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• Data	movement	is	a	major	bottleneck

Bandwidth-limited	and	power-hungry	memory	channel
1 A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018

More	than 60% of	the	total	system	energy	
is	spent	on data	movement1
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Processing-in-Memory	(PIM)
• Processing-in-Memory:moves	computation	closer	to	
where	the	data	resides	
- Reduces/eliminates	the	need	to	move	data	between	
processor	and	DRAM
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• PuM:	Exploits	analog	operation	principles	of	the	
memory	circuitry	to	perform	computation

- Leverages	the	large	internal	bandwidth	and	parallelism
available	inside	the	memory	arrays

• A	common	approach	for	PuM architectures	is	to	perform	
bulk	bitwise	operations

- Simple	logical	operations	(e.g.,	AND,	OR,	XOR)

- More	complex	operations	(e.g.,	addition,	multiplication)	

Processing-using-Memory	(PuM)
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Motivation,	Goal,	and	Key	Idea	
• Existing	PuM	mechanisms	are	not	widely	applicable

- Support	only	a	limited and	mainly	basic set	of	operations
- Lack	the	flexibility	to	support	new	operations
- Require	significant changes to	the	DRAM	subarray

• Goal:	Design	a	PuM	framework	that	
- Efficiently implements	complex operations
- Provides	the	flexibility to	support	new	desired	operations
- Minimally changes	the	DRAM	architecture

• SIMDRAM:	An	end-to-end	processing-using-DRAM	framework	
that	provides	the	programming	interface,	the	ISA,	and	the	
hardware	support	for:
- Efficiently computing	complex operations	in	DRAM
- Providing	the	ability	to	implement	arbitrary operations	as	required
- Using	an	in-DRAM	massively-parallel	SIMD	substrate that	requires	minimal
changes	to	DRAM	architecture
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SIMDRAM:	PuM Substrate
• SIMDRAM	framework	is	built	around	a	DRAM	substrate	
that	enables	two	techniques:

(1)	Vertical	data	layout
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(2)	Majority-based	computation

Pros compared	to	the	
conventional horizontal	layout:

• Implicit	shift	operation
• Massive	parallelism

Cout=	AB	+	ACin +	BCin

Pros compared	to AND/OR/NOT-
based	computation:

• Higher	performance
• Higher	throughput
• Lower	energy	consumption 6
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Step	1:	
• Builds	an	efficient	MAJ/NOT	representation of	a	given	desired	
operation	from	its	AND/OR/NOT-based	implementation



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

Step	2:	Generate	
sequence	of	DRAM

commands

𝝁Program

9

Step	2:	
• Allocates	DRAM	rows	to	the	operation’s	inputs	and	outputs
• Generates	the	sequence	of	DRAM	commands (𝝁Program)	to	
execute	the	desired	operation
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Step	3:	
• Executes	the	μProgram	to	perform	the	operation
• Uses	a	control	unit in	the	memory	controller
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Key	Results
Evaluated	on:

- 16	complex	in-DRAM	operations
- 7	commonly-used	real-world	applications

SIMDRAM	provides:

• 88× and	5.8× the	throughput of	a	CPU and	a high-end	
GPU,	respectively,	over	16	operations

• 257× and	31× the	energy	efficiency of	a	CPU and	a	
high-end	GPU,	respectively,	over 16	operations

• 21× and	2.1× the	performance of	a	CPU an	a	high-end	
GPU,	over	seven	real-world	applications
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Conclusion
• SIMDRAM:

- Enables	efficient computation	of	a	flexible set	and	wide	range	
of	operations	in	a	PuM	massively	parallel SIMD	substrate

- Provides	the	hardware,	programming,	and	ISA	support,	to:
• Address	key	system	integration	challenges
• Allow	programmers	to	define	and	employ	new	operations	without	
hardware	changes

• More	in	the	paper:
- Efficiently	transposing	data
- Programming	interface
- Handling	page	faults,	address	translation,	coherence,	and	interrupts
- Security	implications
- Reliability	evaluation
- Comparison	to	in-cache	computing
- And	more	…
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SIMDRAM is	a	promising	PuM	framework
• Can	ease	the	adoption	of	processing-using-DRAM	

architectures	
• Improve	the	performance	and efficiency of	processing-

using-DRAM	architectures
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