2023 International Conference on Parallel Architectures and Compilation Techniques

SimplePIM:

A Software Framework for Productive
and Efficient Processing-in-Memory

Jinfan Chen, Juan Gémez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
juang@ethz.ch

m Ziirich SA F A R ’

Monday, October 23, 2023

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
mailto:juang@ethz.ch

Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* Real PIM hardware is now available, e.g., UPMEM PIM

* However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,

- Manage data transfers between host cores and PIM cores, and between PIM
cores,

- Launch PIM kernels on the PIM cores, etc.

* SimplePIM is a high-level programming framework for real PIM hardware
- lterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

* Implementation on UPMEM and evaluation with six different
workloads
- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

Source code: https://github.com/CMU-SAFARI/SimplePIM

SAFARI

https://github.com/CMU-SAFARI/SimplePIM

Outline

(")
Processing-in-memory

and PIM programming

. J
4)
SimplePIM:

A high-level programming framework for
g processing-in-memory y
(")
Evaluation
. J

SAFARI 3

Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PIM PEs may need to communicate via the host processor

SAFARI 4

A State-of-the-Art PIM System

Host?

Host DRAM

DRAM || DRAM || DRAM || DRAM || DRAM || DRAM || DRAM || DRAM
Chip Chip Chip Chip Chip Chip Chip Chip

DRAM | DRAM || DRAM || DRAM || DRAM || DRAM || DRAM
ip Chip Chip Chip Chip Chip Chip Chip
xM

y
p
y =

S
\\ — §PIMDRAM PIM DRAM PIM DRAM ' PIM DRAM

e Bank Bank Bank Bank

— ¢ - [PIM Core J[PIM Core][PIM Core 1[PIM Core]

PIM DRAM

PIM DRAM
Bank (64MB)

r

&

-
Instruction Scratchpad
(64KB)

Memory (24KB)

PIM Core

J

* In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing
Units (DPUs)
* Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are
emulated¥®, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

SAFARI

* 8-bit integer multiplication is natively supported

Programming a PIM System (1)

* Example: Hand-optimized histogram with UPMEM SDK

... // Initialize global variables and functions for histogram
int main kernel() {
if (tasklet_id == 0)
mem reset(); // Reset the heap
... // Initialize variables and the histogram
T *input buff A = (T*)mem alloc(2048); // Allocate buffer in scratchpad memory

for (unsigned int byte index = base tasklet; byte index < input size; byte index += stride) {
// Boundary checking
uint32 t 1 size bytes = (byte index + 2048 >= input size) ? (input size - byte index) : 2048;
// Load scratchpad with a DRAM block
mram_read((const _ mram ptr void*)(mram base addr_ A + byte index), input buff A, 1 size bytes);
// Histogram calculation
histogram(hist, bins, input buff A, 1 size bytes/sizeof(uint32 t));

}

barrier wait(&my barrier); // Barrier to synchronize PIM threads
... // Merging histograms from different tasklets into one histo dpu

// Write result from scratchpad to DRAM

if (tasklet_id == 0)
if (bins * sizeof(uint32 t) <= 2048)
mram_write(histo_dpu, (_ _mram ptr void*)mram base_addr histo, bins * sizeof(uint32_t));
else
for (unsigned int offset = 0; offset < ((bins * sizeof(uint32 t)) >> 11); offset++) {
mram write(histo dpu + (offset << 9), (__mram ptr void*)(mram base addr histo +
(offset << 11)), 2048);
}
return 0;

SAFARI

Programming a PIM System (lI)

* PIM programming is challenging
- Manage data movement between host DRAM and PIM DRAM
* Parallel, serial, broadcast, and gather/scatter transfers

- Manage data movement between PIM DRAM bank and
scratchpad

* 8-byte aligned and maximum of 2,048 bytes
- Multithreaded programming model

- Inter-thread synchronization
* Barriers, handshakes, mutexes, and semaphores

Our Goal
Design a high-level programming framework that abstracts these

hardware-specific complexities and provides a clean yet powerful
interface for ease of use and high program performance

SAFARI 7

Outline

(")
Processing-in-memory

and PIM programming

. J
4)
SimplePIM:

A high-level programming framework for
g processing-in-memory y
(")
Evaluation
. J

SAFARI 8

The SimplePIM Programming Framework

* SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
 Metadata for PIM-resident arrays

- Communication interface
* Abstractions for host-PIM and PIM-PIM communication

- Processing interface
* Iterators (map, reduce, zip) to implement workloads

SAFARI

Management Interface

* Metadata for PIM-resident arrays
- array meta data t describes a PIM-resident array
- simple pim management t for managing PIM-resident arrays

* lookup: Retrieves all relevant information of an array

array meta data t* simple pim array lookup(const char* id,
simple pim management t* management);

* register: Registers the metadata of an array

void simple pim array register(array meta data t* meta data,
simple pim management t* management);

« free: Removes the metadata of an array

void simple pim array free(const char* id, simple pim management t* management);

SAFARI

The SimplePIM Programming Framework

* SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
* Metadata for PIM-resident arrays

- Communication interface
* Abstractions for host-PIM and PIM-PIM communication

- Processing interface
* Iterators (map, reduce, zip) to implement workloads

SAFARI 11

Host-to-PIM Communication: Broadcast

* SimplePIM Broadcast
- Transfers a host array to all PIM cores in the system

void simple pim array broadcast(char* const id, void* arr, uint64 t len,
uint32 t type size, simple pim management t* management);

1][2][3 4{ ————————————————— —I1][2][3
=1Tel —>[RIE»> FEr
ot DRAM 4]15]16] .- PIMDRAM
S .

SimplePIM Broadcast Y Dggn“ﬁ tBa“k
PlMCoren

[Host CPU j PlMCoreo
12

SAFARI

Host-to-PIM Communication: Scatter/Gather

* SimplePIM Scatter
- Distributes an array to PIM DRAM banks

void simple pim array scatter(char* const id, void* arr, uint64 t len,
uint32 t type size, simple pim management t* management);

* SimplePIM Gather
- Collects portions of an array from PIM DRAM banks

void* simple pim array gather(char* const id, simple pim management t*
management) ;

1 O e >3
7 SimplePIM Scatter 2] » =
gl B
— 5 .+* PIMDRAM
Host DRAM -~ ___ ____._———’/M DRAM tBank
. tBank [PIM CorenJ
| HostcPU | SimplePIM Gather [p.m cOreo]

SAFARI 13

PIM-PIM Communication: AllReduce

* SimplePIM AllReduce
- Used for algorithm synchronization
- The programmer specifies an accumulative function

void simple pim array allreduce(char* const id, handle t* handle,
simple pim management t* management);

Before PIM-PIM communication After PIM-PIM communication

P—

|11 Y g H|AE

2][1]] _| T N E1| AP
43 H — - \t-—— > |[3][1]]3
OI[Lf[1]f .~ PIMDRAN @/ 3|11[3]],. ~ PimMpRAM
__PIM DRAM Bank _ _PIM DRAM Bank
tBank e Coren | SimplePIM AllReduce tBank e doren

PIM Core o PIM Core o

SAFARI 14

PIM-PIM Communication: AllGather

* SimplePIM AllGather

- Combines array pieces and distributes the complete array to
all PIM cores

void simple pim array allgather(char* const id, char* new id,
simple pim management t* management);

Before PIM-PIM communication After PIM-PIM communication
—
, - 1112113
[|1 2 3 — e — ___::::==== _______ 1 2 3 *
i » [[4][5][6
.+ PIM,DRAM 4[15]16]f,.* ~ PIMDRAM
PIM,DRAM t Bank . I ” h PIN\ DRAM Bank
Bank Bank
[PIMCoren] Slmp ePIM A Gat er t PIMCorenJ
[PIM Core 0 J PIM Core o

SAFARI 15

The SimplePIM Programming Framework

* SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
* Metadata for PIM-resident arrays

- Communication interface
* Abstractions for host-PIM and PIM-PIM communication

- Processing interrace
* |terators (map, reduce, zip) to implement workloads

SAFARI 16

Processing Interface: Map

* Array Map
- Appliesmap func to every element of the data array

void simple pim array map(const char* src_id, const char* dest id,
uint32 t output type, handle t* handle, simple pim management t* management);

mputaray (00 (00) €0 € -~

(src_id) map func

Output Array ¥ \] A4 v v

Qest_iq) ()) C) CH C) -~

SAFARI 17

Processing Interface: Reduction

* Array Reduction

- Themap to val func functiontransforms aninput
element to an output value and an output index

- The acc_func function accumulates the output values onto
the output array

void simple pim array red(const char* src_id, const char* dest id,
uint32 t output type, uint32 t output len, handle t* handle,
simple pim management t* management);

Input Array (:) Q @ Q

(src_id) map to val func
y v y v y v y v
acc_func

% \
Output Array (dest_id) @)_)

SAFARI

Processing Interface: Zip

* Array Zip
- Takes two input arrays and combines their elements into an
output array

void simple pim array zip(const char* srcl id, const char* src2 id,
const char* dest id, simple pim management t* management);

Input Array
(srcl id)
Input Array
(src2_id) I I I I I I

Output Array
(dest id)

SAFARI

19

SimplePIM’s UPMEM Implementation

e Communication interface

- SimplePIM automatically handles alignment requirements and
inserts padding as needed

* Processing interface
- Array map

* Invokes PIM cores and PIM threads, and handles PIM DRAM-
scratchpad transfers

- Array reduction

* Shared accumulator reduction
* Thread-private accumulator reduction

- Array zip

* Lazy approach to minimize data copying

SAFARI

General Code Optimizations

* Strength reduction

* Loop unrolling

* Avoiding boundary checks
* Function inlining

* Adjustment of data transfer sizes

SAFARI

More in the Paper

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen! Juan Gémez-Luna! Izzat E1Hajj? Yuxin Guo! Onur Mutlu?
'ETH Ziirich ?2American University of Beirut

https://arxiv.org/pdf/2310.01893.pdf

SAFARI 22

https://arxiv.org/pdf/2310.01893.pdf

Outline

(")
Processing-in-memory

and PIM programming

. J
4)
SimplePIM:

A high-level programming framework for
g processing-in-memory y
(")
Evaluation
. J

SAFARI 23

Evaluation Methodology

* Evaluated system

- UPMEM PIM system with 2,432 PIM cores with 159 GB of
PIM DRAM

* Real-world Benchmarks
- Vector addition

Reduction

Histogram

K-Means

Linear regression

Logistic regression

* Comparison to hand-optimized codes in terms of
programming productivity and performance

SAFARI

24

Productivity Improvement (1)

* Example: Hand-optimized histogram with UPMEM SDK

... // Initialize global variables and functions for histogram
int main kernel() {
if (tasklet_id == 0)
mem reset(); // Reset the heap
... // Initialize variables and the histogram
T *input buff A = (T*)mem alloc(2048); // Allocate buffer in scratchpad memory

for (unsigned int byte index = base tasklet; byte index < input size; byte index += stride) {
// Boundary checking
uint32 t 1 size bytes = (byte index + 2048 >= input size) ? (input size - byte index) : 2048;
// Load scratchpad with a DRAM block
mram_read((const _ mram ptr void*)(mram base addr_ A + byte index), input buff A, 1 size bytes);
// Histogram calculation
histogram(hist, bins, input buff A, 1 size bytes/sizeof(uint32 t));

}

barrier wait(&my barrier); // Barrier to synchronize PIM threads
... // Merging histograms from different tasklets into one histo dpu

// Write result from scratchpad to DRAM

if (tasklet_id == 0)
if (bins * sizeof(uint32 t) <= 2048)
mram_write(histo_dpu, (_ _mram ptr void*)mram base_addr histo, bins * sizeof(uint32_t));
else
for (unsigned int offset = 0; offset < ((bins * sizeof(uint32 t)) >> 11); offset++) {
mram write(histo dpu + (offset << 9), (__mram ptr void*)(mram base addr histo +
(offset << 11)), 2048);
}
return 0;

SAFARI 25

Productivity Improvement (lI)

* Example: SimplePIM histogram

// Programmer-defined functions in the file "histo filepath"
void init func (uint32 t size, void* ptr) {

char* casted value ptr = (char*) ptr;
for (int i = 0; i < size; i++)
casted value ptr[i] = 0;

}

void acc_func (void* dest, void* src) {
(uint32_t)dest += *(uint32 t*)src;

}

void map to val func (void* input, void* output, uint32 t* key) {
uint32 t d = *((uint32_t*)input);
(uint32_ t)output = 1;
*key = d * bins >> 12;

}

// Host side handle creation and iterator call
handle t* handle = simple pim create_handle("histo filepath", REDUCE, NULL, 0);

// Transfer (scatter) data to PIM, register as "t1"
simple pim array scatter("tl", src, bins, sizeof(T), management);

// Run histogram on "tl1" and produce "t2"
simple pim array red("tl", "t2", sizeof(T), bins, handle, management);

SAFARI

Productivity Improvement (lil)

* Lines of code (LoC) reduction

Reduction 14 83 5.93x
Vector Addition 14 82 5.86x
Histogram 21 114 5.43x
Linear Regression 48 157 3.27x
Logistic Regression 59 176 2.98x
K-Means 68 206 3.03x

4)

SimplePIM reduces the number of lines of effective code
! by a factor of 2.98x t0 5.93x)

SAFARI

Performance Evaluation (1)

* Weak scaling analysis
Vector Addition Reduction Histogram
30 ——
—_ 2 50
g 20 0
- 10 25
p 10
£ og oLl | \ 0 |
- 1216 2432 608 1216 2432 608 1216 2432
g K-Means Linear Regression Logistic Regression
£ 150 50 100
(%)
100
3 25 50
w 50
0 0 0~ ‘ ;
1216 2432 608 1216 2432 608 1216 2432
Number of PIM Cores
B SimplePIM (CPU Time) B Hand-optimized Impl. (CPU Time)

1 SimplePIM (PIM Kernel Time) Hand-optimized Impl. (PIM Kernel Time)

SimplePIM achieves comparable performance for
reduction, histogram,and linear regression

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,
L and k-means by 10%-37%

SAFARI

28

Performance Evaluation (II)

* Strong scaling analysis

Vector Addition Reduction Histogram
30 1.0 1.01.0 :01.0
_ 1.0 20 50
w 20 Lo 1717 1.8.1:6
é 10 2.0 Lo 10 2.6.2:3 25 3.02:5
g N
E %608 1216 2432 0_608 1216 2432 0 608 1216 2432
c K-Means Linear Regression Logistic Regression
1.0 1.0 1.0
g 150 50/ 59 100 10
: .
g 100 e 1.8 25 1.9 2.0 a3 50 102:0
X - 3.0 3.0 3.3
S s A N N
0~ ‘ ‘ 0~/ ‘ 0~ ‘ |
608 1216 2432 608 1216 2432 608 1216 2432

Number of PIM Cores
BN Hand-optimized Impl. (CPU Time)
Hand-optimized Impl. (PIM Kernel Time)

B SimplePIM (CPU Time)
1 SimplePIM (PIM Kernel Time)

rSimpIePlM scales better than hand-optimized implementations1
for reduction, histogram,and l1inear regression

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,

L and k-means by 15%-43%

SAFARI 29

Variants of Array Reduction

* Shared accumulator version versus thread-private
version for histogram

g 300/ £ ? 12
v 200 8 ®
£ 100 4 g
|— 1 — — L

@ T =
S o | | | AL g ®
- 256 512 1024 2048 4096
S Histogram Size in Number of Bins
E B Shared Accumulator (CPU Time) Thread Private (PIM Kernel Time)

1 Shared Accumulator (PIM Kernel Time)

—i—- #Threads: Thread Private
B Thread Private (CPU Time)

—i— #Threads: Shared Accumulator

" The thread-private version is up to 70% faster than the shared
accumulator version for histograms of 256-1024 bins

1

hAY4

The number of active PIM threads of the thread-private

_ version reduces after 1024 bins due to limited scratchpad size |

J\\

SAFARI

30

Discussion

* SimplePIM is devised for PIM architectures with

- A host processor with access to standard main memory and
PIM-enabled memory

- PIM processing elements (PEs) that communicate via the
host processor

- The number of PIM PEs scales with memory capacity

* SimplePIM emulates the communication between PIM
cores via the host processor

* Other parallel patterns can be incorporated in future
work
- Prefix sum and filter can be easily added

- Stencil and convolution would require fine-grained scatter-
gather for halo cells

- Random access patterns would be hard to support

SAFARI

SimplePIM: arXiv Version

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen! Juan Gémez-Luna! Izzat E1Hajj? Yuxin Guo! Onur Mutlu?
'ETH Ziirich ?2American University of Beirut

https://arxiv.org/pdf/2310.01893.pdf

SAFARI 32

https://arxiv.org/pdf/2310.01893.pdf

Source Code

«= GimplePIM private <7 EditPins ~ ® Unwatch 3

¢ ttQS:l l glthUbicom/ ¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~

(IVI U bl Wangsitu98 interface cleanups, added allreduce and allgather 3421614 2 days ago O 7 commits
S Q F Q R I /S ° I P I IVI B benchmarks interface cleanups, added allreduce and allgather 2 days ago
— = I I I I p—e W b interface cleanups, added allreduce and allgather 2 days ago
3 .gitignore some cleanups 3 weeks ago
[README.md pushed SimplePIM last month
‘= README.md 7

SimplePIM ¢~

This project implements SimplePIM, a software framework for easy and efficient in-memory-hardware
programming. The code is implemented on UPMEM, an actual, commercially available PIM hardware that
combines traditional DRAM memory with general-purpose in-order cores inside the same chip. SimplePIM
processes arrays of arbitrary elements on a PIM device by calling iterator functions from the host and
provides primitives for communication among PIM cores and between PIM and the host system.

We implement six applications with SimplePIM on UPMEM:

Vector Addtition
Reduction

K-Means Clustering
Histogram

Linear Regression

Logistic Regression

Previous manual UPMEM implementations of the same applications can be found in PrIM benchmark
(https://github.com/CMU-SAFARI/prim-benchmarks), dpu_kmeans (https://github.com/upmem/dpu_kmeans)
and prim-ml (https://github.com/CMU-SAFARI/pim-ml). These previous implementations can serve as
baseline for measuring SimplePIM's performance as well as productivity improvements.

v

SAFARI

33

https://github.com/CMU-SAFARI/SimplePIM
https://github.com/CMU-SAFARI/SimplePIM
https://github.com/CMU-SAFARI/SimplePIM

Executive Summary

SAFARI

Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

Real PIM hardware is now available, e.g., UPMEM PIM

However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,

- Manage data transfers between host cores and PIM cores, and between PIM
cores,

- Launch PIM kernels on the PIM cores, etc.

SimplePIM is a high-level programming framework for real PIM hardware
- lterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

Implementation on UPMEM and evaluation with six different
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means

- 4.4x fewer lines of code compared to hand-optimized code

- Between 15% and 43% faster than hand-optimized code for three workloads

Source code: https://github.com/CMU-SAFARI/SimplePIM

34

https://github.com/CMU-SAFARI/SimplePIM

Real PIM Tutorial (MICRO 2023)

* October 29t™: Lectures + Hands-on labs + Invited lectures

rfiowag : ‘
ol "\ MICRO 2023 Real-World PIM Tutorial
'\l‘ E h Recent Changes Media Manager Sitemap
Trace: ¢ start
start
Table of Contents
Real-world Processing-in-Memory Systems for Modern Workloads Real-world Processing-in-Memory
Edit Systems for Modern Workloads
Tutorial Description Tutorial Description
Livestream
Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement Organizers)
bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement ’Z\gzeg;’a (Tentative, October 29,
between memory units and compute units) by making memory compute-capable. Lectures

Learning Materials
Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the
first commercial products and prototypes.

https://youtube.com/live/ohUOONSIXO

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and

target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two I ?feat ure=s h are
years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called
processing near memory (PNM).

PIM can provide large improvements in both performance and energy
consumption for many modern applications, thereby enabling a
commercially viable way of dealing with huge amounts of data that is
bottlenecking our computing systems. Yet, it is critical to (1) study and
understand the characteristics that make a workload suitable for a PIM
architecture, (2) propose optimization strategies for PIM kernels, and (3)
develop programming frameworks and tools that can lower the learning
curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload
characterization for PIM, and programming and optimizing PIM kernels. We
will (1) provide an introduction to PIM and taxonomy of PIM systems, (2)
give an overview and a rigorous analysis of existing real-world PIM
hardware, (3) conduct hand-on labs about important workloads (machine
learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems,
and (4) shed light on how to improve future PIM systems for such workloads.

Edit
Livestream

® YouTube livestream

SAFARI https://events.safari.ethz.ch/micro-pim-tutorial/doku.php?id=start 35

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start
https://youtube.com/live/ohU00NSIxOI?feature=share
https://youtube.com/live/ohU00NSIxOI?feature=share

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, 2023

SAFARI https://arxiv.org/pdf/1903.03988.pdf 36

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

2023 International Conference on Parallel Architectures and Compilation Techniques

SimplePIM:

A Software Framework for Productive
and Efficient Processing-in-Memory

Jinfan Chen, Juan Gémez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
juang@ethz.ch

m Ziirich SA F A R ’

Monday, October 23, 2023

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
mailto:juang@ethz.ch

