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Executive Summary

Key Results: Across four real datasets of varying sizes, Swordfish realistically provides
– 25.7× better average throughput compared to state-of-the-art basecalling on GPU 

– 12% mitigation in basecalling accuracy loss after hardware/software co-designed enhancement 

techniques

– Three new insights on future research directions for accuracy enhancement techniques

Key Contribution: Swordfish; the first framework for memristor-based CIM that uses characterized 
memories and accurate models to
1) accurately and realistically evaluate the effects of non-idealities on basecalling accuracy and 
throughput
2) comprehensively investigate the impact of accuracy enhancement techniques on basecalling 
accuracy and throughput

Goal: Enable accurate and realistic evaluation of accuracy and throughput for DNN-based basecalling 
on memristor-based CIM

Problem: Prior frameworks for memristor-based CIM accelerators targeting large DNNs either 
1. overlook existing non-idealities,  
2. overestimates achievable accuracy by studying non-idealities in isolation or using imprecise 

models/methodology
3. overlook the effects of non-idealities mitigation techniques on the achievable throughput

Context: Basecalling is the first step and a major throughput bottleneck
Basecallers use deep neural networks (DNNs)
DNN-based basecalling accuracy and throughput impact accuracy and throughput of next analysis
Prior research uses memristor-based Computation-in-Memory (CIM) to accelerate DNNs
Non-idealities in memristor-based CIM known to hinder accuracy
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Nanopore Genome Sequencing and Analysis Pipeline

Genome Sequencing: Determining DNA sequence order for 
1. Personalized medicine,

2. Outbreak tracing,

3. Understanding evolution

Nanopore Sequencing: A widely used sequencing technology
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Basecalling consumes up to 84.2% of the execution time [Bowden+ 2019]
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Basecalling consumes up to 84.2% of the execution time [Bowden+ 2019]

Basecalling is 
1. Accuracy-critical

2. Performance Bottleneck

Basecallers are just large DNNs
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DNN Hardware Acceleration

DNN execution is dominated by: 

Memristor-based 
crossbars support VMM

Vector-Matrix 
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accelerator
(e.g., GPU or TPU)

Computation in Memory 
(CIM) minimizes data 

movement
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DNN execution is dominated by: 
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Vector-Matrix 
Multiplication (VMM)

Data movement 
between memory and 
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(e.g., GPU or TPU)

Computation in Memory 
(CIM) minimizes data 

movement

Memristor-based CIM for DNN Acceleration

[Ankit+, ASPLOS 2019], [Chi+, ISCA 2016], [Lou+, PACT2020], [Shafiee+, ISCA 2016]
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Memristor-based Crossbars
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VMM in Memristor-based Crossbars
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VMM in Memristor-based Crossbars

VMM in Accelerators

VMM in Memristor-based Crossbars

In Accelerators

In Memory
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Non-idealities in Memristor-based Crossbars
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Analog to Digital Converters (ADCs)

Non-ideal DAC
Variation in 
Synaptic Conductance

Wire Resistance

Non-ideal ADC

Non-idealities are everywhere
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VMM in Memristor-based Crossbars

In Memory

VMM in Memristor-based Crossbars
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VMM in Ideal Memristor-based Crossbars

In Memory

VMM in Memristor-based Crossbars

Accurate
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VMM in Memristor-based Crossbars

VMM in Real Memristor-based Crossbars

In MemoryIn Memory
AccurateInaccurate

VMM in Ideal Memristor-based Crossbars

In Memory
Accurate
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Our Goal

To realistically evaluate end-to-end basecalling 
accuracy and throughput for memristor-based CIM



©Taha Michael Shahroodi, Delft University of Technology 17

Key Idea

To account for the non-idealities in device, circuit and 
architecture of memristor-based CIM and the 

overhead of non-idealities mitigation techniques
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Swordfish vs Other Frameworks

Ideal Memristor-based CIM Frameworks for DNNs

User Input

DNN
•Architecture
•Weights

CIM Hardware
•Architecture

Traditional ideal Frameworks

Partition & Map
Layer 1

Layer N

… …

System Evaluator

•Performance
•Area

Kernel Chunks 

(i.e., ideal VMMs)
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Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs

SwordfishUser Input
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VMM Model Generator
Non-ideal 

VMMs
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Realistic Memristor-based CIM Frameworks for DNNs
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VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities

Swordfish supports two approaches: 

Approach 1: 

Real chip measurement and 
characterizations

Approach 2: 

Analytical Modeling using 
component’s models

Model for 
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Realistic Memristor-based CIM Frameworks for DNNs
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Accuracy Enhancement

1. Analytical Variation Aware Training (VAT)

2. Knowledge Distillation-based (KD) VAT

Goal: Enhance the accuracy of a VMM by adapting input currents 
and resistance of memristors based on non-idealities

3. Read-Verify-Write (R-V-W) Training

4. Random Sparse Adaptation (RSA) Training 

Swordfish supports four techniques: 
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Example of Accuracy Enhancement

1. Analytical Variation Aware Training (VAT) [Offline]

2. Knowledge Distillation-based (KD) VAT [Offline]

Goal: Enhance the accuracy of a VMM by adapting input currents 
and resistance of memristors based on non-idealities

3. Read-Verify-Write (R-V-W) Training [Offline]

4. Random Sparse Adaptation (RSA) Training 

Read more about
other techniques in the paper
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Accuracy Enhancement via Random Sparse Adaptation

Key idea? 

Load Weights
to Memristors + SRAM

VMM/Layer Output

Memristor Array

Digital Labeled Input Squiggle

SRAM

VMM Output

Initial Training

Retraining
•In Software
•e.g., using KD

Load Weights to SRAM

Key idea? Map the weightsKey idea? Map the weights that otherwise would map to error-prone 
memristor devices
Key idea? Map the weights that otherwise would map to error-prone 
memristor devices to reliable SRAM cells.

RSA in 3 Steps: 

1. Initial Training (one-time, on GPU) and distribution of weights

2. VMM operation using both memories

3. Retraining all weights and reload those on SRAM (only)

+

1

2

3
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More in the Paper

⚫ Details of capturing non-idealities at VMM level 

⚫ Implementation details of Swordfish components: 

• Partition & Map 

• Accuracy Enhancer

• VMM Model Generator 

• System Evaluator 

⚫ Elaborations on accuracy enhancement techniques

• Analytical Variation Aware Training (VAT) 

• Knowledge Distillation-based (KD) using VAT 

• Read-Verify-Write (R-V-W) Training

• Random Sparse Adaptation (RSA) Training 
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Evaluation Methodology: Experimental Setup 

• We evaluate

• Basecaller: Bonito [Oxford Nanopore 2023]

• CIM Architecture: PUMA [Ankit+, ASPLOS 2019]

• Infrastructure

• 2x AMD EPYC 7742 CPU with 500 GB DDR4 DRAM

• 8x NVIDIA V100

• Datasets and Workloads [Wick+ 2019, Zook+ 2019, CADDE 2020]

• 4 real read and reference genomes with various genome size (D1, D2, 

D3, and D4)
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All5

Evaluated Non-idealities & Enhancement techniques

• Non-idealities

• Accuracy Enhancement 

Techniques

Combined4

Synaptic+Wires1

Sensing+ADC Circuitry2

DAC+Driver Circuitry3

Measured5

Variation Aware Training (VAT)1

Knowledge Distillation (KD)2

Read-Verify-Write (R-V-W)3

4 Random Sparse Adaptation (RSA) + KD

Analytical
Models

(Approach 2)

(Approach 1)
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Accuracy: All Non-idealities without Mitigation

Non-idealities
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Combined non-idealities leads to significant accuracy loss (>18%)
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Accuracy: Enhancement Techniques on All Non-idealities

Enhancement Technique
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Accuracy enhancement techniques mitigate non-idealities, 
But differently. 
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Accuracy: Enhancement Techniques on All Non-idealities
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Considerable accuracy loss (>6%) even with All 
enhancement techniques. 

Enhancement Technique
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Ideal CIM implementation improves the basecalling throughput over 
Bonito-GPU by 413.6× on average

Throughput Analysis

G-Bonito Ideal-Swordfish Realistic-Swordfish-RVW

Realistic-Swordfish-RSA Realistic-Swordfish-RSA+KD
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Ideal CIM implementation improves the basecalling throughput over 
Bonito-GPU by 413.6× on average

Throughput Analysis

G-Bonito Ideal-Swordfish Realistic-Swordfish-RVW

Realistic-Swordfish-RSA Realistic-Swordfish-RSA+KD

Throughput improvement at the high, 
unacceptable accuracy loss of 18%
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Throughput Analysis

Realistic CIM designs significantly underperform ideal design

G-Bonito Ideal-Swordfish Realistic-Swordfish-RVW

Realistic-Swordfish-RSA Realistic-Swordfish-RSA+KD
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Throughput Analysis

Some realistic CIM designs degrade throughput compared to 
Bonito-GPU

G-Bonito Ideal-Swordfish Realistic-Swordfish-RVW

Realistic-Swordfish-RSA Realistic-Swordfish-RSA+KD



©Taha Michael Shahroodi, Delft University of Technology 39

Throughput Analysis

Realistic CIM design using RSA+KD provides on average 25.7×
higher throughput compared to Bonito-GPU

G-Bonito Ideal-Swordfish Realistic-Swordfish-RVW

Realistic-Swordfish-RSA Realistic-Swordfish-RSA+KD
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More in the Paper

⚫ Details on evaluation methodology 

• Datasets 

• Array and devices

⚫ Evaluation results

• Individual non-idealities and architectural limitations on accuracy

• Accuracy enhancements on individual and combined non-idealities 

and architectural limitations

• Accuracy vs. Area analysis

• Observations and trends from the presented figures

• Results for 256x256 crossbar + comparison with 64x64 crossbars

⚫ Discussions, takeaways, and future work
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Takeaways

The target application for memristor-based CIM matters

Non-idealities are detrimental to both accuracy and performance

HW/SW co-designed techniques mitigate inaccuracy the most  

Swordfish enables realistic evaluation of accuracy and performance 
for DNN-based applications on memristor-based CIM
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Summary

Many opportunities for
– Realistically evaluating accuracy and throughput other DNNs on memristor-based 

CIM 

– Developing and evaluating novel accuracy enhancement techniques, on software, 

hardware, or both

– We should remain cautious applying known acceleration techniques to emerging 

technologies, architectures, and applications

Key Results: Across four real datasets of varying sizes, Swordfish realistically provides
– 25.7× better average throughput compared to state-of-the-art basecalling on GPU 

– 12% mitigation in basecalling accuracy loss after hardware/software co-designed 

enhancement techniques

– Three new insights on future research directions for accuracy enhancement 

techniques

Key Contribution: Swordfish; the first framework for memristor-based CIM that uses 
characterized memories and accurate models to
1) accurately and realistically evaluate the effects of non-idealities on basecalling accuracy
and throughput
2) comprehensively investigate the impact of accuracy enhancement techniques on 
basecalling accuracy and throughput



Swordfish:
A Framework for Evaluating 

Deep Neural Network-based Basecalling 
using Computation-in-Memory 

with Non-Ideal Memristors

Questions? 
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