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Abstract

Static compilers use profiling to predict run-time program behavior. A program can behave differently with different input

data sets. Aggressively optimized code for one input set can hurt performance when the code is run using a different input set.

Hence, compilers need to profile using multiple input sets that can represent a wide range of program behavior. However, using

multiple input sets for profiling is expensive in terms of resources and profiling time.

To eliminate the need to profile with multiple input sets, this paper proposes a novel profiling mechanism called 2D-profiling.

A compiler that uses 2D-profiling profiles with only one input set and predicts whether the result of the profile will remain similar

across input sets or change significantly. 2D-profiling measures time-varying phase characteristics of the program during the

profiling run, in addition to the average program characteristics over the whole profiling run. Using the profile-based phase

information, 2D-profiling predicts if a program property is input-dependent.

We develop a 2D-profiling algorithm to predict whether or not the prediction accuracy of a branch instruction will remain

similar when the input set of a program is changed. The key insight behind our algorithm is that if the prediction accuracy of

a branch changes significantly over time during the profiling run with a single input data set, then the prediction accuracy of

that branch is more likely dependent on the input data set. We evaluate the 2D-profiling mechanism with the SPEC INT 2000

benchmarks. Our analysis shows that 2D-profiling can identify most of the input-dependent branches accurately.

Keywords: branch input dependency, phase behavior, profiling

1. Introduction

Profile-guided code optimization has become essential for achieving good performance in programs. Profiling discovers

new optimization opportunities in a program which are not identified by static analysis. However, profile-guided optimization

is beneficial only if the program’s run-time behavior is similar to its profile-time behavior. A good profiling compiler should

therefore profile with representative input data which shows a wide range of program behavior [29]. To be able to do so,

compilers usually need to profile with multiple different input data sets. How a compiler should find and select input sets that

can represent a wide range of program behavior still remains a very hard problem.

The predictability and bias of a branch instruction are two examples of input-dependent program characteristics. As Fisher

and Freudenberger showed in [7], some branches behave similarly across input sets but others do not. We observe that, for

some applications, even highly-biased (or easy-to-predict) branches for one input set can behave very differently for another

input set. If the compiler aggressively optimizes the code assuming that the branch is highly-biased (or easy-to-predict), the
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optimization could hurt performance if the branch behaves differently with another input set. Hence, input-dependent branches

can significantly affect the performance of profile-guided code optimizations. Identifying such branches at compile-time would

aid in increasing the quality and performance of profile-guided optimizations.

To identify input-dependent branches, a compiler needs to either profile with multiple input sets or find one representative

input set. Unfortunately, profiling with multiple input sets is costly in terms of resources and profiling time, and finding a single

representative input set is a very hard problem. Furthermore, there is a very large number of possible different input sets for

many applications, which always leaves the possibility that the compiler may miss an important input set while profiling.

This paper proposes a novel profiling mechanism, called 2D-profiling, to identify input-dependent branches without having

to profile with multiple input sets. A 2D-profiling compiler profiles with only one input set and it predicts whether the result of

the profile will remain similar across input sets or change significantly. In order to predict whether or not a program property is

input-dependent, 2D-profiling measures time-varying phase characteristics of the program during the profiling run, in addition

to the average program characteristics over the whole profiling run. Previously-proposed branch profiling techniques usually

use only average (aggregate) values [27], such as the average misprediction rate for a branch instruction. We find that measuring

the outputs of a profiling run over time and calculating even simple statistics, such as standard deviation, can provide valuable

information about the input-dependence characteristics of a program property.

We apply the 2D-profiling mechanism to profile the prediction accuracy of individual branch instructions. Our 2D-profiling

algorithm predicts whether the prediction accuracy of a branch instruction will remain similar or change significantly across

different input sets. The basic insight of the mechanism is that if the prediction accuracy of a static branch changes significantly

over time during the profiling run (with a single input data set), then the prediction accuracy of that branch is more likely

dependent on the input data set. Similarly, 2D-profiling can also be used with edge profiling to determine whether or not the

bias (taken/not-taken rate) of a branch is input-dependent.

This paper presents the 2D-profiling algorithm that is used to identify input-dependent branches. The major contribution of

our paper is an efficient profiling mechanism that identifies input-dependent branches in order to aid compiler-based branch-

related optimizations, such as predicated execution. No previous work we are aware of proposed a way of identifying input-

dependent branches at compile-time using a single input data set. We show that 2D-profiling can identify most of the input-

dependent branches in SPEC CPU 2000 integer benchmarks by profiling with only one input set, even if the profiler uses a

different and less accurate branch predictor than the target processor.

To provide background and motivation on input-dependent branches, we first describe what input-dependent branches are

and why it is important to identify them in compiler optimizations such as predication (Section 2). In Section 3, we explain the

2D-profiling mechanism and the algorithm to identify input-dependent branches in detail. Section 4 describes our experimental

methodology and Section 5 presents the results of our evaluations. Section 6 discusses our work in the context of related

research in profiling and predicated execution.
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2. Input-Dependent Branches

We classify a conditional branch as input-dependent if its prediction accuracy changes by a certain threshold value across

two input sets. We set this threshold to be 5% in our analysis.1 We first explain why input-dependent branches are important

and then measure how many branches show input-dependent behavior. We also describe some examples of input-dependent

branches to provide insights into why they exist.

2.1. Why Are Input-Dependent Branches Important?

This section explains why input-dependent branches are important in compiler optimizations. We use predicated execution

via if-conversion [1] as our compiler optimization example. We describe why even a small absolute change like 5% in branch

prediction accuracy can impact the performance of predicated code.

2.1.1. Importance of Input-Dependent Branches in Predicated Execution Figure 1 shows an example source code and

the corresponding assembly code with branches (normal branch code - 1a) and with predication (predicated code - 1b). With

normal branch code, the processor speculatively fetches and executes block B or C based on the predicted direction of the

branch in block A. When the branch is mispredicted, the processor flushes its pipeline and rolls back to the end of block A and

fetches the alternate block. With predicated code, the processor fetches both block B and block C. Instructions in blocks B and

C are not executed until the predicate value (p1 in Figure 1) is resolved. Since there is no speculative execution, there is no

pipeline flush penalty. However, the processor always fetches and executes instructions from both control-flow paths.

A

D

A

C

       a = b + c;
       b = b + 1;

       d = d − a;

(a)

    p1 = (cond)
(!p1)    add b, b, 1
(p1)    sub b, b, 1

(!p1)   sub d, d, a
           add a, b, c

(p1)    add d, d, a

A

B

C

(b)

B C

not−taken taken

(code)

TARGET:C

sub b, b, 1
add a, b, c
add d, d, a

D

B

A p1 = (cond)
branch p1, TARGET

D JOIN:

if (cond) {

      a = b + c;
      d = d + a;
}
else {

}

      b = b − 1;

B

branch.uncond JOIN

add b, b, 1
add a, b, c
sub d, d, a

Figure 1. Source code and the corresponding assembly code for (a) normal branch code (b) predicated code

Equations (1) and (2) show the cost of normal branch code and the cost of predicated code respectively. The compiler

decides whether a branch is converted into predicated code or stays as a branch based on equation (3) [22, 17]. A branch is
1For example, if the prediction accuracy of a branch instruction is 80% with one input set and 85.1% with another, we consider this branch to be an

input-dependent branch since the delta, 5.1%, is greater than the threshold, 5%.
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converted into predicated code if it satisfies equation (3), otherwise it stays as a normal branch instruction.

Exec cost(normal branch) = exec T ∗ P (T ) + exec N ∗ P (N) + misp penalty ∗ P (misp) (1)
Exec cost(predicated code) = exec pred (2)
Exec cost(normal branch) > Exec cost(predicated code) (3)

exec T : Execution time of the code when the branch under consideration is taken
exec N : Execution time of the code when the branch under consideration is not taken
P (case): The probability of the case; e.g., P(T) is the probability that the branch is taken
misp penalty: Machine-specific branch misprediction penalty
exec pred: Execution time of the predicated code

To demonstrate how sensitive equation (3) is to the branch misprediction rate, we apply the equation to the code example

shown in Figure 1. We set misp penalty to 30 cycles, exec T to 3 cycles, exec N to 3 cycles, exec pred to 5 cycles. Figure 2

displays the two equations, (1) and (2), as the branch misprediction rate is varied in the X-axis. With the given parameters, if the

branch misprediction rate is less than 7%, normal branch code takes fewer cycles to execute than predicated code. If the branch

misprediction rate is greater than 7%, predicated code takes fewer cycles than normal branch code. For example, if the branch

misprediction rate is 9%, predicated code performs better than normal branch code. But if the misprediction rate becomes 4%,

then normal branch code performs better. Hence, even a 5% absolute change in prediction accuracy can significantly change

the decision of whether or not to predicate a branch.
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Figure 2. Execution time of predicated code and non-predicated code vs. branch misprediction rate

In this example, if the compiler can identify whether or not the branch is input-dependent, then it can make a better opti-

mization decision, especially for those branches with misprediction rates close to 7%. If the branch misprediction rate is greater

than 7% and the compiler correctly identifies that the branch is not input-dependent, then the compiler can safely convert the

branch into predicated code to obtain better performance. However, if the compiler correctly identifies that the branch is input-

dependent, it would know that predicating the branch may cause performance loss with different input sets.2 Therefore, in the

latter case, the compiler is more apt to leave the decision of how to handle the branch to a dynamic optimizer [8] or to convert

the branch into a wish branch so that the hardware decides whether or not to use predicated execution for the branch [12].

2.1.2. Other Compiler Optimizations that Can Benefit from the Identification of Input-Dependent Branches Aside from

predicated execution, identifying input-dependent branches can be useful for other branch-based compiler optimizations. For

2Previous work [12] showed that the same predicated code binary, when executed on an Itanium-II processor, can lead to performance improvement or
performance loss depending on the input set.
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example trace/superblock identification/scheduling and code-reordering based optimizations rely on the same program path to

be frequently executed (i.e., hot) across different input sets [6, 23, 10, 2, 19]. If a branch on a hot path identified with the

profiling input set(s) is input-dependent, that path may not be a hot path with another input set. Hence, aggressive optimizations

performed on that path may hurt performance with a different input set. Identifying the input-dependent branches can aid a

compiler in deciding whether or not to perform aggressive code optimizations on a given hot path.

2.2. Frequency and Characteristics of Input-Dependent Branches

Figure 3 shows the dynamic and static fraction of conditional branches that show input-dependent behavior. Train and

reference input sets for the SPEC INT 2000 benchmarks were used to identify the input-dependent branches. Our baseline

branch predictor is a 4KB gshare branch predictor. The dynamic fraction is obtained by dividing the number of dynamic

instances of all input-dependent branches by the number of dynamic instances of all branch instructions, using the reference

input set. The benchmarks are sorted by the dynamic fraction of input-dependent branches, in descending order from left to

right.3 The data shows that there are many branches that show more than 5% absolute change in prediction accuracy between

the train and reference input sets. More than 10% of the static branches in bzip2, gzip, twolf, gap, crafty, and gcc are input-

dependent branches. Note that this data is obtained using only two input sets to define the set of input-dependent branches. In

Section 5.3, we will discuss how increasing the number of input sets affects the set of input-dependent branches.
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Figure 3. The fraction of input-dependent branches (using train and ref input sets)

One might think that (1) all input-dependent branches are hard-to-predict, (2) all hard-to-predict branches are input-

dependent, or (3) a benchmark has input-dependent branches only if the overall program branch prediction accuracy changes

across input sets. The following results show that these conjectures are not true. Therefore, we cannot identify input-dependent

branches by only identifying hard-to-predict branches or observing the change in the overall branch prediction accuracy across

input sets.

Figure 4 shows whether or not all input-dependent branches are hard-to-predict. This figure displays the distribution of all

input-dependent branches based on their prediction accuracy. Input-dependent branches are classified into six categories based

3Note that input-dependence is a property of a static branch. Input-dependence cannot be defined for a dynamic instance of a branch, since the dynamic
instance of a branch is executed only once. We show the dynamic fraction of input-dependent branches in Figure 3 to provide insight into the execution
frequency of input-dependent branches. All other results in this paper are based on static branches.
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on their prediction accuracy using the reference input set. The data shows that a sizeable fraction of input-dependent branches

are actually relatively easy-to-predict (i.e., have a prediction accuracy of greater than 95%) in many of the benchmarks. Even

the fraction of input-dependent branches with a prediction accuracy greater than 99% -which is a very strict accuracy threshold-

is significant for gap (19%), vortex (8%), gcc (7%), crafty (6%), twolf (4%), and parser (4%). Hence, not all input-dependent

branches are hard-to-predict. There are many input-dependent branches that are relatively easy-to-predict.
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Figure 4. The distribution of input-dependent branches based on their branch prediction accuracy

Figure 5 shows whether or not all hard-to-predict branches are input-dependent. We classify all branches into six categories

based on their prediction accuracy. The figure presents the fraction of input-dependent branches in each category. For example,

in bzip2, 75% of branches with a prediction accuracy lower than 70% are input-dependent and only 10% of branches with a

prediction accuracy between 95-99% are input-dependent. In general, the fraction of input-dependent branches increases as the

prediction accuracy decreases. Thus, branches with a low prediction accuracy are more likely to be input-dependent. However,

many branches with a low prediction accuracy are actually not input-dependent. For example, in gzip only half of the branches

with a prediction accuracy lower than 70% are input-dependent. Therefore, we cannot identify input-dependent branches by

only identifying hard-to-predict branches.
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Figure 5. The fraction of input-dependent branches in different prediction accuracy categories

We also measure the overall branch misprediction rate to examine the correlation between the overall branch misprediction

rate difference across input sets and the fraction of input-dependent branches. Table 1 shows the average branch misprediction

rate for each input set. Some benchmarks that have a small difference in the overall branch misprediction rate between the two

input sets, such as eon and perlbmk, also have a small fraction of input-dependent branches (as can be seen in Figure 3). For
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these benchmarks, profiling with multiple input sets and computing the average branch prediction accuracy would correctly

indicate that there are not many input-dependent branches. In contrast, even though twolf and crafty have a small difference

in overall branch prediction accuracy across the two input sets, they have a high number of input-dependent branches. So, just

comparing the overall branch misprediction rate across input sets does not provide enough information to judge whether or not a

benchmark has many input-dependent branches. Only comparing the prediction accuracy of each individual branch across input

sets would identify input-dependent branches. However, comparing the branch prediction accuracies for each individual branch

for multiple input sets would significantly increase the profiling overhead. To reduce the profiling overhead of identifying

input-dependent branches, we propose 2D-profiling to discover input-dependent branches without requiring multiple input sets

for profiling.

Table 1. Average branch misprediction rates of the evaluated programs (%)
Input Data Set bzip2 gzip twolf gap crafty parser mcf gcc vpr vortex perlbmk eon

train 1.9 7.5 16.4 5.7 12.4 9.1 7.8 7.3 11.2 0.8 5.1 12.2
reference 8.3 6.5 15.7 3.9 11.8 8.9 6.6 2.4 11.1 0.4 5.1 12.1

2.3. Examples of Input-Dependent Branches

What kind of branches are sometimes easy to predict and sometimes hard to predict? We provide two examples to show the

code structures causing input-dependent branch behavior.

One example of an input-dependent branch is a branch that checks data types. A branch in the gap benchmark, which is

shown on line 4 in Figure 6, checks whether or not the data type of a variable (hd) is an integer. The program executes different

functions depending on the data type of the variable. The misprediction rate of this branch is 10% with the train input set, but

it is 42% with the reference input set. With the train input set, the variable is an integer for 90% of the time, so the taken rate

of the branch is 90%. Hence, even a simple predictor achieves 90% accuracy for that branch. In contrast, with the reference

input set, about half of the time the variable is of non-integer type and therefore the branch misprediction rate increases to 42%.

Gap is a math program that can compute using different types of data. It uses a non-integer data type to store values greater

than 2
30. The reference input set contains a large fraction of values that are greater than 2

30, which are stored in variables of

a non-integer data type. In contrast, most input data values in the train input set are smaller than 2
30 and they are stored as

integers. This results in very different behavior across input sets for the branch that checks the type of the input data.

1:TypHandle Sum ( TypHandle hd )
2:{
3: // ... // initialize hdL and hdR using hd
4: if ( (long)hdL & (long)hdR & T_INT ) { // input-dependent branch checking the type of hd
5: result = (long)hdL + (long)hdR - T_INT; // integer sum function for integer type
6: ov = (int)result;
7: if ( ((ov << 1) >> 1) == ov )
8: return (TypHandle) ov; // return the integer sum
9: }
10:
11: return SUM( hdL, hdR ); // call a special SUM function for non-integer type
12:
13:}

Figure 6. An example from gap showing an input-dependent branch
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The prediction behavior of a loop branch is strongly dependent on what determines the number of loop iterations. If the

loop iteration count is determined by input data, the branch prediction behavior of the loop branch is dependent on the input

set. If the iteration count is a large number, then the branch is easy to predict whereas if the iteration count is small, the branch

can be hard to predict. For example, some loops in the gzip benchmark execute for different number of iterations depending

on the compression level, which is specified as a parameter to the program. Figure 7 shows one example. The branch on

line 24 is a loop exit branch. The exit condition is defined on lines 17-18 using pack level and max chain. pack level is the

compression level and max chain is the value that determines the number of loop iterations. max chain has a higher value at

higher compression levels, as shown on lines 9-13. At compression level 1, the loop iterates 4 times and therefore the prediction

accuracy of the branch is 75% (3/4) without a specialized loop predictor. But, at compression level 9, the loop iterates 4096

times, so the prediction accuracy of the branch is very close to 100% (4095/4096). Therefore, the branch is input-dependent on

the input parameter that specifies the compression level.

1: typedef struct config {
2: int good_length;
3: int max_lazy;
4: int nice_length;
5: int max_chain;
6: } config;
7:
8: local config configuration_table[10] = {
9: /* 1 */ {4, 4, 8, 4}, // minimum compression level
10: // ...
11: /* 4 */ {4, 4, 16, 16},
12: // ...
13: /* 9 */ {32, 258, 258, 4096} // maximum compression level
14: };
15:
16: /*** Initialization code begin ***/
17: max_chain_length = configuration_table[pack_level].max_chain; // max chain length is read from the config table
18: unsigned chain_length = max_chain_length; // max chain length is propagated
19: /*** Initialization code end ***/
20:
21: do {
22: // ...
23: } while ((cur_match = prev[cur_match & WMASK]) > limit
24: && --chain_length != 0); // input-dependent loop exit branch

Figure 7. An example from gzip showing an input-dependent loop exit branch

3.. 2D-Profiling
3.1. The Basic Idea

The basic idea behind 2D-profiling is to identify the input-dependence behavior of a program by profiling only one input set.

Most current profiling compilers collect only average data, such as the average bias (taken rate) of a branch, for the complete

profiling run of a program and use it for optimization. We propose the use of information about the time-varying phase behavior

of the program during the profiling run to predict the input-dependence behavior of the program.

In this paper, we demonstrate the use of 2D-profiling to identify input-dependent branches. The same concept can also be

applied to other profiling mechanisms such as edge profiling. The insight behind our idea is that if the prediction accuracy of a

branch changes significantly during an execution of the profiling run, then its prediction accuracy will also change across input

sets. We call our mechanism 2D-profiling because it collects profile information in two dimensions: prediction accuracy for
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every branch over time.

Figure 8 shows the prediction accuracy of two branches over the execution time of the gap benchmark. The prediction

accuracy for the input-independent branch on the right is stable throughout the execution of the program, whereas the prediction

accuracy for the input-dependent branch on the left varies significantly over time. 2D-profiling will detect this variation and

classify the branch on the left as an input-dependent branch. The branch on the right will be classified as an input-independent

branch even though its prediction accuracy is very low (around 58%).
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Figure 8. The time-varying phase behavior of the prediction accuracy of an input-dependent branch (left) vs. an input-independent
branch (right) from the gap benchmark.

3.2. Implementation

We describe a simple and efficient implementation of the 2D-profiling mechanism. Figure 9 shows the pseudo-code of the

implementation.

3.2.1. Overview In order to detect the time-varying phase behavior of a branch, the profiler needs to record the prediction

accuracy for all static branches at fixed intervals during a profiling run. We refer to each interval as a slice. A function executed

at the end of each slice (Figure 9b) collects data needed for input-dependence tests that are performed at the end of the profiling

run. The data that is needed for each branch is shown in Figure 9a and described in Section 3.2.3.

Three input-dependence tests are performed for each branch at the end of the profiling run (Figure 9c). The purpose of these

tests is to determine whether the branch has shown phase behavior during the profiling run. If the branch passes the tests, it is

identified as input-dependent.

3.2.2. Input-dependence Tests Three tests are used to decide input-dependence: MEAN-test, STD-test, and PAM-test. The

MEAN-test and the STD-test are used to identify branches that are good candidates for input-dependent branches. The PAM-

test is then applied on these candidate branches as a filter. A branch is identified as input-dependent if it passes either the

MEAN-test or the STD-test, along with the PAM-test (lines 32-34 in Figure 9c).

MEAN signifies the arithmetic mean of the branch prediction accuracies of a branch over all slices. The purpose of the

MEAN-test is to find branches with a low average prediction accuracy because highly-mispredicted branches are more likely

to be input-dependent, as shown in Figure 5. This test computes the mean of the prediction accuracy data collected for all the
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slices for a branch. If the mean prediction accuracy of the branch is less than a threshold (MEAN th), the branch passes the

MEAN-test.

STD stands for standard deviation. The motivation for the STD-test is to find branches that show a significant variation

in prediction accuracy over time. This test helps especially to identify branches that have a high average prediction accuracy

but show large variations in the prediction accuracy. STD-test computes the standard deviation of the prediction accuracy data

collected for all the slices. If the standard deviation is greater than a threshold (STD th), the branch passes the STD-test.

PAM stands for Points Above Mean. The purpose of the PAM-test is to filter out the branches that do not show a stable

phase behavior or that show phase-like behavior due to outlier slices. The test is most useful when applied in combination

with the MEAN-test or STD-test or both. When used with the MEAN-test, the PAM-test can filter out those branches that pass

the MEAN-test by only showing a low mean prediction accuracy but no significant variation in prediction accuracy (e.g., the

branch shown in the right graph of Figure 8). When applied with the STD-test, the PAM-test filters out those branches that pass

the STD-test only due to contributions from outlier points. The test computes the fraction of slices for which the prediction

accuracy of the branch is greater than the mean prediction accuracy of the branch. If this fraction is between PAM th and (1 -

PAM th) thresholds, indicating that there is enough variation in prediction accuracy, then the branch passes the PAM-test.4

3.2.3. Implementation Details and Storage Overhead Each of the three tests, when performed on a branch, need to compute

a statistic of the data for all slices. The overhead of 2D-profiling would be very high in terms of the memory requirements, if

the profiler stored the prediction accuracy for each branch for all slices. Therefore, we maintain just enough information that

the three tests can use to compute their respective statistics. In our implementation, only seven variables need to be stored for

each branch. The list of the variables and their descriptions are provided in Figure 9a.

For the MEAN-test, the profiler needs to maintain only the Sum of Prediction Accuracies over all slices (SPA) and the total

Number of slices (N). The number of slices needs to be stored separately for each branch (instead of using just one global count

for all branches) because the profiler disregards the slice data for a branch if the number of times the branch was executed in the

slice is less than a threshold value (exec threshold). This check is performed to avoid noise in the branch prediction accuracy

data due to infrequent occurrences and to reduce the effects of predictor warm-up.

For the STD-test, to compute the standard deviation of all prediction accuracies of the branch over all slices, the profiler

maintains the Sum of Squares of Prediction Accuracies over all slices (SSPA), in addition to SPA and N.

For the PAM-test, the profiler maintains the Number of slices for which the Prediction Accuracy is above the Mean accuracy

(NPAM), in addition to N, to compute the fraction of points above mean.5

The profiler also needs two variables to calculate the prediction accuracy of the branch in a slice: the number of times

the branch is executed in the slice (exec counter) and the number of times the branch is predicted correctly in the slice

4In statistical terminology, the PAM-test is a two tailed test [20], which eliminates the influence of outliers in the prediction accuracy distribution; outliers
that are both above the mean and below the mean. It is described in lines 25-31 in Figure 9c.

5In order for the profiler to compute the exact number of points above mean, it needs to know the mean prediction accuracy for a branch. Since the mean
accuracy can only be computed at the end of the program, the profiler needs to store the prediction accuracy for all slices for the branch and compute NPAM
at the end of the profiling run by comparing each slice’s prediction accuracy to the mean accuracy, which is an expensive solution. A cheaper approximate
solution is to utilize a running mean accuracy value for each branch, which can be computed at the end of every slice (See Figure 9b, lines 7-9).
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Name Description Purpose Update frequency
N Number of slices All tests At the end of every slice

SPA Sum of Prediction Accuracies across all slices MEAN- and STD-test At the end of every slice
SSPA Sum of Squares of Prediction Accuracies across all slices STD-test At the end of every slice

NPAM Number of Prediction accuracies Above the running Mean PAM-test At the end of every slice
exec counter Number of times the branch was executed in a slice Prediction Accuracy in Slice Every time the branch is executed

predict counter Number of times the branch was predicted correctly in a slice Prediction Accuracy in Slice Every time the branch is predicted correctly
LPA Last Prediction Accuracy for the branch (from previous slice) FIR filter to remove noise At the end of every slice

(a) Variables stored for each branch instruction

At the end of every slice, for each branch:

1: if ( exec_counter > exec_threshold ) { // Collect data if the branch was executed enough times in the slice
2: N++; // Increment slice count by one
3: pred_acc = predict_counter / exec_counter; // Compute prediction accuracy in this slice
4: filtered_pred_acc = (pred_acc + LPA) / 2; // FIR filter averages current accuracy with last accuracy
5: SPA += filtered_pred_acc; // Update SPA (Sum of Prediction Accuracies)
6: SSPA += (filtered_pred_acc * filtered_pred_acc); // Update SSPA (Sum of Squares of Prediction Accuracies)
7: running_avg_pred_acc = SPA / N; // Compute a running average of prediction accuracy (for NPAM)
8: if (filtered_pred_acc > running_avg_pred_acc)
9: NPAM++; // Update NPAM (Number of Points Above Mean)
10: LPA = filtered_pred_acc; // Update LPA (Last Prediction Accuracy)
11: }
12: exec_counter = predict_counter = 0; // Reset temporary counters used during each slice

(b) Method executed for each branch at the end of every slice

13: MEAN-test(SPA, N)
14: Compute mean (i.e., the average prediction accuracy for the branch)
15: if mean is less than MEAN_th then
16: return Pass
17: else
18: return Fail

19: STD-test(SPA, SSPA, N)
20: Compute standard deviation (of the prediction accuracies for all slices)
21: if standard deviation is greater than STD_th then
22: return Pass
23: else
24: return Fail

25: PAM-test(NPAM, N)
26: Compute the fraction of points above mean
27: if the fraction of points above mean is less than PAM_th
28: return Fail
29: else if the fraction of points above mean is greater than (1 - PAM_th)
30: return Fail
31: return Pass

At the end of the profiling run, for each branch:

32: if ( MEAN-test Passed OR STD-test Passed )
33: if ( PAM-test Passed )
34: Add branch to the set of input-dependent branches

(c) Methods executed for each branch at the end of the profiling run

Figure 9. Pseudo-code for the 2D-profiling algorithm to detect input-dependent branches

(predict counter). These variables are updated every time the branch is executed. At the end of each slice, they are first used

to update N, SPA, SSPA, and NPAM and then reset.

Another variable is needed to implement a simple 2-TAP FIR filter [21]. We added this filter to reduce the high-frequency

sampling noise in the data sampled during execution. The filter is a simple averaging low-pass filter, which replaces the

prediction accuracy of the branch in the current slice with the average of the prediction accuracies of the branch in the current

slice and in the previous slice. To implement the filter, the prediction accuracy of the branch in the previous slice is stored

separately in a variable called LPA (Last Prediction Accuracy).
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3.2.4. Computation Overhead When a branch is executed, the profiler needs to increment the execution count and update the

correct prediction count for that branch. The branch predictor outcome for the branch can be obtained with hardware support [5]

or by implementing the branch predictor in software in the profiler. In addition, a simple method is executed for every branch at

the end of every slice (Figure 9b, lines 1-12). Last, the pseudo-code shown in lines 13-34 of Figure 9c is executed only once for

each branch, at the end of the profiling run, to compute the outcome of the input-dependence tests. We quantify the execution

time overhead of 2D-profiling in Section 5.6.

4. Experimental Methodology

We used the SPEC CPU 2000 integer benchmarks to evaluate 2D-profiling. The programs were compiled for the x86 ISA

using the gcc-3.3.3 compiler with the -O3 optimization flag. Table 2 shows the baseline input sets and relevant information for

each benchmark. In our baseline experiments, we define input-dependent branches using the train and reference input sets. We

use only the train input set in the profiling runs of the 2D-profiling mechanism.

Table 2. Evaluated benchmarks and input sets and their characteristics (dynamic instruction and branch counts)
Reference input set Train input set Static cond. branch countsBenchmark

input inst.count cond. br. count input inst.count cond br. count input-dependent total branches
bzip2 input.source 317B 43B input.compressed 170B 28B 72 230
gzip input.source 54B 10B input.combined 38B 6.5B 37 176
twolf ref 287B 40B train 10B 1.5B 75 468
gap ref.in 226B 21B train.in 6.9B 1B 106 907

crafty ref/crafty.in 215B 21B train/crafty.in 32B 3B 248 1050
parser ref/ref.in 330B 44B train/train.in 8.2B 1.1B 50 1420
mcf ref/inp.in 49B 11B train/inp.in 7.1B 1.5B 4 273
gcc 166.i 19B 4B cp-decl.i 3.1B 550M 678 4964
vpr ref/net.in 110B 14B train/net.in 14B 1.8B 5 130

vortex ref/lendian1.raw 99B 15B train/lendian.raw 14B 1.7B 62 1421
perlbmk diffmail.pl param1 33B 4B diffmail.pl param2 29B 4B 2 1260

eon ref/chair.control.cook 110B 8B train/chair.control.cook 2.4B 164M 2 181

We used Pin [14], a binary instrumentation tool for x86 binaries, to instrument the programs and implement the 2D-profiling

algorithm. All programs with different input sets were run until the end using Pin. Our baseline branch predictor is a 4KB (14-

bit history) gshare branch predictor [18]. We also show results with a 16KB (457-entry, 36-bit history) perceptron predictor [11]

in Section 5.4.

4.1. 2D-Profiling Setup

In our experiments, the slice size was fixed at 100 million instructions. exec threshold was set to 1000 to avoid extraneous

data points. We experimented with different threshold values for MEAN th, STD th, and PAM th. Unless specified

otherwise, MEAN th is set to the average overall branch prediction accuracy of the benchmark, which is determined at the

end of the profiling run for each benchmark. STD th is set to 0.04 and PAM th is set to 0.1.

We evaluated different combinations of the input-dependence tests used in the profiling algorithm to determine the effective-

ness of each test. The different profiling runs based on these combinations are shown in Table 3. For example, the MEAN-PAM

profiling run uses the MEAN-test and the PAM-test together to decide whether or not a branch is input-dependent, but not

the STD-test. Unless specified otherwise, the 2D-profiling results presented in the rest of the paper are obtained using the

MEAN-STD-PAM profiling runs.
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Table 3. Description of the profiling runs combining different input-dependence tests

Name of the Profiling Run MEAN-test STD-test PAM-test
MEAN-PAM enabled disabled enabled

STD-PAM disabled enabled enabled
MEAN-STD-PAM enabled enabled enabled

4.2. Evaluation Metrics

We use four different metrics to evaluate the effectiveness of 2D-profiling: coverage of input-dependent branches (COV-

dep), accuracy for input-dependent branches (ACC-dep), coverage of input-independent branches (COV-indep), accuracy for

input-independent branches (ACC-indep). We define the coverage and accuracy metrics in Table 4.

Table 4. Metrics used to evaluate 2D-profiling
Metric Definition
COV-dep (the number of branches correctly identified to be input-dependent) / (the number of input-dependent branches)
ACC-dep (the number of branches correctly identified to be input-dependent) / (the number of branches identified to be input-dependent)
COV-indep (the number of branches correctly identified to be input-independent) / (the number of input-independent branches)
ACC-indep (the number of branches correctly identified to be input-independent) / (the number of branches identified to be input-independent)

Input-independent branches are those branches that are not input-dependent (i.e., input-independent branches have less than

5% absolute difference in branch prediction accuracy between the train and reference input sets). Table 2 shows the number of

input-dependent branches and the total number of branches for each benchmark. The number of input-independent branches is

obtained simply by subtracting the number of input-dependent branches from the total number of branches. We use coverage

and accuracy metrics for input-independent branches in addition to metrics for input-dependent branches because identifying

input-independent branches could also be important, depending on the optimization performed by the compiler. For example, if

the compiler accurately predicts that a branch is input-independent, then it can safely decide to predicate it if other constraints

for predicating the branch are satisfied.

4.3. Evaluations with More Than Two Input Sets

We also evaluated our mechanism using more than two input sets in Section 5.3. The extra input sets used in these ex-

periments are described in Table 5. The reduced input sets were obtained from the MinneSPEC suite [13]. The additional

inputs for the crafty benchmark, a chess program that computes the set of possible moves given an initial chess board layout,

were constructed by modifying the initial layout of the chess board. Two inputs for the gap benchmark were provided by the

programmers of gap.

Table 5 also shows the number of branches that are identified as input-dependent when each input set is considered together

with the train input set. Note the difference in input-dependent branches when different input sets are considered. For example,

for gcc only 9 branches are classified as input-dependent when we consider input sets train and ext-6. In contrast, 917 branches

are classified as input-dependent when we consider input sets train and ext-7. Some pairs of input sets are similar to each other,

so a branch may not show a significant difference between its prediction accuracies for those two similar input sets. Considering
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multiple different input sets would therefore increase the likelihood of exercising the input-dependent behavior of branches and

accurately defining the target set of input-dependent branches for the 2D-profiling algorithm.

Table 5. Extra input sets for experiments with more than two input sets and their characteristics
branch mispred rate (%) input-dep. branches (w.r.t. train)benchmark input name input description inst. count branch count

4KB-gshare 16KB-percep. 4KB-gshare 16KB-percep.
bzip2 ext-1 input.graphic (spec) 431B 62B 4.7 4.5 47 47
bzip2 ext-2 166.s out (spec gcc) 380B 50B 6.0 5.0 54 55
bzip2 ext-3 an 11MB text file 405B 45B 6.2 5.2 40 34
bzip2 ext-4 a 3.8MB video file 679B 47B 7.8 6.6 42 30
gzip ext-1 input.log (spec) 28B 4.9B 4.9 3.9 63 51
gzip ext-2 input.graphic (spec) 72B 10.5B 10.0 7.5 38 28
gzip ext-3 input.random (spec) 58B 9.6B 6.7 6.1 22 18
gzip ext-4 input.program (spec) 104B 9.5B 13.4 11.3 43 38
gzip ext-5 166.i (spec gcc) 35B 6.7B 4.9 4.1 53 43
gzip ext-6 an 11MB text file 69B 15B 3.8 2.9 62 42
gzip ext-7 a 3.MB avi video file 70B 10B 9.1 6.2 34 29
gzip ext-8 a 5.1MB binary file 69B 10B 8.5 5.7 30 29
twolf ext-1 large reduced input 755M 97M 21.2 16.0 53 53
twolf ext-2 medium reduced input 217M 27M 21.4 14.4 100 78
twolf ext-3 modified ref input 361M 44M 20.9 14.1 64 38
twolf ext-4 small reduced input 77M 10M 20.3 11.5 128 82
gap ext-1 Smith Normal Form 977M 137M 4.2 0.8 106 50
gap ext-2 groups 173M 23M 5.8 4.1 81 51
gap ext-3 medium reduced input 303M 37M 6.8 1.1 112 48
gap ext-4 modified ref input 532M 82M 6.9 4.5 117 155

crafty ext-1 modified ref input 628M 57M 10.7 6.3 240 261
crafty ext-2 modified ref input 932M 86M 12.6 6.1 294 270
crafty ext-3 modified ref input 1.1B 99M 11.8 6.3 235 261
crafty ext-4 modified ref input 2.5B 237M 14.8 7.8 325 250
crafty ext-5 modified ref input 148M 13M 11.9 7.0 245 233
crafty ext-6 modified ref input 594M 46M 13.3 6.6 291 282
crafty ext-7 modified ref input 734M 70M 14.5 7.7 321 252
gcc ext-1 small reduced input 70M 10M 9.3 7.7 727 304
gcc ext-2 jump.i 180M 27M 9.8 9.2 804 402
gcc ext-3 emit-rtl.i 309M 53M 10.1 8.8 747 370
gcc ext-4 dbxout.i 361M 61M 8.6 5.5 484 43
gcc ext-5 medium reduced input 382M 64M 9.4 8.3 821 288
gcc ext-6 large reduced input 31B 585M 7.4 4.6 9 1
gcc ext-7 200.i (spec) 66B 13.2B 5.4 2.9 917 138
gcc ext-8 integrate.i (spec) 6.6B 1.3B 3.5 1.9 531 28

5. Results
5.1. Coverage and Accuracy

Figure 10 shows the coverage (COV-dep) and accuracy (ACC-dep) for input-dependent branches and Figure 11 shows the

coverage (COV-indep) and accuracy (ACC-indep) for input-independent branches with different 2D-profiling runs. MEAN-

PAM profiling (leftmost bars) can identify more than 50% of the input-dependent branches, in all benchmarks except eon.

However, MEAN-PAM profiling cannot identify input-dependent branches whose prediction accuracies are high, such as those

in gap and crafty. STD-PAM profiling (middle bars) works well for these two benchmarks, providing a higher COV-dep than

MEAN-PAM profiling. The rightmost bars show the results of the MEAN-STD-PAM profiling run. For most benchmarks,

MEAN-STD-PAM provides higher COV-dep than either MEAN-PAM or STD-PAM, showing that both MEAN and STD are

useful metrics in identifying input-dependent branches.

2D-profiling has low accuracy for input-dependent branches in benchmarks where the number of input-dependent branches

is very small, such as mcf, vpr, perlbmk and eon.6 However, as shown in Figure 11, 2D-profiling accurately identifies input-

6Note that, if the number of input-dependent branches is very small, ACC-dep and COV-dep are not reliable metrics since they can be inflated or deflated.
For example, if there is only one input-dependent branch and 2D-profiling identifies 4 (including that one), ACC-dep is only 25% and COV-dep is 100%.
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Figure 10. Coverage (left) and accuracy (right) for input-dependent branches with different 2D-profiling runs
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Figure 11. Coverage (left) and accuracy (right) for input-independent branches with different 2D-profiling runs

independent branches for these benchmarks. This result shows that 2D-profiling can distinguish between input-dependent

branches and input-independent branches. In general, 2D-profiling has high (more than 65%) accuracy and coverage in identi-

fying input-independent branches.

We note that, in general, the accuracy of MEAN-STD-PAM for input-dependent branches (ACC-dep) is between 28%-54%

for the five benchmarks (bzip2, gzip, twolf, gap, crafty) that have the highest fraction of input-dependent branches. While these

numbers may seem low, they are actually an artifact of using only two input sets to define the set of input-dependent branches.

We show, in Section 5.3, that ACC-dep significantly increases (beyond 70%) as we consider more and more input sets.

One of the goals of the 2D-profiling mechanism is to identify input-dependent branches regardless of their prediction accu-

racy. We would like to identify an input-dependent branch even if it has a high prediction accuracy. This can be very important

in predicated code generation algorithms and hot-path based compiler optimizations as discussed in Section 2.1. We classify

branches into six categories based on their prediction accuracy with the reference input set and calculate COV-dep for each cat-

egory. Table 6 shows the number of input-dependent branches (left column for each benchmark) and COV-dep (right column)

for each category. The data shows that 2D-profiling is able to identify input-dependent branches regardless of whether or not

they are easy-to-predict. Even for those input-dependent branches with prediction accuracy greater than 99%, 2D-profiling has

a high coverage of 95% in gap and 71% in crafty.

5.2. Sensitivity of Coverage and Accuracy to the Thresholds Used in 2D-Profiling

Figure 12 shows the sensitivity of the coverage and accuracy of 2D-profiling to the thresholds used in the MEAN-PAM

and the STD-PAM profiling runs. The left graph in Figure 12 shows the effect of varying MEAN th and the right graph

shows the effect of varying STD th. The data is averaged over all SPEC INT 2000 benchmarks for each of the four metrics.
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Table 6. The number of input-dependent branches (#) and COV-dep (cov) percentage for each accuracy category
Bpred bzip2 gzip twolf gap crafty parser mcf gcc vpr vortex perlbmk eon

acc (%) # cov # cov # cov # cov # cov # cov # cov # cov # cov # cov # cov # cov
99-100 0 0 0 0 3 0 20 95 14 71 2 50 0 0 45 57 0 0 5 20 0 0 0 0
95-99 2 100 4 100 2 50 20 95 27 74 1 0 0 0 77 57 0 0 10 50 0 0 0 0
90-95 16 31 5 40 3 33 18 88 50 38 10 80 1 100 125 68 0 0 1 0 0 0 1 0
80-90 13 53 10 50 20 85 18 61 82 43 23 65 0 0 163 65 0 0 15 40 1 100 1 0
70-80 14 78 11 90 20 85 13 92 44 84 10 100 1 100 112 89 0 0 12 58 0 0 0 0
0-70 27 70 7 100 27 74 17 94 31 83 4 100 2 100 156 90 5 100 19 84 1 100 0 0

As we increase MEAN th from 80% to 95%, COV-dep increases but ACC-dep drops significantly because more and more

easier-to-predict branches start passing the MEAN-test (and are identified as input-dependent). As STD th is increased from

0.03 to 0.05, it takes a larger variation in prediction accuracy to identify a branch as input-dependent. This reduces the number

of branches identified as input-dependent, which results in a decrease in COV-dep and an increase in ACC-dep. Hence, the

thresholds used in 2D-profiling are levers to trade off between coverage and accuracy.
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Figure 12. Threshold sensitivity of coverage and accuracy

5.3. The Effect of Considering More Than Two Input Sets

So far, we have defined input-dependent branches using only the train and reference input sets. However, using two input

sets is not enough to pinpoint all input-dependent branches. An actually input-dependent branch may not show a more than

5% absolute change in overall prediction accuracy between the two input sets because the condition the branch is dependent

on may be similar in both input sets. Such a branch may start showing significant changes in prediction accuracy if more (and

different) input sets are considered.

We study how the set of input-dependent branches changes when more than two input sets are considered. Table 5 shows the

input sets used in this section. We tested six benchmarks, bzip2, gzip, twolf, gap, crafty, and gcc, where more than 10% of the

static branches are input-dependent (using train and ref input sets). We define a branch to be input-dependent if its prediction

accuracy changes by more than 5% with another input set when compared to its prediction accuracy with the train input set. As

we consider more and more input sets, we would expect the set of input-dependent branches to grow.

Figure 13 shows the fraction of input-dependent branches with more than two input sets. Base is the set of input-dependent

branches obtained considering only the train and reference input sets, as we have done in Section 5.1. Ext1 is the set of input-

dependent branches obtained considering the ext-1 input set and the train input set. Base-ext1 is the union of the two sets, base

and ext1. Similarly, base-ext1-3 is the union of four sets (base, ext1, ext2, ext3) of input-dependent branches. The fraction of
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input-dependent branches monotonically increases as more and more input sets are considered. For example, when we only

consider train and reference input sets (base) for gcc, only 14% of the branches are input-dependent. However, if we consider all

evaluated input sets (base-ext1-8), 36% of all branches in gcc are input-dependent. Hence, the number of input sets considered

significantly changes the set of branches that are defined to be input-dependent.
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Figure 13. Fraction of input-dependent branches when more than two input sets are considered

Considering a larger number of input sets would also change the evaluated performance of 2D-profiling because it changes

the target set of input-dependent branches that 2D-profiling aims to identify. In fact, considering a larger number of input sets

is a more fair way of evaluating 2D-profiling. For example, suppose that 2D-profiling identifies a branch as input-dependent.

That branch may not actually be defined as input-dependent when only two input sets are used to define the set of input-

dependent branches. In contrast, when more input sets are used, the branch may be classified as input-dependent. Hence, the

fact that we use only two input sets to define the target set of input-dependent branches may artificially penalize the accuracy

of 2D-profiling: even though 2D-profiling correctly predicts that a branch is input-dependent, the branch may not show input-

dependent behavior when only two input sets are used.

Figure 14 shows the coverage and accuracy of the 2D-profiling mechanism for each benchmark when multiple input sets

are considered. Figure 15 shows the coverage and accuracy averaged over the six benchmarks. As the number of input sets

considered increases, the coverage of input-dependent branches drops by a small amount, but the accuracy for input-dependent

branches increases significantly. This shows that 2D-profiling is actually accurate at identifying input-dependent branches; it

just takes many input sets to trigger the input-dependent behavior. We would expect the accuracy of 2D-profiling to increase

even more when more input sets are found and considered. However, there is no limit to the number of different input sets that

can be used for many benchmarks, which makes the exact determination of input-dependent branches, and an exact evaluation

of the accuracy of 2D-profiling, a challenging task.
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Figure 14. Per-benchmark accuracy and coverage of 2D-profiling when more than two input sets are considered
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Figure 15. Average accuracy and coverage of 2D-profiling when more than two input sets are considered
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5.4. The Effect of Using a Different Branch Predictor for Profiling

We also evaluate 2D-profiling when the profiler and the target processor use different branch predictors. The purpose of

this experiment is to demonstrate whether the 2D-profiling mechanism can identify input-dependent branches even when the

profiling mechanism uses a different branch predictor than the target machine. This is useful because (1) the 2D-profiling

mechanism might not have information about the branch predictor on which the profiled application will eventually be run and

(2) the 2D-profiling mechanism might want to use a simple, small branch predictor to reduce the overhead of simulating a large

and complicated branch predictor in software (if hardware support does not exist for the profiler).

We use a 16KB perceptron branch predictor [11] for the target machine’s branch predictor. 2D-profiling uses a 4KB gshare

predictor as in previous sections. Note that the target machine’s branch predictor defines the set of input-dependent branches.

Table 5 shows the number of input-dependent branches and the branch misprediction rate for both predictors. We evaluate the

effect of using a different branch predictor using multiple input sets to define the set of input-dependent branches, similar to

Section 5.3. Figure 16 shows the fraction of input-dependent branches with the perceptron predictor. Similar to the results for

the gshare predictor (Figure 13), as we consider more input sets, the number of input-dependent branches increases with the

perceptron predictor.
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Figure 16. Fraction of input-dependent branches with a perceptron predictor

Figures 17 and 18 show the coverage and accuracy of 2D-profiling when the 2D-profiler uses a different branch predictor

than the target machine. Remember that the 2D-profiling mechanism profiles only with the train input set to identify input-

dependent branches. Comparing Figure 17 to Figure 14, ACC-dep drops when the target machine has a different predictor than

the profiler. However, 2D-profiling still achieves relatively high coverage and accuracy for both input-dependent and input-

independent branches in most of the benchmarks except gap, even when it uses a smaller and less accurate branch predictor for

profiling than the target machine’s predictor.
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Figure 17. Per-benchmark accuracy and coverage of 2D-profiling when a perceptron predictor is used in the target machine
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Figure 18. Average accuracy and coverage of 2D-profiling when a perceptron predictor is used in the target machine
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5.5. The Effect of Using a Different Threshold to Define Input-Dependent Branches

A conditional branch is classified as input-dependent if its prediction accuracy changes by a certain threshold value across

two input sets. So far, we set this threshold to 5%. In this section, we analyze the coverage and accuracy of 2D-profiling for a

threshold value of 10%. Figure 19 shows the fraction of input-dependent branches with a 10% threshold. Similar to the results

for the 5% threshold (Figure 13), as we consider more input sets, the number of input-dependent branches increases with a

10% threshold. In general, the fraction of input-dependent branches is smaller with a 10% threshold than with a 5% threshold.
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Figure 19. Fraction of input-dependent branches when 10% threshold is used to define input-dependent branches

Figures 20 and 21 show the coverage and accuracy of 2D-profiling when we use a 10% threshold to define input-dependent

branches. Comparing these results to the results with a 5% threshold (Figures 14 and 15), we see that 2D-profiling still achieves

relatively high coverage and accuracy for both input-dependent and input-independent branches in most of the benchmarks

except gap. On average, the accuracy of 2D-profiling for input-dependent branches is lower for a 10% threshold than for a

5% threshold. Note that the results for both 10% and 5% thresholds are obtained using the same parameter values in the 2D-

profiling algorithm. We expect that using different parameter values for different thresholds would increase the accuracy for

each threshold.
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Figure 20. 2D-profiling accuracy and coverage (10% threshold to define input-dependent branches)
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Figure 21. Average of 2D-profiling results (10% threshold to define input-dependent branches)
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5.6. Overhead of 2D-Profiling

To estimate the overhead of 2D-profiling, we compared the execution times of benchmarks with instrumentation required for

2D-profiling to the execution times with instrumentation needed for edge profiling. Figure 22 shows the normalized execution

times of six branch-intensive benchmarks without any instrumentation (Binary) and with four different types of instrumentation

using the Pin tool: 7 Pin-base is the execution time of the benchmark with Pin but without any user instrumentation; Edge is the

execution time with instrumentation for edge profiling; Gshare is the execution time with instrumentation that models a gshare

branch predictor in order to compute the branch prediction outcome of each branch; 2D+Gshare is the execution time with

instrumentation needed for 2D-profiling using the software gshare branch predictor. On average, the execution time of binaries

with instrumentation modeling a gshare predictor is 54% higher than that of binaries with edge profiling. 2D-profiling adds

only 1% overhead on top of the software gshare branch predictor. Hence, if the profiler uses the outcomes a hardware branch

predictor instead of implementing the branch predictor in software [5], 2D-profiling would not add much overhead over edge

profiling.
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Figure 22. Overhead of 2D-profiling compared to edge profiling

6. Related Work

We discuss research related to 2D-profiling in the areas of profiling and predicated execution. The major contribution of our

paper to the body of research in these areas is an efficient profiling mechanism that identifies input-dependent branches in order

to aid compiler-based branch-related optimizations, such as predicated execution, without requiring multiple profiling runs. No

previous work we are aware of proposed a way of identifying input-dependent branches at compile-time using a single input

set. 2D-profiling provides a novel way of using time-varying phase information obtained via a single profiling run to detect

input-dependent branches.

6.1. Related Work in Profiling

Much research has been done on evaluating and improving the accuracy of compile-time profiles. Wall [29] defined the first

metrics to measure the representativeness of the profile data across different input sets. His work focused on identifying the

7Each experiment was run five times and the results were averaged.
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similarities and differences in basic blocks, procedure calls, and referenced global variables between different profiling runs.

Fisher and Freudenberger [7] studied branch behavior across input sets. They concluded that most C-language SPEC 89

benchmarks are dominated by biased branches whose directions usually vary little across input sets. However, they found that

the behavior of branches in two programs, spice and compress, varied significantly across input sets. Their study focused on

quantifying the occurrence of input-independent branches, not identifying them. Building on their work, we provide a way to

efficiently identify input-dependent and input-independent branches at compile-time.

Sherwood and Calder studied the time-varying phase behavior of programs [25] and proposed using this behavior to auto-

matically find representative program points for microarchitecture simulation [26]. They showed that IPC, branch/value/address

prediction accuracy, and cache miss rates have phase behavior. Smith [27] gave examples of the phase behavior of individual

branch and load instructions and discussed how dynamic optimization systems may be able to exploit such behavior. Our paper

uses the phase behavior of an individual branch instruction as a compile-time predictor for its input-dependence behavior.

Calder et al. [3] proposed value profiling to identify invariant or semi-invariant values in a program at compile-time to aid

invariant-based compiler optimizations. Value profiling measures the invariance characteristics of values produced by each

instruction (or only load instructions) throughout the execution of a profiling run and hence it is applicable to instructions that

produce values. Our goal in 2D-profiling is to identify input-dependence characteristics of conditional branches using phase

behavior information from the profiling run. 2D-profiling is orthogonal to value profiling. It is possible to combine value

profiling and 2D-profiling to identify the input-dependence of value-producing instructions, such as loads.

6.2. Related Work in Predicated Execution

Predicated execution has been studied extensively in order to reduce the branch misprediction penalty [15, 24, 28, 4] and

to increase the instruction-level parallelism [1, 9]. Our motivation for 2D-profiling is to identify input-dependent or input-

independent branches in order to aid the compiler in making predication decisions. We only discuss the relevant mechanisms

that proposed ways to find candidate branches for predication.

The IMPACT compiler [16] uses path execution frequencies to decide which blocks can be combined to generate superblocks

or hyperblocks. In the IMPACT compiler, predicated code is mainly used for increasing the basic block sizes (via hyperblocks)

to provide more optimization opportunities to the compiler and to increase the instruction-level parallelism,, as well as for

eliminating branch mispredictions.

Less aggressive predicated code generation algorithms convert only short forward branches [24, 28] or only highly mispre-

dicted branches to predicated code [4]. Chang et al. [4] showed that the set of highly mispredicted branches remains similar

across input sets. With their criteria, they were able to convert only a small subset of all static branches to predicated code. Re-

cent compilers [17, 22] use edge profile information and equation (3) to generate predicated code. However, these compilers do

not identify input-dependent branches when generating predicated code. As we have described, input-dependent branches may

significantly impact the performance of predicated code and identifying them via 2D-profiling can increase the effectiveness of

predicated execution (and other compile-time optimizations).
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Hazelwood and Conte [8] discussed the performance problems associated with predicated code when the input set of the pro-

gram changes. They used dynamic profiling to identify hard-to-predict branches at run-time to solve this problem. Their mech-

anism dynamically converted the identified hard-to-predict branches to predicated code via a dynamic optimization framework.

They sampled the individual branch misprediction rates at the beginning of the program to identify most of the hard-to-predict

branches for a given input set. In contrast to their mechanism, 2D-profiling identifies input-dependent branches at compile-time

and therefore does not require a dynamic optimization framework.

7. Conclusion and Future Work

We have described 2D-profiling, a new compile-time profiling algorithm to detect input-dependent branches without requir-

ing profiling runs with multiple input data sets. 2D-profiling tracks the time-varying prediction accuracy behavior of branch

instructions during a profiling run. If the prediction accuracy of a branch varies significantly over time during the profiling run,

that branch is identified as input-dependent. Our evaluation of 2D-profiling using the SPEC CPU 2000 integer benchmarks

shows that 2D-profiling can identify the input-dependent and input-independent branches accurately.

The use of 2D-profiling can help increase the quality of many branch-based compiler optimizations, such as predicated

execution and hot-path/trace/superblock-based optimizations. 2D-profiling can eliminate the performance loss of predicated

execution due to input-dependent behavior of branches. For example, if a 2D-profiling compiler identifies a branch is input-

independent, it can aggressively generate predicated code for it. In contrast, if a branch is input-dependent, the compiler can

convert it into a wish branch [12] instead of predicating it. In future work, we intend to develop better if-conversion heuristics

that utilize 2D-profiling. We also intend to investigate the application of 2D-profiling to the detection of other kinds of input-

dependent behavior, such as load values or branch taken rates.
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[11] D. A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In HPCA-7, 2001.

[12] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt. Wish branches: Combining conditional branching and predication for adaptive

predicated execution. In MICRO-38, 2005.

[13] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark workload for simulation-based computer archi-

tecture research. Computer Architecture Letters, 1, June 2002.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In PLDI, 2005.

[15] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and W. W. Hwu. Characterizing the

impact of predicated execution on branch prediction. In MICRO-27, 1994.

[16] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective compiler support for predicated

execution using the hyperblock. In MICRO-25, 1992.

[17] S. Mantripragada and A. Nicolau. Using profiling to reduce branch misprediction costs on a dynamically scheduled pro-

cessor. In ICS, 2000.

[18] S. McFarling. Combining branch predictors. Technical Report TN-36, Digital Western Research Laboratory, June 1993.

[19] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and W. W. Hwu. A hardware-driven profiling scheme for

identifying program hot spots to support runtime optimization. In ISCA-26, 1999.

[20] D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for Engineers. John Wiley and Sons Inc., third

edition, 2002.

[21] A. V. Oppenheim, R. Schafer, and J. R. Buck. Discrete-Time Signal Processing. Prentice-Hall, second edition, 1999.

[22] ORC. Open research compiler for Itanium processor family. http://ipf-orc.sourceforge.net/.

[23] K. Pettis and R. C. Hansen. Profile guided code positioning. In PLDI, 1990.

[24] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and dynamic branch prediction in dynamic ILP processors. In

ISCA-21, 1994.

[25] T. Sherwood and B. Calder. Time varying behavior of programs. Technical Report UCSD-CS99-630, UC San Diego,

1999.

[26] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large scale program behavior. In

ASPLOS-X, pages 45–57, 2002.

[27] M. D. Smith. Overcoming the challenges to feedback-directed optimization. In ACM SIGPLAN Workshop on Dynamic

and Adaptive Compilation and Optimization, pages 1–11, 2000.

[28] G. S. Tyson. The effects of predication on branch prediction. In MICRO-27, 1994.

[29] D. W. Wall. Predicting program behavior using real or estimated profiles. In PLDI, 1991.

28


