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Executive Summary

Problem: Long read latency in modern SSDs due to read-retry
o Frequently requires multiple retry steps to read an erroneous page

Goal: Reduce the latency of each read-retry operation

Key Ideas:

o Pipelined Read-Retry (PR2): Concurrently perform consecutive retry
steps using the CACHE READ command

o Adaptive Read-Retry (AR?): Reduce read-timing parameters for every
retry step by exploiting the reliability margin provided by strong ECC
o Small implementation overhead and no changes to NAND flash chips

Evaluation Results: Our proposal improves SSD response time by
o Upto 51% (35% on average) compared to a high-end SSD
o Up to 32% (17% on average) compared to a state-of-the-art baseline
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NAND Flash Basics

= NAND flash memory stores data by using cells’ V4 values

Read-Reference Voltage

AV REF (x-2) V REF(x-1) V REFx V REF(x+1)
2 i i i i
O
O
ot
S
h 1 1
@ i i
-g P(x-1) | | Px | P(x+1)
=
Z

state | || state ||| state

Cell's Threshold Voltage (Vy)




NAND Flash Basics

NAND flash memory stores data by using cells’ V; values

A \ R.E Fx
2 1
3 M- o
ey
: Vg < Vger Vin> Vier
9]
=
g
=)
Z

Cell's Threshold Voltage (Vy)



NAND Flash Basics

= NAND flash memory stores data by using cells’ V4 values

Number of Cells

AV REF (x-2) V REF(x-1) V REFx V REF(x+1)
P(x1) | || Px | P(x+1)
state | || state ||| state
i i >

Cell's Threshold Voltage (Vy)




NAND Flash Basics

NAND flash memory stores data by using cells’ V; values
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Errors in NAND Flash Memory

Various sources shift and widen programmed V1 states
o Retention loss, program interference, read disturbance, etc.
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Error-Correcting Codes (ECC)

Store redundant information (ECC parity) for error correction
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Error-Correcting Codes (ECC)

Store redundant information (ECC parity) for error correction

Corrected data
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# of raw bit errors > ECC correction capability
- Uncorrectable errors in stored data
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Read-Retry Operation

= Reads the page again with adjusted Vg values
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Read-Retry Operation

Reads the page again with adjusted Vger values

Read-retry: Adjusting Vggp values
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Read-Retry: Performance Overhead

tDMA: Data transfer

tR: Page sensing{ tECC: ECC decoding
|

READ A

Nipr = 32 < ECC capability Cyec= 72
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Read-Retry: Performance Overhead

ECC Capability Cgcc= 72
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Read-retry increases the read latency
almost linearly with the number of retry steps
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Read-Retry in Modern SSDs: Experimental Data

= Characterization of 160 real 3D TLC NAND flash chips
o ECC correction capability: 72 bits per 1-KiB data
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Read-Retry in Modern SSDs: Experimental Data

Characterization of 160 real 3D TLC NAND flash chips
o ECC correction capability: 72 bits per 1-KiB data
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Read-Retry in Modern SSDs: Experimental Data

Characterization of 160 real 3D TLC NAND flash chips
o ECC correction capability: 72 bits per 1-KiB data
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Existing Read-Retry Mitigation Schemes

= Tryto reduce Nggby predicting near-optimal Vger values

After retention loss
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Existing Read-Retry Mitigation Schemes

= Try to reduce Nzgby predicting near-optimal Vg values

After retention loss Right after programming
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V14 changes are fast and large in modern SSDs
- Hard to eliminate read-retry

19




Talk Outline

s Read-Retry in Modern NAND Flash-Based SSDs

= PRZ: Pipelined Read-Retry

s AR?: Adaptive Read-Retry

m Evaluation Results

20



PR?: Pipelined Read-Retry

= Key idea: Concurrently perform consecutive retry steps
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PR?: Pipelined Read-Retry

= Key idea: Concurrently perform consecutive retry steps
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PR?: Pipelined Read-Retry

Key idea: Concurrently perform consecutive retry steps

ECC Capability Cycc= 72
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PR?: Removes tDMA & tECC
(~30% of each retry step) from the critical path
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PR2: Pipelined Read-Retry

= Key idea: Concurrently perform consecutive retry steps
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PR2: Pipelined Read-Retry

= Key idea: Concurrently perform consecutive retry steps
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PR2: Pipelined Read-Retry

= Key idea: Concurrently perform consecutive retry steps

ECC Capability Cgcc= 72
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PR?: Pipelined Read-Retry

Key idea: Concurrently perform consecutive retry steps

ECC Capability Cgcc= 72

RRN ' ; ; NERR= 2.3
RR(N+1) : Unnecessarily started |

PRZ2: Large latency reduction (~30%)
w/ negligible performance penalty
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ARZ2: Adaptive Read-Retry
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ARZ?: Adaptive Read-Retry

ECC Capability Cgcc= 72
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Observation: A positive ECC margin
in the final retry step when read-retry succeeds
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ARZ2: Adaptive Read-Retry

= Key idea: Reduce read-timing parameters for every retry step
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ARZ2: Adaptive Read-Retry

= Key idea: Reduce read-timing parameters for every retry step
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ARZ?: Adaptive Read-Retry

= Key idea: Reduce read-timing parameters for every retry step

tDMA ECC Capability Cgee= 72
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ARZ?: Necessary Conditions

= Condition 1: Large ECC margin in the final retry step
o Strong ECC: 72 bits correctable per 1-KiB data
o Use of near-optimal Ve in the final retry step
= # of raw bit errors drastically increases if Vgeg >> Vpr
= = Inthe final retry step, Vrgry ~ Vopt

= Condition 2: Sufficient reliability margin in read-timing
parameters
o Manufacturers pessimistically set read-timing parameters

o To cover for worst-case process variation and operating
conditions

= We experimentally analyze if these conditions hold
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AR?: Real-Device Characterization

Goals: Rigorously characterize

o The ECC margin in the final retry step

o Reliability impact of reducing read-timing parameters
o Under different operating conditions

Methodology

o 160 real chips (48WL-layer 3D TLC NAND memory)
o Randomly selected 11,059,200 pages

o FPGA-based custom flash controller

Basic commands + test-mode commands (e.g., changing
Vger Values and read-timing parameters)
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ARZ?: ECC Margin in the Final Retry Step

P/E cycles: 1-0 1K -0-2K
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AR?Z?: Effect of Reducing Timing Parameters
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AR?Z?: Effect of Reducing Timing Parameters

AR? Device-Characterization Takeaways

1. AR?can easily work in state-of-the-art
NAND flash chips

2. Must properly reduce tR depending on
the current operating conditions

38




Pipelined & Adaptive Read-Retry

ECC fail
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No change to chips and no impact on V; states
—> Easy to combine with other techniques
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Evaluation Methodology

Simulator: MQSim [Tavakkol, FAST18]
o Extend NAND flash models w/ real-device characterization results

Workload: 12 real-world 1/0 workloads

o 6 from Microsoft Research Cambridge (MSRC) traces
2 write-dominant: stg-0, hm-0
4 read-dominant: prn-1, proj-1, mds-1, usr-1

o 6 from Yahoo! Cloud Service Benchmark (YCSB)

Baselines

o IDEAL: Anideal SSD where no read-retry occurs

o BASE: A high-end SSD w/o read-retry mitigation

0 SOTA: A state-of-the-art read-retry mitigation scheme [Shim, MICRO19]
Reduces the average number of retry steps by 70%
By predicting Vger values close to the optimal values
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Results: PR2+AR? Performance
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Up to 42% (26% on average)

Considerable improvement in write-dominant
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Results: SOTA & Optimal Performance

SSD response time
(Normalized to BASE)
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Results: SOTA & Optimal Performance
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Evaluation Results: SSD Response Time
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Other Analyses in the Paper

= Thorough analysis of read mechanism in modern SSDs

= More detailed results from real-device characterization

o Effect of reducing individual read-timing parameters
o Effect of reducing multiple read-timing parameters
o Effect of operating temperature

o How to choose the best read-timing paratmers

= Detailed evaluation of PR?2 and AR?when applied individually

= Discussion of future directions to reduce SSD read latency
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Executive Summary

Problem: Long read latency in modern SSDs due to read-retry
o Frequently requires multiple retry steps to read an erroneous page

Key Ideas:

o Pipelined Read-Retry (PR2): Concurrently perform consecutive retry
steps using the CACHE READ command

o Adaptive Read-Retry (AR?): Reduce read-timing parameters for every
retry step by exploiting the reliability margin provided by strong ECC

Evaluation Results: Our proposal improves SSD response time by
o Upto 51% (35% on average) compared to a high-end SSD
o Upto 32% (17% on average) compared to a state-of-the-art baseline

We hope that our key idea and characterization results
iInspire many valuable studies going forward
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