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Executive Summary
n Problem: Long read latency in modern SSDs due to read-retry

q Frequently requires multiple retry steps to read an erroneous page

n Goal: Reduce the latency of each read-retry operation

n Key Ideas:
q Pipelined Read-Retry (PR2): Concurrently perform consecutive retry 

steps using the CACHE READ command
q Adaptive Read-Retry (AR2): Reduce read-timing parameters for every 

retry step by exploiting the reliability margin provided by strong ECC
q Small implementation overhead and no changes to NAND flash chips

n Evaluation Results: Our proposal improves SSD response time by
q Up to 51% (35% on average) compared to a high-end SSD
q Up to 32% (17% on average) compared to a state-of-the-art baseline
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Talk Outline

n Read-Retry in Modern NAND Flash-Based SSDs

n PR2: Pipelined Read-Retry

n AR2: Adaptive Read-Retry

n Evaluation Results
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Errors in NAND Flash Memory
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Error-Correcting Codes (ECC)
n Store redundant information (ECC parity) for error correction
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Error-Correcting Codes (ECC)
n Store redundant information (ECC parity) for error correction
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Read-Retry Operation
n Reads the page again with adjusted VREF values
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Read-Retry Operation
n Reads the page again with adjusted VREF values
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Read-Retry: Performance Overhead
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Read-Retry: Performance Overhead
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n Characterization of 160 real 3D TLC NAND flash chips
q ECC correction capability: 72 bits per 1-KiB data
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Read-Retry in Modern SSDs: Experimental Data
n Characterization of 160 real 3D TLC NAND flash chips

q ECC correction capability: 72 bits per 1-KiB data
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n Characterization of 160 real 3D TLC NAND flash chips
q ECC correction capability: 72 bits per 1-KiB data
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PR2: Pipelined Read-Retry
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PR2: Pipelined Read-Retry
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n Read-Retry in Modern NAND Flash-Based SSDs
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n AR2: Adaptive Read-Retry

n Evaluation Results



AR2: Adaptive Read-Retry
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AR2: Necessary Conditions

34

n Condition 1: Large ECC margin in the final retry step
q Strong ECC: 72 bits correctable per 1-KiB data
q Use of near-optimal VREF in the final retry step

n # of raw bit errors drastically increases if VREF >> VOPT
n ∴ In the final retry step, VRRN ~ VOPT

n Condition 2: Sufficient reliability margin in read-timing 
parameters
q Manufacturers pessimistically set read-timing parameters
q To cover for worst-case process variation and operating 

conditions

n We experimentally analyze if these conditions hold



AR2: Real-Device Characterization
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n Goals: Rigorously characterize
q The ECC margin in the final retry step
q Reliability impact of reducing read-timing parameters
q Under different operating conditions

n Methodology
q 160 real chips (48WL-layer 3D TLC NAND memory)
q Randomly selected 11,059,200 pages
q FPGA-based custom flash controller

n Basic commands + test-mode commands (e.g., changing 
VREF values and read-timing parameters)



AR2: ECC Margin in the Final Retry Step
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AR2: Effect of Reducing Timing Parameters
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AR2: Effect of Reducing Timing Parameters
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AR2 Device-Characterization Takeaways

1. AR2 can easily work in state-of-the-art 
NAND flash chips

2. Must properly reduce tR depending on
the current operating conditions



Pipelined & Adaptive Read-Retry
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PEC	 tRET [days] tR [μs]

<	250
<	60 65

<	360 70

<	1.5K
<	60 70

<	360 75

⋯

⋯
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⋯
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❺ SET FEATUREtRETRY

ECC	success

❹ RESET

tRST
Best	tR

PAGE READ(A)

Best	tR❶

tDMA
tECC

tR
ECC	fail

❷ SET FEATURE

⋯

CACHE READ(A)

❸

No change to chips and no impact on VTH states
à Easy to combine with other techniques

Current	
conditions
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n Read-Retry in Modern NAND Flash-Based SSDs

n PR2: Pipelined Read-Retry

n AR2: Adaptive Read-Retry

n Evaluation Results



Evaluation Methodology
n Simulator: MQSim [Tavakkol, FAST18]

q Extend NAND flash models w/ real-device characterization results

n Workload: 12 real-world I/O workloads
q 6 from Microsoft Research Cambridge (MSRC) traces

n 2 write-dominant: stg-0,	hm-0
n 4 read-dominant: prn-1,	proj-1,	mds-1,	usr-1

q 6 from Yahoo! Cloud Service Benchmark (YCSB)

n Baselines
q IDEAL: An ideal SSD where no read-retry occurs
q BASE: A high-end SSD w/o read-retry mitigation 
q SOTA: A state-of-the-art read-retry mitigation scheme [Shim, MICRO19]

n Reduces the average number of retry steps by 70%
n By predicting VREF values close to the optimal values
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Results: PR2+AR2 Performance
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Results: SOTA & Optimal Performance
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Results: SOTA & Optimal Performance
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Evaluation Results: SSD Response Time
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Other Analyses in the Paper
n Thorough analysis of read mechanism in modern SSDs

n More detailed results from real-device characterization
q Effect of reducing individual read-timing parameters
q Effect of reducing multiple read-timing parameters
q Effect of operating temperature
q How to choose the best read-timing paratmers

n Detailed evaluation of PR2 and AR2 when applied individually

n Discussion of future directions to reduce SSD read latency 
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Executive Summary
n Problem: Long read latency in modern SSDs due to read-retry

q Frequently requires multiple retry steps to read an erroneous page

n Key Ideas:
q Pipelined Read-Retry (PR2): Concurrently perform consecutive retry 

steps using the CACHE READ command
q Adaptive Read-Retry (AR2): Reduce read-timing parameters for every 

retry step by exploiting the reliability margin provided by strong ECC

n Evaluation Results: Our proposal improves SSD response time by
q Up to 51% (35% on average) compared to a high-end SSD
q Up to 32% (17% on average) compared to a state-of-the-art baseline
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We hope that our key idea and characterization results 
inspire many valuable studies going forward
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