Understanding RowHammer Under Reduced Wordline Voltage

An Experimental Study Using Real DRAM Devices

Session 14 (June 30, 10:30 AM) Hardware and Software Security

Abdullah Giray Yağlıkçı

Haocong Luo Geraldo F. de Oliviera Ataberk Olgun Minesh Patel Jisung Park Hasan Hassan Jeremie S. Kim Lois Orosa Onur Mutlu

Executive Summary

Motivation:

- Repeatedly **toggling a DRAM row's wordline voltage** causes bit flips in nearby rows
- This vulnerability, RowHammer, worsens in denser DRAM chips
- Understanding RowHammer enables designing effective and efficient solutions

Problem: No study demonstrates how wordline voltage (V_{PP}) affects RowHammer

Goal: Experimentally understand how V_{PP} affects RowHammer and DRAM operation

Experimental study: 272 DRAM chips from **three major manufacturers**

VPP's effect on RowHammer: *Six observations* show that with reduced V_{PP},

- A row needs to be hammered **7.4% more times (85.8% max)** to induce a bit flip
- Bit error rate caused by a RowHammer attack reduces by 15.2% (66.9% max)

VPP's effect on DRAM operation: *Nine observations* show that with reduced V_{PP},

- 208 out of 272 tested DRAM chips reliably operate using nominal timing parameters
- Erroneous DRAM chips can reliably operate with
 - A longer row activation latency, i.e., 24ns/15ns for 48/16 chips,
 - Single-error-correcting codes or 2x the refresh rate only for 16.4% of rows

<u>Conclusion</u>: Scaling down the wordline voltage can <u>reduce RowHammer vulnerability</u> without significantly affecting reliable DRAM operation

Understanding RowHammer Under Reduced Wordline Voltage

An Experimental Study Using Real DRAM Devices

Session 14 (June 30, 10:30 AM) Hardware and Software Security

Abdullah Giray Yağlıkçı

Haocong Luo Geraldo F. de Oliviera Ataberk Olgun Minesh Patel Jisung Park Hasan Hassan Jeremie S. Kim Lois Orosa Onur Mutlu

