
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020 1555

RowHammer: A Retrospective
Onur Mutlu , Fellow, IEEE, and Jeremie S. Kim , Student Member, IEEE

Abstract—This retrospective paper describes the RowHammer
problem in dynamic random access memory (DRAM), which was
initially introduced by Kim et al. at the ISCA 2014 Conference.
RowHammer is a prime (and perhaps the first) example of
how a circuit-level failure mechanism can cause a practical
and widespread system security vulnerability. It is the phe-
nomenon that repeatedly accessing a row in a modern DRAM
chip causes bit flips in physically adjacent rows at consistently
predictable bit locations. RowHammer is caused by a hard-
ware failure mechanism called DRAM disturbance errors, which
is a manifestation of circuit-level cell-to-cell interference in a
scaled memory technology. Researchers from Google Project
Zero demonstrated in 2015 that this hardware failure mecha-
nism can be effectively exploited by user-level programs to gain
kernel privileges on real systems. Many other follow-up works
demonstrated other practical attacks exploiting RowHammer. In
this paper, we comprehensively survey the scientific literature on
RowHammer-based attacks as well as mitigation techniques to
prevent RowHammer. We also discuss what other related vulner-
abilities may be lurking in DRAM and other types of memories,
e.g., NAND flash memory or phase change memory, that can
potentially threaten the foundations of secure systems, as the
memory technologies scale to higher densities. We conclude by
describing and advocating a principled approach to memory
reliability and security research that can enable us to better
anticipate and prevent such vulnerabilities.

Index Terms—Dynamic random access memory (DRAM),
errors, memory systems, reliability, security, technology scaling,
vulnerability.

I. INTRODUCTION AND OUTLINE

MEMORY is a key component of all modern comput-
ing systems, often determining the overall performance,

energy efficiency, and reliability characteristics of the entire
system. The push for increasing the density of modern memory
technologies via technology scaling, which has resulted in
higher capacity (i.e., density) memory and storage at lower
cost, has enabled large leaps in the performance of mod-
ern computers [173]. This positive trend is clearly visible in
especially the dominant main memory and solid-state storage
technologies of today, i.e., dynamic random access memory
(DRAM) [57], [58], [124], [145], [149] and NAND flash
memory [42], [45], [52], respectively. Unfortunately, the same
push has also greatly decreased the reliability of modern

Manuscript received January 22, 2019; accepted March 24, 2019. Date of
publication May 7, 2019; date of current version July 17, 2020. This paper
was recommended by Associate Editor J. Rajendran. (Corresponding author:
Onur Mutlu.)

The authors are with the Department of Computer Science, ETH
Zürich, 8092 Zürich, Switzerland, and also with the Department of
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213 USA (e-mail: omutlu@gmail.com).

Digital Object Identifier 10.1109/TCAD.2019.2915318

memory technologies, due to the increasingly smaller memory
cell size and increasingly smaller amount of charge that is
maintainable in the cell, which makes the memory cell much
more vulnerable to various failure mechanisms and noise and
interference sources, both in DRAM [112], [114]–[117], [132],
[159], [174], [194], [201] and NAND flash nemory [42]–[48],
[50]–[53], [162], [164]–[166], [174].

As memory scales down to smaller technology nodes, new
failure mechanisms emerge that threaten its correct operation.
If such failure mechanisms are not anticipated and corrected,
they cannot only degrade system reliability and availability but
also, perhaps even more importantly, open up new security
vulnerabilities: a malicious attacker can exploit the exposed
failure mechanism to take over the entire system. As such,
new failure mechanisms in memory can become practical and
significant threats to system security.

In this paper, we provide a retrospective of one such
example failure mechanism in DRAM, which was initially
introduced by Kim et al. [132] at the ISCA 2014 conference.
We provide a description of the RowHammer problem and
its implications by summarizing our ISCA 2014 paper [132],
describe solutions proposed by our original work [132], com-
prehensively examine the many works that build on our
original work in various ways, e.g., by developing new secu-
rity attacks, proposing solutions, and analyzing RowHammer.
What comes next in this section provides a roadmap of the
entire paper.

In our ISCA 2014 paper [132], we introduce the
RowHammer problem in DRAM, which is a prime (and
perhaps the first) example of how a circuit-level failure mech-
anism can cause a practical and widespread system security
vulnerability. RowHammer, as it is now popularly referred to,
is the phenomenon that repeatedly accessing a row in a modern
DRAM chip causes bit flips in physically adjacent rows at con-
sistently predictable bit locations. It is caused by a hardware
failure mechanism called DRAM disturbance errors, which
is a manifestation of circuit-level cell-to-cell interference in
a scaled memory technology. We describe the RowHammer
problem and its root causes in Section II.

Inspired by our ISCA 2014 paper’s fundamental find-
ings, researchers from Google Project Zero demonstrated in
2015 that this hardware failure mechanism can be effec-
tively exploited by user-level programs to gain kernel priv-
ileges on real systems [213], [214]. Tens of other works
since then demonstrated other practical attacks exploiting
RowHammer, e.g., [12], [31]–[33], [37], [54], [66], [73], [76],
[89], [90], [107], [156], [196], [197], [199], [205], [233],
[234], [239], [249], and [258]. These include remote takeover
of a server vulnerable to RowHammer, takeover of a victim
virtual machine (VM) by another VM running on the same
system, takeover of a mobile device by a malicious user-
level application that requires no permissions, takeover of a

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0075-2312
https://orcid.org/0000-0001-6153-9008


1556 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

mobile system quickly by triggering RowHammer using a
mobile GPU, and takeover of a remote system by trigger-
ing RowHammer on it through the remote direct memory
access (RDMA) protocol [6]. We describe the works that
build on RowHammer to develop new security attacks in
Section III-A.

Our ISCA 2014 paper rigorously and experimentally ana-
lyzes the RowHammer problem and examines seven different
solutions, multiple of which are already employed in prac-
tice to prevent the security vulnerabilities (e.g., increasing
the memory refresh rate). We propose a low-cost solu-
tion, probabilistic adjacent row activation (PARA), which
provides a strong and configurable reliability and security
guarantee; a solution whose variants are being adopted by
DRAM manufacturers and memory controller designers [5].
We describe this solution and the six other solutions of our
original paper in Section II-E. Many other works build on
our original paper to propose and evaluate other solutions
to RowHammer, and we discuss them comprehensively in
Section III-B.

Our ISCA 2014 paper leads to a new mindset that has
enabled a renewed interest in hardware security research:
general-purpose hardware is fallible, in a very widespread
manner, and this causes real security problems. We believe
the RowHammer problem will become worse over time since
DRAM cells are getting closer to each other with technology
scaling. Other similar vulnerabilities may also be lurking in
DRAM and other types of memories, e.g., NAND flash memory
or phase change memory, that can potentially threaten the
foundations of secure systems, as the memory technologies
scale to higher densities. Our ISCA 2014 paper advocates
a principled system-memory co-design approach to memory
reliability and security research that can enable us to bet-
ter anticipate and prevent such vulnerabilities. We describe
promising ongoing and future research directions related to
RowHammer (Section IV), including the examination of other
potential vulnerabilities in memory (in Section IV-A) and the
use of a principled approach to make memory more reliable
and more secure (in Section IV-B).

II. ROWHAMMER PROBLEM: SUMMARY

Memory isolation is a key property of a reliable and secure
computing system. An access to one memory address should
not have unintended side effects on data stored in other
addresses. However, as process technology scales down to
smaller dimensions, memory chips become more vulnerable to
disturbance, a phenomenon in which different memory cells
interfere with each others’ operation. We have shown, in our
ISCA 2014 paper [132], the existence of disturbance errors in
commodity DRAM chips that are sold and used in the field.
Repeatedly reading from the same address in DRAM could
corrupt data in nearby addresses. Specifically, when a DRAM
row is opened (i.e., activated) and closed (i.e., precharged)
repeatedly (i.e., hammered), enough times within a DRAM
refresh interval, one or more bits in physically adjacent DRAM
rows can be flipped to the wrong value. This DRAM failure
mode is now popularly called RowHammer [1], [2], [23], [37],
[90], [130], [140], [205], [213], [214], [239], [244]. Using
a field-programmable gate array (FPGA)-based experimental
DRAM testing infrastructure, which we originally developed

Fig. 1. RowHammer error rate versus manufacturing dates of 129 DRAM
modules we tested (reproduced from [132]).

for testing retention time issues in DRAM [159],1 we tested
129 DRAM modules manufactured by three major manufac-
turers (A, B, and C) in seven recent years (2008–2014) and
found that 110 of them exhibited RowHammer errors, the ear-
liest of which dates back to 2010. This is illustrated in Fig. 1,
which shows the error rates we found in all 129 modules we
tested where modules are categorized based on manufacturing
date.2 In particular, all DRAM modules from 2012–2013 were
vulnerable to RowHammer, indicating that RowHammer is a
recent phenomenon affecting more advanced process technol-
ogy generations (as also demonstrated repeatedly by various
works that come after our ISCA 2014 paper [12], [17], [66],
[140], [196], [239]).

A. RowHammer Mechanisms

In general, disturbance errors occur whenever there is a
strong enough interaction between two circuit components
(e.g., capacitors, transistors, and wires) that should be isolated
from each other. Depending on which component interacts
with which other component and also how they interact, many
different modes of disturbance are possible.

Among them, our ISCA 2014 paper identifies one partic-
ular disturbance mode that affects commodity DRAM chips
from all three major manufacturers. When a wordline’s volt-
age is toggled repeatedly, some cells in nearby rows leak
charge at a much faster rate than others. Such vulnerable
cells, if disturbed enough times, cannot retain enough charge
for even 64 ms, the time interval at which they are refreshed.
Ultimately, this leads to the cells losing data and experiencing
disturbance errors.

Without analyzing existing DRAM chips at the device-level,
which is an option not available for us, we cannot make defini-
tive claims about how a wordline interacts with nearby cells
to increase their leakiness. Our ISCA 2014 paper hypothe-
sizes, based on past studies and findings, that there may be

1This infrastructure is currently released to the public, and is described in
detail in our HPCA 2017 paper [98]. The infrastructure has enabled many
studies [57], [58], [79], [98], [114]–[116], [132], [146], [149], [159], [201]
into the failure and performance characteristics of modern DRAM, which
were previously not well understood.

2Test details and experimental setup, along with a listing of all modules and
their characteristics, are reported in our original RowHammer paper [132].

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



MUTLU AND KIM: ROWHAMMER: RETROSPECTIVE 1557

three ways of interaction. At least two major DRAM man-
ufacturers have confirmed all three of these hypotheses as
potential causes of disturbance errors. First, changing the volt-
age of a wordline could inject noise into an adjacent wordline
through electromagnetic coupling [60], [171], [206]. This par-
tially enables the adjacent row of access-transistors for a short
amount of time and facilitates the leakage of charge from vul-
nerable cells. Thus, if a row is hammered enough times to
disturb such vulnerable cells before they get refreshed, charge
in such cells get drained to a point that the original cell values
are not recoverable any more. Second, bridges are a well-
known class of DRAM faults in which conductive channels are
formed between unrelated wires and/or capacitors [19], [20].
One study on embedded DRAM (eDRAM) found that toggling
a wordline could accelerate the flow of charge between two
bridged cells [103]. Third, it has been reported that toggling
a wordline for hundreds of hours can permanently damage
it by hot-carrier injection [64]. If some of the hot-carriers
are injected into the neighboring rows, this could modify the
amount of charge in their cells or alter the characteristics of
their access-transistors to increase their leakiness.

Several recent works have tried to examine and model
RowHammer at the circuit level; we survey these works in
Section III-C.

B. User-Level RowHammer

Our ISCA 2014 paper also demonstrates that a very sim-
ple user-level program [3], [132] can reliably and consistently
induce RowHammer errors in three commodity Advanced
Micro Devices (AMD) and Intel systems using vulnerable
DRAM modules. We released the source code of this pro-
gram [3], which Google Project Zero later enhanced [4].
Using our user-level RowHammer test program, we showed
that RowHammer errors violate two invariants that memory
should provide: 1) a read access should not modify data at
any address and 2) a write access should modify data only at
the address that it is supposed to write to. As long as a row
is repeatedly opened, both read and write accesses can induce
RowHammer errors, all of which occur in rows other than
the one that is being accessed. Since different DRAM rows
are mapped (via mechanisms in the system software and the
memory controller) to different software pages, our user-level
program could reliably corrupt specific bits in pages belong-
ing to other programs. As a result, RowHammer errors can be
exploited by a malicious program to breach memory protection
and compromise the system. In fact, we hypothesized, in our
ISCA 2014 paper, that our user-level program, with some engi-
neering effort, could be developed into a disturbance attack
that injects errors into other programs, crashes the system, or
hijacks control of the system. We left such research for the
future since our primary objective in our ISCA 2014 paper
was to understand and prevent RowHammer errors [132].

C. Characteristics of RowHammer

Our ISCA 2014 paper [132] provides a detailed exper-
imental analysis of various characteristics of RowHammer,
including its prevalence across DRAM chips, access pat-
tern dependence, data pattern dependence (DPD), temperature

dependence, address correlation between victim and aggres-
sor memory rows, number of bits in a victim row that flip due
to RowHammer in an adjacent row, number of rows that get
affected due to RowHammer in an adjacent row, relationship of
RowHammer-vulnerable cells with leaky cells that need higher
refresh rates, repeatability of RowHammer errors, the fact that
a memory row is vulnerable to RowHammer on both adjacent
wordlines, and real system demonstration of RowHammer.
We omit these analyses here in this retrospective and focus
on security vulnerabilities and prevention of RowHammer.
We refer the reader to [132] for a rigorous treatment of the
characteristics of the RowHammer phenomenon.

One of the key takeaways from our characterization is
that RowHammer-induced errors are predictably repeatable. In
other words, if a cell’s value gets corrupted via RowHammer,
the same cell’s value is very likely to get corrupted again via
RowHammer. This repeatability enables the construction of
repeatable security attacks in a controlled manner, which we
briefly discuss next and cover in detail in Section III-A.

D. RowHammer as Security Threat

RowHammer exposes a security threat since it leads to a
breach of memory isolation, where accesses to one row (e.g.,
a user-level memory page) modifies the data stored in another
memory row (e.g., a privileged operating system page). As
indicated above, malicious software can be written to take
advantage of these disturbance errors. We call these distur-
bance attacks [132], or RowHammer attacks. Such attacks
can be used to corrupt system memory, crash a system, or
take over the entire system. Confirming the predictions of
our ISCA paper [132], researchers from Google Project Zero
developed a user-level attack that exploits RowHammer to gain
kernel privileges and thus take over an entire system [213],
[214]. More recently, researchers showed that RowHammer
can be exploited in various ways to take over various classes
of systems. As such, the RowHammer problem has widespread
and profound real implications on system security, threatening
the foundations of memory isolation on top of which modern
system security principles are built. We survey the works that
exploit RowHammer to build many different security attacks
in Section III-A.

E. RowHammer Solutions

Our ISCA 2014 paper discusses and analyzes seven dif-
ferent countermeasures to the RowHammer problem. Each
solution makes a different tradeoff between feasibility, cost,
performance, power, and reliability. Among them, we believe
our seventh and last solution, called PARA, to be the most
efficient with the lowest overhead.

The first six solutions are as follows.
1) Manufacturing better DRAM chips that are not

vulnerable.
2) Using (strong) error correcting codes (ECCs) to correct

RowHammer-induced errors.
3) Increasing the refresh rate for all of memory.
4) Statically remapping/retiring RowHammer-prone cells

via a one-time post-manufacturing analysis.
5) Dynamically remapping/retiring RowHammer-prone

cells during system operation.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



1558 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

6) Accurately identifying hammered rows during runtime
and refreshing their neighbors.3

We will not go into significant detail in this summary and
retrospective, but none of these first six solutions are very
desirable as they come at significant power, performance or
cost overheads, as we describe in our original work [132].
We will revisit some of these solutions in Section III-B
of this paper, when we survey related work that builds on
RowHammer.

Our ISCA 2014 paper’s main proposal to prevent
RowHammer is a low-overhead mechanism called PARA. The
key idea of PARA is simple: every time a row is opened and
closed, one or more of its adjacent rows are also opened (i.e.,
refreshed) with some low probability p (by the memory con-
troller or the DRAM chip). If one particular row happens to
be opened and closed repeatedly, then it is statistically cer-
tain that the row’s adjacent rows will eventually be opened
as well, as we show in our original work, assuming p is
chosen intelligently and carefully. The main advantages of
PARA are that: 1) it is stateless in the sense that it does
not require expensive hardware data-structures to count the
number of times that rows have been opened or to store the
addresses of the aggressor/victim rows and 2) its performance
and power consumption overheads are very low due to the
infrequent activation of only adjacent rows of a closed row.
Our ISCA 2014 paper provides a memory-controller-based
implementation of PARA, evaluates its reliability guarantee
against adversarial access patterns, and empirically examines
its performance overhead. We show that by setting the proba-
bility of refresh of adjacent rows p to a reasonable yet very low
value (e.g., 0.001 or 0.005), PARA provides a strong guarantee
against RowHammer and leads to a very small performance
overhead of less than 0.75%. More detailed discussion of the
implementation and evaluation of PARA can be found in our
original work. We will revisit PARA in Section III-B of this
paper.

III. SURVEY OF WORKS THAT BUILD ON ROWHAMMER

RowHammer has spurred a significant amount of research
since its publication in 2014. In this section, we provide a
categorical survey of the array of works that build off of our
original paper that introduces the concept of RowHammer and
disturbance attacks [132]. We describe seven different types
of works.

1) Security attacks that exploit the RowHammer
vulnerability.

2) Defense and mitigation mechanisms against the
RowHammer phenomenon and the security attacks.

3) Circuit-level studies that aim to understand and model
the RowHammer phenomenon.

4) Other works that exploit RowHammer for various
purposes.

5) Works that build platforms to study RowHammer.
6) Pop culture references to RowHammer.

3Several early patent applications propose to maintain an array of counters
(“detection logic”) in either the memory controller [25], [27], [88] or in the
DRAM chips themselves [26], [28], [87]. If the counters are tagged with the
addresses of only the most recently activated rows, the number of required
counters can be significantly reduced [88].

7) Works that show that the RowHammer phenomenon
continues to exist in future generation DRAM chips
younger than the ones we examined in our original ISCA
2014 paper.

While we describe the works, we also point out the potential
for future research in each topic area.

A. Exploits Using RowHammer

Inspired by our ISCA 2014 paper’s fundamental find-
ings, researchers from Google Project Zero demonstrated
in 2015 that RowHammer can be effectively exploited
by user-level programs to gain kernel privileges on real
systems [213], [214]. Google Project Zero presented two
exploits using RowHammer. The first exploit runs as a Native
Client (NaCl) program and escalates privilege to escape from
the x86-64 sandbox environment. Since NaCl statically val-
idates code before running it, Google Project Zero simply
shows that an attacker can modify safe instructions to become
unsafe. The second exploit, which is even more powerful, runs
as a normal x86-64 process on Linux and escalates privilege
to gain access to all of physical memory and thus take over the
entire system. The attacker hammers a page table entry (PTE)
such that it changes the PTE to point to a page table owned
by the attacking process. This gives the attacking process full
read–write access to its own page table and hence to all of
physical memory, which enables the attacking process to take
over the entire system.

Tens of other works since then demonstrated other attacks
exploiting RowHammer and we explain several of them in
some detail here. One involves the takeover of a victim VM
by another attacker VM running on the same system [205].
In [205], the attacker VM writes a memory page that it
knows exists in the victim VM at a RowHammer-vulnerable
memory location. If memory deduplication merges the vic-
tim VM’s and attacker VM’s duplicate pages to the attacker
VM page’s location, the attacker can then induce RowHammer
failures in the deduplicated page’s data, which is shared by
both attacker and victim. Since RowHammer attacks mod-
ify memory without writes, the deduplication engine does not
detect the modification to memory, and the victim VM contin-
ues to use the corrupted page. The authors show two attacks
using this method. The first attack compromises OpenSSH [10]
by modifying the public keys in a victim VM such that
the attacker can easily generate a private key that matches
the modified public key. It is easier to generate a private
key when a public key becomes easily factorable. The sec-
ond attack compromises the Linux package installation tool,
apt-get [8] using two steps. First, the attacker flips a bit in the
apt-get domain name of the victim, such that the victim’s apt-
get requests are redirected to a malicious repository. Second,
the attacker flips a bit in the page containing the Ubuntu
Archive Signing Keys, which are used to check the validity
of packages before installation. Thus, this paper exploits the
RowHammer vulnerability to break both OpenSSH public key
authentication and install malicious software via widely used
installation tools.

The Drammer work [239] demonstrates an attack that
exploits RowHammer on a mobile device using a mali-
cious user-level application that requires no permissions.
This is the first demonstration of RowHammer attacks on

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



MUTLU AND KIM: ROWHAMMER: RETROSPECTIVE 1559

ARM-based systems. The work takes advantage of the deter-
ministic memory allocation patterns in the Android Linux
Operating System. By exploiting these deterministic memory
allocation patterns, the authors present a methodology for
forcing a victim process to allocate its PTE in a RowHammer-
vulnerable region of memory. To do this, the attacker process
must essentially allocate all possible memory regions for a
page table allocation and then release the page table alloca-
tion that contains the RowHammer-vulnerable DRAM cells
at bit offsets that enable exploitation. Because of the use
of buddy allocation [134] (an allocation scheme that forces
allocations to the smallest available contiguous region of
memory) in Linux platforms, the attacker does not need to
allocate all of memory and risk crashing the system. The
researchers found 18 out of 27 phone models to be vulnerable
to RowHammer and have since released a mobile applica-
tion that tests memory for RowHammer-vulnerable cells and
aggregates statistics on how widespread the RowHammer
phenomenon is on mobile devices. This paper shows that exist-
ing mobile systems are widely vulnerable to RowHammer
attacks.

Gruss et al. [90] demonstrated a remote takeover of a
server vulnerable to RowHammer via JavaScript code exe-
cution. Since JavaScript is present and enabled by default in
every modern browser, this paper demonstrates the proof-of-
concept that the RowHammer attack can be launched by a
Website to gain root privileges on a system that visits the
Website.

Other works that have demonstrated attacks exploiting
RowHammer include takeover of a mobile system by trig-
gering RowHammer using the WebGL interface on a mobile
GPU [76], [89], takeover of a remote system by triggering
RowHammer through the RDMA protocol [156], [233], and
various other attacks [12], [31]–[33], [37], [54], [66], [73],
[89], [107], [196], [197], [199], [234], [249], [258]. Thus,
RowHammer has widespread and profound real implications
on system security, as it breaks memory isolation on top of
which modern system security principles are built.

This paper has inspired many researchers to exploit
RowHammer to devise new attacks. As mentioned earlier, tens
of papers were written in top security venues that demonstrate
various practical attacks exploiting RowHammer (e.g., [12],
[31]–[33], [37], [54], [66], [73], [76], [89], [90], [107], [156],
[196], [197], [199], [205], [213], [214], [233], [234], [239],
[249], and [258]). These attacks started with Google Project
Zero’s first work in 2015 [213], [214] and they continue to this
date, with the latest ones that we know of being published in
late 2018 [31], [33], [54], [156], [197], [233], [234], [258]
and mid 2019 [66]. We believe there is a lot more to come in
this direction: as systems security researchers understand more
about RowHammer, and as the RowHammer phenomenon
continues to fundamentally affect memory chips due to tech-
nology scaling problems [174], researchers and practitioners
will develop different types of attacks to exploit RowHammer
in various contexts and in many more creative ways. Various
recent reports suggest that new-generation DDR4 DRAM and
other DRAM chips are vulnerable to RowHammer [12], [17],
[66], [140], [196], as we examine further in Section III-G, so
the fundamental security research on RowHammer is likely to
continue into the future.

B. Defenses Against RowHammer

This paper also inspired many solution and mitigation tech-
niques for RowHammer from both researchers and industry
practitioners. Apple [21] publicly mentioned, in their crit-
ical security release for RowHammer, that they increased
the memory refresh rates due to the “original research by
Kim et al. [133].” The industry-standard Memtest86 program,
which is used to test deployed memory chips for errors, was
updated, including a RowHammer test, acknowledging our
ISCA 2014 paper [192]. Many academic works developed
solutions to RowHammer, working from our original research
(e.g., [23], [38], [40], [81], [105], [119], [150], [188], [220],
[224], and [240]). Additionally, many patents for solutions to
RowHammer have been filed [25]–[28], [30], [88]. We believe
such solutions will continue to be generated in both academia
and industry, extending RowHammer’s impact into the very
long term. We cover some of these solutions in this section.

Given that RowHammer is such a critical vulnerability, it
is important to find both immediate and long-term solutions
to the RowHammer problem (as well as related problems that
might cause similar vulnerabilities). The goal of the immediate
solutions is to ensure that existing systems are patched such
that the vulnerable DRAM devices that are already in the field
cannot be exploited. The goal of the long-term solutions is
to ensure that future DRAM devices do not suffer from the
RowHammer problem when they are released into the field.

Given that immediate solutions require mechanisms that
already exist in systems operating in the field, they are
fundamentally more limited. A popular immediate solution,
described and analyzed by our ISCA 2014 paper [132], is
to increase the refresh rate of memory such that the proba-
bility of inducing a RowHammer error before DRAM cells
get refreshed is reduced. Several major system manufacturers
(including Apple, HP, Cisco, Lenovo, and IBM) have adopted
this solution and released security patches that increased
DRAM refresh rates (e.g., [21], [75], [100], and [152]) in the
memory controllers. While this solution might be practical and
effective in reducing the vulnerability, it has the significant
drawbacks of increasing energy/power consumption, reducing
system performance, and degrading quality of service expe-
rienced by user programs. Our paper shows that the refresh
rate needs to be increased by 7.8× its nominal value today,
if we want to eliminate all RowHammer-induced errors we
saw in our tests of 129 DRAM modules! Fig. 2 demonstrates
this paper: if we examine the most RowHammer-vulnerable
module that we test from each manufacturers A, B, and C,
we find that completely eliminating the RowHammer-induced
errors requires us to reduce the refresh interval from the nom-
inal 64–8.2 ms, leading to a 7.8× increase in the refresh rate.
Since DRAM refresh is already a significant burden [59],
[112], [114], [158], [194], [201] on energy consumption,
performance, and quality of service, increasing it by any
significant amount would only exacerbate the problem. Yet,
increased refresh rate is likely the most practical immediate
solution to RowHammer that does not require any significant
change to the system.

Other immediate solutions modify the software [38], [105],
[106], [136], [188], [213], [240], [248]. For example, ANVIL
proposes software-based detection of RowHammer attacks by
monitoring via hardware performance counters and selective

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



1560 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

Fig. 2. Number of RowHammer-induced errors observed on the most
RowHammer-vulnerable module of each DRAM manufacturers A, B, and
C, as the refresh interval is varied from 8 to 128 ms (reproduced from [132]).

explicit refreshing of victim rows that are found to be
under attack [23]. One short-term approach to mitigating
RowHammer attacks is intelligently allocating and physically
isolating pages such that RowHammer cannot affect impor-
tant pages [38], [136], [240]. Brasser et al. [38] extended the
physical memory allocator of the operating system to allocate
memory in such a way that isolates memory pages of different
system entities. Van der Veen et al. [240] prevented DMA-
based attacks by isolating DMA buffers with additional buffer
rows (i.e., guard rows) that do not store data. This ensures
that any DMA-based attack can only induce RowHammer
bit flips in the guard rows without affecting rows containing
important data. Another approach for mitigating RowHammer
statically analyzes code to identify code segments that are
probably RowHammer attacks and prevents them prior to exe-
cution [105]. ZebRAM [136] reserves odd rows as “safe” rows
and even rows as “unsafe” rows such that hammering a safe
row should never result in a RowHammer failure in another
safe row. The unsafe rows are used as swap space and a por-
tion of safe rows are used as a cache for data in the unsafe-row
swap space. Whenever data in unsafe rows is migrated to safe
rows, ZebRAM performs software integrity checks and error
correction. Unfortunately, such software-based solutions usu-
ally: 1) require modifications to system software; 2) might be
intrusive to system operation; and/or 3) might cause signif-
icant performance or memory space overheads (yet they are
still promising to research).

As briefly discussed in Section II-E, our ISCA 2014
paper [132] discusses and analyzes seven short-term and long-
term countermeasures to the RowHammer problem. The first
six solutions are as follows.

1) Making better DRAM chips that are not vulnerable.
2) Using (strong) ECCs to correct RowHammer-induced

errors.
3) Increasing the refresh rate for all of memory.
4) Statically remapping/retiring RowHammer-prone cells

via a one-time post-manufacturing analysis.
5) Dynamically remapping/retiring RowHammer-prone

cells during system operation.
6) Accurately identifying hammered rows during runtime

and refreshing their neighbors.

TABLE I
UNCORRECTABLE MULTIBIT ROWHAMMER ERRORS (IN BOLD)

OBSERVED ON THE MOST ROWHAMMER-VULNERABLE MODULE

OF EACH DRAM MANUFACTURERS A, B, AND C
(REPRODUCED FROM [132])

This paper shows that the first six solutions are not very desir-
able as they come at significant power, performance, or cost
overheads. We already discussed the overheads of increasing
the refresh rates across the board. Similarly, the use of sim-
ple single-error correcting double-error detecting (SECDED)
ECCs, as employed in many server and datacenter systems,
is not enough to prevent all RowHammer errors, as some
cache blocks experience two or more bit flips, which are
not correctable by SECDED ECC, as we have shown in our
ISCA 2014 paper [132]. Table I demonstrates this by showing
how many 64-bit words in the full address-space (0–2 GB)
of the most RowHammer-vulnerable DRAM modules of the
three major DRAM manufacturers contain 1, 2, 3, or 4 victim
cells. While most words have just a single victim, there are
also some words with multiple victims. Thus, stronger ECC
is very likely required to correct RowHammer errors, which
comes at the cost of additional energy, performance, cost, and
DRAM capacity overheads.4 Alternatively, the sixth solution
described above, i.e., accurately identifying a row as a ham-
mered row requires keeping track of access counters for a large
number of rows in the memory controller [119], potentially
leading to very large hardware area and power consumption,
and performance, overheads.

There are many other works that propose long-term solu-
tions [28], [30], [40], [68], [81], [82], [88], [110], [127], [133],
[150], [211], [220], [224], [241], [243], building on our orig-
inal work. Son et al. [224] used a probabilistic mechanism
similar to PARA in the original RowHammer paper in addi-
tion to a small stack for maintaining access history information
to determine whether adjacent rows need to be refreshed to
avoid bit flips. References [150], [220], [241], and [243] are
counter-based defenses that rely on maintaining access counts
to DRAM rows and refreshing adjacent rows when the access
count of a row exceeds a predetermined threshold. These
works focus on reducing the overhead of counting accesses
to DRAM addresses to enable a viable implementation of the
sixth solution we described above.

We believe the long-term solution to RowHammer can actu-
ally be very simple and low cost: when the memory controller
closes a row (after it was activated), it, with a very low prob-
ability, refreshes the adjacent rows. The probability value is a

4Note that protecting all memory rows with strong ECC is likely a wasteful
solution for RowHammer because RowHammer-induced bit-flips are access-
pattern dependent; they are not randomly occurring bit-flips. Since only a
small number of rows can be hammered at a given time, paying the capacity,
cost, and energy overheads of extra redundancy required for strong ECC for
all memory rows, solely to protect them against RowHammer, is likely not
an efficient solution to the RowHammer problem.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



MUTLU AND KIM: ROWHAMMER: RETROSPECTIVE 1561

parameter determined by the system designer or provided pro-
grammatically, if needed, to trade off between performance
overhead and vulnerability protection guarantees. We show
that this probabilistic solution, called PARA, is extremely
effective: it eliminates the RowHammer vulnerability, provid-
ing much higher reliability guarantees than modern hard disks
today, while requiring no storage cost and having negligible
performance and energy overheads [132].

PARA is not immediately implementable in an existing
system because it requires changes to either the memory
controllers or the DRAM chips, depending on where it is
implemented. If PARA is implemented in the memory con-
troller, the memory controller needs to obtain information on
which rows are adjacent to each other in a DRAM bank. This
information is currently unknown to the memory controller
as DRAM manufacturers can internally remap rows to other
locations [115], [116], [132], [149], [159] for various reasons,
including for tolerating various types of faults. However, this
information can be simply provided by the DRAM chip to
the memory controller using the serial presence detect read-
only memory present in modern DRAM modules, as described
in our ISCA 2014 paper [132]. It appears that some very
recent Intel memory controllers implement a limited variant
of PARA, whose adjacent-row activation probability can be
chosen by the user via modifications in the BIOS [5]. If
PARA is implemented in the DRAM chip, then the hard-
ware interface to the DRAM chip should be such that it
allows DRAM-internal refresh operations that are not initi-
ated by an external memory controller. This could be achieved
with the addition of a new DRAM command, like the tar-
geted refresh command proposed in a patent by Intel [29].
In 3-D-stacked memory technologies [129], [148], e.g., high
bandwidth memory (HBM) [108], [148] or hybrid memory
cube (HMC) [7], which combine logic and memory in a tightly
integrated fashion, the logic layer can be easily modified to
implement PARA.5 Alternatively, if the memory interface is
asynchronous with the processor, a simple controller that is
tightly coupled with the memory chip can freely and easily
implement PARA internally to the memory chip.

All these implementations of the promising PARA solu-
tion are examples of much better cooperation between
memory controller and the DRAM chips. Regardless of
the exact implementation, we believe RowHammer, and
other upcoming reliability vulnerabilities like RowHammer,
can be much more easily found, mitigated, and prevented
with better cooperation between and co-design of system
and memory, i.e., system-memory co-design [173]. System-
memory co-design is explored by recent works for mitigating
various DRAM-based security and DRAM scaling issues,
including retention failures and performance problems

5Alternatively, for a solution like PARA to be implemented in the DRAM
chip, without modifying the hardware interface to the DRAM chip, one
can exploit the timing slack in the DRAM timing parameters that already
exist under various conditions. For example, the timing slack in the specified
precharge timing parameter or the refresh latency parameter can be exploited
by the DRAM chip itself to internally issue refresh operations to targeted
rows with some probability. Even though such timing slack exists in DRAM
chips, as shown by many recent experimental studies [57], [69], [124], [146],
[149], we do not believe this is a robust solution since: 1) the timing slack
may not exist under all operating conditions or for all chips and 2) many
studies would like to reduce the timing slack as much as possible to improve
DRAM performance and energy [57], [69], [124], [146], [149].

(e.g., [56], [57], [59], [97], [112]–[116], [124]–[126],
[128], [132], [145]–[147], [149], [158], [159], [163], [173],
[181], [201], [203], [215]–[217], [229]–[231], [235], [236],
and [250]). Taking the system-memory co-design
approach further, providing more intelligence and
configurability/programmability/patch-ability in the memory
controller can greatly ease the tolerance to errors like
RowHammer: when a new failure mechanism in memory
is discovered, the memory controller can be config-
ured/programmed/patched to execute specialized functions
to profile and correct for such mechanisms. We believe
this direction is very promising, and several works have
explored online profiling mechanisms for fixing retention
errors [114]–[117], [194], [201], reducing latency [149],
and reducing energy consumption [58]. These works pro-
vide examples of how an intelligent memory controller
can alleviate the retention failures, and thus the DRAM
refresh problem [158], [159], as well as the DRAM latency
problem [145], [146].

C. Circuit-Level Studies of RowHammer

A very recent work [252] presents evidence via 3-D CAD
simulations with single charge traps, that the RowHammer
effect is governed by the charge pumping process. The
RowHammer effect is exacerbated when charge is captured
around an aggressor wordline and carriers migrate to vic-
tim wordlines. The authors also find that feature size scaling
aggravates the RowHammer effect, which could make it more
difficult to mitigate in future DRAM generations.

Yun et al. [255] provided a study of the effects of irradiat-
ing DRAM on the RowHammer phenomenon, with two major
findings. First, the study finds that irradiating DRAM with
gamma rays increases the number of DRAM rows that are
vulnerable to RowHammer. Second, the authors correlated the
cells that are vulnerable to RowHammer with those that have
low data retention times and they found almost no correlation,
corroborating the results of our ISCA 2014 paper.

Lim et al. [155] also irradiated DRAM with gamma rays,
which results in cells with lower data retention times and
cells with a higher susceptibility to RowHammer failures. The
authors then performed temperature annealing (i.e., a method
for baking DRAM at a high temperature to “repair” retention-
weak cells) on the DRAM devices and found that cells that
experience a higher susceptibility to RowHammer after irradi-
ation maintain the higher susceptibility to RowHammer even
after temperature annealing.

Ryu et al. [208] presented evidence that hydrogen (H2)
annealing of cell-transistors during the dry etch process shows
a reduction in interface trap density. Since the RowHammer
failure is mainly caused by the traps in the interface (according
to the authors’ hypotheses), the authors show that this tech-
nique can help to improve DRAM reliability against crosstalk
and thus alleviate RowHammer attacks.

Park et al. [190], [191] experimentally tested DDR3 devices
for RowHammer susceptibility, showed statistical distributions
of RowHammer failures across many devices, and presented
evidence that the root cause of the RowHammer phenomenon
is charge recombination of the victim cell with electrons
from the current channels between neighboring cells and their
corresponding bitlines.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



1562 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

D. Other Works Exploiting RowHammer

There are other papers that build upon RowHammer but
do not necessarily show a RowHammer attack or defense.
One work shows that the RowHammer phenomenon can be
used as a security primitive. Schaller et al. [210] showed that
RowHammer can be used as an effective physical unclonable
function (PUF), a function that generates unique identifiers
(i.e., fingerprints) of a device based on the unique proper-
ties of the device due to manufacturing variation. The authors
experimentally showed that by reserving a region of memory
and inducing RowHammer failures in each of the rows of
the region, they can generate bit flips in the region whose
locations are unique to the device and can be used to iden-
tify the device. A more recent work [256] presents an attack
on the RowHammer-based PUF [210] by effectively showing
that hammering on rows surrounding the region reserved by
the RowHammer-based PUF causes the rows at the edges of
the reserved DRAM region to have an increased number of bit
flips. This results in a modification of the resulting fingerprint,
which then results in an unidentifiable device.

E. Platforms for Studying RowHammer

Many prior works present ways to make studying
RowHammer easier. Reference [74] describes their Raspberry
Pi operating system for exploring memory concepts simply due
to a direct linear mapping between virtual addressses to physical
addresses. This mitigates the difficulty of determining which
DRAM rows are physically adjacent. SoftMC [98], [223] is an
FPGA-based memory controller implementation that enables
testing custom DRAM timing parameter values with direct
access to DRAM physical addresses. Drammer [70], [71] is
an open-source Android application that tests mobile devices
for vulnerability to the RowHammer exploit and gathers data
from users to determine how widespread the RowHammer
vulnerability is across many generations of mobile devices.
MemTest86 [192] is software that tests DRAM for many types
of reliability issues. As described above, after our original ISCA
2014 paper, MemTest86 developers added RowHammer testing
to their suite, which enables users to test their system for the
RowHammer vulnerability. References [31], [106], and [188]
provide methods for reverse engineering DRAM address map-
ping such that attackers can determine the two rows that
surround a victim row and hammer the victim row more
effectively for causing RowHammer failures. Vila et al. [242]
provided an algorithm for determining the eviction set of cache
lines in linear time such that an attacker can maximize accesses
to DRAM even when caching is unavoidable. Aichinger [17]
repurposed a DDR protocol analyzer with a DIMM interposer
to count the activations to each row within a 64-ms interval to
detect whether RowHammer occurs in any application.

F. Media References to RowHammer

Our ISCA 2014 work also turned RowHammer into a popu-
lar phenomenon (e.g., [1], [2], [16], [39], [65], [83]–[85], [94],
[104], [118], [138], [140], [185]–[187], [192], [209], [214],
[237], [238], and [244]), which, in turn, has helped make
hardware security even more “mainstream” in popular media
and the broader security community. It showed that hardware
reliability problems can be very serious security threats that

have to be defended against. A well-read article from the
Wired magazine, all about RowHammer, is entitled “Forget
Software—Now Hackers are Exploiting Physics!” [86], indi-
cating the shift of mindset toward very low-level hardware
security vulnerabilities in the popular mainstream security
community. Many other popular articles in press have been
written about RowHammer, many of which pointing to our
ISCA 2014 work [132] as the first demonstration and scientific
analysis of the RowHammer problem. Showing that hardware
reliability problems can be serious security threats and pulling
them to the popular discussion space, and thus influencing the
mainstream discourse, creates a very long term impact for the
RowHammer problem and thus our original ISCA 2014 paper.

G. Persistence of RowHammer Failures in Modern DRAM

Unfortunately, despite the many proposals in industry and
academia to fix the RowHammer issue, RowHammer failures
still seem to be observable in state-of-the-art DRAM devices
in a variety of generations and standards (e.g., DDR4 [12],
[17], [140], [196], ECC DRAM [66], LPDDR3, and LPDDR2
DRAM [239]). This persisting phenomenon suggests that the
security vulnerabilities might continue in the current genera-
tion of DRAM chips as well. As such, it is critical to continue
to investigate solutions to the RowHammer vulnerability.

H. RowHammer in Broader Context

Springing off from the stir created by RowHammer, we take
a step back and argue that there is little that is surprising
about the fact that we are seeing disturbance errors in the
heavily scaled DRAM chips of today. Disturbance errors are
a general class of reliability problems that is present in not
only DRAM, but also other memory and storage technolo-
gies. All scaled memory technologies, including SRAM [62],
[93], [120], flash [42], [45], [46], [50]–[53], [67], [165],
[166], [169], [212], and hard disk drives [109], [232], [247],
exhibit such disturbance problems. In fact, two of our works
experimentally examine read disturb errors in flash memory.

1) Our original work in DATE 2012 [42] that provides a
rigorous experimental study of error patterns in mod-
ern MLC NAND flash memory chips demonstrates the
importance of read disturb error patterns.

2) Our recent work at DSN 2015 [51] experimentally char-
acterizes the read disturb errors in flash memory, shows
that the problem is widespread in recent flash memory
chips, and develops mechanisms to correct such errors
in the flash memory controller.

Even though the mechanisms that cause the bit flips are dif-
ferent in different technologies, the high-level root cause of
the problem, cell-to-cell interference, due to the fact that the
memory cells are too close to each other, is a fundamen-
tal issue that appears and will likely continue to appear in
any technology that scales down to small enough technol-
ogy nodes [53], [252]. Thus, we should expect such problems
to continue as we scale any memory technology, including
emerging ones, to higher densities.

What sets DRAM disturbance errors apart from other tech-
nologies’ disturbance errors is that: 1) DRAM is exposed to the
user-level programs and manipulated directly by a program’s
load and store instructions (which we do not anticipate to

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



MUTLU AND KIM: ROWHAMMER: RETROSPECTIVE 1563

change any time soon, since direct data manipulation in main
memory is a fundamental component of programming lan-
guages and systems) and 2) in modern DRAM, as opposed to
other technologies, strong error correction mechanisms are not
commonly employed (either in the memory controller or the
memory chip). The success of DRAM scaling until recently
has not relied on a memory controller that corrects errors
(other than performing periodic refresh and more recently
employing very simple single-ECCs [9], [112], [183], [184],
[189], [193]). Instead, DRAM chips were implicitly assumed
to be error-free and did not require the help of the controller to
operate correctly. Thus, such errors were perhaps not as eas-
ily anticipated and corrected within the context of DRAM. In
contrast, the success of other technologies, e.g., flash memory
and hard disks, has heavily relied on the existence of an intel-
ligent controller that plays a key role in correcting errors and
making up for reliability problems of the memory chips them-
selves [52]. This has not only enabled the correct operation
of assumed-faulty memory chips but also enabled a mindset
where the controllers are co-designed with the chips them-
selves, covering up the memory technology’s deficiencies and
hence perhaps enabling better anticipation of errors with tech-
nology scaling. This approach is very prominent in modern
solid-state drives (SSDs), for example, where the flash memory
controller employs a wide variety of error mitigation and cor-
rection mechanisms [42]–[48], [50]–[53], [164], including not
only sophisticated strong ECC mechanisms but also targeted
voltage optimization, retention mitigation and disturbance mit-
igation techniques. We believe changing the mindset in modern
DRAM to a similar mindset of assumed-faulty memory chip
and an intelligent memory controller that makes it operate
correctly cannot only enable better anticipation and correction
of future issues like RowHammer but also better scaling of
DRAM into future technology nodes [173].

IV. ONGOING AND FUTURE WORK

We believe there is a lot more research to come that will
build on RowHammer, from at least three perspectives: 1) the
security attack perspective; 2) the defense/mitigation perspec-
tive; and 3) a broader understanding, modeling, and prevention
perspective.

As systems security researchers understand more about
RowHammer, and as the RowHammer phenomenon continues
to fundamentally affect memory chips due to technology scal-
ing problems [174], researchers and practitioners will develop
different types of attacks to exploit RowHammer in vari-
ous contexts and in many more creative ways. RowHammer
is a critical problem that manifests in the difficulties in
DRAM scaling and is expected to only become worse in
the future [175], [180], [181]. As we discussed, some recent
reports suggest that new-generation DRAM chips are vulner-
able to RowHammer (e.g., DDR4 [12], [17], [140], [196],
ECC [66], [132], and LPDDR3 and LPDDR2 [239]). This
indicates that effectively mitigating the RowHammer problem
with low overhead is difficult and becomes more difficult as
process technology scales further. Even with the wide array of
works that build on top of RowHammer, we believe that these
papers have yet to scratch the surface of this field of reliability
and security, especially as manufacturing technology scaling
continues in all technologies. It is critical to deeply understand

the underlying factors of the RowHammer problem (and more
generally the crosstalk problem) such that we can effectively
prevent these issues across all technologies with minimal over-
head. As DRAM cells become even smaller and less reliable,
it is likely for them to become even more vulnerable to com-
plicated and different modes of failure that are sensitized only
under specific access-patterns and/or data-patterns. As a scal-
able solution for the future, our ISCA 2014 paper argues for
adopting a system-level approach [173] to DRAM reliability
and security, in which the DRAM chips, the memory con-
troller, and perhaps the operating system collaborate together
to diagnose/treat emerging DRAM failure modes.

We believe that more and more researchers will focus
on providing security in all aspects of computing so that
such hardware faults that are exposed to the software (and
thus the public) are minimized. RowHammer enabled a shift
of mindset among mainstream security researchers: general-
purpose hardware is fallible (in a very widespread manner)
and its problems are actually exploitable. This shift of mind-
set enabled many systems security researchers to examine
hardware in more depth and understand its inner workings
and vulnerabilities better. We believe it is no coincidence that
two of the groups that concurrently discovered the heavily
publicized Meltdown [157] and Spectre [135] vulnerabilities
(Google Project Zero and TU Graz InfoSec) have heavily
worked on RowHammer attacks before. We believe this shift
in mindset, enabled in good part by the existence and preva-
lence of RowHammer, will continue to be very be important
for discovering and solving other potential vulnerabilities that
may rise as a result of both technology scaling and hardware
design.

A. Other Potential Vulnerabilities

We believe that, as memory technologies scale to higher
densities, other problems may start appearing (or may already
be going unnoticed) that can potentially threaten the founda-
tions of secure systems. There have been recent large-scale
field studies of memory errors showing that both DRAM
and NAND flash memory technologies are becoming less reli-
able [42], [50], [52], [53], [165], [166], [169], [170], [173],
[174], [181], [194], [212], [225]–[227]. As detailed experi-
mental analyses of real DRAM and NAND flash chips show,
both technologies are becoming much more vulnerable to cell-
to-cell interference effects [42], [45]–[48], [51]–[53], [132],
[164], [173], [174], [176], [181], data retention is becom-
ing significantly more difficult in both technologies [42]–[44],
[46], [50], [52], [53], [59], [112], [114]–[116], [158], [159],
[162], [165]–[167], [173], [176], [181], [201], and error vari-
ation within and across chip, and across operating conditions,
is increasingly prominent [42], [46], [55], [57], [124]–[126],
[146], [149], [159]. Emerging memory technologies [168],
[173], such as phase-change memory [141]–[143], [200],
[202], [204], [245], [253], [254], [259], STT-MRAM [61],
[137], and RRAM/ReRAM/memristors [246] are likely to
exhibit similar and perhaps even more exacerbated reliability
issues. We believe, if not carefully accounted for and corrected,
these reliability problems may surface as security problems as
well, as in the case of RowHammer, especially if the technol-
ogy is employed as part of the main memory system that is
directly exposed to user-level programs.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



1564 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

We briefly examine two example potential vulnerabilities.
We believe future work examining these vulnerabilities, among
others, are promising for both fixing the vulnerabilities and
enabling the effective scaling of memory technology.

1) Data Retention Failures: Data retention is a fundamen-
tal reliability problem, and hence a potential vulnerability,
in especially charge-based memories like DRAM and flash
memory. This is because charge leaks out of the charge stor-
age unit (e.g., the DRAM capacitor or the NAND flash floating
gate) over time. As such memories become denser, three major
trends make data retention more difficult [50], [112], [158],
[159]. First, the number of memory cells increases, leading to
the need for more refresh operations to maintain data correctly.
Second, the charge storage unit (e.g., the DRAM capacitor)
becomes smaller and/or morphs in structure, leading to poten-
tially lower retention times. Third, the voltage margins that
separate one data value from another become smaller (e.g.,
the same voltage window gets divided into more “states” in
NAND flash memory, to store more bits per cell), and, as
a result, the same amount of charge loss is more likely to
cause a bit error in a smaller technology node than in a
larger one.

a) DRAM data retention issues: Data retention issues
in DRAM are a fundamental scaling limiter of the DRAM
technology [112], [159], [173]. We have shown, in recent
works based on rigorous experimental analyses of modern
DRAM chips [114], [116], [117], [159], [194], [201], that
determining the minimum retention time of a DRAM cell is
getting significantly more difficult. Thus, determining the cor-
rect rate at which to refresh DRAM cells has become more
difficult, as also indicated by industry [112]. This is due to two
major phenomena, both of which get worse (i.e., become more
prominent) with technology scaling. First, DPD: the retention
time of a DRAM cell is heavily dependent on the data pattern
stored in itself and in the neighboring cells [159]. Second, vari-
able retention time (VRT): the retention time of some DRAM
cells can change drastically over time, due to a memoryless
random process that results in very fast charge loss via a phe-
nomenon called trap-assisted gate-induced drain leakage [159],
[207], [251]. These phenomena greatly complicate the accu-
rate determination of minimum data retention time of DRAM
cells. In fact, VRT, as far as we know, is very difficult to test
for because there seems to be no way of determining that a
cell exhibits VRT until that cell is observed to exhibit VRT
and the time scale of a cell exhibiting VRT does not seem to
be bounded, given the current experimental data [114], [159],
[194], [201]. As a result, some retention errors can easily
slip into the field because of the difficulty of the retention
time testing. Therefore, data retention in DRAM is a vulner-
ability that can greatly affect both reliability and security of
current and future DRAM generations. We encourage future
work to investigate this area further, from both reliability and
security, as well as performance and energy efficiency per-
spectives. Various works in this area provide insights about
the retention time properties of modern DRAM devices based
on experimental data [98], [114], [116], [117], [159], [194],
[201], develop infrastructures to obtain valuable experimen-
tal data [98], and provide potential solutions to the DRAM
retention time problem [59], [114]–[117], [158], [159], [194],
[201], all of which the future works can build on.

Note that data retention failures in DRAM are likely to be
investigated heavily to ensure good performance and energy
efficiency. And, in fact they already are being investigated for
this purpose (see [59], [114]–[117], [158], [194], [201]). We
believe it is important for such investigations to ensure no
new vulnerabilities (e.g., side channels) open up due to the
solutions developed.

b) NAND flash data retention issues: Experimental anal-
ysis of modern flash memory devices show that the dominant
source of errors in flash memory are data retention errors [42],
[52]. As a flash cell wears out, its charge retention capability
degrades [42], [50], [52], [53], [165], [166], [169], [212] and
the cell becomes leakier. As a result, to maintain the original
data stored in the cell, the cell needs to be refreshed [43],
[44]. The frequency of refresh increases as wearout of the cell
increases. We have shown that performing refresh in an adap-
tive manner greatly improves the lifetime of modern multilevel
cell (MLC) NAND flash memory while causing little energy
and performance overheads [43], [44]. Most high-end SSDs
today employ such adaptive refresh mechanisms.

As flash memory scales to smaller manufacturing technol-
ogy nodes and even more bits per cell, data retention becomes
a bigger problem. As such, it is critical to understand the issues
with data retention in flash memory. Our recent work provides
detailed experimental analysis of data retention behavior of
planar and 3-D MLC NAND flash memory [50], [52], [53],
[165], [166]. We show, among other things, that there is a
wide variation in the leakiness of different flash cells: some
cells leak very fast, some cells leak very slowly. This variation
leads to new opportunities for correctly recovering data from
a flash device that has experienced an uncorrectable error: by
identifying which cells are fast-leaking and which cells are
slow-leaking, one can probabilistically estimate the original
values of the cells before the uncorrectable error occurred.
This mechanism, called retention failure recovery, leads to
significant reductions in bit error rate in modern MLC NAND

flash memory [50], [52], [53] and is thus very promising.
Unfortunately, it also points to a potential security and pri-
vacy vulnerability: by analyzing data and cell properties of a
failed device, one can potentially recover the original data. We
believe such vulnerabilities can become more common in the
future and therefore they need to be anticipated, investigated,
and understood.

2) Other Vulnerabilities in NAND Flash Memory: We
believe other sources of error (e.g., cell-to-cell interference)
and cell-to-cell variation in flash memory can also lead vari-
ous vulnerabilities. For example, another type of variation (that
is similar to the variation in cell leakiness that we described
above) exists in the vulnerability of flash memory cells to read
disturbance [51]: some cells are much more prone to read
disturb effects than others. This wide variation among cells
enables one to probabilistically estimate the original values of
cells in flash memory after an uncorrectable error has occurred.
Similarly, one can probabilistically correct the values of cells
in a page by knowing the values of cells in the neighboring
page [47]. These mechanisms [47], [51] are devised to improve
flash memory reliability and lifetime, but the same phenomena
that make them effective in doing so can also lead to potential
vulnerabilities, which we believe are worthy of investigation
to ensure security and privacy of data in flash memories.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



MUTLU AND KIM: ROWHAMMER: RETROSPECTIVE 1565

As an example, we have recently shown [48] that it is theo-
retically possible to exploit vulnerabilities in flash memory
programming operations on existing SSDs to cause (mali-
cious) data corruption. This particular vulnerability is caused
by the two-step programming method employed in dense flash
memory devices, e.g., MLC NAND flash memory. An MLC
device partitions the threshold voltage range of a flash cell
into four distributions. In order to reduce the number of errors
introduced during programming of a cell, flash manufacturers
adopt a two-step programming method, where the least sig-
nificant bit of the cell is partially programmed first to some
intermediate threshold voltage, and the most significant bit is
programmed later to bring the cell up to its full threshold
voltage. We find that two-step programming exposes new vul-
nerabilities, as both cell-to-cell program interference and read
disturbance can disrupt the intermediate value stored within
a MLC before the second programming step completes. We
show that it is possible to exploit these vulnerabilities on
existing SSDs to alter the partially programmed data, causing
(malicious) data corruption. We experimentally characterize
the extent of these vulnerabilities using contemporary 1X-nm
(i.e., 15–19 nm) flash chips [48]. Building on our experi-
mental observations, we propose several new mechanisms for
MLC NAND flash that eliminate or mitigate disruptions to
intermediate values, removing or reducing the extent of the
vulnerabilities, mitigating potential exploits, and increasing
flash lifetime by 16% [48]. We believe investigation of such
vulnerabilities in flash memory will lead to more robust flash
memory devices in terms of both reliability and security, as
well as performance. In fact, a recent work from IBM builds
on our work [48] to devise a security attack at the file system
level [139].

B. Prevention

Various reliability problems experienced by scaled memory
technologies, if not carefully anticipated, accounted for,
and corrected, may surface as security problems as well,
as in the case of RowHammer. We believe it is criti-
cal to develop principled methods to understand, anticipate,
and prevent such vulnerabilities. In particular, principled
methods are required for three major steps in the design
process.

First, it is critical to understand the potential failure mecha-
nisms and anticipate them beforehand. To this end, developing
solid methodologies for failure modeling and prediction is crit-
ical. To develop such methodologies, it is essential to have real
experimental data from past and present devices. Data avail-
able both at the small scale (i.e., data obtained via controlled
testing of individual devices, as in, e.g., [42]–[53], [57], [114],
[124]–[126], [146], [159], [164]–[166], [193], and [194]) as
well as at the large scale (i.e., data obtained during in-the-field
operation of the devices, under likely uncontrolled conditions,
as in, e.g., [169] and [170]) can enable accurate models for
failures, which could aid many purposes, including the devel-
opment of better reliability mechanisms and prediction of
problems before they occur.

Second, it is critical to develop principled architectural
methods that can avoid, tolerate, or prevent such failure
mechanisms that can lead to vulnerabilities. For this, we advo-
cate co-architecting of the system and the memory together,

as we described earlier. Designing intelligent, flexible, con-
figurable, programmable, and patch-able memory controllers
that can understand and correct existing and potential fail-
ure mechanisms can greatly alleviate the impact of failure
mechanisms on reliability, security, performance, and energy
efficiency. A system-memory co-design approach can also
enable new opportunities, like performing effective process-
ing near or in the memory device (e.g., [13]–[15], [18], [22],
[24], [34]–[36], [56], [63], [72], [77], [78], [80], [91], [92],
[95], [96], [99], [101], [102], [111], [121]–[123], [151], [153],
[154], [160], [161], [172], [178], [179], [182], [195], [198],
[215]–[219], [221], [222], [228], [257], and [260]). In addition
to designing the memory device together with the controller,
we believe it is important to investigate mechanisms for good
partitioning of duties across the various levels of transforma-
tion in computing, including system software, compilers, and
application software.

Third, it is critical to develop principled methods for elec-
tronic design, automation, and testing, which are in harmony
with the failure modeling/prediction and system reliability
methods, which we mentioned in the above two paragraphs.
Design, automation, and testing methods need to provide
high and predictable coverage of failures and work in con-
junction with architectural and across-stack mechanisms. For
example, enabling effective and low-cost online profiling of
DRAM [114]–[116], [149], [159], [194], [201] in a principled
manner requires cooperation of failure modeling mechanisms,
architectural methods, and design, automation, and testing
methods.

V. CONCLUSION

We provided a retrospective on the RowHammer problem
and our original ISCA 2014 paper [132] that introduced the
problem, and a survey of many flourishing works that have
built on RowHammer. It is clear that the reliability of memory
technologies we greatly depend on is reducing, as these tech-
nologies continue to scale to ever smaller technology nodes in
pursuit of higher densities. These reliability problems, if not
anticipated and corrected, can also open up serious security
vulnerabilities, which can be very difficult to defend against,
if they are discovered in the field. RowHammer is an exam-
ple, likely the first one, of a hardware failure mechanism that
causes a practical and widespread system security vulnera-
bility. As such, its implications on system security research
are tremendous and exciting. We hope the summary, retro-
spective, and commentary we provide in this paper on the
RowHammer phenomenon are useful for understanding the
RowHammer problem, its context, mitigation mechanisms,
and the large body of work that has built on it in the past
five years.

We believe that the need to prevent such reliability and
security vulnerabilities at heavily scaled memory technolo-
gies opens up new avenues for principled approaches to:
1) understanding, modeling, and prediction of failures and vul-
nerabilities and 2) architectural as well as design, automation,
and testing methods for ensuring reliable and secure operation.
We believe the future is very bright for research in reliable and
secure memory systems, and many discoveries abound in the
exciting yet complex intersection of reliability and security
issues in such systems.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



1566 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

ACKNOWLEDGMENTS

This paper is based on two previous papers the authors
have written on RowHammer, one that first scientifically
introduced and analyzed the phenomenon in ISCA 2014 [132]
and the other that provided an analysis and future out-
look on RowHammer [174]. This paper is a result of the
research done together with many students and collaborators
over the course of the past eight years. In particular, three
Ph.D. theses have shaped the understanding that led to this
paper. These are Yoongu Kim’s thesis entitled “Architectural
Techniques to Enhance DRAM Scaling” [131], Yu Cai’s thesis
entitled “NAND Flash Memory: Characterization, Analysis,
Modeling and Mechanisms” [49] and his continued follow-
on work after his thesis, summarized in [52] and [53], and
Donghyuk Lee’s thesis entitled “Reducing DRAM Latency
at Low Cost by Exploiting Heterogeneity” [144]. They also
acknowledge various funding agencies (NSF, SRC, Intel
Science and Technology Center for Cloud Computing, CyLab)
and industrial partners (AliBaba, AMD, Google, Facebook,
HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle,
Qualcomm, Rambus, Samsung, Seagate, VMware) who have
supported the presented and other related work in our group
generously over the years. The first version of the talk associ-
ated with this paper was delivered at a CMU CyLab Partners
Conference in September 2015. Other versions of the talk
were delivered as part of an Invited Session at DAC 2016,
with a collaborative accompanying paper entitled ”Who Is
the Major Threat to Tomorrow’s Security? You, the Hardware
Designer” [41], at DATE 2017 [174], and at the Top Picks
in Hardware and Embedded Security workshop, co-located
with ICCAD 2018 [11], where RowHammer was selected as
a Top Pick among hardware and embedded security papers
published between 2012 and 2017. The most recent version
of the associated talk was delivered at COSADE 2019 [177].

REFERENCES

[1] RowHammer Discussion Group. Accessed: Apr. 20, 2019. [Online].
Available: https://groups.google.com/forum/#!forum/rowhammer-
discuss

[2] RowHammer on Twitter. Accessed: Apr. 20, 2019. [Online]. Available:
https://twitter.com/search?q=rowhammer

[3] RowHammer: Source Code for Testing the Row Hammer Error
Mechanism in DRAM Devices. Accessed: Apr. 20, 2019. [Online].
Available: https://github.com/CMU-SAFARI/rowhammer

[4] Test DRAM for Bit Flips Caused by the RowHammer Problem.
Accessed: Apr. 20, 2019. [Online]. Available: https://github.com/
google/rowhammer-test

[5] Tweet About RowHammer Mitigation on x210. Accessed:
Apr. 20, 2019. [Online]. Available: https://twitter.com/isislovecruft/
status/1021939922754723841

[6] (2009). RDMA Consortium. [Online]. Available: http://
www.rdmaconsortium.org

[7] (2012). Hybrid Memory Consortium. [Online]. Available: http://
www.hybridmemorycube.org

[8] (2017). apt-get Linux Man Page. [Online]. Available:
https://linux.die.net/man/8/apt-get

[9] “ECC brings reliability and power efficiency to mobile devices,”
Micron Technol. Inc., Boise, ID, USA, Rep., 2017. [Online]. Available:
https://www.micron.com/∼/media/documents/products/whitepaper/
ecc_for_mobile_devices_white_paper.pdf

[10] (2017). OpenSSH. https://www.openssh.com/
[11] (2017). Top Picks in Hardware and Embedded Security—

Workshop Collocated With ICCAD 2018. [Online]. Available:
https://wp.nyu.edu/toppicksinhardwaresecurity/

[12] M. T. Aga, Z. B. Aweke, and T. Austin, “When good protections go
bad: Exploiting anti-DoS measures to accelerate RowHammer attacks,”
in Proc. HOST , 2017, pp. 8–13.

[13] S. Aga et al., “Compute caches,” in Proc. HPCA, Austin, TX, USA,
2017, pp. 481–492.

[14] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,” in
Proc. ISCA, Portland, OR, USA, 2015, pp. 105–117.

[15] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
Proc. ISCA, Portland, OR, USA, 2015, pp. 336–348.

[16] B. Aichinger. (Sep. 2014). The Known Failure Mechanism
in DDR3 Memory Referred to as Row Hammer.
[Online]. Available: http://ddrdetective.com/files/6414/1036/5710/The_
Known_Failure_Mechanism_in_DDR3_memory_referred_to_as_Row_
Hammer.pdf

[17] B. Aichinger, “DDR memory errors caused by row hammer,” in Proc.
HPEC, Waltham, MA, USA, 2015, pp. 1–5.

[18] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in memory
using 3D-stacked DRAM,” in Proc. ISCA, Portland, OR, USA, 2015,
pp. 131–143.

[19] Z. Al-Ars, S. Hamdioui, A. Van De Goor, G. Gaydadjiev, and
J. Vollrath, “DRAM-specific space of memory tests,” in Proc. ITC,
Santa Clara, CA, USA, 2006, pp. 1–10.

[20] Z. Al-Ars, “DRAM fault analysis and test generation,” Ph.D. disserta-
tion, Elect. Eng. Math. Comput. Sci., TU Delft, Delft, The Netherlands,
2005.

[21] About the Security Content of Mac EFI Security Update 2015-001,
Apple Inc., Cupertino, CA, USA, Jun. 2015. [Online]. Available:
https://support.apple.com/en-us/HT204934

[22] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and practical near-DRAM acceleration archi-
tecture for large memory systems,” in Proc. MICRO, Taipei, Taiwan,
2016, pp. 1–13.

[23] Z. B. Aweke et al., “ANVIL: Software-based protection against next-
generation RowHammer attacks,” in Proc. ASPLOS, Atlanta, GA, USA,
2016, pp. 743–755.

[24] O. O. Babarinsa and S. Idreos, “JAFAR: Near-data processing for
databases,” in Proc. SIGMOD, Melbourne, VIC, Australia, 2015,
pp. 2069–2070.

[25] K. S. Bains et al., “Row hammer refresh command,” U.S. Patent
Appl. 14/068 677, Feb. 27, 2014.

[26] K. S. Bains, J. B. Halbert, S. Sah, and Z. Greenfield, “Method,
apparatus and system for providing a memory refresh,” U.S. Patent
Appl. 13/625 741, Mar. 27, 2014.

[27] K. S. Bains J. B. Halbert, C. P. Mozak, T. Z. Schoenborn,
and Z. Greenfield, “Row hammer refresh command,” U.S. Patent
Appl. 13/539 415, Jan. 2, 2014.

[28] K. Bains and J. Halbert, “Distributed row hammer tracking,” U.S.
Patent Appl. 13/631 781, Apr. 3, 2014.

[29] K. Bains et al., “Row hammer refresh command,” U.S. Patent 9 117 544
B2, 2015.

[30] K. S. Bains and J. B. Halbert, “Row hammer monitoring based on
stored row hammer threshold value,” U.S. Patent 9 032 141, May 12,
2015.

[31] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-only
reverse engineering of physical DRAM mappings for RowHammer
attacks,” in Proc. IVSW, 2018, pp. 19–24.

[32] S. Bhattacharya and D. Mukhopadhyay, “Curious case of RowHammer:
Flipping secret exponent bits using timing analysis,” in Proc. CHES,
Santa Barbara, CA, USA, 2016, pp. 602–624.

[33] S. Bhattacharya and D. Mukhopadhyay, “Advanced fault attacks in soft-
ware: Exploiting the RowHammer bug,” in Fault Tolerant Architectures
for Cryptography and Hardware Security. Singapore: Springer, 2018.

[34] A. Boroumand et al., “LazyPIM: An efficient cache coherence mecha-
nism for processing-in-memory,” IEEE Comput. Archit. Lett., vol. 16,
no. 1, pp. 46–50, Jan./Jun. 2017.

[35] A. Boroumand et al., “Google workloads for consumer devices:
Mitigating data movement bottlenecks,” in Proc. ASPLOS,
Williamsburg, VA, USA, 2018, pp. 316–331.

[36] A. Boroumand et al., “CoNDA: Enabling efficient near-data accelerator
communication by optimizing data movement,” in Proc. ISCA, 2019.

[37] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory deduplication as an advanced exploitation vector,” in Proc.
S&P, San Jose, CA, USA, 2016, pp. 987–1004.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



MUTLU AND KIM: ROWHAMMER: RETROSPECTIVE 1567

[38] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi,
“Can’t touch this: Practical and generic software-only defenses against
RowHammer attacks,” in Proc. USENIX Security, 2017, pp. 117–130.

[39] S. Brown. (Dec. 2018). Rowhammer: The Evolution of a New
Generation of Attacks. [Online]. Available: https://cyware.com/news/
rowhammer-the-evolution-of-a-new-generation-of-attacks-7baa0a3c

[40] L. Bu, J. Dofe, Q. Yu, and M. A. Kinsy, “SRASA: A generalized
theoretical framework for security and reliability analysis in computing
systems,” J. Hardw. Syst. Security, pp. 1–19, Sep. 2018.

[41] W. Burleson, O. Mutlu, and M. Tiwari, “Who is the major threat
to tomorrow’s security? You, the hardware designer,” in Proc. DAC,
Austin, TX, USA, 2016, pp. 1–5.

[42] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC
NAND flash memory: Measurement, characterization, and analysis,” in
Proc. DATE, Dresden, Germany, 2012, pp. 521–526.

[43] Y. Cai et al., “Flash correct-and-refresh: Retention-aware error manage-
ment for increased flash memory lifetime,” in Proc. ICCD, Montreal,
QC, Canada, 2012, pp. 94–101.

[44] Y. Cai et al., “Error analysis and retention-aware error management for
NAND flash memory,” Intel Technol. J., vol. 17, no. 1, pp. 140–164,
2013.

[45] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai “Program interference
in MLC NAND flash memory: Characterization, modeling, and miti-
gation,” in Proc. ICCD, Asheville, NC, USA, 2013, pp. 123–130.

[46] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage dis-
tribution in MLC NAND flash memory: Characterization, analysis, and
modeling,” in Proc. DATE, Grenoble, France, 2013, pp. 1285–1290.

[47] Y. Cai et al., “Neighbor-cell assisted error correction for MLC NAND
flash memories,” in Proc. SIGMETRICS, Austin, TX, USA, 2014,
pp. 491–504.

[48] Y. Cai et al., “Vulnerabilities in MLC NAND flash memory program-
ming: Experimental analysis, exploits, and mitigation techniques,” in
Proc. HPCA, Austin, TX, USA, 2017, pp. 49–60.

[49] Y. Cai, “NAND flash memory: Characterization, analysis, modeling
and mechanisms,” Ph.D. dissertation, Elect. Comput. Eng., Carnegie
Mellon Univ., Pittsburgh, PA, USA, 2012.

[50] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data reten-
tion in MLC NAND flash memory: Characterization, optimization, and
recovery,” in Proc. HPCA, Burlingame, CA, USA, 2015, pp. 551–563.

[51] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read disturb errors in MLC
NAND flash memory: Characterization, mitigation, and recovery,” in
Proc. DSN, Rio de Janeiro, Brazil, 2015, pp. 438–449.

[52] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error charac-
terization, mitigation, and recovery in flash-memory-based solid-state
drives,” Proc. IEEE, vol. 105, no. 9, pp. 1666–1704, Sep. 2017.

[53] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in flash-
memory-based solid-state drives: Analysis, mitigation, and recovery,”
arXiv preprint arXiv:1711.11427, Nov. 2017.

[54] S. Carre, M. Desjardins, A. Facon, and S. Guilley, “OpenSSL Bellcore’s
protection helps fault attack,” in Proc. DSD, Prague, Czech Republic,
2018, pp. 500–507.

[55] K. Chandrasekar et al., “Exploiting expendable process-margins in
DRAMs for run-time performance optimization,” in Proc. DATE,
Dresden, Germany, 2014, pp. 1–6.

[56] K. K. Chang et al., “Low-cost inter-linked subarrays (LISA): Enabling
fast inter-subarray data movement in DRAM,” in HPCA, Barcelona,
Spain, 2016, pp. 568–580.

[57] K. K. Chang et al., “Understanding latency variation in modern DRAM
chips: Experimental characterization, analysis, and optimization,” in
Proc. SIGMETRICS, Antibes, France, 2016, pp. 323–336.

[58] K. K. Chang et al., “Understanding reduced-voltage operation in
modern DRAM devices: Experimental characterization, analysis, and
mechanisms,” in Proc. SIGMETRICS, Urbana, IL, USA, 2017, p. 52.

[59] K. K.-W. Chang et al., “Improving DRAM performance by paralleliz-
ing refreshes with accesses,” in Proc. HPCA, Orlando, FL, USA, 2014,
pp. 356–367.

[60] M. C.-T. Chao, H.-Y. Yang, R.-F. Huang, S.-C. Lin, and C.-Y. Chin,
“Fault models for embedded-DRAM macros,” in Proc. DAC,
San Francisco, CA, USA, 2009, pp. 714–719.

[61] E. Chen et al., “Advances and future prospects of spin-transfer
torque random access memory,” IEEE Trans. Magn., vol. 46, no. 6,
pp. 1873–1878, Jun. 2010.

[62] Q. Chen, H. Mahmoodi, S. Bhunia, and K. Roy, “Modeling and test-
ing of SRAM for new failure mechanisms due to process variations
in nanoscale CMOS,” in Proc. VTS, Palm Springs, CA, USA, 2005,
pp. 292–297.

[63] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in Proc.
ISCA, Seoul, South Korea, 2016, pp. 27–39.

[64] P. C.-F. Chia, S.-J. Wen, and S. H. Baeg, “New DRAM HCI qualifica-
tion method emphasizing on repeated memory access,” in Proc. Integr.
Rel. Workshop, 2010, pp. 142–144.

[65] C. Cimpanu. (Nov. 2018). Rowhammer Attacks Can Now
Bypass ECC Memory Protections. [Online]. Available: https://
www.zdnet.com/article/rowhammer-attacks-can-now-bypass-ecc-
memory-protections/

[66] L. Cojocar et al., “Exploiting correcting codes: On the effectiveness of
ECC memory against RowHammer attacks,” in Proc. S&P, 2019.

[67] J. Cooke, “The inconvenient truths of NAND flash memory,” in Proc.
Flash Memory Summit, 2007.

[68] J.-L. Danger et al., “CCFI-cache: A transparent and flexible hardware
protection for code and control-flow integrity,” in Proc. DSD, Prague,
Czech Republic, 2018, pp. 529–536.

[69] A. Das, H. Hassan, and O. Mutlu, “VRL-DRAM: Improving DRAM
performance via variable refresh latency,” in Proc. DAC, San Francisco,
CA, USA, 2018, pp. 1–6.

[70] Drammer App Source Code. Accessed: Apr. 20, 2019. [Online].
Available: https://github.com/vusec/drammer-app

[71] Drammer Source Code. Accessed: Apr. 20, 2019. [Online]. Available:
https://github.com/vusec/drammer

[72] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM
devices and standard memory modules,” in Proc. HPCA, Burlingame,
CA, USA, 2015, pp. 283–295.

[73] A. P. Fournaris, L. P. Fraile, and O. Koufopavlou, “Exploiting hardware
vulnerabilities to attack embedded system devices: A survey of potent
microarchitectural attacks,” Electronics, vol. 6, no. 3, p. 52, 2017.

[74] P. Francis-Mezger and V. M. Weaver, “A Raspberry Pi operating system
for exploring advanced memory system concepts,” in Proc. Memsys,
Alexandria, VA, USA, 2018, pp. 354–364.

[75] T. Fridley and O. Santos. (Mar. 2015). Mitigations Available
for the DRAM Row Hammer Vulnerability. [Online]. Available:
http://blogs.cisco.com/security/mitigations-available-for-the-dram-row-
hammer-vulnerability

[76] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:
Accelerating microarchitectural attacks with the GPU,” in Proc. IEEE
S&P, San Francisco, CA, USA, 2018, pp. 195–210.

[77] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in Proc. PACT , San Francisco,
CA, USA, 2015, pp. 113–124.

[78] M. Gao and C. Kozyrakis, “HRL: Efficient and flexible reconfigurable
logic for near-data processing,” in Proc. HPCA, Barcelona, Spain, 2016,
pp. 126–137.

[79] S. Ghose et al., “What your DRAM power models are not telling you:
Lessons from a detailed experimental study,” in Proc. SIGMETRICS,
Irvine, CA, USA, 2018, p. 110.

[80] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O. Mutlu,
“The processing-in-memory paradigm: Mechanisms to enable adop-
tion,” in Beyond-CMOS Technologies for Next Generation Computer
Design. Cham, Switzerland: Springer, 2019.

[81] H. Gomez, A. Amaya, and E. Roa, “DRAM Row-Hammer attack
reduction using dummy cells,” in Proc. NORCAS, Copenhagen,
Denmark, 2016, pp. 1–4.

[82] S.-L. Gong, “Memory protection techniques for DRAM scaling-
induced errors,” Ph.D. dissertation, Elect. Comput. Eng., Univ. Texas
at Austin, Austin, TX, USA, 2018.

[83] D. Goodin. (2016). Cutting-Edge Hack Gives Super User Status
by Exploiting DRAM Weakness. [Online]. Available: https://
arstechnica.com/information-technology/2015/03/cutting-edge-hack-
gives-super-user-status-by-exploiting-dram-weakness/

[84] D. Goodin. (2016). Once Thought Safe, DDR4 Memory Shown
to Be Vulnerable to Rowhammer. [Online]. Available: https://
arstechnica.com/information-technology/2016/03/once-thought-safe-
ddr4-memory-shown-to-be-vulnerable-to-rowhammer/

[85] D. Goodin. (2016). Using Rowhammer Bitflips to Root Android
Phones Is Now a Thing. [Online]. Available: https://arstechnica.com/
information-technology/2016/10/using-rowhammer-bitflips-to-root-
android-phones-is-now-a-thing/

[86] A. Greenberg. (2016). Forget Software—Now Hackers Are Exploiting
Physics. [Online]. Available: https://www.wired.com/2016/08/new-
form-hacking-breaks-ideas-computers-work/

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



1568 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

[87] Z. Greenfield, J. B. Halbert, and K. S. Bains, “Method, apparatus and
system for determining a count of accesses to a row of memory,” U.S.
Patent Appl. 13/626 479, Mar. 27, 2014.

[88] Z. Greenfield et al., “Row hammer condition monitoring,” U.S. Patent
Appl. 13/539 417, Jan. 2, 2014.

[89] D. Gruss et al., “Another flip in the wall of RowHammer defenses,”
in Proc. IEEE S&P, San Francisco, CA, USA, 2018, pp. 245–261.

[90] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in JavaScript,” in Proc. 13th Int.
Conf. Detect. Intrusions Malware Vulnerability Assessment (DIMVA),
vol. 9721, Jun. 2016, pp. 300–321.

[91] B. Gu et al., “Biscuit: A framework for near-data processing of big data
workloads,” in Proc. ISCA, Seoul, South Korea, 2016, pp. 153–165.

[92] Q. Guo et al., “3D-stacked memory-side acceleration: Accelerator and
system design,” in Proc. WoNDP, 2014.

[93] Z. Guo et al., “Large-scale SRAM variability characterization in 45 nm
CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3174–3192,
Nov. 2009.

[94] R. Harris. (Dec. 2014). Flipping DRAM Bits—Maliciously.
[Online]. Available: http://www.zdnet.com/article/flipping-dram-
bits-maliciously/

[95] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt,
“Accelerating dependent cache misses with an enhanced memory
controller,” in Proc. ISCA, Seoul, South Korea, 2016, pp. 444–455.

[96] M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous runahead:
Transparent hardware acceleration for memory intensive workloads,”
in Proc. MICRO, Taipei, Taiwan, 2016, pp. 1–12.

[97] H. Hassan et al., “ChargeCache: Reducing DRAM latency by exploit-
ing row access locality,” in Proc. HPCA, Barcelona, Spain, 2016,
pp. 581–593.

[98] H. Hassan et al., “SoftMC: A flexible and practical open-source infras-
tructure for enabling experimental DRAM studies,” in Proc. HPCA,
Austin, TX, USA, 2017, pp. 241–252.

[99] S. M. Hassan et al., “Near data processing: Impact and optimization
of 3D memory system architecture on the uncore,” in Proc. Memsys,
Washington, DC, USA, 2015, pp. 11–21.

[100] Hewlett-Packard Enterprise. (2015). HP Moonshot Component Pack
Version 2015.05.0. [Online]. Available: http://h17007.www1.hp.com/
us/en/enterprise/servers/products/moonshot/component-pack/index.
aspx

[101] K. Hsieh et al., “Accelerating pointer chasing in 3D-stacked memory:
Challenges, mechanisms, evaluation,” in Proc. ICCD, 2016, pp. 25–32.

[102] K. Hsieh et al., “Transparent offloading and mapping (TOM): Enabling
programmer-transparent near-data processing in GPU systems,” in
Proc. ISCA, 2016, pp. 204–216.

[103] R.-F. Huang, H.-Y. Yang, M. C.-T. Chao, and S.-C. Lin, “Alternate
hammering test for application-specific DRAMs and an industrial case
study,” in Proc. DAC, San Francisco, CA, USA, 2012, pp. 1012–1017.

[104] I. Ilascu. (Nov. 2018). ECC Memory Vulnerable to RowHammer
Attack. [Online]. Available: https://www.bleepingcomputer.com/
news/security/ecc-memory-vulnerable-to-rowhammer-attack/

[105] G. Irazoqui et al., “MASCAT: Stopping microarchitectural attacks
before execution,” IACR Cryptol. ePrint Archive, vol. 2016, p. 1196,
Jul. 2016.

[106] N. Izzo, “Reliably achieving and efficiently preventing RowHammer
attacks,” Ph.D. dissertation, Dipartimento di Elettronica, Informazione
e Bioingegneria, Politecnico Milano, Milan, Italy, 2017.

[107] Y. Jang et al., “SGX-Bomb: Locking down the processor via
RowHammer attack,” in Proc. SysTEX, 2017, Art. no. 5.

[108] JESD235 High Bandwidth Memory (HBM) DRAM, JEDEC, Arlington,
VA, USA, 2013.

[109] W. Jiang et al., “Cross-track noise profile measurement for adjacent-
track interference study and write-current optimization in perpendicular
recording,” J. Appl. Phys., vol. 93, no. 10, pp. 6754–6756, 2003.

[110] A. K. Jones, R. Melhem, and D. Kline, “Holistic energy efficient
crosstalk mitigation in DRAM,” in Proc. IGSC, 2017, pp. 1–6.

[111] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via
deep embedding of computation in SRAM,” in Proc. ICASSP, 2014,
pp. 8326–8330.

[112] U. Kang et al., Co-Architecting Controllers and DRAM to Enhance
DRAM Process Scaling, vol. 14. Minneapolis, MN, USA: Memory
Forum, 2014.

[113] C. Keller, F. Gürkaynak, H. Kaeslin, and N. Felber, “Dynamic
memory-based physically unclonable function for the generation of
unique identifiers and true random numbers,” in Proc. ISCAS, 2014,
pp. 2740–2743.

[114] S. Khan et al., “The efficacy of error mitigation techniques for
DRAM retention failures: A comparative experimental study,” in Proc.
SIGMETRICS, 2014, pp. 519–532.

[115] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu,
“A case for memory content-based detection and mitigation of data-
dependent failures in DRAM,” IEEE Comput. Archit. Lett., vol. 16,
no. 2, pp. 88–93, Jul./Dec. 2016.

[116] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An efficient system-level
technique to detect data-dependent failures in DRAM,” in Proc. DSN,
2016, pp. 239–250.

[117] S. Khan et al., “Detecting and mitigating data-dependent DRAM fail-
ures by exploiting current memory content,” in Proc. MICRO, Boston,
MA, USA, 2017, pp. 27–40.

[118] S. Khandelwal. (May 2018). Nethammer—Exploiting DRAM
RowHammer Bug Through Network Requests. [Online]. Available:
https://thehackernews.com/2018/05/remote-rowhammer-attack.html

[119] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for
mitigating row hammering in DRAM memories,” IEEE Comput. Archit.
Lett., vol. 14, no. 1, pp. 9–12, Jan./Jun. 2015.

[120] D. Kim et al., “Variation-aware static and dynamic writability analysis
for voltage-scaled bit-interleaved 8-T SRAMs,” in Proc. ISLPED, 2011,
pp. 145–150.

[121] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3D memory,” in Proc. ISCA, Seoul, South Korea, 2016,
pp. 380–392.

[122] G. Kim et al., “Toward standardized near-data processing with unre-
stricted data placement for GPUs,” in Proc. SC, 2017, pp. 1–12.

[123] J. S. Kim et al., “GRIM-filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies,” BMC Genomics,
vol. 19, p. 89, May 2018.

[124] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing
DRAM access latency by exploiting the variation in local bitlines,” in
Proc. ICCD, 2018, pp. 282–291.

[125] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM latency
PUF: Quickly evaluating physical unclonable functions by exploiting
the latency-reliability tradeoff in modern commodity DRAM devices,”
in Proc. HPCA, 2018, pp. 194–207.

[126] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe:
Using commodity DRAM devices to generate true random num-
bers with low latency and high throughput,” in Proc. HPCA, 2019,
pp. 582–595.

[127] M. Kim, J. Choi, H. Kim, and H.-J. Lee, “An effective DRAM address
remapping for mitigating RowHammer errors,” IEEE Trans. Comput.,
to be published.

[128] Y. Kim et al., “A case for subarray-level parallelism (SALP) in
DRAM,” in Proc. ISCA, 2012, pp. 368–379.

[129] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensi-
ble DRAM simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1,
pp. 45–49, Jan./Jun. 2016.

[130] Y. Kim et al., “RowHammer: Reliability analysis and security impli-
cations,” arXiv preprint arXiv:1603.00747, Feb. 2016.

[131] Y. Kim, “Architectural techniques to enhance DRAM scaling,” Ph.D.
dissertation, Elect. Comput. Eng., Carnegie Mellon Univ., Pittsburgh,
PA, USA, 2015.

[132] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in Proc. ISCA, 2014,
pp. 361–372.

[133] D. Kline, R. Melhem, and A. K. Jones, “Sustainable fault manage-
ment and error correction for next-generation main memories,” in Proc.
IGSC, Orlando, FL, USA, 2017, pp. 1–6.

[134] K. C. Knowlton, “A fast storage allocator,” Commun. ACM, vol. 8,
no. 10, pp. 623–624, 1965.

[135] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
Proc. S&P, 2018, pp. 19–37.

[136] R. K. Konoth et al., “ZebRAM: Comprehensive and compatible soft-
ware protection against RowHammer attacks,” in Proc. OSDI, 2018,
pp. 697–710.

[137] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an energy-efficient main memory alterna-
tive,” in Proc. ISPASS, Austin, TX, USA, 2013, pp. 256–267.

[138] M. Kumar. (May 2018). New RowHammer Attack Can Hijack
Computers Remotely Over the Network. [Online]. Available:
https://thehackernews.com/2018/05/rowhammer-attack-exploit.html

[139] A. Kurmus et al., “From random block corruption to privilege escala-
tion: A filesystem attack vector for RowHammer-like attacks,” in Proc.
WOOT, 2017.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



MUTLU AND KIM: ROWHAMMER: RETROSPECTIVE 1569

[140] M. Lanteigne. (Mar. 2016). How RowHammer Could Be Used
to Exploit Weaknesses in Computer Hardware. [Online]. Available:
http://www.thirdio.com/rowhammer.pdf

[141] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable DRAM alternative,” in Proc. ISCA, 2009,
pp. 2–13.

[142] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase change memory
architecture and the quest for scalability,” Commun. ACM, vol 53, no. 7,
pp. 99–106, 2010.

[143] B. C. Lee et al., “Phase change technology and the future of main
memory,” IEEE Micro, vol. 30, no. 1, p. 143, Jan./Feb. 2010.

[144] D. Lee, “Reducing DRAM latency at low cost by exploiting hetero-
geneity,” arXiv preprint arXiv:1604.0804, Apr. 2016.

[145] D. Lee et al., “Tiered-latency DRAM: A low latency and low cost
DRAM architecture,” in Proc. HPCA, 2013, pp. 615–626.

[146] D. Lee et al., “Adaptive-latency DRAM: Optimizing DRAM timing
for the common-case,” in Proc. HPCA, 2015, pp. 489–501.

[147] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu,
“Decoupled direct memory access: Isolating CPU and IO traffic by
leveraging a dual-data-port DRAM,” in Proc. PACT, San Francisco,
CA, USA, 2015, pp. 174–187.

[148] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu,
“Simultaneous multi-layer access: Improving 3D-stacked memory
bandwidth at low cost,” ACM Trans. Archit. Code Optim., vol. 12,
no. 4, pp. 1–29, 2016.

[149] D. Lee et al., “Design-induced latency variation in modern DRAM
chips: Characterization, analysis, and latency reduction mechanisms,”
Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 1, pp. 1–36, 2017.

[150] E. Lee, S. Lee, G. E. Suh, and J. H. Ah, “TWiCe: Time window counter
based row refresh to prevent row-hammering,” IEEE Comput. Archit.
Lett., vol. 17, no. 1, pp. 96–99, Jan./Jun. 2018.

[151] J. H. Lee, J. Sim, and H. Kim, “BSSync: Processing near memory
for machine learning workloads with bounded staleness consistency
models,” in Proc. PACT, San Francisco, CA, USA, 2015, pp. 241–252.

[152] Row Hammer Privilege Escalation, Lenovo, Hong Kong, Mar. 2015.
[Online]. Available: https://support.lenovo.com/us/en/product_security/
row_hammer

[153] S. Li et al., “Drisa: A DRAM-based reconfigurable in-situ accelerator,”
in Proc. MICRO, 2017, pp. 288–301.

[154] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in Proc. DAC,
Austin, TX, USA, 2016, pp. 1–6.

[155] C. Lim, K. Park, and S. Baeg, “Active precharge hammering to monitor
displacement damage using high-energy protons in 3x-nm SDRAM,”
IEEE Trans. Nucl. Sci., vol. 64, no. 2, pp. 859–866, Feb. 2017.

[156] M. Lipp et al. (2018). Nethammer: Inducing RowHammer
Faults Through Network Requests. [Online]. Available:
https://arxiv.org/abs/1805.04956

[157] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in Proc. USENIX Security, 2018, pp. 973–990.

[158] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
intelligent DRAM refresh,” in Proc. ISCA, 2012, pp. 1–12.

[159] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An exper-
imental study of data retention behavior in modern DRAM devices:
Implications for retention time profiling mechanisms,” in Proc. ISCA,
2013, pp. 60–71.

[160] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent data structures
for near-memory computing,” in Proc. SPAA, 2017, pp. 235–245.

[161] G. H. Loh et al., “A processing in memory taxonomy and a case for
studying fixed-function PIM,” in Proc. WoNDP, 2013.

[162] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving
NAND flash memory lifetime with write-hotness aware retention
management,” in Proc. MSST, Santa Clara, CA, USA, 2015, pp. 1–14.

[163] Y. Luo et al., “Characterizing application memory error vulnerability
to optimize data center cost via heterogeneous-reliability memory,” in
Proc. DSN, Atlanta, GA, USA, 2014, pp. 467–478.

[164] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling
accurate and practical online flash channel modeling for modern MLC
NAND flash memory,” IEEE J. Sel. Areas Commun., vol. 34, no. 9,
pp. 2294–2311, Sep. 2016.

[165] Y. Luo et al., “HeatWatch: Improving 3D NAND flash memory device
reliability by exploiting self-recovery and temperature awareness,” in
Proc. HPCA, 2018, pp. 504–517.

[166] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving
3D NAND flash memory lifetime by tolerating early retention loss and
process variation,” Proc. ACM Meas. Anal. Comput. Syst., vol. 2, no. 3,
pp. 1–48, 2018.

[167] J. A. Mandelman et al., “Challenges and future directions for the
scaling of dynamic random-access memory (DRAM),” IBM J. Res.
Develop., vol. 46, nos. 2–3, pp. 187–212, Mar. 2002.

[168] J. Meza et al., “A case for efficient hardware-software cooperative
management of storage and memory,” in Proc. WEED, 2013.

[169] J. Meza et al., “A large-scale study of flash memory errors in the field,”
in Proc. SIGMETRICS, 2015, pp. 177–190.

[170] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors
in large-scale production data centers: Analysis and modeling of new
trends from the field,” in Proc. DSN, 2015, pp. 415–426.

[171] D.-S. Min et al., “Wordline coupling noise reduction techniques for
scaled DRAMs,” in Proc. Symp. VLSI Circuits, 1990, pp. 81–82.

[172] A. Morad, L. Yavits, and R. Ginosar, “GP-SIMD processing-in-
memory,” ACM Trans. Archit. Code Optim., vol. 11, no. 4, 2015,
Art. no. 53.

[173] O. Mutlu, “Memory scaling: A systems architecture perspective,” in
Proc. IMW, 2013, pp. 1–5.

[174] O. Mutlu, “The RowHammer problem and other issues we may face
as memory becomes denser,” in Proc. DATE, 2017, pp. 1116–1121.

[175] O. Mutlu, “Memory scaling: A systems architecture perspective,” in
Proc. MemCon, 2013, pp. 21–25.

[176] O. Mutlu, “Error analysis and management for MLC NAND flash
memory,” in Proc. Flash Memory Summit, 2014.

[177] O. Mutlu, “RowHammer and beyond,” in Proc. COSADE, 2019,
pp. 3–12.

[178] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun,
“Enabling practical processing in and near memory for data-intensive
computing,” in Proc. DAC, 2019.

[179] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun,
“Processing data where it makes sense: Enabling in-memory compu-
tation,” in Proc. MICPRO, 2019, pp. 28–41.

[180] O. Mutlu et al., “The main memory system: Challenges and opportu-
nities,” Commun. Korean Inst. Inf. Sci. Eng., pp. 26–41, Feb. 2015.

[181] O. Mutlu and L. Subramanian, “Research problems and opportunities
in memory systems,” Supercomput. Front. Innov. Int. J., vol. 1, no. 3,
pp. 19–55, 2014.

[182] L. Nai et al., “GraphPIM: Enabling instruction-level PIM offloading
in graph computing frameworks,” in Proc. HPCA, Austin, TX, USA,
2017, pp. 457–468.

[183] P. Nair, C.-C. Chou, and M. K. Qureshi, “A case for refresh pausing
in DRAM memory systems,” in Proc. HPCA, Shenzhen, China, 2013,
pp. 627–638.

[184] P. J. Nair, V. Sridharan, and M. K. Qureshi, “XED: Exposing on-die
error detection information for strong memory reliability,” in Proc.
ISCA, Seoul, South Korea, 2016, pp. 341–353.

[185] E. Nashilov. (Nov. 2018). Scientists Have Made the Rowhammer More
Dangerous. [Online]. Available: https://threatpost.ru/dutch-researchers-
made-rowhammer-even-more-dangerous/29378/?es_p=8358650

[186] L. H. Newman. (Nov. 2018). An Ingenious Data Hack Is
More Dangerous Than Anyone Feared. [Online]. Available: https://
www.wired.com/story/rowhammer-ecc-memory-data-hack/

[187] S. Nichols. (Nov. 2018). 3 Is the Magic Number (of Bits): Flip
’em at Once and Your ECC Protection Can Be RowHammer’d.
[Online]. Available: https://www.theregister.co.uk/2018/11/21/
rowhammer_ecc_server_protection/

[188] S. Oh and J. Kim, “Reliable RowHammer attack and mitigation based
on reverse engineering memory address mapping algorithms,” in Proc.
WISA, Jeju-do, South Korea, 2018, pp. 146–158.

[189] T.-Y. Oh et al., “25.1 a 3.2Gbps/pin 8Gb 1.0V LPDDR4 SDRAM with
integrated ECC engine for sub-1V DRAM core operation,” in Proc.
ISSCC, San Francisco, CA, USA, 2014, pp. 430–431.

[190] K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and root cause
analysis for active-precharge hammering fault in DDR3 SDRAM under
3× nm technology,” Microelectron. Rel., vol. 57, pp. 39–46, Feb. 2016.

[191] K. Park, D. Yun, and S. Baeg, “Statistical distributions of row-
hammering induced failures in DDR3 components,” Microelectron.
Rel., vol. 67, pp. 143–149, Dec. 2016.

[192] PassMark Software. (2015). MemTest86: The Original Industry
Standard Memory Diagnostic Utility. [Online]. Available:
http://www.memtest86.com/troubleshooting.htm

[193] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and
modeling on-die error correction in modern DRAM: An experimental
study using real devices,” in Proc. DSN, Portland, OR, USA, 2019.

[194] M. Patel, J. S. Kim, and O. Mutlu, “The reach profiler (REAPER):
Enabling the mitigation of DRAM retention failures via profiling at
aggressive conditions,” in Proc. ISCA, Toronto, ON, Canada, 2017,
pp. 255–268.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



1570 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

[195] A. Pattnaik et al., “Scheduling techniques for GPU architectures with
processing-in-memory capabilities,” in Proc. PACT , Haifa, Israel, 2016,
pp. 31–44.

[196] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM addressing for cross-CPU attacks,” in
Proc. USENIX Security, Austin, TX, USA, 2016, pp. 565–581.

[197] D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rosler,
“Attacking deterministic signature schemes using fault attacks,” in
Proc. EuroS&P, London, U.K., 2018, pp. 338–352.

[198] S. H. Pugsley et al., “NDC: Analyzing the impact of 3D-stacked
memory+logic devices on MapReduce workloads,” in Proc. ISPASS,
Monterey, CA, USA, 2014, pp. 190–200.

[199] R. Qiao and M. Seaborn, “A new approach for RowHammer attacks,”
in Proc. HOST , McLean, VA, USA, 2016, pp. 161–166.

[200] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory tech-
nology,” in Proc. ISCA, Austin, TX, USA, 2009, pp. 24–33.

[201] M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu,
“AVATAR: A variable-retention-time (VRT) aware refresh for DRAM
systems,” in Proc. DSN, Rio de Janeiro, Brazil, 2015, pp. 427–437.

[202] M. K. Qureshi et al., “Enhancing lifetime and security of PCM-
based main memory with start-gap wear leveling,” in Proc. MICRO,
New York, NY, USA, 2009, pp. 14–23.

[203] A. Rahmati, M. Hicks, D. E. Holcomb, and K. Fu, “Probable cause:
The deanonymizing effects of approximate DRAM,” in Proc. ISCA,
Portland, OR, USA, 2016, pp. 604–615.

[204] S. Raoux et al., “Phase-change random access memory: A scalable
technology,” IBM J. Res. Develop., vol. 52, nos. 4–5, pp. 465–479,
Jul. 2008.

[205] K. Razavi et al., “Flip Feng Shui: Hammering a needle in the software
stack,” in Proc. USENIX Security, Austin, TX, USA, 2016, pp. 1–18.

[206] M. Redeker, B. F. Cockburn, and D. G. Elliott, “An investigation
into crosstalk noise in DRAM structures,” in Proc. MTDT , 2002,
pp. 123–129.

[207] P. J. Restle, J. W. Park, and B. F. Lloyd, “DRAM variable retention
time,” in Proc. IEDM, San Francisco, CA, USA, 1992, pp. 807–810.

[208] S.-W. Ryu et al., “Overcoming the reliability limitation in the ulti-
mately scaled DRAM using silicon migration technique by hydro-
gen annealing,” in Proc. IEDM, San Francisco, CA, USA, 2017,
pp. 21.6.1–21.6.4.

[209] J. Sanders. (Jun. 2018). Every Android Device From the Last
6 Years May Be At Risk to RAMPage Vulnerability. [Online].
Available: https://www.techrepublic.com/article/every-android-device-
from-the-last-6-years-may-be-at-risk-to-rampage-vulnerability/

[210] A. Schaller et al., “Intrinsic RowHammer PUFs: Leveraging the
RowHammer effect for improved security,” in Proc. HOST , McLean,
VA, USA, 2017, pp. 1–7.

[211] R. Schilling, M. Werner, P. Nasahl, and S. Mangard, “Pointing in the
right direction-securing memory accesses in a faulty world,” in Proc.
ACSAC, 2018, pp. 595–604.

[212] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability in pro-
duction: The expected and the unexpected,” in Proc. USENIX FAST ,
Santa Clara, CA, USA, 2016, pp. 67–80.

[213] M. Seaborn and T. Dullien. (2015). Exploiting the DRAM
RowHammer Bug to Gain Kernel Privileges. [Online]. Available:
http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html

[214] M. Seaborn and T. Dullien, “Exploiting the DRAM RowHammer bug
to gain kernel privileges,” in Proc. BlackHat, 2016.

[215] V. Seshadri et al., “RowClone: Fast and energy-efficient in-DRAM bulk
data copy and initialization,” in Proc. MICRO, Davis, CA, USA, 2013,
pp. 185–197.

[216] V. Seshadri et al., “Gather-scatter DRAM: In-DRAM address transla-
tion to improve the spatial locality of non-unit strided accesses,” in
Proc. MICRO, Waikiki, HI, USA, 2015, pp. 267–280.

[217] V. Seshadri et al., “Fast bulk bitwise AND and OR in DRAM,” IEEE
Comput. Archit. Lett., vol. 14, no. 2, pp. 127–131, Jul./Dec. 2015.

[218] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity DRAM technology,” in Proc. MICRO,
Boston, MA, USA, 2017, pp. 273–287.

[219] V. Seshadri and O. Mutlu, “Chapter four—Simple operations in
memory to reduce data movement,” Adv. Comput., vol. 106,
pp. 107–166, Jun. 2017.

[220] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-based tree
structure for row hammering mitigation in DRAM,” IEEE Comput.
Archit. Lett., vol. 16, no. 1, pp. 18–21, Jan./Jun. 2017.

[221] A. Shafiee et al., “ISAAC: A convolutional neural network accelera-
tor with in-situ analog arithmetic in crossbars,” in Proc. ISCA, Seoul,
South Korea, 2016, pp. 14–26.

[222] G. Singh et al., “NAPEL: Near-memory computing application
performance prediction via ensemble learning,” in Proc. DAC, 2019.

[223] SoftMC Source Code. Accessed: Apr. 20, 2019. [Online]. Available:
https://github.com/CMU-SAFARI/SoftMC

[224] M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM stronger against
row hammering,” in Proc. DAC, Austin, TX, USA, 2017, pp. 1–6.

[225] V. Sridharan et al., “Memory errors in modern systems: The good,
the bad, and the ugly,” in Proc. ASPLOS, Istanbul, Turkey, 2015,
pp. 297–310.

[226] V. Sridharan and D. Liberty, “A study of DRAM failures in the field,”
in Proc. SC, Salt Lake City, UT, USA, 2012, pp. 1–11.

[227] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and
S. Gurumurthi, “Feng Shui of supercomputer memory positional effects
in DRAM and SRAM faults,” in Proc. SC, Denver, CO, USA, 2013,
pp. 1–11.

[228] Z. Sura et al., “Data access optimization in a processing-in-memory
system,” in Proc. CF, 2015, Art. no. 6.

[229] S. Sutar et al., “D-PUF: An intrinsically reconfigurable DRAM PUF
for device authentication and random number generation,” ACM Trans.
Embedded Comput. Syst., vol. 17, no. 1, 2018, Art. no. 17.

[230] S. Sutar, A. Raha, and V. Raghunathan, “D-PUF: An intrinsically recon-
figurable DRAM PUF for device authentication in embedded systems,”
in Proc. CASES, Pittsburgh, PA, USA, 2016, pp. 1–10.

[231] Q. Tang et al., “A DRAM based physical unclonable function capable
of generating > 1032 challenge response pairs per 1Kbit array for
secure chip authentication,” in Proc. CICC, Austin, TX, USA, 2017,
pp. 1–4.

[232] Y. Tang, X. Che, H. J. Lee, and J.-G. Zhu, “Understanding adjacent
track erasure in discrete track media,” IEEE Trans. Magn., vol. 44,
no. 12, pp. 4780–4783, Dec. 2008.

[233] A. Tatar et al., “Throwhammer: RowHammer attacks over the network
and defenses,” in Proc. USENIX ATC, Boston, MA, USA, 2018,
pp. 213–225.

[234] A. Tatar et al., “Defeating software mitigations against RowHammer:
A surgical precision hammer,” in Proc. RAID, 2018, pp. 47–66.

[235] F. Tehranipoor, N. Karimian, K. Xiao, and J. Chandy, “DRAM based
intrinsic physical unclonable functions for system level security,” in
Proc. GLVLSI, Pittsburgh, PA, USA, 2015, pp. 15–20.

[236] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “Investigation
of DRAM PUFs reliability under device accelerated aging effects,” in
Proc. ISCAS, Baltimore, MD, USA, 2017, pp. 1–4.

[237] L. Tung. (Mar. 2015). ‘RowHammer’ DRAM Flaw Could Be
Widespread, Says Google. [Online]. Available: https://www.zdnet.com/
article/rowhammer-dram-flaw-could-be-widespread-says-google/

[238] L. Tung. (May 2018). Android Alert: This New Type of RowHammer
GPU Attack Can Hijack Your Phone Remotely. [Online].
Available: https://www.zdnet.com/article/android-alert-this-new-type-
of-rowhammer-gpu-attack-can-hijack-your-phone-remotely/

[239] V. van der Veen et al., “Drammer: Deterministic RowHammer
attacks on mobile platforms,” in Proc. CCS, Vienna, Austria, 2016,
pp. 1675–1689.

[240] V. van der Veen et al., “GuardION: Practical mitigation of DMA-based
RowHammer attacks on ARM,” in Proc. DIMVA, Saclay, France, 2018,
pp. 92–113.

[241] S. Vig, S. Bhattacharya, D. Mukhopadhyay, and S.-K. Lam, “Rapid
detection of RowHammer attacks using dynamic skewed hash tree,” in
Proc. HASP, Los Angeles, CA, USA, 2018, Art. no. 7.

[242] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in Proc. S&P, 2019.

[243] Y. Wang, Y. Liu, P. Wu, and Z. Zhang, “Detect DRAM disturbance
error by using disturbance bin counters,” IEEE Comput. Archit. Lett.,
vol. 18, no. 1, pp. 35–38, Jan./Jun. 2019.

[244] Wikipedia. Row Hammer. Accessed: Apr. 20, 2019. [Online].
Available: https://en.wikipedia.org/wiki/Row_hammer

[245] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 2201–2227, Dec. 2010.

[246] H.-S. P. Wong et al., “Metal–oxide RRAM,” Proc. IEEE, vol. 100,
no. 6, pp. 1951–1970, Jun. 2012.

[247] R. Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility of
magnetic recording at 10 terabits per square inch on conventional
media,” IEEE Trans. Magn., vol. 45, no. 2, pp. 917–923, Feb. 2009.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



MUTLU AND KIM: ROWHAMMER: RETROSPECTIVE 1571

[248] X.-C. Wu, T. Sherwood, F. T. Chong, and Y. Li, “Protecting page
tables from RowHammer attacks using monotonic pointers in DRAM
true-cells,” in Proc. ASPLOS, Providence, RI, USA, 2019, pp. 645–657.

[249] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one
cloud flops: Cross-VM row hammer attacks and privilege escalation,”
in Proc. USENIX Security, Austin, TX, USA, 2016, pp. 19–35.

[250] W. Xiong et al., “Run-time accessible DRAM PUFs in commodity
devices,” in Proc. CHES, Santa Barbara, CA, USA, 2016, pp. 432–453.

[251] D. S. Yaney, C. Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson, “A
meta-stable leakage phenomenon in DRAM charge storage—Variable
hold time,” in Proc. IEDM, Washington, DC, USA, 1987, pp. 336–339.

[252] T. Yang and X.-W. Lin, “Trap-assisted DRAM row hammer effect,”
IEEE Electron Device Lett., vol. 40, no. 3, pp. 391–394, Mar. 2019.

[253] H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu,
“Row buffer locality aware caching policies for hybrid memories,” in
Proc. ICCD, Montreal, QC, Canada, 2012, pp. 337–344.

[254] H. Yoon, J. Meza, R. Ausavarungnirun, N. P. Jouppi, and O. Mutlu,
“Efficient data mapping and buffering techniques for multilevel cell
phase-change memories,” ACM Trans. Archit. Code Optim., vol. 11,
no. 4, 2015, Art. no. 40.

[255] D. Yun, M. Park, C. Lim, and S. Baeg, “Study of TID effects on one
row hammering using gamma in DDR4 SDRAMs,” in Proc. IRPS,
Burlingame, CA, USA, 2018, pp. P-SE.2-1–P-SE.2-5.

[256] S. Zeitouni, D. Gens, and A.-R. Sadeghi, “It’s hammer time:
How to attack (RowHammer-based) DRAM-PUFs,” in Proc. DAC,
San Francisco, CA, USA, 2018, Art. no. 65.

[257] D. Zhang et al., “TOP-PIM: Throughput-oriented programmable pro-
cessing in memory,” in Proc. HPDC, Vancouver, BC, Canada, 2014,
pp. 85–98.

[258] Z. Zhang et al., “Triggering RowHammer hardware faults on ARM: A
revisit,” in Proc. ASHES, Toronto, ON, Canada, 2018, pp. 24–33.

[259] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy effi-
cient main memory using phase change memory technology,” in Proc.
ISCA, Austin, TX, USA, 2009, pp. 14–23.

[260] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti,
“Accelerating sparse matrix-matrix multiplication with 3D-stacked
logic-in-memory hardware,” in Proc. HPEC, Waltham, MA, USA,
2013, pp. 1–6.

Onur Mutlu (S’00–M’06–SM’13–F’19) received
the B.S. degree in computer engineering and psy-
chology from the University of Michigan, Ann
Arbor, MI, USA, and the M.S. and Ph.D. degrees
in ECE from the University of Texas at Austin, TX,
USA.

He is a Professor of Computer Science with ETH
Zürich, Switzerland. He is also a faculty mem-
ber with Carnegie Mellon University, Pittsburgh,
PA, USA, where he previously held the Strecker
Early Career Professorship. He started the Computer

Architecture Group at Microsoft Research (2006–2009), and held various
product and research positions at Intel Corporation, AMD, VMware, and
Google. A variety of techniques he, along with his group and collabora-
tors, has invented over the years have influenced industry and have been
employed in commercial microprocessors and memory/storage systems. His
current research interests include computer architecture, systems, hardware
security, and bioinformatics.

Prof. Mutlu was a recipient of the inaugural IEEE Computer Society Young
Computer Architect Award, the inaugural Intel Early Career Faculty Award,
the U.S. National Science Foundation CAREER Award, the Carnegie Mellon
University Ladd Research Award, the faculty partnership awards from var-
ious companies, and a healthy number of best paper or “Top Pick” paper
recognitions at various computer systems, architecture, and hardware security
venues. He is an ACM Fellow “for contributions to computer architecture
research, especially in memory systems,” an IEEE Fellow for “contributions
to computer architecture research and practice,” and an Elected Member of
the Academy of Europe (Academia Europaea). His computer architecture and
digital circuit design course lectures and materials are freely available on
YouTube, and his research group makes a wide variety of software and hard-
ware artifacts freely available online. For more information, please see his
webpage at https://people.inf.ethz.ch/omutlu/.

Jeremie S. Kim (S’13) received the B.S. and M.S.
degrees in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA, USA,
in 2015. He is currently pursuing the Ph.D. degree
with Carnegie Mellon University and ETH Zürich,
Switzerland, under the supervision of O. Mutlu.

His current research interests include computer
architecture, memory latency/power/reliability, hard-
ware security, and bioinformatics. He has several
publications in the above areas.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 20,2020 at 21:05:28 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


