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Executive Summary

[ Context: Basecalling is the first step and a major throughput bottleneck

Basecallers use deep neural networks (DNNs)

DNN-based basecalling accuracy and throughput impact accuracy and throughput of next analysis

Prior research uses memristor-based Computation-in-Memory (CIM) to accelerate DNNs
Non-idealities in memristor-based CIM known to hinder accuracy

Problem: Prior frameworks for memristor-based CIM accelerators targeting large DNNs either

1. overlook existing non-idealities,

2. overestimates achievable accuracy by studying non-idealities in isolation or using imprecise

models/methodology

3. overlook the effects of non-idealities mitigation techniques on the achievable throughput

Goal: Enable accurate and realistic evaluation of accuracy and throughput for DNN-based basecalling

on memristor-based CIM

Key Contribution: Swordfish; the first framework for memristor-based CIM that uses characterized
memories and accurate models to

1) accurately and realistically evaluate the effects of non-idealities on basecalling accuracy and
throughput

2) comprehensively investigate the impact of accuracy enhancement techniques on basecalling
accuracy and throughput

Key Results: Across four real datasets of varying sizes, Swordfish realistically provides
— 25.7X better average throughput compared to state-of-the-art basecalling on GPU
— 12% mitigation in basecalling accuracy loss after hardware/software co-designed enhancement
techniques
— Three new insights on future research directions for accuracy enhancement techniques
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Nanopore Genome Sequencing and Analysis Pipeline

Genome Sequencing: Determining DNA sequence order for
1. Personalized medicine,
2. Outbreak tracing,
3. Understanding evolution

Nanopore Sequencing: A widely used sequencing technology

[ Nanopore Genome Analysis Pipeline

Basecalling
in GPU

Basecalling consumes up to 84.2% of the execution time [Bowden+ 2019]




Nanopore Genome Sequencing and Analysis Pipeline

Basecalling is

1. Accuracy-critical
2. Performance Bottleneck

Basecallers are just large DNNs




DNN Hardware Acceleration

DNN execution is dominated by:
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DNN Hardware Acceleration

Memristor-based CIM for DNN Acceleration

[Ankit+, ASPLOS 2019], [Chi+, ISCA 2016], [Lou+, PACT2020], [Shafiee+, ISCA 2016]




Memristor-based Crossbars




VMM in Memristor-based Crossbars
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VMM in Memristor-based Crossbars

VMM in Accelerators
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Non-idealities in Memristor-based Crossbars
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Non-idealities are everywhere




VMM in Memristor-based Crossbars

VMM in Memristor-based Crossbars
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VMM in Memristor-based Crossbars

VMM in Memristor-based Crossbars
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VMM in Memristor-based Crossbars

VMM in Memristor-based Crossbars
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To realistically evaluate end-to-end basecalling

accuracy and throughput for memristor-based CIM




Key Idea

To account for the non-idealities in device, circuit and
architecture of memristor-based CIM and the
overhead of non-idealities mitigation techniques
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Swordfish: Design & Implementation




Swordfish vs Other Frameworks
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Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs
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Swordfish Framework - Overview
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VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities

Swordfish supports two approaches:

4 ™
g Approach 1: ) Approach 2:

Real chip measurement and Analytical Modeling using
characterizations component’s models

Non-ldeal Non-Ideal Non-ldeal
Input Input Output Output
Vector \oltages Currents Vector

Model for Model for Model for
Non-ldeal =i Non-ldeal j==—pi Non-ldea| |y
DAC Crossbar ADC

J

© Copyright 2023, ArC INSTRUMENTS




VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities

Swordfish supports two approaches:
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Swordfish Framework - Overview

Accuracy Enhancer
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Accuracy Enhancement

Goal: Enhance the accuracy of a VMM by adapting input currents
and resistance of memristors based on non-idealities

Swordfish supports four techniques:

7

1. Analytical Variation Aware Training (VAT)

\

7

2. Knowledge Distillation-based (KD) VAT

\

s

3. Read-Verify-Write (R-V-W) Training

\

r

4. Random Sparse Adaptation (RSA) Training
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Example of Accuracy Enhancement

Goal: Enhance the accuracy of a VMM by adapting input currents
and resistance of memristors based on non-idealities
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4. Random Sparse Adaptation (RSA) Training
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Accuracy Enhancement via Random Sparse Adaptation

Key idea? Map the weights that otherwise would map to error-prone
memristor devices to reliable SRAM cells.

RSA in 3 Steps:

1. Initial Training (one-time, on GPU) and distribution of weights
2. VMM operation using both memories

3. Retraining all weights and reload those on SRAM (only)

 Digital Labeled Input Squiggle |

Load Weights |
to Memristors + SRAM 1
Initial Training Memrittor Array l

VMM/Layer Output

Retraining
*In Software
*e.g., using KD

Load Weights to SRAM

VMM Output e y




More in the Paper

o Details of at VMM level

o Implementation details of Swordfish components:
Partition & Map

Accuracy Enhancer
VMM Model Generator

System Evaluator

o Elaborations on accuracy enhancement techniques
Analytical Variation Aware Training (VAT)
Knowledge Distillation-based (KD) using VAT
Read-Verify-Write (R-V-W) Training
Random Sparse Adaptation (RSA) Training
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Evaluation & Key Results




Evaluation Methodology: Experimental Setup

e We evaluate

* Basecaller: Bonito [Oxford Nanopore 2023]
* CIM Architecture: PUMA [Ankit+, ASPLOS 2019]

* Infrastructure

* 2x AMD EPYC 7742 CPU with 500 GB DDR4 DRAM
* 8x NVIDIA V100

e Datasets and Workloads [Wick+ 2019, Zook+ 2019, CADDE 2020]

* 4 real read and reference genomes with various genome size (D1, D2,
D3, and D4)




Evaluated Non-idealities & Enhancement techniques
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Accuracy: All Non-idealities without Mitigation
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Accuracy: Enhancement Techniques on All Non-idealities
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Accuracy enhancement techniques non-idealities,
But differently.




Accuracy: Enhancement Techniques on All Non-idealities
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Considerable accuracy loss (>6%) even with All
enhancement techniques.




Throughput Analysis
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Ideal CIM implementation improves the basecalling throughput over

Bonito-GPU by 413.6% on average
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Throughput Analysis

Throughput improvement at the high,
unacceptable accuracy loss of 18%




Throughput Analysis
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Realistic CIM designs significantly underperform ideal design




Throughput Analysis
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Some realistic CIM designs degrade throughput compared to
Bonito-GPU




Throughput Analysis
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Realistic CIM design using RSA+KD provides on average 25.7x%
higher throughput compared to Bonito-GPU




More in the Paper

o Details on
* Datasets

* Array and devices

o Evaluation results

* Individual non-idealities and architectural limitations on accuracy

* Accuracy enhancements on individual and combined non-idealities
and architectural limitations

* Accuracy vs. Area analysis
* Observations and trends from the presented figures

 Results for 256x256 crossbar + comparison with 64x64 crossbars

o Discussions, takeaways, and future work




Outline

Takeaways & Summary




Takeaways

The target application for memristor-based CIM matters

Swordfish enables realistic evaluation of accuracy and performance
for DNN-based applications on memristor-based CIM

Non-idealities are detrimental to both accuracy and performance

HW/SW co-designed techniques mitigate inaccuracy the most




Summary

7

\

Key Contribution: Swordfish; the first framework for memristor-based CIM that uses
characterized memories and accurate models to
1) accurately and realistically evaluate the effects of non-idealities on basecalling accuracy

and throughput
2) comprehensively investigate the impact of accuracy enhancement techniques on

basecalling accuracy and throughput

(

.

Key Results: Across four real datasets of varying sizes, Swordfish realistically provides
— 25.7X better average throughput compared to state-of-the-art basecalling on GPU
— 12% mitigation in basecalling accuracy loss after hardware/software co-designed
enhancement techniques
— Three new insights on future research directions for accuracy enhancement
techniques

(

Many opportunities for
— Realistically evaluating accuracy and throughput other DNNs on memristor-based

CIM
— Developing and evaluating novel accuracy enhancement techniques, on software,

hardware, or both
— We should remain cautious applying known acceleration techniques to emerging
technologies, architectures, and applications
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