
21

SparseP: Towards Efficient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Architectures

CHRISTINA GIANNOULA, ETH Zürich, Switzerland and National Technical University of Athens,
Greece
IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain
JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
NECTARIOS KOZIRIS, National Technical University of Athens, Greece
GEORGIOS GOUMAS, National Technical University of Athens, Greece
ONUR MUTLU, ETH Zürich, Switzerland

Several manufacturers have already started to commercialize near-bank Processing-In-Memory (PIM) archi-
tectures, after decades of research efforts. Near-bank PIM architectures place simple cores close to DRAM
banks. Recent research demonstrates that they can yield significant performance and energy improvements in
parallel applications by alleviating data access costs. Real PIM systems can provide high levels of parallelism,
large aggregate memory bandwidth and low memory access latency, thereby being a good fit to accelerate
the Sparse Matrix Vector Multiplication (SpMV) kernel. SpMV has been characterized as one of the most
significant and thoroughly studied scientific computation kernels. It is primarily a memory-bound kernel with
intensive memory accesses due its algorithmic nature, the compressed matrix format used, and the sparsity
patterns of the input matrices given.

This paper provides the first comprehensive analysis of SpMV on a real-world PIM architecture, and presents
SparseP , the first SpMV library for real PIM architectures.Wemake three key contributions. First, we implement
a wide variety of software strategies on SpMV for a multithreaded PIM core, including (1) various compressed
matrix formats, (2) load balancing schemes across parallel threads and (3) synchronization approaches, and
characterize the computational limits of a single multithreaded PIM core. Second, we design various load
balancing schemes across multiple PIM cores, and two types of data partitioning techniques to execute SpMV
on thousands of PIM cores: (1) 1D-partitioned kernels to perform the complete SpMV computation only using
PIM cores, and (2) 2D-partitioned kernels to strive a balance between computation and data transfer costs to
PIM-enabled memory. Third, we compare SpMV execution on a real-world PIM system with 2528 PIM cores to
an Intel Xeon CPU and an NVIDIA Tesla V100 GPU to study the performance and energy efficiency of various
devices, i.e., both memory-centric PIM systems and conventional processor-centric CPU/GPU systems, for
the SpMV kernel. SparseP software package provides 25 SpMV kernels for real PIM systems supporting the
four most widely used compressed matrix formats, i.e., CSR, COO, BCSR and BCOO, and a wide range of data
types. SparseP is publicly and freely available at https://github.com/CMU-SAFARI/SparseP. Our extensive
evaluation using 26 matrices with various sparsity patterns provides new insights and recommendations for
software designers and hardware architects to efficiently accelerate the SpMV kernel on real PIM systems.

Authors’ addresses: Christina Giannoula, christina.giann@gmail.com, ETH Zürich, Switzerland, National Technical Uni-
versity of Athens, Greece; Ivan Fernandez, ETH Zürich, Switzerland, University of Malaga, Spain; Juan Gómez-Luna,
ETH Zürich, Switzerland; Nectarios Koziris, National Technical University of Athens, Greece; Georgios Goumas, National
Technical University of Athens, Greece; Onur Mutlu, ETH Zürich, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2022/3-ART21 $15.00
https://doi.org/10.1145/3508041

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

https://github.com/CMU-SAFARI/SparseP
https://doi.org/10.1145/3508041

21:2 Christina Giannoula, et al.

CCS Concepts: • Mathematics of computing → Computations on matrices; • Theory of computation
→ Design and analysis of algorithms; • Computing methodologies → Model development and
analysis; • Computer systems organization → Architectures; • Hardware → Dynamic memory; •
Software and its engineering→ Software libraries and repositories.

Additional Key Words and Phrases: high-performance computing, HPC, sparse matrix-vector multiplication,
SpMV, SpMV library, multicore, processing-in-memory, near-data processing, memory systems, data movement
bottleneck, DRAM, benchmarking, real-system characterization, workload characterization

ACM Reference Format:
Christina Giannoula, Ivan Fernandez, Juan Gómez-Luna, Nectarios Koziris, Georgios Goumas, and Onur
Mutlu. 2022. SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory
Architectures. Proc. ACM Meas. Anal. Comput. Syst. 6, 1, Article 21 (March 2022), 49 pages. https://doi.org/10.
1145/3508041

1 Introduction
Sparse Matrix Vector Multiplication (SpMV) is a fundamental linear algebra kernel for important
applications from the scientific computing, machine learning, and graph analytics domains. In
commodity systems, it has been repeatedly reported to achieve only a small fraction of the peak
performance [25, 27, 38, 49, 52, 73, 106–108, 113] due to its algorithmic nature, the employed
compressed matrix storage format, and the sparsity pattern of the input matrix. SpMV performs
indirect memory references as a result of storing the matrix in a compressed format, and irregular
memory accesses to the input vector due to sparsity. The matrices involved are very sparse, i.e., the
vast majority of elements are zeros [25, 27, 38, 51, 67, 96]. For example, the matrices that represent
Facebook’s and YouTube’s network connectivity contain 0.0003% [51, 67] and 2.31% [51, 96] non-zero
elements, respectively. Therefore, in processor-centric systems, SpMV is a memory-bandwidth-
bound kernel for the majority of real sparse matrices, and is bottlenecked by data movement
between memory and processors [24–27, 37, 38, 43, 49, 52, 59, 60, 73, 87, 106–108, 112].

One promising way to alleviate the data movement bottleneck is the Processing-In-Memory (PIM)
paradigm [1, 4, 23, 30, 33, 34, 36, 37, 43, 54, 61, 62, 66, 80]. PIMmoves computation close to application
data by equipping memory chips with processing capabilities [80]. Prior works [1, 30, 33, 34, 36]
propose PIM architectures wherein a processor logic layer is tightly integrated with DRAMmemory
layers using 2.5D/3D-stacking technologies. Nonetheless, the 2.5D/3D integration itself might not
always be able to provide significantly higher memory bandwidth for processors than standard
DRAM [4, 66]. To provide even higher bandwidth for the in-memory processors, near-bank PIM
designs have been explored [4, 17, 23, 37, 43, 62, 66, 104]. Near-bank PIM designs tightly couple
a PIM core with each DRAM bank, exploiting bank-level parallelism to expose high on-chip
memory bandwidth of standard DRAM to processors. Moreover, manufacturers of near-bank PIM
architectures avoid disturbing the key components (i.e., subarray and bank) of commodity DRAM
to provide a cost-efficient and practical way for silicon materialization. Two real near-bank PIM
architectures are Samsung’s FIMDRAM [62, 66] and the UPMEM PIM system [23, 37, 43, 103].
Most near-bank PIM architectures [4, 17, 23, 37, 43, 62, 66, 104] support several PIM-enabled

memory chips connected to a host CPU via memory channels. Each memory chip comprises
multiple PIM cores, which are low-area and low-power cores with relatively low computation
capability [37, 43], and each of them is located close to a DRAM bank [4, 17, 23, 37, 43, 62, 66, 104].
Each PIM core can access data located on their local DRAM banks, and typically there is no
direct communication channel among PIM cores. Overall, near-bank PIM architectures provide
high levels of parallelism and very large memory bandwidth, thereby being a very promising
computing platform to accelerate memory-bound kernels. Recent works leverage near-bank PIM
architectures to provide high performance and energy benefits on bioinformatics [37, 43, 64] and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

https://doi.org/10.1145/3508041
https://doi.org/10.1145/3508041

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:3

neural network [37, 43, 66] kernels. However, there is no prior work to thoroughly study the widely
used, memory-bound SpMV kernel on a real PIM system.
Our work is the first to efficiently map the SpMV execution kernel on near-bank PIM systems,

and understand its performance implications on a real PIM system. Specifically, our goal in this
work is twofold: (i) design efficient SpMV algorithms to accelerate this kernel in current and future
PIM systems, while covering a wide variety of sparse matrices with diverse sparsity patterns,
and (ii) provide an extensive characterization analysis of the widely used SpMV kernel on a real
PIM architecture. To this end, we provide a wide variety of SpMV implementations for real PIM
architectures, and conduct a rigorous experimental analysis of SpMV kernels in the UPMEM PIM
system, the first publicly-available real-world PIM architecture.
We present the SparseP library [40] that includes 25 SpMV kernels for real PIM systems, sup-

porting various (1) data types, (2) data partitioning techniques of the sparse matrix to PIM-enabled
memory, (3) compressed matrix formats, (4) load balancing schemes across PIM cores, (5) load
balancing schemes across threads of a multithreaded PIM core, and (6) synchronization approaches
among threads within PIM core. We support a wide range of data types, i.e., 8-bit integer, 16-bit
integer, 32-bit integer, 64-bit integer, 32-bit float and 64-bit float data types to cover a wide variety
of real-world applications that employ SpMV as their underlying kernel. We design two types of
well-crafted data partitioning techniques: (i) the 1D partitioning technique to perform the complete
SpMV computation only using PIM cores, and (ii) the 2D partitioning technique to strive a balance
between computation and data transfer costs to PIM-enabled memory. In the 1D partitioning
technique, the matrix is horizontally partitioned across PIM cores, and the whole input vector is
copied into the DRAM bank of each PIM core, while PIM cores directly compute the elements of
the final output vector. In the 2D partitioning technique, the matrix is split in 2D tiles, the number
of which is equal to the number of PIM cores, and a subset of the elements of the input vector is
copied into the DRAM bank of each PIM core. However, in the 2D partitioning technique, PIM
cores create a large number of partial results for the elements of the output vector which are
gathered and merged by the host CPU cores to assemble the final output vector. We support the
most popular compressed matrix formats, i.e., CSR [11, 90], COO [90, 95], BCSR [48], BCOO [90],
and for each compressed format we implement various load balancing schemes across PIM cores
to provide efficient SpMV execution for a wide variety of sparse matrices with diverse sparsity
patterns. Finally, we design several load balancing schemes and synchronization approaches among
parallel threads within a PIM core to cover a variety of real PIM systems that provide multithreaded
PIM cores.
We conduct an extensive characterization analysis of SparseP kernels on the UPMEM PIM

system [23, 37, 43, 104] analyzing the SpMV execution using (1) one single multithreaded PIM core,
(2) thousands of PIM cores, and (3) comparing it with that achieved on conventional processor-
centric CPU and GPU systems. First, we characterize the limits of a single multithreaded PIM core,
and show that (i) high operation imbalance across threads of a PIM core can impose high overhead
in the core pipeline, and (ii) fine-grained synchronization approaches to increase parallelism cannot
outperform a coarse-grained approach, if PIM hardware serializes accesses to the local DRAM
bank. Second, we analyze the end-to-end SpMV execution of 1D and 2D partitioning techniques
using thousands of PIM cores. Our study indicates that the performance (i) of the 1D partitioning
technique is limited by data transfer costs to broadcast the whole input vector into each DRAM bank
of PIM cores, and (ii) of the 2D partitioning technique is limited by data transfer costs to gather
partial results for the elements of the output vector from PIM-enabled memory to the host CPU.
Such data transfers incur high overheads, because they take place via the narrow memory bus. In
addition, our detailed study across a wide variety of compressed matrix formats and sparse matrices
with diverse sparsity patterns demonstrates that (i) the compressed matrix format determines

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:4 Christina Giannoula, et al.

the data partitioning strategy across DRAM banks of PIM-enabled memory, thereby affecting
the computation balance across PIM cores with corresponding performance implications, and
(ii) there is no one-size-fits-all solution. The load balancing scheme across PIM cores (and across
threads within a PIM core) and data partitioning technique that provides the best-performing SpMV
execution depends on the characteristics of the input matrix and the underlying PIM hardware.
Finally, we compare the SpMV execution on a state-of-the-art UPMEM PIM system with 2528 PIM
cores to state-of-the-art CPU and GPU systems, and observe that SpMV on the UPMEM PIM system
achieves a much higher fraction of the machine’s peak performance compared to that on CPU
and GPU systems. Our extensive evaluation provides programming recommendations for software
designers, and suggestions and hints for hardware and system designers of future PIM systems.

Our most significant recommendations for PIM software designers are:
(1) Design algorithms that provide high load balance across threads of a PIM core in terms of

computations, loop control iterations, synchronization points and memory accesses.
(2) Design compressed data structures that can be effectively partitioned across DRAM banks,

with the goal of providing high computation balance across PIM cores.
(3) Design adaptive algorithms that trade off computation balance across PIM cores for lower

data transfer costs to PIM-enabled memory, and adapt their configuration to the particular
patterns of each input given, as well as the characteristics of the PIM hardware.

Our most significant suggestions for PIM hardware and system designers are:
(1) Provide low-cost synchronization support and hardware support to enable concurrent mem-

ory accesses by multiple threads to the local DRAM bank to increase parallelism in a multi-
threaded PIM core.

(2) Optimize the broadcast collective operation in data transfers from main memory to PIM-
enabled memory to minimize overheads of copying the input data into all DRAM banks in
the PIM system.

(3) Optimize the gather collective operation at DRAM bank granularity for data transfers from
PIM-enabled memory to the host CPU to minimize overheads of retrieving the output results.

(4) Design high-speed communication channels and optimized libraries for data transfers to/from
thousands of DRAM banks of PIM-enabled memory.

Our SparseP software package is freely and publicly available [40] to enable further research on
SpMV in current and future PIM systems. The main contributions of this work are as follows:

• We present SparseP , the first open-source SpMV software package for real PIM architectures.
SparseP includes 25 SpMV kernels, supporting the four most widely used compressed matrix
formats and a wide range of data types. SparseP is publicly available at [40], and can be useful
for researchers to improve multiple aspects of future PIM hardware and software.

• Weperform the first comprehensive study of thewidely used SpMVkernel on the UPMEMPIM
architecture, the first real commercial PIM architecture. We analyze performance implications
of SpMV PIM execution using a wide variety of (1) compressed matrix formats, (2) data types,
(3) data partitioning and load balancing techniques, and (4) 26 sparse matrices with diverse
sparsity patterns.

• We compare the performance and energy of SpMV on the state-of-the-art UPMEM PIM
system with 2528 PIM cores to state-of-the-art CPU and GPU systems. SpMV execution
achieves less than 1% of the peak performance on processor-centric CPU and GPU systems,
while it achieves on average 51.7% of the peak performance on the UPMEM PIM system, thus
better leveraging the computation capabilities of underlying hardware. The UPMEM PIM
system also provides high energy efficiency on the SpMV kernel.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:5

2 Background and Motivation
2.1 Sparse Matrix Vector Multiplication (SpMV)
The SpMV kernel multiples a sparse matrix of size 𝑀 × 𝑁 with a dense input vector of size
1 × 𝑁 to compute an output vector of size𝑀 × 1. The SpMV kernel is widely used in a variety of
applications including graph processing [9, 14, 51], convolutional neural networks [72], machine
learning [42, 71, 82, 119], and high performance computing [12, 17, 24, 28, 29, 45]. These applications
involve matrices with very high sparsity [25, 27, 38, 51, 67, 96], i.e., a large fraction of zero elements.
Thus, using a compression scheme is a straightforward approach to avoid unnecessarily storing
zero elements and performing computations on them. For general sparse matrices, the most widely
used storage format is the Compressed Sparse Row (CSR) format [11, 90]. Figure 1 presents an
example of a compressed matrix using the CSR format (left), and the CSR-based SpMV execution
(right), assuming an input vector 𝑥 and an output vector 𝑦.

values

colind

3

2
8

3 5 6

0 1 1 1 1 2 3 3 3
rowptr

Matrix
(a) CSR (b) CSR-based SpMV

1. for (i = 0; i < M; i++)

2. for (j = rowptr[i]; j < rowptr[i+1]; j++)

3. y[i] += values[j] * x[colind[j]]

Fig. 1. (a) CSR representation of a sparse matrix. (b) CSR-based SpMV implementation.

2.1.1 Compressed Matrix Storage Formats
Several prior works [5, 11, 46, 48, 57, 59, 60, 63, 75, 89, 90, 93, 95, 108, 113, 116] propose compressed
storage formats for sparse matrices, which are typically of two types [51]. The first approach is
to design general purpose compressed formats, such as CSR [11, 90], CSR5 [75], COO [90, 95],
BCSR [48], and BCOO [90]. Such encodings are general in applicability and are highly-efficient in
storage. The second approach is to leverage a certain known structure in a given type of sparse
matrix. For example, the DIA format [5] is effective in matrices where the non-zero elements
are concentrated along the diagonals of the matrix. Such encodings aim to improve performance
of sparse matrix computations by specializing to particular matrix patterns, but they sacrifice
generality. In this work, we explore with the four most widely used general compressed formats
(Figure 2), which we describe in more detail next.

bvalues

bcolind

bvalues

browind

values

bcolindcolind
3 5 6

0 1 1 1 1 2 3 3 3

rowptr tuples browptr
0 1 2

0 1 0 1

0 1

… …

*

=
Matrix

input
vector

output
vector

(a) SpMV (b) CSR (c) COO (d) BCSR (e) BCOO

4x4
sub-

block

0 4 5
3 5 6

Fig. 2. (a) SpMV with a dense matrix representation, and (b) CSR, (c) COO, (d) BCSR, (e) BCOO formats.

Compressed Sparse Row (CSR) [11, 90]. The CSR format (Figure 2b) sequentially stores values in
row order. A column index array (colind[]) and a value array (values[]) store the column index

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:6 Christina Giannoula, et al.

and value of each non-zero element, respectively. An array, named rowptr[], stores the location
of the first non-zero element of each row within the values[] array. The adjacent pair rowptr[i],
rowptr[i+1] represents a slice of the colind[] and values[] arrays. The corresponding slice
of the colind[] and values[] arrays stores the column indices and the values of the non-zero
elements, respectively, for the i-th row.
Coordinate Format (COO) [90, 95]. The COO format (Figure 2c) stores the non-zero elements as
a series of tuples (tuples[] array). Each tuple includes the row index, column index, and value of
the non-zero element.
Block Compressed Sparse Row (BCSR) [48]. The BCSR format (Figure 2d) is a block represen-
tation of CSR. Instead of storing and indexing single non-zero elements, BCSR stores and indexes
𝑏×𝑏 sub-blocks with at least one non-zero element. The original matrix is split into 𝑏×𝑏 sub-blocks.
Figure 2d shows an example of BCSR assuming 4× 4 sub-blocks. The original matrix of Figure 2a is
split into four sub-blocks, and two of them (highlighted with red color) contain at least one non-
zero element. The bvalues[] array stores the values of all the non-zero sub-blocks of the original
matrix. Each non-zero sub-block is stored in the bvalues[] array with a dense representation, i.e.,
padding with zero values when needed. The bcolind[] array stores the block-column index of
each non-zero sub-block. The browptr[] array stores pointers to the first non-zero sub-block of
each block row within the bcolind[] array, assuming a block row represents 𝑏 consecutive rows
of the original matrix.
Block Coordinate Format (BCOO) [90]. The BCOO format is the block counterpart of COO. The
browind[], bcolind[] and bvalues[] arrays store the row indices, column indices and values
of the non-zero sub-blocks, respectively. Figure 2e shows an example of BCOO, assuming 4 × 4
sub-blocks.

2.1.2 SpMV in Processor-Centric Systems
Many prior works [25, 27, 38, 49, 52, 73, 106–108, 113] generally show that SpMV performs poorly
on commodity CPU and GPU systems, and achieves a small fraction of the peak performance (e.g.,
10% of the peak performance [107]) due to its algorithmic nature, the employed compressed matrix
storage format and the sparsity pattern of the matrix.
The SpMV kernel is highly bottlenecked by the memory subsystem in processor-centric CPU

and GPU systems due to three reasons. First, due to its algorithmic nature there is no temporal
locality in the input matrix. Unlike traditional algebra kernels like Matrix Matrix Multiplication
or LU decomposition, the elements of the matrix in SpMV are used only once [38]. Second, due
to the sparsity of the matrix, the matrix is stored in a compressed format (e.g., CSR) to avoid
unnecessary computations and data accesses. Specifically, the non-zero elements of the matrix
are stored contiguously in memory, while additional data structures assist in the proper traversal
of the matrix, i.e., to discover the positions of the non-zero elements. For example, CSR uses the
rowptr[] and colind[] arrays to discover the positions of the non-zero elements of the matrix.
These additional data structures cause additional memory access operations, memory bandwidth
pressure and contention with other requests in the memory subsystem. Third, due to the sparsity
of the input matrix, SpMV causes irregular memory accesses to the elements of the input vector
𝑥 . The memory accesses to the elements of the input vector are input driven, i.e., they follow the
sparsity pattern of the input matrix. This irregularity results to poor data locality on the elements
of the input vector and expensive data accesses, because it increases the average access latency
due to a high number of cache misses on commodity systems with deep cache hierarchies. As a
result, memory-centric near-bank PIM systems constitute a better fit for the widely used SpMV
kernel, because they provide high levels of parallelism, large aggregate memory bandwidth and
low memory access latency [4, 37, 43, 66].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:7

2.2 Near-Bank PIM Systems
Figure 3 shows the baseline organization of a near-bank PIM system that we assume in this work.
The PIM system (Figure 3) consists of a host CPU, standard DRAM memory modules, and PIM-
enabled memory modules. PIM-enabled modules are connected to the host CPU using one or more
memory channels, and include multiple PIM chips. A PIM chip (Figure 3 right) tightly integrates a
low-area PIM core with a DRAM bank. We assume that each PIM core can additionally include
a small private instruction memory and a small data (scratchpad or cache) memory. PIM cores
can access data located on their local DRAM bank, and typically there is no direct communication
channel among PIM cores. The DRAM banks of PIM chips are accessible by the host CPU for
copying input data and retrieving results via the memory bus.

Host
CPU

DRAM
Bank

DRAM
Bank

DRAM
Bank

DRAM
Bank

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip P

IM
 C

o
re

 P
ip

el
in

e

Instruction
Memory

Data
Memory

DRAM
Bank

Main Memory

PIM-enabled Memory

PIM Chip

 bus

 bus

Fig. 3. High-level organization of a near-bank PIM architecture.

2.2.1 The UPMEM PIM Architecture
The UPMEM PIM system [23, 37, 43] includes the host CPU with standard main memory, and
UPMEM PIM modules. An UPMEM PIM module is a standard DDR4-2400 DIMM with 2 ranks.
Each rank contains 64 PIM cores, which are called DRAM Processing Units (DPUs). In the current
UPMEM PIM system, there are 20 double-rank PIM DIMMs with 2560 DPUs.1
DPU Architecture and Interface. Each DPU has exclusive access to a 24-KB instruction memory,
called IRAM, a 64-KB scratchpad memory, calledWRAM, and a 64-MB DRAM bank, calledMRAM.
A DPU is a multithreaded in-order 32-bit RISC core that can potentially reach 500 MHz [104]. The
DPU has 24 hardware threads, each of which has 24 32-bit general purpose registers. The DPU
pipeline has 14 stages, and supports a single cycle 8x8-bit multiplier. Multiplications on 64-bit
integers, 32-bit floats and 64-bit floats are not supported in hardware, and require longer routines
with a large number of operations [37, 43, 104]. Threads share the IRAM and WRAM, and can
access the MRAM by executing transactions at 64-bit granularity via a DMA engine, i.e., data can be
accessed from/to MRAM as a multiple of 8 bytes, up to 2048 bytes. MRAM transactions are serialized
in the DMA engine. The ISA provides DMA instructions to move instructions from MRAM to
IRAM, or data between MRAM and WRAM. The DPU accesses the WRAM through 8-, 16-, 32- and
64-bit load/store instructions. DPUs use the Single Program Multiple Data programming model,
where software threads, called tasklets, execute the same code, but operate in different pieces of
data, and can execute different control-flow paths during runtime. Tasklets can synchronize using
mutexes, barriers, handshakes and semaphores provided by the UPMEM runtime library.
CPU-DPU Data Transfers. Standard main memory and PIM-enabled memory have different data
layouts. The UPMEM SDK [105] has a transposition library to execute necessary data shuffling
when moving data between main memory and MRAM banks via a programmer-transparent way.
1There are thirty two faulty DPUs in the system where we run our experiments. They cannot be used and do not affect the
correctness of our results, but take away from the system’s full computational power of 2560 DPUs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:8 Christina Giannoula, et al.

The CPU-DPU and DPU-CPU data transfers can be performed in parallel, i.e., concurrently across
multiple MRAM banks, with the limitation that the transfer sizes from/to all MRAM banks need to be
the same. The UPMEM SDK provides two options: (i) perform parallel transfers to all MRAM banks
of all ranks, or (ii) iterate over each rank to perform parallel transfers to MRAM banks of the same
rank, and serialize data transfers across ranks.

3 The SparseP Library
This section describes the parallelization techniques that we explore for SpMV on real PIM architec-
tures, and presents the SpMV implementations of our SparseP package. Section 3.1 describes SpMV
execution on a real PIM system. Section 3.2 presents an overview of the data partitioning techniques
that we explore. Section 3.3 and Section 3.4 describe in detail the parallelization techniques across
PIM cores, and across threads within a PIM core, respectively. Section 3.5 describes the kernel
implementation for all compressed matrix formats.

3.1 SpMV Execution on a PIM System
Figure 4 shows SpMV execution on a real PIM system, which is broken down in four steps: (1)
the time to load the input vector into DRAM banks of PIM-enabled memory (load), (2) the time
to execute the SpMV kernel on PIM cores (kernel), (3) the time to retrieve from DRAM banks to
the host CPU results for the output vector (retrieve), and (4) the time to merge partial results
and assemble the final output vector on the host CPU (merge). In our analysis, we omit the time to
load the matrix into PIM-enabled memory, since this step can typically be hidden in real-world
applications (it can be overlappedwith other computation performed by the application or amortized
if the application performs multiple SpMV iterations on the same matrix).

bus bus

PIM-enabled Memory

 Host CPU

+ =

load the
input vector

1 execute the kernel retrieve the results
for output vector

merge the
partial results

PIM Core

 DRAM Bank

PIM Core

 DRAM Bank

PIM Core

 DRAM Bank

PIM Core

 DRAM Bank
o

ut
p

ut
 v

ec
to

r

2 3 4

Fig. 4. Execution of the SpMV kernel on a real PIM system.

3.2 Overview of Data Partitioning Techniques
To parallelize the SpMV kernel, we implement well-crafted data partitioning schemes to split the
matrix across multiple DRAM banks of PIM cores. SparseP [40] supports two general types of data
partitioning techniques, shown in Figure 5.
First, we provide an 1D partitioning technique (Figure 5a), where the matrix is horizontally

partitioned across PIM cores, and the whole input vector is copied into the DRAM bank of each PIM
core. With the 1D partitioning technique, almost the entire SpMV computation is performed using
only PIM cores, since the merge step in the host CPU is negligible: a very small number of partial
results is created, i.e., only for a few rows that are split across neighboring PIM cores. Thus, the
number of partial elements of the output vector is at most equal to the number of PIM cores used.
Second, we provide a 2D partitioning technique (Figure 5b), where the matrix is partitioned into 2D
tiles, the number of which is equal to the number of PIM cores. With the 2D partitioning technique,
we aim to strive a balance between computation and data transfer costs, since only a subset of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:9

1D

x 4

2D

input vectorinput vector

Core 1
Core 2
Core 3
Core 4

=
Core 1 Core 3

Core 2 Core 4

output
vector

x 4 x 4x 8

+

(a) (b)

x 2

output
vector

 =

sparse
matrix

sparse
matrix

Fig. 5. Data partitioning techniques of the SparseP package.

the elements of the input vector is copied into the DRAM bank of each PIM core. However, PIM
cores assigned to tiles that horizontally overlap, i.e., tiles that share the same rows of the original
matrix (rows that are split across multiple tiles), produce many partial results for the elements of
the output vector. These partial results are transferred to the host CPU, and merged by CPU cores,
which assemble the final output vector. In the SparseP library, the merge step performed by the
CPU cores is parallelized using the OpenMP API [21].
In both data partitioning schemes, matrices are stored in a row-sorted way, i.e., the non-zero

elements are sorted in increasing order of their row indices. Therefore, each PIM core computes
results for a continuous subset of elements of the output vector. This way we minimize data transfer
costs, since we only transfer necessary data to the host CPU, i.e., the values of the elements of the
output vector produced at PIM cores. If each PIM core computed results for non-continuous subset
of elements of the output vector, an additional array per core, which would store the indices of
the non-continuous elements within the output vector, would need to be transferred to the host
CPU, causing additional data transfer overheads. Finally, for both data partitioning techniques,
SparseP supports various parallelization schemes across PIM cores and across threads within a
multithreaded PIM core, which we describe next.

3.3 Parallelization Techniques Across PIM Cores
3.3.1 1D Partitioning Technique
To efficiently parallelize SpMV across multiple PIM cores via the 1D partitioning technique, SparseP
provides various load balancing schemes for each supported compressed matrix format. Figure 6
presents an example of parallelizing SpMV across multiple PIM cores using load balancing schemes
for the CSR and COO formats. For the CSR and COO formats, we balance either the rows, such
that each PIM core processes almost the same number of rows, or the non-zero elements, such that
each PIM core processes almost the same number of non-zero elements. In the CSR format, since
the matrix is stored in row-order, i.e., the rowptr[] array stores the index pointers of the non-zero
elements of each row, and thus balancing the non-zero elements across PIM cores is performed at
row granularity. In the COO format, the matrix is stored in non-zero order using the tuples[]
array, and thus balancing the non-zero elements can be performed either at row granularity, or
by splitting a row across two neighboring PIM cores to provide a near-perfect non-zero element
balance across cores. In the latter case, as mentioned, a small number of partial results for the
output vector is merged by the host CPU: if the row is split between two neighboring PIM cores at
most one element needs to be accumulated at the host CPU cores.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:10 Christina Giannoula, et al.

CSR COO

(i) Balance Rows

Core 1

Core 2

Core 3

(iii) Balance NNZ (ii) Balance NNZ
(Row Granularity)

(i) Balance Rows

rowptr

colind

values

90 1 5 7 7 8 83

tuples tuples

0 1 1 2 2 3 3 5 7
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

tuples

0 1 1 2 2 3 3 5 7
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

0 1 1 2 2 3 3 5 7
0 2 5 3 5 3 6 4 4
2 1 8 3 6 9 3 4 7

0 2 5 3 5 3 6 4 4

2 1 8 3 6 9 3 4 7

Core 1

Core 2

Core 3

rowptr

colind

values

90 1 5 7 7 8 83

(ii) Balance NNZ
(Row Granularity)

0 2 5 3 5 3 6 4 4

2 1 8 3 6 9 3 4 7

Core 1

Core 2

Core 3

Core 1

Core 2

Core 3

Core 1

Core 2

Core 3

Fig. 6. Load balancing schemes across PIM cores for the CSR (left) and COO (right) formats with the 1D
partitioning technique. The colored cells of the matrix represent non-zero elements.

Figure 7 presents an example of parallelizing SpMV acrossmultiple PIM cores using load balancing
schemes of the BCSR and BCOO formats. In Figure 7, the cells of the matrix represent sub-blocks of
size 4x4: the grey cells represent sub-blocks that do not have any non-zero element, and the colored
cells represent sub-blocks that have 𝑘 non-zero elements, where 𝑘 is the number shown inside the
colored cell. In the BCSR and BCOO formats, since the matrix is stored in sub-blocks of non-zero
elements, we balance either the blocks, such that each PIM core processes almost the same number
of blocks, or the non-zero elements, such that each PIM core processes almost the same number
of non-zero elements. Similarly to CSR, in the BCSR format, the matrix is stored in block-row
order, i.e., the browptr[] array stores the index pointers of the non-zero blocks of each block row
(recall that a block row represents 𝑏 consecutive rows of the original matrix, where 𝑏 is the vertical
dimension of the sub-block), and thus balancing the blocks or the non-zero elements across cores
is limited to be performed at block-row granularity. In the BCOO format, given that a block-row
might be split across two PIM cores, a small number of partial results for the output vector is
merged by the host CPU: between two neighboring PIM cores at most block size 𝑏 elements might
need to be accumulated at the host CPU cores.

BCSR BCOO

(i) Balance Blocks
(Block-Row Granularity)

4

2 1
4 2

2

2

4 Core 1

Core 2

Core 3

(ii) Balance NNZ(i) Balance Blocks

browptr

bcolind

bvalues

80 1 4 6 6 7 72

0 2 3 5 3 6 4 4

4

2 1
4 2

2

2

4

browptr

bcolind

bvalues

(ii) Balance NNZ
(Block-Row Granularity)

0 2 3 5 3 6 4 4

0 1 0 0 0 9 0 0

Core 1

Core 2

Core 3

80 1 4 6 6 72 7

0 0 9 0 000 1

4

2 1
4 2

2

2

4
Core 1

Core 2

Core 3

browind

bcolind

bvalues

0 1 2 3 3 5 72

0 2 3 5 3 6 4 4

4

2 1
4 2

2

2

4

browind

bcolind

bvalues

0 2 3 5 3 6 4 4

0 1 0 0 0 9 0 0

Core 1

Core 2

Core 3

0 1 2 3 3 72 5

0 0 9 0 000 1… … … …

Fig. 7. Load balancing schemes across PIM cores for the BCSR (left) and BCOO (left) formats with the
1D partitioning technique. The cells of the matrix represent sub-blocks of size 4x4. The colored cells of the
matrix represent non-zero sub-blocks, and the number inside a colored cell describes the number of non-zero
elements of the corresponding sub-block.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:11

3.3.2 2D Partitioning Technique
SparseP includes three 2D partitioning techniques, shown in Figure 8:
(1) equally-sized (Figure 8a): The 2D tiles are statically created to have the same height and

width. This way the subsets of the elements for the input and output vectors have the same
sizes across all PIM cores.

(2) equally-wide (Figure 8b): The 2D tiles have the same width and variable height. This way
the subset of the elements for the input vector has the same size across PIM cores, while
the subset of the elements for the output vector varies across PIM cores. We balance the
non-zero elements across the tiles of the same vertical partition, such that we can provide
high non-zero element balance across PIM cores assigned to the same vertical partition.

(3) variable-sized (Figure 8c): The 2D tiles have both variable width and height. We balance the
non-zero elements both across the vertical partitions and across the tiles of the same vertical
partition. This way we can provide high non-zero element balance across all PIM cores.

2D
equally-sized

2D
equally-wide

2D
variable-sized

input vector input vector

Core 1 Core 3

Core 2 Core 4

Core 1
Core 3

Core 2
Core 4

x 4 x 4 x 3 x 5

+

(a) (b) (c)

x 2

input vector

x 4 x 4 x 2 x 2

Core 1
Core 3

Core 2
Core 4

output
vector

output
vector

output
vector

 = + = + =

sparse
matrix

sparse
matrix

sparse
matrix

Fig. 8. The 2D partitioning techniques of SparseP package assuming 4 PIM cores and 2 vertical partitions.

SparseP provides various load balancing schemes across PIM cores in the equally-wide and
variable-sized techniques. In the equally-wide technique, for the CSR and COO formats, we balance
the non-zero elements across the tiles of the same vertical partition. Load balancing in the CSR
format is performed at row-granularity, i.e., splitting the rowptr[] array across PIM cores. For
the BCSR and BCOO formats, we balance either the blocks or the non-zero elements across the
tiles of the same vertical partition. Load balancing in the BCSR format is performed at block-row
granularity, i.e., splitting the browptr[] array across PIM cores. In the variable-sized technique, we
first balance the non-zero elements across the vertical partitions, such that the vertical partitions
include the same number of non-zero elements. Then, across the tiles of the same vertical partition,
we balance the non-zero elements for the CSR (at row-granularity) and COO formats, and either
the blocks or the non-zero elements for the BCSR (at block-row granularity) and BCOO formats.

Table 1 summarizes the parallelization approaches across PIM cores. Please also see Appendix C
for all SpMV kernels provided by the SparseP software package. All kernels support a wide range
of data types, i.e., 8-bit integer (int8), 16-bit integer (int16), 32-bit integer (int32), 64-bit integer
(int64), 32-bit float (fp32), and 64-bit float (fp64) data types.

3.4 Parallelization Techniques Across Threads within a PIM Core
PIM cores can support multiple hardware threads to exploit high memory bank bandwidth [37, 43].
To parallelize SpMV across multiple threads within a multithreaded PIM core SparseP supports
various load balancing schemes for each compressed matrix format, and three synchronization
approaches to ensure correctness among threads of a PIM core.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:12 Christina Giannoula, et al.

Partitioning Compressed Load Balancing
Technique Format Across PIM Cores

1D

CSR rows (CSR.row)
nnz★ (CSR.nnz)

COO
rows (COO.row)
nnz★ (COO.nnz-rgrn)
nnz (COO.nnz)

BCSR blocks† (BCSR.block)
nnz† (BCSR.nnz)

BCOO blocks (BCOO.block)
nnz (BCOO.nnz)

2D
equally-sized

CSR (DCSR) -
COO (DCOO) -
BCSR (DBCSR) -
BCOO (DBCOO) -

2D
equally-wide

CSR (RBDCSR) nnz★
COO (RBDCOO) nnz

BCSR blocks† (RBDBCSR)
nnz†

BCOO blocks (RBDBCOO)
nnz

2D
variable-sized

CSR (BDCSR) nnz★
COO (BDCOO) nnz

BCSR blocks† (BDBCSR)
nnz†

BCOO blocks (BDBCOO)
nnz

Table 1. Parallelization techniques across PIM cores of the SparseP library. ★: row-granularity, †: block-row-
granularity

3.4.1 Load Balancing Approaches
In a similar way as explained in Figure 6, for the CSR and COO formats, we balance either the rows,
such that each thread processes almost the same number of rows, or the non-zero elements, such
that each thread processes almost the same number of non-zero elements. In the CSR format, matrix
is stored in row-order, and thus load balancing across threads is performed at row granularity. In
the UPMEM PIM system, elements of the output vector are accessed at 64-bit granularity in DRAM
memory. Thus, when balancing is performed at row granularity, we assign rows to threads in
chunks of 8/𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒) to ensure 8-byte alignment on the elements of the output vector. In
the COO format, balancing the non-zero elements can be performed either at row granularity or by
splitting the row between threads, i.e., providing an almost perfect non-zero balance across threads.
In the latter case, synchronization among threads for write accesses on the elements of the output
vector can be implemented with three synchronization approaches described in Section 3.4.2.

For the BCSR and BCOO formats, we balance either the blocks, such that each thread processes
almost the same number of blocks, or the non-zero elements, such that each thread processes almost
the same number of non-zero elements. In the BCSR format, the matrix is stored in block-row-order,
and thus load balancing across threads is performed at block row granularity. For both formats, the
block sizes are configurable in SparseP . In our evaluation, we use block sizes of 4x4, since these
are the most common dimensions to cover various sparse matrices [2, 27, 52]. In the UPMEM PIM

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:13

architecture, elements of the output vector are accessed at 64-bit granularity. Therefore, for the
BCSR format, with an 8-bit integer data type and small block sizes (4x4 or smaller), threads use
synchronization primitives to ensure correctness when writing the elements of the output vector.
This is because different threads may write to the same 64-bit-aligned DRAM memory location.
Synchronization among threads for writes to the elements of the output vector is necessary for all
configurations of the BCOO format, and can be implemented with three approaches described next.

3.4.2 Synchronization Approaches
SparseP provides three synchronization approaches.
(1) Coarse-Grained Locking (lb-cg). One global mutex protects the elements of the entire

output vector.
(2) Fine-Grained Locking (lb-fg). Multiple mutexes protect the elements of the output vector.

SparseP associates mutexes to the elements of the output vector in a round-robin manner.
The UPMEM API supports up to 56 mutexes [105]. In our evaluation, we use 32 mutexes such
that we can find the corresponding mutex for a particular element of the output vector only
with a shift operation on the MRAM address, avoiding costly division operations.

(3) Lock-Free (lf). Since the formats are row-sorted or block-row-sorted, race conditions in the
elements of the output vector arise only in a few elements, i.e., either when a row (or a block
row for BCSR/BCOO) is split across threads, or when continuous elements of the output
vector processed by different threads belong to the same 64-bit-aligned DRAM location in the
UPMEM PIM system. In our proposed lock-free approach, threads temporarily store partial
results for these few elements in the data (scratchpad) memory (i.e., WRAM in the UPMEM
PIM system), and later one single thread merges the partial results, and writes the final result
for the corresponding element of the output vector to the DRAM bank.

Table 2 summarizes the parallelization techniques across threads of a PIM core. All kernels
support a wide range of data types, i.e., 8-bit integer (int8), 16-bit integer (int16), 32-bit integer
(int32), 64-bit integer (int64), 32-bit float (fp32), and 64-bit float (fp64) data types.

Compressed Load Balancing Synchronization
Format Across Threads Approach

CSR rows (CSR.row) -
nnz★ (CSR.nnz) -

COO
rows (COO.row) -
nnz★ (COO.nnz-rgrn) -
nnz (COO.nnz) lb-cg / lb-fg / lf

BCSR blocks† (BCSR.block) lb-cg / lb-fg (only for int8 and small block sizes)
nnz† (BCSR.nnz) lb-cg / lb-fg (only for int8 and small block sizes)

BCOO blocks (BCOO.block) lb-cg / lb-fg / lf
nnz (BCOO.nnz) lb-cg / lb-fg / lf

Table 2. Parallelization schemes across threads of a PIM core. ★: row-granularity, †: block-row-granularity

3.5 Kernel Implementation
We briefly describe the SparseP implementations for all compressed matrix formats, i.e., the way
that threads access data involved in the kernel from/to the local DRAM bank. The SpMV kernels
include three types of data structures: (i) the arrays that store the non-zero elements, i.e., the values
(values[]) and the positions of the non-zero elements (rowptr[], colind[] for CSR, tuples[]
for COO, browptr[], bcolind[] for BCSR, browind[], bcolind[] for BCOO), (ii) the array that
stores the elements of the input vector, and (iii) the array that stores the partial results created for
the elements of the output vector.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:14 Christina Giannoula, et al.

First, SpMV performs streaming memory accesses to the arrays that store the non-zero elements
and their positions. Therefore, to exploit spatial locality and immense bandwidth in data (scratchpad
or cache) memory, each thread reads the non-zero elements by fetching large chunks of bytes in
a coarse-grained manner from DRAM to data memory (i.e., WRAM in the UPMEM PIM system).
Then, it accesses elements through data memory in a fine-grained manner. In the UPMEM PIM
system, we fetch chunks of 256-byte data to discover the non-zero elements, as suggested by the
UPMEM API [105], since 256-byte transfer sizes highly exploit the available local bandwidth of
DRAM bank [37, 43]. For the BCSR and BCOO formats, only for the array that stores the values of
the non-zero elements (i.e., bvalues[]), we fetch from DRAM to data memory block size chunks,
i.e., chunks of 𝑏 × 𝑏 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒) bytes, assuming that the matrix is stored in blocks of size
𝑏 × 𝑏.

Second, SpMV causes irregular memory accesses to the elements of the input vector (poor data
locality). Specifically, the memory accesses to the elements of the input vector are input-driven,
since they are determined by the column positions of the non-zero elements of each particular
sparse matrix. Thus, threads of a PIM core directly access elements of the input vector through
DRAM bank at fine-granularity [37, 43, 105], i.e., using the smallest possible granularity: for the
CSR and COO formats at 64-bit granularity, and for the BCSR and BCOO formats at the granularity
of 𝑏 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒) bytes, where 𝑏 is the horizontal dimension of the block size.

Third, regarding the output vector, threads temporarily store partial results for the same elements
of the output vector in data (scratchpad or cache) memory to exploit data locality, until all the
non-zero elements of the same row or the same block row have been traversed (recall matrices
are stored in a row-sorted way). Then, the produced results are written to DRAM bank at fine-
granularity [37, 43, 105]: for the CSR and COO formats at 64-bit granularity, and for the BCSR and
BCOO formats at the granularity of 𝑏 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒) bytes, where 𝑏 is the vertical dimension
of the block size.

4 Evaluation Methodology
We conduct our evaluation on an UPMEM PIM system that includes a 2-socket Intel Xeon Silver
4110 CPU at 2.10 GHz (host CPU), standard main memory (DDR4-2400) of 128 GB, and 20 UPMEM
PIM DIMMs with 160 GB PIM-capable memory and 2560 DPUs.2

First, we evaluate SpMV execution using one single DPU and multiple tasklets (Section 5). Table 3
shows our evaluated small matrices that fit in the 64 MB DRAM bank of a single DPU. The evaluated
matrices vary in sparsity (i.e., NNZ / (rows x columns)), standard deviation of non-zero elements
among rows (NNZ-r-std) and columns (NNZ-c-std). The highlighted matrices in Table 3 with red
color exhibit block pattern [27, 60], i.e., they include a lot of dense sub-blocks (almost all their
non-zero elements fit in dense sub-blocks).

Matrix Name Sparsity NNZ-r-std NNZ-c-std
delaunay_n13 7.32e-04 1.343 1.343
wing_nodal 1.26e-03 2.861 2.861
raefsky4 3.396e-03 15.956 15.956
pkustk08 0.006542 61.537 61.537

Table 3. Small Matrix Dataset.

2There are thirty two faulty DPUs in the system where we run our experiments. They cannot be used and do not affect the
correctness of our results, but take away from the system’s full computational power of 2560 DPUs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:15

Second, we evaluate SpMV execution usingmultiple DPUs of the UPMEM PIM system (Section 6).
We evaluate SpMV execution using both 1D (Section 6.1) and 2D (Section 6.2) partitioning techniques,
and compare them (Section 6.3) using awide variety of sparsematrices with diverse sparsity patterns.
We select 22 representative sparse matrices from the Sparse Suite Collection [22], the characteristics
of which are shown in Table 4. As the values of the last two metrics increase (i.e., NNZ-r-std and
NNZ-c-std), the matrix becomes very irregular [81, 101], and is referred to as scale-free matrix. In
our evaluation, we refer to all matrices between hgc to bns matrices of Table 4 as regular matrices.
The matrices in which NNZ-r-std is larger than 25, i.e., all matrices between wbs to ask on Table 4,
we refer to as scale-free matrices. Please see Appendix D for a complete description of our dataset
of large sparse matrices.

Matrix Name Sparsity NNZ-r-std NNZ-c-std
hugetric-00020 (hgc) 4.21e-07 0.031 0.031
mc2depi (mc2) 7.59e-06 0.076 0.076
parabolic_fem (pfm) 1.33e-05 0.153 0.153
roadNet-TX (rtn) 1.98e-06 1.037 1.037
rajat31 (rjt) 9.24e-07 1.106 1.106
af_shell1 (ash) 6.90e-05 1.275 1.275
delaunay_n19 (del) 1.14e-05 1.338 1.338
thermomech_dK (tdk) 6.81e-05 1.431 1.431
memchip (mem) 2.02e-06 2.062 1.173
amazon0601 (amz) 2.08e-05 2.79 15.29
FEM_3D_thermal2 (fth) 1.59e-04 4.481 4.481
web-Google (wbg) 6.08e-06 6.557 38.366
ldoor (ldr) 5.13e-05 11.951 11.951
poisson3Db (psb) 3.24e-04 14.712 14.712
boneS10 (bns) 6.63e-05 20.374 20.374
webbase-1M (wbs) 3.106e-06 25.345 36.890
in-2004 (in) 8.846e-06 37.230 144.062
pkustk14 (pks) 6.428e-04 46.508 46.508
com-Youtube (cmb) 4.639e-06 50.754 50.754
as-Skitter (skt) 7.71e-06 136.861 136.861
sx-stackoverflow (sxw) 5.352e-06 137.849 65.367
ASIC_680k (ask) 8.303e-06 659.807 659.807

Table 4. Large Matrix Dataset. Matrices are sorted by NNZ-r-std, i.e., based on their irregular pattern.

Third, we compare the performance and energy consumption of SpMV execution on the UPMEM
PIM system to those on the Intel Xeon Silver 4110 CPU and the NVIDIA Tesla V100 GPU (Section 7).

In Section 8, we summarize our key takeaways and provide programming recommendations for
software designers, and suggestions and hints for hardware and system designers of future PIM
systems.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:16 Christina Giannoula, et al.

5 Analysis of SpMV Execution on One DPU
This section characterizes SpMV performance with various load balancing schemes and compressed
matrix formats using multiple tasklets in a single DPU. Section 5.1 compares load balancing schemes
of each compressed matrix format, and Section 5.2 compares the scalability of various compressed
matrix formats.

5.1 Load Balancing Schemes Across Tasklets of One DPU
We compare the parallelization schemes of each compressed matrix format supported by SparseP
library (presented in Table 2) across multiple threads of a multithreaded PIM core. Figure 9 compares
the load balancing schemes of each compressed matrix format using 16 tasklets in a single DPU.
For the BCSR and BCOO formats, we omit results for the fine-grained locking approach, since
it performs similarly with the coarse-grained locking approach: as we explain in Appendix A.1,
fine-grained locking does not increase parallelism over coarse-grained, since in the UPMEM PIM
hardware, DRAM memory accesses of the critical section are serialized in the DMA engine of the
DPU [37, 43, 105].

int8
int16

int32
int64

fp32
fp64

0
10
20
30
40

E
xe

cu
ti

o
n

T
im

e
(m

s) CSR - delaunay_n13
row
nnz

int8
int16

int32
int64

fp32
fp64

0
25
50
75

100
125
150
175

E
xe

cu
ti

o
n

T
im

e
(m

s) CSR - wing_nodal
row
nnz

int8
int16

int32
int64

fp32
fp64

0
200
400
600
800

1000
1200
1400

E
xe

cu
ti

o
n

T
im

e
(m

s) CSR - raefsky4
row
nnz

int8
int16

int32
int64

fp32
fp64

0
1000
2000
3000
4000
5000

E
xe

cu
ti

o
n

T
im

e
(m

s) CSR - pkustk08
row
nnz

int8
int16

int32
int64

fp32
fp64

0
10
20
30
40
50

E
xe

cu
ti

o
n

T
im

e
(m

s) COO - delaunay_n13
row
nnz-rgrn
nnz-lb-cg
nnz-lb-fg
nnz-lf

int8
int16

int32
int64

fp32
fp64

0
25
50
75

100
125
150
175

E
xe

cu
ti

o
n

T
im

e
(m

s) COO - wing_nodal
row
nnz-rgrn
nnz-lb-cg
nnz-lb-fg
nnz-lf

int8
int16

int32
int64

fp32
fp64

0
200
400
600
800

1000
1200
1400

E
xe

cu
ti

o
n

T
im

e
(m

s) COO - raefsky4
row
nnz-rgrn
nnz-lb-cg
nnz-lb-fg
nnz-lf

int8
int16

int32
int64

fp32
fp64

0
1000
2000
3000
4000
5000

E
xe

cu
ti

o
n

T
im

e
(m

s) COO - pkustk08
row
nnz-rgrn
nnz-lb-cg
nnz-lb-fg
nnz-lf

int8
int16

int32
int64

fp32
fp64

0
10
20
30
40
50
60
70

E
xe

cu
ti

o
n

T
im

e
(m

s) BCSR - delaunay_n13
block
nnz

int8
int16

int32
int64

fp32
fp64

0
50

100
150
200
250

E
xe

cu
ti

o
n

T
im

e
(m

s) BCSR - wing_nodal
block
nnz

int8
int16

int32
int64

fp32
fp64

0
200
400
600
800

1000
1200
1400

E
xe

cu
ti

o
n

T
im

e
(m

s) BCSR - raefsky4
block
nnz

int8
int16

int32
int64

fp32
fp64

0
500

1000
1500
2000
2500
3000
3500

E
xe

cu
ti

o
n

T
im

e
(m

s) BCSR - pkustk08
block
nnz

int8
int16

int32
int64

fp32
fp64

0
10
20
30
40
50
60
70

E
xe

cu
ti

o
n

T
im

e
(m

s) BCOO - delaunay_n13
block-lb-cg
nnz-lb-cg
block-lf
nnz-lf

int8
int16

int32
int64

fp32
fp64

0
50

100
150
200
250

E
xe

cu
ti

o
n

T
im

e
(m

s) BCOO - wing_nodal
block-lb-cg
nnz-lb-cg
block-lf
nnz-lf

int8
int16

int32
int64

fp32
fp64

0
200
400
600
800

1000
1200
1400

E
xe

cu
ti

o
n

T
im

e
(m

s) BCOO - raefsky4
block-lb-cg
nnz-lb-cg
block-lf
nnz-lf

int8
int16

int32
int64

fp32
fp64

0
500

1000
1500
2000
2500
3000
3500

E
xe

cu
ti

o
n

T
im

e
(m

s) BCOO - pkustk08
block-lb-cg
nnz-lb-cg
block-lf
nnz-lf

Fig. 9. Execution time achieved by 16 tasklets of a single DPU for various load balancing schemes.

We draw four findings from Figure 9. First, we find that SpMV execution using int8, int16, and
int32 data types achieves similar execution times across them. This is because the multiplication
operation of these data types is sufficiently supported by hardware [37]. In contrast, execution time
sharply increases when using more heavyweight data types, i.e., int64 and floating point data types,
in which multiplication is emulated in software using the 8x8-bit multiplier of the DPU [37, 43, 105].

Second, we observe that balancing the non-zero elements across tasklets typically outperforms
balancing the rows for the CSR/COO formats or blocks for the BCSR/BCOO formats, since the non-
zero element multiplications are computationally very expensive and can significantly affect load
balance across tasklets. However, in delaunay_n13 matrix, balancing the non-zero elements causes
high row/block imbalance across tasklets, since one tasklet processes a significantly higher number

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:17

of rows/blocks over the rest, thereby incurring high operation imbalance across tasklets within
the DPU core pipeline. As a result, balancing the rows/blocks outperforms balancing the non-zero
elements due to the particular pattern of delaunay_n13 matrix. In addition, performance benefits
of balancing the blocks over balancing the non-zero elements are significant in the BCSR/BCOO
formats, because they operate at block granularity and incur high loop control costs.
Third, we observe that the lock-free approach (COO.nnz-lf) outperforms the lock-based ap-

proaches (COO.nnz-lb-cg and COO.nnz-lb-fg) in delaunay_n13 matrix, especially in data types
where the multiplication operation is supported directly in hardware. In delaunay_n13 matrix,
one tasklet processes a much larger number of rows than the rest, i.e., it performs a much larger
number of critical sections than the rest. In other words, one tasklet performs a much larger
number of lock acquisitions/releases and memory instructions than the rest. Thus, lock-based
approaches cause high operation imbalance in the DPU core pipeline with significant performance
costs. Instead, lock-free and lock-based approaches in the BCOO format perform similarly, since
lock acquisition/release costs can be hidden due to BCOO’s higher loop control costs and larger
critical sections. Overall, based on the second and the third findings, we conclude that in matrices
and formats, where the load balancing and/or the synchronization scheme used cause high disparity
in the number of non-zero elements/blocks/rows processed across tasklets or the number of lock
acquisitions/lock releases/memory accesses performed across tasklets, the DPU core pipeline can
incur significant performance overheads.

OBSERVATION 1:
High operation imbalance in computation, control, synchronization, or mem-
ory instructions executed by multiple threads of a PIM core can cause high
performance overheads in the compute-bound and area-limited PIM cores.

Fourth, we find that the fine-grained locking approach (COO.nnz-lb-fg) performs similarly with
the coarse-grained locking approach (COO.nnz-lb-cg). This is because the critical section includes
memory accesses to the local DRAM bank, which, in the UPMEM PIM hardware, are serialized
in the DMA engine of the DPU. Therefore, fine-grained locking does not increase execution
parallelism over coarse-grained locking, since concurrent accesses to MRAM are not supported in
the UPMEMPIM hardware. Fine-grained locking does not improve performance over coarse-grained
locking, also when using block-based formats (e.g., the BCSR/BCOO formats), as we demonstrate
in Appendix A.1.

OBSERVATION 2:
Fine-grained locking approaches to parallelizing critical sections that
perform memory accesses to different DRAM memory locations can-
not improve performance over coarse-grained locking, when the

PIM hardware does not support concurrent accesses to a DRAM bank.

5.2 Analysis of Compressed Matrix Formats on One DPU
We compare the scalability and the performance achieved by various compressed matrix formats.
Figure 10 compares the supported compressed formats for the int8 (top graphs) and fp64 (bottom
graphs) data types when balancing the non-zero elements across tasklets of a DPU.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:18 Christina Giannoula, et al.

4 8 16 24

20

15

10

E
xe

cu
ti

o
n

T
im

e
(m

s)
 -

in
t8 delaunay_n13

4 8 16 24

120

80

40

wing_nodal

4 8 16 24

220

160

100

raefsky4

4 8 16 24

500

400

300

200

pkustk08

Number of Tasklets

CSR.nnz COO.nnz-lb-cb COO.nnz-lf BCSR.nnz BCOO.nnz

4 8 16 24
50

100

150

200

E
xe

cu
ti

o
n

T
im

e
(m

s)
 -

fp
64 delaunay_n13

4 8 16 24

200

400

600

wing_nodal

4 8 16 24
1000

2000

3000

raefsky4

4 8 16 24
2000

4000

6000

8000

pkustk08

Number of Tasklets

CSR.nnz COO.nnz-lb-cb COO.nnz-lf BCSR.nnz BCOO.nnz

Fig. 10. Scalability of all compressed formats for the int8 (top graphs) and fp64 (bottom graphs) data types as
the number of tasklets of a single DPU increases.

We draw three findings. First, we find that even though a DPU supports 24 tasklets, SpMV
execution typically scales up to 16 tasklets, since the DPU pipeline is fully utilized. In delaunay_n13
matrix, CSR.nnz scales up to 24 tasklets. In this matrix, when using 16 tasklets, performance of the
CSR.nnz scheme is limited by memory accesses: only one tasklet processes 6 × more rows than
the rest, i.e., it performs 6 × more memory accesses to fetch elements from the rowptr[] array.
Thus, as we increase the number of tasklets from 16 to 24, the disparity in the number of rows
across tasklets decreases, and the CSR.nnz scheme improves performance. Second, we observe
that for the data types with hardware-supported multiplication operation (e.g., int8 data type),
CSR achieves the highest scalability, since it provides a better balance between memory access
and computation. In contrast, in the floating point data types (e.g., fp64 data type), the DPU is
significantly bottlenecked by the expensive software-emulated multiplication operations, and thus
all formats scale similarly. Third, we observe that the BCSR and BCOO formats outperform the CSR
and COO formats in matrices that exhibit block pattern (i.e., raefsky4 and pkustk08 matrices),
only when multiplication is supported by hardware (e.g., int8 data type). This is because they exploit
spatial and temporal locality in data memory (i.e., WRAM) in the accesses of the elements of the
input vector. Instead, in the fp64 data type, performance is severely bottlenecked by computation,
thus the BCSR/BCOO formats perform worse than the CSR/COO formats, since they incur higher
indexing costs to discover the positions of the non-zero elements [2, 51].

OBSERVATION 3:
Block-based formats (e.g., BCSR/BCOO) and can provide high performance gains
over non-block-based formats (e.g., CSR/COO) in matrices that exhibit a block

pattern, if the multiplication operation is supported by hardware. Otherwise, the
state-of-the-art CSR and COO formats can provide high performance and scalability.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:19

6 Analysis of SpMV Execution on Multiple DPUs
This section analyzes SpMV execution using multiple DPUs in the UPMEM PIM system using the
large matrix data set of Table 4.

Section 6.1 evaluates the 1D partitioning schemes. Section 6.1.1 evaluates the actual kernel time
of SpMV by comparing (a) all load balancing schemes of each compressed matrix format, and (b)
the performance of all compressed matrix formats. Section 6.1.2 characterizes end-to-end SpMV
execution time of the 1D partitioning technique including the data transfer costs for the input and
output vectors.

Section 6.2 evaluates the 2D partitioning techniques. Section 6.2.1 presents three characterization
studies on (a) performing fine-grained data transfers to transfer the elements of the input and
output vectors to/from PIM-enabled memory, (b) the scalability of 2D partitioning techniques to
thousands of DPUs, and (c) the number of vertical partitions to perform on the matrix. Section 6.2.2
compares the end-to-end performance of all compressed matrix formats for each of the three types
of 2D partitioning techniques. Section 6.2.3 compares the best-performing SpMV implementations
of all three types of 2D partitioning techniques.

Section 6.3 compares the best-performing (on average across all matrices and data types) SpMV
implementations of the 1D and 2D partitioning techniques.

6.1 Analysis of SpMV Execution Using 1D Partitioning Techniques
We evaluate the 1D partitioning schemes highlighted in bold in Table 1. Specifically, for COO.nnz,
we present the coarse-grained locking (COO.nnz-lb) and lock-free (COO.nnz-lf) approaches, since
the fine-grained locking approach performs similarly with the coarse-grained locking approach,
as shown in the previous section (Section 5.1). Similarly, for the BCSR (int8 data type) and BCOO
formats, we present only the coarse-grained locking approach, since all synchronization approaches
perform similarly (Section 5.1). Finally, in all experiments presented henceforth, we use 16 tasklets
and load-balance the non-zero elements across tasklets within the DPU, since this load balancing
scheme provides the highest performance benefits on average across all matrices and data types,
according to our evaluation shown in Section 5.

6.1.1 Analysis of Kernel Time
We compare the kernel time of SpMV achieved by various load balancing schemes for each
particular compressed matrix format, and then we compare the kernel time of the compressed
matrix formats.
Analysis of Load Balancing Schemes Across DPUs. Figure 11 compares load balancing tech-
niques for each compressed format using 2048 DPUs and the int32 data type.
We draw four findings. First, we observe that CSR.nnz and COO.nnz-rgrn, i.e., balancing the

non-zero elements across DPUs (at row granularity), either outperform or perform similarly to
CSR.row and COO.row, respectively, i.e., balancing the rows across DPUs, except for hgc and del
matrices. In these two matrices, CSR.nnz and COO.nnz-rowgrn incur a high disparity in rows
assigned to DPUs, i.e., only one DPU processes 4× and 11× more rows than the rest, for hgc and
del matrices, respectively. This in turn creates a high disparity in the elements of the output vector
processed across DPUs, causing performance to be limited by the DPU that processes the largest
number of rows. Thus, we find that adaptive load balancing approaches and selection methods
based on the characteristics of each input matrix need to be developed to achieve high performance
across all matrices.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:20 Christina Giannoula, et al.

hg
c

m
c2

pf
m rt
n rj
t

as
h

de
l

td
k

m
em am

z
ft

h
w

bg ld
r

ps
b

bn
s

w
bs in

pk
s

cm
b

sk
t

sx
w

as
k

G
M

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Sp
ee

d
up

3.
02

3.
47(a) CSR - int32 - 2048 DPUs

row nnz

hg
c

m
c2

pf
m rt
n rj
t

as
h

de
l

td
k

m
em am

z
ft

h
w

bg ld
r

ps
b

bn
s

w
bs in

pk
s

cm
b

sk
t

sx
w

as
k

G
M

0
1
2
3
4
5
6

Sp
ee

d
up

11
.7

12
.1

8.
8

12
.4

8.
9

34
1.

5
41

6.
4

(b) COO - int32 - 2048 DPUs
row
nnz-rgrn

nnz-lb
nnz-lf

hg
c

m
c2

pf
m rt
n rj
t

as
h

de
l

td
k

m
em am

z
ft

h
w

bg ld
r

ps
b

bn
s

w
bs in

pk
s

cm
b

sk
t

sx
w

as
k

G
M

0.0
0.5
1.0
1.5
2.0

Sp
ee

d
up

(c) BCSR - int32 - 2048 DPUs
block nnz

hg
c

m
c2

pf
m rt
n rj
t

as
h

de
l

td
k

m
em am

z
ft

h
w

bg ld
r

ps
b

bn
s

w
bs in

pk
s

cm
b

sx
w

sk
t

as
k

G
M

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sp
ee

d
up

(d) BCOO - int32 - 2048 DPUs
block nnz

Fig. 11. Performance comparison of load balancing techniques for each particular compressed format using
2048 DPUs and the int32 data type.

OBSERVATION 4:
Adaptive load balancing schemes and selection methods for the balancing scheme

on rows/blocks/non-zero elements based on the characteristics of each input
matrix need to be developed to provide best performance across all matrices.

Second, we find that COO.nnz-lb and COO.nnz-lf, which provide an almost perfect non-zero
element balance across DPUs, significantly outperform COO.row and COO.nnz-rgrn in scale-free
matrices (i.e., from wbs to ask matrices) by on average 6.73×. Scale-free matrices have only a few
rows, that include a much larger number of non-zero elements compared to the remaining rows
of the matrix. Therefore, perfectly balancing the non-zero elements across DPUs provides high
performance gains.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:21

OBSERVATION 5:
Perfectly balancing the non-zero elements across PIM cores can provide
significant performance benefits in highly irregular, scale-free matrices.

Third, we find that the lock-free COO.nnz-lf scheme outperforms the lock-based COO.nnz-lb
scheme by 1.34× on average, and provides high performance benefits when there is a high row
imbalance across tasklets within the DPU. When one tasklet processes a much larger number of
rows versus the rest, it executes a much larger number of critical sections. As a result, the core
pipeline incurs high imbalance in lock acquisitions/releases, causing the lock-based approach to
incur high performance overheads in relatively compute-bound DPUs [37, 43].

OBSERVATION 6:
Lock-free approaches can provide high performance benefits over lock-based approaches
in PIM architectures, because they minimize synchronization overheads in PIM cores.

Finally, in the BCSR and BCOO formats, balancing the blocks across DPUs performs similarly
(on average across all matrices) to balancing the non-zero elements across DPUs.

To further investigate the performance of the various load balancing schemes, Figure 12 compares
them using all the data types. We present the geometric mean of all matrices using 2048 DPUs. In
the CSR and COO formats, balancing the non-zero elements across DPUs on average outperforms
balancing the rows across DPUs by 1.18× and 1.20×, respectively.We observe that in the COO format
almost perfectly balancing the non-zero elements across DPUs provides significant performance
benefits (2.55×, averaged across all the data types), compared to balancing the rows, especially when
multiplication is not supported by hardware (e.g., for the floating point data types). In contrast, in
the BCSR and BCOO formats, balancing the blocks across DPUs performs only slightly better (on
average 2.7% across all the data types) than balancing the non-zero elements.

int8 int16 int32 int64 fp32 fp64 GM0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sp
ee

d
up

(a) CSR - 2048 DPUs
row nnz

int8 int16 int32 int64 fp32 fp64 GM0
1
2
3
4
5

Sp
ee

d
up

(b) COO - 2048 DPUs
row
nnz-rgrn

nnz-lb
nnz-lf

int8 int16 int32 int64 fp32 fp64 GM0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sp
ee

d
up

(c) BCSR - 2048 DPUs
block nnz

int8 int16 int32 int64 fp32 fp64 GM0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sp
ee

d
up

(d) BCOO - 2048 DPUs
block nnz

Fig. 12. Performance comparison of load balancing techniques for each data type using 2048 DPUs.

Comparison of Compressed Matrix Formats. Figure 13 compares the throughput (in GOper-
ations per second) achieved by various compressed formats using 2048 DPUs and the int32 data
type. For the CSR and COO formats, we select balancing the non-zero elements across DPUs, and
for the BCSR and BCOO formats, we select balancing the blocks across DPUs, since these are the
best-performing schemes for each format averaged across all matrices and data types (Figure 12).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:22 Christina Giannoula, et al.
hg

c
m

c2
pf

m rt
n rj
t

as
h

de
l

td
k

m
em am

z
ft

h
w

bg ld
r

ps
b

bn
s

w
bs in

pk
s

cm
b

sk
t

sx
w

as
k

G
M

 (1
)

G
M

 (2
)0

5
10
15
20
25

G
O

p/
s

regular (1) scale-free (2)

2048 DPUs CSR.nnz COO.nnz-lf BCSR.block BCOO.block

Fig. 13. Performance comparison of compressed formats using 2048 DPUs and the int32 data type.

We draw four findings. First, matrices that exhibit block pattern (almost all non-zero elements of
the matrix fit in dense sub-blocks), i.e., ash, ldr, bns, pks matrices, have the highest throughput,
since they leverage higher data locality compared to matrices with a non-block pattern. Second, in
scale-free matrices, the COO and BCOO formats significantly outperform CSR and BCSR formats by
6.94× and 13.90×, respectively. This is because they provide better non-zero element balance across
DPUs. In the CSR and BCSR formats, the non-zero element balance is limited to be performed at
row and block-row granularity, respectively, causing performance to be limited by the DPU that
processes the largest number of non-zero elements. Third, we observe that the BCOO format can
outperform the CSR format even in non-blocked scale-free matrices. Fourth, we find that when
the CSR and BCSR formats provide sufficient non-zero element balance across DPUs, i.e., in many
regular matrices such as rtn, tdk, amz, and fth, they can outperform the COO and BCOO formats,
respectively.

OBSERVATION 7:
In scale-free matrices, the COO and BCOO formats significantly outperform the CSR and
BCSR formats, because they provide higher non-zero element balance across PIM cores.

6.1.2 Analysis of End-To-End SpMV Execution
Figure 14 shows the end-to-end execution time of 1D-partitioned kernels using 2048 DPUs and the
int32 data type. The times are broken down into (i) the time for CPU to DPU transfer to load the
input vector into DRAM banks (load), (ii) the kernel time on DPUs (kernel), (iii) the time for DPU
to CPU transfer to retrieve the results for the output vector (retrieve), and (iv) the time to merge
partial results on the host CPU cores (merge).

hgc mc2 pfm rtn rjt ash del tdk memamz fth wbg ldr psb bns wbs in pks cmb skt sxw ask
0

200
400
600
800

1000
1200
1400

E
xe

cu
ti

o
n

T
im

e
(m

se
c)

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

2048 DPUs - int32
load kernel retrieve merge

Fig. 14. Total execution time when using 2048 DPUs and the int32 data type for CR: CSR.nnz, CO: COO.nnz-lf,
BR: BCSR.block and BO: BCOO.block kernels.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:23

We draw four findings. First, the load data transfers constitute more than 90% of the total
execution time, because the input vector is replicated and broadcast into each DPU, causing a
large number of bytes to be transferred through the narrow off-chip memory bus. An exception
is in the CSR and BCSR formats for sxw, ask matrices, which include one very dense row, and
thus kernel time is highly bottlenecked by one DPU that processes a significantly larger number
of non-zero elements than the rest. Second, the kernel time constitutes on average only 4.3% of
the total execution time, since SpMV is effectively parallelized to thousands of DPUs. Third, the
retrieve data transfers constitute on average 3.4% of the total execution time, because the output
vector is split across DPUs. Fourth, the merge time on the host CPU is negligible (less than 1% of
the total execution time), since only a few partial results for the elements of the output vector are
merged by the host CPU cores in the 1D partitioning techniques.

OBSERVATION 8:
The end-to-end performance of the 1D partitioning techniques is severely bottlenecked
by the data transfer costs to replicate and broadcast the whole input vector into each
DRAM bank of PIM cores, which takes place through the narrow off-chip memory bus.

To further investigate on the costs to the load input vector into all DRAM banks of PIM-enabled
memory, we present in Figure 15 the total execution time achieved by COO.nnz-lf when varying
(a) the data type using 2048 DPUs (normalized to the experiment for the int8 data type), and (b) the
number of DPUs for the int32 data type (normalized to 64 DPUs).

hgc rjt ldr sxw ask AVG
Matrices - Datatypes

0
2
4
6
8

10

Sl
o

w
d

o
w

n

in
t8

in
t1

6
in

t3
2

in
t6

4
fp

32
fp

64

in
t8

in
t1

6
in

t3
2

in
t6

4
fp

32
fp

64

in
t8

in
t1

6
in

t3
2

in
t6

4
fp

32
fp

64

in
t8

in
t1

6
in

t3
2

in
t6

4
fp

32
fp

64

in
t8

in
t1

6
in

t3
2

in
t6

4
fp

32
fp

64

in
t8

in
t1

6
in

t3
2

in
t6

4
fp

32
fp

64

COO.nnz-lf - 2048 DPUs
load kernel retrieve merge

hgc rjt ldr sxw ask AVG
Matrices - DPUs

0
1
2
3
4

Sl
o

w
d

o
w

n

64 12
8

25
6

51
2

10
24

20
48

64 12
8

25
6

51
2

10
24

20
48

64 12
8

25
6

51
2

10
24

20
48

64 12
8

25
6

51
2

10
24

20
48

64 12
8

25
6

51
2

10
24

20
48

64 12
8

25
6

51
2

10
24

20
48

COO.nnz-lf - int32
load kernel retrieve merge

Fig. 15. End-to-end execution time breakdown achieved by COO.nnz-lf when varying (a) the data type using
2048 DPUs (normalized to the experiment for the int8 data type), and (b) the number of DPUs for the int32
data type (normalized to 64 DPUs).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:24 Christina Giannoula, et al.

We draw two conclusions. First, the load data transfer costs increase proportionally to the
number of bytes of the data type, and still dominate performance even for the data type with the
smallest memory footprint (int8). Second, the load data transfer costs and the associated memory
footprint for the input vector increase proportionally to the number of DPUs used, and thus the
best end-to-end performance is achieved using only a small portion of the available DPUs on the
system.

OBSERVATION 9:
SpMV execution of the 1D-partitioned kernels cannot scale up to a
large number of PIM cores due to high data transfer overheads to

copy the input vector into each DRAM bank of PIM-enabled memory.

6.2 Analysis of SpMV Execution Using 2D Partitioning Techniques
We evaluate the 2D-partitioned kernels highlighted in bold in Table 1. Specifically, for the COO
format we use the lock-free approach, and for the BCSR (in the int8 data type) and BCOO formats
we use the coarse-grained locking approach. In the equally-wide and variable-sized techniques, for
the BCSR and BCOO formats we balance the blocks across DPUs of the same vertical partition,
since doing so performs slightly better than balancing the non-zero elements, as explained in
Section 6.1.1. In all experiments, we balance the non-zero elements across 16 tasklets within a
single DPU.

6.2.1 Sensitivity Studies on 2D Partitioning Techniques
We present three characterization studies on the 2D partitioning techniques. First, we evaluate
the performance of fine-grained data transfers from/to PIM-enabled memory for the input and
output vectors. Second, we evaluate the scalability of the 2D partitioning techniques to thousands
of DPUs. Finally, we explore performance implications on the number of vertical partitions used in
the 2D-partitioned kernels.
Analysis of Fine-Grained Data Transfers. The UPMEM API [105] has the limitation that the
transfer sizes from/to all DRAM banks involved in the same parallel transfer need to be the same. The
UPMEM API provides parallel data transfers either to all DPUs of all ranks (henceforth referred to
as coarse-grained transfers), or at rank granularity, i.e., to 64 DPUs of the same rank (henceforth
referred to as fine-grained transfers). In the first case, parallel data transfers are performed to all
DPUs used at once, padding with empty bytes at the granularity of all DPUs used, e.g., 2048 DPUs
in Figure 16. In the latter case, programmers iterate over the ranks of PIM-enabled DIMMs, and for
each rank perform parallel data transfers to the 64 DPUs of the same rank padding with empty
bytes at the granularity of 64 DPUs.
Therefore, for the equally-wide and variable-sized techniques in SpMV execution, the heights

and widths of 2D tiles vary, thus padding with empty bytes is necessary for the load and retrieve
data transfers of the elements of the input and output vector, respectively. Figure 16 compares
coarse-grained data transfers, i.e., performing parallel transfers to all 2048 DPUs at once, with
fine-grained data transfers, i.e., iterating over the ranks and for each rank performing parallel
transfers to the 64 DPUs of the same rank. We evaluate both the equally-wide and variable-sized
techniques using the COO format and with 2 and 32 vertical partitions. Please see Appendix A.2
for all matrices.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:25

pfm ash ldr in ask AVG

0.0
0.2
0.4
0.6
0.8
1.0

Sl
o

w
d

o
w

n

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

(a) 2048 DPUs - 2 Vertical Partitions - int32
load kernel retrieve merge

pfm ash ldr in ask AVG

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sl
o

w
d

o
w

n

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

(b) 2048 DPUs - 32 Vertical Partitions - int32
load kernel retrieve merge

Fig. 16. Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO with fine-grained
transfers in the output vector, BC: BDCOO with coarse-grained transfers, BY: BDCOO with fine-grained transfers
only in the output vector, and BT: BDCOO with fine-grained transfers in both the input and the output vector
using the int32 data type, 2048 DPUs and having 2 (left) and 32 (right) vertical partitions. Performance is
normalized to that of the RC scheme.

We draw two findings. First, when the number of vertical partitions is small, e.g., 2 vertical
partitions, the disparity in widths across tiles in the variable-sized scheme is low. Thus, BT only
slightly outperforms BY by 1% on average, since in BY only a small amount of padding is added
on the load data transfers of the input vector. In contrast, the disparity in heights across tiles in
the equally-wide and variable-sized schemes is high. Thus, RY and BY significantly outperform RC
and BC by an average of 1.68× and 1.60×, respectively. This is because fine-grained transfers to
retrieve the elements of the output vector significantly decrease the amount of bytes transferred
from PIM-enabled memory to host CPU over coarse-grained transfers. Second, when the number
of vertical partitions is large, e.g., 32 vertical partitions, the disparity in heights across tiles in
the equally-wide and variable-sized schemes is lower compared to when the number of vertical
partitions is small. Thus, RY and BY provide smaller performance benefits over RC and BC (on average
1.24× and 1.22×, respectively), respectively, compared to a small number of vertical partitions. In
contrast, the disparity in heights across tiles in the equally-wide and variable-sized schemes is
higher compared to when the number of vertical partitions is small. Thus, BT outperforms BY by
4.7% on average. Overall, we conclude that fine-grained data transfers (i.e., at rank granularity in the
UPMEM PIM system) can significantly improve performance in the equally-wide and variable-sized
schemes.

OBSERVATION 10:
Fine-grained parallel transfers in the equally-wide and variable-sized 2D partitioning
techniques, i.e., minimizing the amount of padding with empty bytes in parallel
data transfers to/from PIM-enabled memory, can provide large performance gains.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:26 Christina Giannoula, et al.

Scalability of the 2D Partitioning Techniques. We analyze scalability with the number of
DPUs for the 2D partitioning techniques. Figures 17, 18 and 19 compare the performance of the
equally-sized, equally-wide and variable-sized schemes, respectively, using the COO format and the
int32 data type, as the number of DPUs increases.

hgc rjt ldr sxw ask AVG
Matrices - DPUs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sl
o

w
d

o
w

n

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

DCOO - int32
load kernel retrieve merge

hgc rjt ldr sxw ask AVG
Matrices - DPUs

0.0
0.2
0.4
0.6
0.8
1.0

Sl
o

w
d

o
w

n

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

DCOO - int32
load kernel retrieve merge

Fig. 17. Execution time breakdown of equally-sized partitioning technique of the COO format using 4 (left)
and 16 (right) vertical partitions when varying the number of DPUs used for the int32 data type. Performance
is normalized to that with 256 DPUs.

hgc rjt ldr sxw ask AVG
Matrices - DPUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sl
o

w
d

o
w

n

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

RBDCOO - int32
load kernel retrieve merge

hgc rjt ldr sxw ask AVG
Matrices - DPUs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Sl
o

w
d

o
w

n

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

RBDCOO - int32
load kernel retrieve merge

Fig. 18. Execution time breakdown of equally-wide partitioning technique of the COO format using 4 (left)
and 16 (right) vertical partitions when varying the number of DPUs used for the int32 data type. Performance
is normalized to that with 256 DPUs.

hgc rjt ldr sxw ask AVG
Matrices - DPUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Sl
o

w
d

o
w

n

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

BDCOO - int32
load kernel retrieve merge

hgc rjt ldr sxw ask AVG
Matrices - DPUs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Sl
o

w
d

o
w

n

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

25
6

51
2

10
24

20
48

BDCOO - int32
load kernel retrieve merge

Fig. 19. Execution time breakdown of variable-sized partitioning technique of the COO format using 4 (left)
and 16 (right) vertical partitions when varying the number of DPUs used for the int32 data type. Performance
is normalized to that with 256 DPUs.

We draw two findings. First, the equally-sized scheme (i.e., DCOO) achieves high scalability with a
large number of vertical partitions. The kernel time of equally-sized scheme is mainly limited by
the DPU (or a few DPUs) that processes the largest number of non-zero elements. With a large
number of static vertical partitions, the non-zero element disparity across DPUs is high, i.e., the
kernel time is highly bottlenecked by the DPU that processes the largest number of non-zero
elements. As a result, increasing the number of DPUs improves performance by decreasing the
kernel time via better non-zero element balance across DPUs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:27

OBSERVATION 11:
The kernel time in the equally-sized schemes is limited by the PIM core (or a few
PIM cores) assigned to the 2D tile with the largest number of non-zero elements.

Second, we observe that the equally-wide and variable-sized schemes (i.e., RBDCOO and BDCOO)
are severely bottlenecked by retrieve data transfer costs (a large number of partial results is
created on PIM cores), and thus they are difficult to scale up to thousands of DPUs. Moreover, when
the number of vertical partitions is high, the disparity in heights of the tiles is high. Thus, as the
number of DPUs increases, the amount of padding needed in retrieve data transfers becomes
very large, causing significant performance degradation.

OBSERVATION 12:
The scalability of the equally-wide and variable-sized schemes to a large num-
ber of PIM cores is severely limited by large data transfer overheads to re-
trieve partial results for the elements of the output vector from the DRAM
banks of PIM-enabled memory to the host CPU via the narrow memory bus.

Effect of the Number of Vertical Partitions. In all experiments presented henceforth, we perform
fine-grained data transfers (at rank granularity, i.e., 64 DPUs in the UPMEM PIM system) in the
2D partitioning schemes. Figure 20 evaluates performance implications on the number of vertical
partitions performed in 2D-partitioned kernels. We use the COO format and vary the number of
vertical partitions from 1 to 32, in steps of multiple of 2. We draw four findings.

First, in the equally-sized scheme, as the number of vertical partitions increases, kernel time
increases, if there is no dense row in the matrix. This is because the disparity in the non-zero
elements across 2D tiles increases as the number of vertical partitions increases. Thus, performance
is limited by one DPU or a few DPUs that process the largest number of non-zero elements.

OBSERVATION 13:
As the number of vertical partitions increases, the equally-sized 2D partitioning
scheme typically increases the non-zero element disparity across PIM cores (un-
less there is one dense row on the matrix), thereby increasing the kernel time.

Second, as the number of vertical partitions increases, retrieve data transfer costs and merge
time increase. This is because the partial results created for the output vector increase proportionally
with the number of vertical partitions. The performance overheads of retrieve data transfer costs
are highly affected by the characteristics of the underlying hardware (e.g., the bandwidth provided
on I/O channels of the memory bus between host CPU and PIM-enabled DIMMs). Similarly, the
performance cost of the merge step depends on the hardware characteristics of the host CPU (e.g.,
number of CPU cores, the available hardware threads, microarchitecture of CPU cores). We refer
the reader to [35] for a comparison of SpMV execution in two different UPMEM PIM systems with
different hardware characteristics using the 1D- and 2D-partitioned kernels of the SparseP library.
Third, we find that in the equally-wide and variable-sized schemes, there is high disparity in

heights of 2D tiles, and as a result on the number of partial results created across DPUs. Even with
fine-grained parallel retrieve data transfers at rank granularity, the amount of padding needed
in the equally-wide and variable-sized schemes is at 88.6% and 88.0%, respectively, causing high

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:28 Christina Giannoula, et al.

hgc-int8 rjt-int8 mem-int8 hgc-fp64 rjt-fp64 mem-fp64

0.0
0.2
0.4
0.6
0.8
1.0

Sl
o

w
d

o
w

n

1 2 4 81632 1 2 4 81632 1 2 4 81632 1 2 4 81632 1 2 4 81632 1 2 4 81632

(a) equally-sized - DCOO
load kernel retrieve merge

hgc-int8 rjt-int8 mem-int8 hgc-fp64 rjt-fp64 mem-fp64

0
1
2
3
4
5
6

Sl
o

w
d

o
w

n

1 2 4 81632 1 2 4 81632 1 2 4 81632 1 2 4 81632 1 2 4 81632 1 2 4 81632

(b) equally-wide - RBDCOO
load kernel retrieve merge

hgc-int8 rjt-int8 mem-int8 hgc-fp64 rjt-fp64 mem-fp64

0
1
2
3
4
5
6

Sl
o

w
d

o
w

n

1 2 4 8 1632 1 2 4 8 1632 1 2 4 8 1632 1 2 4 8 1632 1 2 4 8 1632 1 2 4 8 1632

(c) variable-sized - BDCOO
load kernel retrieve merge

Fig. 20. Execution time breakdown of 2D partitioning schemes using the COO format and 2048 DPUs when
varying the number of vertical partitions from 1 to 32 for the int8 and fp64 data types. Performance is
normalized to the performance of the experiment with 1 vertical partition.

bottlenecks in the narrow memory bus. Therefore, in PIM systems that do not support very fine-
grained parallel transfers to gather results from PIM-enabled DIMMs at DRAM bank granularity,
execution is highly limited by the amount of padding performed in retrieve data transfers, which
can be very large in irregular workloads like the SpMV kernel.

OBSERVATION 14:
The equally-wide and variable-sized 2D partitioning schemes require fine-grained
parallel transfers at DRAM bank granularity to be supported by the PIM system

(i.e., zero padding in parallel retrieve data transfers), to achieve high performance.

Fourth, we find that the number of vertical partitions that provides the best performance depends
on the sparsity pattern of the input matrix, the data type, and the underlying hardware parameters
(e.g., number of PIM cores, off-chip memory bus bandwidth, transfer latency costs between main
memory and PIM-enabled memory, characteristics and microarchitecture of the host CPU cores
that perform the merge step). For example, with the int8 data type, DCOO performs best for hgc and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:29

mem matrices with 8 and 4 vertical partitions, respectively. Instead, with the fp64 data type, DCOO
performs best for hgc and mem matrices with 16 and 8 vertical partitions, respectively. We leave
for future work the exploration of selection methods for the number of vertical partitions that
provide best SpMV execution. Overall, based on our analysis we conclude that the parallelization
scheme that achieves the best performance in SpMV depends on both the input sparse matrix and
the hardware characteristics of the PIM system.

OBSERVATION 15:
There is no one-size-fits-all parallelization approach for SpMV in PIM sys-
tems, since the performance of each parallelization scheme depends on
the characteristics of the input matrix and the underlying PIM hardware.

6.2.2 Analysis of Compressed Formats
We compare the performance achieved by various compressed matrix formats for each of the
three types of the 2D partitioning technique. The goal of this experiment is to find the best-
performing compressed format for each 2D partitioning technique. Figures 21, 22, and 23 compare
the performance of compressed matrix formats for the equally-sized, equally-wide and variable-sized
2D partitioning techniques, respectively. We use 2048 DPUs and the int32 data type having 4 vertical
partitions. See Appendix A.3 for the complete evaluation on all large sparse matrices.
We draw two findings. First, as already explained, kernel time of the equally-sized scheme is

limited by the DPU (or a few DPUs) assigned to the 2D tile with the largest number of non-zero
elements. In scale-free matrices (e.g., in and ask), the disparity in the number of non-zero elements
across 2D tiles is higher than in regular matrices (e.g., pfg and bns), causing kernel time to be a
larger portion of the total execution time. Second, we find that the CSR and BCSR formats perform
worse than the COO and BCOO formats, especially in the equally-wide and variable-sized schemes,
due to higher kernel times. In the CSR and BCSR formats, data partitioning across DPUs and/or
across tasklets within a DPU is performed at row and block-row granularity, respectively. Thus,
the CSR and BCSR formats can cause higher non-zero element imbalance across processing units
compared to the COO and BCOO formats. Overall, the COO and BCOO formats outperform the
CSR and BCSR formats by 1.59 × and 1.53 × (averaged across all three types of 2D partitioning
techniques), respectively.

hgc pfm bns in skt ask AVG

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sl
o

w
d

o
w

n

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

equally-sized
load kernel retrieve merge

Fig. 21. End-to-end execution time breakdown of the equally-sized 2D partitioning technique for CR: DCSR,
CO: DCOO, BR: DBCSR and BO: DBCOO schemes using 4 vertical partitions and the int32 data type. Performance
is normalized to that of DCSR.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:30 Christina Giannoula, et al.

hgc pfm bns in skt ask AVG

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sl
o

w
d

o
w

n

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

equally-wide
load kernel retrieve merge

Fig. 22. End-to-end execution time breakdown of the equally-wide 2D partitioning technique for CR: RBDCSR,
CO: RBDCOO, BR: RBDBCSR and BO: RBDBCOO schemes using 4 vertical partitions and the int32 data type.
Performance is normalized to that of RBDCSR.

hgc pfm bns in skt ask AVG

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sl
o

w
d

o
w

n

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

variable-sized
load kernel retrieve merge

Fig. 23. End-to-end execution time breakdown of the variable-sized 2D partitioning technique for CR: BDCSR,
CO: BDCOO, BR: BDBCSR and BO: BDBCOO schemes using 4 vertical partitions and the int32 data type. Perfor-
mance is normalized to that of BDCSR.

OBSERVATION 16:
The compressed matrix format used to store the input matrix determines the
data partitioning across DRAM banks of PIM-enabled memory. Thus, it affects
the load balance across PIM cores with corresponding performance implica-

tions. Overall, the COO and BCOO formats outperform the CSR and BCSR for-
mats, because they provide higher non-zero element balance across PIM cores.

6.2.3 Comparison of 2D Partitioning Techniques
We compare the best-performing SpMV implementations of all 2D partitioning schemes, i.e., using
the COO and BCOO formats. Figure 24 compares the throughput (in GOperations per second) of
DCOO, DBCOO, RBDCOO, RBDBCOO, BDCOO, BDBCOO schemes using 2048 DPUs and the int32 data type.
For each implementation, we vary the number of vertical partitions from 2 to 32, in steps of multiple
of 2, and select the best-performing execution throughput.
We draw three findings. First, similarly to 1D-partitioned kernels, matrices that exhibit block

pattern (e.g., ash, ldr, bns, pks) have the highest throughput. Second, the equally-wide and variable-
sized schemes perform similarly, i.e., their performance varies only by ±1.1% on average. Even

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:31

hgc mc2 pfm rtn rjt ash del tdkmemamz fth wbg ldr psb bns wbs in pks cmb skt sxw ask GM
0.00
0.05
0.10
0.15
0.20
0.25
0.30

G
O

p/
s

0.
53

0.
62

0.
73

1.
02

0.
87

1.
11

0.
61

0.
872048 DPUs

DCOO DBCOO RBDCOO RBDBCOO BDCOO BDBCOO

Fig. 24. Comparison of 2D partitioning techniques using the COO and BCOO formats, 2048 DPUs and the
int32 type.

though the variable-sized technique can improve the non-zero element balance across DPUs, and
thus kernel time, compared to the equally-wide technique, the total execution time does not
improve. In the UPMEM PIM system, performance of both techniques is severely bottlenecked
by data transfer overheads due to a large amount of padding needed to retrieve results from PIM-
enabled memory to the host CPU. Third, we find that the equally-sized technique outperforms the
equally-wide and variable-sized techniques by 3.71× on average, because it achieves lower data
transfer overheads. The equally-wide and variable-sized techniques provide near-perfect non-zero
element balance across DPUs, but they significantly increase the retrieve data transfer costs due
to the large amount of padding with empty bytes performed. As a result, we recommend software
designers to explore relaxed load balancing schemes, i.e., schemes that trade off computation balance
across PIM cores for lower amounts of data transfer.

6.3 Comparison of 1D and 2D Partitioning Techniques
We compare the throughput (in GOperations per second) of the best-performing 1D- and 2D-
partitioned kernels in Figure 25. For 1D partitioning, we use the lock-free COO (COO.nnz-lf)
and coarse-grained locking BCOO (BCOO.block) kernels. For each matrix, we vary the number of
DPUs from 64 to 2528, and select the best-performing end-to-end execution throughput. For 2D
partitioning, we use the equally-sized COO (DCOO) and BCOO (DBCOO) kernels with 2528 DPUs. For
each matrix, we vary the number of vertical partitions from 2 to 32 (in steps of multiple of 2), and
select the best-performing end-to-end execution throughput. The numbers shown over each bar
of Figure 25 present the number of DPUs that provide the best-performing end-to-end execution
throughput for each input-scheme combination.

hgc
mc2

pfm rtn rjt ash del
tdk

mem amz fth
wbg ldr

psb bns
wbs in pks

cmb skt
sxw ask

GM (1)
GM (2)0.0

0.1
0.2
0.3
0.4
0.5
0.6

G
O

p/
s

64
25

6 14
16

14
16

25
6

12
8

17
5

17
5 12

8
25

6 10
29

10
29

64 12
8

51
0

68
6

25
6

25
6 47

9
47

9
25

6
25

6
64

6
64

6
12

8
12

8 56
8

84
7

12
8

25
6 20

14
20

14
25

6
25

6 91
4

91
4

25
6

25
6

23
61

24
20 25

6
25

6 85
7

85
7

12
8

25
6 25

28
25

28
25

6
25

6
11

33 11
33

25
6

25
6

20
87

21
57

25
6

25
6

65
3 65

3
12

8
12

8
17

96
17

96
25

6
51

2
20

61
20

61
25

6
10

24 71
2

71
2

12
8

25
6

14
26

14
26

25
6

25
6 13

15
17

56 25
6

10
24

25
28

25
28 12

8
12

8
15

25
15

25 19
6.

27
23

0.
4 11

58
11

96
.9

3
20

1.
14

47
5.

43
16

23
.2

9
16

86
.2

9

regular (1) scale-free (2)

COO.nnz-lf (1D) BCOO.block (1D) DCOO (2D) DBCOO (2D)

Fig. 25. Comparison of the best-performing 1D- and 2D-partitioned kernels for the fp32 data type.

We draw two conclusions. First, we find that best performance is achieved using a much smaller
number of DPUs than the available DPUs on the system. In the 1D-partitioned kernels (i.e.,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:32 Christina Giannoula, et al.

COO.nnz-lf and BCOO.block), replicating the input vector into a large number of DPUs sig-
nificantly increases the load data transfer costs. Thus, best performance is achieved using 253
DPUs on average across all matrices. In the 2D-partitioned kernels (i.e., DCOO and DBCOO), creating
equally-sized 2D tiles leads to a large disparity in non-zero element count across tiles, causing many
tiles to be empty, i.e., without any non-zero element. Thus, best performance is achieved using
1329 DPUs on average across all matrices, since DPUs associated with empty tiles are idle.

OBSERVATION 17:
Expensive data transfers to PIM-enabled memory performed via the narrow

memory bus impose significant performance overhead to end-to-end SpMV ex-
ecution. Thus, it is hard to fully exploit all available PIM cores of the system.

Second, we observe that in regular matrices, the 2D-partitioned kernels outperform the 1D-
partitioned kernels by 1.45× on average. This is because the 2D-partitioned kernels use a larger
number of DPUs, and thus their kernel times are lower. In contrast, in scale-free matrices, the
1D-partitioned kernels outperform the 2D-partitioned kernels by 1.41× on average. This because
the equally-sized 2D technique significantly increases the non-zero element disparity across DPUs,
i.e., kernel time is bottlenecked by only one DPU or a few DPUs that process a much larger number
of non-zero elements compared to the rest.

OBSERVATION 18:
In regular matrices, 2D-partitioned kernels outperform 1D-partitioned kernels,
since the former provide a better trade-off between computation and data trans-
fer overheads. In contrast, in scale-free matrices, 2D-partitioned kernels perform
worse than 1D-partitioned kernels, since the former’s performance is limited by
one DPU or a few DPUs that process the largest number of non-zero elements.

7 Comparison with CPUs and GPUs
We compare SpMV execution on the UPMEM PIM architecture to a state-of-the-art CPU and a
state-of-the-art GPU in terms of performance and energy consumption. Our goal is to quantify the
potential of the UPMEM PIM architecture on the widely used memory-bound SpMV kernel.
We compare the UPMEM PIM system with 2528 DPUs to an Intel Xeon CPU and an NVIDIA

Tesla V100 GPU, the characteristics of which are shown in Table 5. We use peakperf [88] and
stream [98] for CPU and GPU systems to calculate the peak performance, memory bandwidth, and
Thermal Design Power (TDP). For the UPMEM PIM system, we estimate the peak performance
as 𝑇𝑜𝑡𝑎𝑙_𝐷𝑃𝑈𝑠 ∗𝐴𝑇 , where the arithmetic throughput (AT) is presented in Appendix B, the total
bandwidth as𝑇𝑜𝑡𝑎𝑙_𝐷𝑃𝑈𝑠 ∗𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝐷𝑃𝑈 , where the Bandwidth_DPU is 700 MB/s [23, 37, 43],
and TDP as (𝑇𝑜𝑡𝑎𝑙_𝐷𝑃𝑈𝑠/𝐷𝑃𝑈𝑠_𝑝𝑒𝑟_𝑐ℎ𝑖𝑝) ∗ 1.2𝑊 /𝑐ℎ𝑖𝑝 from prior work [23, 37, 43].

Process Peak Memory TotalSystem Node Total Cores Frequency Performance Capacity Bandwidth TDP

Intel Xeon 4110 CPU 14 nm 2x8 x86 cores (2x16 threads) 2.1 GHz 660 GFLOPS 128 GB 23.1 GB/s 2x85 W
NVIDIA Tesla V100 12 nm 5120 CUDA cores 1.25 GHz 14.13 TFLOPS 32 GB 897 GB/s 300 W
PIM System 2x nm 2528 DPUs 350 MHz 4.66 GFLOPS 159 GB 1.77 TB/s 379 W

Table 5. Evaluated CPU, GPU, and UPMEM PIM Systems.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:33

7.1 Performance Comparison
For the CPU system, we use the optimized CSR kernel from the TACO library [58]. For the GPU
system, we use the CSR5 CUDA [19, 76] for the int32 data type and cuSparse [20] for the other data
types. For the UPMEM PIM system, we use the lock-free COO 1D-partitioned kernel (COO.nnz-lf)
and the equally-sized COO 2D-partitioned kernel (DCOO). In the former, we run experiments from
64 to 2528 DPUs, and in the latter, we use 2528 DPUs, and vary the number of vertical partitions
from 2 to 32, in steps of multiple of 2. In both schemes, we select the best-performing end-to-end
execution throughput. We also include the lock-free COO 1D-partitioned kernel using 2528 DPUs,
named COO.kl, to evaluate SpMV execution using all available DPUs of the system.

Figure 26 shows the throughput of SpMV (in GOperations per second) in all systems, comparing
both the end-to-end execution throughput (i.e., including the load and retrieve data transfer
costs for the input and output vectors in case of the UPMEM PIM and GPU systems), and only the
actual kernel throughput (i.e., including the kernel time in DPUs and the merge time in host CPU
for the UPMEM PIM system).

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

Transfers Only Kernel

10 1

100

101

102

G
O

p/
s

(l
o

g
 s

ca
le

)

int8
C

P
U

G
P

U
C

O
O

D
C

O
O

C
O

O
.k

l

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

Transfers Only Kernel

10 2

10 1

100

101

102

G
O

p/
s

(l
o

g
 s

ca
le

)

int32

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

Transfers Only Kernel

10 2

10 1

100

101

102

G
O

p/
s

(l
o

g
 s

ca
le

)

fp32

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

Transfers Only Kernel

10 2

10 1

100

101

G
O

p/
s

(l
o

g
 s

ca
le

)

fp64

Fig. 26. Performance comparison between the UPMEM PIM system, Intel Xeon CPU and Tesla V100 GPU on
SpMV execution.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:34 Christina Giannoula, et al.

We draw three conclusions. First, when data transfer costs to/from host CPU are included, CPU
outperforms both the GPU and UPMEM PIM systems, since data transfers impose high overhead.
When only the actual kernel time is considered, GPU performs best, since it is the system that
provides the highest computation throughput, e.g., 14.13 TFlops for the fp32 data type. Second, we
evaluate the portion of the machine’s peak performance achieved on SpMV in all systems, and
observe that SpMV execution on the UPMEM PIM system achieves a much higher fraction of the
peak performance compared to CPU and GPU systems. For the fp32 data type, SpMV achieves
on average 0.51% and 0.21% of the peak performance in CPU and GPU, respectively, while it
achieves 51.7% of the peak performance in the UPMEM PIM system using the COO.kl scheme.
Achieving a high portion of machine’s peak performance is highly desirable, since the software
highly exploits the computation capabilities of the underlying hardware. This way, it improves
the processor/resource utilization, and the cost of ownership of the underlying hardware. Third,
we observe that when all DPUs are used, as in COO.kl, SpMV execution on the UPMEM PIM
outperforms SpMV execution on the CPU by 1.09× and 1.25× for the int8 and int32 data types,
respectively, the multiplication of which is supported by hardware. In contrast, SpMV execution on
the UPMEM PIM performs 1.27× and 2.39× worse than SpMV execution on the CPU for the fp32
and fp64 data types, the multiplication of which is software emulated in the DPUs of the UPMEM
PIM system.

OBSERVATION 19:
SpMV execution can achieve a significantly higher fraction of the peak performance
on real memory-centric PIM architectures compared to that on processor-centric

CPU and GPU systems, since PIM architectures greatly mitigate data movement costs.

7.2 Energy Comparison
For energy measurements, we consider only the actual kernel time in all systems (in the UPMEM
PIM we consider the kernel and merge steps of SpMV execution). We use Intel RAPL [55] on the
CPU, and NVIDIA SMI [85] on the GPU. For the UPMEM PIM system, we measure the number of
cycles, instructions, WRAM accesses and MRAM accesses of each DPU, and estimate energy with
energy weights provided by the UPMEM company [104]. Figure 27 shows the energy consumption
(in Joules) and performance per energy (in (GOp/s)/W) for all systems.

We draw three findings. First, GPU provides the lowest energy on SpMV over the other two
systems, since the energy results typically follow the performance results. Second, we find that
the 2D-partitioned kernel, i.e., DCOO, consumes more energy than the 1D-partitioned kernels, i.e.,
COO and COO.kl, due to the energy consumed in the host CPU cores. CPU cores merge a large
number of partial results in the 2D-partitioned kernels to assemble the final output vector, thereby
increasing the energy consumption. Finally, we find that the 1D-partitioned kernels provide better
energy efficiency on SpMV over the CPU system, when the multiplication operation is supported by
hardware. Specifically, the 1D-partitioned kernels provide 3.16× and 4.52× less energy consumption,
and 1.74× and 1.14× better performance per energy over the CPU system for the int8 and int32
data types, respectively.

OBSERVATION 20:
Real PIM architectures can provide high energy efficiency on SpMV execution.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:35

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
ne

rg
y

(J
)

0
500
1000
1500
2000
2500
3000
3500

(G
O

p/
s)

/W

int8

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4

E
ne

rg
y

(J
)

0
200
400
600
800
1000
1200
1400

(G
O

p/
s)

/W

int32
C

P
U

G
P

U
C

O
O

D
C

O
O

C
O

O
.k

l

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4

E
ne

rg
y

(J
)

0
50
100
150
200
250
300
350
400

(G
O

p/
s)

/W
fp32

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l

C
P

U
G

P
U

C
O

O
D

C
O

O
C

O
O

.k
l0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5

E
ne

rg
y

(J
)

0

50

100

150

200

250

300

(G
O

p/
s)

/W

fp64

Fig. 27. Energy comparison between the UPMEM PIM system, Intel Xeon CPU and Tesla V100 GPU on SpMV
execution.

7.3 Discussion
These evaluations are useful for programmers to anticipate how much performance and energy
savings memory-centric PIM systems can provide on SpMV over commodity processor-centric CPU
and GPU systems. However, our evaluated SpMV kernels do not constitute the best-performing
approaches for all matrices. Designing methods to select the best-performing SpMV parallelization
scheme depending on the particular characteristics of the input matrix would further improve
performance and energy savings of SpMV execution on memory-centric PIM systems. Moreover,
the UPMEM PIM hardware is still maturing and is expected to run at a higher frequency in the
near future (500 MHz instead of 350 MHz) [37, 104]. Hence, SpMV execution on the UPMEM PIM
architecture might achieve even higher performance and energy benefits over the results we report
in this comparison. Finally, note that our proposed SparseP kernels can be adapted and evaluated
on other current and future real PIM systems with potentially higher computation capabilities and
energy efficiency than the UPMEM PIM system.

8 Key Takeaways and Recommendations
This section summarizes our key takeaways in the form of recommendations to improve multiple
aspects of PIM hardware and software.
Recommendation #1. Design algorithms that provide high load balance across threads of a PIM
core in terms of computations, loop control iterations, synchronization points and memory accesses.
Section 5 shows that in matrices and formats where the parallelization scheme used causes high

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:36 Christina Giannoula, et al.

disparity in the non-zero elements/blocks/rows processed across threads of a PIM core, or the
number of lock acquisitions/lock releases/DRAMmemory accesses performed across threads, SpMV
performance severely degrades in compute-bound DPUs [37, 43]. Therefore, from a programmer’s
perspective, providing high operation balance across parallel threads is of vital importance in
low-area and low-power PIM cores with relatively low computation capabilities [37, 43].
Recommendation #2. Design compressed data structures that can be effectively partitioned across
DRAM banks, with the goal of providing high computation balance across PIM cores. Sections 6.1.1
and 6.2.2 demonstrate that (i) the compressed matrix format used to store the input matrix deter-
mines the data partitioning across DRAM banks of PIM-enabled memory, and (ii) SpMV execution
using the CSR and BCSR formats performs significantly worse than SpMV execution using the
COO and BCOO formats. This is because the matrix is stored in row- or block-row-order for the
CSR and BCSR formats, respectively, and thus data partitioning across DRAM banks is limited
to be performed at row or block-row granularity, respectively, leading to high non-zero element
imbalance across PIM cores. Therefore, we recommend that programmers design compressed data
structures that can provide effective data partitioning schemes with high computation balance
across thousands of PIM cores.
Recommendation #3. Design adaptive algorithms that (i) trade off computation balance across PIM
cores for lower data transfer costs to PIM-enabled memory, and (ii) adapt their configuration to the
particular patterns of each input given, as well as the characteristics of the PIM hardware. Our analysis
in Sections 6.1.1, 6.2.1 and 6.2.3 demonstrates that the best-performing SpMV execution on the
UPMEM PIM system can be achieved using algorithms that (i) trade off computation for lower
data transfer costs, and (ii) select the load balancing strategy and data partitioning policy based on
the particular sparsity pattern of the input matrix. In addition, the performance of each balancing
scheme and data partitioning technique for SpMV execution highly depends on the characteristics
of the underlying PIM hardware, as we explain in Section 6.2.1. To this end, we recommend that
software designers implement heuristics and selection methods for their algorithms to adapt their
configuration to the underlying hardware characteristics of the PIM system and the input data
given.
Recommendation #4. Provide low-cost synchronization support and hardware support to enable
concurrent memory accesses by multiple threads to the local DRAM bank to increase parallelism
in a multithreaded PIM core. Section 5 shows that (i) lock acquisitions/releases can cause high
overheads in the DPU pipeline, and (ii) fine-grained locking approaches to increase parallelism in
critical sections do not improve performance over coarse-grained approaches in the UPMEM PIM
hardware. This is because the DMA engine of the DPU serializes DRAM memory accesses included
in the critical sections. Based on these key takeaways, we recommend hardware that designers
provide lightweight synchronization mechanisms for multithreaded PIM cores [36], and enable
concurrent access to local DRAM memory arrays to increase execution parallelism. For example,
sub-array level parallelism [56] or multiple DRAM banks per PIM core could be supported in the
PIM hardware to improve parallelism.
Recommendation #5.Optimize the broadcast collective operation in data transfers frommainmemory
to PIM-enabled memory to minimize overheads of copying the input data into all DRAM banks in the
system. Figures 14 and 15 show that SpMV execution using the 1D partitioning technique cannot
scale up to a large number of PIM cores. This is because it is severely limited by data transfer costs
to broadcast the input vector into each DRAM bank of PIM-enabled DIMMs via the narrow off-chip
memory bus. To this end, we suggest that hardware and system designers provide a fast broadcast
collective primitive to DRAM banks of PIM-enabled memory modules.
Recommendation #6. Optimize the gather collective operation at DRAM bank granularity for data
transfers from PIM-enabled memory to the host CPU to minimize overheads of retrieving the output

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:37

results. Figures 18, 19 and 20 demonstrate that SpMV execution using the equally-wide and variable-
sized 2D partitioning schemes is severely limited by data transfers to retrieve results for the output
vector from DRAM banks of PIM-enabled DIMMs. This is due to two reasons: (i) 2D-partitioned
kernels create a large number of partial results that need to be transferred from PIM-enabled
memory to the host CPU via the narrow memory bus in order to assemble the final output vector,
and (ii) the UPMEM PIM system has the limitation that the transfer sizes from/to all DRAM banks
involved in the same parallel transfer need to be the same, and therefore a large amount of padding
with empty bytes is performed in the equally-wide and variable-sized schemes. Thus, we suggest
that hardware and system designers provide an optimized gather primitive to efficiently collect
results from multiple DRAM banks to the host CPU, and support parallel fine-grained data transfers
from PIM-enabled memory to the host CPU at DRAM bank granularity to avoid padding with
empty bytes.
Recommendation #7. Design high-speed communication channels and optimized libraries for data
transfers to/from thousands of DRAM banks of PIM-enabled memory. Section 7 demonstrates that
SpMV execution on the memory-centric UPMEM PIM system achieves a much higher fraction of
the machine’s peak performance (on average 51.7% for the 32-bit float data type), compared to that
on processor-centric CPU and GPU systems. However, the end-to-end performance of both 1D- and
2D-partitioned kernels is significantly limited by data transfer overheads on the narrow memory
bus. To this end, we recommend that the hardware architecture and the software stack of real PIM
systems be enhanced with low-cost and fast data transfers to/from PIM-enabled memory modules.

9 Related Work
To our knowledge, this is the first work that (i) extensively characterizes the Sparse Matrix Vector
Multiplication (SpMV) kernel in a real PIM system, and (ii) presents an open-source SpMV library
for real-world PIM systems. We briefly discuss closely related prior work.
Sparse Matrix Kernels in PIM Systems. Xie et al. [112] design heterogenous PIM units to
accelerate SpMV in HMC-based PIM systems. Fujiki et al. [32] enhance the memory controllers
of GPUs with PIM cores to transform the matrix from CSR to the DCSR format [46] on the fly
to minimize memory traffic. Zhu et al. [122] propose a PIM accelerator for Sparse Matrix Matrix
Multiplication. These works propose hardware designs for sparse matrix kernels. In contrast, our
work studies software optimizations to accelerate the SpMV execution on real PIM systems.
SpMV in Commodity Systems. Numerous prior works propose optimized SpMV algorithms
for CPUs [15, 25–27, 58, 78, 81, 101, 109, 110], GPUs [13, 18, 41, 47, 74, 97, 99, 111, 113, 114],
heterogeneous CPU-GPU systems [6, 50, 115, 117], and distributed CPU systems [10, 16, 53, 65,
73, 86]. Optimized SpMV kernels for processor-centric CPU and GPU systems exploit the shared
memory model of these systems and data locality in deep cache hierarchies. However, these kernels
cannot be directly mapped to most near-bank PIM systems, which have a distributed memory
model and shallow cache hierarchies. Most well-tuned SpMV kernels for distributed CPU and
CPU-GPU systems improve performance by overlapping computation with communication among
processing units, and exploiting data locality in large cache memories. In contrast, real near-bank
PIM architectures are fundamentally different from CPU-GPU systems, since they are highly
distributed, i.e., there is no direct communication among PIM cores, and include a shallow memory
hierarchy. Therefore, SpMV kernels designed for common processor-centric systems cannot be
directly used in near-bank PIM systems.
CompressedMatrix Storage Formats. Prior works propose a range of compressed matrix storage
formats [5, 11, 46, 48, 57, 59, 60, 63, 75, 89, 90, 93, 95, 108, 113, 116] and selection methods to find
the most efficient compressed matrix format [2, 7, 8, 68, 69, 77, 83, 94, 99, 100, 120, 121]. In this

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:38 Christina Giannoula, et al.

work, we extensively explore the four most widely used general formats, and observe that the
compressed matrix format (i) needs to provide good balance between computation and memory
accesses inside the core pipeline, and (ii) affects load balancing across PIM cores, with corresponding
performance implications. Therefore, some compressed formats designed for commodity processor-
centric systems might not be suitable or efficient for real PIM systems. We leave the exploration of
other PIM-suitable formats for future work.
Hardware Accelerators for SpMV. Recent works design accelerators for SpMV [31, 39, 51, 70,
79, 92, 102] or other sparse kernels [3, 44, 84, 87, 91, 118]. In contrast, our work proposes software
optimizations and provides the first characterization study of SpMV on a real PIM system.

10 Conclusion
We present SparseP , the first open-source SpMV library for real Processing-In-Memory (PIM)
systems, and conduct the first comprehensive characterization analysis of the widely-used SpMV
kernel on a real-world PIM architecture.
First, we design efficient SpMV kernels for real PIM systems. Our proposed SparseP software

package supports (1) a wide range of data types, (2) two types of well-crafted data partitioning
techniques of the sparse matrix to DRAM banks of PIM-enabled memory, (3) the most popular
compressedmatrix formats, (4) a wide variety of load balancing schemes across PIM cores, (5) several
load balancing schemes across threads of a multithreaded PIM core, and (6) three synchronization
approaches among threads within PIM core.

Second, we conduct an extensive characterization study of SparseP kernels on the state-of-the-art
UPMEM PIM system. We analyze SpMV execution on one single multithreaded PIM core and
thousands of PIM cores using 26 sparse matrices with diverse sparsity patterns. We also compare
the performance and energy consumption of SpMV on the UPMEM PIM system with those of
state-of-the-art CPU and GPU systems to quantify the potential of a real memory-centric PIM
architecture on the widely used SpMV kernel over conventional processor-centric architectures.
Our analysis of SparseP kernels provides programming recommendations for software designers,
as well as suggestions and hints for hardware and system designers of future PIM systems.
We believe and hope that our work will provide valuable insights to programmers in the de-

velopment of efficient sparse linear algebra kernels and other irregular kernels from different
application domains tailored for real PIM systems, as well as to architects and system designers in
the development of future memory-centric computing systems.

Acknowledgments
We thank the UPMEM company for valuable support. We thank the anonymous reviewers from
SIGMETRICS 2022, and our shepherd, Bhuvan Urgaonkar, for their comments and suggestions.
We thank the SAFARI Research Group members for feedback and the stimulating, scholarly and
collaborative intellectual environment they provide. We thank the CSLAB Research Group members
for continued and undivided support, insightful comments and valuable feedback. We acknowledge
the support of SAFARI Research Group’s industrial partners, especially ASML, Facebook, Google,
Huawei, Intel, Microsoft, VMware, the Semiconductor Research Corporation and the ETH Future
Computing Laboratory. Christina Giannoula is funded for her postgraduate studies from the
Foundation for Education and European Culture. The final version of our paper is also available
on arXiv [35]. The SparseP software package is publicly available at https://github.com/CMU-
SAFARI/SparseP.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

https://github.com/CMU-SAFARI/SparseP
https://github.com/CMU-SAFARI/SparseP

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:39

References
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. A Scalable Processing-In-Memory

Accelerator for Parallel Graph Processing. In ISCA.
[2] Bahar Asgari, Ramyad Hadidi, Joshua Dierberger, Charlotte Steinichen, and Hyesoon Kim. 2020. Copernicus:

Characterizing the Performance Implications of Compression Formats Used in Sparse Workloads. In CoRR. https:
//arxiv.org/abs/2011.10932

[3] Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and Sudhakar Yalamanchili. 2020. ALRESCHA: A
Lightweight Reconfigurable Sparse-Computation Accelerator. In HPCA.

[4] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim. 2016. Chameleon: Versatile and
PracticalNear-DRAM Acceleration Architecture for Large Memory Systems. In MICRO.

[5] Mehmet Belgin, Godmar Back, and Calvin J. Ribbens. 2009. Pattern-Based Sparse Matrix Representation for Memory-
Efficient SMVM Kernels. In ICS.

[6] Akrem Benatia, Weixing Ji, and Yizhuo Wang. 2019. Sparse Matrix Partitioning for Optimizing SpMV on CPU-GPU
Heterogeneous Platforms. In IJHPCA.

[7] Akrem Benatia, Weixing Ji, Yizhuo Wang, and Feng Shi. 2016. Sparse Matrix Format Selection with Multiclass SVM
for SpMV on GPU. In ICPP.

[8] Akrem Benatia, Weixing Ji, Yizhuo Wang, and Feng Shi. 2018. BestSF: A Sparse Meta-Format for Optimizing SpMV
on GPU. In TACO.

[9] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoefler. 2017. SlimSell: A Vectorizable Graph
Representation for Breadth-First Search. In IPDPS.

[10] Rob H. Bisseling and Wouter Meesen. 2005. Communication Balancing in Parallel Sparse Matrix-Vector Multiplication.
In ETNA. Electronic Transactions on Numerical Analysis.

[11] Åke Björck. 1996. Numerical Methods for Least Squares Problems. In SIAM.
[12] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. Sparse Matrix Solvers on the GPU: Conjugate

Gradients and Multigrid. In SIGGRAPH.
[13] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. Sparse Matrix Solvers on the GPU: Conjugate

Gradients and Multigrid. In ACM Transactions on Graphics.
[14] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-scale Hypertextual Web Search Engine. In WWW.
[15] Aydin Buluç, Samuel Williams, Leonid Oliker, and James Demmel. 2011. Reduced-Bandwidth Multithreaded Algo-

rithms for Sparse Matrix-Vector Multiplication. In IPDPS.
[16] Beata Bylina, Jarosław Bylina, Przemysław Stpiczyński, and Dominik Szałkowski. 2014. Performance Analysis of

Multicore and Multinodal Implementation of SpMV Operation. In FedCSIS.
[17] Benjamin Y. Cho, Yongkee Kwon, Sangkug Lym, and Mattan Erez. 2020. Near Data Acceleration with Concurrent

Host Access. In ISCA.
[18] Jee W. Choi, Amik Singh, and Richard W. Vuduc. 2010. Model-Driven Autotuning of Sparse Matrix-Vector Multiply

on GPUs. In PpopP.
[19] CSR5. 2015. CSR5 Cuda. https://github.com/weifengliu-ssslab/Benchmark_SpMV_using_CSR5
[20] cuSparse. 2021. cuSparse. https://docs.nvidia.com/cuda/cusparse/index.html
[21] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard API for Shared-Memory Programming.

In IEEE Comput. Sci. Eng.
[22] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. In TOMS.
[23] F. Devaux. 2019. The True Processing In Memory Accelerator. In Hot Chips.
[24] Jack Dongarra, Andrew Lumsdaine, Xinhui Niu, Roldan Pozoz, and Karin Remington. 1994. Sparse Matrix Libraries

in C++ for High Performance Architectures. In Mathematics.
[25] Athena Elafrou, G. Goumas, and N. Koziris. 2017. Performance Analysis and Optimization of Sparse Matrix-Vector

Multiplication on Modern Multi- and Many-Core Processors. In ICPP.
[26] Athena Elafrou, Georgios Goumas, and Nectarios Koziris. 2019. Conflict-Free Symmetric Sparse Matrix-Vector

Multiplication on Multicore Architectures. In SC.
[27] Athena Elafrou, Vasileios Karakasis, Theodoros Gkountouvas, Kornilios Kourtis, Georgios Goumas, and Nectarios

Koziris. 2018. SparseX: A Library for High-Performance Sparse Matrix-Vector Multiplication on Multicore Platforms.
In ACM TOMS.

[28] R. D. Falgout. 2006. An Introduction to Algebraic Multigrid. In Computing in Science Engineering.
[29] Robert D Falgout and Ulrike Meier Yang. 2002. hypre: A Library of High Performance Preconditioners. In ICCS.
[30] Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar

Plata, and Onur Mutlu. 2020. NATSA: A Near-Data Processing Accelerator for Time Series Analysis. In ICCD.
[31] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt. 2014. A High Memory Bandwidth

FPGA Accelerator for Sparse Matrix-Vector Multiplication. In FCCM.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

https://arxiv.org/abs/2011.10932
https://arxiv.org/abs/2011.10932
https://github.com/weifengliu-ssslab/Benchmark_SpMV_using_CSR5
https://docs.nvidia.com/cuda/cusparse/index.html

21:40 Christina Giannoula, et al.

[32] Daichi Fujiki, Niladrish Chatterjee, Donghyuk Lee, and Mike O’Connor. 2019. Near-Memory Data Transformation
for Efficient Sparse Matrix Multi-Vector Multiplication. In SC.

[33] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical Near-Data Processing for In-Memory Analytics
Frameworks. In PACT.

[34] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017. TETRIS: Scalable and Efficient
Neural Network Acceleration with 3D Memory. In ASPLOS.

[35] Christina Giannoula, Ivan Fernandez, Juan Gómez-Luna, Nectarios Koziris, Georgios Goumas, and Onur Mutlu. 2022.
SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Systems. In CoRR.
https://arxiv.org/abs/2201.05072

[36] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-
Luna, Lois Orosa, Nectarios Koziris, Georgios I. Goumas, and Onur Mutlu. 2021. SynCron: Efficient Synchronization
Support for Near-Data-Processing Architectures. In HPCA.

[37] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu. 2021.
Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture. In CoRR.
https://arxiv.org/abs/2105.03814

[38] Georgios Goumas, Kornilios Kourtis, Nikos Anastopoulos, Vasileios Karakasis, and Nectarios Koziris. 2009. Perfor-
mance Evaluation of the Sparse Matrix-Vector Multiplication on Modern Architectures. In J. Supercomput.

[39] Paul Grigoras, Pavel Burovskiy, Eddie Hung, and Wayne Luk. 2015. Accelerating SpMV on FPGAs by Compressing
Nonzero Values. In FCCM.

[40] SAFARI Research Group. 2022. SparseP Software Package. https://github.com/CMU-SAFARI/SparseP
[41] Ping Guo, Liqiang Wang, and Po Chen. 2014. A Performance Modeling and Optimization Analysis Tool for Sparse

Matrix-Vector Multiplication on GPUs. In IEEE TPDS.
[42] Udit Gupta, XiaodongWang,MaximNaumov, Carole-JeanWu, Brandon Reagen, David Brooks, Bradford Cottel, KimM.

Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong,
and Xuan Zhang. 2019. The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. In
CoRR.

[43] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu. 2021.
Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-In-Memory Hardware. In IGSC.

[44] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer,
and Christopher W. Fletcher. 2019. ExTensor: An Accelerator for Sparse Tensor Algebra. In MICRO.

[45] Pascal Hénon, Pierre Ramet, and Jean Roman. 2002. PASTIX: A High-Performance Parallel Direct Solver for Sparse
Symmetric Positive Definite Systems. In PMAA.

[46] Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Jinsung Kim, Süreyya Emre Kurt, Israt Nisa,
Shivani Sabhlok, Ümit V. Çatalyürek, Srinivasan Parthasarathy, and P. Sadayappan. 2018. Efficient Sparse-Matrix
Multi-Vector Product on GPUs. In HPDC.

[47] Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Jinsung Kim, Süreyya Emre Kurt, Israt Nisa,
Shivani Sabhlok, Ümit V. Çatalyürek, Srinivasan Parthasarathy, and P. Sadayappan. 2018. Efficient Sparse-Matrix
Multi-Vector Product on GPUs. In HPDC.

[48] Eun-Jin Im and Katherine A. Yelick. 1999. Optimizing Sparse Matrix Vector Multiplication on SMP. In PPSC.
[49] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. 2004. Sparsity: Optimization Framework for Sparse Matrix Kernels.

In The International Journal of High Performance Computing Applications.
[50] Sivaramakrishna Bharadwaj Indarapu, Manoj Maramreddy, and Kishore Kothapalli. 2014. Architecture- andWorkload-

Aware Heterogeneous Algorithms for Sparse Matrix Vector Multiplication. In COMPUTE.
[51] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi, Skanda Koppula, Nika Man-

souri Ghiasi, Taha Shahroodi, Juan Gomez Luna, and Onur Mutlu. 2019. SMASH: Co-Designing Software Compression
and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations. In MICRO.

[52] Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris. 2009. Perfomance Models for Blocked Sparse Matrix-
Vector Multiplication Kernels. In ICPP.

[53] Enver Kayaaslan, Bora Uçar, and Cevdet Aykanat. 2015. Semi-Two-Dimensional Partitioning for Parallel Sparse
Matrix-Vector Multiplication. In IPDPS Workshop.

[54] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark Hempstead, Brandon Reagen, Xuan Zhang,
David Brooks, Vikas Chandra, Utku Diril, et al. 2020. RecNMP: Accelerating Personalized Recommendation with
Near-Memory Processing. In ISCA.

[55] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K Nurminen, and Zhonghong Ou. 2018. Rapl in Action:
Experiences in Using RAPL for Power Measurements. In TOMPECS.

[56] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. 2012. A Case for Exploiting Subarray-Level
Parallelism (SALP) in DRAM. In ISCA.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

https://arxiv.org/abs/2201.05072
https://arxiv.org/abs/2105.03814
https://github.com/CMU-SAFARI/SparseP

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:41

[57] David R Kincaid, Thomas C Oppe, and David M Young. 1989. Itpackv 2D User’s Guide.
[58] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Amarasinghe. 2017. TACO: A Tool to

Generate Tensor Algebra Kernels. In ASE.
[59] Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. 2008. Optimizing Sparse Matrix-Vector Multiplication

Using Index and Value Compression. In CF.
[60] Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris. 2011. CSX: An Extended Compression

Format for Spmv on Shared Memory Systems. In PPoPP.
[61] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A Practical Near-Memory Processing Architecture

for Embeddings and Tensor Operations in Deep Learning. In MICRO.
[62] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son, O Seongil, Hak-Soo

Yu, Haesuk Lee, Soo Young Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng
Phuah, HyoungMin Kim, Myeong Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David Wang,
Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021.
25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit
Using Bank-Level Parallelism, for Machine Learning Applications. In ISSCC.

[63] Daniel Langr and Pavel Tvrdík. 2016. Evaluation Criteria for Sparse Matrix Storage Formats. In TPDS.
[64] Dominique Lavenier, Remy Cimadomo, and Romaric Jodin. 2020. Variant Calling Parallelization on Processor-in-

Memory Architecture. In BIBM.
[65] Seyong Lee and Rudolf Eigenmann. 2008. Adaptive Runtime Tuning of Parallel Sparse Matrix-Vector Multiplication

on Distributed Memory Systems. In ICS.
[66] Sukhan Lee, Shin-Haeng Kang, Jaehoon Lee, H. Kim, Eojin Lee, Seung young Seo, H. Yoon, Seungwon Lee, K. Lim,

Hyunsung Shin, Jinhyun Kim, O. Seongil, Anand Iyer, David Wang, K. Sohn, and N. Kim. 2021. Hardware Architecture
and Software Stack for PIM Based on Commercial DRAM Technology: Industrial Product. In ISCA.

[67] J. Leskovec and R. Sosič. 2016. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. In TIST.
[68] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. 2013. SMAT: An Input Adaptive Auto-Tuner for Sparse

Matrix-Vector Multiplication. In PLDI.
[69] Kenli Li, Wangdong Yang, and Keqin Li. 2015. Performance Analysis and Optimization for SpMV on GPU Using

Probabilistic Modeling. In IEEE TPDS.
[70] Colin Yu Lin, Zheng Zhang, Ngai Wong, and Hayden Kwok-Hay So. 2010. Design Space Exploration for Sparse

Matrix-Matrix Multiplication on FPGAs. In FPT.
[71] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com Recommendations: Item-to-Item Collaborative

Filtering. In IC.
[72] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. 2015. Sparse Convolutional Neural

Networks. In CVPR.
[73] Changxi Liu, Biwei Xie, Xin Liu, Wei Xue, Hailong Yang, and Xu Liu. 2018. Towards Efficient SpMV on Sunway

Manycore Architectures. In ICS.
[74] Weifeng Liu and Brian Vinter. 2014. An Efficient GPU General Sparse Matrix-Matrix Multiplication for Irregular

Data. In IPDPS.
[75] Weifeng Liu and Brian Vinter. 2015. CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector

Multiplication. In ICS.
[76] Weifeng Liu and Brian Vinter. 2015. CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector

Multiplication. In ICS.
[77] Marco Maggioni and Tanya Berger-Wolf. 2013. AdELL: An Adaptive Warp-Balancing ELL Format for Efficient Sparse

Matrix-Vector Multiplication on GPUs. In ICPP.
[78] Duane Merrill and Michael Garland. 2016. Merge-Based Parallel Sparse Matrix-Vector Multiplication. In SC.
[79] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and Daniel Sanchez. 2018. Exploiting Locality

in Graph Analytics through Hardware-Accelerated Traversal Scheduling. In MICRO.
[80] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. 2021. A Modern Primer on Processing

in Memory. In Emerging Computing: From Devices to Systems - Looking Beyond Moore and Von Neumann. https:
//arxiv.org/pdf/2012.03112.pdf

[81] Naveen Namashivayam, Sanyam Mehta, and Pen-Chung Yew. 2021. Variable-Sized Blocks for Locality-Aware SpMV.
In CGO.

[82] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park,
Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia
Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie
Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation
Model for Personalization and Recommendation Systems. In CoRR.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

https://arxiv.org/pdf/2012.03112.pdf
https://arxiv.org/pdf/2012.03112.pdf

21:42 Christina Giannoula, et al.

[83] Yuyao Niu, Zhengyang Lu, Meichen Dong, Zhou Jin, Weifeng Liu, and Guangming Tan. 2021. TileSpMV: A Tiled
Algorithm for Sparse Matrix-Vector Multiplication on GPUs. In IPDPS.

[84] Eriko Nurvitadhi, Asit Mishra, Yu Wang, Ganesh Venkatesh, and Debbie Marr. 2016. Hardware Accelerator for
Analytics of Sparse Data. In DAC.

[85] NVIDIA. 2016. NVIDIA System Management Interface Program. http://developer.download.nvidia.com/compute/
DCGM/docs/nvidia-smi-367.38.pdf.

[86] Brian A. Page and Peter M. Kogge. 2018. Scalability of Hybrid Sparse Matrix Dense Vector (SpMV) Multiplication. In
HPCS.

[87] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying Feng, Chaitali Chakrabarti, Hun-
Seok Kim, David Blaauw, Trevor Mudge, and Ronald Dreslinski. 2018. OuterSPACE: An Outer Product Based Sparse
Matrix Multiplication Accelerator. In HPCA.

[88] peakperf. 2021. peakperf. https://github.com/Dr-Noob/peakperf.git
[89] Ali Pinar and Michael T. Heath. 1999. Improving Performance of Sparse Matrix-Vector Multiplication. In SC.
[90] Udo W. Pooch and Al Nieder. 1973. A Survey of Indexing Techniques for Sparse Matrices. In ACM Comput. Surv.
[91] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srinivasan, Dipankar Das, Bharat Kaul,

and Tushar Krishna. 2020. SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects for DNN
Training. In HPCA.

[92] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C. Hoe, Larry Pileggi, and Franz Franchetti. 2019. Efficient SpMV
Operation for Large and Highly Sparse Matrices Using Scalable Multi-Way Merge Parallelization. In MICRO.

[93] SciPy. 2021. List-of-list Sparse Matrix.
[94] Naser Sedaghati, Te Mu, Louis-Noel Pouchet, Srinivasan Parthasarathy, and P. Sadayappan. 2015. Automatic Selection

of Sparse Matrix Representation on GPUs. In ICS.
[95] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. 2007. Scan Primitives for GPU Computing. In

GH.
[96] A. Smith. 2019. 6 New Facts About Facebook. http://mediashift.org
[97] Markus Steinberger, Rhaleb Zayer, and Hans-Peter Seidel. 2017. Globally Homogeneous, Locally Adaptive Sparse

Matrix-Vector Multiplication on the GPU. In ICS.
[98] stream. 2021. stream. https://github.com/jeffhammond/STREAM.git
[99] Bor-Yiing Su and Kurt Keutzer. 2012. ClSpMV: A Cross-Platform OpenCL SpMV Framework on GPUs. In ICS.
[100] Guangming Tan, Junhong Liu, and Jiajia Li. 2018. Design and Implementation of Adaptive SpMV Library for Multicore

and Many-Core Architecture. In ACM Trans. Math. Softw.
[101] Wai Teng Tang, Ruizhe Zhao, Mian Lu, Yun Liang, Huynh Phung Huyng, Xibai Li, and Rick Siow Mong Goh. 2015.

Optimizing and Auto-Tuning Scale-Free Sparse Matrix-Vector Multiplication on Intel Xeon Phi. In CGO.
[102] Yaman Umuroglu and Magnus Jahre. 2014. An Energy Efficient Column-Major Backend for FPGA SpMV Accelerators.

In ICCD.
[103] UPMEM. 2018. Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator (White Paper).
[104] UPMEM. 2020. UPMEMWebsite. https://www.upmem.com
[105] UPMEM. 2021. UPMEM User Manual. Version 2021.3.
[106] R. Vuduc, J.W. Demmel, K.A. Yelick, S. Kamil, R. Nishtala, and B. Lee. 2002. Performance Optimizations and Bounds

for Sparse Matrix-Vector Multiply. In SC.
[107] Richard Wilson Vuduc and James W. Demmel. 2003. Automatic Performance Tuning of Sparse Matrix Kernels. In

PhD Thesis.
[108] Richard W. Vuduc and Hyun-Jin Moon. 2005. Fast Sparse Matrix-Vector Multiplication by Exploiting Variable Block

Structure. In HPCC.
[109] Jeremiah Willcock and Andrew Lumsdaine. 2006. Accelerating Sparse Matrix Computations via Data Compression.

In ICS.
[110] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James Demmel. 2007. Optimization

of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms. In SC.
[111] Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, and Ningyi Xu. 2010. Efficient PageRank and SpMV Computation

on AMD GPUs. In ICPP.
[112] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu, and Yuan Xie. 2021. SpaceA:

Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator. In HPCA.
[113] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. 2014. YaSpMV: Yet Another SpMV Framework on GPUs.

In PPoPP.
[114] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. 2014. YaSpMV: Yet Another SpMV Framework on GPUs.

In PPoPP.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://github.com/Dr-Noob/peakperf.git
http://mediashift.org
https://github.com/jeffhammond/STREAM.git
https://www.upmem.com

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:43

[115] Wangdong Yang, Kenli Li, and Keqin Li. 2017. A Hybrid Computing Method of SpMV on CPU–GPU Heterogeneous
Computing Systems. In JPDC.

[116] Wangdong Yang, Kenli Li, Yan Liu, Lin Shi, and Lanjun Wan. 2014. Optimization of Quasi-Diagonal Matrix-Vector
Multiplication on GPU. In Int. J. High Perform. Comput. Appl.

[117] Wangdong Yang, Kenli Li, Zeyao Mo, and Keqin Li. 2015. Performance Optimization Using Partitioned SpMV on
GPUs and Multicore CPUs. In IEEE Transactions on Computers.

[118] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016.
Cambricon-X: An Accelerator for Sparse Neural Networks. In MICRO.

[119] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. 2018. Bridging the Gap between Deep Learning and Sparse
Matrix Format Selection. In PPoPP.

[120] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. 2018. Bridging the Gap between Deep Learning and Sparse
Matrix Format Selection. In PPoPP.

[121] Yue Zhao, Weijie Zhou, Xipeng Shen, and Graham Yiu. 2018. Overhead-Conscious Format Selection for SpMV-Based
Applications. In IPDPS.

[122] Qiuling Zhu, Tobias Graf, H. Ekin Sumbul, Larry Pileggi, and Franz Franchetti. 2013. Accelerating SparseMatrix-Matrix
Multiplication with 3D-Stacked Logic-In-Memory Hardware. In HPEC.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:44 Christina Giannoula, et al.

APPENDIX
A Extended Results
A.1 Synchronization Approaches in Block-Based Compressed Matrix Formats
We compare the coarse-grained locking (lb-cg) and the fine-grained locking (lb-fg) approaches
in the BCOO format. Figure 28 shows the performance achieved by the BCOO format for all the
data types when balancing the blocks or the non-zero elements across 16 tasklets of one DPU. We
evaluate all small matrices of Table 3, i.e., delaunay_n13 (D), wing_nodal (W), raefsky4 (R) and
pkustk08 (P) matrices.

D W R P D W R P D W R P D W R P D W R P D W R P0.0
0.2
0.4
0.6
0.8
1.0

Sp
ee

d
up

int8 int16 int32 int64 fp32 fp64

BCOO.block-lb-cg BCOO.block-lb-fg BCOO.nnz-lb-cg BCOO.nnz-lb-fg

Fig. 28. Performance of the BCOO format with various load balancing schemes and synchronization ap-
proaches for all the data types and small matrices using 16 tasklets of one DPU.

Our key finding is that the fine-grained locking approach performs similarly with the coarse-
grained locking approach. The fine-grained locking approach does not increase parallelism in the
UPMEM PIM architecture, since memory accesses executed by multiple tasklets to the local DRAM
bank are serialized in the DMA engine of the DPU. The same key finding holds independently of
the compressed matrix format used.

A.2 Fine-Grained Data Transfers in 2D Partitioning Techniques
Figures 29 and 30 compare coarse-grained data transfers (i.e., performing parallel data transfers to
all 2048 DPUs at once, padding with empty bytes at the granularity of 2048 DPUs) with fine-grained
data transfers (i.e., iterating over the ranks and for each rank performing parallel data transfers to
the 64 DPUs of the same rank, padding with empty bytes at the granularity of 64 DPUs) for all
matrices of our large matrix dataset in the equally-wide and variable-sized schemes, respectively.
The reported key findings of Figure 16 (Section 6.2.1) apply to all matrices with diverse sparsity
patterns.

hgc mc2 pfm rtn rjt ash del tdk mem amz fth wbg ldr psb bns wbs in pks cmb skt sxw ask

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sl
o

w
d

o
w

n

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

2048 DPUs - 2 Vertical Partitions - int32
load kernel retrieve merge

Fig. 29. Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO with fine-grained
transfers in the output vector, BC: BDCOO with coarse-grained transfers, BY: BDCOO with fine-grained transfers
only in the output vector, and BT: BDCOO with fine-grained transfers in both the input and the output vector
using the int32 data type, 2048 DPUs and having 2 vertical partitions. Performance is normalized to that of
the RC scheme.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:45

hgc mc2 pfm rtn rjt ash del tdk mem amz fth wbg ldr psb bns wbs in pks cmb skt sxw ask

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sl
o

w
d

o
w

n

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

R
C

R
Y

B
C

B
Y

B
T

2048 DPUs - 32 Vertical Partitions - int32
load kernel retrieve merge

Fig. 30. Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO with fine-grained
transfers in the output vector, BC: BDCOO with coarse-grained transfers, BY: BDCOO with fine-grained transfers
only in the output vector, and BT: BDCOO with fine-grained transfers in both the input and the output vector
using the int32 data type, 2048 DPUs and having 32 vertical partitions. Performance is normalized to that of
the RC scheme.

A.3 Performance of Compressed Matrix Formats Using 2D Partitioning Techniques
Figures 31, 32, 33 compare the performance achieved by various compressed matrix formats for
each of the three types of the 2D partitioning technique for all matrices of our large matrix dataset.
The reported key findings explained in Section 6.2.2 apply to all matrices with diverse sparsity
patterns.

hgc mc2 pfm rtn rjt ash del tdk mem amz fth wbg ldr psb bns wbs in pks cmb skt sxw ask

0.0
0.5
1.0
1.5
2.0

Sl
o

w
d

o
w

n

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

equally-sized - 2048 DPUs - int32 - 4 Vertical Partitions
load kernel retrieve merge

Fig. 31. End-to-end execution time breakdown of the equally-sized 2D partitioning technique for CR: DCSR,
CO: DCOO, BR: DBCSR and BO: DBCOO schemes using 4 vertical partitions and the int32 data type. Performance
is normalized to that of DCSR.

hgc mc2 pfm rtn rjt ash del tdk mem amz fth wbg ldr psb bns wbs in pks cmb skt sxw ask

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sl
o

w
d

o
w

n

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

equally-wide - 2048 DPUs - int32 - 4 Vertical Partitions
load kernel retrieve merge

Fig. 32. End-to-end execution time breakdown of the equally-wide 2D partitioning technique for CR: RBDCSR,
CO: RBDCOO, BR: RBDBCSR and BO: RBDBCOO schemes using 4 vertical partitions and the int32 data type.
Performance is normalized to that of RBDCSR.

hgc mc2 pfm rtn rjt ash del tdk mem amz fth wbg ldr psb bns wbs in pks cmb skt sxw ask

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sl
o

w
d

o
w

n

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

C
R

C
O

B
R

B
O

variable-sized - 2048 DPUs - int32 - 4 Vertical Partitions
load kernel retrieve merge

Fig. 33. End-to-end execution time breakdown of the variable-sized 2D partitioning technique for CR: BDCOO,
CO: BDCOO, BR: BDBCSR and BO: BDBCOO schemes using 4 vertical partitions and the int32 data type. Perfor-
mance is normalized to that of BDCSR.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:46 Christina Giannoula, et al.

B Arithmetic Throughput of One DPU for the Multiplication Operation
We evaluate the arithmetic throughput of the DPU for the multiplication (MUL) operation. We
use the arithmetic throughput microbenchmark of PrIM [37, 43] and configure it for all the data
types. Figure 34 shows the measured arithmetic throughput (in MOperations per second) for the
MUL operation varying the number of tasklets of one DPU for all the data types. The arithmetic
throughput for the MUL operation is 12.94 MOps, 10.52 MOps, 8.86 MOps, 2.38 MOps, 1.84 MOps,
and 0.51 MOps for the int8, int16, int32, int64, fp32 and fp64 data types, respectively.

M
O
p/
s

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23

MUL
int8

M
O
p/
s

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23

MUL

int16

M
O
p/
s

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21 23

MUL

int32

M
O
p/
s

0.0

0.5

1.0

1.5

2.0

2.5

1 3 5 7 9 11 13 15 17 19 21 23

MUL

int64

M
O
p/
s

0.0

0.5

1.0

1.5

2.0

1 3 5 7 9 11 13 15 17 19 21 23

MUL
fp32

M
O
p/
s

0.0

0.2

0.4

0.6

1 3 5 7 9 11 13 15 17 19 21 23

MUL
fp64

Fig. 34. Throughput of the MUL operation on one DPU for all the data types.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:47

C The SparseP Software Package
Table 6 summarizes the SpMV PIM kernels provided by the SparseP library. All kernels support a
wide range of data types, i.e., 8-bit integer, 16-bit integer, 32-bit integer, 64-bit integer, 32-bit float,
and 64-bit float data types.

Partitioning Compressed Balancing Balancing Synchronization
Technique Format Across PIM Cores Across Threads Approach

1D

CSR rows rows, nnz★ -
nnz★ rows, nnz★ -

COO
rows rows, nnz★ -
nnz★ rows, nnz★ -
nnz nnz lb-cg / lb-fg / lf

BCSR blocks† blocks†, nnz† lb-cg‡ / lb-fg‡
nnz† blocks†, nnz† lb-cg‡ / lb-fg‡

BCOO blocks blocks, nnz lb-cg / lb-fg / lf
nnz blocks, nnz lb-cg / lb-fg / lf

2D
equally-sized

CSR - rows, nnz★ -
COO - nnz lb-cg / lb-fg / lf
BCSR - blocks†, nnz† lb-cg‡ / lb-fg‡
BCOO - blocks, nnz lb-cg / lb-fg

2D
equally-wide

CSR nnz★ rows, nnz★ -
COO nnz nnz lb-cg / lb-fg / lf

BCSR blocks† blocks†, nnz† lb-cg‡ / lb-fg‡
nnz† blocks†, nnz† lb-cg‡ / lb-fg‡

BCOO blocks blocks, nnz lb-cg / lb-fg
nnz blocks, nnz lb-cg / lb-fg

2D
variable-sized

CSR nnz★ rows, nnz★ -
COO nnz nnz lb-cg / lb-fg / lf

BCSR blocks† blocks†, nnz† lb-cg‡ / lb-fg‡
nnz† blocks†, nnz† lb-cg‡ / lb-fg‡

BCOO blocks blocks, nnz lb-cg / lb-fg
nnz blocks, nnz lb-cg / lb-fg

Table 6. The SparseP library. ★: row-granularity, †: block-row-granularity, ‡: (only for 8-bit integer and small
block sizes)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

21:48 Christina Giannoula, et al.

D Large Matrix Dataset
We present the characteristics of the sparse matrices of our large matrix data set. Table 7 presents
the sparsity of the matrix (i.e., NNZ / (rows x columns)), the standard deviation of non-zero elements
among rows (NNZ-r-std) and columns (NNZ-c-std). Table 8 visualizes the sparsity patterns of each
sparse matrix of our large matrix data set.

Matrix Name Rows x Columns NNZs Sparsity NNZ-r-std NNZ-c-std
hugetric-00020 7122792 x 7122792 21361554 4.21e-07 0.031 0.031
mc2depi 525825 x 525825 2100225 7.59e-06 0.076 0.076
parabolic_fem 525825 x 525825 3674625 1.33e-05 0.153 0.153
roadNet-TX 1393383 x 1393383 3843320 1.98e-06 1.037 1.037
rajat31 4690002 x 4690002 20316253 9.24e-07 1.106 1.106
af_shell1 504855 x 504855 17588875 6.90e-05 1.275 1.275
delaunay_n19 524288 x 524288 3145646 1.14e-05 1.338 1.338
thermomech_dK 204316 x 204316 2846228 6.81e-05 1.431 1.431
memchip 2707524 x 2707524 14810202 2.02e-06 2.062 1.173
amazon0601 403394 x 403394 3387388 2.08e-05 2.79 15.29
FEM_3D_thermal2 147900 x 147900 3489300 1.59e-04 4.481 4.481
web-Google 916428 x 916428 5105039 6.08e-06 6.557 38.366
ldoor 952203 x 952203 46522475 5.13e-05 11.951 11.951
poisson3Db 85623 x 85623 2374949 3.24e-04 14.712 14.712
boneS10 914898 x 914898 55468422 6.63e-05 20.374 20.374
webbase-1M 1000005 x 1000005 3105536 3.106e-06 25.345 36.890
in-2004 1382908 x 1382908 16917053 8.846e-06 37.230 144.062
pkustk14 151926 x 151926 14836504 6.428e-04 46.508 46.508
com-Youtube 1134890 x 1134890 5975248 4.639e-06 50.754 50.754
as-Skitter 1696415 x 1696415 22190596 7.71e-06 136.861 136.861
sx-stackoverflow 2601977 x 2601977 36233450 5.352e-06 137.849 65.367
ASIC_680 682862 x 682862 3871773 8.303e-06 659.807 659.807

Table 7. Large Matrix Dataset. Matrices are sorted by NNZ-r-std, i.e., based on their irregular pattern.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

SparseP : Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures 21:49

Matrix Name Plot

hugetric-00020

mc2depi

parabolic_fem

roadNet-TX

rajat31

af_shell1

delaunay_n19

thermomech_dK

memchip

amazon0601

FEM_3D_thermal2

Matrix Name Plot

web-Google

ldoor

poisson3Db

boneS10

webbase-1M

in-2004

pkustk14

com-Youtube

as-Skitter

sx-stackoverflow

ASIC_680

Table 8. Sparsity patterns of the sparse matrices of our large matrix data set.

Received October 2021; revised December 2021; accepted January 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 21. Publication date: March 2022.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Sparse Matrix Vector Multiplication (SpMV)
	2.2 Near-Bank PIM Systems

	3 The SparseP Library
	3.1 SpMV Execution on a PIM System
	3.2 Overview of Data Partitioning Techniques
	3.3 Parallelization Techniques Across PIM Cores
	3.4 Parallelization Techniques Across Threads within a PIM Core
	3.5 Kernel Implementation

	4 Evaluation Methodology
	5 Analysis of SpMV Execution on One DPU
	5.1 Load Balancing Schemes Across Tasklets of One DPU
	5.2 Analysis of Compressed Matrix Formats on One DPU

	6 Analysis of SpMV Execution on Multiple DPUs
	6.1 Analysis of SpMV Execution Using 1D Partitioning Techniques
	6.2 Analysis of SpMV Execution Using 2D Partitioning Techniques
	6.3 Comparison of 1D and 2D Partitioning Techniques

	7 Comparison with CPUs and GPUs
	7.1 Performance Comparison
	7.2 Energy Comparison
	7.3 Discussion

	8 Key Takeaways and Recommendations
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Extended Results
	A.1 Synchronization Approaches in Block-Based Compressed Matrix Formats
	A.2 Fine-Grained Data Transfers in 2D Partitioning Techniques
	A.3 Performance of Compressed Matrix Formats Using 2D Partitioning Techniques

	B Arithmetic Throughput of One DPU for the Multiplication Operation
	C The SparseP Software Package
	D Large Matrix Dataset

