
SIMDRAM:	A	Framework	for
Bit-Serial	SIMD	Processing	using	DRAM

Nastaran Hajinazar*	 Geraldo	F.	Oliveira*
Sven	Gregorio Joao	Ferreira											Nika	Mansouri	Ghiasi
Minesh Patel Mohammed	Alser Saugata Ghose

Juan	Gómez–Luna												Onur Mutlu



Data	Movement	Bottleneck

Memory
channel

Main	
Memory
(DRAM)

Computing	Unit
(CPU,	GPU,	FPGA,	
Accelerators)

• Data	movement	is	a	major	bottleneck

Bandwidth-limited	and	power-hungry	memory	channel
1 A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018

More	than 60% of	the	total	system	energy	
is	spent	on data	movement1

2



Processing-in-Memory	(PIM)
• Processing-in-Memory:moves	computation	closer	to	
where	the	data	resides	
- Reduces/eliminates	the	need	to	move	data	between	
processor	and	DRAM

Memory
channel

Main	
Memory
(DRAM)

Computing	Unit
(CPU,	GPU,	FPGA,	
Accelerators)

3



• PuM:	Exploits	analog	operation	principles	of	the	
memory	circuitry	to	perform	computation

- Leverages	the	large	internal	bandwidth	and	parallelism
available	inside	the	memory	arrays

• A	common	approach	for	PuM architectures	is	to	perform	
bulk	bitwise	operations

- Simple	logical	operations	(e.g.,	AND,	OR,	XOR)

- More	complex	operations	(e.g.,	addition,	multiplication)	

Processing-using-Memory	(PuM)

4



Motivation,	Goal,	and	Key	Idea	
• Existing	PuM	mechanisms	are	not	widely	applicable

- Support	only	a	limited and	mainly	basic set	of	operations
- Lack	the	flexibility	to	support	new	operations
- Require	significant changes to	the	DRAM	subarray

• Goal:	Design	a	PuM	framework	that	
- Efficiently implements	complex operations
- Provides	the	flexibility to	support	new	desired	operations
- Minimally changes	the	DRAM	architecture

• SIMDRAM:	An	end-to-end	processing-using-DRAM	framework	
that	provides	the	programming	interface,	the	ISA,	and	the	
hardware	support	for:
- Efficiently computing	complex operations	in	DRAM
- Providing	the	ability	to	implement	arbitrary operations	as	required
- Using	an	in-DRAM	massively-parallel	SIMD	substrate that	requires	minimal
changes	to	DRAM	architecture

5



SIMDRAM:	PuM Substrate
• SIMDRAM	framework	is	built	around	a	DRAM	substrate	
that	enables	two	techniques:

(1)	Vertical	data	layout

4-
bi
t	e
le
m
en
t	s
iz
e

Ro
w
		D
ec
od
er

most	significant	bit	(MSB)

least	significant	bit	(LSB)

A

B Cout

Cin

MAJ

(2)	Majority-based	computation

Pros compared	to	the	
conventional horizontal	layout:

• Implicit	shift	operation
• Massive	parallelism

Cout=	AB	+	ACin +	BCin

Pros compared	to AND/OR/NOT-
based	computation:

• Higher	performance
• Higher	throughput
• Lower	energy	consumption 6



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

7



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

𝜇Program

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

8

Step	1:	
• Builds	an	efficient	MAJ/NOT	representation of	a	given	desired	
operation	from	its	AND/OR/NOT-based	implementation



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

Step	2:	Generate	
sequence	of	DRAM

commands

𝝁Program

9

Step	2:	
• Allocates	DRAM	rows	to	the	operation’s	inputs	and	outputs
• Generates	the	sequence	of	DRAM	commands (𝝁Program)	to	
execute	the	desired	operation



User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

Step	3:	Execution	according	to	𝛍Program

Memory	Controller

10

Step	3:	
• Executes	the	μProgram	to	perform	the	operation
• Uses	a	control	unit in	the	memory	controller



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

11



Key	Results
Evaluated	on:

- 16	complex	in-DRAM	operations
- 7	commonly-used	real-world	applications

SIMDRAM	provides:

• 88× and	5.8× the	throughput of	a	CPU and	a high-end	
GPU,	respectively,	over	16	operations

• 257× and	31× the	energy	efficiency of	a	CPU and	a	
high-end	GPU,	respectively,	over 16	operations

• 21× and	2.1× the	performance of	a	CPU an	a	high-end	
GPU,	over	seven	real-world	applications

12



Conclusion
• SIMDRAM:

- Enables	efficient computation	of	a	flexible set	and	wide	range	
of	operations	in	a	PuM	massively	parallel SIMD	substrate

- Provides	the	hardware,	programming,	and	ISA	support,	to:
• Address	key	system	integration	challenges
• Allow	programmers	to	define	and	employ	new	operations	without	
hardware	changes

• More	in	the	paper:
- Efficiently	transposing	data
- Programming	interface
- Handling	page	faults,	address	translation,	coherence,	and	interrupts
- Security	implications
- Reliability	evaluation
- Comparison	to	in-cache	computing
- And	more	…

13

SIMDRAM is	a	promising	PuM	framework
• Can	ease	the	adoption	of	processing-using-DRAM	

architectures	
• Improve	the	performance	and efficiency of	processing-

using-DRAM	architectures



SIMDRAM:	A	Framework	for
Bit-Serial	SIMD	Processing	using	DRAM

Nastaran Hajinazar*	 Geraldo	F.	Oliveira*
Sven	Gregorio Joao	Ferreira											Nika	Mansouri	Ghiasi
Minesh Patel Mohammed	Alser Saugata Ghose

Juan	Gómez–Luna												Onur Mutlu


