
SparseP: Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Architectures

Christina Giannoula‡† Ivan Fernandez‡§ Juan Gómez-Luna‡

Nectarios Koziris† Georgios Goumas† Onur Mutlu‡

‡ETH Zürich †National Technical University of Athens §University of Malaga

Sparse Matrix Vector Multiplication (SpMV) is one of the
most thoroughly studied scientific computation kernels, be-
cause it lies at the heart of many important applications from
the scientific computing, machine learning, and graph analyt-
ics domains. SpMV performs indirect memory references as a
result of storing the sparse matrix in a compressed format, and
irregular memory accesses to the input vector due to the spar-
sity pattern of the input matrix [1–3]. Thus, in CPU and GPU
systems, SpMV is a primarily memory-bandwidth-bound ker-
nel for the majority of real sparse matrices, and is bottlenecked
by data movement between memory and processors [3–6].
One promising way to alleviate the data movement bottle-

neck is the Processing-In-Memory (PIM) paradigm [4–137].
PIM moves computation close to data by equipping memory
chips with processing capabilities [8, 9, 11]. Several manufac-
turers have proposed near-bank PIM designs [4,8,138,139], that
tightly couple a PIM core with each DRAM bank, exploiting
bank-level parallelism to expose high on-chip memory band-
width of standard DRAM to processors. Three real near-bank
PIM architectures are Samsung’s FIMDRAM [138], SK Hynix’s
GDDR6-AiM [139] and the UPMEM PIM system [4–6, 8].

Most real near-bank PIM architectures [4–6,8,138,139] sup-
port several PIM-enabled memory chips connected to a host
CPU via memory channels. Each memory chip comprises mul-
tiple low-power PIM cores with relatively low computation
capability [4–6]. Each PIM core can access data located on
its local DRAM bank, and typically there is no direct com-
munication channel among PIM cores. Overall, near-bank
PIM systems provide high levels of parallelism and very large
memory bandwidth, and are thus a very promising computing
platform to accelerate the widely-used SpMV kernel.
Our work is the first to efficiently map the SpMV kernel

on near-bank PIM systems, and understand its performance
implications on a real-world PIM system. We make two key
contributions. First, we design efficient SpMV algorithms for
current and future PIM systems, covering a wide variety of
sparse matrices with diverse sparsity patterns. Second, we
provide the first comprehensive analysis of SpMV on a real-
world PIM architecture. Specifically, we conduct our rigorous
analysis of SpMV kernels in the UPMEM PIM system [4, 8].
We present the openly available SparseP library [140] that

includes 25 SpMV kernels for real PIM systems. SparseP sup-
ports (1) the four most popular compressed matrix formats, (2)
a wide range of data types, (3) two types of well-crafted data
partitioning techniques of the sparse matrix to PIM-enabled
memory, (4) various load balancing schemes across PIM cores,
(5) various load balancing schemes across threads of a multi-

threaded PIM core, and (6) three synchronization approaches
among threads within multithreaded PIM core.
We conduct an extensive study of SparseP kernels on the

UPMEM PIM system [4–6,8]. We analyze the SpMV execution
(1) using one single multithreaded PIM core, (2) using thou-
sands of PIM cores, and (3) comparing its performance and
energy consumption with that achieved on processor-centric
CPU and GPU systems. Based on our rigorous experimental
results and observations, we provide programming recommen-
dations for software designers and suggestions for hardware
and system designers of future PIM systems.

Our major suggestions for PIM software designers are:
1. Design algorithms that provide high load balance across

threads of a multithreaded PIM core in terms of computa-
tions, synchronization points and memory accesses.

2. Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing
high computation balance across PIM cores.

3. Design adaptive algorithms that trade off computation bal-
ance across PIM cores for lower data transfer costs to PIM-
enabled memory, and adapt the software strategies to the
characteristics of both the input given and the PIM hardware.
Our major suggestions for PIM hardware and system de-

signers are:
1. Provide hardware support to enable concurrent memory ac-

cesses by multiple threads to the local DRAM bank to increase
parallelism in a multithreaded PIM core.

2. Optimize the broadcast collective operation in data transfers
to PIM-enabled memory to minimize overheads of copying
the input data into all DRAM banks in the PIM system.

3. Optimize the gather collective operation at DRAM bank gran-
ularity for data transfers from PIM-enabled memory to the
host CPU to reduce overheads of retrieving the output results.

4. Design high-speed communication channels and optimized
libraries for data transfers to/from thousands of DRAM banks
of PIM-enabled memory.
For more information about our thorough analysis on the

SpMV PIM execution, insights and the open-source SparseP
software package [140], we refer the reader to our full pa-
per [141–143]. We hope that our work can provide valu-
able insights to programmers in the development of efficient
sparse kernels from various application domains tailored for
PIM systems, and enlighten architects and system design-
ers in the development of future memory-centric comput-
ing systems. SparseP is available at https://github.com/CMU-
SAFARI/SparseP.

https://github.com/CMU-SAFARI/SparseP
https://github.com/CMU-SAFARI/SparseP


Acknowledgments
We thank the UPMEM company for valuable support. We
thank the SAFARI Research Group members for feedback and
the stimulating, scholarly and collaborative intellectual envi-
ronment they provide. We thank the CSLAB Research Group
members for continued and undivided support, insightful com-
ments and valuable feedback. We acknowledge the support
of SAFARI Research Group’s industrial partners, especially
ASML, Facebook, Google, Huawei, Intel, Microsoft, VMware,
the Semiconductor Research Corporation and the ETH Fu-
ture Computing Laboratory. Christina Giannoula is funded
for her postgraduate studies from the Foundation for Educa-
tion and European Culture. This invited extended abstract
is a summary version of our prior work [141] published at
ACM POMACS 2022. The SparseP software package is pub-
licly available at https://github.com/CMU-SAFARI/SparseP.
A presentation that describes the work can be found at
https://youtu.be/hiFkcHklLas.

References
[1] K. Kanellopoulos et al., “SMASH: Co-Designing Software Compression

and Hardware-Accelerated Indexing for Efficient Sparse Matrix Opera-
tions,” in MICRO, 2019.

[2] A. Smith, “6 New Facts About Facebook,” in http://mediashift.org, 2019.
[3] G. Goumas et al., “Performance Evaluation of the Sparse Matrix-Vector

Multiplication on Modern Architectures,” in J. Supercomput., 2009.
[4] J. Gómez-Luna et al., “Benchmarking a New Paradigm: Experimental

Analysis and Characterization of a Real Processing-in-Memory System,”
in IEEE Access, 2022.

[5] J. Gómez-Luna et al., “Benchmarking Memory-Centric Computing Sys-
tems: Analysis of Real Processing-In-Memory Hardware,” in IGSC, 2021.

[6] J. Gómez-Luna et al., “Benchmarking a new paradigm: An experimental
analysis of a real processing-in-memory architecture,” in CoRR, 2021.

[7] C. Giannoula et al., “SynCron: Efficient Synchronization Support for
Near-Data-Processing Architectures,” in HPCA, 2021.

[8] F. Devaux, “The True Processing In Memory Accelerator,” in Hot Chips,
2019.

[9] O. Mutlu et al., “Processing Data Where It Makes Sense: Enabling In-
Memory Computation,” in MICPRO, 2019.

[10] S. Ghose et al., “Processing-in-Memory: AWorkload-Driven Perspective,”
in IBM JRD, 2019.

[11] O. Mutlu et al., “AModern Primer on Processing in Memory,” in Emerging
Computing: From Devices to Systems - Looking Beyond Moore and Von
Neumann, 2021. [Online]. Available: https://arxiv.org/pdf/2012.03112.pdf

[12] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[13] W. H. Kautz, “Cellular Logic-in-Memory Arrays,” IEEE TC, 1969.
[14] D. E. Shaw et al., “The NON-VON Database Machine: A Brief Overview,”

IEEE Database Eng. Bull., 1981.
[15] P. M. Kogge, “EXECUBE - A New Architecture for Scaleable MPPs,” in

ICPP, 1994.
[16] M. Gokhale et al., “Processing in Memory: The Terasys Massively Parallel

PIM Array,” IEEE Computer, 1995.
[17] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.
[18] M. Oskin et al., “Active Pages: A Computation Model for Intelligent

Memory,” in ISCA, 1998.
[19] Y. Kang et al., “FlexRAM: Toward an Advanced Intelligent Memory Sys-

tem,” in ICCD, 1999.
[20] K. Mai et al., “Smart Memories: A Modular Reconfigurable Architecture,”

in ISCA, 2000.
[21] J. Draper et al., “The Architecture of the DIVA Processing-in-Memory

Chip,” in SC, 2002.
[22] S. Aga et al., “Compute Caches,” in HPCA, 2017.
[23] C. Eckert et al., “Neural Cache: Bit-serial In-cache Acceleration of Deep

Neural Networks,” in ISCA, 2018.

[24] D. Fujiki et al., “Duality Cache for Data Parallel Acceleration,” in ISCA,
2019.

[25] M. Kang et al., “An Energy-Efficient VLSI Architecture for Pattern Recog-
nition via Deep Embedding of Computation in SRAM,” in ICASSP, 2014.

[26] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Oper-
ations Using Commodity DRAM Technology,” in MICRO, 2017.

[27] V. Seshadri et al., “Buddy-RAM: Improving the Performance and Ef-
ficiency of Bulk Bitwise Operations Using DRAM,” arXiv:1611.09988
[cs:AR], 2016.

[28] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.
[29] V. Seshadri et al., “RowClone: Fast and energy-efficient in-DRAM bulk

data copy and initialization,” in MICRO, 2013.
[30] S. Angizi et al., “Graphide: A Graph Processing Accelerator Leveraging

In-DRAM-computing,” in GLSVLSI, 2019.
[31] J. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical

Unclonable Functions by Exploiting the Latency–Reliability Tradeoff in
Modern DRAM Devices,” in HPCA, 2018.

[32] J. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate
True Random Numbers with Low Latency and High Throughput,” in
HPCA, 2019.

[33] F. Gao et al., “ComputeDRAM: In-Memory Compute Using Off-the-Shelf
DRAMs,” in MICRO, 2019.

[34] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling
Fast Inter-Subarray Data Movement in DRAM,” in HPCA, 2016.

[35] X. Xin et al., “ELP2IM: Efficient and Low Power Bitwise Operation Pro-
cessing in DRAM,” in HPCA, 2020.

[36] S. Li et al., “DRISA: A DRAM-Based Reconfigurable In-Situ Accelerator,”
in MICRO, 2017.

[37] Q. Deng et al., “DrAcc: A DRAM Based Accelerator for Accurate CNN
Inference,” in DAC, 2018.

[38] N. Hajinazar et al., “SIMDRAM: A Framework for Bit-Serial SIMD Pro-
cessing Using DRAM,” in ASPLOS, 2021.

[39] S. H. S. Rezaei et al., “NoM: Network-on-Memory for Inter-Bank Data
Transfer in Highly-Banked Memories,” in IEEE CAL, 2020.

[40] Y. Wang et al., “FIGARO: Improving System Performance via Fine-
Grained In-DRAM Data Relocation and Caching,” in MICRO, 2020.

[41] M. F. Ali et al., “In-Memory Low-Cost Bit-Serial Addition Using Com-
modity DRAM Technology,” in TCAS-I, 2019.

[42] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-Volatile Memories,” in DAC, 2016.

[43] S. Angizi et al., “PIMA-Logic: A Novel Processing-in-Memory Archi-
tecture for Highly Flexible and Energy-efficient Logic Computation,” in
DAC, 2018.

[44] S. Angizi et al., “CMP-PIM: An Energy-efficient Comparator-based
Processing-in-Memory Neural Network Accelerator,” in DAC, 2018.

[45] S. Angizi et al., “AlignS: A Processing-in-Memory Accelerator for DNA
Short Read Alignment Leveraging SOT-MRAM,” in DAC, 2019.

[46] Y. Levy et al., “Logic Operations in Memory Using a Memristive Akers
Array,” Microelectronics Journal, 2014.

[47] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” IEEE TCAS II:
Express Briefs, 2014.

[48] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator
with In-situ Analog Arithmetic in Crossbars,” ISCA, 2016.

[49] S. Kvatinsky et al., “Memristor-Based IMPLY Logic Design Procedure,” in
ICCD, 2011.

[50] S. Kvatinsky et al., “Memristor-Based Material Implication (IMPLY) Logic:
Design Principles and Methodologies,” TVLSI, 2014.

[51] P.-E. Gaillardon et al., “The Programmable Logic-in-Memory (PLiM)
Computer,” in DATE, 2016.

[52] D. Bhattacharjee et al., “ReVAMP: ReRAM based VLIW Architecture for
In-memory Computing,” in DATE, 2017.

[53] S. Hamdioui et al., “Memristor Based Computation-in-Memory Architec-
ture for Data-intensive Applications,” in DATE, 2015.

[54] L. Xie et al., “Fast Boolean Logic Papped on Memristor Crossbar,” in
ICCD, 2015.

[55] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” in
DATE, 2017.

https://github.com/CMU-SAFARI/SparseP
https://youtu.be/hiFkcHklLas
http://mediashift.org
https://arxiv.org/pdf/2012.03112.pdf


[56] J. Yu et al., “Memristive Devices for Computation-in-Memory,” in DATE,
2018.

[57] C. Giannoula et al., “SynCron: Efficient Synchronization Support for
Near-Data-Processing Architectures,” in HPCA, 2021.

[58] I. Fernandez et al., “NATSA: A Near-Data Processing Accelerator for
Time Series Analysis,” in ICCD, 2020.

[59] D. S. Cali et al., “GenASM: A High-Performance, Low-Power Approxi-
mate String Matching Acceleration Framework for Genome Sequence
Analysis,” in MICRO, 2020.

[60] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read
Mapping Using Processing-in-Memory Technologies,” BMC Genomics,
2018.

[61] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-
Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[62] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing,” in ISCA, 2015.

[63] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigat-
ing Data Movement Bottlenecks,” in ASPLOS, 2018.

[64] A. Boroumand et al., “CoNDA: Efficient Cache Coherence Support for
Near-Data Accelerators,” in ISCA, 2019.

[65] G. Singh et al., “NAPEL: Near-memory Computing Application Perfor-
mance Prediction Via Ensemble Learning,” in DAC, 2019.

[66] H. Asghari-Moghaddam et al., “Chameleon: Versatile and Practical Near-
DRAM Acceleration Architecture for Large Memory Systems,” inMICRO,
2016.

[67] O. O. Babarinsa et al., “JAFAR: Near-Data Processing for Databases,” in
SIGMOD, 2015.

[68] P. Chi et al., “PRIME: A Novel Processing-In-Memory Architecture for
Neural Network Computation In ReRAM-Based Main Memory,” in ISCA,
2016.

[69] A. Farmahini-Farahani et al., “NDA: Near-DRAM acceleration archi-
tecture leveraging commodity DRAM devices and standard memory
modules,” in HPCA, 2015.

[70] M. Gao et al., “Practical Near-Data Processing for In-Memory Analytics
Frameworks,” in PACT, 2015.

[71] M. Gao et al., “HRL: Efficient and Flexible Reconfigurable Logic for Near-
Data Processing,” in HPCA, 2016.

[72] B. Gu et al., “Biscuit: A Framework for Near-Data Processing of Big Data
Workloads,” in ISCA, 2016.

[73] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and
System Design,” in WoNDP, 2014.

[74] M. Hashemi et al., “Accelerating Dependent Cache Misses with an En-
hanced Memory Controller,” in ISCA, 2016.

[75] M. Hashemi et al., “Continuous Runahead: Transparent Hardware Accel-
eration for Memory Intensive Workloads,” in MICRO, 2016.

[76] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in
ISCA, 2016.

[77] D. Kim et al., “Neurocube: A Programmable Digital Neuromorphic Ar-
chitecture with High-Density 3D Memory,” in ISCA, 2016.

[78] G. Kim et al., “Toward Standardized Near-Data Processing with Unre-
stricted Data Placement for GPUs,” in SC, 2017.

[79] J. H. Lee et al., “BSSync: Processing Near Memory for Machine Learning
Workloads with Bounded Staleness Consistency Models,” in PACT, 2015.

[80] Z. Liu et al., “Concurrent Data Structures for Near-Memory Computing,”
in SPAA, 2017.

[81] A. Morad et al., “GP-SIMD Processing-in-Memory,” ACM TACO, 2015.
[82] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM Offloading in

Graph Computing Frameworks,” in HPCA, 2017.
[83] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with

Processing-in-Memory Capabilities,” in PACT, 2016.
[84] S. H. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked Mem-

ory+Logic Devices on MapReduce Workloads,” in ISPASS, 2014.
[85] D. P. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Pro-

cessing in Memory,” in HPDC, 2014.
[86] Q. Zhu et al., “Accelerating Sparse Matrix-Matrix Multiplication with

3D-Stacked Logic-in-Memory Hardware,” in HPEC, 2013.
[87] B. Akin et al., “Data Reorganization inMemory Using 3D-Stacked DRAM,”

in ISCA, 2015.

[88] M. Gao et al., “Tetris: Scalable and Efficient Neural Network Acceleration
with 3D Memory,” in ASPLOS, 2017.

[89] M. Drumond et al., “The Mondrian Data Engine,” in ISCA, 2017.
[90] G. Dai et al., “GraphH: A Processing-in-Memory Architecture for Large-

scale Graph Processing,” IEEE TCAD, 2018.
[91] M. Zhang et al., “GraphP: Reducing Communication for PIM-based Graph

Processing with Efficient Data Partition,” in HPCA, 2018.
[92] Y. Huang et al., “A Heterogeneous PIM Hardware-Software Co-Design

for Energy-Efficient Graph Processing,” in IPDPS, 2020.
[93] Y. Zhuo et al., “GraphQ: Scalable PIM-based Graph Processing,” inMICRO,

2019.
[94] P. C. Santos et al., “Operand Size Reconfiguration for Big Data Processing

in Memory,” in DATE, 2017.
[95] S. Ghose et al., “Processing-in-Memory: AWorkload-Driven Perspective,”

IBM JRD, 2019.
[96] W.-M. Hwu et al., “Rebooting the Data Access Hierarchy of Computing

Systems,” in ICRC, 2017.
[97] M. Besta et al., “SISA: Set-Centric Instruction Set Architecture for Graph

Mining on Processing-in-Memory Systems,” in MICRO, 2021.
[98] J. D. Ferreira et al., “pLUTo: In-DRAM Lookup Tables to Enable Massively

Parallel General-Purpose Computation,” arXiv:2104.07699 [cs.AR], 2021.
[99] A. Olgun et al., “QUAC-TRNG: High-Throughput True Random Number

Generation Using Quadruple Row Activation in Commodity DRAMs,” in
ISCA, 2021.

[100] S. Lloyd et al., “In-memory Data Rearrangement for Irregular, Data-
intensive Computing,” Computer, 2015.

[101] D. G. Elliott et al., “Computational RAM: Implementing Processors in
Memory,” IEEE Design & Test of Computers, 1999.

[102] L. Zheng et al., “RRAM-based TCAMs for pattern search,” in ISCAS, 2016.
[103] J. Landgraf et al., “Combining Emulation and Simulation to Evaluate a

Near Memory Key/Value Lookup Accelerator,” 2021.
[104] A. Rodrigues et al., “Towards a Scatter-Gather Architecture: Hardware

and Software Issues,” in MEMSYS, 2019.
[105] S. Lloyd et al., “Design Space Exploration of Near Memory Accelerators,”

in MEMSYS, 2018.
[106] S. Lloyd et al., “Near Memory Key/Value Lookup Acceleration,” in MEM-

SYS, 2017.
[107] M. Gokhale et al., “Near Memory Data Structure Rearrangement,” in

MEMSYS, 2015.
[108] R. Nair et al., “Active Memory Cube: A Processing-in-Memory Architec-

ture for Exascale Systems,” IBM JRD, 2015.
[109] A. C. Jacob et al., “Compiling for the Active Memory Cube,” Tech. rep.

RC25644 (WAT1612-008). IBM Research Division, Tech. Rep., 2016.
[110] Z. Sura et al., “Data Access Optimization in a Processing-in-Memory

System,” in CF, 2015.
[111] R. Nair, “Evolution of Memory Architecture,” Proceedings of the IEEE,

2015.
[112] R. Balasubramonian et al., “Near-Data Processing: Insights from a

MICRO-46 Workshop,” IEEE Micro, 2014.
[113] Y. Xi et al., “In-Memory Learning With Analog Resistive Switching

Memory: A Review and Perspective,” Proceedings of the IEEE, 2020.
[114] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation,” in ICCD, 2016.
[115] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence Mecha-

nism for Processing-in-Memory,” CAL, 2016.
[116] A. Denzler et al., “Casper: Accelerating stencil computation using near-

cache processing,” arXiv preprint arXiv:2112.14216, 2021.
[117] A. Boroumand et al., “Polynesia: Enabling Effective Hybrid Transac-

tional/Analytical Databases with Specialized Hardware/Software Co-
Design,” arXiv:2103.00798 [cs.AR], 2021.

[118] A. Boroumand et al., “Polynesia: Enabling Effective Hybrid Transactional
Analytical Databases with Specialized Hardware Software Co-Design,”
in ICDE, 2022.

[119] G. Singh et al., “FPGA-based Near-Memory Acceleration of Modern
Data-Intensive Applications,” IEEE Micro, 2021.

[120] G. Singh et al., “Accelerating Weather Prediction using Near-Memory
Reconfigurable Fabric,” ACM TRETS, 2021.

[121] J. M. Herruzo et al., “Enabling Fast and Energy-Efficient FM-Index Exact



Matching Using Processing-Near-Memory,” The Journal of Supercomput-
ing, 2021.

[122] L. Yavits et al., “GIRAF: General Purpose In-Storage Resistive Associative
Framework,” IEEE TPDS, 2021.

[123] B. Asgari et al., “FAFNIR: Accelerating Sparse Gathering by Using Effi-
cient Near-Memory Intelligent Reduction,” in HPCA, 2021.

[124] A. Boroumand et al., “Google Neural Network Models for Edge De-
vices: Analyzing andMitigatingMachine Learning Inference Bottlenecks,”
arXiv preprint arXiv:2109.14320, 2021.

[125] A. Boroumand et al., “Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks,” in
PACT, 2021.

[126] A. Boroumand, “Practical Mechanisms for Reducing Processor-Memory
Data Movement in Modern Workloads,” Ph.D. dissertation, Carnegie
Mellon University, 2020.

[127] G. Singh et al., “NERO: A Near High-Bandwidth Memory Stencil Accel-
erator for Weather Prediction Modeling,” in FPL, 2020.

[128] V. Seshadri et al., “Simple Operations in Memory to Reduce Data Move-
ment,” in Advances in Computers, Volume 106, 2017.

[129] S. Diab et al., “High-throughput Pairwise Alignment with the Wavefront
Algorithm using Processing-in-Memory,” arXiv preprint arXiv:2204.02085,
2022.

[130] S. Diab et al., “High-throughput Pairwise Alignment with the Wavefront
Algorithm using Processing-in-Memory,” in HICOMB, 2022.

[131] D. Fujiki et al., “In-Memory Data Parallel Processor,” in ASPLOS, 2018.
[132] Y. Zha et al., “Hyper-AP: Enhancing Associative Processing Through A

Full-Stack Optimization,” in ISCA, 2020.
[133] S. Ghose et al., “Enabling the Adoption of Processing-in-Memory: Chal-

lenges, Mechanisms, Future Research Directions,” CoRR, 2018.
[134] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in

2013 5th IEEE International Memory Workshop, 2013.
[135] O. Mutlu et al., “Research Problems and Opportunities in Memory Sys-

tems,” Supercomput. Front. Innov.: Int. J., 2014.
[136] V. Seshadri et al., “In-DRAM Bulk Bitwise Execution Engine,” CoRR, 2019.
[137] V. Seshadri et al., “Chapter Four - Simple Operations in Memory to

Reduce Data Movement,” ser. Advances in Computers, A. R. Hurson et al.,
Eds. Elsevier, 2017, vol. 106, pp. 107–166.

[138] S. Lee et al., “Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology: Industrial Product,” in ISCA, 2021.

[139] S. Lee et al., “A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-
in-Memory Supporting 1TFLOPSMACOperation and Various Activation
Functions for Deep-Learning Applications,” in ISSCC, 2022.

[140] SAFARI, “SparseP Software Package,” 2022. [Online]. Available:
https://github.com/CMU-SAFARI/SparseP

[141] C. Giannoula et al., “SparseP: Towards Efficient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Architectures,” in Proc.
ACM Meas. Anal. Comput. Syst., 2022.

[142] C. Giannoula et al., “SparseP: Towards Efficient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Systems,” in CoRR, 2022.

[143] C. Giannoula et al., “Towards Efficient Sparse Matrix Vector Multiplica-
tion on Real Processing-In-Memory Systems,” in CoRR, 2022.

https://github.com/CMU-SAFARI/SparseP

