SPECTR

Formal Supervisory Control and Coordination for Many-core Systems Resource Management

<u>Amir M. Rahmani</u> Bryan Donyanavard Tiago Mück Kasra Moazzemi Axel Jantsch Onur Mutlu Nikil Dutt

Motivation

- Formal supervisory control theory (SCT) can combine the strengths of classical control theory and heuristics to
 - meet changing runtime goals (Autonomy)
 - offer a systematic design flow for hierarchical control (Scalability)

	Methods	Robustness	Formalism	Efficiency	Coordination	Scalability	Autonomy
А	Machine learning		✓	✓	✓		
В	Estimation/Model based heuristics			√	√		
С	SISO Control Theory	√	✓	✓		*	
D	MIMO Control Theory	√	✓	✓	✓		
E	Supervisory Control Theory [SPECTR]	✓	✓	✓	✓	✓	✓

Major on-chip resource management approaches and the key questions they address (* = partially addressed)

Motivation

- Formal supervisory control theory (SCT) can combine the strengths of classical control theory and heuristics to
 - meet changing runtime goals (Autonomy)
 - offer a systematic design flow for hierarchical control (Scalability)

	Methods	Robustness	Formalism	Efficiency	Coordination	Scalability	Autonomy
А	Machine learning		√	✓	✓		
В	Estimation/Model based heuristics			✓	✓		
С	SISO Control Theory	\	√	✓		*	
D	MIMO Control Theory	~	√	✓	✓		
E	Supervisory Control Theory [SPECTR]	√	√	✓	✓	√	✓

Major on-chip resource management approaches and the key questions they address (* = partially addressed)

Motivation

- Formal supervisory control theory (SCT) can combine the strengths of classical control theory and heuristics to
 - meet changing runtime goals (Autonomy)
 - offer a systematic design flow for hierarchical control (Scalability)

	Methods	Robustness	Formalism	Efficiency	Coordination	Scalability	Autonomy
А	Machine learning		✓	✓	✓		
В	Estimation/Model based heuristics			✓	✓		
С	SISO Control Theory	✓	✓	✓		*	
D	MIMO Control Theory	✓	✓	✓	✓		
E	Supervisory Control Theory [SPECTR]	✓	✓	✓	✓	✓	√

Major on-chip resource management approaches and the key questions they address (* = partially addressed)

SPECTR overview

Case Study

ODROID-XU3 platform contains an Exynos 5422 Octa-core SoC

- System goals:
 - Meet the QoS requirement of the foreground application
 - Ensure the total system power always remains below the Thermal Design Power (TDP)
 - Minimize energy consumption

Case Study

ODROID-XU3 platform contains an Exynos 5422 Octa-core SoC

SPECTR achieves up to 8x and 6x better target QoS and power tracking over state-of-the-art, respectively (in our case study)

SPECTR

Formal Supervisory Control and Coordination for Many-core Systems Resource Management

<u>Amir M. Rahmani</u> Bryan Donyanavard Tiago Mück Kasra Moazzemi Axel Jantsch Onur Mutlu Nikil Dutt

