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Sparse Matrix Vector Multiplication (SpMV) is one of the
most thoroughly studied scientific computation kernels, be-
cause it lies at the heart of many important applications from
the scientific computing, machine learning, and graph analyt-
ics domains. SpMV performs indirect memory references as a
result of storing the sparse matrix in a compressed format, and
irregular memory accesses to the input vector due to the spar-
sity pattern of the input matrix [1–3]. Thus, in CPU and GPU
systems, SpMV is a primarily memory-bandwidth-bound ker-
nel for the majority of real sparse matrices, and is bottlenecked
by data movement between memory and processors [3–6].
One promising way to alleviate the data movement bottle-

neck is the Processing-In-Memory (PIM) paradigm [4–137].
PIM moves computation close to data by equipping memory
chips with processing capabilities [8, 9, 11]. Several manufac-
turers have proposed near-bank PIM designs [4,8,138,139], that
tightly couple a PIM core with each DRAM bank, exploiting
bank-level parallelism to expose high on-chip memory band-
width of standard DRAM to processors. Three real near-bank
PIM architectures are Samsung’s FIMDRAM [138], SK Hynix’s
GDDR6-AiM [139] and the UPMEM PIM system [4–6, 8].

Most real near-bank PIM architectures [4–6,8,138,139] sup-
port several PIM-enabled memory chips connected to a host
CPU via memory channels. Each memory chip comprises mul-
tiple low-power PIM cores with relatively low computation
capability [4–6]. Each PIM core can access data located on
its local DRAM bank, and typically there is no direct com-
munication channel among PIM cores. Overall, near-bank
PIM systems provide high levels of parallelism and very large
memory bandwidth, and are thus a very promising computing
platform to accelerate the widely-used SpMV kernel.
Our work is the first to efficiently map the SpMV kernel

on near-bank PIM systems, and understand its performance
implications on a real-world PIM system. We make two key
contributions. First, we design efficient SpMV algorithms for
current and future PIM systems, covering a wide variety of
sparse matrices with diverse sparsity patterns. Second, we
provide the first comprehensive analysis of SpMV on a real-
world PIM architecture. Specifically, we conduct our rigorous
analysis of SpMV kernels in the UPMEM PIM system [4, 8].
We present the openly available SparseP library [140] that

includes 25 SpMV kernels for real PIM systems. SparseP sup-
ports (1) the four most popular compressed matrix formats, (2)
a wide range of data types, (3) two types of well-crafted data
partitioning techniques of the sparse matrix to PIM-enabled
memory, (4) various load balancing schemes across PIM cores,
(5) various load balancing schemes across threads of a multi-

threaded PIM core, and (6) three synchronization approaches
among threads within multithreaded PIM core.
We conduct an extensive study of SparseP kernels on the

UPMEM PIM system [4–6,8]. We analyze the SpMV execution
(1) using one single multithreaded PIM core, (2) using thou-
sands of PIM cores, and (3) comparing its performance and
energy consumption with that achieved on processor-centric
CPU and GPU systems. Based on our rigorous experimental
results and observations, we provide programming recommen-
dations for software designers and suggestions for hardware
and system designers of future PIM systems.

Our major suggestions for PIM software designers are:
1. Design algorithms that provide high load balance across

threads of a multithreaded PIM core in terms of computa-
tions, synchronization points and memory accesses.

2. Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing
high computation balance across PIM cores.

3. Design adaptive algorithms that trade off computation bal-
ance across PIM cores for lower data transfer costs to PIM-
enabled memory, and adapt the software strategies to the
characteristics of both the input given and the PIM hardware.
Our major suggestions for PIM hardware and system de-

signers are:
1. Provide hardware support to enable concurrent memory ac-

cesses by multiple threads to the local DRAM bank to increase
parallelism in a multithreaded PIM core.

2. Optimize the broadcast collective operation in data transfers
to PIM-enabled memory to minimize overheads of copying
the input data into all DRAM banks in the PIM system.

3. Optimize the gather collective operation at DRAM bank gran-
ularity for data transfers from PIM-enabled memory to the
host CPU to reduce overheads of retrieving the output results.

4. Design high-speed communication channels and optimized
libraries for data transfers to/from thousands of DRAM banks
of PIM-enabled memory.
For more information about our thorough analysis on the

SpMV PIM execution, insights and the open-source SparseP
software package [140], we refer the reader to our full pa-
per [141–143]. We hope that our work can provide valu-
able insights to programmers in the development of efficient
sparse kernels from various application domains tailored for
PIM systems, and enlighten architects and system design-
ers in the development of future memory-centric comput-
ing systems. SparseP is available at https://github.com/CMU-
SAFARI/SparseP.

https://github.com/CMU-SAFARI/SparseP
https://github.com/CMU-SAFARI/SparseP
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