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Abstract

Today’s systems are overwhelmingly designed to move data to computation. This design choice goes directly against
at least three key trends in systems that cause performance, scalability and energy bottlenecks: (1) data access from
memory is already a key bottleneck as applications become more data-intensive and memory bandwidth and energy do
not scale well, (2) energy consumption is a key constraint in especially mobile and server systems, (3) data movement is
very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially
severely-felt in the data-intensive server and energy-constrained mobile systems of today.

At the same time, conventional memory technology is facing many scaling challenges in terms of reliability, energy,
and performance. As a result, memory system architects are open to organizing memory in different ways and making it
more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic as well as the adoption
of error correcting codes inside DRAM chips, and the necessity for designing new solutions to serious reliability and
security issues, such as the RowHammer phenomenon, are an evidence of this trend.

In this work, we discuss some recent research that aims to practically enable computation close to data. After
motivating trends in applications as well as technology, we discuss at least two promising directions for processing-
in-memory (PIM): (1) performing massively-parallel bulk operations in memory by exploiting the analog operational
properties of DRAM, with low-cost changes, (2) exploiting the logic layer in 3D-stacked memory technology to
accelerate important data-intensive applications. In both approaches, we describe and tackle relevant cross-layer
research, design, and adoption challenges in devices, architecture, systems, and programming models. Our focus is on
the development of in-memory processing designs that can be adopted in real computing platforms at low cost.
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1. Introduction

Main memory, which is built using the Dynamic Ran-
dom Access Memory (DRAM) technology, is a major
component in nearly all computing systems. Across
all of these systems, including servers, cloud platforms,
and mobile/embedded devices, the data working set
sizes of modern applications are rapidly growing, caus-
ing the main memory to be a significant bottleneck for
these applications [1, 2, 3, 4, 5, 6, 7]. Alleviating the
main memory bottleneck requires the memory capac-
ity, energy, cost, and performance to all scale in an ef-
ficient manner. Unfortunately, it has become increas-
ingly difficult in recent years to scale all of these dimen-
sions [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], and the
main memory bottleneck has instead been worsening.

A major reason for the main memory bottleneck is
the high cost associated with data movement. In today’s
computers, to perform any operation on data that resides
in main memory, the memory controller must first issue a
series of commands to the DRAM modules across an off-
chip bus (known as the memory channel). The DRAM
module responds by sending the data to the memory
controller across the memory channel, after which the
data is placed within a cache or registers. The CPU can
only perform the operation on the data once the data
is in the cache. This process of moving data from the
DRAM to the CPU incurs a long latency, and consumes
a significant amount of energy [7, 32, 33, 34, 35]. These
costs are often exacerbated by the fact that much of
the data brought into the caches is not reused by the
CPU [36, 37], providing little benefit in return for the
high latency and energy cost.
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The cost of data movement is a fundamental issue
with the processor-centric nature of contemporary com-
puter systems, where the CPU is considered to be the
master of the system and has been optimized heavily.
In contrast, data storage units such as main memory are
treated as unintelligent workers, and, thus, are largely not
optimized. With the increasingly data-centric nature of
contemporary and emerging applications, the processor-
centric design approach leads to many inefficiencies. For
example, within a single compute node, most of the
node real estate is dedicated to handle the storage and
movement of data (e.g., large on-chip caches, shared
interconnect, memory controllers, off-chip interconnects,
main memory) [38].

Recent advances in memory design and memory ar-
chitecture have enabled the opportunity for a paradigm
shift towards performing processing-in-memory (PIM),
where we can redesign the computer to no longer be
processor-centric and avoid unnecessary data movement.
Processing-in-memory, also known as near-data pro-
cessing (NDP), enables the ability to perform opera-
tions either using (1) the memory itself, or (2) some
form of processing logic (e.g., accelerators, simple
cores, reconfigurable logic) inside the DRAM subsys-
tem. Processing-in-memory has been proposed for at
least four decades [39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53]. However, these past efforts were
not adopted at large scale due to various reasons, in-
cluding the difficulty of integrating processing elements
with DRAM and the fact that memory technology was
not facing as critical scaling challenges as it is today.
As a result of advances in modern memory architec-
tures, e.g., the integration of logic and memory in a 3D-
stacked manner, various recent works explore a range of
PIM architectures for multiple different purposes (e.g.,
[7, 32, 33, 34, 35, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]).

In this paper, we explore two approaches to enabling
processing-in-memory in modern systems. The first ap-
proach examines a form of PIM that only minimally
changes memory chips to perform simple yet powerful
common operations that the chip could be made inher-
ently very good at performing [31, 71, 82, 83, 84, 85,
86, 90, 92, 93, 94, 95, 96]. Solutions that fall under
this approach take advantage of the existing DRAM
design to cleverly and efficiently perform bulk oper-
ations (i.e., operations on an entire row of DRAM
cells), such as bulk copy, data initialization, and bitwise
operations. The second approach takes advantage of
the design of emerging 3D-stacked memory technolo-
gies to enable PIM in a more general-purpose man-

ner [7, 34, 35, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 87, 88, 89, 91].
In order to stack multiple layers of memory, 3D-stacked
chips use vertical through-silicon vias (TSVs) to con-
nect the layers to each other, and to the I/O drivers of
the chip [97]. The TSVs provide much greater internal
bandwidth than is available externally on the memory
channel. Several such 3D-stacked memory architectures,
such as the Hybrid Memory Cube [98, 99] and High-
Bandwidth Memory [97, 100], include a logic layer,
where designers can add some simple processing logic
to take advantage of the high internal bandwidth.

For both approaches to PIM, there are a number of
new challenges that system architects and programmers
must address to enable the widespread adoption of PIM
across the computing landscape and in different domains
of workloads. In addition to describing work along the
two key approaches, we also discuss these challenges in
this paper, along with existing work that addresses these
challenges.

2. Major Trends Affecting Main Memory

The main memory is a major, critical component of
all computing systems, including cloud and server plat-
forms, desktop computers, mobile and embedded de-
vices, and sensors. It is one of the two main pillars of
any computing platform, together with the processing
elements, namely CPU cores, GPU cores, or reconfig-
urable devices.

Due to its relatively low cost and low latency, DRAM
is the predominant technology to build main memory. Be-
cause of the growing data working set sizes of modern ap-
plications [1, 2, 3, 4, 5, 6, 7], there is an ever-increasing
demand for higher DRAM capacity and performance.
Unfortunately, DRAM technology scaling is becoming
more and more challenging in terms of increasing the
DRAM capacity and maintaining the DRAM energy
efficiency and reliability [1, 11, 15, 101, 102]. Thus, ful-
filling the increasing memory needs from applications is
becoming more and more costly and difficult [2, 3, 4, 8,
9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 34, 35, 59, 103, 104, 105].

If CMOS technology scaling is coming to an
end [106], the projections are significantly worse for
DRAM technology scaling [107]. DRAM technology
scaling affects all major characteristics of DRAM, in-
cluding capacity, bandwidth, latency, energy and cost.
We next describe the key issues and trends in DRAM
technology scaling and discuss how these trends moti-
vate the need for intelligent memory controllers, which
can be used as a substrate for processing in memory.
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The first key concern is the difficulty of scaling DRAM
capacity (i.e., density, or cost per bit), bandwidth and la-
tency at the same time. While the processing core count
doubles every two years, the DRAM capacity doubles
only every three years [20]. This causes the memory
capacity per core to drop by approximately 30% every
two years [20]. The trend is even worse for memory
bandwidth per core – in the last 20 years, DRAM chip
capacity (for the most common DDRx chip of the time)
has improved around 128× while DRAM bandwidth has
increased only around 20× [22, 23, 31]. In the same pe-
riod of twenty years, DRAM latency (as measured by the
row cycling time) has remained almost constant (i.e., re-
duced by only 30%), making it a significant performance
bottleneck for many modern workloads, including in-
memory databases [108, 109, 110, 111], graph process-
ing [34, 112, 113], data analytics [110, 114, 115, 116],
datacenter workloads [4], and consumer workloads [7].
As low-latency computing is becoming ever more impor-
tant [1], e.g., due to the ever-increasing need to process
large amounts of data at real time, and predictable perfor-
mance continues to be a critical concern in the design of
modern computing systems [2, 16, 117, 118, 119, 120,
121, 122, 123], it is increasingly critical to design low-
latency main memory chips.

The second key concern is that DRAM technology
scaling to smaller nodes adversely affects DRAM relia-
bility. A DRAM cell stores each bit in the form of charge
in a capacitor, which is accessed via an access transistor
and peripheral circuitry. For a DRAM cell to operate
correctly, both the capacitor and the access transistor (as
well as the peripheral circuitry) need to operate reliably.
As the size of the DRAM cell reduces, both the capac-
itor and the access transistor become less reliable. As
a result, reducing the size of the DRAM cell increases
the difficulty of correctly storing and detecting the de-
sired original value in the DRAM cell [1, 11, 15, 101].
Hence, memory scaling causes memory errors to appear
more frequently. For example, a study of Facebook’s
entire production datacenter servers showed that memory
errors, and thus the server failure rate, increase propor-
tionally with the density of the chips employed in the
servers [124]. Thus, it is critical to make the main mem-
ory system more reliable to build reliable computing
systems on top of it.

The third key issue is that the reliability problems
caused by aggressive DRAM technology scaling can
leads to new security vulnerabilities. The RowHammer
phenomenon [11, 15] shows that it is possible to pre-
dictably induce errors (bit flips) in most modern DRAM
chips. Repeatedly reading the same row in DRAM can
corrupt data in physically-adjacent rows. Specifically,

when a DRAM row is opened (i.e., activated) and closed
(i.e., precharged) repeatedly (i.e., hammered), enough
times within a DRAM refresh interval, one or more bits
in physically-adjacent DRAM rows can be flipped to the
wrong value. A very simple user-level program [125]
can reliably and consistently induce RowHammer errors
in vulnerable DRAM modules. The seminal paper that
introduced RowHammer [11] showed that more than
85% of the chips tested, built by three major vendors be-
tween 2010 and 2014, were vulnerable to RowHammer-
induced errors. In particular, all DRAM modules from
2012 and 2013 are vulnerable.

The RowHammer phenomenon entails a real relia-
bility, and perhaps even more importantly, a real and
prevalent security issue. It breaks physical memory iso-
lation between two addresses, one of the fundamental
building blocks of memory, on top of which system se-
curity principles are built. With RowHammer, accesses
to one row (e.g., an application page) can modify data
stored in another memory row (e.g., an OS page). This
was confirmed by researchers from Google Project Zero,
who developed a user-level attack that uses RowHammer
to gain kernel privileges [126, 127]. Other researchers
have shown how RowHammer vulnerabilities can be
exploited in various ways to gain privileged access to
various systems: in a remote server RowHammer can
be used to remotely take over the server via the use of
JavaScript [128]; a virtual machine can take over another
virtual machine by inducing errors in the victim virtual
machine’s memory space [129]; a malicious applica-
tion without permissions can take control of an Android
mobile device [130]; or an attacker can gain arbitrary
read/write access in a web browser on a Microsoft Win-
dows 10 system [131]. For a more detailed treatment
of the RowHammer problem and its consequences, we
refer the reader to [11, 15, 132].

The fourth key issue is the power and energy consump-
tion of main memory. DRAM is inherently a power and
energy hog, as it consumes energy even when it is not
used (e.g., it requires periodic memory refresh [14]), due
to its charge-based nature. And, energy consumption
of main memory is becoming worse due to three major
reasons. First, its capacity and complexity are both in-
creasing. Second, main memory has remained off the
main processing chip, even though many other platform
components have been integrated into the processing
chip and have benefited from the aggressive energy scal-
ing and low-energy communication substrate on-chip.
Third, the difficulties in DRAM technology scaling are
making energy reduction very difficult with technology
generations. For example, Lefurgy et al. [133] showed,
in 2003 that, in large commercial servers designed by
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IBM, the off-chip memory hierarchy (including, at that
time, DRAM, interconnects, memory controller, and off-
chip caches) consumed between 40% and 50% of the
total system energy. The trend has become even worse
over the course of the one-to-two decades. In recent
computing systems with CPUs or GPUs, only DRAM
itself is shown to account for more than 40% of the total
system power [134, 135]. Hence, the power and energy
consumption of main memory is increasing relative to
that of other components in computing platform. As en-
ergy efficiency and sustainability are critical necessities
in computing platforms today, it is critical to reduce the
energy and power consumption of main memory.

3. The Need for Intelligent Memory Controllers to
Enhance Memory Scaling

A key promising approach to solving the four major
issues above is to design intelligent memory controllers
that can manage main memory better. If the memory
controller is designed to be more intelligent and more
programmable, it can, for example, incorporate flexi-
ble mechanisms to overcome various types of reliability
issues (including RowHammer), manage latencies and
power consumption better based on a deep understanding
of the DRAM and application characteristics, provide
enough support for programmability to prevent security
and reliability vulnerabilities that are discovered in the
field, and manage various types of memory technologies
that are put together as a hybrid main memory to enhance
the scaling of the main memory system. We provide a
few examples of how an intelligent memory controller
can help overcome circuit- and device-level issues we
are facing at the main memory level. We believe having
intelligent memory controllers can greatly alleviate the
scaling issues encountered with main memory today, as
we have described in an earlier position paper [1]. This
is a direction that is also supported by industry today, as
described in an informative paper written collaboratively
by Intel and Samsung engineers on DRAM technology
scaling issues [8].

First, the RowHammer vulnerability can be prevented
by probabilistically refreshing rows that are adjacent
to an activated row, with a very low probability. This
solution, called PARA (Probabilistic Adjacent Row Acti-
vation) [11] was shown to provide strong, programmable
guarantees against RowHammer, with very little power,
performance and chip area overhead [11]. It requires a
slightly more intelligent memory controller that knows
(or that can figure out) the physical adjacency of rows
in a DRAM chip and that is programmable enough to

adjust the probability of adjacent row activation and is-
sue refresh requests to adjacent rows accordingly to the
probability supplied by the system. As described by
prior work [11, 15, 132], this solution is much lower
overhead that increasing the refresh rate across the board
for the entire main memory, which is the RowHammer
solution employed by existing systems in the field that
have simple and rigid memory controllers.

Second, an intelligent memory controller can greatly
alleviate the refresh problem in DRAM, and hence its
negative consequences on energy, performance, pre-
dictability, and technology scaling, by understanding
the retention time characteristics of different rows well.
It is well known that the retention time of different cells
in DRAM are widely different due to process manufactur-
ing variation [14, 101]. Some cells are strong (i.e., they
can retain data for hundreds of seconds), whereas some
cells are weak (i.e., they can retain data for only 64 ms).
Yet, today’s memory controllers treat every cell as equal
and refresh all rows every 64 ms, which is the worst-case
retention time that is allowed. This worst-case refresh
rate leads to a large number of unnecessary refreshes, and
thus great energy waste and performance loss. Refresh
is also shown to be the key technology scaling limiter of
DRAM [8], and as such refreshing all DRAM cells at the
worst case rates is likely to make DRAM technology scal-
ing difficult. An intelligent memory controller can over-
come the refresh problem by identifying the minimum
data retention time of each row (during online operation)
and refreshing each row at the rate it really requires to be
refreshed at or by decommissioning weak rows such that
data is not stored in them. As shown by a recent body of
work whose aim is to design such an intelligent memory
controller that can perform inline profiling of DRAM cell
retention times and online adjustment of refresh rate on a
per-row basis [14, 101, 136, 137, 138, 139, 140, 141], in-
cluding the works on RAIDR [14, 101], AVATAR [137]
and REAPER [140], such an intelligent memory con-
troller can eliminate more than 75% of all refreshes at
very low cost, leading to significant energy reduction,
performance improvement, and quality of service bene-
fits, all at the same time. Thus the downsides of DRAM
refresh can potentially be overcome with the design of
intelligent memory controllers.

Third, an intelligent memory controller can enable
performance improvements that can overcome the limi-
tations of memory scaling. As we discuss in Section 2,
DRAM latency has remained almost constant over the
last twenty years, despite the fact that low-latency com-
puting has become more important during that time. Sim-
ilar to how intelligent memory controllers handle the
refresh problem, the controllers can exploit the fact that
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not all cells in DRAM need the same amount of time
to be accessed. Manufacturers assign timing parame-
ters that define the amount of time required to perform
a memory access. In order to guarantee correct opera-
tion, the timing parameters are chosen to ensure that the
worst-case cell in any DRAM chip that is sold can still
be accessed correctly at worst-case operating temper-
atures [22, 24, 26, 105]. However, we find that access
latency to cells is very heterogeneous due to variation in
both operating conditions (e.g., across different tempera-
tures and operating voltage), manufacturing process (e.g.,
across different chips and different parts of a chip), and
access patterns (e.g., whether or not the cell was recently
accessed). We give six examples of how an intelligent
memory controller can exploit the various different types
of heterogeneity.

(1) At low temperature, DRAM cells contain more
charge, and as a result, can be accessed much faster
than at high temperatures. We find that, averaged across
115 real DRAM modules from three major manufactur-
ers, read and write latencies of DRAM can be reduced
by 33% and 55%, respectively, when operating at rel-
atively low temperature (55 ◦C) compared to operating
at worst-case temperature (85 ◦C) [24, 142]. Thus, a
slightly intelligent memory controller can greatly reduce
memory latency by adapting the access latency to oper-
ating temperature.

(2) Due to manufacturing process variation, we find
that the majority of cells in DRAM (across different chips
or within the same chip) can be accessed much faster
than the manufacturer-provided timing parameters [22,
24, 26, 31, 105, 142]. An intelligent memory controller
can profile the DRAM chip and identify which cells
can be accessed reliably at low latency, and use this
information to reduce access latencies by as much as
57% [22, 26, 105].

(3) In a similar fashion, an intelligent memory con-
troller can use similar properties of manufacturing pro-
cess variation to reduce the energy consumption of a
computer system, by exploiting the minimum voltage
required for safe operation of different parts of a DRAM
chip [25, 31]. The key idea is to reduce the operating
voltage of a DRAM chip from the standard specification
and tolerate the resulting errors by increasing access la-
tency on a per-bank basis, while keeping performance
degradation in check.

(4) Bank conflict latencies can be dramatically re-
duced by making modifications in the DRAM chip such
that different subarrays in a bank can be accessed mostly
independently, and designing an intelligent memory con-
troller that can take advantage of requests that require

data from different subarrays (i.e., exploit subarray-level
parallelism) [12, 13].

(5) Access latency to a portion of the DRAM bank
can be greatly reduced by partitioning the DRAM array
such that a subset of rows can be accessed much faster
than the other rows and having an intelligent memory
controller that decides what data should be placed in fast
rows versus slow rows [23, 142].

(6) We find that a recently-accessed or recently-
refreshed memory row can be accessed much more
quickly than the standard latency if it needs to be ac-
cessed again soon, since the recent access and refresh to
the row has replenished the charge of the cells in the row.
An intelligent memory controller can thus keep track
of the charge level of recently-accessed/refreshed rows
and use the appropriate access latency that corresponds
to the charge level [30, 103, 104], leading to significant
reductions in both access and refresh latencies. Thus,
the poor scaling of DRAM latency and energy can poten-
tially be overcome with the design of intelligent memory
controllers that can facilitate a large number of effective
latency and energy reduction techniques.

Intelligent controllers are already in widespread use
in another key part of a modern computing system.
In solid-state drives (SSDs) consisting of NAND flash
memory, the flash controllers that manage the SSDs
are designed to incorporate a significant level of intel-
ligence in order to improve both performance and re-
liability [143, 144, 145, 146, 147]. Modern flash con-
trollers need to take into account a wide variety of issues
such as remapping data, performing wear leveling to
mitigate the limited lifetime of NAND flash memory
devices, refreshing data based on the current wearout of
each NAND flash cell, optimizing voltage levels to max-
imize memory lifetime, and enforcing fairness across
different applications accessing the SSD. Much of the
complexity in flash controllers is a result of mitigat-
ing issues related to the scaling of NAND flash mem-
ory [143, 144, 145, 148, 149]. We argue that in order to
overcome scaling issues in DRAM, the time has come
for DRAM memory controllers to also incorporate sig-
nificant intelligence.

As we describe above, introducing intelligence into
the memory controller can help us overcome a number
of key challenges in memory scaling. In particular, a
significant body of works have demonstrated that the key
reliability, refresh, and latency/energy issues in memory
can be mitigated effectively with an intelligent memory
controller. As we discuss in Section 4, this intelligence
can go even further, by enabling the memory controllers
(and the broader memory system) to perform application
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computation in order to overcome the significant data
movement bottleneck in existing computing systems.

4. Perils of Processor-Centric Design

A major bottleneck against improving the overall sys-
tem performance and the energy efficiency of today’s
computing systems is the high cost of data movement.
This is a natural consequence of the von Neumann
model [150], which separates computation and storage
in two different system components (i.e., the computing
unit versus the memory/storage unit) that are connected
by an off-chip bus. With this model, processing is done
only in one place, while data is stored in another, sep-
arate place. Thus, data needs to move back and forth
between the memory/storage unit and the computing unit
(e.g., CPU cores or accelerators).

In order to perform an operation on data that is stored
within memory, a costly process is invoked. First, the
CPU (or an accelerator) must issue a request to the mem-
ory controller, which in turn sends a series of commands
across the off-chip bus to the DRAM module. Second,
the data is read from the DRAM module and returned to
the memory controller. Third, the data is placed in the
CPU cache and registers, where it is accessible by the
CPU cores. Finally, the CPU can operate (i.e., perform
computation) on the data. All these steps consume sub-
stantial time and energy in order to bring the data into
the CPU chip [4, 7, 151, 152].

In current computing systems, the CPU is the only
system component that is able to perform computation
on data. The rest of system components are devoted to
only data storage (memory, caches, disks) and data move-
ment (interconnects); they are incapable of performing
computation. As a result, current computing systems are
grossly imbalanced, leading to large amounts of energy
inefficiency and low performance. As empirical evidence
to the gross imbalance caused by the processor-memory
dichotomy in the design of computing systems today,
we have recently observed that more than 62% of the
entire system energy consumed by four major commonly-
used mobile consumer workloads (including the Chrome
browser, TensorFlow machine learning inference engine,
and the VP9 video encoder and decoder) [7]. Thus, the
fact that current systems can perform computation only
in the computing unit (CPU cores and hardware acceler-
ators) is causing significant waste in terms of energy by
necessitating data movement across the entire system.

At least five factors contribute to the performance loss
and the energy waste associated with retrieving data from
main memory, which we briefly describe next.

First, the width of the off-chip bus between the mem-
ory controller and the main memory is narrow, due to
pin count and cost constraints, leading to relatively low
bandwidth to/from main memory. This makes it difficult
to send a large number of requests to memory in parallel.

Second, current computing systems deploy com-
plex multi-level cache hierarchies and latency toler-
ance/hiding mechanisms (e.g., sophisticated caching
algorithms at many different caching levels, multiple
complex prefetching techniques, high amounts of mul-
tithreading, complex out-of-order execution) to tolerate
the data access from memory. These components, while
sometimes effective at improving performance, are costly
in terms of both die area and energy consumption, as
well as the additional latency required to access/manage
them. These components also increase the complex-
ity of the system significantly. Hence, the architectural
techniques used in modern systems to tolerate the con-
sequences of the dichotomy between processing unit
and main memory, lead to significant energy waste and
additional complexity.

Third, the caches are not always properly leveraged.
Much of the data brought into the caches is not reused by
the CPU [36, 37], e.g., in streaming or random access ap-
plications. This renders the caches either very inefficient
or unnecessary for a wide variety of modern workloads.

Fourth, many modern applications, such as graph pro-
cessing [34, 35], produce random memory access pat-
terns. In such cases, not only the caches but also the
off-chip bus and the DRAM memory itself become very
inefficient, since only a little part of each cache line re-
trieved is actually used by the CPU. Such accesses are
also not easy to prefetch and often either confuse the
prefetchers or render them ineffective. Modern memory
hierarchies are not designed to work well for random
access patterns.

Fifth, the computing unit and the memory unit are con-
nected through long, power-hungry interconnects. These
interconnects impose significant additional latency to
every data access and represent a significant fraction of
the energy spent on moving data to/from the DRAM
memory. In fact, off-chip interconnect latency and en-
ergy consumption is a key limiter of performance and
energy in modern systems [16, 23, 71, 82] as it greatly
exacerbates the cost of data movement.

The increasing disparity between processing tech-
nology and memory/communication technology has re-
sulted in systems in which communication (data move-
ment) costs dominate computation costs in terms of en-
ergy consumption. The energy consumption of a main
memory access is between two to three orders of mag-
nitude the energy consumption of a complex addition
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operation today. For example, [152] reports that the en-
ergy consumption of a memory access is ∼ 115× the
energy consumption of an addition operation. As a re-
sult, data movement accounts for 40% [151], 35% [152],
and 62% [7] of the total system energy in scientific,
mobile, and consumer applications, respectively. This
energy waste due to data movement is a huge burden
that greatly limits the efficiency and performance of all
modern computing platforms, from datacenters with a
restricted power budget to mobile devices with limited
battery life.

Overcoming all the reasons that cause low perfor-
mance and large energy inefficiency (as well as high
system design complexity) in current computing systems
requires a paradigm shift. We believe that future com-
puting architectures should become more data-centric:
they should (1) perform computation with minimal data
movement, and (2) compute where it makes sense (i.e.,
where the data resides), as opposed to computing solely
in the CPU or accelerators. Thus, the traditional rigid
dichotomy between the computing units and the mem-
ory/communication units needs to be broken and a new
paradigm enabling computation where the data resides
needs to be invented and enabled.

5. Processing-in-Memory (PIM)

Large amounts of data movement is a major result of
the predominant processor-centric design paradigm of
modern computers. Eliminating unnecessary data move-
ment between memory unit and compute unit is essential
to make future computing architectures higher perfor-
mance, more energy efficient and sustainable. To this
end, processing-in-memory (PIM) equips the memory
subsystem with the ability to perform computation.

In this section, we describe two promising approaches
to implementing PIM in modern architectures. The first
approach exploits the existing DRAM architecture and
the operational principles of the DRAM circuitry to en-
able bulk processing operations within the main memory
with minimal changes. This minimalist approach can
especially be powerful in performing specialized compu-
tation in main memory by taking advantage of what the
main memory substrate is extremely good at perform-
ing with minimal changes to the existing memory chips.
The second approach exploits the ability to implement a
wide variety of general-purpose processing logic in the
logic layer of 3D-stacked memory and thus the high in-
ternal bandwidth and low latency available between the
logic layer and the memory layers of 3D-stacked mem-
ory. This is a more general approach where the logic

implemented in the logic layer can be general purpose
and thus can benefit a wide variety of applications.

5.1. Approach I: Minimally Changing Memory Chips

One approach to implementing processing-in-memory
modifies existing DRAM architectures minimally to
extend their functionality with computing capability.
This approach takes advantage of the existing inter-
connects in and analog operational behavior of con-
ventional DRAM architectures (e.g., DDRx, LPDDRx,
HBM), without the need for a dedicated logic layer
or logic processing elements, and usually with very
low overheads. Mechanisms that use this approach
take advantage of the high internal bandwidth available
within each DRAM cell array. There are a number of
example PIM architectures that make use of this ap-
proach [31, 82, 83, 84, 85, 86, 92, 93]. In this section,
we first focus on two such designs: RowClone, which
enables in-DRAM bulk data movement operations [82]
and Ambit, which enables in-DRAM bulk bitwise opera-
tions [83, 85, 86]. Then, we describe a low-cost substrate
that performs data reorganization for non-unit strided ac-
cess patterns [71].

5.1.1. RowClone
Two important classes of bandwidth-intensive mem-

ory operations are (1) bulk data copy, where a large
quantity of data is copied from one location in physi-
cal memory to another; and (2) bulk data initialization,
where a large quantity of data is initialized to a specific
value. We refer to these two operations as bulk data
movement operations. Prior research [4, 153, 154] has
shown that operating systems and data center workloads
spend a significant portion of their time performing bulk
data movement operations. Therefore, accelerating these
operations will likely improve system performance and
energy efficiency.

We have developed a mechanism called Row-
Clone [82], which takes advantage of the fact that bulk
data movement operations do not require any compu-
tation on the part of the processor. RowClone exploits
the internal organization and operation of DRAM to per-
form bulk data copy/initialization quickly and efficiently
inside a DRAM chip. A DRAM chip contains multiple
banks, where the banks are connected together and to
I/O circuitry by a shared internal bus, each of which is
divided into multiple subarrays [12, 82, 155]. Each sub-
array contains many rows of DRAM cells, where each
column of DRAM cells is connected together across the
multiple rows using bitlines.
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RowClone consists of two mechanisms that take ad-
vantage of the existing DRAM structure. The first mech-
anism, Fast Parallel Mode, copies the data of a row inside
a subarray to another row inside the same DRAM sub-
array by issuing back-to-back activate (i.e., row open)
commands to the source and the destination row. The
second mechanism, Pipelined Serial Mode, can transfer
an arbitrary number of bytes between two banks using
the shared internal bus among banks in a DRAM chip.

RowClone significantly reduces the raw latency and
energy consumption of bulk data copy and initialization,
leading to 11.6× latency reduction and 74.4× energy
reduction for a 4kB bulk page copy (using the Fast Par-
allel Mode), at very low cost (only 0.01% DRAM chip
area overhead) [82]. This reduction directly translates
to improvement in performance and energy efficiency of
systems running copy or initialization-intensive work-
loads. Our MICRO 2013 paper [82] shows that the per-
formance of six copy/initialization-intensive benchmarks
(including the fork system call, Memcached [156] and a
MySQL [157] database) improves between 4% and 66%.
For the same six benchmarks, RowClone reduces the
energy consumption between 15% and 69%.

5.1.2. Ambit
In addition to bulk data movement, many applications

trigger bulk bitwise operations, i.e., bitwise operations
on large bit vectors [158, 159]. Examples of such ap-
plications include bitmap indices [160, 161, 162, 163]
and bitwise scan acceleration [164] for databases, accel-
erated document filtering for web search [165], DNA
sequence alignment [166, 167, 168], encryption algo-
rithms [169, 170, 171], graph processing [78], and net-
working [159]. Accelerating bulk bitwise operations
can thus significantly boost the performance and energy
efficiency of a wide range applications.

In order to avoid data movement bottlenecks when
the system performs these bulk bitwise operations, we
have recently proposed a new Accelerator-in-Memory
for bulk Bitwise operations (Ambit) [83, 85, 86]. Un-
like prior approaches, Ambit uses the analog operation
of existing DRAM technology to perform bulk bitwise
operations. Ambit consists of two components. The first
component, Ambit–AND–OR, implements a new opera-
tion called triple-row activation, where the memory con-
troller simultaneously activates three rows. Triple-row
activation performs a bitwise majority function across
the cells in the three rows, due to the charge sharing prin-
ciples that govern the operation of the DRAM array. By
controlling the initial value of one of the three rows, we
can use triple-row activation to perform a bitwise AND
or OR of the other two rows. The second component,

Ambit–NOT, takes advantage of the two inverters that are
connected to each sense amplifier in a DRAM subarray.
Ambit–NOT exploits the fact that, at the end of the sense
amplification process, the voltage level of one of the
inverters represents the negated logical value of the cell.
The Ambit design adds a special row to the DRAM array,
which is used to capture the negated value that is present
in the sense amplifiers. One possible implementation
of the special row [86] is a row of dual-contact cells (a
2-transistor 1-capacitor cell [172, 173]) that connects to
both inverters inside the sense amplifier. With the ability
to perform AND, OR, and NOT operations, Ambit is
functionally complete: It can reliably perform any bulk
bitwise operation completely using DRAM technology,
even in the presence of significant process variation (see
[86] for details).

Averaged across seven commonly-used bitwise opera-
tions, Ambit with 8 DRAM banks improves bulk bitwise
operation throughput by 44× compared to an Intel Sky-
lake processor [174], and 32× compared to the NVIDIA
GTX 745 GPU [175]. Compared to the DDR3 standard,
Ambit reduces energy consumption of these operations
by 35× on average. Compared to HMC 2.0 [99], Am-
bit improves bulk bitwise operation throughput by 2.4×.
When integrated directly into the HMC 2.0 device, Am-
bit improves throughput by 9.7× compared to processing
in the logic layer of HMC 2.0.

A number of Ambit-like bitwise operation substrates
have been proposed in recent years, making use of emerg-
ing resistive memory technologies, e.g., phase-change
memory (PCM) [17, 19, 176, 177, 178, 179], SRAM, or
specialized computational DRAM. These substrates can
perform bulk bitwise operations in a special DRAM ar-
ray augmented with computational circuitry [90] and in
PCM [78]. Similar substrates can perform simple arith-
metic operations in SRAM [79, 80] and arithmetic and
logical operations in memristors [81, 180, 181, 182, 183].
We believe it is extremely important to continue ex-
ploring such low-cost Ambit-like substrates, as well
as more sophisticated computational substrates, for all
types of memory technologies, old and new. Resistive
memory technologies are fundamentally non-volatile and
amenable to in-place updates, and as such, can lead to
even less data movement compared to DRAM, which
fundamentally requires some data movement to access
the data. Thus, we believe it is very promising to exam-
ine the design of emerging resistive memory chips that
can incorporate Ambit-like bitwise operations and other
types of suitable computation capability.
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5.1.3. Gather-Scatter DRAM
Many applications access data structures with different

access patterns at different points in time. Depending on
the layout of the data structures in the physical memory,
some access patterns require non-unit strides. As cur-
rent memory systems are optimized to access sequential
cache lines, non-unit strided accesses exhibit low spatial
locality, leading to memory bandwidth waste and cache
space waste.

Gather-Scatter DRAM (GS-DRAM) [71] is a low-
cost substrate that addresses this problem. It performs
in-DRAM data structure reorganization by accessing
multiple values that belong to a strided access pattern
using a single read/write command in the memory con-
troller. GS-DRAM uses two key new mechanisms. First,
GS-DRAM remaps the data of each cache line to differ-
ent chips such that multiple values of a strided access
pattern are mapped to different chips. This enables the
possibility of gathering different parts of the strided ac-
cess pattern concurrently from different chips. Second,
instead of sending separate requests to each chip, the GS-
DRAM memory controller communicates a pattern ID
to the memory module. With the pattern ID, each chip
computes the address to be accessed independently. This
way, the returned cache line contains different values of
the strided pattern gathered from different chips.

GS-DRAM achieves near-ideal memory bandwidth
and cache utilization in real-world workloads, such as
in-memory databases and matrix multiplication. For
in-memory databases, GS-DRAM outperforms a transac-
tional workload with column store layout by 3× and an
analytics workload with row store layout by 2×, thereby
getting the best performance for both transactional and
analytical queries on databases (which in general ben-
efit from different types of data layouts). For matrix
multiplication, GS-DRAM is 10% faster than the best-
performing tiled implementation of the matrix multipli-
cation algorithm.

5.2. Approach II: PIM using 3D-Stacked Memory

Several works propose to place some form of pro-
cessing logic (typically accelerators, simple cores, or
reconfigurable logic) inside the logic layer of 3D-stacked
memory [97]. This PIM processing logic, which we also
refer to as PIM cores or PIM engines, interchangeably,
can execute portions of applications (from individual
instructions to functions) or entire threads and applica-
tions, depending on the design of the architecture. Such
PIM engines have high-bandwidth and low-latency ac-
cess to the memory stacks that are on top of them, since
the logic layer and the memory layers are connected via

high-bandwidth vertical connections [97], e.g., through-
silicon vias. In this section, we discuss how systems
can make use of relatively simple PIM engines within
the logic layer to avoid data movement and thus obtain
significant performance and energy improvements on a
wide variety of application domains.

5.2.1. Tesseract: Graph Processing
A popular modern application is large-scale graph

processing [87, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193]. Graph processing has broad applicability and
use in many domains, from social networks to machine
learning, from data analytics to bioinformatics. Graph
analysis workloads are known to put significant pres-
sure on memory bandwidth due to (1) large amounts of
random memory accesses across large memory regions
(leading to very limited cache efficiency and very large
amounts of unnecessary data transfer on the memory
bus) and (2) very small amounts of computation per each
data item fetched from memory (leading to very limited
ability to hide long memory latencies and exacerbating
the energy bottleneck by exercising the huge energy dis-
parity between memory access and computation). These
two characteristics make it very challenging to scale up
such workloads despite their inherent parallelism, es-
pecially with conventional architectures based on large
on-chip caches and relatively scarce off-chip memory
bandwidth for random access.

We can exploit the high bandwidth as well as the po-
tential computation capability available within the logic
layer of 3D-stacked memory to overcome the limitations
of conventional architectures for graph processing. To
this end, we design a programmable PIM accelerator
for large-scale graph processing, called Tesseract [34].
Tesseract consists of (1) a new hardware architecture
that effectively utilizes the available memory bandwidth
in 3D-stacked memory by placing simple in-order pro-
cessing cores in the logic layer and enabling each core
to manipulate data only on the memory partition it is
assigned to control, (2) an efficient method of commu-
nication between different in-order cores within a 3D-
stacked memory to enable each core to request computa-
tion on data elements that reside in the memory partition
controlled by another core, and (3) a message-passing
based programming interface, similar to how modern
distributed systems are programmed, which enables re-
mote function calls on data that resides in each memory
partition. The Tesseract design moves functions to data
rather than moving data elements across different mem-
ory partitions and cores. It also includes two hardware
prefetchers specialized for memory access patterns of
graph processing, which operate based on the hints pro-
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vided by our programming model. Our comprehensive
evaluations using five state-of-the-art graph processing
workloads with large real-world graphs show that the
proposed Tesseract PIM architecture improves average
system performance by 13.8× and achieves 87% average
energy reduction over conventional systems.

5.2.2. Consumer Workloads
A very popular domain of computing today consists of

consumer devices, which include smartphones, tablets,
web-based computers such as Chromebooks, and wear-
able devices. In consumer devices, energy efficiency is
a first-class concern due to the limited battery capacity
and the stringent thermal power budget. We find that
data movement is a major contributor to the total system
energy and execution time in modern consumer devices.
Across all of the popular modern applications we study
(described in the next paragraph), we find that a massive
62.7% of the total system energy, on average, is spent on
data movement across the memory hierarchy [7].

We comprehensively analyze the energy and perfor-
mance impact of data movement for several widely-used
Google consumer workloads [7], which account for a
significant portion of the applications executed on con-
sumer devices. These workloads include (1) the Chrome
web browser [194], which is a very popular browser
used in mobile devices and laptops; (2) TensorFlow Mo-
bile [195], Google’s machine learning framework, which
is used in services such as Google Translate, Google
Now, and Google Photos; (3) the VP9 video playback en-
gine [196], and (4) the VP9 video capture engine [196],
both of which are used in many video services such as
YouTube and Google Hangouts. We find that offloading
key functions to the logic layer can greatly reduce data
movement in all of these workloads. However, there
are challenges to introducing PIM in consumer devices,
as consumer devices are extremely stringent in terms
of the area and energy budget they can accommodate
for any new hardware enhancement. As a result, we
need to identify what kind of in-memory logic can both
(1) maximize energy efficiency and (2) be implemented at
minimum possible cost, in terms of both area overhead
and complexity.

We find that many of target functions for PIM in con-
sumer workloads are comprised of simple operations
such as memcopy, memset, basic arithmetic and bitwise
operations, and simple data shuffling and reorganiza-
tion routines. Therefore, we can relatively easily im-
plement these PIM target functions in the logic layer of
3D-stacked memory using either (1) a small low-power
general-purpose embedded core or (2) a group of small
fixed-function accelerators. Our analysis shows that the

area of a PIM core and a PIM accelerator take up no more
than 9.4% and 35.4%, respectively, of the area available
for PIM logic in an HMC-like [197] 3D-stacked memory
architecture. Both the PIM core and PIM accelerator
eliminate a large amount of data movement, and thereby
significantly reduce total system energy (by an average
of 55.4% across all the workloads) and execution time
(by an average of 54.2%).

5.2.3. GPU Applications
In the last decade, Graphics Processing Units (GPUs)

have become the accelerator of choice for a wide vari-
ety of data-parallel applications. They deploy thousands
of in-order, SIMT (Single Instruction Multiple Thread)
cores that run lightweight threads. Their multithreaded
architecture is devised to hide the long latency of mem-
ory accesses by interleaving threads that execute arith-
metic and logic operations. Despite that, many GPU
applications are still very memory-bound [198, 199, 200,
201, 202, 203, 204, 205, 206, 207], because the limited
off-chip pin bandwidth cannot supply enough data to the
running threads.

3D-stacked memory architectures present a promising
opportunity to alleviate the memory bottleneck in GPU
systems. GPU cores placed in the logic layer of a 3D-
stacked memory can be directly connected to the DRAM
layers with high bandwidth (and low latency) connec-
tions. In order to leverage the potential performance
benefits of such systems, it is necessary to enable com-
putation offloading and data mapping to multiple such
compute-capable 3D-stacked memories, such that GPU
applications can benefit from processing-in-memory ca-
pabilities in the logic layers of such memories.

TOM (Transparent Offloading and Mapping) [59] pro-
poses two mechanisms to address computation offloading
and data mapping in such a system in a programmer-
transparent manner. First, it introduces new compiler
analysis techniques to identify code sections in GPU ker-
nels that can benefit from PIM offloading. The compiler
estimates the potential memory bandwidth savings for
each code block. To this end, the compiler compares
the bandwidth consumption of the code block, when ex-
ecuted on the regular GPU cores, to the bandwidth cost
of transmitting/receiving input/output registers, when
offloading to the GPU cores in the logic layers. At run-
time, a final offloading decision is made based on system
conditions, such as contention for processing resources
in the logic layer. Second, a software/hardware coop-
erative mechanism predicts the memory pages that will
be accessed by offloaded code, and places such pages
in the same 3D-stacked memory cube where the code
will be executed. The goal is to make PIM effective by

10



ensuring that the data needed by the PIM cores is in the
same memory stack. Both mechanisms are completely
transparent to the programmer, who only needs to write
regular GPU code without any explicit PIM instructions
or any other modification to the code. TOM improves the
average performance of a variety of GPGPU workloads
by 30% and reduces the average energy consumption by
11% with respect to a baseline GPU system without PIM
offloading capabilities.

A related work [60] identifies GPU kernels that are
suitable for PIM offloading by using a regression-based
affinity prediction model. A concurrent kernel manage-
ment mechanism uses the affinity prediction model and
determines which kernels should be scheduled concur-
rently to maximize performance. This way, the proposed
mechanism enables the simultaneous exploitation of the
regular GPU cores and the in-memory GPU cores. This
scheduling technique improves performance and energy
efficiency by an average of 42% and 27%, respectively.

5.2.4. PEI: PIM-Enabled Instructions
PIM-Enabled Instructions (PEI) [35] aims to provide

the minimal processing-in-memory support to take ad-
vantage of PIM using 3D-stacked memory, in a way that
can achieve significant performance and energy benefits
without changing the computing system significantly.
To this end, PEI proposes a collection of simple in-
structions, which introduce negligible changes to the
computing system and no changes to the programming
model or the virtual memory system, in a system with
3D-stacked memory. These instructions, inserted by the
compiler/programmer to code written in a regular pro-
gram, are operations that can be executed either in a
traditional host CPU (that fetches and decodes them) or
the PIM engine in 3D-stacked memory.

PIM-Enabled Instructions are based on two key ideas.
First, a PEI is a cache-coherent, virtually-addressed host
processor instruction that operates on only a single cache
block. It requires no changes to the sequential execution
and programming model, no changes to virtual memory,
minimal changes to cache coherence, and no need for
special data mapping to take advantage of PIM (because
each PEI is restricted to a single memory module due
to the single cache block restriction it has). Second, a
Locality-Aware Execution runtime mechanism decides
dynamically where to execute a PEI (i.e., either the host
processor or the PIM logic) based on simple locality
characteristics and simple hardware predictors. This run-
time mechanism executes the PEI at the location that
maximizes performance. In summary, PIM-Enabled In-
structions provide the illusion that PIM operations are
executed as if they were host instructions.

Examples of PEIs are integer increment, integer mini-
mum, floating-point addition, hash table probing, his-
togram bin index, Euclidean distance, and dot prod-
uct [35]. Data-intensive workloads such as graph pro-
cessing, in-memory data analytics, machine learning,
and data mining can significantly benefit from these PEIs.
Across 10 key data-intensive workloads, we observe that
the use of PEIs in these workloads, in combination with
the Locality-Aware Execution runtime mechanism, leads
to an average performance improvement of 47% and an
average energy reduction of 25% over a baseline CPU.

6. Enabling the Adoption of PIM

Pushing some or all of the computation for a program
from the CPU to memory introduces new challenges for
system architects and programmers to overcome. These
challenges must be addressed in order for PIM to be
adopted as a mainstream architecture in a wide variety
of systems and workloads, and in a seamless manner
that does not place heavy burden on the vast majority
of programmers. In this section, we discuss several of
these system-level and programming-level challenges,
and highlight a number of our works that have addressed
these challenges for a wide range of PIM architectures.

6.1. Programming Model and Code Generation

Two open research questions to enable the adoption
of PIM are 1) what should the programming models
be, and 2) how can compilers and libraries alleviate the
programming burden.

While PIM-Enabled Instructions [35] work well for of-
floading small amounts of computation to memory, they
can potentially introduce overheads while taking advan-
tage of PIM for large tasks, due to the need to frequently
exchange information between the PIM processing logic
and the CPU. Hence, there is a need for researchers to
investigate how to integrate PIM instructions with other
compiler-based methods or library calls that can sup-
port PIM integration, and how these approaches can ease
the burden on the programmer, by enabling seamless
offloading of instructions or function/library calls.

Such solutions can often be platform-dependent. One
of our recent works [59] examines compiler-based mech-
anisms to decide what portions of code should be of-
floaded to PIM processing logic in a GPU-based system
in a manner that is transparent to the GPU programmer.
Another recent work [60] examines system-level tech-
niques that decide which GPU application kernels are
suitable for PIM execution.
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Determining effective programming interfaces and the
necessary compiler/library support to perform PIM re-
main open research and design questions, which are
important for future works to tackle.

6.2. PIM Runtime: Scheduling and Data Mapping
We identify four key runtime issues in PIM: (1) what

code to execute near data, (2) when to schedule execu-
tion on PIM (i.e., when is it worth offloading compu-
tation to the PIM cores), (3) how to map data to multi-
ple memory modules such that PIM execution is viable
and effective, and (4) how to effectively share/partition
PIM mechanisms/accelerators at runtime across multiple
threads/cores to maximize performance and energy effi-
ciency. We have already proposed several approaches to
solve these four issues.

Our recent works in PIM processing identify suitable
PIM offloading candidates with different granularities.
PIM-Enabled Instructions [35] propose various oper-
ations that can benefit from execution near or inside
memory, such as integer increment, integer minimum,
floating-point addition, hash table probing, histogram
bin index, Euclidean distance, and dot product. In [7],
we find simple functions with intensive data movement
that are suitable for PIM in consumer workloads (e.g.,
Chrome web browser, TensorFlow Mobile, video play-
back, and video capture), as described in Section 5.2.2.
Bulk memory operations (copy, initialization) and bulk
bitwise operations are good candidates for in-DRAM
processing [82, 83, 86, 93]. GPU applications also con-
tain several parts that are suitable for offloading to PIM
engines [59, 60].

In several of our research works, we propose runtime
mechanisms for dynamic scheduling of PIM offloading
candidates, i.e., mechanisms that decide whether or not
to actually offload code that is marked to be potentially
offloaded to PIM engines. In [35], we develop a locality-
aware scheduling mechanism for PIM-enabled instruc-
tions. For GPU-based systems [59, 60], we explore the
combination of compile-time and runtime mechanisms
for identification and dynamic scheduling of PIM of-
floading candidates.

The best mapping of data and code that enables the
maximal benefits from PIM depends on the applications
and the computing system configuration. For instance,
in [59], we present a software/hardware mechanism to
map data and code to several 3D-stacked memory cubes
in regular GPU applications with relatively regular mem-
ory access patterns. This work also deals with effectively
sharing PIM engines across multiple threads, as GPU
code sections are offloaded from different GPU cores.
Developing new approaches to data/code mapping and

scheduling for a large variety of applications and possi-
ble core and memory configurations is still necessary.

In summary, there are still several key research ques-
tions that should be investigated in runtime systems for
PIM, which perform scheduling and data/code mapping:

• What are simple mechanisms to enable and dis-
able PIM execution? How can PIM execution
be throttled for highest performance gains? How
should data locations and access patterns affect
where/whether PIM execution should occur?

• Which parts of a given application’s code should
be executed on PIM? What are simple mechanisms
to identify when those parts of the application code
can benefit from PIM?

• What are scheduling mechanisms to share PIM en-
gines between multiple requesting cores to maxi-
mize benefits obtained from PIM?

• What are simple mechanisms to manage access to
a memory that serves both CPU requests and PIM
requests?

6.3. Memory Coherence

In a traditional multithreaded execution model that
makes use of shared memory, writes to memory must
be coordinated between multiple CPU cores, to ensure
that threads do not operate on stale data values. Since
CPUs include per-core private caches, when one core
writes data to a memory address, cached copies of the
data held within the caches of other cores must be up-
dated or invalidated, using a mechanism known as cache
coherence. Within a modern chip multiprocessor, the
per-core caches perform coherence actions over a shared
interconnect, with hardware coherence protocols.

Cache coherence is a major system challenge for en-
abling PIM architectures as general-purpose execution
engines, as PIM processing logic can modify the data
it processes, and this data may also be needed by CPU
cores. If PIM processing logic is coherent with the pro-
cessor, the PIM programming model is relatively simple,
as it remains similar to conventional shared memory
multithreaded programming, which makes PIM architec-
tures easier to adopt in general-purpose systems. Thus,
allowing PIM processing logic to maintain such a simple
and traditional shared memory programming model can
facilitate the widespread adoption of PIM. However, em-
ploying traditional fine-grained cache coherence (e.g., a
cache-block based MESI protocol [208]) for PIM forces
a large number of coherence messages to traverse the
narrow processor-memory bus, potentially undoing the
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benefits of high-bandwidth and low-latency PIM execu-
tion. Unfortunately, solutions for coherence proposed by
prior PIM works [35, 59] either place some restrictions
on the programming model (by eliminating coherence
and requiring message passing based programming) or
limit the performance and energy gains achievable by a
PIM architecture.

We have developed a new coherence protocol,
LazyPIM [70, 209], that maintains cache coherence be-
tween PIM processing logic and CPU cores without send-
ing coherence requests for every memory access. Instead,
LazyPIM efficiently provides coherence by having PIM
processing logic speculatively acquire coherence permis-
sions, and then later sends compressed batched coher-
ence lookups to the CPU to determine whether or not
its speculative permission acquisition violated the coher-
ence semantics. As a result of this ”lazy” checking of
coherence violations, LazyPIM approaches near-ideal
coherence behavior: the performance and energy con-
sumption of a PIM architecture with LazyPIM are, re-
spectively, within 5.5% and 4.4% the performance and
energy consumption of a system where coherence is per-
formed at zero latency and energy cost.

Despite the leap that LazyPIM [70, 209] represents
for memory coherence in computing systems with PIM
support, we believe that it is still necessary to explore
other solutions for memory coherence that can efficiently
deal with all types of workloads and PIM offloading
granularities.

6.4. Virtual Memory Support
When an application needs to access its data inside

the main memory, the CPU core must first perform an
address translation, which converts the data’s virtual
address into a physical address within main memory. If
the translation metadata is not available in the CPU’s
translation lookaside buffer (TLB), the CPU must invoke
the page table walker in order to perform a long-latency
page table walk that involves multiple sequential reads
to the main memory and lowers the application’s perfor-
mance. In modern systems, the virtual memory system
also provides access protection mechanisms.

A naive solution to reducing the overhead of page
walks is to utilize PIM engines to perform page table
walks. This can be done by duplicating the content of
the TLB and moving the page walker to the PIM pro-
cessing logic in main memory. Unfortunately, this is
either difficult or expensive for three reasons. First, co-
herence has to be maintained between the CPU’s TLBs
and the memory-side TLBs. This introduces extra com-
plexity and off-chip requests. Second, duplicating the
TLBs increases the storage and complexity overheads on

the memory side, which should be carefully contained.
Third, if main memory is shared across CPUs with differ-
ent types of architectures, page table structures and the
implementation of address translations can be different
across the different architectures. Ensuring compatibility
between the in-memory TLB/page walker and all possi-
ble types of virtual memory architecture designs can be
complicated and often not even practically feasible.

To address these concerns and reduce the overhead
of virtual memory, we explore a tractable solution for
PIM address translation as part of our in-memory pointer
chasing accelerator, IMPICA [62]. IMPICA exploits
the high bandwidth available within 3D-stacked memory
to traverse a chain of virtual memory pointers within
DRAM, without having to look up virtual-to-physical ad-
dress translations in the CPU translation lookaside buffer
(TLB) and without using the page walkers within the
CPU. IMPICA’s key ideas are 1) to use a region-based
page table, which is optimized for PIM acceleration,
and 2) to decouple address calculation and memory ac-
cess with two specialized engines. IMPICA improves
the performance of pointer chasing operations in three
commonly-used linked data structures (linked lists, hash
tables, and B-trees) by 92%, 29%, and 18%, respectively.
On a real database application, DBx1000, IMPICA im-
proves transaction throughput and response time by 16%
and 13%, respectively. IMPICA also reduces overall
system energy consumption (by 41%, 23%, and 10% for
the three commonly-used data structures, and by 6% for
DBx1000).

Beyond pointer chasing operations that are tackled by
IMPICA [62], providing efficient mechanisms for PIM-
based virtual-to-physical address translation (as well as
access protection) remains a challenge for the general-
ity of applications, especially those that access large
amounts of virtual memory [210, 211, 212]. We believe
it is important to explore new ideas to address this PIM
challenge in a scalable and efficient manner.

6.5. Data Structures for PIM
Current systems with many cores run applications with

concurrent data structures to achieve high performance
and scalability, with significant benefits over sequential
data structures. Such concurrent data structures are often
used in heavily-optimized server systems today, where
high performance is critical. To enable the adoption
of PIM in such many-core systems, it is necessary to
develop concurrent data structures that are specifically
tailored to take advantage of PIM.

Pointer chasing data structures and contended data
structures require careful analysis and design to lever-
age the high bandwidth and low latency of 3D-stacked
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memories [72]. First, pointer chasing data structures,
such as linked-lists and skip-lists, have a high degree of
inherent parallelism and low contention, but a naive im-
plementation in PIM cores is burdened by hard-to-predict
memory access patterns. By combining and partitioning
the data across 3D-stacked memory vaults, it is possible
to fully exploit the inherent parallelism of these data
structures. Second, contended data structures, such as
FIFO queues, are a good fit for CPU caches because they
expose high locality. However, they suffer from high
contention when many threads access them concurrently.
Their performance on traditional CPU systems can be
improved using a new PIM-based FIFO queue [72]. The
proposed PIM-based FIFO queue uses a PIM core to
perform enqueue and dequeue operations requested by
CPU cores. The PIM core can pipeline requests from
different CPU cores for improved performance.

As recent work [72] shows, PIM-managed concurrent
data structures can outperform state-of-the-art concur-
rent data structures that are designed for and executed
on multiple cores. We believe and hope that future work
will enable other types of data structures (e.g., hash ta-
bles, search trees, priority queues) to benefit from PIM-
managed designs.

6.6. Benchmarks and Simulation Infrastructures
To ease the adoption of PIM, it is critical that we ac-

curately assess the benefits and shortcomings of PIM.
Accurate assessment of PIM requires (1) a preferably
large set of real-world memory-intensive applications
that have the potential to benefit significantly when ex-
ecuted near memory, (2) a rigorous methodology to
(automatically) identify PIM offloading candidates, and
(3) simulation/evaluation infrastructures that allow ar-
chitects and system designers to accurately analyze the
benefits and overheads of adding PIM processing logic
to memory and executing code on this processing logic.

In order to explore what processing logic should be
introduced near memory, and to know what properties
are ideal for PIM kernels, we believe it is important
to begin by developing a real-world benchmark suite
of a wide variety of applications that can potentially
benefit from PIM. While many data-intensive applica-
tions, such as pointer chasing and bulk memory copy,
can potentially benefit from PIM, it is crucial to exam-
ine important candidate applications for PIM execution,
and for researchers to agree on a common set of these
candidate applications to focus the efforts of the commu-
nity as well as to enable reproducibility of results, which
is important to assess the relative benefits of different
ideas developed by different researchers. We believe
that these applications should come from a number of

popular and emerging domains. Examples of potential
domains include data-parallel applications, neural net-
works, machine learning, graph processing, data analyt-
ics, search/filtering, mobile workloads, bioinformatics,
Hadoop/Spark programs, security/cryptography, and in-
memory data stores. Many of these applications have
large data sets and can benefit from high memory band-
width and low memory latency benefits provided by com-
putation near memory. In our prior work, we have started
identifying several applications that can benefit from
PIM in graph processing frameworks [34, 35], pointer
chasing [33, 62], databases [62, 70, 71, 209], consumer
workloads [7], machine learning [7], and GPGPU work-
loads [59, 60]. However, there is significant room for
methodical development of a large-scale PIM benchmark
suite, which we hope future work provides.

A systematic methodology for (automatically) iden-
tifying potential PIM kernels (i.e., code portions that
can benefit from PIM) within an application can, among
many other benefits, 1) ease the burden of programming
PIM architectures by aiding the programmer to identify
what should be offloaded, 2) ease the burden of and im-
prove the reproducibility of PIM research, 3) drive the
design and implementation of PIM functional units that
many types of applications can leverage, 4) inspire the
development of tools that programmers and compilers
can use to automate the process of offloading portions of
existing applications to PIM processing logic, and 5) lead
the community towards convergence on PIM designs and
offloading candidates.

We also need simulation infrastructures to accurately
model the performance and energy of PIM hardware
structures, available memory bandwidth, and communi-
cation overheads when we execute code near or inside
memory. Highly-flexible and commonly-used memory
simulators (e.g., Ramulator [213, 214], SoftMC [29,
215]) can be combined with full-system simulators
(e.g., gem5 [216], zsim [217], gem5-gpu [218], GPG-
PUSim [219]) to provide a robust environment that can
evaluate how various PIM architectures affect the entire
compute stack, and can allow designers to identify mem-
ory, workload, and system characteristics that affect the
efficiency of PIM execution. We believe it is critical to
support the open source development such simulation
and emulation infrastructures for assessing the benefits
of a wide variety of PIM designs.

7. Conclusion and Future Outlook

Data movement is a major performance and energy
bottleneck plaguing modern computing systems. A large
fraction of system energy is spent on moving data across
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the memory hierarchy into the processors (and acceler-
ators), the only place where computation is performed
in a modern system. Fundamentally, the large amounts
of data movement are caused by the processor-centric
design of modern computing systems: processing of data
is performed only in the processors (and accelerators),
which are far away from the data, and as a result, data
moves a lot in the system, to facilitate computation on it.

In this work, we argue for a paradigm shift in the de-
sign of computing systems toward a data-centric design
that enables computation capability in places where data
resides and thus performs computation with minimal
data movement. Processing-in-memory (PIM) is a fun-
damentally data-centric design approach for computing
systems that enables the ability to perform operations in
or near memory. Recent advances in modern memory
architectures have enabled us to extensively explore two
novel approaches to designing PIM architectures. First,
with minimal changes to memory chips, we show that
we can perform a number of important and widely-used
operations (e.g., memory copy, data initialization, bulk
bitwise operations, data reorganization) within DRAM.
Second, we demonstrate how embedded computation
capability in the logic layer of 3D-stacked memory can
be used in a variety of ways to provide significant perfor-
mance improvements and energy savings, across a large
range of application domains and computing platforms.

Despite the extensive design space that we have stud-
ied so far, a number of key challenges remain to enable
the widespread adoption of PIM in future computing
systems [94, 95]. Important challenges include devel-
oping easy-to-use programming models for PIM (e.g.,
PIM application interfaces, compilers and libraries de-
signed to abstract away PIM architecture details from
programmers), and extensive runtime support for PIM
(e.g., scheduling PIM operations, sharing PIM logic
among CPU threads, cache coherence, virtual memory
support). We hope that providing the community with
(1) a large set of memory-intensive benchmarks that can
potentially benefit from PIM, (2) a rigorous methodology
to identify PIM-suitable parts within an application, and
(3) accurate simulation infrastructures for estimating the
benefits and overheads of PIM will empower researchers
to address remaining challenges for the adoption of PIM.

We firmly believe that it is time to design principled
system architectures to solve the data movement problem
of modern computing systems, which is caused by the
rigid dichotomy and imbalance between the computing
unit (CPUs and accelerators) and the memory/storage
unit. Fundamentally solving the data movement problem
requires a paradigm shift to a more data-centric comput-
ing system design, where computation happens in or near

memory/storage, with minimal movement of data. Such
a paradigm shift can greatly push the boundaries of fu-
ture computing systems, leading to orders of magnitude
improvements in energy and performance (as we demon-
strated with some examples in this work), potentially
enabling new applications and computing platforms.
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