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Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems
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Data Movement in Computing Systems

* Data movement dominates performance and is a major system
energy bottleneck

 Total system energy: data movement accounts for
- 62%in consumer applications™®,
- 40% in scientific applications*,

- 35% in mobile applications*
Data Movement

. | €——>

l 1

<€ >
e [ | (e [T W,

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

___/_\___

SAFARI



Data Movement in Computing Systems

dominates IS @ major system
energy bottleneck

* Total system energy: data movement accounts for
- 62%in consumer applications™,

Compute systems should be more data-centric

Processing-In-Memory proposes
computing where it makes sense
(where data resides)

\ Video Video Audio Dlsp.lay
\ Encoder Decoder Engine V4

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
*Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” lISWC 2014
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A +50-Year-Old Paradigm

* Kautz, “Cellular Logic-in-Memory Arrays”, IEEE TC 1969

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 8, AUGUST 1969

Cellular Logic-in-Memory Arrays

WILLIAM H. KAUTZ, MEMBER, IEEE

Abstract—As a direct consequence of large-scale integration,
many advantages in the design, fabrication, testing, and use of digital
circuitry can be achieved if the circuits can be arranged in a two-di-
mensional iterative, or cellular, array of identical elementary net- 19 .
works, or cells. When a small amount of storage is included in each ARRAY: | : | l [ X

|
|

-

TYPICAL CELL:
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cell, the same array may be regarded either as a logically enhanced
memory array, or as a logic array whose elementary gates and con- q
nections can be “programmed” to realize a desired logical behavior. T T
In this paper the specific engineering features of such cellular !
logic-in-memory (CLIM) arrays are discussed, and one such special- wi- Er

!
11

111

purpose array, a cellular sorting array, is described in detail to illus- I ¢ '
trate how these features may be achieved in a particular design. It is | |
shown how the cellular sorting array can be employed as a single- = = =
address, multiword memory that keeps in order all words stored U U ——uJ o & i !
within it. It can also be used as a content-addressed memory, a (X leads return to X-register)
pushdown memory, a buffer memory, and (with a lower logical "
efficiency) a programmable array for the realization of arbitrary CELL EQUATIONS: X = Wx + wy
switching functions. A second version of a sorting array, operating ;’ . ;c();, ;’z_) :'ixy S TR
on a different sorting principle, is also described. e
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Fig. 1. Cellular sorting array I.
Index Terms—Cellular logic, large-scale integration, logic arrays

logic in memory, push-down memory, sorting, switching functions.

SA FA Rl https://doi.org/10.1109/T-C.1969.222754
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Processing in/near Memory: An Old Idea

= Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.

A Logic-in-Memory Computer
HAROLD S. STONE

Abstract—If, as presently projected, the cost of microelectronic
arrays in the future will tend to reflect the number of pins on the
array rather than the number of gates, the logic-in-memory array is
an extremely attractive computer component. Such an array is es-
sentially a microelectronic memory with some combinational logic
associated with each storage element.

SAFARI https://doi.org/10.1109/TC.1970.5008902 p
https://people.inf.ethz.ch/omutlu/pub/onur-MiM-Talk-IntelligentArchitecturesForIntelligentMachines-May-3-2021.pptx
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PIM Review and Open Problems

A Modern Primer on Processing in Memory
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 8
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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UPMEM DIMMs

* E19: 8 chips/DIMM (1 rank). DPUs @ 267 MHz
* P21: 16 chips/DIMM (2 ranks). DPUs (@ 350 MHz

SAFAR, www.upmem.com
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PIM’s Promises

UPMEM PIM massive benefits

. Energy efficiency when Server + Server +
* Massive SpEEd'U P computing on or off PIM normal
e Massive additional compute & METOGEHIP DRAMS M
bandwidth DRAM to processor pJ ~150 ~3000*
. . 64-bit operand
* Massive energy gains Gneraion ol ~20 ~10*
* Most data movement on chip
Server consumption w  ~700W ~300W
* LOW COSt speed-up ~x20 x1
i ~300$ Of additional DRAM SiliCOﬂ energy gain ~x10 x1
 Affordable programming TCO gain ~x10 x1
- H *Exascale C uting Trends: Adjusting to the “New Normal” for C ut
* MaSSIVe ROI / TCO galns Arcgftcectilr;rjnfhn ggal;,egorsnputjin; i,r;gScCi’encZ&zngincZ;ing, ;(;13omp i

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 04,2020 at 13:55:41 UTC from IEEE Xplore. Restrictions apply.

SA FAR’ F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680 1 O



Technology Challenges

The Hurdles on the road to the Graal

 DRAM process highly constrained

_ o Take away
 3x slower transistors than same node digital
process DRAM vs. ASIC
* Logic 10 times less dense vs. ASIC process * Far less performing
* Routing density dramatically lower * Widters axcheapenys. AoIC

* 3 metals only for routing (vs. 10+), pitch x4 larger Leapfrogging Moore’s law

e Strong design choices mandatory I;;z;Iﬁge;g;ﬁl'g'f,gg,ﬁ,ﬁm
* Very low cost

But the PIM Graal is worth it |

B m
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 04,2020 at 13:55:41 UTC from IEEE Xplore. Restrictions apply.

Copyright UPMEM

SA FARI F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680



UPMEM Patent

a2 United States Patent a0y Patent No.:  US 10,324,870 B2
Devaux et al. 45) Date of Patent: Jun. 18, 2019
(54) MEMORY CIRCUIT WITH INTEGRATED (56) References Cited

PROCESSOR
U.S. PATENT DOCUMENTS

(71)  Applicant: UPMEM, Grenoble (FR)

5,666,485 A ™ 9/1997 Suresh ............... GO6F 13/1605
(72) Inventors: Fabrice Devaux, La Conversion (CH); 6.463.001 Bl 102002 Williams AR
Jean-Frangois Roy, Grenoble (FR) 7,349,277 B2*  3/2008 Kinsley .....ccoooo...... G11C 11/406
365/193
(73) Assignee: UPMEM, Grenoble (FR) 8,438,358 B1* 5/2013 Kraipak .........c.ccon. GI11C 7/04
711/167
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 15/551,418 EP 0780768 Al 6/1997
JP HO3109661 A 5/1991
(22) PCT Filed: Feb. 12, 2016 WO 2010/141221 Al 12/2010
(57) ABSTRACT

A memory circuit having: a memory array including one or
more memory banks; a first processor; and a processor
control interface for receiving data processing commands
directed to the first processor from a central processor, the
processor control interface being adapted to indicate to the
central processor when the first processor has finished
accessing one or more of the memory banks of the memory
array, these memory banks becoming accessible to the
central processor.

SA FA R’ Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.



Understanding a Modern PIM Architecture

Understanding a Modern Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization
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PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 {7 star 2 % Fork 1

<>

I_Y

Jaty

Code () Issues 1 Pull requests (*) Actions ["1] Projects [ wiki () Security [~ Insights 51 Settings

main v prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

1 contributor

168 lines (132 sloc) 5.79 KB Raw Blame G 2 O

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.

SAFARI
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(¢ UPMEM PIM Programming )
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- CPU-DPU Data Transfers
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(» DRAM Processing Unit b
- Arithmetic Throughput
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(* PrIM Benchmarks R
- Roofline Model
- Benchmark Diversity y
(+ Evaluation R
- Strong and Weak Scaling
- Comparison to CPU and GPU Y
* Key Takeaways
SAFARI 15



Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as possible.
Split the workload into independent data blocks,
which the DPUs operate on independently.

Use as many working DPUs in the system as possible.
Launch at least 11 tasklets (i.e., software threads)
per DPU.

PROGRAMMING RECOMMENDATION 1

For data movement between the DPU’s MRAM bank and the
WRAM, use large DMA transfer sizes when all the accessed

data is going to be used.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU
transfers between the host main
memory and the DRAM Processing

Unit’s l\_/[aln_ memory (MRAM) banks_ KEY TAKEAWAY 1
result in higher sustained bandwidth.
The UPMEM PIM architecture is fundamentally compute
bound. As a result, the most suitable work- loads are

memory-bound.

SAFARI
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Accelerator Model (1)
* UPMEM DIMMs coexist with conventional DIMMs

* Integration of UPMEM DIMMs in a system follows an
accelerator model

* UPMEM DIMMs can be seen as a loosely coupled
accelerator

- Explicit data movement between the main processor (host
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

* This resembles GPU computing

SAFARI 18



GPU Computing

Computation is offloaded to the GPU

Three steps

o CPU-GPU data transfer (1)
o GPU kernel execution (2)
o GPU-CPU data transfer (3)

CPU
cores

CPU GPU
memory memory
1
L+ A
Matrix Matrix
‘\ L~
3

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf

GPU
cores

https://www.youtube.com/watch?v=y40-tYS5WJ8A

19
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Accelerator Model (IlI)

* FIG. 6 is a flow diagram representing operations in a method of delegating a
processing task to a DRAM processor according to an example embodiment

SOC LOADS DATA TO BE PROCESSED
TO DRAM MEMORY BANK
SOC TRANSMITS DATA PROCESSING
A 602
COMMAND TO DRAM PROCESSOR(S)
l B—__603
DATA PROCESSING BY DRAM PROCESSOR(S)
f 604
DATA PROCESSIN
COMPLETE 2
5)5
, ~
MEMORY BANK ACCESSIBLE BY SOC
Fig 6

SA FA R, Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.



System Organization (1)

* FIC. 1 schematically illustrates a computing system comprising DRAM circuits
having integrated processors according to an example embodiment

100

B
&

. |02

rd
tDDR MASTER INTERFACE

ANy
Ll r 140
it
-

DRA&I:/IO {7 DRA&\’/II {; DRAI\?/I?. v DRA&'B B

DDR S.1. DDR S.1 DDR S.1. DDR S.L
2108 118 =128 138
4 3 B Ips pF
907106 917116 27 926 937 936
MA MA MA MA
7 7 7 ?
z 7 ( {
104 114 124 134
Fig 1

SA FA R’ Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2. 2 1



System Organization (II)

* Ina UPMEM-based PIM system UPMEM DIMMs coexist
with regular DDR4 DIMMs

Main Memory

-
y
i
y-
DRAM|\DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM|[DRAM
( ) == | | Cip )| Chip )| Chip || chip |\ chip )| chip )| chip || chip
DRAM|[DRAM|[DRAM||DRAM|[DRAM||DRAM||DRAM||DRAM
chip || chip || chip )| chip )| chip )\ chip )| chip )| chip
xM

Host

CPU o
[PIM][PIM][PIM][PIM][PIM][PIM][PIM][PIM]
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
J
[PIMJ[PIMJ[PIMJ[PIMJ[PIMJ[PIMJ[PIM][PIMJ
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip /
xN

PIM-enabled Memory
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System Organization (llI)

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

Main Memory PIM Ch ip
= ye ~\
/ Control/Status Interface <—>[ DDR4 Interface ]
DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM /
( \—p ’ A A
/
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip \
/
/:M / ( — (#\\\
Host / DISPATCH
CcPU / FETCHI 24-KB
y= / FETCH2 )@ —
f T FETCH3 IRAM ()]
i READOP1 £ 64-MB
PIM PIM PIM PIM PIM PIM PIM PIM o READOP2 [=)) 64 bit =
< Chip || chip || chip || chip || chip || chip || chip || chip ) % - (CREADOP3 P IE Its DRAM
- o) <+>
chip || chip || chip || chip )| chip || chip || chip || chip
‘/4xN g AW 64-KB = (D)
~ = ALU3 <P WRAM <€+ QO
PIM-enabled Memory S [7] ALU4 —;/
S 2 MERGEL _537
CI:. MERGE2 ) L8
- J

SAFARI
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2,560-DPU System (1)

* UPMEM-based PIM

Main Memory

system with 20 .U PMEM 1,
DIMMs of 16 chips each
Host
(40 ranks) cPU 0 P 2560 DPUs*
P21 DIMMs PN 67 BN BN B o BB G
Dual x86 socket VA0

° UP M E M DIMMS PIM-enabled Memory
coexist with regular Main Memory
DDR4 DIMMs =

e > memory 4—»[
controllers/socket (3 2
channels each) crU 1 ,,

« 2 conventional DDR4 4. [ﬂﬂﬂﬂﬂﬂﬂﬂ
DIMMSs on one  BEEEEEEE
channel of one ..gwg,ze.../m
controller

160 GB
SA FA R’ * There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556. 24



2,560-DPU System (lI)

Main Memory
)
——— N ——\

Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
oA A e o e o o o)
\cmp chip || chip || chip || chip || chip || chip cmpj AZ

Host
CPUO

A A
y y

PIM-enabled Memory

Main Memory
)
(T —— =)

- Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
T o e e e e o e o)
\cmp chip || chip || chip || chip || chip || chip cmpj A2
N

y

Host
CPU 1

PIM-enabled Memory
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640-DPU System

* UPMEM-based PIM
system with 10 UPMEM
DIMMs of 8 chips each

(1 o ran kS) Main Memory
- E19 DIMMs £
- x86 socket f—ﬁ{“)(l)ﬁﬂ()(lﬂ()
* 2 memo ry contro l I ers Chip)(chip; \cnip)(cmp)(éiﬁ,;; \Chi;ﬂﬁ&?ﬂ@;%ﬂ
(3 channels each) aoor P
* 2 conventional DDR4 o
DIMMs on one ~—<->&f:;::}Ez::}{:z::}{:::}{:z:)(::
Cha n nel Of On e Chip || Chip || Chip || Chip || Chip || Chip
controller PIM-enable

SAFARI 26



DPU Sharing? Security Implications?

* DPUs cannot be shared across multiple CPU processes

- There are so many DPUs in the system that there is no need
for sharing

* According to UPMEM, this assumption makes things
simpler
- No need for OS
- Simplified security implications: No side channels

SAFARI
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Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI
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General Programming Recommendations

* From UPMEM programming guide®, presentations*,
and white papers*

GENERAL PROGRAMMING RECOMMENDATIONS

. Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as
possible.

. Split the workload into independent data

blocks, which the DPUs operate on
independently.

. Use as many working DPUs in the system as
possible.

. Launch at least 11 tasklets (i.e., software
threads) per DPU.

* https://sdk.upmem.com/2021.1.1/index.html
* F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
* UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator,” White paper

SAFARI
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DPU Allocation

* dpu alloc( ) allocates a number of DPUs
- Createsadpu_set

struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
DPU_ASSERT (dpu_alloc(NR_DPUS, NULL, &dpu_set));

DPU_ASSERT (dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
printf("Allocated %d DPI )\n", nr_of_dpus);

Can we allocate different DPU sets
over the course of a program?

Yes, we can. We show an example next

We deallocate a DPU set with dpu free()

SAFARI 31



DPU Allocation: Needleman-Wunsch (NW)

* In NW we change the number of DPUs in the DPU set as
computation progresses

SAFARI

for (unsigned int blk = 1; blk <= (max_cols-1)/BL; blk++) {

unsigned nr_of_blocks = blk;

if (nr_of blocks < max_dpus) {
DPU_ASSERT(dpu_free(dpu_set));
DPU_ASSERT(dpu_alloc(nr_of_blocks, NULL, &dpu_set));
DPU_ASSERT (dpu_load (dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));

} else if (nr_of_dpus == max_dpus) {

} else {
DPU_ASSERT (dpu_free(dpu_set));
DPU_ASSERT(dpu_alloc(max_dpus, NULL, &dpu_set));
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));

32



Load DPU Binary

* dpu_ load( ) loads a program in all DPUs of a
dpu set

#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif

DPU_ASSERT (dpu_load(dpu_set, DPU_BINARY, NULL));

s it possible to launch different kernels onto different DPUs?

(Yes, it is possible. This enables: A
* Workloads with task-level parallelism
& Different programs using different DPU sets y

SAFARI 33



CPU-DPU/DPU-CPU Data Transfers

* CPU-DPU and DPU-CPU transfers
- Between host CPU’s main memory and DPUs’ MRAM banks

Main Memory

P

y =
.=
.=

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip )| Chip |\ Chip J{ Chip )| chip |\ chip )| chip

,OQ‘ -— DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\)/ —— chip || cnip || chip || cnip || chip || chip || chip || chip
%l xM
Host I
P =

b
= pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| ( Chip || Chip || Chip )\ chip )| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip )| chip || chip || chip /

xN
PIM-enabled Memory

e Serial CPU-DPU/DPU-CPU transfers:
- Asingle DPU (i.e., 1t MRAM bank)

* Parallel CPU-DPU/DPU-CPU transfers:
- Multiple DPUs (i.e., many MRAM banks)

* Broadcast CPU-DPU transfers:
- Multiple DPUs with a single buffer

SAFARI
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Serial Transfers

* dpu_copy_to();

* dpu_copy from();

» We transfer (part of) a buffer to/from each DPU in the
dpu set

* DPU MRAM HEAP POINTER NAME: Start of the
MRAM range that can be freely accessed by applications
- We do not allocate MRAM explicitly

DPU_FOREACH (dpu_set, dpu) {

DPU_ASSERT (dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME | 0, bufferA + input_size_dpu_8bytes x i size_dpu_8bytes x sizeof(T)))

input_
DPU_ASSERT (dpu_copy_to(dpu,| DPU_MRAM_HEAP_POINTER_NAME | input_size_dpu_8bytes x sizeof(T), bufferB + input_size_dpu_8bytes * i input_size_dpu_8bytes x sizeof(T)));
i++;

. Offset within MRAM Pointer to main memory Transfer size
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Parallel Transfers

* We push different buffers to/from a DPU set in one
transfer

- All buffers need to be of the same size
* First, prepare (dpu prepare xfer);
then, push (dpu push xfer)

* Direction:

- DPU_XFER_TO DPU
- DPU_XFER FROM DPU

DPU_FOREACH(dpu_set, dpu, i) { Pointer to main memory
DPU_ASSERT (dpu_prepare_xfer(dpu, [ bufferA + input_size_dpu_8bytes * i))

I
DPU_ASSERT (dpu_push_xfer(dpu_set,| DPU_XFER_TO_DPU|| DPU_MRAM_HEAP_POINTER_NAME,| 0, input_size_dpu_8bytes % sizeof(T)| DPU_XFER_DEFAULT));

DPU_FOREACH(dpu_set, dpu, i) { Offset within MRAM Transfer size
DPU_ASSERT (dpu_prepare_xfer(dpu, bufferB + input_size_dpu_8bytes x 1i))

}
DPU_ASSERT (dpu_push_xfer(dpu_set,| DPU_XFER_TO_DPU| DPU_MRAM_HEAP_POINTER_NAME,| input_size_dpu_8bytes x sizeof(T)]! input_size_dpu_8bytes * sizeof(T)| DPU_XFER_DEFAULT));
Direction
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Broadcast Transfers

* dpu broadcast to();
- Only CPU to DPU

* We transfer the same buffer to all DPU in the dpu_set

DPU_ASSERT (dpu_broadcast_to(dpu_set, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA, input_size_dpu * sizeof(T) ] DPU_XFER_DEFAULT));

Pointer to main memor Transfer size
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Different Types of Transfers in a Program

* An example benchmark that uses both parallel and serial
transfers

* Select (SEL)
- Remove even values

Select (remove)

Parallel
mput |2 1|3 jofof1|sfafofofz|1]| om0

DPU 0 DPU 1 DPU 2
Predicate: True if it is even

Serial
ouput | 13 113 |1 | yanegers

DPUO DPU1 DPU2
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Inter-DPU Communication

* There is no direct communication channel between DPUs

Main Memory

P
y =
y =

y =

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip )| Chip |\ Chip J{ Chip )| chip |\ chip )| chip

,OQ - = DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\>/ fpm— Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
S/ M
Host I
P _

~ I -
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| ( Chip || Chip || Chip )\ chip )| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip )| chip || chip || chip

PIM-enabled Memory

* Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:

- Merging of partial results to obtain the final result
* Only DPU-CPU transfers

- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers
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How Fast are these Data Transfers?

* With a microbenchmark, we obtain the sustained
bandwidth of all types of CPU-DPU and DPU-CPU transfers

* Two experiments:

-1 DPU:)variable CPU-DPU and DPU-CPU transfer size (8 bytes to
32 MB

- 1rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set of
1to 64 MRAM banks within the same rank
* We do not experiment with more than one rank

- Preliminary experiments show that the UPMEM SDK* only
parallelizes transfers within the same rank

DDR4 bandwidth bounds the maximum transfer bandwidth

The cost of the transfers can be amortized,
if enough computation is run on the DPUs

.

SA FAR' * UPMEM SDK 2021.1.1

40




CPU-DPU/DPU-CPU Transfers: 1 DPU

* Data transfer size varies between 8 bytes and 32 MB

1.0000

--CPU-DPU
1| -@=-DPU-CPU

Sustained CPU-DPU
Bandwidth
(GB/s, log scale)
o o o
o o =
o = o
5 8 8

00001 T ! ! ! ! ! ! ! ! ! ! !

1

Data transfer size (bytes)

KEY OBSERVATION 7
Larger CPU-DPU and DPU-CPU transfers between the host main

memory and the DRAM Processing Unit's Main memory (MRAM)
banks result in higher sustained bandwidth.

SAFARI
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CPU-DPU/DPU-CPU Transfers: 1 Rank (1)

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
 The number of DPUs varies between 1 and 64

== CPU-DPU (serial) —@— DPU-CPU (serial)
16.00 4 =B CPU-DPU (parallel) =Q= DPU-CPU (parallel) 16.88
o] ' =—f— CPU-DPU (broadcast) !
% < 8.00 —66.68
[ G - |
5 S5 8 400 - - 4.74
a2 7 2.00
© —_ i
5 'g - 1.00 =
.% 2 > 0.50 - =Q— 0.27
2 9 025 - —a —
v 013 4 Q=@ o O—==0 0, @012
0.06 | | | | . |
< (o) <
— (o)

KEY OBSERVATION 8

The sustained bandwidth of parallel CPU-DPU and DPU-CPU
transfers between the host main memory and the DRAM Processing
Unit’s Main memory (MRAM) banks increases with the number of
DRAM Processing Units inside a rank.
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CPU-DPU/DPU-CPU Transfers: 1 Rank (1)

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
 The number of DPUs varies between 1 and 64

16.00 -
8.00 4
4.00 -
2.00 -
1.00 -
0.50
0.25
0.13

Sustained CPU-DPU
Bandwidth
(GB/s, log scale)

0.06

=iyl KEY OBSERVATION 9

== CPU-DPU (broadcast)

The sustained bandwidth of
parallel CPU-DPU transfers is
higher than the sustained
bandwidth of parallel DPU-CPU
transfers due to different

implementations of CPU-DPU and
DPU-CPU transfers in the UPMEM
runtime library.

The sustained bandwidth of broadcast CPU-DPU transfers (i.e., the same
buffer is copied to multiple MRAM banks) is higher than that of parallel

CPU-DPU transfers (i.e., different buffers are copied to different MRAM
banks) due to higher temporal locality in the CPU cache hierarchy.

SAFARI
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“Transposing” Library

The library feeds DPUs with correct data

Eight 64-bit “horizontal” words

are turned into 8 vertical words, DRAM chip
feeding 8 different DRAM chips have 8-bit
This way DPUs see full 64-bit data bus

words, not chunk of them

Word 0

Word 1 The transformation, a 8x8

Word 2 . W W W W W W W W  matrix transposition, is

Library o o o o o o o o donebythe libraryinside

Word 3 .
— F  F F | F | F Tr T T a 64-byte cache line, thus

Word 4 d d d d d d d d veryefficiently.

Word 5 0(1/23(4|5|6/|7

Word 6

Word 7

Copyright UPMEM® 2019 mem

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 04,2020 at 13:55:41 UTC from IEEE Xplore. Restrictions apply.

SA FA Rl F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680



Microbenchmark: CPU-DPU

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)

H CMU-SAFARI/ prim-benchmarks ®Unwatch ~ 2 Y7 star 1 % Fork O

<> Code () Issues {1 Pull requests (*) Actions Projects [ Wiki () Security |~ Insights 51 Settings

¥ main v  prim-benchmarks / Microbenchmarks / CPU-DPU / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 7 days ago XY History
dpu PrIM -- first commit 7 days ago
host PrIM -- first commit 7 days ago
support PrIM -- first commit 7 days ago
(% Makefile PrIM -- first commit 7 days ago
(9 run.sh PrIM -- first commit 7 days ago
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DPU Kernel Launch

* dpu launch( ) launches a kernel onadpu_ set

- DPU_SYNCHRONOUS suspends the application until the
kernel finishes

- DPU_ASYNCHRONOUS returns the control to the application
* dpu sync ordpu status to check kernel completion

printf("Run program on DPU(s)

DPU_ASSERT (dpu_launch(dpu_set, DPU_SYNCHRONOUS));

What does the asynchronous execution enable?

Some ideas: h
* Task-level parallelism: concurrent execution of different kernels on
different DPU sets
( Concurrent heterogeneous computation on CPU and DPUs y
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How to Pass Parameters to the Kernel?

* We can use serial and parallel transfers

* We pass them directly to the scratchpad memory of the

DPU
- Working RAM (WRAM): We introduce it in the next slides

* This is useful for input parameters and some results

~_host dpu_arguments_t DPU_INPUT_ARGUMENTS;
__host dpu_results_t DPU_RESULTS[NR_TASKLETS];

#ifdef SERIAL

DPU_FOREACH (dpu_set, dpu) {
DPU_ASSERT (dpu_copy_to(dpu, | "DPU_INPUT_ARGUMENTS",l 0, (const void *)&input_arguments([il, sizeof(input_arguments[0])));

it++;
¥
#else
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT (dpu_prepare_xfer(dpu, &input_arguments[i]));
¥
DPU_ASSERT (dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, | "“DPU_INPUT_ARGUMENTS", @, sizeof(input_arguments([@]), DPU_XFER_DEFAULT));

#endif
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Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways
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DRAM Processing Unit (1)

FIG. 4 schematically illustrates part of the computing system of FIG. 1in more
detail according to an example embodiment

SOC 193 A

I;DR MASTER INTERFACE

‘] r 140
//
2
DRAMO{7 DRAM! v DRAM V DRA.M3 i} -
|DDR§I] ]DDMI! [pDR S.1.] . IDDRSII
lIIPI IIIPI il » | 1|p|
q07__%06 716 927926 137436
MA MA MA MA
; . , .
1 f [ T
104 114 124 134
Fig1

P1

NP2 [«

SOC ™ 103

DDR

MASTER [N
INTERFACE|

DDR BUS

?l 6 412 DRAM 0
3 410 \
408k\ A
406 |
— =
REFRESH t
CONTROLLER 1424
: Dl_?AM
: s PRO(bSbOR425
- CONTROL| 420 L
4 INSTRUCTION
- A M
4265
v T, 2
P PIPELINE ;
< MEMORY 8 | ]
p ARRAY
DDR CONTROL! |LOCAL MEMORY
SLAVE LI 3 ] -
INTERFACE N =422 i
<423 -
4&3 ¥ 418 v
G.I MEMORY =
BANK E | o
, A'
414
Fig4

SAFARI
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DRAM Processing Unit (1)
PIM Chip

-

\_
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DPU Pipeline

* In-order pipeline

- Up to 350 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI

27 1

DISPATCH )

FETCH1

FETCH2

FETCH3

READOP1

READOP2

<>

24-KB
IRAM

To the DMA engine |

gister File

READOP3

FORMAT

ALU1

ALU2

ALU3

ALU4

ipeline(Re

MERGE1

P

—_———————)

r

MERGE2

64-KB
WRAM




Arithmetic Throughput: Microbenchmark

e Goal

- Measure the maximum arithmetic throughput for different
datatypes and operations

e Microbenchmark

- We stream over an array in WRAM and perform read-modify-write
operations

Experiments on one DPU

We vary the number of tasklets from 1 to 24
Arithmetic operations: add, subtract, multiply, divide
Datatypes: int32, int64, float, double

* We measure cycles with an accurate cycle counter that the
SDK provides

- We include WRAM accesses (including address calculation) and
arithmetic operation
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Microbenchmark for INT32 ADD Throughput

1 #define SIZE 256
v 2 1int* bufferA = mem alloc(SIZE * sizeof(int));
S 3 for(int i = 0; i < SIZE; i++){
5 4 int temp = bufferA[i];
.§ 5 temp += scalar;
V) 6 bufferA[i] = temp;
7}
1 move r2, O
o5 2 .LBBO 1:
lg > 3 1lsl add r3, r0, r2, 2
5 5 4 1w r4, r3, 0
5= 5 add r4, r4, rl
L
g = 6 sw r3, 0, rd
05 7 add r2, r2, 1
~— 8 jneq r2, 256, .LBBO 1
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Arithmetic Throughput: 11 Tasklets

70 70
(a) INT32 (1DPU)

o]

o

D

o
1

(%
o
1
(%))
o
1

KEY OBSERVATION 1

The arithmetic
throughput of a DRAM
Processing Unit
saturates at 11 or more
tasklets.

I
o
1
N
o
1

30 A

w
o
1

N
o
1

Arithmetic Throughput (MOPS)
Arithmetic Throughput (MOPS)

This observation is
consistent for different
datatypes (INT32, INT64,
UINT32, UINT64, FLOAT,
DOUBLE) and operations
(ADD, SUB, MUL, DIV).

(2}
1
(2}

N
1
I

N
1
N

Arithmetic Throughput (MOPS)
w

Arithmetic Throughput (MOPS)
w

=
=

0

N 1N N O A N NN O A M
= A = a4 N N

#Tasklets
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Arithmetic Throughput: ADD/SUB

(a) INT32 (1 DPU) " (b) INT64 (1 DPU)

P I DD DD i i .

~N
o

o)
o
~
S
g
e

I
)
>
,
>
)
S
S
>
S
)
»
)
S

) gkl INT32 ADD/SUB are
2 oul 17% faster than

[

o
~
L

w

o
1

D
o
>
| £
>
|w)
)

w
o
L
2
S

Arithmetic Throughput (MOPS)
b
wm
c
on)
Arithmetic Throughput (MO
i

o] A = INT64 ADD/SUB

20 4 =~y -D-MUL
=y =0=DIV

N
o
~

L

[uny
o o
1 1 1 1 1 1
%
L 3
>
)
)
>
3
>
)

M NN~ OO A MmO N ™~ O 1 M T N 1N N O - m n ™~ O = o
I v = = = N - I = = N
#Tasklets #Tasklets

: : : frequencyppy
Arithmetic Throughput (inOPS) = ———
#instructions
¢¢
iasklets Masklets
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Arithmetic Throughput: #Instructions

* Compiler explorer: https://dpu.dev

S SISHAIS BECCE BiRR SLEA TEETT A OM010 O.Jaout B.AX0: Btext @/ O\
2 .....
: 1 Benchmark 32bits:
3 typedef int T; , — .
4 void Benchmark 32bits(T *cache_ A, T scalar) { . — move rzZ,
5 for (int i = 0; i < BLOCK_SIZE / sizeof(T); i++){ . SEES _(-l — —
6 ////// WRAM READ ////// . 1s _: §3,0r o o
7 T temp = cache_A[i]; 6 a:;’drr; rr; =
8 4 ’
9 temp += scalar; // ADD ; s:dr3; 0,2r41
a 2, ‘T2,
10
11 ////// WRAM WRITE ////// 12 \?neq r; 256, .LBBO_1
i jump r
12 cache_A = temp;
13 } . o 11 Benchmark  64bits:
14 } 12 move rl, 0
15 1% JERBT. 15
16 typedef long T long; 12 (izlgzddrz4,or0, s2il, & \
17 void Benchmark 64bits(T_long *cache A, T long scalar) ({ o ; ’,1 .
18 for (int i = 0; i < BLOCK_SIZE / sizeof(T long); i++){ 1: add L ; = é 5 -
19 ////// WRAM READ ////// e ad C4r (,) rdé r
20 T long temp = cache A[i]; = der ; ,1 ;
a il G2l
21
22 temp += scalar; // ADD 2(1) \J'neq r;: 128, .LBBl 1 /
23 jump r23
24 \
- 6 instructions in the 32-bit ADD/SUB microbenchmark
27 H . . . .
7 instructions in the 64-bit ADD/SUB microbenchmark
J
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Arithmetic Throughput: ADD/SUB

70

~N
o

(a) INT32 (1 DPU) (b) INT64 (1 DPU)
5 60 - & 00
o R o 0
s, A N R = INT32 ADD/SUB are
3 £ 3 a
£ 40 | - —&—ADD || £ 40 | a 17% faster than
3 v= susB 3 o
£ 30 - § £ 30 . a —A—ADD
A Y Do) 2o 4 aor INT64 ADD/SUB
24 ia 2 50 - S =O-muL
£ £ = =O=DIV
<1 <10 {4

#Tasklets #Tasklets

| Peak throughput at 11 tasklets. I
One instruction retires every cycle when the pipeline is full

frequencyppy

#instructions

Arithmetic Throughput (in OPS) =
L 64-bit ADD/SUB: 7 instructions — 50.00 MOPS J

at frequencyppy = 350 MHz
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Arithmetic Throughput: MUL/DIV

70

(a) INT32 (
& 60 A
a
o
=50 K
5 b
& =5
5 40 A X,
5 =
-|E 30 A b
= =
£20 4 4a
=]
<

1 DPU)

N
1

N
1

Arithmetic Throughput (MOPS)
w

[EEN

SuUB
=£=-MUL
=0=DIV

70

B D
o o

N
o

Arithmetic Throughput (MOPS)

Arithmetic Throughput (MOPS)
w

[ERN
1

(b) INT64 (1 DPU)

wn
o
1

w
o
1

N N ™~ A MmO N ™~ O
R B o B B B B o

#Tasklets

Huge throughput
difference between

ADD/SUB and MUL/DIV

DPUs do not have
a 32-bit multiplier

~\

(d) DOUBLE (1 DPU)

MUL/DIV
implementation is based
on an instruction that
performs bit shifting and
addition in 1 cycle
(MUL/DIV take a
maximum of 32

J
~

0 <N
#Easl:et: R #Tasklets k InStrUCtlonS) )
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Arithmetic Throughput: Native Support

Arithmetic Throughput (MQP

Arithmetic Throughput (MQ

SN
1

w
1

(c) FLOAT (1 DPU)

A —A—ADD

/\ SUB
/\ =O-MUL
/'\ =0=DIV

SAFARI

Arithmetic Throughput (MQR

30 A

(b) INT64 (1 DPU)

#Tasklets

(d) DOUBLE (1 DPU)

KEY OBSERVATION 2

* DPUs provide native
hardware support for 32-
and 64-bit integer
addition and subtraction,
leading to high throughput
for these operations.

* DPUs do not natively

support 32- and 64-bit
multiplication and
division, and floating
point operations. These
operations are emulated by
the UPMEM runtime
library, leading to much
lower throughput.




Microbenchmark: Arithmetic Throughput

* Arithmetic throughput for different operations and datatypes

H CMU-SAFARI/ prim-benchmarks ® Unwatch ~ 2 ¥¢ star 2 % Fork 1

<> Code (*) Issues {0 Pull requests (») Actions Projects [ wiki () Security |~ Insights 51 Settings

¥ main v prim-benchmarks / Microbenchmarks / Arithmetic-Throughput / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3desbs9 9 daysago & History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago
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DPU: WRAM Bandwidth

PIM Chip

-

4 DISPATCH )|

FETCH1
FETCH2
FETCH3
READOP1
READOP2
READOP3
FORMAT
ALU1
ALU2

c__:;ister File

v

ALU4
MERGE1
MERGE2

ipeline(Re

P

ALU3 4>

64-KB
WRAM

{

g
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WRAM Bandwidth: Microbenchmark

e Goal
- Measure the WRAM bandwidth for the STREAM benchmark

e Microbenchmark

- We implement the four versions of STREAM: COPY, ADD,
SCALE, and TRIAD

- The operations performed in ADD, SCALE, and TRIAD are
addition, multiplication, and addition+multiplication,
respectively

- We vary the number of tasklets from 1to 16
- We show results for 1 DPU

 We do not include accesses to MRAM
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STREAM Benchmark in WRAM

, _ _ . 8 bytes read, 8 bytes written,
for(int 1 = 0; 1 < SIZE; 1i++){ no arithmetic operations

bufferB[i] = bufferA[i];

}

16 bytes read, 8 bytes written,
for(int 1 = 0; i < SIZE; i++){ ADD

bufferC[i] = bufferA[i] + bufferB[i];

}

8 bytes read, 8 bytes written,
for(int 1 = 0; i < SIZE; i++){ MUL

bufferB[i] = scalar * bufferA[i];

}

) ) _ 16 bytes read, 8 bytes written,
for(int 1 = 0; 1 < SIZE; i++){ MUL, ADD

bufferC[1i] bufferA[i] + scalar * bufferB[i];

}
SAFARI



WRAM Bandwidth: STREAM

3000
STREAM (WRAM, INT64, 1DPU) O—O—OO—O—CO0—X%
S & 2500 - O 2,818.98
i -0-COPY O
o;c S 2000 - | -A-ADD & 1,682.46
g -3-SCALE 9 N—/\N—"—"+—"+—\
e
@ + 1500 - TRIAD A K A1
< 3 /\
= -2 1000 - O A1
3 S O /\
@ @ 500 - oA
A, 42.03
0 | r r r r Y L L T el el el el V)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

How can we estimate the bandwidth?

Assuming that the pipeline is full, and Bytes is the number of
bytes read and written:

B) ~ Bytes X frequencyppy

WRAM Bandwidth (ing

#Hinstructions
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WRAM Bandwidth: COPY

STREAM (WRAM, INT64, 1DPU)
s - 2500 +
e Y -0—-COPY
o S 2000 - | -A-ADD
s = O-SCALE
8 + 1500 -
©
£ 3
© 3 1000 -
55
I m 500 A
42.03
rr rr, rr, r, rra rra rra [am|
0 +—J
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HTasklets

COPY executes 2 instructions (WRAM load and store).
With 11 tasklets, 11 x 16 bytes in 22 cycles:

B MB
WRAM Bandwidth (in E) = Z,SOOTat 350 MHz
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WRAM Bandwidth: ADD

STREAM (WRAM, INT64, 1DPU)
s - 2500 +
T o -0-COPY
& S 2000 4 | -A-ADD
s = O-SCALE
8 + 1500
©
£ 2
& 5 1000
2 %
1 o« 500
0 2 T 2 D 2o I 2. IR 2. IR o I o R 2o RN o IR o RN (o RN () N G RN G RN )
e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#Tasklets

B Bytes X frequenc
WRAM Bandwidth (in —) _ Bytes X frequencyppy
S #instructions

ADD executes 5 instructions (2 1d, add, addc, sd).
With 11 tasklets, 11 x 24 bytes in 55 cycles:

B MB
WRAM Bandwidth (m§> = 1,680Tat 350 MHz
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WRAM Bandwidth: Access Patterns

* All 8-byte WRAM loads and stores take one cycle when
the DPU pipeline is full

KEY OBSERVATION 3

The sustained bandwidth provided by the DPU’s internal Working
memory (WRAM) is independent of the memory access pattern
(either streaming, strided, or random access pattern).

All 8-byte WRAM loads and stores take one cycle, when the DPU’s
pipeline is full (i.e.,, with 11 or more tasklets).

* Microbenchmark: c[a[i]]=b[a[i]];
- Unit-stride: a[i]=a[i-1]+1;
- Strided: a[i]=a[i-1]+stride;
- Random: af[i]=rand();
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Microbenchmark: STREAM and WRAM

* STREAM benchmark and WRAM access patterns

@ CMU-SAFARI / prim-benchmarks & Unwatch v 2 vy Star | 2 % Fork 1
<> Code () Issues 11 Pull requests (*) Actions ("] Projects (1) wWiki ) Security |~ Insights 51 Settings
¥ main v  prim-benchmarks / Microbenchmarks / STREAM / Go to file Add file ~
¥ main v  prim-benchmarks / Microbenchmarks / WRAM / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago O History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
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DPU: MRAM Latency and Bandwidth

PIM Chip
-
)
c
= 64-MB
Q) | 64 bits
- P DRAM
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./
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MRAM Bandwidth

e Goal

- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

* mram read();
e mram write();

- Latency of a single DMA transfer for different transfer sizes

]

AVl benchmark
« COPY, COPY-DMA
e ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM
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MRAM Read and Write Latency (1)
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We can model the MRAM latency with a linear expression

- 128

size X frequencyppy
MRAM Latency

B
MRAM Bandwidth (in E) =

2048

512

Latency (cycles)

32

MRAM Latency (in cycles) = a + BXsize

In our measurements, f equals 0.5 cycles/byte.
Theoretical maximum MRAM bandwidth = 700 MB/s at 350 MHz
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MRAM Read and Write Latency (lI)

___ 1000 628.23 1000 633.22
“ MRAM Read - 2048 . @ MRAM Write - 2048
s S S s
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Data transfer size (bytes) Data transfer size (bytes)

KEY OBSERVATION 4

* The DPU’s Main memory (MRAM) bank access latency increases

linearly with the transfer size.
* The maximum theoretical MRAM bandwidth is 2 bytes per cycle.
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MRAM Read and Write Latency (lII)
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PROGRAMMING RECOMMENDATION 1
For data movement between the DPU’s MRAM bank and the WRAM, use

large DMA transfer sizes when all the accessed data is going to be

used.
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Data transfer size (bytes)

Read and write accesses to MRAM are symmetric

The sustained MRAM bandwidth increases
with data transfer size
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MRAM Read and Write Latency (IV)
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MRAM latency changes slowly between 8 and 128 bytes

For small transfers, the fixed cost (@) dominates the variable cost (5 Xxsize)

PROGRAMMING RECOMMENDATION 2

For small transfers between the MRAM bank and the WRAM, fetch more bytes
than necessary within a 128-byte limit. Doing so increases the likelihood of

finding data in WRAM for later accesses (i.e., the program can check whether the
desired data is in WRAM before issuing a new MRAM access).
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MRAM Read and Write Latency (V)
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2,048-byte transfers are only 4% faster than 1,024-byte transfers

Larger transfers require more WRAM, which may limit the number of tasklets

PROGRAMMING RECOMMENDATION 3

Choose the data transfer size between the MRAM bank and the WRAM based
on the program’s WRAM usage, as it imposes a tradeoff between the sustained
MRAM bandwidth and the number of tasklets that can run in the DPU (which is
dictated by the limited WRAM capacity).
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MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

- Latency of a single DMA transfer for different transfer sizes
* mram read();
* mram write();

- COPY, COPY-DMA

- STREAM benchmark
« ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM
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STREAM Benchmark in MRAM

// COPY
// Load current MRAM block to WRAM

for(int i = 0; i < SIZE; i++){

// Write WRAM block to MRAM

// COPY-DMA
// Load current MRAM block to WRAM

// Write WRAM block to MRAM

SAFARI
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STREAM Benchmark: COPY-DMA

1STREAM (MRAM, INT64, 1DPU)

~
o
o

o
o

-0-COPY-DMA
-0-COPY
-/~-ADD
-3-SCALE
TRIAD

N W B U1 O
o O
o O
1

Sustained MRAM
Bandwidth (MB/s)

42.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

The sustained bandwidth of COPY-DMA is close to

the theoretical maximum (700 MB/s): ~1.6 TB/s for 2,556 DPUs

( COPY-DMA saturates with two tasklets, even though )
L the DMA engine can perform only one transfer at a time )
f Using two or more tasklets guarantees that there is always )
L a DMA request enqueued to keep the DMA engine busy )
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STREAM Benchmark: Bandwidth Saturation (1)

~
o
o

1STREAM (MRAM, INT64, 1DPU)

o
o

-0-COPY-DMA
-0-COPY
-/~-ADD
-3-SCALE
TRIAD

N W B U1 O
o O
o O

Sustained MRAM
Bandwidth (MB/s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

COPY and ADD saturate at 4 and 6 tasklets, respectively

SCALE and TRIAD saturate at 11 tasklets

The latency of MRAM accesses becomes longer than the pipeline IatencyN
after 4 and 6 tasklets for COPY and ADD, respectively

. J

The pipeline latency of SCALE and TRIAD is longer than the MRAM
latency for any number of tasklets (both use costly MUL)

.

SAFARI 79




STREAM Benchmark: Bandwidth Saturation (1)

700 {STREAM (MRAM, INT64, 1DPU)
S © 600 -
< o
OEC S 500 - -0-COPY-DMA
=z S0 - ~o-COPY
A ~A-ADD
E E 300 - 3-SCALE
§ 2 200 TRIAD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

KEY OBSERVATION 5

 When the access latency to an MRAM banKk for a streaming benchmark (COPY-
DMA, COPY, ADD) is larger than the pipeline latency (i.e., execution latency of
arithmetic operations and WRAM accesses), the performance of the DPU saturates at a

number of tasklets smaller than 11. This is a memory-bound workload.

* When the pipeline latency for a streaming benchmark (SCALE, TRIAD) is larger
than the MRAM access latency, the performance of a DPU saturates at 11 tasklets.
This is a compute-bound workload.
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MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

* Microbenchmarks
- Latency of a single DMA transfer for different transfer sizes
* mram read();
e mram write();
- STREAM benchmark
 COPY, COPY-DMA
* ADD, SCALE, TRIAD

(- Strided access pattern )
* Coarse-grain strided access
* Fine-grain strided access
.- Random access pattern (GUPS) D
* We do include accesses to MRAM
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Strided and Random Access to MRAM

mram read((__mram ptr void const*)mram address A, bufferA,
SIZE * sizeof(uint64 t));
mram read((__mram ptr void const*)mram address B, bufferB,

SIZE * sizeof(uint64 t));

for(int i = 0; i < SIZE;|i += stride)({
bufferB[i] = bufferA[i];
}

mram write(bufferB, (_mram ptr void*)mram address B,
SIZE * sizeof(uint64 t));

for(int i = 0; i < SIZE; i += stride)({
int index = 1 * sizeof(uint64 t);

mram read((_mram ptr void const*)(mram address A ¥ indeX), buffera,
sizeof (uint64 t));

mram write(bufferA, ( mram ptr void*)(mram address B # index),
sizeof (uint64 t));

}
SAFARI



Strided and Random Accesses (1)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU)
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S 500 A 2 .
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GCJ 200 - =0-Coarse-grained DMA - 16 tasklets c =3¢—Fine-grained DMA - 1 tasklet
‘© © 20 4 | =©O=Fine-grained DMA - 2 tasklets
+ +
3 100 A \ ] 3 ~/x—Fine-grained DMA - 4 tasklets X
%) ‘ 2 10 Fine-grained DMA - 8 tasklets
=0O—Fine-grained DMA - 16 tasklets
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Stride Stride € =

Large difference in maximum sustained bandwidth between
coarse-grained and fine-grained DMA

Coarse-grained DMA uses 1,024-byte transfers,
while fine-grained DMA uses 8-byte transfers

Random access achieves very similar maximum sustained

bandwidth to fine-grained strided approach
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Strided and Random Accesses (Il)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU)
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(b) Fine-grained Strided & Random (MRAM, 1 DPU)

—=O—Fine-grained DMA - 2 tasklets
~{x—Fine-grained DMA - 4 tasklets
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The sustained MRAM bandwidth of coarse-grained DMA

decreases as the stride increases

r

\_

The effective utilization of the transferred data decreases
as the stride becomes larger (e.g., a stride 4 means that only one
fourth of the transferred data is used)

J
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Strided and Random Accesses (lll)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU)
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For a stride of 16 or larger, the fine-grained DMA approach

achieves higher bandwidth

" With stride 16, only one sixteenth of the maximum sustained A
bandwidth (622.36 MB/s) of coarse-grained DMA
is effectively used, which is lower than
\ the bandwidth of fine-grained DMA (72.58 MB/s) )
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Strided and Random Accesses (IV)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU) (b) Fine-grained Strided & Random (MRAM, 1 DPU)
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PROGRAMMING RECOMMENDATION 4

* For strided access patterns with a stride smaller than 16 8-byte
elements, fetch a large contiguous chunk (e.g., 1,024 bytes) from a

DPU’s MRAM bank.
* For strided access patterns with larger strides and random access
patterns, fetch only the data elements that are needed from an

MRAM bank.
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Microbenchmark: Strided and Random

e Strided and random accesses to MRAM

H CMU-SAFARI / prim-benchmarks ®Unwatch ~ 2 % Star 2 % Fork 1

<> Code () Issues 1 Pull requests (») Actions (1] Projects [ wiki ) Security |~ Insights 53 Settings

¥ main + prim-benchmarks / Microbenchmarks / STRIDED / Go to file Add file ~

¥ main + prim-benchmarks / Microbenchmarks / Random-GUPS / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago YY) History
dpu PriM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago
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DPU: Arithmetic Throughput vs. Operational Intensity
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Arithmetic Throughput vs. Operational Intensity (1)

e Goal

- Characterize memory-bound regions and compute-bound regions for
different datatypes and operations

 Microbenchmark

- We load one chunk of an MRAM array into WRAM
- Perform a variable number of operations on the data
- Write back to MRAM

* The experiment is inspired by the Roofline model*

* We define operational intensity (Ol) as the number of
arithmetic ogerations performed per byte accessed from
MRAM (OP/B)

* The pipeline latency changes with the operational intensity,
but the MRAM access latency is fixed

SA FA Rl *S. Williams et al., “Roofline: An Insightful Visual Performance Model for Multi-core Architectures,” CACM, 2009



Arithmetic Throughput vs. Operational Intensity (II)

int)input repeat : 1;

int repetitions = [input repeat >= 1.0 (
1.0 1 : (int) (1 / input repeat);

?
int stride = input repeat >= ?

mram read(( mram ptr void const*)mram address A, bufferA, SIZE * sizeof(T));

ﬂnput_repeat greater or equzh
to 1indicates the (integer)
number of repetitions per input

for(int r = 0; r < repetitions; r++){
for(int i = 0; i < SIZE; i+=stride){
#ifdef ADD

bufferA[i] += scalar; element
#elif SUiufferA[i] - scalar; .i?put_repeaténmﬂerﬂmn1
#elif MUL indicates the fraction of elements
i that are updated
bufferA[i1] *= scalar;
#elif DIV
bufferA[i] /= scalar;
#endif
}
}

mram write(bufferA, ( mram ptr void*)mram address B, SIZE * sizeof(T));
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Arithmetic Throughput vs. Operational Intensity (111)
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Arithmetic Throughput (MOPS, log scale)
Arithmetic Throughput (MOPS, log scale)

We show results of arithmetic throughput vs. operational intensity for
(a) 32-bit integer ADD, (b) 32-bit integer MUL,

(c) 32-bit floating-point ADD, and (d) 32-bit floating-point MUL
(results for other datatypes and operations show similar trends)
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Arithmetic Throughput vs. Operational Intensity (IV)

__64.00

cale

Arithmetic Throughput (MOPS, log s

0.03

(
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In the memory-bound R
region, the arithmetic
throughput increases with
. the operational intensity )

(a) INT32, ADD (1 DPU)

Compute-bound
region region [

In the compute-bound R
region, the arithmetic
throughput is flat at its
Operational Intensity (OP/B) K maXimum )

Y o> o D © *x P
VN <y Vo v ) ) v N Vv
Q" O ¢ N > N

\the memory-bound region and the compute-bound region happens

The throughput saturation point is the operational intensity
where the transition between

v

The throughput saturation point is as low as ¥ OP/B,

i.e., 1integer addition per every 32-bit element fetched
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Arithmetic Throughput vs. Operational Intensity (V)
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0.13 4

The arithmetic throughput of a DRAM Processing Unit (DPU) saturates at
low or very low operational intensity (e.g., 1 integer addition per 32-bit

element). Thus, the DPU is fundamentally a compute-bound processor.
We expect most real-world workloads be compute-bound in the UPMEM PIM
architecture.

SAFARI 93



Microbenchmark: Arithmetic Throughput vs. Operational Intensity

* Arithmetic Throughput versus Operational Intensity

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 % Star 2 % Fork 1

<> Code (©) Issues 10 Pull requests (») Actions ["1] Projects 1] wiki ) Security |~ Insights 51 Settings

¥ main ~  prim-benchmarks / Microbenchmarks / Operational-Intensity / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago & History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago
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Outline

(« Introduction N
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

g - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(« Evaluation R
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways
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PriM Benchmarks

e Goal

- A common set of workloads that can be used to
e evaluate the UPMEM PIM architecture,
* compare software improvements and compilers,
* compare future PIM architectures and hardware

* Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

* 14 different workloads, 16 different benchmarks*

SA FARI *There are two versions for two of the workloads (HST, SCAN). 96



PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS

SAFARI
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Roofline Model

* Intel Advisor on an Intel Xeon E3-1225 v6 CPU

16 - -~ 7 Peak compute performance
5 84 / G- MLP /
é sl 7 Gemvy  ew
= - BS~@Q/(§HST
s 27 @ UNI_ &~ NW
& 1 - V—¢g O TRNS
S © 0% GRED
£ 05 | SEL BFS
9 SCAN
W
0.25 -&
0.125 . .
0.01 0.1 1 10

Arithmetic Intensity (OP/B)

[ All workloads fall in the memory-bound area of the Roofline ]
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PrIM Benchmarks: Diversity

* PrIM benchmarks are diverse:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

: Memory access pattern Computation pattern

Domiain Benclimntle ShurtuEme Sequential T Stridedpl Random Oper;:tions II) Datatype Intra-DPU | Inter-DPU

Dense linearalgeben Vector Addition VA Yes add int32_t
Matrix-Vector Multiply GEMV Yes add, mul uint32_t

Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Databases Select SEL Yes add, compare int64_t handshake, barrier Yes
Unique UNI Yes add, compare int64_t handshake, barrier Yes

. Binary Search BS Yes Yes compare int64_t

Data analytics Time }S’,eries Analysis TS Yes add, sub,pmul, div int32_t

Graph processing Breadth-First Search BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes

Neural networks Multilayer Perceptron MLP Yes add, mul, compare | int32_t

Bioinformatics Needleman-Wunsch NW Yes Yes add, sub, compare int32_t barrier Yes

JiagE ProCEHaiE Image histogram (short) HST-S Yes Yes add uint32_t barrier Yes
Image histogram (long) HST-L Yes Yes add uint32_t barrier, mutex Yes
Reduction RED Yes Yes add int64_t barrier Yes

Parallel primitives Prefix sum (scan-scan-add) SCAN-SSA Yes add int64_t §| handshake, barrier Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t | handshake, barrier Yes
Matrix transposition TRNS Yes Yes add, sub, mul int64_t mutex

SAFARI
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PrIM Benchmarks: Inter-DPU Communication

; | Memory access pattern Computation pattern Communication/synchronization
Domaix Benchmazi Shostname Sequential | Strided | Random Operations Datatype Intra-DPU Inter-DPU
Senise Tneaniaebin Vector Addition VA Yes add int32_t

& Matrix-Vector Multipl GEMV Yes add, mul uint32 t

Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Dat ‘)as Selact— 1 SEL » I , Yes add, compare int64_t handshake, barrier Yes
fn t e Shigk U ) COITTHTIUI ] LB % add, compare int64_t [ handshake, barrier Yes

Data analvti Binary Search BS Yes Yes compare int64_t

BEajanAlytics Time Spries Apalysis. 7~ afe TS Yes add, sub, mul, div int32_t
Graph processing! \ ~Brekdth-Firdt Sdarel 5' I'T& e« BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes

Neural networks Multi rPerceptron | L ~ MLE __8 . Yes— add, mul, compare int32_t
Bioinformatics Ne |, A>1-D> ,Nm D 'L, ) Yes add, sub, compare int32_t barrier Yes
Fi s BTOCaRER Image histogr ) HST-S __Yes Yes add uint32_t barrier Yes
gep & Im T oRg) ™~ j‘tﬁ&ﬂS‘lel Ses Yes add uint32_t barrier, mutex Yes
Redyction ,, e ARED Yes . Yes . add int64_t barrier Yes
parallel rimire R CRERSEHD @ T (O [ateresufitsraa inted_t_|| Fandshake, barrier | Yes
P Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t § handshake, barrier Yes

pMaB)F@’sthlP’ N y \./’ S@A |\I_S gé ‘ A |N R &5 add, sub, mul int64 t mutex

e DPU-CPU and CPU-DPU transfers
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Recall: Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU
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Programming a DPU Kernel (1)

* Vector addition

int main_kernell() { Tasklet ID
unsigned int tasklet id = me() Size of vector tile processed by a DPU
uint32 t input_size dpu_bytes = DPU_INPUT_ARGUMENTS.size;
uint32_t input_size_dpu_bytes_transfer = DPU_INPUT_ARGUMENTS. transfer_size;

uint32 t base tasklet = tasklet id << BLOCK SIZE LOG2; MRAM addresses of arrays A and B
uint32_t mram_base_addr_A = (uint32_t)DPU_MRAM_HEAP_POINTER;
uint32_t mram_base_addr_B = (uint32_t) (DPU_MRAM_HEAP_POINTER + input_size_dpu_bytes_transfer);

T *xcache_A
T *cache_B

(T %) mem_alloc(BLOCK_SIZE); .
(T %) mem_alloc(BLock s1ze);| WRAM allocation

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){

uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;

mram_read (
mram_read (

mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes);
mram_ptr void constx)(mram_base_addr_B + byte_index), cache_B, 1_size_bytes);

E_ MRAM-WRAM DMA transfers

vector_addition(cache_B, cache_A, 1_size_bytes >> DIV); | Vector addition (see next slide)
mram_write(cache_B, (__mram_ptr voidx)(mram_base_addr_B + byte_index), 1_size_bytes); WRAM-MRAM DMA transfer

i

return 0;
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Programming a DPU Kernel (I1)

* Vector addition

static void vector_addition(T xbufferB, T xbufferA, unsigned int 1_size) {

for (unsigned int i = 0; i < 1_size; i++){
bufferB[i] += bufferAl[i];
}
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Programming a DPU Kernel (llI)

e A taskletis the software abstraction of a hardware
thread

* Each tasklet can have its
- Tasklets can also share data in WRAM by sharing pointers

* Tasklets within the same DPU can synchronize

- Mutual exclusion
* mutex lock(); mutex_unlock();

- Handshakes
* handshake wait for(); handshake notify();

- Barriers
* barrier wait();

- Semaphores
* sem give(); sem take();
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Parallel Reduction (1)

* Tasklets in a DPU can work together on a parallel
reduction

TasAlet 3
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Parallel Reduction (II)

* Each tasklet computes a local sum

A0l | Tesklet O TastIet 1 Tasklet 2 Tasklet 3 | AIN-1]

Local Local Local Local
Sum Sum Sum Sum

Sum
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Parallel Reduction (llI)

* Each tasklet computes a local sum

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE x NR_TASKLETS){
uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;
mram_read((__mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes);

1_count += reduction(cache_A, 1_size_bytes >> DIV); | Accumulate in a local sum

i

message [tasklet_id] = 1_count; | Copy local sum into WRAM
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Final Reduction

* A single tasklet can perform the final reduction

for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE x NR_TASKLETS){
uint32_t 1_size_bytes = (byte_index + BLOCK_SIZE >= input_size_dpu_bytes) ? (input_size_dpu_bytes - byte_index) : BLOCK_SIZE;
mram_read((__mram_ptr void constx)(mram_base_addr_A + byte_index), cache_A, 1_size_bytes);

1_count += reduction(cache_A, 1_size_bytes >> DIV); | Accumulate in a local sum
+

message [tasklet_id] = 1_count; | Copy local sum into WRAM

barrier_wait(&my_barrier);| Barrier synchronization

if(tasklet_id == 0){
#pragma unroll

for (unsigned int each_tasklet = 1; each_tasklet < NR_TASKLETS; each_tasklet++){

message[0] += message[each_tasklet]; Sequential accumulation
b

result—->t_count = messagel0];
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Vector Reduction: Naive Mapping

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

wn
C
O
-
()
-
(]
=l 3
Slide credit: Hwu & Kirk
https://www.youtube.com/watch?v=y40-tY5WJ8SA 109
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Using Barriers: Tree-Based Reduction

* Multiple tasklets can perform a tree-based reduction
- After every iteration tasklets synchronize with a barrier
- Half of the tasklets retire at the end of an iteration

barrier_wait(&my_barrier);

#pragma unroll
for (unsigned int offset = 1; offset < NR_TASKLETS; offset <<= 1){

if((tasklet_id & (2xoffset - 1)) == 0){

message [tasklet_id] += message[tasklet_id + offset]; “offset” tasklets working
}

barrier_wait(&my_barrier); Barrier synchronization

PrIM also includes a handshake-based tree-based reduction.
We compare single-tasklet, barrier-based, and handshake-based

versions in the Appendix of the paper

SAFARI



PriM Benchmarks

* 16 benchmarks and scripts for evaluation

H CMU-SAFARI/ prim-benchmarks

SAFARI

<> Code

¥ main ~

0D O DO D DB

() Issues 1 Pull requests

Juan Gomez Luna PrIM -- first commit

BFS

BS

GEMV

HST-L

HST-S

MLP
Microbenchmarks
NW

RED

SCAN-RSS
SCAN-SSA

SEL

SpMV

TRNS

TS

UNI

VA

LICENSE
README.md
run_strong_full.py
run_strong_rank.py

run_weak.py

¥ 1branch © 0 tags

(») Actions [ Projects

PriM -- first commit

PrIM -- first commit

PrIM -- first commit

PriM -- first commit

PrIM -- first commit

PriM -- first commit

PriM -- first commit

PrIM -- first commit

PrIM -- first commit

PriM -- first commit

PriM -- first commit

PriM -- first commit

PrIM -- first commit

PrIM -- first commit

PrIM -- first commit

PriM -- first commit

PriM -- first commit

PriM -- first commit

PrIM -- first commit

PrIM -- first commit

PriM -- first commit

PriM -- first commit

3de4bs9 15 days ago

2 Settings

O 2 commits

15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago
15 days ago

15 days ago
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Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(» Evaluation B
- Strong and Weak Scaling

. - Comparison to CPU and GPU )

* Key Takeaways
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

N\

[ Strong scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size

S
~

Weak scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size per processor

\ S
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU
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Datasets

 Strong and weak scaling experiments

Benchmark I Strong Scaling Dataset Weak Scaling Dataset N;m;ﬁvg&?
VA | 1 DPU-1 rank: 2.5M elem. (10 MB) |32 ranks: 160M elem. (640 MB) I 2.5M elem./DPU (10 MB) 1024 bytes
GEMV 1 DPU-1 rank: 8192 X 1024 elem. (32 MB) | 32 ranks: 163840 x 4096 elem. (2.56 GB) 1024 x 2048 elem./DPU (8 MB) 1024 bytes
SpMV besstk30 [253] (12 MB) besstk30 [253] 64 bytes

SEL 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes

UNI 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes

BS 2M elem. (16 MB). 1 DPU-1 rank: 256K queries. (2 MB) | 32 ranks: 16M queries. (128 MB) 2M elem. (16 MB). 256K queries./DPU (2 MB). 8 bytes

TS 256 elem. query. 1 DPU-1 rank: 512K elem. (2 MB) | 32 ranks: 32M elem. (128 MB) 512K elem./DPU (2 MB) 256 bytes

BFS loc-gowalla [254] (22 MB) rMat [255] (=100K vertices and 1.2M edges per DPU) [18 bytes

MLP 3 fully-connected layers. 1 DPU-1 rank: 2K neurons (32 MB) | 32 ranks: ~160K neur. (2.56 GB) 3 fully-connected layers. 1K neur./DPU (4 MB) 1024 bytes

NW 1 DPU-1 rank: 2560 bps (50 MB), large/small sub-block=2580—/2 | 32 ranks: 64K bps (32 GB), 1./s.=32/2 | 512 bps/DPU (2MB), 1/s.=512/2 8, 16, 32, 40 bytes
HST-S 1 DPU-1 rank: 1536 X 1024 input image [256] (6 MB) | 32 ranks: 64 X input image 1536 x 1024 input image [256]/DPU (6 MB) 1024 bytes
HST-L 1 DPU-1 rank: 1536 X 1024 input image [256] (6 MB) | 32 ranks: 64 X input image 1536 x 1024 input image [256]/DPU (6 MB) 1024 bytes

RED 1 DPU-1 rank: 6.3M elem. (50 MB) | 32 ranks: 400M elem. (3.1 GB) 6.3M elem./DPU (50 MB) 1024 bytes
SCAN-SSA 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
SCAN-RSS 1 DPU-1 rank: 3.8M elem. (30 MB) | 32 ranks: 240M elem. (1.9 GB) 3.8M elem./DPU (30 MB) 1024 bytes
TRNS 1 DPU-1 rank: 12288 X 16 X 64 x 8 (768 MB) | 32 ranks: 12288 x 16 x 2048 X 8 (24 GB) 12288 x 16 x 1 x 8/DPU (12 MB)

The PrIM benchmarks repository includes

all datasets and scripts used in our evaluation

SAFARI 115


https://github.com/CMU-SAFARI/prim-benchmarks

Strong Scaling: 1 DPU (1)

* Strong scaling
experiments on 1 DPU 1200 ORGP iy

E==1CPU-DPU
- We set the number I (mter-DPU

of tasklets to 1, 2, 4, — 1000 {{Z7] | mmmoPU - 12
8, and 16 =Q=Speedup

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU 0 | .
communication via
the host CPU VA - o F ® g

* CPU-DPU: Time for #tasklets per DPU

CPU to DPU
transfer of input
data

e DPU-CPU: Time for

DPU to CPU
transfer of final
results

- Speedup over 1
tasklet

N

800 -

600 - 7
)

400 A

Speedup

Execution Time (ms

200 %"Z{
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Strong Scaling: 1 DPU (lI)

3DPU-CPU ZZ3DPU-CPU

ESNCPU-DPU [ - [ 10000 - [ [E=3CPU-DPU

1200

8
1000 D I nter-DPU | _ - " :ggg - _ I nter-DPU 7 (VA, GEMV, SpMV’ SEL, UNI, TS’ \
S wo < 5 e :o| | MLP, NW, HST-S, RED, SCAN-SSA
= = I~ = °
5 5 5 o 5 oo . (Scan kernel), SCAN-RSS (both
g o I A | : g 0 g o . kernels), and TRNS (Step 2 kernel),
- S =IE i o . the best performing number of
0 0 0 0
#tasklets per DPU IG i UaSklets IS 16 )

#tasklets per DPU #tasklets per DPU #tasklets per DPU

8 140000
 omo Tg}fﬁr'opu L7 120000
77 ===V 2 oo ) Speedups 1.5-2.0x as we double the
£ 3 1 a0 2 number of tasklets from 1to 8.
2w 2o - .5 Speedups 1.2-1.5x from 8 to 16,
@ 200 L % 20000 2 since the pipeline throughput
UNI o e e g A e saturates at 11 tasklets
#tasklets per DPU #tasklets per DPU k J
12 s 1600 ggﬂj;gg
1400 I | nter-DPU
B * e 2 1o KEY OBSERVATION 10
g o g g 1000
= 800 A I= 800
RUE A number of tasklets
g 400 g g 400 =
S o : 1% 5 20 greater than 11 is a good

- N < 0 ©
—

MLP = & ¥ © g

=
=3

choice for most real-

#tasklets per DPU #taskletsBer DPU
g = e e s ] world workloads we
DPU (Add) «lemSpeedup (Scan) (== «lemSpeedup (Step 3)
= 2000 Speedup (Add) 7 e 5p 02 15
£ 2000 | o 1E om0 tested (16 kernels out of 19
IE 1500 > 5 o L g
= £ 1500 Sl E 1500 g
£ % | 5| | kernels from 16
5 S 1000 S8 S 1000 <4
- 3 27413 4 b h k it full
2 e . enchmarks), as it fully
0 0 0 0 o a1 ) . .
ReD <~ e kawsa v e e g Lo - utilizes the DPU'’s pipeline.
ttasklets per DPU #tasklets per DPU #tasklets per DPU ttasklets per DPU
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Strong Scaling: 1 DPU (llI)

S do not use intra-DPU
([ synchronization primitives

" VA, GEMV, SpMV, BS, TS, MLP, HST- |

J

\_synchronization is lightweight

[ In SEL, UNI, NW, RED, SCAN-SSA (Scan |
kernel), SCAN-RSS (both kernels),

iy b — ——— e —— )
( BFS, HST-L, TRNS (Step 3) use 0
mutexes, which cause contention
when accessing shared data
\_Structures y
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Strong Scaling: 1 DPU (IV)

" VA, GEMV, SpMV, BS, TS, MLP, HST- |
S do not use synchronization
([ primitives y

[ In SEL, UNI, NW, RED, SCAN-SSA (Scan |
kernel), SCAN-RSS (both kernels),

e e e \_SYNchronization is lightweight

1800 | ZZ20PU-CPU 6 (BFS,HST-L, TRNS (Step3)use |
1600 - mmm | nter-DPU mutexes, which cause contention
— I DPU - 5 .
€ 1400 1M e@=speedup when accessing shared data
o 1200 4 \structures )
E 1000
s S 800 KEY OBSERVATION 11
5 600 . ]
S 400 Intensive use of intra-DPU
x - .
“ 00 synchronization across
0 tasklets (e.g., mutexes,
HST-L < & ~ ® 9 barriers, handshakes)

#tasklets per DPU may limit scalability,
sometimes causing the best
performing number of

tasklets to be lower than
11.
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Strong Scaling: 1 DPU (V)

(SCAN-SSA (Add kernel) is not )
compute-intensive. Thus,
performance saturates with

[ e — o | |ess that 11 tasklets (recall
4 DPU-CPU ™% CPU-DPU
(I Inter -DPU mmm DPU (Scan) STREAM ADD).
o g peedup (Sean) 7 GS shows similar behavior )
£ 2000 {77 6
2 ‘ s
s e B Bl N KEY OBSERVATION 12
S 1000 g -3 38
= ; |,V Most real-world
9 500 - qra workloads are in the
L
0 4 Lo compute-bound region of

SCAN-SSA = & S o © the DPU (all kernels except
#tasklets per DPU SCAN-SSA (Add kernel) and
BS), i.e., the pipeline
latency dominates the
MRAM access latency.
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Strong Scaling: 1 DPU (VI)

(The amount of time spent on CPU- A
DPU and DPU-CPU transfers is low
compared to the time spent on DPU
_execution )
==1DPU-CPU E==9 CPU-DPU (Step 1) [ ) \
(I Inter-DPU I DPU (Step 3) TRNS performs step 1 of the matrix
oo gy Seecdw(Biens) | transposition via the CPU-DPU
— 14000 1 10 transfer.
£ 15000 - Using small trapsfers (8 elements)
g 10000 ~_ 8 a Soe(sj nc.)(;ctixplmt full CPU-DPU
= 8000 - y 68 \ [Danaw! )
.S 6000 - . &
S
g 4000 - , KEY OBSERVATION 13
& 2000 - I
0 - L0 Transferring large data
TRNS = © ¥ = 3 chunks from/to the host

#tasklets per DPU

CPU is preferred for input
data and output results due
to higher sustained CPU-

DPU/DPU-CPU bandwidths.
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Strong Scaling: 1 Rank (I)

* Strong scaling
experiments on 1 rank

- We set the number of
tasklets to the best
performing one

- The number of DPUs
is1, 4,16, 64

- We show the
breakdown of
execution time:

* DPU: Execution time
on the DPU

* Inter-DPU: Time for
inter-DPU
communication via
the host CPU

* (CPU-DPU: Time for
CPU to DPU transfer
of input data

* DPU-CPU: Time for
DPU to CPU transfer
of final results

- Speedup over 1 DPU

2500

“» 2000

1500

1000

500

Execution Time (ms

NW

FEZADPU-CPU
E=I1CPU-DPU
[T | nter-DPU
[ DPU
a=Q=Speedup

w,
N\

< o}
—

#DPUs

20
18
16

=
N

o
Speedup

o N B O
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Strong Scaling: 1 Rank (II)

E=NCPU-DPU
(I | nter-DPU

Execution Time (ms)

DP!

E=3CPU-DPU

=LIDPU-CPU LZJDPU-CPU
_ |==acPu-opu [ ==3IcPu-oPU [y

I inter-DPU | (%) I | nter-DPU

=T " m— 0 60 1200
|-°-Seedu ' | [=©=Speedup L 5o 1000

/"VA, GEMV, SpMV, SEL, UNI, BS, TS,
MLP, HST-S, HSTS-L, RED, SCAN-
SSA (both kernel), SCAN-RSS (both
kernels), and TRNS (both kernels)
scale linearly with the number of

kDPUS

~

J

Scaling is sublinear for BFS and NW

-
BFS suffers load imbalance due to

irregular graph topology
\

.

NW computes a diagonal of a 2D
matrix in each iteration.
More DPUs does not mean more

-9
L8
= m = -
£ 300 E £
o ) ) 6
250 a
£ 40 € L a £ L s 3
Z 200 ' ' b
S s 5 L4 g
S 150 =] = &
3 L 3 3 M3
50 /1 r 1
o 10 L L O O 0
UNI - ¥ 8 3 BS - ¥ 8 3 s - ¥ &8 3 BFS - Y 5 3
140
= T 2000 16 =
é é 14 E 120 50
[ [ [ ()
£ £ 2 offf £ 10 sl € w08
= = 0ol = 80 30 R0 E 250 3
5 § 1000 il 5 | B 30 8
E E 4 | ERS L2008 5 v
o o o o 150 20
2 = ) ] ] 40 o 100
% mmuum X 500 X 10 X "
B 50
= L Lo
Inter-DPU -DPtJr(Scan) I inter-0PU - DPU’lScan) I nter DPU -DPUV(Step 3)
DPU (Add) el Speedup (Scan) E=mDPU (Reduce) === Speedup (Scan) EEmOPU (Step 2) wle=Speedup (Step 3)
Speedup (Add) 70 | @u=Speedup (Red.) 70 e@==Speedup (Step 2 70
z 700 4? 60 2 6.E+02 60 z 7.E+05 3 14 60
= 60 ARECN | o} N | ] IRk
£ 500 / 20 S £ 4E402 // 10 2 £ 5.E+05 0 =
= 400 § T l SHIT acv0s N / 3
30 @ 7]
§ 300 218 302 0 SHNS 3 eios / 0g
§ 200 20 § 2.E+02 20 g 26405 20
~ 3 100 10 S 1E+02 10 & 1.6+05 10
@ 0 0 0.E+00 0 0.E+00 0
RED =~ ~ g g CAN-SSA ™ Y 98 CAN-RSS ~ Y 9§ RNS = Y & 3
#DPUs #DPUs #DPUs #DPUs

\parallelization in shorter diagonals.
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Strong Scaling: 1 Rank (l1I)

VA, GEMV, SpMV, BS, TS, TRNS do
not need inter-DPU synchronization

SEL, UNI, HST-S, HST-L, RED, SCAN-
SSA, SCAN-RSS need inter-DPU
synchronization but 64 DPUs still
obtain the best performance

BFS, MLP, NW require heavy inter-
DPU synchronization, involving
DPU-CPU and CPU-DPU transfers
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Strong Scaling: 1 Rank (1V)

/"VA, GEMV, TS, MLP, HST-S, HST-L, )
RED, SCAN-SSA, SCAN-RSS, TRNS

use parallel transfers.

CPU-DPU and DPU-CPU transfer
times decrease as we increase the
Qumber of DPUs Y,

(BS, NW use parallel transfers but )
do not reduce transfer times:
- BStransfers a complete array

to all DPUs.
- NW does not use all DPUs in all

\ iterations )
~

-
SpMV, SEL, UNI, BFS cannot use
parallel transfers, as the transfer

_size per DPU is not fixed

PROGRAMMING
RECOMMENDATION 5

Parallel CPU-DPU/DPU-CPU
transfers inside a rank of DPUs

are recommended for real-
world workloads when all
transferred buffers are of the same
size.

SAFARI
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Strong Scaling: 32 Ranks (1)

* Strong scaling
experiments on 32
rank

- We set the number
of tasklets to the
best performing one

- The number of DPUs
is 256, 512, 1024,
2048

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU
communication via
the host CPU

* We do not show
CPU-DPU/DPU-CPU
transfer times

- Speedup over 256
DPUs

SAFARI
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Execution Time (ms)

[ DPU

=Q=Speedup
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1
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Strong Scaling: 32 Ranks (II)

/"VA, GEMV, SEL, UNI, BS, TS, MLP, )
HST-S, HSTS-L, RED, SCAN-SSA
(both kernel), SCAN-RSS (both
kernels), and TRNS (both kernels)
scale linearly with the number of
\_DPUs )
p

~

SpMV, BFS, NW do not scale linearly

due to load imbalance
g )

KEY OBSERVATION 14

Load balancing across
DPUs ensures linear
reduction of the
execution time spent on

the DPUs for a given
problem size, when all
available DPUs are used (as
observed in strong scaling
experiments).
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Strong Scaling: 32 Ranks (llI)

SEL, UNI, HST-S, HST-L, RED only
need to merge final results

KEY OBSERVATION 15

The overhead of merging

partial results from DPUs in
the host CPU is tolerable across
all PrIM benchmarks that need it.

BFS, MLP, NW, SCAN-SSA, SCAN-RSS
have more complex communication

KEY OBSERVATION 16

Complex synchronization
- - _ across DPUs (i.e., inter-DPU
synchronization involving two-

way communication with the
host CPU) imposes significant
overhead, which limits
scalability to more DPUs.
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Weak Scaling: 1 Rank

KEY OBSERVATION 17
0 5Py N Equally-sized problems
600 4 = CPU-DPU V/ assigned to different DPUs
é o0 J MInter-DPU / and little/no inter-DPU
w mDPU . .
2 oo . V A s.ynchromzatlon_lead to
= / w linear weak scaling of the
S 300 - - VA § \ execution time spent on the
g 200 - /J{ \ \ DPUs (i.e., constant execution
S 100 N time when we increase the
. number of DPUs and the
VA o < © < dataset size accordingly).
— (Vo)

KEY OBSERVATION 18

Sustained bandwidth of
parallel CPU-DPU/DPU-CPU
transfers inside a rank of
DPUs increases sublinearly
with the number of DPUs.
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CPU/GPU: Evaluation Methodology

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

* We use state-of-the-art CPU and GPU counterparts of
PriM benchmarks

- https://github.com/CMU-SAFARI/prim-benchmarks

* We use the largest dataset that we can fit in the GPU
memory

* We show overall execution time, including DPU kernel
time and inter DPU communication
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CPU/GPU: Performance Comparison (1)

O CPU 1 GPU 640 DPUs 2556 DPUs
< 1024.000 - - i i
‘™ 256.000 A \ A : r :
) M N
o 64000 + 7 | \ o vl el i
S 16.000 | | ¥ 0 AR H v AR :
> 4.000 4 [ AR AN N AN N :
o \ \ W \ y " :
S 1.000 - il - —! ; . =
$  0.250 4[|} w1 RIER ' R : \ \ : \
1 1
5 0063 i} | AR W \ \ | \
S 0016 4| ¢ YN R R LR - \ \ : \
B 0.004 -/} & vl \ NN : \ g : \
$  0.001 L N IHN AR D N M AN ! N mi B ! \
L .
(Vp] < — > ) v = ) < (%)) %) > > wn wn o =1 | =z
18|15 ¢8|z 2\8(8/2] 2|s|7|5|12|12] |2|E %
T | T z|z|F ol|& 2| 2| <
O O Ll Ll G)
A | & S| 2
ol 0
More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

The 2,556-DPU and the 640-DPU systems outperform the CPU for

all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.0x and 27.9x

faster than the CPU for 13 of the PrIM benchmarks
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CPU/GPU: Performance Comparison (Il)

More PIM-suitable workloads (1)

Less PIM-suitable workloads (2)

The 2,556-DPU outperforms the GPU
for 10 PriIM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65%

[ CPU 1 GPU 640 DPUs 2556 DPUs
< 1024.000 - 7 -
Q - N o 1
©  256.000 - AN AR \ | : |
z 64.000—‘5 A ) - I ) A -
S 16.000 { | -l RN :
> a0 A8 IR AR ) SR o
(a1 _
&  1.000 - - .
= 0250 /|| N1 N R N IHN I R : \ \ ! N
g ~ 8 1Y IS A . \ 1IN
My I
g ooor TR TR AN AN A ¥R N A :: Y D
v 0.001 L A A \ ! §
o
(%) < - > ) v - o) < wn %) > > (%) wn [a¥ =l <| =z
182\8|2)7\8(3(8 8] 313|782/ |2|8|3
T T I e = W a z|z|u
<
2|3 AR

the performance of the GPU for the same 10 PriIM benchmarks
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CPU/GPU: Performance Comparison (lI)

o CPU 1GPU 640 DPUs 2556 DPUs
1024.000 .
256.000 - ¥
64.000 | []
16.000 -
4.000 -
1.000
0.250 -
0.063 -
0.016 -
0.004 -
0.001

A A )

A i

il i A A
G i
A A
il L

Il A

Wl I A

i i A
Il A i

I A |

Speedup over CPU (log scale)

KEY OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU
on workloads with three key characteristics:
1. Streaming memory accesses

GMEAN

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

the UPMEM PIM architecture.
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CPU/GPU: Energy Comparison (I)

256.00

o CPU 1 GPU

640 DPUs

128.00 -
64.00 -
32.00 -
16.00 -
8.00 -
4.00 -
2.00 -

1.00

0.50 -
0.25 -
0.13 -
0.06 -
0.03

]

Energy savings over CPU (log scale)
VA

SEL

UNI
BS
HST-S
HST-L
RED
TRNS
GEMV
SpMV

SCAN-SSA
SCAN-RSS

More PIM-suitable workloads (1)

TS

BFS

MLP

NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

The 640-DPU system consumes on average 1.64x less energy than

the CPU for all 16 PrIM benchmarks

For 12 benchmarks, the 640-DPU system provides energy savings

GMEAN

of 5.23x over the CPU
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CPU/GPU: Energy Comparison (II)

mCPU  mGPU 640 DPUs

__256.00 | |
@ 128.00 - - L |
T 64.00 | i :
32,00 4 | :
& 16.00 | o : - ; —
= 8001 g : ) 7

4.00 A : .
= 1.00 : ;
2 050 - | :

0.25 A | :
S 0.13 - | :
S 0.06 : | :
® 0.0
8 KEY OBSERVATION 20 E
]
S The UPMEM-based PIM system provides large energy savings over a Z

state-of-the-art CPU due to higher performance (thus, lower static energy)
and less data movement between memory and processors.
The UPMEM-based PIM system provides energy savings over a state-of-

the-art CPU/GPU on workloads where it outperforms the CPU/GPU.
This is because the source of both performance improvement and energy
savings is the same: the significant reduction in data movement between
the memory and the processor cores, which the UPMEM-based PIM
system can provide for PIM-suitable workloads.
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Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways
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Key Takeaway 1

64.00

0.03

Arithmetic Throughput (MOPS, log scale)

32.00 A
16.00 -
8.00 -
4.00 -
2.00 +
1.00 ~
0.50 -
0.25 ~
0.13 ~
0.06 -

(a) INT32, ADD (1 DPU)

Memory-bound Compute-bound
region region

™ J o D © *x @
PO TN TN G ¢ > > N
Q" O ¢ N/ >7 Y

Operational Intensity (OP/B)

KEY TAKEAWAY 1

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.
As aresult, the most suitable workloads are memory-bound.
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Key Takeaway 2

1024.000

o CPU GPU

640 DPUs

2556 DPUs

256.000 -
64.000 -
16.000 -
4.000 -
1.000

0.250 -
0.063 -
0.016 -
0.004 -
0.001

Speedup over CPU (log scale)

VA

SEL

UNI

BS

HST-S
HST-L

RED
SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

GMEAN
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Key Takeaway 3
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Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance and energy efficiency on most of PrIM
benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks, and the outlook is even more
positive for future PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.
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Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems
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Understanding a Modern PIM Architecture

Understanding a Modern Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

1

Juan Gémez-Luna! Izzat E1 Hajj> Ivan Fernandez!3 Christina Giannoula®-*

Geraldo F. Oliveira!  Onur Mutlu!
IETH Ziirich 2American University of Beirut *University of Malaga  *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 {7 star 2 % Fork 1

<> Code () Issues 1 Pull requests (*) Actions ["1] Projects [ wiki () Security [~ Insights 51 Settings

¥ main +  prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

A 1 contributor

‘= 168 lines (132 sloc) 5.79 KB Raw Blame G 2 O

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.
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Understanding a Modern
Processing-in-Memory Architecture:

Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

ellgoluj@gmail.com

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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Resources

« UPMEM SDK documentation
- https://sdk.upmem.com/master/00_ToolchainAtAGlance.html

* Fabrice Devaux’s presentation at HotChips 2019

- https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8
875680

* Onur’s lectures and talks
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Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

DRAM
16 nJ * Rd/Wr

500 PJ Efficient

off-chip link
256-bit access
8 kB SRAM

O. Mutlu, “Processing Data Where It Makes Sense: Enabling In-Memory Computation,” keynote talk at MST 2017 146
https://people.inf.ethz.ch/omutlu/pub/onur-MST-Keynote- EnablinglnMemoryComputation-October-27-2017-unrolled-FINAL.pptx



https://people.inf.ethz.ch/omutlu/pub/onur-MST-Keynote-%20EnablingInMemoryComputation-October-27-2017-unrolled-FINAL.pptx

Characterization of UPMEM PIM

* Microbenchmarks
- Pipeline throughput
- STREAM benchmark: WRAM, MRAM
- Strided accesses and GUPS
- Throughput vs. Operational intensity
- CPU-DPU data transfers

* Real-world benchmarks
- Dense linear algebra
- Sparse linear algebra
- Databases
- Graph processing
- Bioinformatics
- Etc.
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Banner Colors

This is a question or an

observation

" This is an answer from, )
e.g., UPMEM
documentation or our
\_ own research )

This is an idea or a
discussion starter, an
opportunity for
brainstorming

o /
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DPU Sharing? Security Implications?

* DPUs cannot be shared across multiple CPU processes

- There are so many DPUs in the system that there is no need
for sharing

* According to UPMEM, this assumption makes things

s it possible to perform RowHammer bit flips?
Can we attack the previous or the next application
that runs on a DPU?

RowHammer patents and Giray’s paper?
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More Questions and Ideas?

How do we handle memory coherence,
memory oversubscription, etc.?

They are programmer’s responsibility

A software library to handle
memory management transparently to programmers

ASPLOS 2010

An Asymmetric Distributed Shared Memory
Model for Heterogeneous Parallel Systems

Isaac Gelado  Javier Cabezas John E. Stone  Sanjay Patel
Nacho Navarro Wen-mei W. Hwu
Universitat Politecnica de Catalunya University of Illinois
{igelado, jcabezas, nacho}@ac.upc.edu {jestone, sjp, hwu}@illinois.edu
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Arithmetic Throughput (II)

70 70 6 6
= (a) INT32 (1 DPU) & (b) INT64 (1 DPU) &  |(c) FLOAT (1DPU) & |(d)DOUBLE (1DPU) | -A-ADD
S 60 1 ooeoeoceeeeey S %0 S S suB
=1 : = = SM s o-MUL
& 50 1 = T B0 i AAAAAAAAAAA T ) =
3 a ~A-ADD 3 & ] g4 ! —A-ADD 54 ~<-DIV
® 40 o suB w40 A ® ' ®
g o oO-MuL|| 3 A ~A-ADD 3 33
< 30 = -DIV < 30 - X o SUB < <
5 a S A oML || S Sy ]

@ 20 s 2 20 = = 5
£ g a ~-DIV g g
£ 10 - 1044 S £1
’<E <L( = <L( <Lt
0 0 4

#Tasklets #iTasklets #Tasklets #Tasklets

{ Huge throughput difference between add/sub and mul/div }

DPUs do not have a 32-bit multiplier.
mul/div implementation is based on bit shifting and addition:
maximum of 32 cycles (instructions) to complete

There is an 8-bit multiplier in the pipeline.
Would it be possible to use it for more efficient implementation?
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Arithmetic Throughput (llI)
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~>-DIV

(d) DOUBLE (1 DPU)

#Tasklets

Huge throughput difference between

int32/int64 and float/double

DPUs do not have floating point units.

Software emulation for floating point computations

More efficient algorithms based on other formats?
E.g., posit, TF327
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Strong Scaling: 32 Ranks

VA GEMV SpMV SEL
UNI BS TS BFS
MLP NW HST-S HSt-L
RED SCAN-SSA SCAN-RSS TRNS
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DSLs, High-level Programming

* Tangram
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Backup: CPU-DPU Data Transfers

* Parallel asynchronous mode
- Two transfers to a set of two ranks

SYNCHRONOUS MODE

Application

RANK#0

RANK#1

ASYNCHRON

Application

RANK#0

RANK#1

dpu_push_xfer

dpu_push_xfer

MODE

dpu_push | dpu_push
_xfer _xfer

https://sdk.upmem.com/master/032 DPURuntimeService HostCommunication.html#dpu-rank-transfer-interface-label

SAFARI
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GEMV: Parallelization Approach

* GEMV (general matrix-vector multiplication)

O O W o
O Tt O N

oSO O

* Workload distribution
- chunk_size = (num_rows [ (nr_ranks * nr_dpus)), to each DPU
- chunk_size [ NR_TASKLETS, to each tasklet

Multiply and Store result
accumulate into MRAM

Load BLOCK
bytes into Last row?
WRAM
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MLP: Parallelization Approach

* MLP (multi-layer perceptron), based on GEMV

* Workload distribution
- chunk_size = (num_rows [ (nr_ranks * nr_dpus)), to each DPU
- chunk_size [ NR_TASKLETS, to each tasklet

Store result
into MRAM

Multiply and End of

accumulate row?
Load BLOCK

bytes into

WRAM

Apply ReLU

Last row? GOTO START
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PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan G6mez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memo
Computation”

Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]
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https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https://arxiv.org/pdf/1907.12947.pdf 159



https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

