1 Task2 Task3

Global Work Queue

Scheduler

Our scheduler heuristic that generates tasks by disassembling 
the operators of the query plan into operator instances

(1) which vault groups the input tuples 
reside in, (2) the number of available PIM 

threads in each vault group



Task Scheduler: Initial Heuristic
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We find that this heuristic is not optimized for PIM and 
leads to sub-optimal performance due to three reasons:

1 The heuristic requires a dedicated runtime component 
to monitor and assign tasks

2 The heuristic’s static mapping is limited to using only 
the resources available within a single vault group

3 This heuristic is vulnerable to load imbalance

• The runtime component must be executed on a general-purpose 
PIM core

• Can lead to performance issues for queries that operate on very 
large columns

• Some PIM threads might finish their tasks sooner and wait idly
for straggling threads



Task Scheduler: Optimized 
Hueristic

71

We optimize our heuristic to address these challenges:

1 We design a pull-based task assignment strategy, where PIM 
threads cooperatively pull tasks from the task queue at runtime

• We introduce a local task queue for each vault group
• This eliminates the need for a runtime component (first challenge) 

and allows PIM thread to dynamically load balance (third challenge)

2 We optimize the heuristic to allow for finer-grained tasks
• Partition input tuples into fixed-size segments (i.e., 1000 tuples) 

and create an operator instance for each partition

3 We optimize the heuristic to allow a PIM thread to steal tasks 
from a remote vault if its local queue is empty
• This enables us to potentially use all available PIM threads to 

execute tasks



Analytical Engine: Hardware Design
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Given area and power constraints, it can be difficult to add enough 
PIM logic to each vault to saturate the available vault bandwidth

Our new data placement strategy and scheduler enables us to
expose greater intra-query parallelism

DRAM Layer
Logic Layer

DRAM Layer

Analytical Island
HW Resources

Update
App. Unit

Copy Unit
PIM

Cores

Update
Ship. Unit

Simple programmable in-order 
PIM cores to exploit the 
available vault bandwidth



Wrap up: Single-Instance Systems
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While single-instance design enables high data freshness, 
we find that it suffers from two major challenges:

1 High Cost of Consistency and Synchronization

2 Limited Performance Isolation
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Our mechanism relies on a combination of snapshotting and 
versioning to provide snapshot isolation for analytics

Our consistency mechanism is based on
two key observations:

Updates are applied at a column granularity1
Snapshotting a column is cost effective using PIM2

Consistency Mechanism:  Algorithm



CPU Memory

Find the target 
columns for updates

Ship the updates

Data Movement

Timeline

Updates from different 
transactional threads

Update LogsScan and Merge

Analytical Replica

High update 
rate

Frequent update 
gathering & shipping

Higher data movement  
overhead

Update Propagation: Update Gathering & Shipping

Goal: gather updates from transactional threads and 
ship them to analytical the replica
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1 Update Shipping: gather updates from transactional islands,
find the target location in analytical island, and ship them

2 Update Application: performs format conversion and
applies the update to the analytical replica

Data Freshness Mechanism:

Transactions Analytics

Replica

Transaction Island

Data Freshness 
Mechanism

Updates

Analytical Island

Replica

HWHW

Exec. EngineExec. Engine

Data Freshness Mechanism
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Analytical Engine: Hardware
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Given area and power constraints, it can be difficult to add 
enough 

PIM logic to each vault to saturate the available vault bandwidth

Our new data placement strategy and scheduler enables us to
expose greater intra-query parallelism

Simple programmable
in-order PIM cores to exploit 
the available vault bandwidth
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Efficient analytical query execution strongly depends on:

1 Data layout and data placement

2 Task scheduling policy

3 How each physical operator is executed

We design a pull-based task assignment strategy, where PIM threads 
cooperatively pull tasks from the task queue at runtime

We employ the top-down Volcano (Iterator) execution model to 
execute physical operations (e.g., scan, filter, join) while respecting 
operator’s dependencies  

Analytical Engine: Query Execution
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