
QUETZAL: Vector Acceleration Framework for
Modern Genome Sequence Analysis Algorithms

Julián Pavón∗†, Ivan Vargas Valdivieso∗†, Carlos Rojas∗†, Cesar Hernandez∗, Mehmet Aslan§, Roger Figueras∗,
Yichao Yuan¶, Joël Lindegger‡, Mohammed Alser‡, Francesc Moll†, Santiago Marco-Sola†, Oguz Ergin§

Nishil Talati¶, Onur Mutlu§, Osman Unsal∗, Mateo Valero∗† and Adrian Cristal∗
∗Barcelona Supercomputing Center †Universitat Politècnica de Catalunya ‡ETH Zurich

§TOBB ETÜ University of Economics & Technology ¶University of Michigan
Email: julian.pavon@bsc.es

Abstract—Genome sequence analysis is fundamental to medical
breakthroughs such as developing vaccines, enabling genome
editing, and facilitating personalized medicine. The exponentially
expanding sequencing datasets and complexity of sequencing
algorithms necessitate performance enhancements. While the per-
formance of software solutions is constrained by their underlying
hardware platforms, the utility of fixed-function accelerators is
restricted to only certain sequencing algorithms.

This paper presents QUETZAL, the first general-purpose vector
acceleration framework designed for high efficiency and broad
applicability across a diverse set of genomics algorithms. While a
commercial CPU’s vector datapath is a promising candidate
to exploit the data-level parallelism in genomics algorithms,
our analysis finds that its performance is often limited due
to long-latency scatter/gather memory instructions. QUETZAL
introduces a hardware-software co-design comprising an ac-
celerator microarchitecture closely integrated with the CPU’s
vector datapath, alongside novel vector instructions to fully
capitalize on the proposed hardware. QUETZAL integrates a set
of scratchpad-style buffers meticulously designed to minimize
latency associated with scatter/gather instructions during the
retrieval of input genome sequences data. QUETZAL supports
both short and long reads, and different types of sequencing data
formats. A combination of hardware and software techniques
enables QUETZAL to reduce the latency of memory instructions,
perform complex computation using a single instruction, and
transform data representations at runtime, resulting in overall
efficiency gain. QUETZAL significantly accelerates a vectorized
CPU baseline on modern genome sequence analysis algorithms
by 5.7×, while incurring a small area overhead of 1.4% post
place-and-route at the 7nm technology node compared to an HPC
ARM CPU.

I. INTRODUCTION

The diminishing cost and improving efficiency of modern
genome sequencing technologies, in conjunction with the eluci-
dation of comprehensive genome sequences for both humans and
various other species, such as microbes, have inaugurated an era
marked by an exponentially expanding array of novel applications
and scientific discoveries. These include, for example, personalized
medicine [1–7], evolutionary genetics [8–10] and forensics [11–
13]. One of the fundamental computational steps in these appli-
cations is genome sequence analysis, where genome sequences
are compared to each other to infer important genetic information.
This information includes 1) the number and locations of genomic
variations in DNA and RNA sequences for identifying disease

causes [14], 2) functional regions that are conserved across evolution
among different protein sequences for designing personalized
therapeutic treatments [15], and 3) similarity approximation between
many sequences for finding highly similar sequences or obtaining
phylogenetic trees [16].

Two primary categories of algorithms typically employed in the
analysis of genome sequences are: 1) Sequence alignment and 2)
edit distance approximation. The sequence alignment problem is
formulated as Approximate String Matching (ASM) [17]. ASM is
often solved using Dynamic Programming (DP) algorithms, such
as Smith-Waterman-Gotoh (SWG) and Needleman-Wunsch (NW).
DP-based algorithms are computationally expensive with quadratic
time and space complexities in sequence length. Edit distance
approximation algorithms, such as SneakySnake (SS) [18] and
Shouji [19], approximate the edit distance (number of edits needed
to convert one sequence into the other [20]) that is always less than
or equal to a user-defined threshold.

Analyzing the ever-increasing volumes of sequencing data [21]
poses significant computational challenges, motivating a large body
of research focusing on optimizing genome sequence analysis
applications. These include 1) software/algorithmic optimizations
and 2) hardware optimizations for both sequence alignment [22–46]
and edit distance approximation [18, 19, 36, 47–54].

The majority of software/algorithm proposals fit into one of
two categories. First, multiple heuristic algorithms have been pro-
posed to improve the quadratic execution time of DP algorithms by
pruning the number of operations required by these algorithms [29,
55–58]. However, these approaches do not ensure an optimal solu-
tion, jeopardizing the results of genome sequence analysis. Second,
a number of works aim to efficiently rearrange the DP computation
while ensuring an optimal solution. Recently among them is a family
of promising novel algorithms, called Wavefront Alignment [32,
34]. The implementation of these improved algorithms brings new
challenges, such as pointer chasing operations, which reduce the
memory-level parallelism in general purpose architectures, thus
requiring better and more sophisticated hardware to fully exploit the
benefits of these algorithms.

In contrast, existing hardware approaches are subject to three
primary limitations. First, some proposals prescribe a limiting
hardware architecture tailored to a singular sequencing algo-
rithm [47, 59]. Second, some proposals target only one genome
data type (i.e., DNA/RNA) [44] that lack generality. Third, some

1

approaches exhibit the constraint of exclusively processing short
input sequences [44, 59]. Given the ongoing emergence of novel
algorithms, such as WFA [32, 33] and BiWFA [34, 35], alongside
the introduction of new sequencing data types, exemplified by HiFi
from PacBio [60, 61] and Duplex from ONT [62], characterized
by longer and more accurate sequences, there exists a need for
software developers and hardware architects to devise adaptable,
flexible, and scalable systems. These systems should facilitate the
flexible integration of new sequence analysis algorithms and data
without necessitating the reconstruction of the accelerator. We pose
the following question: how can we design an architecture that
not only provides improved efficiency and performance for genome
sequence analysis, but is also programmable to accommodate a
broad spectrum of emerging genomics algorithms and data?

The motivation for enhanced performance with programmabil-
ity finds robust validation within the industrial context as well.
NVIDIA’s recent integration of Dynamic Programming X (DPX)
instructions [63] stands out as a noteworthy instance aimed at
bolstering GPU efficiency across various domains such as genomics,
proteomics, and robot path planning. This adoption embodies
a design philosophy where developers can accelerate existing
algorithms and innovate new ones by leveraging DPX instructions,
which are ISA extensions to optimize various application domains,
thereby capitalizing on the same hardware changes across many
domains. Such design philosophy has similarly been used to
accelerate workloads in other application domains on GPUs (e.g.,
tensor programs), using for example tensor cores and tensor memory
access units [64]. This paper follows a similar approach to offer
a high-performance, programmable solution for a wide range of
genome sequence analysis workloads.

Modern ASM algorithms, such as WFA and BiWFA, exhibit
notable levels of Data Level Parallelism (DLP), as large amounts of
data undergo identical operations. The use of vector architectures
in modern CPUs, characterized by Single Instruction Multiple Data
(SIMD) execution [65], is a well-known technique for harnessing
the available DLP in applications. Vector architectures offer a
versatile framework, making them adaptable to a wide range of
ASM algorithms. However, these algorithms pose new challenges
to efficient execution on vector architectures. Specifically, these
algorithms employ memory-indexed instructions, e.g., scatter/gather,
which are costly and entail considerable latency for retrieving and
storing intermediate data [32, 36].

This paper presents QUETZAL, the first universal vector accel-
eration framework for modern ASM algorithms using hardware-
software co-design. The primary design goal of QUETZAL is to
strike a balance between efficiency and versatility. The proposed
design supports both short and long sequences, and different data
encoding schemes to efficiently accommodate various alphabets of
RNA, DNA, and protein data. In particular, QUETZAL combines
a vector accelerator architecture tightly coupled with the general-
purpose CPU’s pipeline, and supports novel vector instructions to
fully unlock the potential of the proposed hardware. QUETZAL
accelerator features a pair of scratchpad-style buffers connected to
the Vector Processing Unit (VPU) in the core’s datapath. QUETZAL
instructions use these buffers to replace the memory-indexed
instructions with direct data requests to the VPU.

We demonstrate the effectiveness of QUETZAL using a full-
system cycle-accurate simulator and different use cases of approxi-
mate string matching in genome sequence analysis (both sequence
alignment and edit distance approximation). Specifically, we use
the state-of-the-art ASM algorithms (WFA, BiWFA, and SS) for
both short and long sequences for evaluation. Our results show that
QUETZAL outperforms baseline vectorized CPU implementations
by 6.1×, and 5.2×, on average, for read alignment, and edit distance
approximation, respectively. We implement QUETZAL in RTL
using a 7nm technology node; the place-and-route results reveal that
our design consumes a small 746µW power and 0.097mm2 area (a
small overhead of 1.4% compared to a Fujitsu A64FX processor).

The key contributions of this paper are as follows:
• A detailed analysis of challenges involved in accelerating

genome sequence analysis algorithms using a CPU vector
datapath.

• Design of a cost-effective vector accelerator architecture tightly
coupled with a commodity CPU’s vector datapath.

• Introduction of vector instructions for unleashing the complete
potential of our vector accelerator design.

• QUETZAL: a programmable vector framework to accelerate
a wide range of genome sequence analysis algorithms that
offers an average speedup of 5.7× compared to a baseline
CPU architecture with a small 1.4% area overhead.

II. BACKGROUND AND MOTIVATION

This section provides an overview of classical and modern
genome sequence analysis algorithms. Subsequently, we analyze
the shortcomings of modern genome sequence analysis algorithms
to fully exploit the performance and energy benefits of vector
architectures.

A. Classical DP sequence alignment algorithms

Sequence alignment is a fundamental method used in genomics to
compare and identify similarities between two biological sequences,
such as DNA, RNA, or protein sequences. The goal is to assess
the similarity between two sequences by introducing the minimum
necessary gaps (insertions and deletions) and mismatches to match
(or align) one sequence with the other. Fig. 1.a shows an example of
the Needleman-Wunsch (NW) table [22] (a classic and extensively
employed DP approach) on the sequence pair <ACAG, AAGT>.

In this example, each entry represents the number of edits
required to align the prefixes of the two strings up to the current
row and column. A new entry (marked in blue in Fig. 1.a) is
computed through simple arithmetic from their west, north-west, and
north neighbors (marked in green and red in Fig. 1.a). Traceback
determines the optimal alignment by re-tracing the origin of the
value in the southeast corner. For example, the origin of the blue-
marked cell is marked in green in Fig. 1.a, and traceback would
record it as an insertion. From there, traceback would determine
the origin of the green-marked cell, and so on, until it reaches the
north-west corner. The Needleman-Wunsch algorithm has been the
cornerstone for many subsequent algorithms and tools [22, 46]. The
Needleman-Wunsch algorithm provides an optimal solution as it
calculates the complete DP table regardless of the sequence length.

2

0 1 2 3 4

1 0 1 2 3

2 1 1 1 2

3 2 2 2 1

4 3 3 3 2 1 2 4 3 1

1 2 3

4

A C A G

A

A

G

T

A C A G

k=-1

k=0

k=1

k=0 k=-1 k=-2k=1k=2

s=0

s=1

s=2

(a) Needleman-Wunsch (b) Wavefront Algorithm (c) SneakySnake

Fig. 1. Examples for the Needleman-Wunsch [22], Wavefront Algorithm [32],
and SneakySnake [18] algorithms for the sequence pair <ACAG,AAGT>.

Banded alignment: Several software proposals aiming to reduce
the O(n2) runtime complexity of classic DP algorithms have
been published [55, 56]. A well-known technique to speed up the
alignment process is referred to in the state-of-the-art as banded
alignment [58, 66]. In traditional DP, the alignment is obtained
after computing the value of all cells in the table. With the heuristic
banded alignment optimisation, only cells on the main diagonal
and close to this diagonal are evaluated. However, if the alignment
between two sequences does not fall within the selected band, the
algorithm will fail to identify the optimal alignment and the solution
will not be optimal.

B. Modern DP sequence alignment algorithms

To reduce the complexity of classic DP-based approaches,
modern algorithms take advantage of similarities between the
input sequences to safely avoid computing large regions of the
DP table. When executing the traceback step, the elements in the
computed region belong to the optimal solution (i.e., the same
result as computing the complete DP table using NW). As a result,
modern algorithms efficiently reduce the O(n2) complexity from
classic ones, while providing the optimal alignment. For example,
Wavefront Alignment (WFA) [32] and Bidirectional Wavefront
Alignment (BiWFA) [34] are two recently proposed DP algorithms
that run in O(n ∗ s) time, where n is the sequence length and s the
error (or score) between the sequences. In contrast, traditional DP
algorithms like SWG and NW have O(n2) execution time. Since,
most of the time, the error is much smaller than the sequence length,
WFA can generate alignments highly efficiently.

Fig. 1.b shows an example of WFA’s computation on the
sequence pair <ACAG, AAGT>. The key idea of WFA is to
compute how far the string pair can be aligned on a given diagonal
k with at most s edits. WFA starts with only the main diagonal
(k=0) and no edits (s=0), and gradually builds the DP table shown
in Fig. 1.b from the top down. Entries are computed from their
north-west, north, and north-east neighbors (marked in green and
red). Similar to NW, traceback determines the optimal alignment
by re-tracing the origin of the value in the south-center cell. For
example, the origin of the blue-marked cell is marked in green, and
traceback would record it as an insertion.

C. Edit distance approximation

Edit distance approximation is a method used to quickly approxi-
mate the similarity between two sequences. In contrast to conven-
tional sequence alignment algorithms, edit distance approximation
does not guarantee an optimal solution. Instead, such methods often
guarantee a lower bound on the edit distance.

SneakySnake (SS) [18] is a recent such edit distance approx-
imation algorithm. Fig. 1.c shows an example of SneakySnake’s
computation on the sequence pair <ACAG, AAGT>. The key
idea of SneakySnake is to (1) build a Boolean table where each
cell indicates a single character match (drawn in color or red) or
mismatch (drawn in black), and then (2) to greedily follow a series of
maximal exact matches (i.e., runs of red and colored cells) between
the two strings. For example, SneakySnake reaches the blue cell
by following a match from the green cell. Matches are laid out
along rows (indexed by k) in SneakySnake’s table, i.e., each row
corresponds to a column in the WFA table (Fig. 1.b), and a diagonal
in the NW table (Fig. 1.a).

D. Rationale for flexible domain specific accelerators

ASIC-based domain specific accelerators (e.g., [36, 38, 67, 68])
achieve better performance and energy efficiency compared to
general-purpose architectures such as CPUs. However, they incur
the high cost of developing custom silicon for a specific application,
often implementing a certain algorithm directly in hardware. On the
other hand, new algorithms for genome sequence analysis and for
new sequencing technologies have recently been developed. There-
fore, fixed-function accelerators cannot keep up with the growing
complexities and demands of modern genome sequence analysis
algorithms. For example, Smith-Waterman (SW), the classic ASM
algorithm, was optimized from its original version [24] to a banded
SW [58], and further to an adaptive banded SW [66]. Alser et al. [46]
systematically surveyed 107 genome sequence analysis tools (such
as minimap2 [69]) and read alignment algorithms since 1988 to
2020. We make three observations from this analysis. (1) New tools,
variations of classic algorithms and new DP-based algorithms are
published every year aiming to improve the performance of genome
sequence analysis [46]. (2) Different sequencing technologies create
a wider set of requirements for genome sequence analysis tools,
such as working with longer sequences (e.g., PacBio HiFi [60]),
dealing with different alphabets (e.g., DNA/RNA and proteins),
configurable scoring functions, among others [46, 47]. (3) Recently,
emerging tools are incorporating multiple algorithms for the read
alignment stage in the genome sequence analysis pipeline, thus
requiring hardware capable of switching between and/or combining
multiple algorithms at run time [46]. This paper focuses on the need
for a flexible and programmable hardware acceleration framework
to accommodate the expanding array of genome analysis algorithms.

E. Flexible state-of-the-art platforms

General-purpose CPUs and GPUs provide a flexible framework
for genome sequence analysis algorithms. There is a large body of
prior work on accelerating genome sequence analysis algorithms
using the SIMD and vector support in CPUs (e.g., [30, 52, 70, 71]).
However, modern genome sequence analysis algorithms feature non-
unit stride memory access patterns which limits the performance
benefits of SIMD and vector architectures (we analyze this in
detail in Section II-G). On the other hand, the massive parallelism
offered by GPUs makes them an attractive hardware platform to
accelerate genome sequence analysis algorithms. Multiple GPU-
based approaches have been published recently (e.g., [38, 72–75])
showing considerable performance benefits compared to CPUs

3

when processing short sequences. However, the performance of
GPUs does not scale well for long sequences. Active working
set (such as the DP table) size increases considerably for long
sequences, exceeding the available on-chip memory. This increasing
memory footprint constraints the number of GPU workers allocated
to process the input sequences [76, 77], thereby reducing the
parallelism offered by GPUs for long sequences. As long-read
sequencing technologies [7] become increasingly affordable, featur-
ing high throughput and high accuracy, coupled with the growing
accessibility of whole-genome datasets, the efficient analysis of long
genome sequences is becoming increasingly important in the realm
of bioinformatics [7, 46, 47, 78, 79]. Consequently, the development
of a versatile system capable of effectively accelerating long-read
sequences is paramount.

In this work, we aim to accelerate modern genome sequence
analysis algorithms using general-purpose CPUs and vector support
in CPUs. This choice has two main reasons: (1) As discussed in Sec-
tion II-G, the performance of vectorized approaches is constrained
by inefficient vector memory instructions and the serialization of
memory instructions at runtime. Therefore, optimizing the execution
of these memory instructions can yield substantial performance
improvements for modern genome sequence analysis algorithms
running on CPUs. (2) As discussed in Section II-E and demon-
strated in our experimental findings outlined in Section VII-D, the
performance advantages of GPU-based approaches are diminished
when processing long sequences due to insufficient on-chip memory
and slow off-chip memory accesses. This provides an opportunity
for CPU-based implementations such as our proposal (QUETZAL)
to outperform GPUs through hardware-software co-design tailored
for long sequences.

F. Vectorizing the modern genome sequence analysis algorithms

Commodity high-performance CPUs include support for vector
hardware composed of a Vector Register File (VRF), where each
vector register is an array of elements, and a Vector Processing Unit
(VPU), which consists of multiple parallel execution units referred
to as lanes [80]. The number of data elements stored in a vector
register and processed by the VPU is referred to as vector length
(vlen), e.g., 16 int32 elements in the Fujitsu A64FX’s VPU [81].

We analyze the performance of vector implementations of
two modern genome sequence analysis algorithms, WFA and SS.
Because there is no vectorized implementation available for both
algorithms, we implemented an in-house vectorized version for the
extend function [82] in WFA, and the diagonals comparison step in
SS [83]. Both operations are the most time consuming part of each
algorithm, taking from 55% to more than 90% of the total respective
execution times. We evaluate both vector approaches in Section VII.

The extend function in WFA (pseudo-code in Fig. 2.a) calculates
the offsets for a specific number of waves. The outer loop traverses
all the waves from low to high boundaries (line 2), and each iteration
of the outer loop is executed in a different vector lane. The inner
loop (lines 8-19) traverses the input sequences and accounts for the
consecutive matching elements. In each iteration, any lane with a
mismatch is deactivated. The inner loop stops iterating when no
active lanes remain (i.e., when a mismatch has been found in every
lane).

 1: vlen = get_vector_length()
 2: for (k=lo; k<=hi; k+=vlen)
 3: k_v = vindex(k, 1) // {k, k+1, .}
 4: mask = pwhileLt(k, hi) // k < hi
 5: off = vload(mask_v, offsets + k)
 6: h_v = off
 7: v_v = vsub(mask, off, k_v)
 8: do
 9: text = gather(mask, text, h_v)
10: patt = gather(mask, pattern, v_v)
11: cmp = vxor(mask, text, patt)
12: val = vreverseBytes(mask, cmp)
12: val = vctlz(mask, val)
13: val = vshiftr(mask, val, 3) // val/8
14: off = vadd(mask, val, off)
15: mask = vcmpEq(mask, cmp, 0)
16: cnt = vpred_cnt(mask, mask)
17: v_v = vadd(mask, v_v, 8)
18: h_v = vadd(mask, h_v, 8)
19: while (cnt > 0)
20: vstore(offsets + k, off)

 1: vlen = get_vector_length()
 2: compare(beg, end, n_v, ne_v)
 3: mask = vMaskAllTrue()
 4: count = vcreate(0)
 5: for (n=beg; n<end; n+=8)
 6: patt = gather(mask, pattern, n_v)
 7: text = gather(mask, text, n_e_v)
 8: cmp = vxor(mask, patt, text)
 9: val = vreverseBytes(mask, cmp)
10: val = vctlz(mask, val)
11: val = vshiftR(mask, val, 3) // val/8
12: count = vadd(mask, count, val)
13: mask = vcmpEq(mask, val, 0)
14: n_v = vadd(mask, n_v, 8)
15: ne_v = vadd(mask, count, 8)
16: return count
17-60: .
61: for (e=1; e<editThreshold; e+=vlen)
62: e_v = vindex(e, 1) // {e, e+1, .}
63: n_v = batch.beg
64: n_e_v = vsub(n_v, e_v)
65: cnt1 = compare(batch.beg,
 batch.end, n_v, n_e_v)
66: n_e_v = vadd(n_v, e_v)
67: cnt2 = compare(batch.beg,
 batch.end, n_v, n_e_v)
68: global += vreduce(cnt1)
69: global += vreduce(cnt2)

a) Vector pseudocode for WFA b) Vector pseudocode for SS

Fig. 2. Vector pseudocode for WFA (a) and SS (b) respectively.

The diagonals comparison step in SS counts the number
of maximum exact matches between two input sequences. The
algorithm traverses the input sequences in batches and processes
as many diagonals as the edit threshold value (line 61). Then, it
calculates the offset for each diagonal (lines 62-64,66) and calculates
the number of exact matches in the lower (line 65) and upper
diagonals (line 67). To calculate the exact matches, the algorithm
traverses both inputs and counts the number of consecutive matches
(lines 2-16), similarly to the WFA algorithm. Finally, it updates
a global counter used for the remaining code to filter the input
sequences.

Fig. 3 depicts the performance benefits of the vectorization of
the WFA and SS algorithms. On average, vectorized approaches
provide 1.3× and 2.5× higher performance for short and long
sequences, respectively (see Section V for our methodology). When
processing short sequences, the outer loop in WFA (line 2) and
SS (line 61) perform fewer iterations, leading to lower benefits
for vectorized code. For long sequences, the number of iterations
increases, providing more data parallelism to be exploited by the
available vector hardware.

G. Challenges in accelerating modern genome sequence analysis

algorithms on vector architectures
Algorithms in Fig. 2 use scatter/gather memory instructions1

to traverse the input sequences. These instructions split a vector
memory request into multiple scalar memory requests. Although
these scalar requests can be pipelined, they take more cycles
to process compared to vector memory instructions that have a
stride. First, each request has to calculate an associated address
independently. Thus, the core requires multiple cycles to send all

1scatter/gather memory instructions are also called the memory-indexed instruc-
tions. This paper uses these two terms interchangeably.

4

Fig. 3. Execution speedup for WFA and SS vectorized algorithms. Results are
normalized to the baseline implementations [18, 32].

the scalar requests to the memory subsystem. Second, the load-
store queue does not perform any memory coalescing for memory-
indexed instructions. This increases the overall latency of the
scatter/gather instructions. For example, in Intel and Fujitsu A64FX
processors, scatter/gather instruction latency is at least 22 and 19
cycles, respectively, even when all the requested data is already in the
L1D cache [81, 84, 85]. To better understand this bottleneck, Fig. 4
depicts the breakdown of the execution time for three vectorized
ASM benchmarks, our in-house vectorized WFA, BiWFA and
SS, running on an HPC ARM machine [81] with two levels of cache,
using the methodology outlined in Section V. The figure shows how
cache accesses represent a large fraction (32% to 65%) of the overall
execution time in all algorithms. This bottleneck is exacerbated with
the longer sequences for two reasons. First, the active working set
in these algorithms expands with larger sequence size, surpassing
the capacity of the on-device memory. Second, as scatter/gather
instructions split one vector memory request into multiple scalar
memory requests, they occupy processor pipeline structures such as
load/store queues, reservation station, and caches, which slows down
the execution of other (memory) operations. Therefore, designing
hardware that can efficiently execute scatter/gather instructions can
considerably improve the performance of genome sequence analysis
algorithms.

WFA BiWFA SS WFA BiWFA SS
Short Sequences Long Sequences

0%

25%

50%

75%

100%

N
or

m
. E

xe
c.

 T
im

e

No-stall
Frontend-stall

RS-stall
Cache-stall

Other-stalls

Fig. 4. Execution breakdown of vectorized WFA, BiWFA and SS algorithms
for short and long input sequences, broken down into: no-stall and stalls due to
frontend, Reservation Station (RS), cache and others.

III. QUETZAL: OVERVIEW

QUETZAL is a vector acceleration framework consisting of
two main components: a vector accelerator tightly coupled to the
VPU datapath and a set of novel vector instructions that expose
the functionality of the accelerator to the programming model.
QUETZAL design is driven by three main goals: (1) accelerate
memory-indexed instructions in modern ASM algorithms, (2) pro-
vide a flexible framework applicable to multiple algorithms, and
(3) achieve a light-weight hardware implementation that takes
advantage of the hardware already available in VPUs such as x86
AVX512 [85] and ARM SVE [81, 86]. First, we analyze how

the QUETZAL hardware and ISA extensions accelerate memory-
indexed instructions (Section III-A), enabling the first goal. Then, we
show how to integrate QUETZAL into WFA and SS, enabling
the second goal (Section III-C). Finally, we describe QUETZAL’s
microarchitecture, which implements the QUETZAL ISA, achiev-
ing a lightweight hardware implementation, enabling the third goal
(Section IV).
QUETZAL accelerator is composed of four main components,

as shown in Fig. 5: (1) Two hardware buffers directly connected
to the VPU (Each buffer is refered as QBUFFER, Section IV-B)
to quickly forward data to the vector ALU without using the
cache hierarchy (e.g., the input sequences in WFA and SS). (2)
data encoder (Section IV-A) that applies a static bit-encoding
to reduce the size of the DNA/RNA input sequences stored in
the QBUFFERs. (3) access ctrl (Section IV-C) logic that
processes all the data accesses from the VPU to the QBUFFERs
and works as the interface between the QBUFFERs and the core’s
VPU components, and (4) count ALUs (Section IV-D) that count
the number of consecutive elements between two input values.

O
p

e
ra

n
d

B
y
p

a
s
s

data encoder

access ctrl

Masking &
operands cntrl

VRF

VPU

A
L

U
A

L
U

A
L

U
A

L
U

countcountcountcount ALU

QBUFFERs

Issue
queue

Fig. 5. Overview of QUETZAL hardware (purple) integrated into the VPU
datapath (dark blue).

A. Accelerating memory-indexed instructions

As mentioned in Section II-G, memory-indexed instructions are
split into multiple scalar memory requests and their execution is
at best pipelined. This increases their overall latency. Processing
all these memory requests concurrently would require substantial
changes to the core microarchitecture and cache hierarchy. For
example, the number of Address Generation Units (AGUs) in
the core and the number of ports in the cache hierarchy must be
increased to match the vector length to supply enough bandwidth to
the Vector ALU. However, these modifications would considerably
increase the total SoC hardware area and energy consumption.

To avoid the area and power overheads of modifying the
entire cache hierarchy, QUETZAL incorporates two QBUFFERs
specifically designed to deliver sufficient bandwidth to the VPU for
rapid execution of indexed memory instructions. These QBUFFERs
store frequently used genome sequence analysis data, in particular
those that are accessed through indexed memory instructions. Then,
the algorithm utilizes QUETZAL instructions to access the values
previously stored in the QBUFFERs. QUETZAL does not aim to
eliminate scatter/gather support from the cache hierarchy; instead,
it aims to work cooperatively with it. QUETZAL efficiently fa-
cilitates the execution of memory-indexed operations on a fixed
number of hot values within the active working set. Meanwhile,

5

the cache hierarchy is used for unit-stride memory operations and
to scatter/gather less frequently accessed values from larger data
structures, which are larger than the QBUFFERs. As shown in
Section VI, QUETZAL takes advantage of the sequence size from
established and emerging sequencing technologies [61, 87] to set
the size of these QBUFFERs to 16 KB.
QBUFFERs feature three key characteristics that enable them

to provide more efficient support for memory-indexed operations.
(1) They are direct-mapped. As such, instead of using a memory
address, QUETZAL uses an index to access the QBUFFERs, thus
requiring simpler control logic compared to caches. (2) QBUFFERs
are highly multiported structures, allowing the Vector ALU to access
data in just two cycles (Section IV-B), a significant improvement
over the 22 or 19 cycles required in Intel and A64FX cores [81,
85], respectively. (3) QBUFFERs support bit-encoded values, i.e.,
accessing data at sub-byte granularity. For example, genomic
sequences use an alphabet of four characters, thus a two-bit encoding
is sufficient and much more efficient than a conventional byte-
sized encoding (see Section IV-A). The QBUFFERs enable efficient
accesses to such unaligned data.

While QUETZAL is primarily designed for accelerating genome
sequence analysis algorithms, the proposed microarchitectural
enhancements enable QUETZAL to also accelerate applications in
other domains (see Sections III-D and III-E).
QUETZAL Instructions. We introduce the instructions used to
work with the aforementioned QBUFFERs.
qzencode(int SEL, vreg VAL, reg Idx): This in-

struction encodes the input sequences in the input vector VAL and
stores the encoded values in the QBUFFERs. It applies a static bit-
encoding to reduce DNA/RNA inputs from an 8-bit representation
to a 2-bit representation. SEL and Idx specify the QBUFFER and
position where the encoded data will be stored, respectively.
qzstore(vreg VAL, vreg IDX, int SEL): This in-

struction stores the values from the input vector VAL to the
QBUFFERs. SEL works the same way as in qzencode. Each
value in IDX is an index to store its corresponding element from
VAL in the QBUFFER.
qzload(vreg IDX, int SEL): This instruction reads

data from the QBUFFERs and outputs a vector register with the
read values. SEL specifies the read QBUFFER. Each value in IDX
is an index to read the QBUFFER from QUETZAL.
qzconf(reg Eb0, reg Eb1, reg Esize): It is used

to configure the size of the data stored in QUETZAL. Registers Eb0
and Eb1 indicate the number of elements stored in each QBUFFER.
Esize indicates the element size (0: 2-bit (encoded), 1: 8-bit (chars)
and 2: 64-bit elements).
qzmhm<OPN>(vreg IDX0, vreg IDX1): This instruc-

tion reads data stored in the QBUFFERs and computes the operation
specified by the opcode OPN to the read values (e.g., addition,
comparison, etc.). Each element in IDX0 and IDX1 is used to read
a different position in each of the QBUFFERs respectively. The
values read from the QBUFFERs are then processed by OPN and
the results are packed in a vector register as output.
qzmm<OPN>(vreg VAL, vreg IDX, int SEL): This

instruction works similar to qzmhm, however it processes both data
from the QBUFFERs and the VRF (VAL). Each element in IDX is

an index to read a different position in the QBUFFER specified
by SEL. The read values are forwarded to OPN together with the
corresponding element in VAL. Finally, this instruction outputs a
vector register with all the results.

B. Accelerating counting consecutive matching elements

Counting consecutive matching elements is useful for different
applications that calculate maximal exact matches (MEMs) [88] and
maximal unique matches (MUMs) [89] including SneakySnake [18],
protein multiple sequence alignment [90], read mapping [88],
and sequence alignment [91]. QUETZAL features a specialized
processing unit capable of efficiently counting the number of
consecutive matches between two input sequences. We employ this
functional unit together with QBUFFERs to significantly reduce
the instruction overhead of modern algorithms when counting
consecutive matching elements. The qzcount instruction is used
to take advantage of this specialized unit.
qzcount(vreg VAL0, vreg VAL1): Both input vectors

are split into 64-bit segments; each segment from VAL0 is processed
together with its corresponding segment from VAL1. Then, the
instruction counts the consecutive matching elements in each 64-bit
segment and outputs a vector register with the individual results.

This instruction can be executed standalone or with the qzmhm
instruction to access the QBUFFERs and count consecutive matches
in values previously stored in QBUFFERs.

C. QUETZAL ISA use cases: WFA and SS

Fig. 6 depicts QUETZAL-based implementations for the WFA
(a) and SS (b) algorithms. For both algorithms, we first store the
input sequences in the QBUFFERs (line 3) and use the qzcnf
instruction to configure the number of elements and element size
(line 4). When using QUETZAL, both algorithms execute using the
the qzmhm<qzcount> instructions —line 11 and 8 respectively.
First, qzmhm reads the input sequences stored in the QBUFFERs
and executes the qzcount functionality to count the number of
consecutive matching elements from the read values. By using both
instructions (1) memory-indexed instructions are accelerated directly
in QUETZAL and (2) the number of instructions in the inner loop
of WFA and compare function in SS are significantly reduced.
As shown in our evaluation in Section VII-A1, QUETZAL signifi-
cantly outperforms vectorized WFA and SS implementations.

D. QUETZAL on classical DP algorithms

Fig. 7.a depicts the execution flow to process one anti-diagonal in
classical DP-based algorithms using commercial vector architectures
(1 , 2) and QUETZAL hardware (3 , 4). A new anti-diagonal is
calculated using the immediate two previous anti-diagonals 1 . The
computed diagonal and one vector register from the previous step
can be reused to compute the next diagonal 2 ; however, new values
must be loaded from memory. These new values are composed
of elements in the diagonal computed in the previous step and a
pre-computed value. In 3 and 4 we use QUETZAL to reduce the
store-load forwarding from steps 1 and 2 by placing one of the
input sequences and the pre-computed values in the QBUFFERs.
Then, the algorithm reads these values directly from QBUFFERs
using qzload without using the cache hierarchy.

6

 1: vlen = get_vector_length()
 2: // The followinf function uses qzstore
 3: store_sequences_in_quetzal()
 4: qzconf(pattern.size, text.size,
 size:2-bit)
 5: for (k=lo; k<=hi; k+=vlen)
 6: k_v = vindex(k, 1) // {k, k+1, .}
 7: mask = pwhileLt(k, hi) // k < hi
 8: off = vload(mask_v, offsets + k)
 9: h_v = off
10: v_v = vsub(mask, off, k_v)
11: do
12: val=qzmhm<qzcount>(h_v, v_v)
13: off = vadd(mask, val, off)
14: mask = vcmpNEq(mask, val, 0)
15: cnt = vpred_cnt(mask, mask)
16: v_v = vadd(mask, v_v, 8)
17: h_v = vadd(mask, h_v, 8)
18: while (cnt > 0)
19: vstore(offsets + k, off)

 1: vlen = get_vector_length()
 2: // The followinf function uses qzstore
 3: store_sequences_in_quetzal()
 4: qzconf(pattern.size, text.size,
 size:2-bit)
 5: compare(beg, end, n_v, ne_v)
 6: mask = vMaskAllTrue()
 7: count = vcreate(0)
 8: for (n=beg; n<end; n+=8)
 9: val=qzmhm<qzcount>(n_v,ne_v)
10: count = vadd(mask, count, val)
11: mask = vcmpEq(mask, val, 0)
12: n_v = vadd(mask, n_v, 8)
13: ne_v = vadd(mask, count, 8)
14: return count
15-58: . // Same than SS lines 17-69

a) QUETZAL pseudocode for WFA b) QUETZAL pseudocode for SS

 8: val=qzmhm<qzcount>(n_v,ne_v)

11: val=qzmhm<qzcount>(h_v, v_v)

 2: // The following function uses qzstore
 3: store_sequences_in_quetzal()
 4: qzconf(pattern.size, text.size,

 size:2-bit)

 2: // The following function uses qzstore
 3: store_sequences_in_quetzal()
 4: qzconf(pattern.size, text.size,

 size:2-bit)

Fig. 6. QUETZAL-based pseudocode for WFA and SS algorithms. QUETZAL
instructions are highlighted using red background color.

Pre-computed value

Vector register Value in QBUFFER

VR3 first valueVR1 first value

VR2 first valueCells process in parellel

Data dependency

0 1 2
1

4
1 0

3
2 3

2 1 1 1
2

4 3

3 2

A C GA

A
A

T
G

5

G1
6 7 VR1: 2 1 2 4

VR2: 3 2 1 3

VR3: 2 1 3 5

RES: 3 4

0 1 2
1

4
1 0

3
2 3

2 1 1 1 2
2

4 3

23 2
3

A C GA

A
A

T
G

5
4

G2
7

0 1 2
1

4
1 0

3
2 3

2 1 1 1

2
4 3
3 2

A C GA

A

A

T
G

5

G3
6 7 VR1: 2 1 2 4

VR2: 3 2 1 3

VR3: 2 1 2 4

RES: 3 4

0 1 2
1

4
1 0

3
2 3

2 1 1 1 2

2
4 3

23 2
3

A C GA

A

A

T
G

5
4

G4
6 7

VR2: 3 2 2 4

VR3: 2 2 4 6

RES:

store

Memory op.

6

A CA A CA

load

QUETZAL op.

2 2

A CA A CA

store

2 2

Read from
QUETZAL

VR1: 2 1 3 5

VR1: 2 1 3 5

VR2: 3 2 2 4

VR3: 2 2 4 6

RES:

Fig. 7. Execution flow for a vectorized classic DP-based algorithm using regular
vector instructions (1),(2) and QUETZAL instructions (3),(4).

E. QUETZAL applied to other application domains

QUETZAL has been designed to accelerate memory-indexed
instructions with modern genome sequence analysis applications in
mind. Nevertheless, these instructions also form bottlenecks in other
application domains, where QUETZAL can be directly applied
to improve their performance. We use the histogram calculation
algorithm [92] as a representative kernel. This algorithm is a key
component of database query planning [93, 94] and is heavily used
in image processing [95, 96]. Histogram calculation is dominated
by pointer chasing operations executed using memory-indexed
instructions. Fig. 8 depicts the QUETZAL-based implementation
of histogram calculation. The algorithm directly reads and updates
the histogram table in the QBUFFERs, thereby reducing the latency
due to memory-indexed instructions. We analyze the performance
of this algorithm in Section VII-F.

IV. QUETZAL MICROARCHITECTURE

This section details the design, implementation, and integration
of QUETZAL’s hardware components.

A. Data encoder

QUETZAL uses two data encoding schemes, 2-bit and 8-bit
encoding, to encode each of the bases of the input sequences. If
the two input genomic sequences are RNAs or DNAs, then they
can be encoded using a 2-bit unique binary representation since

 1: vlen = get_vector_length()
 2: // Set the histogram size and element size
 3: qzconf(histogram.size, 0, size:64-bit)
 4: for (i=0; i<input.size; i+=vlen)
 5: input_v = vload(&input[i])
 6: hist_v = qzload(input_v, Buffer0)
 7: hist_v = vadd(hist_v, 1)
 8: hist_v = reduce_conflicts(hist_v)
 9: qzstore(hist_v, input_v Buffer0)

 2: // Set the histogram size and element size
 3: qzconf(histogram.size, 0, size:64-bit)

 6: hist_v = qzload(input_v, Buffer0)

 9: qzstore(hist_v, input_v Buffer0)

Fig. 8. QUETZAL-based histogram algorithm. QUETZAL instructions are
highlighted using red background color.

both RNA and DNA alphabets have 4 characters (A, C, G, and
T for DNA, and A, C, G, and U for RNA). If the two genomic
sequences are proteins (or the ambiguous nucleotide, N, which may
need to be represented in DNA or RNA), then each base can be
encoded into an 8-bit unique binary representation as the protein
alphabet has 20 characters. With this, QUETZAL can efficiently
handle different types of sequencing data and reduces the size of the
QBUFFERs required to store long sequences, such as reads from
long-read sequencing technologies (e.g., 10K - 30K base pairs for
PacBio [61]). For the DNA/RNA genomic sequences, the data
encoder receives a vector of characters from the VRF and it
extracts the bits 1 and 2 from each character to generate the 2-bit
representation. The extracted bits are packed together in a single
vector and forwarded to one of the QBUFFERs. Fig. 9 shows the
encoding table (a) and an example encoding for a 512-bit vector (b).

Char Binary Enc
A xxxx 0001 00
C xxxx 0011 01
G xxxx 0111 11

T/U xxxx 010x 10

a) Encoding table

c) QBUFFER

A G T T C A A A

001110100100 0000

Input vector 512 bits

output 128 bits

b) Data encoding example

Write Logic

. . .

S
R
A
M
0

S
R
A
M
1

S
R
A
M
7

Read Logic

Fig. 9. QUETZAL bit-encoding logic and QBuffer architecture.

B. QBUFFER

QBUFFERs are used to reduce the access latency of memory-
indexed instructions for algorithms such as WFA and SS. In
contrast to other structures in the CPU such as the VRF and caches,
the QBUFFER (1) is implemented as a multi-ported structure to
provide high bandwidth to the VPU while minimizing its area using
multiple low-cost single-port modules, (2) supports bit-encoded data
and unaligned data accesses, and (3) works at word granularity.
QBUFFER is composed of three hardware blocks: SRAM blocks,
write logic, and read logic (Fig. 9.c).

1) SRAM Blocks (SRAMs): These SRAMs store the values
used by the VPU. Each SRAM has a 64-bit word length, which
matches the bit-width of each VPU lane. To provide enough
bandwidth to the qzencode and qzstore instructions when
storing consecutive elements, we implement the QBUFFER using
a multibanked approach, placing one bank for each of the eight

7

64-bit VPU lanes. Together, these form a 512-bit vector. The indices
to map the SRAMs are interleaved (similar to the VRF). To reduce
the latency of multiple concurrent read access to the QBUFFER,
we design it as a multi-ported structure. To reduce the area overhead
of true multi-ported buffers, we implemented the QBUFFER using
data replication [97]. A read port consists of eight SRAMs connected
to a single read logic module. A new port can be added by placing a
new set of SRAMs and read logic instances in the QBUFFER. To
store data in the QBUFFER, the write logic module determines the
SRAM column to store the data and writes the value to each SRAM
instance, i.e., one copy per read port.

2) Write logic: The write logic stores data into the QBUFFER
in two modes: encoded- and direct-mode. In encoded-mode, it
receives a 128-bit vector from the data encoder and an index.
It splits the input vector into two 64-bit segments (segA and segB)
and stores them in two consecutive SRAM columns in the position
specified by the index. A writes in encoded-mode is executed in a
single cycle. In direct-mode, this module receives two input vectors
from the VRF: a vector of indices IDX and a vector of values VAL.
First, it splits IDX and VAL into 64-bit segments. Then, for every
pair of segments, it uses the element of IDX to select the column and
position in the SRAMs to store the corresponding element from VAL.
The latency of a write in direct-mode are depends on the number of
concurrent accesses to the same SRAM column. For example, if all
the requests go to the same bank, the direct-mode write latency will
be eight cycles.

3) Read logic: The read logic is used to access the data stored
in the SRAMs. QUETZAL supports three different element sizes:
2- and 8-bit encoded data, and 64-bit data. Thus, data access to the
QBUFFER might be unaligned with respect to the SRAM word
size. To enable unaligned read operations to QUETZAL, we read
one word from two consecutive SRAMs and create a single output.
Fig. 10 depicts the functionality of the read logic module. The
module receives two inputs, an index and the element size. The
index and the element size are used by the access logic to read the
SRAMs, and the element size is used by the slicing logic to generate
the appropriate output. First, the access logic splits the input index
into set, bank, and offset values based on the element size 1 . Then, it
reads the content from two consecutive SRAMs using the bank and
set values (words W1 and W2) 2 . Next, the slicing logic uses the
offset value slice the values of W1 and W2 3 . Finally, the module
selects the order to pack the sliced values 4 and generates a single
64-bit output 5 . If the element size if 64 bits, steps 3 - 5 only
select the corresponding value from one of the two SRAMs.

Read logic

Index
(124)

QUETZAL buffer
Read1 (Bank, Set)

Select
1

2

3

4

5Access logic

Slicing
logic

Element
Size

(8 bits) W1

...

...

W2

...

...

 00001 110 010
Set Bank Offset

Read2 (Bank+1, Set)

Index (bin)

Slice (Offset)

Fig. 10. Functionality of the read logic module.

C. Access Control
The access ctrl module works as the interface between

the VPU micro-architectural components and QBUFFERs. It ex-
ecutes the read/write operations in the QBUFFERs and forwards
the read data to the VPU’s ALU. It has three registers that are
configured with the qzconf instruction. Two registers of them
hold the sizes of the input sequences in the QBUFFERs, and the
last register specifies the element size of data stored in QUETZAL.
This module features two main operations: (1) It controls all the
read accesses to QBUFFERs. The module receives one or two
vectors of indices (depending on the instruction) and forwards
them to QBUFFERs together with the element size. After receiving
the response (i.e., data) from QBUFFERs, it forwards the data to
the ALUs. (2) It controls the write operation for the qzstore
instructions. It receives a vector of indices and a vector of values,
using the indices to store the values in the QBUFFERs.

1) Connection with the QBUFFERs: As mentioned in Sec-
tion IV-B, QBUFFERs are implemented as a single write- and
multiple read-port structures, where the number of read ports is
an implementation decision. The access ctrl module can
fetch eight concurrent read requests from each QBUFFER, i.e.,
eight 64-bit elements for a 512-bit vector. Thus, the number of
cycles required to process all the requests is directly related to the
number of ports in QBUFFERs. When the number of requests to
a QBUFFER surpasses the number of read ports, some requests
are stalled, and the QBUFFER processes them in a round-robin
manner. The total latency to process all the read requests requires
8/(num ports) + 1 cycles (the additional cycle is needed for
slicing). Section VI analyzes the performance impact of different
numbers of ports and read latencies for QBUFFERs.

D. Count ALU
The count ALU module implements the hardware pipeline

for the qzcount instruction functionality (Fig. 11). It processes
two 64-bit elements. QUETZAL includes as many instances of
this module as the number of 64-bit lanes in the VPU. When
executing the qzcount instruction, count ALU receives two
input values and their element size (e.g., 2-bit). First, it applies
a bitwise xnor operation to detect matching bits 1 . Then, it
implements the logic to count the number of trailing ones from
the previous operation 2 . The result of this operation determines
the number of consecutive matching bits between the two inputs. In
the next stage, the number of trailing ones is right shifted depending
on the element size value 3 , to obtain the number of matching
elements. For example, for 2-, 8- and 64-bit elements, the number
of trailing ones is shifted by one, three, and six, respectively.

>>

1
log2(Element

size)

3

2

Trailing ones

In
p
u
ts

X
N
O
R

Output

Fig. 11. Hardware implementation of the qzcount instruction.

8

E. Integration with Out-of-Order (OoO) processors

We discuss how to integrate QUETZAL to a commercial OoO
processor pipeline.

Qzstore and qzload execute at commit: In our design,
QBUFFERs work as direct-mapped structures where the vector
ALU directly stores and loads data to/from them. When reading and
updating values in the QBUFFERs, there is a risk of overwriting
useful data or reading erroneous values in these structures due to
speculative execution. To avoid this, we execute the aforementioned
instructions as non-speculative operations. Thus, these two instruc-
tions wait in the issue queues until they are the oldest instructions
in the queue. Then, a ready to execute signal is sent to the issue
logic. For other instructions, algorithms use them only to access data
previously stored in the QBUFFERs and are executed speculatively.

Processor exceptions: When an exception occurs (e.g., a TLB
refill exception), the processor will jumps to an Operating System
(OS) subroutine that specifically manages the exception. As the
qzstore instruction executes at commit, there is no risk of
affecting the values in QBUFFERs, and the state of QUETZAL
is preserved when the processor resumes execution after resolving
the exception.

Architectural state and context switches: QBUFFERs are
architectural state, and must be saved across context switches. As
is done for vector ALU and FPU state, OS need not save and
restore their state on every system call or interrupt, only when the
process is descheduled. As context switches occur infrequently,
saving QBUFFERs state represents a negligible fraction of the time
spent in OS code.

V. EXPERIMENTAL METHODOLOGY

A. Simulation Framework

We use the gem5 simulator [98, 99] to evaluate the functionality
and performance of QUETZAL. We simulate an ARM 64-bit
(aarch64) full-system running an Ubuntu 20.04 with a 4.18.0+ Linux
Kernel. We model and validate gem5 against a Fujitsu A64FX-
like [81, 100] architecture, which is the processor for the Fugaku,
the #2 supercomputer in the Top500 list [101, 102] as of June 2023.
Table I summarizes the main simulation parameters. Each simulated
core includes a QUETZAL module interconnected to its VPU. We
extend the Out-of-Order model of gem5 with the structures detailed
in Section IV QUETZAL. We extend the ARM SVE ISA with
QUETZAL instructions from Section IV for the software support.
As described in Section IV-C1, the latency of accessing data stored
in QUETZAL depends on the number of ports in QBUFFER. We
model this behavior in detail in gem5 to ensure the accuracy of the
performance results.

B. Benchmarks

Use case 1: Modern read aligners. For this use case, we
evaluate the efficiency of QUETZAL over the WFA and BiWFA
algorithms. We use the best-performing configurations reported by
Marco-Sola et al. [35, 82].

Use case 2: Edit distance approximation. We use the
state-of-the-art edit distance approximation technique SneakyS-
nake (SS) [18]. SS filters the input reads to skip the alignment of
those inputs that exceed a defined edit distance threshold parameter.

TABLE I
SIMULATED SYSTEM SETUP.

CPU: 2.0 GHz, 16-core A64FX-like [81, 100] superscalar OoO
Vector ISA: ARM SVE ISA - 512-bit Vector Length
Baseline VPU: Instructions latency from the A64FX Manual

L1-I: 64KB, 8-way assoc., load-to-use = 2 cycles, Stride prefetcher

L1-D: 64KB, 8-way assoc., load-to-use = 4 cycles, Stride prefetcher

L2 Cache: 8MB, shared, 16-way assoc., load-to-use = 37, Stride prefetcher

DRAM: 4-channel HBM2

QUETZAL Configurations
QZ 1P Single-port —QBUFFERs: 8KB each —read latency = 9 cycles
QZ 2P Dual-port —QBUFFERs: 8KB each —read latency = 5 cycles
QZ 4P Quad-port —QBUFFERs: 8KB each —read latency = 3 cycles
QZ 8P Octa-port —QBUFFERs: 8KB each —read latency = 2 cycles

Use case 3: Classical read aligners. We evaluate the applicability
and performance benefits of QUETZAL over two classical read
alignment algorithms SW (ksw2 [30]) and NW (parasail [70]).

Use case 4: Protein alignment. We evaluate the effectiveness
of QUETZAL on datasets with a different and larger alphabet than
A, C, G, and T. Protein alignment is required in various proteomics
applications, such as in the extension step of protein database
searches [103, 104]. We use all the algorithms from use cases 1
and 2 to process protein sequences.

Use case 5: Edit distance approximation+alignment. In the
genome sequence analysis pipeline, there are multiple algorithms
interconnected, such as filtering and sequence alignment. We demon-
strate the flexibility and efficiency of QUETZAL to accelerate
multiple stages from the genome sequence analysis pipeline. To this
end, we use the SS and WFA algorithms and develop a single
implementation combining them. SS filters the input pairs and
WFA executes the read alignment on the accepted sequences.

For comparison to baseline techniques, we use the auto-
vectorization support from the compiler. For WFA, BiWFA and
SS algorithms, we implement an in-house vectorized version using
ARM SVE ISA intrinsics. For ksw2 and parasail, we use their open-
source vectorized implementations [105, 106] and adapt them to
the SVE ISA. We develop a QUETZAL-based implementation for
each algorithm evaluated using intrinsics to insert the proposed
instructions in the code. We validate the correctness for each
QUETZAL implementation by bit-wise comparing their outputs
with their corresponding baseline version. For QUETZAL, the
execution time reported includes the time the algorithm takes to
store the input sequences into the QBUFFERs. We consider the
traceback stage execution time in all our experiments.

C. Datasets

For DNA/RNA inputs, the evaluate datasets ranging from 100
base pairs (bp) to 30K base pairs. We use two real datasets (100bp 1,
250bp 1) and two simulated datasets (10Kbp and 30Kbp). Table II
summarizes the main characteristics of the evaluated datasets. For
the 100bp 1, 250bp 1 and 10Kbp, we use the datasets available
in the SneakySnake repository [83]. We generate the 30Kbp
dataset following the same methodology as SneakySnake [18]. The
100bp 1 and 250bp 1 datasets are representative of the newest short-
read technologies available in the market, ranging from the Ilumina

9

iSeq100 which generates 100bp to the Illumina Next Generation
Sequencing (NGS) that generates 300bp [87, 107, 108]. The 10Kbp
and 30Kbp datasets are representative of long-read technologies
such as PacBio that released a new HiFi technology that generates
long-read in the range of 10K - 30K base pairs [60, 61, 87]. These
sequencing technologies generate Gigabytes of sequences. However,
we were compelled to constrain the number of input reads in the
datasets to get each experiment simulated in a reasonable time,
e.g., days/weeks instead of months. Nevertheless, all the evaluated
datasets exceed the LLC capacity significantly. This allows us to
represent behaviors indicative of non-cache resident workloads.

For protein alignment, we evaluate the entire BAliBase4 dataset
from [109]. For each multiple sequence alignment group in the
dataset, we run the pairwise alignment of all possible pairs within
the group. For example, for a multiple sequence alignment of 5
sequences, we run 4+3+2+1=10 pairwise sequence alignments.

TABLE II
INPUT DATASET CHARACTERISTICS.

Dataset Read Length No. of Pairs (K) Dataset Size

100bp 1 100 500 95MB
250bp 1 250 500 298MB
10Kbp 10,000 20 381MB
30Kbp 30,000 7 400MB

D. Comparison between QUETZAL and GPU approaches

We compare the performance of the QUETZAL-based implemen-
tations of WFA and ksw2 against WFA-GPU [76] and Gasal2 [75]
respectively, two GPU approaches using the same algorithms. In
these experiments we use a 16-core CPU featuring QUETZAL and
an NVIDIA A40 GPU. We use the open-source implementation
available for each GPU approach [110, 111].

VI. DESIGN SPACE EXPLORATION

In this section, we right-size the QUETZAL hardware imple-
mentation through a design space exploration. In QUETZAL,
QBUFFERs are the critical components with two key parameters
(size and number of ports) that directly affect the performance, area,
and power consumption of QUETZAL. To size the QBUFFERs,
we consider the applicability of QUETZAL on both short- and
long-read sequencing technologies. For short reads, we consider
the Illumina sequencing technology (100 bp), and for long reads,
the HiFi PacBio technology (10K - 30 Kbp). Based on these
sequencing technologies, we size the QBUFFERs to 8KB each
for the pattern and text buffers (16KB in total). With the data
encoder module in QUETZAL, each QBUFFER could store
up to 32.7Kbp sequences that cover both technology use cases
(Illumina and HiFi PacBio).
QUETZAL supports direct hardware acceleration of sequences

that are up to 30K base pairs through the QBUFFERs. Some
of the modern sequencing frameworks support sequences that
are extremely long, an example is Oxford Nanopore which can
support up to 2M base pairs [112]. QUETZAL can support such
frameworks through software support. For example, it can utilize
read mappers such as minimap2 [31], which can generate shorter

TABLE III
AREA AND POWER COMPARISON BETWEEN DIFFERENT QUETZAL

CONFIGURATIONS (7NM TECHNOLOGY).

(A) (B) (C) (D) (E)

Config. Area Leakage A64FX A64FX
Power Core SoC

QZ 1P 0.013mm2 98uW +0.46% +0.21%
QZ 2P 0.026mm2 189uW +0.88% +0.37%
QZ 4P 0.048mm2 370uW +1.75% +0.69%
QZ 8P 0.097mm2 746uW +3.37% +1.41%

Fig. 12. Relative performance of QUETZAL configurations with different
numbers of ports. Results are normalized to the QZ 1P configuration.

subsequences from larger sequences where subsequence length is
the same as QBUFFER size, mitigating overheads that might stem
from performing sequence alignment on the complete, extremely
long sequence. Additionally, windowed [36, 42, 48] and tiling [113,
114] software approaches could also be utilized. These divide the
input sequence into shorter subsequences, and thus, for independent
processing.

Number of ports vs performance, area and power consump-
tion: We compare the impact on performance, area and power
consumption of different numbers of QBUFFER read ports. To this
end, we evaluate the QUETZAL configurations from Table I. The
different QUETZAL versions have been physically implemented
using Synopsys’ ICC2 Place and Route tool [115]. Table III
shows the area and power consumption. Columns D and E in
Table III show the percentage of area overhead that each QUETZAL
configuration adds to a Fujitsu A64FX core and System on Chip
(SoC) respectively, considering a QUETZAL instance integrated
into each core of the SoC. We quantify these overheads using the
same methodology proposed by Arima et al. [116].

Fig. 12 depicts the performance results for all the QUETZAL
configurations evaluated. Increasing the number of ports directly
impacts the performance benefits observed in modern algorithms
because the latency required to read data in the QBUFFERs is
reduced. However, as we use data replication to implement read
ports in QBUFFER, area and power significantly increase when
a new read port is added. Nevertheless, we implement each bank
using a single-ported SRAM to reduce their impact on area. Because
of this, even the larger QUETZAL configuration (QZ 8P) features
a relatively modest area overhead of 1.41% compared to the Fujitsu
A64FX SoC, while providing significant performance improvement.
Based on this analysis, we set the QUETZAL configuration to
QZ 8P and use it for the rest of our experiments.

VII. EVALUATION

We analyze the performance of QUETZAL for the use cases
listed in Section V-B. We evaluate two different QUETZAL
approaches, one that only uses the QBUFFERs (referred to as

10

QUETZAL) and another one that also includes the functionality of
the count hardware and qzcount instruction (referred to as
QUETZAL+C). Implementations using only SVE intrinsics are
referred to as VEC. Performance results are normalized to the
baseline version (compiler auto-vectorization) of each algorithm.

A. Single-core Performance Analysis

Fig. 13.a depicts the single-core performance results for all the
evaluated algorithms.

1) Modern DP algorithms: For short reads, QUETZAL and
QUETZAL+C provide 1.5× and 2.1× higher performance re-
spectively compared to the VEC algorithm; and 5.1× and 5.5×
respectively for long reads. Overall, these performance improve-
ments result from (1) QBUFFERs accelerating memory-indexed
instructions by reducing the read access latency to only 2 cycles
and (2) the count hardware accelerating the process of counting
consecutive matching elements with a single instruction.

When processing short reads, modern algorithms are dominated
by both reservation station stalls and cache accesses (as shown in
Section II-G). As such, QUETZAL+C provides significantly better
performance by reducing the number of instructions executed. On
the other hand, when processing long reads, these algorithms are
dominated by cache accesses. As such, QUETZAL provides signif-
icant performance benefits even when using only the QBUFFERs.

2) Edit distance approximation: On average, a system with
QUETZAL+C shows 2.1× and 5.2× better performance than the
VEC algorithm for short and long reads respectively. The most time-
consuming operation in SS counts the number of consecutive
matching elements in different diagonals in the input sequences, and
similar to WFA and BiWFA, the QBUFFERs and count ALU
hardware efficiently accelerates this operation.

3) Classical DP algorithms: When executing classic DP ap-
proaches, we use QUETZAL to reduce the overhead from store-
load forwarding operations by storing and directly reading pre-
computed values from the QBUFFERs. However, classical algo-
rithms are dominated by long dependence chains which over-
shadow the latency benefits from QUETZAL. Even for long reads,
QUETZAL provides modest performance benefits. On average,
QUETZAL outperforms SW (ksw2) and NW (parasail) by 1.3×
and 1.4×, respectively.

4) Protein sequence alignment: On average, QUETZAL and
QUETZAL+C provide 6.0× and 6.6× higher performance respec-
tively when aligning protein sequences. We make one observation.
Because of the larger alphabet required in protein alignment, the
overall number of edits required increases significantly. As a result,
WFA, BiWFA, and SS algorithms feature longer execution time
and require more iterations, increasing the number of operations
accelerated by the qzmhm and qzcount instructions. Thanks
to this, QUETZAL provides larger performance benefits with pro-
teins compared to DNA/RNA inputs. We conclude that QUETZAL
is highly efficient at improving the performance of ASM algorithms
independently of the input alphabet.

B. Multicore scalability and cache memory utilization

Fig. 13.b depicts the multicore scalability evaluation of QUET-
ZAL over all the previously evaluated algorithms and datasets using

the QUETZAL+C configuration. All QUETZAL-based implemen-
tations demonstrate good performance scalability as thread count
increases. Nevertheless, performance does not increase linearly
with the number of threads. The main reason is related to the
memory bandwidth available. For small input sequences, the cache
hierarchy is enough to store all the DP matrices, providing linear
speedups. However, for large input sequences, a single DP matrix is
significantly larger than the LLC size, and off-chip memory requests
are necessary to read and update these matrices. In this case, the
number of off-chip memory requests increases with the number of
cycles, and thus memory bandwidth limits performance scaling.

Fig. 14.a shows the reduction of memory requests issued to the
cache hierarchy from QUETZAL compared to the VEC algorithms.
All memory operations to access the input sequences are executed di-
rectly in QBUFFERs, significantly reducing the number of memory
requests. Moreover, the remaining main memory are strided memory
instructions that read and update the DP table. These operations are
simpler, and other components, such as the cache prefetcher, are
capable of accelerating them efficiently [117].

C. Edit distance approximation + alignment

We evaluate the ability of QUETZAL to accelerate two different
algorithms (SS+WFA). We compare the VEC and QUETZAL+C
implementations of these algorithms. Fig. 14.b shows the perfor-
mance comparison for all the experiments using a 16-core machine.
On average, QUETZAL outperforms the VEC implementation by
1.8×, 2.7×, 3.6× and 3.1× for the 100bp 1, 250bp 1, 10Kbp
and 30Kbp datasets respectively. These experiments demonstrate
the flexibility and integration of QUETZALto handle multiple
algorithms in the genome sequence analysis pipeline, achieving
notable performance benefits.

D. Comparison with GPU approaches

We evaluate the performance of QUETZAL compared to the
GPU-based approaches listed in Section V-D. In our experiments,
we use the entire NVIDIA A40 GPU and a 16-core QUETZAL
capable CPU to align all the input datasets listed in Section V-C. We
evaluate multiple alignment parameters for the GPU implementa-
tions and report the best-performing results.

Fig. 15.a shows the throughput results obtained. We make four
observations: (1) When processing short sequences, the parallelism
offered by GPUs can outperform VEC and QUETZAL designs.
However, the NVIDIA A40 GPU consumes >10× more area com-
pared to QUETZAL. (2) The sequence size limits the parallelism
offered by GPUs. With longer sequence lengths, the active working
set, encompassing metadata, DP matrix, and other structures,
increases significantly. Consequently, the available on-chip memory
can serve only a small number of GPU threads, an effect called low
occupancy, which significantly reduces the performance for long
sequences compared to shorter sequences [38, 76, 77]. For example,
GPU approaches outperform WFA (VEC) and SW (VEC) by 2.0×
and 1.3×, respectively, which represents a performance drop of 40%
and 83%, respectively, compared to short sequences. (3) As analyzed
in Section II-G, when processing long sequences, the execution time
of modern genome sequence analysis algorithms is dominated by
memory-indexed instructions. QUETZAL efficiently accelerates

11

WFA BiWFA SS SW NW WFA BiWFA SS SW NW WFA BiWFA SS GM
1

2

4

8

16
Sp

ee
du

p
(x

)

Short Reads Long Reads Protein Alignment

(a)
VEC QUETZAL QUETZAL+C

1 4 8 12 16
Number of threads

0

5

10

15

20

Sp
ee

du
p

(x
) (b)WFA

BiWFA
SS

SW
NW

Fig. 13. (a) Single-core performance results for all evaluated algorithms. (b) multi-core scalability from QUETZAL-based algorithms using the QUETZAL+C
version of each algorithm.

WFA BiWFA SS SW NW GM
0

20

40

60

80

100

N
or

m
. N

um
. R

eq
.

26 29 24

71 68

39

(a)
100bp_1 250bp_1 10Kbp 30Kbp

1

10

100

Sp
ee

du
p

(x
)

 4.3 5.2

26.4 33.4

 7.9
14.2

94.2 103.1

(b)

VEC QUETZAL+C

Fig. 14. (a) Normalized number of cache memory requests of QUETZAL+C
algorithms. (b) Performance results for the SS+WFA implementation, results are
normalized to the baseline WFA algorithm.

these instructions, providing notable performance benefits. On
average, QUETZAL outperforms Gasal2 and WFA-GPU (two
open-source GPU implementations) by 1.1× and 2.7×, respectively,
for long sequences. (4) With the widespread adoption of long-
read sequencing technologies in bioinformatics [7, 46, 47, 78, 79],
leveraging QUETZAL allows CPUs to achieve higher throughput
compared to GPUs, with small area overheads.

E. Comparison to domain-specific accelerators

Comparing different accelerators is not a trivial task due to the
differences in the algorithms, architectures, and target technologies.
GCUPS (Giga Cells Updated Per Second) [18, 72] is a commonly
used metric to report the maximum DP-elements a solution can
process per second. The calculation of GCUPS involves considering
two factors: (1) the number of DP-cells calculated per alignment
and (2) the average time taken by an algorithm to process an
alignment. Table IV presents a comparative analysis of QUETZAL
against several genome sequence analysis accelerators, using the
PGCUPS (Peak GCUPS) metric, which represents the highest
reported throughput achieved by an algorithm in processing an
alignment. The area of each evaluated accelerator is scaled [118] to
a 7nm technology node.

GenASM [36] and Darwin [119] outperform QUETZAL by
2.7× and 1.2×, but are limited to specific algorithms and alignment
parameters. QUETZAL, however, can handle various algorithms
and alignment parameters. QUETZAL achieves 0.6× and 4.1×
throughput per area compared to WFAsic with and without
backtracing respectively. WFAsic lacks hardware for processing
the backtracing stage, necessitating data transfer to the host for
execution, thereby leading to low performance. GenDP [67] is a
domain-specific accelerator designed to accelerate classical DP
algorithms, while QUETZAL excels in accelerating modern, more

WFA SW WFA SW

102

104

106

Al
ig

nm
en

ts
/s

ec

Short Reads Long Reads
(a)

VEC QUETZAL+C GPU

Histogram SpMV
0

1

2

3

4

5

Sp
ee

du
p

(x
)

1.2 1.4

3.8

2.6

(b)

VEC QUETZAL+C

Fig. 15. (a) Throughput comparison between QUETZAL+C and GPU
approaches. Results are reported on a logarithmic scale. (b) Performance results
for Histogram and SpMV applications.

TABLE IV
PEAK GIGA CELL UPDATES PER SECOND (PGCUPS) PER MM2

Study Device Num. PEs Area PGCUPS/mm2

QUETZAL CPU 1 PE 0.097mm2

Core+QUETZAL CPU 1 PE 2.9mm2 554.8

GenASM [36] ASIC 32 PE 1.37mm2 1491.8
WFAsic [120] ASIC 1 PE 0.45mm2 870.5(Without Backtracing)
WFAsic [120] ASIC 1 PE 0.45mm2 136.1(With Backtracing)
GenDP [67] ASIC 64 PE 5.82mm2 51.0
Darwin [68] ASIC 64 PE 5.06mm2 685.6

efficient algorithms, resulting in significant performance gains
(10.9×) over GenDP.

While fixed-function accelerators can outperform QUETZAL in
some cases, QUETZAL design offers three unique features. First,
QUETZAL has the capability to accelerate various algorithms and
steps within the genome sequence analysis pipeline, distinguishing
itself from certain accelerators that may only support a subset of
these steps or algorithms. Second, QUETZAL is cost-effective as
it can be integrated within a general-purpose CPU pipeline with a
small silicon area overhead. In contrast, the design and introduction
of new domain-specific accelerators in the market incur high design
and verification costs. Third, instead of designing algorithm-specific
hardware, QUETZAL integrates primitive ISA instructions (e.g.,
memory-indexed instructions and data format transformations) and
their hardware acceleration support. These are broadly applicable to
workloads even beyond the domain of genome sequence analysis (a
design philosophy similar to NVIDIA’s DPX instructions [63]) as
discussed in Section III-E.

12

F. Accelerating other application domains with QUETZAL

We designed QUETZAL considering the general performance
bottlenecks that prevent efficient vectorization of multiple genome
sequence analysis applications. Such bottlenecks arise in many
other applications. Therefore, the hardware of QUETZAL can be
used to accelerate applications beyond genome sequence analysis.
We demonstrate the generality of QUETZAL by accelerating two
kernels out of the scope of genome sequence analysis. We evaluate
the Sparse Matrix Vector (SpMV) multiplication and histogram
calculation algorithms with the methodology proposed by Pavon et
al. [92]. These algorithms target scratchpad-like hardware structures
for vector architectures. We modify the aforementioned algorithms
to use QUETZAL instructions. For SpMV, the algorithm stores seg-
ments from the input vector in QBUFFERs. All memory-indexed
instructions are executed directly in QUETZAL using the qzmm
instruction. We evaluate the histogram algorithm from Section III-E.
Fig. 15.b depicts the average speedup for both algorithms. QUET-
ZAL outperforms vectorized SpMV and histogram algorithms by
1.94× and 3.02×, respectively. We conclude that QUETZAL is not
only (1) highly effective at improving the performance of multiple
genome sequence analysis algorithms but also (2) a general solution
capable of accelerating other application domains as well.

VIII. RELATED WORK

We have comprehensively evaluated QUETZAL with several
well-known edit distance approximation and alignment algorithms,
including SneakySnake [18, 83], Needleman-Wunsch [22], Wave-
front Algorithm [32, 33], and Bidirectional WFA [34, 35]. Our
experiments demonstrate that QUETZAL significantly improves
the performance of these algorithms.

On the software side, a large body of work proposes a wide
range of exact and heuristic algorithms for pairwise sequence
alignment (e.g., [24, 25, 27–31, 36, 38]). QUETZAL supports both
exact and heuristic algorithms. While the performance of prior soft-
ware approaches is limited by the underlying hardware, QUETZAL
presents a hardware-software co-design that significantly improves
performance while being programmable to support the emerging
landscape of modern genome sequence analysis algorithms.

The use of graphics processing units (GPUs) for pairwise
sequence alignment acceleration has gained significant attention in
recent years (see, e.g., [38, 72–75, 121–123]). The parallelism and
high memory bandwidth of GPUs make them an attractive hardware
platform. However, as shown in our experiments, when processing
long sequences, the size of the active working set limits the per-
formance of GPUs. QUETZAL provides better performance when
processing long sequences thanks to QBUFFERs that are specially
designed to efficiently accelerate memory-indexed instructions.

On the hardware side, many domain-specific genome analysis
accelerators have been proposed based on FPGA (e.g., [18, 19, 51,
124–127]) and application-specific integrated circuit (ASIC) (e.g.,
[36, 38, 43–45, 67, 68, 119]) designs. These accelerators exhibit
high parallelism, throughput, and energy efficiency. However,
they typically lack programmability, i.e., cannot execute new or
different algorithms than those targeted in their original design. This
makes it inefficient to, for example, alternate between multiple
algorithms (e.g., edit distance approximation with SneakySnake

and pairwise sequence alignment with WFA). Therefore, alternating
between multiple algorithms with specialized accelerators requires
constantly moving data between the accelerators and the host
machine. In contrast, QUETZAL is highly flexible and does not
require additional hardware changes to support a new algorithm, but
only coding and recompilation. Moreover, QUETZAL is directly
connected to the execution datapath, and thus does not require data
offloading to operate.

Recently, Gu et al. proposed GenDP [67], an acceleration
framework for DP algorithms. Similar to QUETZAL, GenDP aims
to provide an efficient hardware accelerator capable of accelerating
multiple algorithms. GenDP is a programmable accelerator that
incurs high design and verification costs. In contrast, QUETZAL
is a solution based on commercially available CPUs, which can be
integrated into the core’s vector datapath in a cost-effective manner.

IX. CONCLUSIONS

We propose QUETZAL, a universal approximate string matching
(ASM) vector acceleration framework that supports a large number
of state-of-the-art ASM algorithms. We first analyze the limitations
of genome sequence alignment algorithms and propose novel vector
instructions that address these limitations. We design a novel vector
accelerator that implements these instructions. By integrating this
cost-effective vector accelerator hardware and instructions with
a general-purpose CPU’s vector datapath, QUETZAL provides
both efficiency and programmability that makes it relevant for
speeding up modern and emerging genome sequence analysis
workloads. We evaluate the effectiveness of QUETZAL using three
use cases: sequence aligners, edit distance approximation, and
a combination of both. We demonstrate that QUETZAL is an
area- and power-efficient scratchpad-based implementation that can
greatly accelerate a large number of ASM algorithms, supporting
both short and long reads.

X. ACKNOWLEDGEMENTS

The authors would like to thank all of our anonymous re-
viewers for their valuable feedback, meticulous reviews and
comments, which have allowed us to improve this work consid-
erably. This work has been partially supported by the Spanish
Ministry of Science and Innovation (PID2019-107255GB-C21 /
AEI / 10.13039/501100011033). We acknowledge the generous
gifts provided by our industrial partners, including IBM, Google,
Huawei, Intel, Microsoft, and VMware. This research was partially
supported by the EU Horizon project BioPIM (grant agreement
101047160), the AI Chip Center for Emerging Smart Systems
Limited (ACCESS), the Swiss National Science Foundation (SNSF),
Semiconductor Research Corporation (SRC), and the ETH Future
Computing Laboratory (EFCL).

REFERENCES

[1] C. Alkan, J. M. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci,
F. Hormozdiari, J. O. Kitzman, C. Baker, M. Malig, O. Mutlu et al.,
“Personalized Copy Number and Segmental Duplication Maps Using
Next-Generation Sequencing,” Nature Genetics, 2009.

[2] E. A. Ashley, “Towards Precision Medicine,” Nature Reviews Genetics,
2016.

[3] L. Chin, J. N. Andersen, and P. A. Futreal, “Cancer Genomics: From
Discovery Science to Personalized Medicine,” Nature Medicine, 2011.

13

[4] M. Flores, G. Glusman, K. Brogaard, N. D. Price, and L. Hood, “P4
Medicine: How Systems Medicine Will Transform the Healthcare Sector
and Society,” Personalized Medicine, 2013.

[5] G. S. Ginsburg and H. F. Willard, “Genomic and Personalized Medicine:
Foundations and Applications,” Translational Research, 2009.

[6] R. Langreth and M. Waldholz, “New Era of Personalized Medicine:
Targeting Drugs for Each Unique Genetic Profile,” The Oncologist,
1999.

[7] M. Alser, J. Lindegger, C. Firtina, N. Almadhoun, H. Mao, G. Singh,
J. Gomez-Luna, and O. Mutlu, “From Molecules to Genomic Varia-
tions: Accelerating Genome Analysis via Intelligent Algorithms and
Architectures,” CSBJ, 2022.

[8] H. Ellegren, “Genome Sequencing and Population Genomics in Non-
Model Organisms,” Trends in Ecology & Evolution, 2014.

[9] J. Prado-Martinez, P. H. Sudmant, J. M. Kidd, H. Li, J. L. Kelley,
B. Lorente-Galdos, K. R. Veeramah, A. E. Woerner, T. D. O’connor,
G. Santpere et al., “Great Ape Genetic Diversity and Population History,”
Nature, 2013.

[10] A. Prohaska, F. Racimo, A. J. Schork, M. Sikora, A. J. Stern, M. Ilardo,
M. E. Allentoft, L. Folkersen, A. Buil, J. V. Moreno-Mayar et al.,
“Human Disease Variation in the Light of Population Genomics,” Cell,
2019.

[11] M. J. Alvarez-Cubero, M. Saiz, B. Martı́nez-Garcı́a, S. M. Sayalero,
C. Entrala, J. A. Lorente, and L. J. Martinez-Gonzalez, “Next Generation
Sequencing: An Application in Forensic Sciences?” Annals of Human
Biology, 2017.

[12] C. Børsting and N. Morling, “Next Generation Sequencing and Its
Applications in Forensic Genetics,” Forensic Science International:
Genetics, 2015.

[13] Y. Yang, B. Xie, and J. Yan, “Application of Next-Generation Se-
quencing Technology in Forensic Science,” Genomics, Proteomics &
Bioinformatics, 2014.

[14] W.-W. Liao, M. Asri, J. Ebler, D. Doerr, M. Haukness, G. Hickey,
S. Lu, J. K. Lucas, J. Monlong, H. J. Abel et al., “A Draft Human
Pangenome Reference,” Nature, 2023.

[15] M. Cagiada, S. Bottaro, S. Lindemose, S. M. Schenstrøm, A. Stein,
R. Hartmann-Petersen, and K. Lindorff-Larsen, “Discovering Function-
ally Important Sites in Proteins,” Nature Communications, 2023.

[16] K. M. Swenson, M. Marron, J. V. Earnest-DeYoung, and B. M. Moret,
“Approximating the True Evolutionary Distance Between Two Genomes,”
JEA, 2008.

[17] G. Navarro, “A Guided Tour to Approximate String Matching,” CSUR,
2001.

[18] M. Alser, T. Shahroodi, J. Gómez-Luna, C. Alkan, and O. Mutlu,
“SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs and FPGAs,” Bioinformatics, 2020.

[19] M. Alser, H. Hassan, A. Kumar, O. Mutlu, and C. Alkan, “Shouji:
A Fast and Efficient Pre-Alignment Filter for Sequence Alignment,”
Bioinformatics, 2019.

[20] V. I. Levenshtein et al., “Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals,” in Soviet Physics Doklady, 1966.

[21] “National Genomic Data Initiatives Review.”
[22] S. B. Needleman and C. D. Wunsch, “A General Method Applicable

to the Search for Similarities in the Amino Acid Sequence of Two
Proteins,” JMB, 1970.

[23] R. A. Wagner and M. J. Fischer, “The String-to-String Correction
Problem,” JACM, 1974.

[24] T. F. Smith and M. S. Waterman, “Identification of Common Molecular
Subsequences,” JMB, 1981.

[25] O. Gotoh, “An Improved Algorithm for Matching Biological Sequences,”
JMB, 1982.

[26] E. Ukkonen, “Algorithms for Approximate String Matching,” Inf.
Control., 1985.

[27] R. Baeza-Yates and G. H. Gonnet, “A New Approach to Text Searching,”
CACM, 1992.

[28] S. Wu and U. Manber, “Fast Text Searching: Allowing Errors,” CACM,
1992.

[29] G. Myers, “A Fast Bit-Vector Algorithm for Approximate String
Matching Based on Dynamic Programming,” JACM, 1999.

[30] H. Suzuki and M. Kasahara, “Introducing Difference Recurrence
Relations for Faster Semi-Global Alignment of Long Sequences,” BMC
Bioinformatics, 2018.

[31] H. Li, “Minimap2: Pairwise Alignment for Nucleotide Sequences,”
Bioinformatics, 2018.

[32] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa, “Fast
Gap-Affine Pairwise Alignment Using the Wavefront Algorithm,”
Bioinformatics, 2020.

[33] S. Marco-Sola, “Fast Gap-Affine Pairwise Alignment Using the Wave-
front Algorithm,” Available at https://github.com/smarco/WFA-paper,
accessed: 2023-03-23.

[34] S. Marco-Sola, J. M. Eizenga, A. Guarracino, B. Paten, E. Garrison,
and M. Moreto, “Optimal Gap-Affine Alignment in O (S) Space,”
Bioinformatics, 2023.

[35] Marco-Sola, “Optimal Gap-Affine Alignment,” Available at https://
github.com/smarco/BiWFA-paper, accessed: 2023-04-04.

[36] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S.
Kim, R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand
et al., “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis,” in
MICRO, 2020.

[37] N. Mansouri Ghiasi, J. Park, H. Mustafa, J. Kim, A. Olgun, A. Goll-
witzer, D. Senol Cali, C. Firtina, H. Mao, N. Almadhoun Alserr,
R. Ausavarungnirun, N. Vijaykumar, M. Alser, and O. Mutlu, “Gen-
Store: A High-Performance in-Storage Processing System for Genome
Sequence Analysis,” in ASPLOS, 2022.

[38] J. Lindegger, D. S. Cali, M. Alser, J. Gómez-Luna, N. M. Ghiasi, and
O. Mutlu, “Scrooge: A Fast and Memory-Frugal Genomic Sequence
Aligner for CPUs, GPUs, and ASICs,” Bioinformatics, 2023.

[39] R. Rahn, S. Budach, P. Costanza, M. Ehrhardt, J. Hancox, and K. Reinert,
“Generic Accelerated Sequence Alignment in SeqAn Using Vectorization
and Multi-Threading,” Bioinformatics, 2018.

[40] Y. Jararweh, M. Al-Ayyoub, M. Fakirah, L. Alawneh, and B. B. Gupta,
“Improving the Performance of the Needleman-Wunsch Algorithm Using
Parallelization and Vectorization Techniques,” Multim. Tools Appl., 2019.

[41] P. D. Vouzis and N. V. Sahinidis, “GPU-BLAST: Using Graphics
Processors to Accelerate Protein Sequence Alignment,” Bioinformatics,
2011.

[42] D. Senol Cali, K. Kanellopoulos, J. Lindegger, Z. Bingöl, G. S. Kalsi,
Z. Zuo, C. Firtina, M. B. Cavlak, J. Kim, N. M. Ghiasi, G. Singh,
J. Gómez-Luna, N. A. Alserr, M. Alser, S. Subramoney, C. Alkan,
S. Ghose, and O. Mutlu, “SeGraM: A Universal Hardware Accelerator
for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping,”
ISCA, 2022.

[43] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “GenAx: A Genome Sequencing Accelerator,”
ISCA, 2018.

[44] D. Fujiki, S. Wu, N. Ozog, K. Goliya, D. Blaauw, S. Narayanasamy,
and R. Das, “SeedEx: A Genome Sequencing Accelerator for Optimal
Alignments in Subminimal Space,” MICRO, 2020.

[45] A. Nag, C. Ramachandra, R. Balasubramonian, R. Stutsman, E. Gi-
acomin, H. Kambalasubramanyam, and P.-E. Gaillardon, “GenCache:
Leveraging in-Cache Operators for Efficient Sequence Alignment,” in
MICRO, 2019.

[46] M. Alser, J. Rotman, D. Deshpande, K. Taraszka, H. Shi, P. I. Baykal,
H. T. Yang, V. Xue, S. Knyazev, B. D. Singer et al., “Technology Dic-
tates Algorithms: Recent Developments in Read Alignment,” Genome
Biology, 2021.

[47] M. Alser, Z. Bingöl, D. S. Cali, J. Kim, S. Ghose, C. Alkan, and
O. Mutlu, “Accelerating Genome Analysis: A Primer on an Ongoing
Journey,” IEEE Micro, 2020.

[48] J. S. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser,
H. Hassan, O. Ergin, C. Alkan, and O. Mutlu, “GRIM-Filter: Fast
Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies,” BMC Genomics, 2018.

[49] C. Yu, Y. Zhao, C. Zhao, H. Ma, and G. Wang, “DiagAF: A More
Accurate and Efficient Pre-Alignment Filter for Sequence Alignment,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2021.

[50] D. Castells-Rufas, S. Marco-Sola, J. C. Moure, Q. Aguado, and
A. Espinosa, “FPGA Acceleration of Pre-Alignment Filters for Short
Read Mapping With HLS,” IEEE Access, 2022.

[51] G. Singh, M. Alser, D. S. Cali, D. Diamantopoulos, J. Gómez-Luna,
H. Corporaal, and O. Mutlu, “FPGA-based Near-Memory Acceleration
of Modern Data-Intensive Applications,” IEEE Micro, 2021.

[52] H. Xin, J. Greth, J. Emmons, G. Pekhimenko, C. Kingsford, C. Alkan,
and O. Mutlu, “Shifted Hamming Distance: A Fast and Accurate SIMD-
friendly Filter to Accelerate Alignment Verification in Read Mapping,”
Bioinformatics, 2015.

14

https://github.com/smarco/WFA-paper
https://github.com/smarco/BiWFA-paper
https://github.com/smarco/BiWFA-paper

[53] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C. Alkan,
“Accelerating Read Mapping With FastHASH,” in BMC Genomics,
2013.

[54] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan,
“GateKeeper: A New Hardware Architecture for Accelerating Pre-
Alignment in DNA Short Read Mapping,” Bioinformatics, 2017.

[55] Y.-J. Song, D. J. Ji, H. Seo, G. B. Han, and D.-H. Cho, “Pairwise
Heuristic Sequence Alignment Algorithm Based on Deep Reinforcement
Learning,” IEEE Open Journal of Engineering in Medicine and Biology,
2021.

[56] Y. Sun and J. Buhler, “Choosing the Best Heuristic for Seeded Alignment
of DNA Sequences,” BMC Bioinformatics, 2006.

[57] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A Greedy Algorithm
for Aligning DNA Sequences,” JCB, 2000.

[58] K.-M. Chao, W. R. Pearson, and W. Miller, “Aligning Two Sequences
Within a Specified Diagonal Band,” Bioinformatics, 1992.

[59] A. Haghi, S. Marco-Sola, L. Alvarez, D. Diamantopoulos, C. Hagleitner,
and M. Moreto, “An FPGA Accelerator of the Wavefront Algorithm
for Genomics Pairwise Alignment,” in FPL, 2021.

[60] PacBio, “PacBio,” Available at https://www.pacb.com/technology/hifi-
sequencing/how-it-works/, accessed: 2023-03-23.

[61] T. Hon, K. Mars, and G. Young, “Highly Accurate Long-Read HiFi
Sequencing Data for Five Complex Genomes,” Scientific Data 7, 2020.

[62] O. N. T. Update, “New Duplex Method for Q30 Nanopore Single
Molecule Reads, PromethION 2, and More.(nd),” 2023.

[63] A. C. Elster and T. A. Haugdahl, “Nvidia Hopper Gpu and Grace Cpu
Highlights,” Computing in Science & Engineering, 2022.

[64] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“Nvidia Tensor Core Programmability, Performance & Precision,” in
IPDPSW, 2018.

[65] M. J. Flynn, “Very High-Speed Computing Systems,” Proceedings of
the IEEE, 1966.

[66] Y.-L. Liao, Y.-C. Li, N.-C. Chen, and Y.-C. Lu, “Adaptively Banded
Smith-Waterman Algorithm for Long Reads and Its Hardware Acceler-
ator,” in ASAP, 2018.

[67] Y. Gu, A. Subramaniyan, T. Dunn, A. Khadem, K. Chen, S. Paul,
M. Vasimuddin, S. Misra, D. T. Blaauw, S. Narayanasamy, and R. Das,
“GenDP: A Framework of Dynamic Programming Acceleration for
Genome Sequencing Analysis,” in ISCA, 2023.

[68] Y. Turakhia, S. D. Goenka, G. Bejerano, and W. J. Dally, “Darwin-
WGA: A Co-Processor Provides Increased Sensitivity in Whole Genome
Alignments With High Speedup,” HPCA, 2019.

[69] H. Li, “Minimap2,” Available at https://github.com/lh3/minimap2,
accessed: 2023-04-04.

[70] J. Daily, “Parasail: SIMD C Library for Global, Semi-Global, and Local
Pairwise Sequence Alignments,” BMC Bioinformatics, 2016.

[71] M. Vasimuddin, S. Misra, H. Li, and S. Aluru, “Efficient Architecture-
Aware Acceleration of BWA-MEM for Multicore Systems,” in IPDPS,
2019.

[72] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: Accelerating
Smith-Waterman Protein Database Search by Coupling CPU and GPU
SIMD Instructions,” BMC Bioinformatics, 2013.

[73] N. Ahmed, T. D. Qiu, K. Bertels, and Z. Al-Ars, “GPU Acceleration of
Darwin Read Overlapper for De Novo Assembly of Long DNA Reads,”
BMC Bioinformatics, 2020.

[74] NVIDIA, “NVBIO,” https://github.com/NVlabs/nvbio, 2014.
[75] N. Ahmed, J. Lévy, S. Ren, H. Mushtaq, K. Bertels, and Z. Al-Ars,

“GASAL2: A GPU Accelerated Sequence Alignment Library for High-
Throughput NGS Data,” BMC Bioinformatics, 2019.

[76] Q. Aguado-Puig, S. Marco-Sola, J. C. Moure, C. Matzoros, D. Castells-
Rufas, A. Espinosa, and M. Moreto, “WFA-GPU: Gap-Affine Pairwise
Alignment Using GPUs,” bioRxiv, 2022.

[77] S. Park, H. Kim, T. Ahmad, N. Ahmed, Z. Al-Ars, H. P. Hofstee, Y. Kim,
and J. Lee, “SALoBa: Maximizing Data Locality and Workload Balance
for Fast Sequence Alignment on GPUs,” in IPDPS, 2022.

[78] S. L. Amarasinghe, S. Su, X. Dong, L. Zappia, M. E. Ritchie, and
Q. Gouil, “Opportunities and Challenges in Long-Read Sequencing
Data Analysis,” Genome Biology, 2020.

[79] C. Cheng, Z. Fei, and P. Xiao, “Methods to Improve the Accuracy
of Next-Generation Sequencing,” Frontiers in Bioengineering and
Biotechnology, 2023.

[80] F. Minervini, O. Palomar, O. Unsal, E. Reggiani, J. Quiroga, J. Marimon,
C. Rojas, R. Figueras, A. Ruiz, A. Gonzalez et al., “Vitruvius+: An Area-

Efficient RISC-V Decoupled Vector Coprocessor for High Performance
Computing Applications,” TACO, 2023.

[81] Fujitsu, “A64FX Microarchitecture Manual,” Available at
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX
Microarchitecture Manual en 1.6.pdf.

[82] S. Marco-Sola, “WFA2-lib,” Available at https://github.com/smarco/
WFA2-lib, accessed: 2023-03-23.

[83] M. Alser, T. Shahroodi, J. Gómez-Luna, C. Alkan, and O. Mutlu,
“SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs and FPGAs,” Available at https://github.com/
CMU-SAFARI/SneakySnake, accessed: 2023-03-23.

[84] Intel Corporation, “Intel 64 and IA-32 Architectures Optimization
Reference Manual.” 2019.

[85] Intel Corporation, “Intel 64 and IA-32 Architectures Optimization
Reference Manual.” 2023.

[86] ARM Ltd, “ARM,” https://developer.arm.com/documentation/, accessed:
2022-01-15.

[87] Y. Kurt, Matallana-RamirezLilian, W. Kohlway, R. Whetten, and
J. Frampton, “A Fast, Flexible and Inexpensive Protocol for DNA
and RNA Extraction for Forest Trees,” Forest Systems, 2020.

[88] N. Khiste and L. Ilie, “E-MEM: Efficient Computation of Maximal
Exact Matches for Very Large Genomes,” Bioinformatics, 2014.

[89] S. Giuliani, G. Romana, and M. Rossi, “Computing Maximal Unique
Matches With the R-Index,” arXiv, 2022.

[90] M. Chatzou, C. Magis, J.-M. Chang, C. Kemena, G. Bussotti, I. Erb,
and C. Notredame, “Multiple Sequence Alignment Modeling: Methods
and Applications,” Briefings in Bioinformatics, 2016.

[91] A. Bayat, B. Gaëta, A. Ignjatovic, and S. Parameswaran, “Pairwise
Alignment of Nucleotide Sequences Using Maximal Exact Matches,”
BMC Bioinformatics, 2019.

[92] J. Pavon, I. V. Valdivieso, A. Barredo, J. Marimon, M. Moreto, F. Moll,
O. Unsal, M. Valero, and A. Cristal, “Via: A Smart Scratchpad for
Vector Units With Application to Sparse Matrix Computations,” in
HPCA, 2021.

[93] Z. Istvan, L. Woods, and G. Alonso, “Histograms as a Side Effect
of Data Movement for Big Data,” in Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, 2014.

[94] T. Hayes, O. Palomar, O. Unsal, A. Cristal, and M. Valero, “VSR Sort:
A Novel Vectorised Sorting Algorithm & Architecture Extensions for
Future Microprocessors,” in HPCA, 2015.

[95] S. S. Bagade and V. K. Shandilya, “Use of Histogram Equalization in
Image Processing for Image Enhancement,” International Journal of
Software Engineering Research & Practices, 2011.

[96] K. Vij and Y. Singh, “Enhancement of Images Using Histogram
Processing Techniques,” Int. J. Comp. Tech. Appl, 2009.

[97] M. Yabuuchi, Y. Tsukamoto, M. Morimoto, M. Tanaka, and K. Nii,
“20nm High-Density Single-Port and Dual-Port SRAMs With Wordline-
Voltage-Adjustment System for Read/Write Assists,” IEICE Technical
Report; IEICE Tech. Rep., 2015.

[98] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib Bin Altaf, N. Vaish, M. Hill, and D. Wood, “The Gem5
Simulator,” SIGARCH Computer Architecture News, 2011.

[99] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj
et al., “The Gem5 Simulator: Version 20.0+,” arXiv, 2020.

[100] T. Odajima, Y. Kodama, M. Tsuji, M. Matsuda, Y. Maruyama, and
M. Sato, “Preliminary Performance Evaluation of the Fujitsu A64FX
Using HPC Applications,” in CLUSTER, 2020.

[101] E. Strohmaier, “TOP500 Supercomputer,” in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, 2006.

[102] T. Org, “Top500 The List,” Available at https://www.top500.org/lists/
top500/, accessed: 2023-03-23.

[103] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic Local Alignment Search Tool,” JMB, 1990.

[104] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: A
New Generation of Protein Database Search Programs,” NAR, 1997.

[105] H. Li, “KSW2,” Available at https://github.com/lh3/ksw2, accessed:
2023-12-21.

[106] J. Daily, “Parasail: Pairwise Sequence Alignment Library,” Available at
https://github.com/jeffdaily/parasail, accessed: 2023-03-23.

15

https://www.pacb.com/technology/hifi-sequencing/how-it-works/
https://www.pacb.com/technology/hifi-sequencing/how-it-works/
https://github.com/lh3/minimap2
https://github.com/NVlabs/nvbio
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.6.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.6.pdf
https://github.com/smarco/WFA2-lib
https://github.com/smarco/WFA2-lib
https://github.com/CMU-SAFARI/SneakySnake
https://github.com/CMU-SAFARI/SneakySnake
https://developer.arm.com/documentation/
https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/
https://github.com/lh3/ksw2
https://github.com/jeffdaily/parasail

[107] Ilumina, “Ilumina Sequencing Platforms,” Available at https://www.
illumina.com/systems/sequencing-platforms.html, accessed: 2023-03-
23.

[108] E. Mardis, “DNA Sequencing Technologies: 2006-2016,” Nature
Protocols 12, 2017.

[109] D. of Computer Science at The University of Illinois at
Urbana-Champaign, “BAliBase Benchmark Alignment Files,”
https://publish.illinois.edu/msaevaluation/balibase-benchmark-
alignment-files/, accessed: 2023-06-25.

[110] Q. Aguado-Puig, “WFA-GPU,” Available at https://github.com/quim0/
WFA-GPU, accessed: 2023-12-21.

[111] A. Nauman, “GASAL2,” Available at https://github.com/nahmedraja/
GASAL2, accessed: 2023-12-21.

[112] D. Senol Cali, J. S. Kim, S. Ghose, C. Alkan, and O. Mutlu,
“Nanopore Sequencing Technology and Tools for Genome Assembly:
Computational Analysis of the Current State, Bottlenecks and Future
Directions,” Briefings in Bioinformatics, 2019.

[113] S. Walia, C. Ye, A. Bera, D. Lodhavia, and Y. Turakhia, “TALCO:
Tiling Genome Sequence Alignment Using Convergence of Traceback
Pointers,” in HPCA, 2024.

[114] H. Hyyrö, “Explaining and Extending the Bit-Parallel Approximate
String Matching Algorithm of Myers,” Citeseer, Tech. Rep., 2001.

[115] Synopsys, “Synopsys,” https://www.synopsys.com/, accessed: 2022-12-
21.

[116] E. Arima, Y. Kodama, T. Odajima, M. Tsuji, and M. Sato, “Power/per-
formance/area Evaluations for Next-Generation HPC Processors Using
the A64fx Chip,” in COOL CHIPS, 2021.

[117] J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” ACM SIGMICRO Newsletter, vol. 23, no. 1-2, pp.
102–110, 1992.

[118] A. Stillmaker and B. Baas, “Scaling Equations for the Accurate
Prediction of CMOS Device Performance From 180 Nm to 7 Nm,”
Integration, 2017.

[119] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A Genomics
Co-Processor Provides Up to 15,000x Acceleration on Long Read
Assembly,” ASPLOS, 2018.

[120] A. Haghi, L. Alvarez, J. Front, J. M. De Haro Ruiz, R. Figueras,
M. Doblas, S. Marco-Sola, and M. Moreto, “WFAsic: A High-
Performance ASIC Accelerator for DNA Sequence Alignment on a
RISC-V SoC,” in ICPP, 2023.

[121] E. F. de Oliveira Sandes, G. Miranda, X. Martorell, E. Ayguade,
G. Teodoro, and A. C. M. Melo, “CUDAlign 4.0: Incremental Spec-
ulative Traceback for Exact Chromosome-Wide Alignment in GPU
Clusters,” IEEE Trans. Parallel Distrib. Syst., 2016.

[122] M. G. Awan, J. Deslippe, A. Buluc, O. Selvitopi, S. Hofmeyr, L. Oliker,
and K. Yelick, “ADEPT: A Domain Independent Sequence Alignment
Strategy for GPU Architectures,” BMC Bioinformatics, 2020.

[123] Q. Aguado-Puig, S. Marco-Sola, J. C. Moure, D. Castells-Rufas,
L. Alvarez, A. Espinosa, and M. Moreto, “Accelerating Edit-Distance
Sequence Alignment on GPU Using the Wavefront Algorithm,” IEEE
Access, 2022.

[124] K. Benkrid, Y. Liu, and A. Benkrid, “A Highly Parameterized and
Efficient FPGA-Based Skeleton for Pairwise Biological Sequence
Alignment,” IEEE Transactions on VLSI Systems, 2009.

[125] J. Hoffmann, D. Zeckzer, and M. Bogdan, “Using FPGAs to Accelerate
Myers Bit-Vector Algorithm,” MEDICON, 2016.

[126] X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, “FPGASW: Acceler-
ating Large-Scale Smith–Waterman Sequence Alignment Application
With Backtracking on FPGA Linear Systolic Array,” Interdiscip Sci,
2018.

[127] O. Mutlu and C. Firtina, “Accelerating Genome Analysis via Algorithm-
Architecture Co-Design,” in DAC, 2023.

16

https://www.illumina.com/systems/sequencing-platforms.html
https://www.illumina.com/systems/sequencing-platforms.html
https://publish.illinois.edu/msaevaluation/balibase-benchmark-alignment-files/
https://publish.illinois.edu/msaevaluation/balibase-benchmark-alignment-files/
https://github.com/quim0/WFA-GPU
https://github.com/quim0/WFA-GPU
https://github.com/nahmedraja/GASAL2
https://github.com/nahmedraja/GASAL2
https://www.synopsys.com/

	Introduction
	Background and Motivation
	Classical DP sequence alignment algorithms
	Modern DP sequence alignment algorithms
	Edit distance approximation
	Rationale for flexible domain specific accelerators
	Flexible state-of-the-art platforms
	Vectorizing the modern genome sequence analysis algorithms
	Challenges in accelerating modern genome sequence analysis

	QUETZAL: Overview
	Accelerating memory-indexed instructions
	Accelerating counting consecutive matching elements
	QUETZAL ISA use cases: WFA and SS
	QUETZAL on classical DP algorithms
	QUETZAL applied to other application domains

	QUETZAL Microarchitecture
	Data encoder
	QBUFFER
	SRAM Blocks (SRAMs)
	Write logic
	Read logic

	Access Control
	Connection with the QBUFFERs

	Count ALU
	Integration with Out-of-Order (OoO) processors

	Experimental Methodology
	Simulation Framework
	Benchmarks
	Datasets
	Comparison between QUETZAL and GPU approaches

	Design Space Exploration
	Evaluation
	Single-core Performance Analysis
	Modern DP algorithms
	Edit distance approximation
	Classical DP algorithms
	Protein sequence alignment

	Multicore scalability and cache memory utilization
	Edit distance approximation + alignment
	Comparison with GPU approaches
	Comparison to domain-specific accelerators
	Accelerating other application domains with QUETZAL

	Related Work
	Conclusions
	Acknowledgements
	References

