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Abstract

While runahead execution is effective at parallelizing independent long-latency cache misses, it is unable to parallelize

dependent long-latency cache misses. To overcome this limitation, this paper proposes a novel hardware technique, address-

value delta (AVD) prediction. An AVD predictor keeps track of the address (pointer) load instructions for which the arithmetic

difference (i.e., delta) between the effective address and the data value is stable. If such a load instruction incurs a long-latency

cache miss during runahead execution, its data value is predicted by subtracting the stable delta from its effective address. This

prediction enables the pre-execution of dependent instructions, including load instructions that incur long-latency cache misses.

We analyze why and for what kind of loads AVD prediction works and describe the design of an implementable AVD predictor.

We also describe simple hardware and software optimizations that can significantly improve the benefits of AVD prediction and

analyze the interaction of AVD prediction with runahead efficiency techniques and stream-based data prefetching. Our analysis

shows that AVD prediction is complementary to these techniques. Our results show that augmenting a runahead processor with

a simple, 16-entry AVD predictor improves the average execution time of a set of pointer-intensive applications by 14.3%.

1. Introduction

Main memory latency is a major performance limiter in current high-performance microprocessors. As the improvement in

DRAM memory speed has not kept up with the improvement in processor speed, aggressive high-performance processors are

currently facing DRAM latencies of hundreds of processor cycles [43, 39]. The gap between the processor and DRAM memory

speed and the resulting negative impact of memory latency on processor performance are expected to continue to increase [45,

43]. Therefore, innovative techniques to tolerate long-latency main memory accesses are needed to improve the performance of

memory-intensive application programs. As energy/power consumption has already become a limiting constraint in the design

of high-performance processors [16], simple power- and area-efficient memory latency tolerance techniques are especially

desirable.

Runahead execution [13, 30] is a promising technique that was recently proposed to tolerate long main memory latencies.

This technique speculatively pre-executes the application program while a long-latency data cache miss is being serviced,

instead of stalling the processor for the duration of the long-latency miss. In runahead execution [30], if a long-latency (L2

cache miss) load instruction becomes the oldest instruction in the instruction window, it triggers the processor to checkpoint its
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architectural state and switch to a purely speculative processing mode called runahead mode. The processor stays in runahead

mode until the cache miss that initiated runahead mode is serviced. During runahead mode, instructions independent of the

pending long-latency cache misses are speculatively pre-executed. Some of these pre-executed instructions cause long-latency

cache misses, which are serviced in parallel with each other and the runahead-causing cache miss. Hence, runahead execution

improves latency tolerance and performance by allowing the parallelization of independent long-latency cache misses that

would otherwise not have been generated because the processor would have stalled. The parallelization of independent long-

latency cache misses has been shown to be the major performance benefit of runahead execution [31, 8].

Unfortunately, a runahead execution processor cannot parallelize dependent long-latency cache misses. A runahead proces-

sor cannot pre-execute instructions that are dependent on the pending long-latency cache misses during runahead mode, since

the data values they are dependent on are not available. These instructions are designated as bogus (INV) and they mark their

destination registers as INV so that the registers they produce are not used by instructions dependent on them. Hence, runahead

execution is not able to parallelize two long-latency cache misses if the load instruction generating the second miss is dependent

on the load instruction that generated the first miss.1 These two misses need to be serviced serially. Therefore, the full-latency

of each miss is exposed and the latency tolerance of the processor cannot be improved by runahead execution. Applications and

program segments that heavily utilize linked data structures (where many load instructions are dependent on previous loads)

therefore cannot significantly benefit from runahead execution. In fact, for some pointer-chasing applications, runahead exe-

cution reduces performance due to its overheads and significantly increases energy consumption due to the increased activity

caused by the pre-processing of useless instructions. In a recent paper [28], we showed that the performance benefit of runahead

execution would be almost doubled if runahead execution were able to parallelize all dependent L2 cache misses.

In order to overcome the serialization of dependent long-latency cache misses, techniques to parallelize dependent load

instructions are needed. These techniques need to focus on predicting the values loaded by address (pointer) loads, i.e. load

instructions that load an address that is later dereferenced. Several microarchitectural techniques have been proposed to predict

the values of address loads [24, 36, 3, 9] or to prefetch the addresses generated by them [34, 35, 9]. Unfortunately, to be

effective, these techniques require a large amount of storage and complex hardware control. As energy/power consumption

becomes more pressing with each processor generation, simple techniques that require small storage cost become more desirable

and necessary. Our goal in this paper is to devise a technique that reduces the serialization of dependent long-latency misses

without significantly increasing the hardware cost and complexity.

We propose a simple, implementable, novel mechanism, address-value delta (AVD) prediction, that allows the parallelization

of dependent long-latency cache misses. The proposed technique learns the arithmetic difference (delta) between the effective

address and the data value of an address load instruction based on the previous executions of that load instruction. Stable

address-value deltas are stored in a prediction buffer. When a load instruction incurs a long-latency cache miss, if it has a

stable address-value delta in the prediction buffer, its data value is predicted by subtracting the stored delta from its effective

1Two dependent load misses cannot be serviced in parallel in a conventional out-of-order processor either.

2



address. This predicted value enables the pre-execution of dependent instructions, including load instructions that incur long-

latency cache misses. We provide source-code examples showing the common code structures that cause stable address-

value deltas, describe the implementation of a simple address-value delta predictor, and evaluate its performance benefits on

a runahead execution processor. We show that augmenting a runahead processor with a simple, 16-entry (102-byte) AVD

predictor improves the execution time of a set of pointer-intensive applications by 12.1%.

We also propose hardware and software optimizations that increase the benefits of AVD prediction. One hardware optimiza-

tion, called NULL-value optimization, improves the performance improvement of a 16-entry AVD predictor to 14.3%. Further-

more, we examine the interaction of AVD prediction with runahead efficiency techniques and stream-based data prefetching,

and show that AVD prediction is complementary to these previously-proposed techniques.

2. Motivation

Our goal is to increase the effectiveness of runahead execution with a simple prediction mechanism that overcomes the

inability to parallelize dependent long-latency cache misses during runahead mode. We demonstrate that focusing on this

limitation of runahead execution has potential to improve processor performance. Figure 1 shows the potential performance

improvement possible if runahead execution were able to parallelize all the dependent long-latency cache misses that can be

generated by instructions that are pre-processed during runahead mode. This graph shows the execution time for four processors

on memory- and pointer-intensive benchmarks from Olden and SPEC INT 2000 benchmark suites:2 from left to right, (1) a

processor with no runahead execution, (2) the baseline processor, which employs runahead execution, (3) an ideal runahead

processor, which can parallelize dependent L2 cache misses (This processor is simulated by obtaining the correct effective

address of all L2-miss load instructions using oracle information during runahead mode. Thus, L2 misses dependent on previous

L2 misses can be generated during runahead mode using oracle information. This processor is not implementable, but it is

intended to demonstrate the performance potential of parallelizing dependent L2 cache misses.), (4) a processor with perfect

(100% hit rate) L2 cache. Execution times are normalized to the baseline processor. The baseline runahead processor improves

the average execution time of the processor with no runahead execution by 27%. The ideal runahead processor improves the

average execution time of the baseline runahead processor by 25%, showing that significant performance potential exists for

techniques that enable the parallelization of dependent L2 misses. Table 1, which shows the average number of L2 cache misses

initiated during runahead mode, provides insight into the performance improvement possible with the ideal runahead processor.

This table shows that the ideal runahead processor significantly increases the memory-level parallelism (the number of useful

L2 cache misses parallelized3) in a runahead period.

Figure 1 also shows that for two benchmarks (health and tsp) runahead execution is ineffective. These two bench-

marks have particularly low levels of memory-level parallelism, since their core algorithms consist of traversals of linked data

2Section 6 describes the processor model and the benchmarks.
3A useful L2 cache miss is an L2 cache miss generated during runahead mode that is later needed by a correct-path instruction in normal mode. Only L2

line (block) misses that are needed by load instructions and that cannot already be generated by the processor’s fixed-size instruction window are counted.
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Figure 1. Performance potential of runahead execution.

Table 1. Average number of useful L2 cache misses generated (parallelized) during a runahead period.

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg
baseline runahead 2.01 0.03 7.93 1.45 1.02 0.19 0.81 11.51 0.12 0.84 0.94 2.44

ideal runahead 4.58 8.43 8.77 2.06 2.87 4.42 1.43 12.75 1.56 2.79 1.19 4.62

structures in which almost all load instructions are dependent on previous load instructions. Due to the scarcity of independent

long-latency cache misses (as shown in Table 1), conventional runahead execution cannot significantly improve the performance

of health and tsp. In fact, the overhead of runahead execution results in 4% performance loss on health. In contrast, the

ideal runahead processor provides significant performance improvement on these two benchmarks (88% on health and 32%

on tsp), alleviating the ineffectiveness of conventional runahead execution.

3. AVD Prediction: The Basic Idea

We have observed that some load instructions exhibit stable relationships between their effective addresses and the data

values they load. We call this stable relationship the address-value deltas (AVDs). We define the address-value delta of a

dynamic instance of a load instruction L as:

AV D(L) = Effective Address of L − Data V alue of L

Figure 2 shows an example load instruction that has a stable AVD and how we can utilize AVD prediction to predict the

value of that load in order to enable the execution of a dependent load instruction. The code example in this figure is taken

from the health benchmark. Load 1 frequently misses in the L2 cache and causes the processor to enter runahead mode.

When Load 1 initiates entry into runahead mode in a conventional runahead processor, it marks its destination register as INV

(bogus). Load 2, which is dependent on Load 1, therefore cannot be executed during runahead mode. Unfortunately, Load 2 is
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also an important load that frequently misses in the L2 cache. If it were possible to correctly predict the value of Load 1, Load

2 could be executed and the L2 miss it causes would be serviced in parallel with the L2 miss caused by Load 1, which initiated

entry into runahead mode.

while (list != NULL) {
     // ...

     // ...

     // ...

}

Iteration

Iteration 1

Iteration 3
Iteration 2

Iteration 4

L2 miss 

No
No
No

Value AVD

0x40
0x40
0x40

Predicted to be
0x40

Yes

Predicted to beCauses entry into 
runahead mode

(b) Execution history of Load 1(a) Code example

Effective Addr

0x8e2bd44 0x8e2bd04
0x8e31274 0x8e31234
0x8e18c74 0x8e18c34
0x8e1a584

0x8e1a584 − 0x40 = 0x8e1a544

     p = list−>patient; 

     t = p−>time; 

     list = list−>forward; 

// Load 1 − causes 67% of all runahead entries

// Load 3

// Load 2 − dependent on load 1, frequently causes L2 misses

Figure 2. Source code example showing a load instruction with a stable AVD (Load 1) and its execution history.

Figure 2b shows how the value of Load 1 can be accurately predicted using an AVD predictor. In the first three executions

of Load 1, the processor calculates the AVD of the instruction. The AVD of Load 1 turns out to be stable and it is recorded in

the AVD predictor. In the fourth execution, Load 1 misses in the L2 cache and causes entry into runahead mode. Instead of

marking the destination register of Load 1 as INV, the processor accesses the AVD predictor with the program counter of Load

1. The predictor returns the stable AVD corresponding to Load 1. The value of Load 1 is predicted by subtracting the AVD

returned by the predictor from the effective address of Load 1 such that:

Predicted V alue = Effective Address − Predicted AV D

The predicted value is written into the destination register of Load 1. The dependent instruction, Load 2, reads this value and is

able to calculate its address. Load 2 accesses the cache hierarchy with its calculated address and it may generate an L2 cache

miss which would be serviced in parallel with the L2 cache miss generated by Load 1.

Note that Load 1 in Figure 2 is an address (pointer) load. We distinguish between address loads and data loads. An address

load is a load instruction that loads an address into its destination register that is later used to calculate the effective address

of itself or another load instruction (Load 3 is also an address load). A data load is a load whose destination register is not

used to calculate the effective address of another load instruction (Load 2 is a data load). We are interested in predicting the

values of only address loads, not data loads, since address loads -by definition- are the only load instructions that can lead to

the generation of dependent long-latency cache misses. In order to distinguish address loads from data loads in hardware, we

bound the values AVD can take. We only consider predicting the values of load instructions that have -in the past- satisfied the

equation:

−MaxAV D ≤ AV D(L) ≤ MaxAV D
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where MaxAV D is a constant set at the design time of the AVD predictor. In other words, in order to be identified as an

address load, the data value of a load instruction needs to be close enough to its effective address. If the AVD is too large, it

is likely that the value that is being loaded by the load instruction is not an address.4 Note that this mechanism is similar to

the mechanism proposed by Cooksey et al. [12] to identify address loads in hardware. Their mechanism identifies a load as an

address load if the upper N bits of the effective address of the load match the upper N bits of the value being loaded.

4. Why Do Stable AVDs Occur?

Stable AVDs occur due to the regularity in the way data structures are allocated in memory by the program, which is

sometimes accompanied by the regularity in the input data to the program. We examine the common code constructs in

application programs that give rise to regular memory allocation patterns that result in stable AVDs for some address loads. For

our analysis, we distinguish between what we call traversal address loads and leaf address loads. A traversal address load is a

static load instruction that produces an address that is later consumed by itself or another address load, such as in a linked list

or tree traversal, p = p->next (e.g., Load 3 in Figure 2 is a traversal address load). A leaf address load produces an address

that is later consumed by a data load (e.g., Load 1 in Figure 2 is a leaf address load).

4.1. Stable AVDs in Traversal Address Loads

A traversal address load may have a stable AVD if there is a pattern to the allocation and linking of the nodes of a linked data

structure. If the allocation of the nodes is performed in a regular fashion, the nodes will have a constant distance in memory

from one another. If a traversal load instruction later traverses the linked data structure nodes that have the same distance from

one another, the traversal load can have a stable AVD.

int TreeAdd(treeNode *t) {
if (t == 0)

return 0;
else {

leftval = TreeAdd(tleft);

rightval = TreeAdd(tright);
// ...

}
}

tright = t−>right;  // Load 2

if (level == 0)
    return NULL;
else {
    new = (treeNode *) malloc (...);
    left = TreeAlloc(...);
    right = TreeAlloc(...);
    new−>left = left;
    new−>right = right;
    return new;
}

}

treeNode* TreeAlloc(level) {
// ...

(a) Source code of the recursive function
      that allocates the binary tree

(b) Layout of the binary tree in memory 
(A is the address of the root node)

(c) Source code of the recursive function (d) Execution history of
Load 1that traverses the tree 

Eff. Addr

A

Value

A+k

A+2k

AVD

−k

−k

−k

A

A+k

A+2k

k = size of each node

A+3kA+2k

A+k
...A+5k

A+8k

A+4k A+6kA+3k A+7k

NULL

tleft = t−>left;  // Load 1

Figure 3. An example from treeadd showing how stable AVDs can occur for traversal address loads.

Figure 3 shows an example from treeadd, a benchmark whose main data structure is a binary tree. In this benchmark, a

binary tree is allocated in a regular fashion using a recursive function where a node is allocated first and its left child is allocated

4An alternative mechanism is to have the compiler designate the address loads with a single bit augmented in the load instruction format of the ISA. We do
not explore this option since our goal is to design a simple purely-hardware mechanism that requires no software or ISA support.
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next (Figure 3a). Each node of the tree is of the same size. The layout of an example resulting binary tree is shown in Figure 3b.

Due to the regularity in the allocation of the nodes, the distance in memory of each node and its left child is constant. The

binary tree is later traversed using another recursive function (Figure 3c). Load 1 in the traversal function traverses the nodes

by loading the pointer to the left child of each node. This load instruction has a stable AVD as can be seen from its example

execution history (Figure 3d). Load 1 has a stable AVD because the distance in memory of a node and its left child is constant.

We found that this load causes 64% of all entries into runahead mode and predicting its value correctly enables the generation

of dependent L2 misses (generated by the same instruction) during runahead mode.

As evident from this example, the stability of AVDs in traversal address loads is also dependent on the behavior of the

memory allocator. If the memory allocator allocates memory chunks in a regular fashion (e.g., allocating fixed-size chunks

from a contiguous section of memory), the likelihood of the occurrence of stable AVDs increases. On the other hand, if the

behavior of the memory allocator is irregular, the distance in memory of a node and the node(s) it is linked to may be totally

unpredictable; hence, the resulting AVDs would not be stable.

We also note that stable AVDs occurring due to the regularity in the allocation and linking of the nodes can disappear if the

linked data structure is significantly re-organized during run-time, unless the re-organization of the data structure is performed

in a regular fashion. Therefore, AVD prediction may not work for traversal address loads in applications that require extensive

modifications to the linkages in linked data structures.

4.2. Stable AVDs in Leaf Address Loads

A leaf address load may have a stable AVD if the allocation of a data structure node and the allocation of a field that is linked

to the node via a pointer are performed in a regular fashion. We show two examples to illustrate this behavior.

Figure 4 shows an example from parser, a benchmark that parses an input file and looks up the parsed words in a

dictionary. The dictionary is constructed at the startup of the program. It is stored as a sorted binary tree. Each node of the tree

is a Dict node structure that contains a pointer to the string corresponding to it as one of its fields. Both Dict node and

string are allocated dynamically as shown in Figure 4a. First, memory space for string is allocated. Then, memory space

for Dict node is allocated and it is linked to the memory space of string via a pointer. The layout of an example dictionary

is shown in Figure 4b. In contrast to the binary tree example from treeadd, the distance between the nodes of the dictionary

in parser is not constant because the allocation of the dictionary nodes is performed in a somewhat irregular fashion (not

shown in Figure 4) and because the dictionary is kept sorted. However, the distance in memory between each node and its

associated string is constant. This is due to the behavior of the xalloc function that is used to allocate the strings in

combination with regularity in input data. We found that xalloc allocates a fixed-size block of memory for the string, if

the length of the string is within a certain range. As the length of most strings falls into that range (i.e., the input data has

regular behavior), the memory spaces allocated for them are of the same size.5

5The code shown in Figure 4a can be re-written such that memory space for a Dict node is allocated first and the memory space for its associated
string is allocated next. In this case, even though the input data may not be regular, the distance in memory of each node and its associated string would be

7



Words are later looked up in the dictionary using the rabridged lookup function (Figure 4c). This function recursively

searches the binary tree and checks whether the string of each node is the same as the input word s. The string in each

node is loaded by Load 1 (dn->string), which is a leaf address load that loads an address that is later dereferenced by data

loads in the dict match function. This load has a stable AVD, as shown in its example execution history, since the distance

between a node and its associated string is constant. The values generated by Load 1 are hard to predict using a traditional

stride- or context-based value predictor because they do not follow a pattern. In contrast, the AVDs of Load 1 are quite easy

to predict. We found that this load causes 36% of the entries into runahead mode and correctly predicting its value enables the

execution of the dependent load instructions (and the dependent conditional branch instructions) in the dict match function.
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int dict_match (char *s, char *t) {
    while((*s != ’\0’) && (*s == *t))
     {s++; t++;}
    if ((*s == ’*’) || (*t == ’*’)) return 0;
    // ...
}

    // ...
rabridged_lookup(Dict_node *dn, char *s) {

}

    if (dn == NULL) return;

    if (m<=0) rabridged_lookup(dn−>left, s);
    if (m>=0) rabridged_lookup(dn−>right, s);

Eff. Addr. Value AVD

A A−k
C−kC

F F−k

k
k
k

Dict_node *read_word_file(...) {
    // ...

    while ((s = get_a_word(...)) != NULL) {
         dn = (Dict_node *) xalloc(sizeof(Dict_node));
         dn−>string = s;
         // ...
    }
    return dn;
}

char *get_a_word(...) {
    // read a word from file
    s = (char *) xalloc(strlen(word) + 1);
    strcpy(s, word);

}
    return s;

(a) Source code that allocates the nodes of the
      dictionary (binary tree) and the strings

struct Dict_node {
    char *string;
    Dict_node *left, *right;
    // ...
}

A

B C

B−k
D E F G

G−kE−k

A−k

C−k

D−k F−k

(c) Source code of the recursive function
      that performs the dictionary lookup and

denotes the memory address of the structure that is pointed to)
(b) Layout of the dictionary in memory (the value on an arc

      the execution history of Load 1

    char *s; Dict_node *dn;

    t = dn−>string; // Load 1

    m = dict_match(s, t); 

Figure 4. An example from parser showing how stable AVDs can occur for leaf address loads.

Note that stable AVDs occurring in leaf address loads continue to be stable even if the linked data structure is significantly

re-organized at run-time. This is because such AVDs are caused by the regularity in the links between nodes and their fields

rather than the regularity in the links between nodes and other nodes. The re-organization of the linked data structure changes

the links between nodes and other nodes, but leaves intact the links between nodes and their fields.

5. Design and Operation of a Recovery-Free AVD Predictor

An AVD predictor records the AVDs and information about the stability of the AVDs for address load instructions. The

predictor is updated when an address load is retired. The predictor is accessed when a load misses in the L2 cache during

runahead mode. If a stable AVD associated with the load is found in the predictor, the predicted value for the load is calculated

using its effective address and the stable AVD. The predicted value is then returned to the processor to be written into the

constant. We did not perform this optimization in our baseline evaluations. However, the effect of this optimization is evaluated separately in Section 8.2.
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register file. The high-level organization of a processor employing an AVD predictor is shown in Figure 5.

FETCH
DECODE

RENAME
SCHEDULE

REGISTER

FILE
EXECUTE

DATA

CACHE
RETIRE

CACHE

L2

predictor update

on L2 miss
access

predictor
outcome

AVD

PREDICTOR

Figure 5. Organization of a processor employing an AVD predictor.

Figure 6 shows the organization of the AVD predictor along with the hardware support needed to update/train it (Figure 6a)

and the hardware support needed to make a prediction (Figure 6b). Each entry of the predictor consists of three fields: Tag, the

upper bits of the program counter of the load that allocated the entry; AVD, the address-value delta that was recorded for the

last retired load associated with the entry; Confidence (Conf), a saturating counter that records the confidence of the recorded

AVD (i.e., how many times the recorded AVD was seen consecutively). The confidence field is used to eliminate incorrect

predictions for loads with unstable AVDs.

AVDConfTag

Confidence
Update/Reset

Logic

Effective Address of Data Value of
Retired Load Retired Load

<=
 MaxAVD?

>=
−MaxAVD?

Program Counter of
Retired Load

==?

Program Counter of

Predicted?
(not INV?)

L2−miss Load in
Runahead Mode

L2−miss Load in
Runahead Mode

Effective Address of

Predicted Value

AVDConfTag

valid AVD?

= Effective Addr − AVD

computed AVD = Effective Addr − Data Value

(a) Update Logic for the AVD Predictor (b) Prediction Logic for the AVD Predictor

Figure 6. Organization of the AVD predictor and the hardware support needed for updating/accessing the predictor.

5.1. Operation

At initialization, the confidence counters in all the predictor entries are reset to zero. There are two major operations

performed on the AVD predictor: update and prediction.
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The predictor is updated when a load instruction is retired during normal mode. The predictor is accessed with the program

counter of the retired load. If an entry does not already exist for the load in the predictor and if the load has a valid AVD, a

new entry is allocated. To determine if the load has a valid AVD, the AVD of the instruction is computed and compared to the

minimum and maximum allowed AVD. If the computed AVD is within bounds [-MaxAVD, MaxAVD], the AVD is considered

valid. On the allocation of a new entry, the computed AVD is written into the predictor and the confidence counter is set to

one. If an entry already exists for the retired load, the computed AVD is compared with the AVD that is stored in the existing

entry. If the two match, the confidence counter is incremented. If the AVDs do not match and the computed AVD is valid, the

computed AVD is stored in the predictor entry and the confidence counter is set to one. If the computed AVD is not valid and

the load instruction has an associated entry in the predictor, the confidence counter is reset to zero, but the stored AVD is not

updated.6

The predictor is accessed when a load instruction misses in the L2 cache during runahead mode. The predictor is accessed

with the program counter of an L2-miss load. If an entry exists for the load and if the confidence counter is saturated (i.e.,

above a certain confidence threshold), the value of the load is predicted. The predicted value is computed by subtracting the

AVD stored in the predictor entry from the effective virtual address of the L2-miss load. If an entry does not exist for the load

in the predictor, the value of the load is not predicted. Two outputs are generated by the AVD predictor: a predicted bit which

informs the processor whether or not a prediction is generated for the load and the predicted value. If the predicted bit is set,

the predicted value is written into the destination register of the load so that its dependent instructions read it and are executed.

If the predicted bit is not set, the processor discards the predicted value and marks the destination register of the load as INV in

the register file (as in conventional runahead execution [30]) so that dependent instructions are marked as INV and their results

are not used.

The AVD predictor does not require any hardware for state recovery on AVD or branch mispredictions. Branch mispredic-

tions do not affect the state of the AVD predictor since the predictor is updated only by retired load instructions (i.e., there

are no wrong-path updates). The correctness of the AVD prediction cannot be determined until the L2 miss that triggered

the prediction returns back from main memory. We found that it is not worth updating the state of the predictor on an AVD

misprediction detected when the L2 cache miss returns back from main memory, since the predictor will anyway be updated

when the load is re-executed and retired in normal execution mode after the processor exits from runahead mode.

An AVD misprediction can occur only in runahead mode. When it occurs, instructions that are dependent on the predicted

L2-miss load can produce incorrect results. This may result in the generation of incorrect prefetches or the overturning of

correct branch predictions. However, since runahead mode is purely speculative7, there is no need to recover the processor

state on an AVD misprediction. We found that an incorrect AVD prediction is not necessarily harmful for performance. If the

6As an optimization, it is possible to not update the AVD predictor state, including the confidence counters, if the data value of the retired load is zero. A
data value of zero has a special meaning for address loads, i.e., NULL pointer. This optimization reduces the training time or eliminates the need to re-train the
predictor and thus helps benchmarks where loads that perform short traversals are common. The effect of this optimization on AVD predictor performance is
evaluated in Section 8.1.

7i.e., runahead mode makes no changes to the architectural state of the processor.
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predicted AVD is close enough to the actual AVD of the load, dependent instructions sometimes still generate useful L2 cache

misses that are later needed by the processor in normal mode. Hence, we do not initiate state recovery on AVD mispredictions

that are resolved during runahead mode.

5.2. Hardware Cost and Complexity

Our goal in the design of the AVD predictor is to avoid high hardware complexity and large storage requirements, but to still

improve performance by focusing on predicting the addresses of an important subset of address loads. Since the AVD predictor

filters out the loads for which the absolute value of the AVD is too large (using the MaxAVD threshold), the number of entries

required in the predictor does not need to be large. In fact, Section 7 shows that a 4-entry AVD predictor is sufficient to get

most of the performance benefit of the described mechanism. The storage cost required for a 4-entry predictor is very small

(212 bits8). The logic required to implement the AVD predictor is also relatively simple as shown in Figure 6. Furthermore,

neither the update nor the access of the AVD predictor is on the critical path of the processor. The update is performed after

retirement, which is not on the critical path. The access (prediction) is performed only for load instructions that miss in the L2

cache and it does not affect the critical L1 or L2 cache access times. Therefore, the complexity of the processor or the memory

system is not significantly increased with the addition of an AVD predictor.

6. Performance Evaluation Methodology

We evaluate the performance impact of AVD prediction on an execution-driven Alpha ISA simulator that models an aggres-

sive superscalar, out-of-order execution processor. The baseline processor employs runahead execution as described by Mutlu

et al. [30] in order to tolerate long L2 cache miss latencies. The parameters of the processor we model are shown in Table 2.

Table 2. Baseline processor configuration.

Pipeline 24-stage pipeline, 20-cycle minimum branch misprediction penalty
Front End 64KB, 4-way instruction cache with 2-cycle latency; 8-wide decoder with 1-cycle latency;

8-wide renamer with 4-cycle latency
64K-entry gshare/per-address hybrid with 64K-entry selector; 4K-entry, 4-way branch target buffer;

Branch Predictors 64-entry return address stack; 64K-entry target cache for indirect branches;
wrong-path execution faithfully modeled (including misprediction recoveries on the wrong path)

Instruction Window 128-entry reorder buffer; 128-entry INT, 128-entry FP physical register files with 4-cycle latency;
128-entry load/store buffer, store misses do not block the instruction window unless store buffer is full

Execution Core 8 general-purpose functional units, fully-pipelined except for FP divide; full bypass network
64KB, 4-way L1 data cache with 8 banks and 2-cycle latency, allows 4 load accesses per cycle; 1-cycle AGEN latency;

On-chip Caches 1MB, 32-way, unified L2 cache with 8 banks and 10-cycle latency, maximum 128 outstanding L2 misses,
1 L2 read port, 1 L2 write port; all caches use LRU replacement and have 64B line size
500-cycle minimum main memory latency; 32 DRAM banks; 32B-wide, split-transaction core-to-memory bus

Buses and Memory at 4:1 frequency ratio; maximum 128 outstanding misses to main memory;
bank conflicts, bandwidth, and queueing delays are faithfully modeled at all levels in the memory hierarchy

Runahead Support 128-byte runahead cache [30] for store-load data forwarding during runahead mode

We evaluate AVD prediction on eleven pointer-intensive and memory-intensive benchmarks from Olden [33] and SPEC

INT 2000 benchmark suites. We examine seven memory-intensive benchmarks from the Olden suite, which gain at least

8Assuming a 4-entry, 4-way AVD predictor with 53 bits per entry: 32 bits for the tag, 17 bits for the AVD (i.e. MaxAVD=65535), 2 bits for confidence, and
2 bits to support a True LRU (Least Recently Used) replacement policy.
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10% performance improvement with a perfect L2 cache and the four relatively pointer-intensive benchmarks (mcf, parser,

twolf, vpr) from the SPEC INT 2000 suite. All benchmarks were compiled for the Alpha EV6 ISA with the -O3 optimization

level. Twolf and vpr benchmarks are simulated for 250 million instructions after skipping the program initialization code

using a SimPoint-like tool [37]. To reduce simulation time, mcf is simulated using the MinneSPEC reduced input set [21].

Parser is simulated using the test input set. We used the simple, general-purpose memory allocator (malloc) provided by

the standard C library on an Alpha OSF1 V5.1 system. We did not consider a specialized memory allocator that would further

benefit AVD prediction and we leave the design of such memory allocators for future work.

Table 3 shows information relevant to our studies about the simulated benchmarks. Unless otherwise noted, performance

improvements are reported in terms of execution time normalized to the baseline processor throughout this paper. IPCs of the

evaluated processors, if needed, can be computed using the baseline IPC (retired Instructions Per Cycle) performance numbers

provided in Table 3 and the normalized execution times. Table 3 also shows the execution time reduction due to runahead

execution and we can see that the baseline runahead mechanism provides significant performance improvements except for

three benchmarks, health, tsp, and parser. In addition, the fraction of L2 misses that are due to address loads is shown

for each benchmark since our mechanism aims to predict the addresses loaded by address loads. We note that in all benchmarks

except vpr, at least 25% of the L2 cache data misses are caused by address loads. Benchmarks from the Olden suite are

more address-load intensive than the set of pointer-intensive benchmarks in the SPEC INT 2000 suite. Hence, we expect our

mechanism to perform better on Olden applications.

Table 3. Relevant information about the studied benchmarks. IPC and L2 miss rates are shown for the baseline runahead processor.

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr
250,000 5 levels 512 4K x 4K 1024K 100,000 20,000Input Data Set
integers 500 iters nodes image nodes cities points

smred.in test.in ref ref

Simulated instruction count 468M 197M 88M 46M 191M 1050M 139M 110M 412M 250M 250M
Baseline IPC 1.07 0.05 1.67 0.92 0.90 1.45 1.31 0.97 1.33 0.73 0.88

Exec. time reduction due to runahead 19.3% -3.7% 62.4% 30.5% 22.5% 0.9% 22.1% 37.8% 2.4% 22.3% 18.9%
L2 data misses per 1K instructions 1.03 41.59 5.60 4.27 4.33 0.67 2.41 29.60 1.05 2.37 1.69
% L2 misses due to address loads 72.1% 73.5% 33.8% 62.9% 57.6% 46.2% 78.6% 50.3% 30.1% 26.3% 2.1%

7. Performance of the Baseline AVD Prediction Mechanism

Figure 7 shows the performance improvement obtained when the baseline runahead execution processor is augmented with

the AVD prediction mechanism. We model an AVD predictor with a MaxAVD of 64K. A prediction is made if the confidence

counter has a value of 2 (i.e., if the same AVD was seen consecutively in the last two executions of the load). On average,

the execution time is improved by 12.6% (5.5% when health is excluded) with the use of an infinite-entry AVD predictor.

No performance degradation is observed on any benchmark. Benchmarks that have a very high L2 cache miss rate, most of

which is caused by address loads (health, perimeter, and treeadd as seen in Table 3), see the largest improvements in

performance. Benchmarks with few L2 misses caused by address loads (e.g. vpr) do not benefit from AVD prediction.
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A 32-entry, 4-way AVD predictor improves the execution time as much as an infinite-entry predictor for all benchmarks ex-

cept twolf. In general, as the predictor size decreases, the performance improvement provided by the predictor also decreases.

However, even a 4-entry AVD predictor improves the average execution time by 11.0% (4.0% without health). Because AVD

prediction aims to predict the values produced by a regular subset of address loads, it does not need to keep track of data loads

or address loads with very large AVDs. Thus, the number of load instructions competing for entries in the AVD predictor is

fairly small, and a small predictor is good at capturing them.
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Figure 7. AVD prediction performance on a runahead processor.

7.1. Effect of MaxAVD

As explained in Section 3, MaxAVD is used to dynamically determine which loads are address loads. Choosing a larger

MaxAVD results in more loads being identified -perhaps incorrectly- as address loads and may increase the contention for

entries in the AVD predictor. A smaller MaxAVD reduces the number of loads identified as address loads and thus reduces

contention for predictor entries, but it may eliminate some address loads with stable AVDs from being considered for AVD

prediction. The choice of MaxAVD also affects the size of the AVD predictor since the number of bits needed to store the AVD

is determined by MaxAVD. Figures 8 and 9 show the effect of a number of MaxAVD choices on the performance improvement

provided by, respectively, 16-entry and 4-entry AVD predictors.

The best performing MaxAVD value is 64K for the 16-entry predictor and 8K for the 4-entry predictor. Unless the AVD

is too small (in which case very few address loads are actually identified as address loads), performance is not significantly

affected by MaxAVD. However, with a 4-entry predictor, a large (1M or 64K) MaxAVD provides less performance benefit than

smaller MaxAVD values in some benchmarks due to the increased contention for predictor entries. We found that most address

loads with stable AVDs have AVDs that are within 0-8K range (except for some loads that have stable AVDs within 32K-64K

range in mcf). This behavior is expected because, as shown in code examples in Section 4, stable AVDs usually occur due to

regular memory allocation patterns that happen close together in time. Therefore, addresses that are linked in data structures

are close together in memory, resulting in small, stable AVDs in loads that manipulate them.
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Figure 8. Effect of MaxAVD on execution time (16-entry AVD predictor).
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Figure 9. Effect of MaxAVD on execution time (4-entry AVD predictor).

7.2. Effect of Confidence

Figure 10 shows the effect of the confidence threshold needed to make an AVD prediction on performance. A confidence

threshold of 2 provides the largest performance improvement for the 16-entry AVD predictor. Not using confidence (i.e., a

confidence threshold of 0) in an AVD predictor significantly reduces the performance of the runahead processor because it

results in the incorrect prediction of the values of many address loads that do not have stable AVDs. For example, in bisort

most of the L2-miss address loads are traversal address loads. Since the binary tree traversed by these loads is heavily modified

(sorted) during run-time, these traversal address loads do not have stable AVDs. A 16-entry AVD predictor that does not use

confidence generates predictions for all these loads but increases the execution time by 180% since almost all the predictions

are incorrect. Large confidence values (7 or 15) are also undesirable because they significantly reduce the prediction coverage

for address loads with stable AVDs and hence reduce the performance improvement.
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Figure 10. Effect of confidence threshold on execution time.

7.3. Coverage, Accuracy, and MLP Improvement

Figures 11 and 12 show the effect of the confidence threshold on the coverage and accuracy of the predictor. Coverage

is computed as the percentage of L2-miss address loads executed in runahead mode whose values are predicted by the AVD

predictor. Accuracy is the percentage of predictions where the predicted value is the same as the actual value. With a confidence

threshold of two, about 30% of the L2-miss address loads are predicted and about one half of the predictions are correct, on

average. We found that incorrect predictions are not necessarily harmful for performance. Since runahead mode does not have

any correctness requirements, incorrect predictions do not result in any recovery overhead. In some cases, even though the

predicted AVD is not exactly correct, it is close enough to the correct AVD that it leads to the pre-execution of dependent

instructions that generate cache misses that are later needed by correct execution. Thus, a more relevant metric for the goodness

of the AVD predictor is the improvement in the memory-level parallelism [15, 8]. Table 4 provides insight into the performance

improvement of AVD prediction by showing the increase in memory-level parallelism achieved with and without a 16-entry

AVD predictor. We define the memory-level parallelism in a runahead period as the number of useful L2 cache misses generated

in a runahead period. With AVD prediction, the average number of L2 cache misses parallelized in a runahead period increases

from 2.44 to 3.27. Note that benchmarks that show large increases in the average number of useful L2 misses with an AVD

predictor also show large increases in performance.

Table 4. Average number of useful L2 cache misses generated during a runahead period with a 16-entry AVD predictor.
bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

L2 misses - baseline runahead 2.01 0.03 7.93 1.45 1.02 0.19 0.81 11.51 0.12 0.84 0.94 2.44
L2 misses - 16-entry AVD pred (conf=2) 2.40 6.36 8.51 1.67 1.53 0.25 0.90 12.05 0.50 0.87 0.94 3.27

% reduction in execution time 2.9% 82.1% 8.4% 8.4% 17.6% 4.5% 0.8% 2.1% 6.3% 0.0% 0.0% 12.1%
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Figure 11. AVD prediction coverage for a 16-entry predictor.
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Figure 12. AVD prediction accuracy for a 16-entry AVD predictor.

7.4. AVD Prediction and Runahead Efficiency

Efficiency is an important concern in designing a runahead execution processor. Runahead execution relies on the pre-

execution of instructions to improve performance. This results in a significant increase in the number of processed (executed)

instructions as compared to a traditional out-of-order processor. Efficiency of a runahead processor is defined as the perfor-

mance increase due to runahead execution divided by the increase in executed instructions [29]. AVD prediction improves

efficiency because it both increases performance and decreases the number of executed instructions in a runahead processor.

Figure 13 shows that employing AVD prediction reduces the number of instructions processed in a runahead processor by 13.3%

with a 16-entry predictor and by 11.8% with a 4-entry predictor. AVD prediction reduces the number of executed instructions

because it is able to parallelize and service dependent L2 cache misses during a single runahead period. In a runahead processor

without AVD prediction, two dependent L2 misses would cause two separate runahead periods, which are overlapping [29],

and hence they would result in the execution of many more instructions than can be executed in a single runahead period.9

9In fact, an extreme case of inefficiency caused by dependent L2 misses can be seen in health. In this benchmark, using runahead execution increases the
number of executed instructions by 27 times, but results in a 4% increase in execution time! Using AVD prediction greatly reduces this inefficiency.
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Figure 13. Effect of AVD prediction on the number of executed instructions.

Figure 14 shows the normalized number of useful and useless runahead periods in the baseline runahead processor and the

runahead processor with a 16-entry AVD predictor. We define a runahead period to be useful if it results in the generation of an

L2 cache miss that cannot be generated by the processor’s fixed size instruction window and that is later needed by a correct-

path instruction in normal mode. On average, AVD prediction reduces the number of runahead periods by 18%. A significant

fraction of the useless runahead periods is eliminated with AVD prediction. In some benchmarks, like mst and treeadd, the

number of useful runahead periods is also reduced with AVD prediction. This is because AVD prediction increases the degree of

usefulness of useful runahead periods. With AVD prediction, an otherwise useful runahead period results in the parallelization

of more L2 cache misses, which eliminates later runahead periods (useful or useless) that would have occurred in the baseline

runahead processor.

We note that, even with AVD prediction, a large fraction (on average 61%) of the runahead periods remain useless. Hence,

AVD prediction cannot eliminate all useless runahead periods. However, a processor employing AVD prediction can be aug-

mented with previously-proposed techniques for efficient runahead processing [29] to further improve the efficiency of runahead

execution. We examine the effect of combining these techniques and AVD prediction in Section 9.1.

7.5. Effect of Memory Latency

Figure 15 shows the normalized execution time with and without AVD prediction for five processors with different memory

latencies. In this figure, execution time is normalized to the baseline runahead processor independently for each memory

latency. Execution time improvement provided by a 16-entry AVD predictor ranges from 8.0% for a relatively short 100-

cycle memory latency to 13.5% for a 1000-cycle memory latency. AVD prediction consistently improves the effectiveness of

runahead execution on processors with different memory latencies, including the one with a short, 100-cycle memory latency

where runahead execution is very ineffective and actually increases the execution time by 2%.
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Figure 14. Effect of AVD prediction on the number of useful and useless runahead periods.
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Figure 15. Effect of memory latency on AVD predictor performance.

7.6. AVD Prediction vs. Stride Value Prediction

We compare the proposed AVD predictor to stride value prediction [36]. When an L2-miss is encountered during runahead

mode, the stride value predictor (SVP) is accessed for a prediction. If the SVP generates a confident prediction, the value of the

L2-miss load is predicted. Otherwise, the L2-miss load marks its destination register as INV. Figure 16 shows the normalized

execution times obtained with an AVD predictor, a stride value predictor, and a hybrid AVD-stride value predictor.10 Stride

value prediction is more effective when the predictor is larger, but it provides only 4.5% (4.7% w/o health) improvement

in average execution time even with a 4K-entry predictor versus the 12.6% (5.5% w/o health) improvement provided by

the 4K-entry AVD predictor. With a small, 16-entry predictor, stride value prediction improves the average execution time by

2.6% (2.7% w/o health), whereas AVD prediction results in 12.1% (5.1% w/o health) performance improvement. The

10In our experiments, the hybrid AVD-SVP predictor does not require extra storage for the selection mechanism. Instead, the prediction made by the SVP
is given higher priority than the prediction made by the AVD predictor. If the SVP generates a confident prediction for an L2-miss load, its prediction is used.
Otherwise, the prediction made by the AVD predictor is used, if confident.
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filtering mechanism (i.e., the MaxAVD threshold) used in the AVD predictor to identify and predict only address loads enables

the predictor to be small and still provide significant performance improvements.
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Figure 16. AVD prediction vs. stride value prediction.

The benefits of stride and AVD predictors overlap for traversal address loads. Both predictors can capture the values of

traversal address loads if the memory allocation pattern is regular. Many L2 misses in treeadd are due to traversal address

loads, which is why both SVP and AVD predictors perform very well and similarly for this benchmark.

Most leaf address loads cannot be captured by SVP, whereas an AVD predictor can capture those with constant AVD patterns.

The benchmark health has many AVD-predictable leaf address loads, an example of which is described in detail in [28].

The traversal address loads in health are irregular and therefore cannot be captured by either SVP or AVD. Hence, AVD

prediction provides significant performance improvement in health whereas SVP does not. We found that benchmarks mst,

perimeter, and tsp also have many leaf address loads that can be captured with an AVD predictor but not with SVP.

In contrast to an AVD predictor, an SVP is able to capture data loads with constant strides. For this reason, SVP significantly

improves the performance of parser. In this benchmark, correctly value-predicted L2-miss data loads lead to the execution

and correct resolution of dependent branches which were mispredicted by the branch predictor. SVP improves the performance

of parser by keeping the processor on the correct path during runahead mode rather than by allowing the parallelization of

dependent cache misses.

Figure 16 also shows that combining stride value prediction and AVD prediction results in a larger performance improvement

than that provided by either of the prediction mechanisms alone. For example, a 16-entry hybrid AVD-SVP predictor results

in 13.4% (6.5% w/o health) improvement in average execution time. As shown in code examples in Section 4, address-value

delta predictability is different in nature from stride value predictability. A load instruction can have a predictable AVD but not

a predictable stride, and vice versa. Therefore, an AVD predictor and a stride value predictor sometimes generate predictions

for loads with different behavior, resulting in increased performance improvement when they are combined. This effect is
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especially salient in parser, where we found that the AVD predictor is good at capturing leaf address loads and the SVP is

good at capturing zero-stride data loads.

7.7. Simple Prefetching with AVD Prediction

So far, we have employed AVD prediction for value prediction purposes, i.e., for predicting the data value of an L2-miss

address load and thus enabling the pre-execution of dependent instructions that may generate long-latency cache misses. AVD

prediction can also be used for simple prefetching without value prediction. This section evaluates the use of AVD prediction

for simple prefetching on the runahead processor and shows that the major performance benefit of AVD prediction comes from

the enabling of the pre-execution of dependent instructions.

In the simple prefetching mechanism we evaluate, the value of an L2-miss address load is predicted using AVD prediction

during runahead mode. Instead of writing this value into the register file and enabling the execution of dependent instructions,

the processor generates a memory request for the predicted value by treating the value as a memory address. A prefetch request

for the next and previous sequential cache lines are also generated, since the data structure at the predicted memory address can

span multiple cache lines. The destination register of the L2-miss address load is marked as INV in the register file, just like in

baseline runahead execution. This mechanism enables the prefetching of only the address loaded by an L2-miss address load

that has a stable AVD. However, in contrast to using an AVD predictor for value prediction, it does not enable the prefetches

that can be generated further down the dependence chain of an L2-miss load through the execution of dependent instructions.

Figure 17 shows the normalized execution times when AVD prediction is used for simple prefetching and when AVD pre-

diction is used for value prediction as evaluated in previous sections. AVD prediction consistently provides higher performance

improvements when used for value prediction than when used for simple prefetching. A 16-entry AVD predictor results in

12.1% performance improvement when it is used for value prediction versus 2.5% performance improvement when it is used

for simple prefetching. Hence, the major benefit of AVD prediction comes from the prefetches generated by the execution of

the instructions on the dependence chain of L2-miss address loads rather than the prefetching of only the addresses loaded by

L2-miss address loads.

7.8. AVD Prediction on Conventional Processors

We have shown the performance impact of using AVD prediction on runahead execution processors. However, AVD pre-

diction is applicable not only to runahead execution processors. Less aggressive out-of-order execution processors that do not

implement runahead execution can also utilize AVD prediction to overcome the serialization of dependent load instructions.

Figure 18 shows the normalized execution times when AVD prediction is used for simple prefetching (as described in

Section 7.7) and value prediction on a conventional out-of-order processor.11 Note that execution time is normalized to the

execution time on the conventional out-of-order processor. Using a 16-entry AVD predictor for value prediction improves the

11The parameters for the conventional out-of-order processor are the same as described in Section 6, except the processor does not employ runahead
execution. The simple prefetching and value prediction mechanisms evaluated on out-of-order processors are employed for L2-miss loads. We examined using
these two mechanisms for all loads or L1-miss loads, but did not see significant performance differences.
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Figure 17. AVD performance with simple prefetching.

average execution time on the conventional out-of-order processor by 4%. Using the same AVD predictor for simple prefetching

improves the average execution time by 3.2%. The comparison of these results with the impact of AVD prediction on the

runahead execution processor shows that AVD prediction, when used for value prediction, is more effective on the runahead

execution processor with the same instruction window size. Since runahead execution enables the processor to execute many

more instructions than a conventional out-of-order processor while an L2 miss is in progress, it exposes more dependent load

instructions than an out-of-order processor with the same instruction window size. The correct prediction of the values of these

load instructions results in higher performance improvements on a runahead processor.
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Figure 18. AVD performance on a non-runahead processor.
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8. Hardware and Software Optimizations for AVD Prediction

The results presented in the previous section were based on the baseline AVD predictor implementation described in Sec-

tion 5. This section explores one hardware optimization and one software optimization that increases the benefits of AVD

prediction by taking advantage of the data structure traversal and memory allocation characteristics in application programs.

8.1. NULL-value Optimization

In the AVD predictor we have evaluated, the confidence counter of an entry is reset if the computed AVD of the retired address

load associated with the entry is not valid (i.e., not within bounds [-MaxAVD, MaxAVD]). The AVD of a load instruction with

a data value of zero is almost always invalid because the effective addresses computed by load instructions tend to be very

large in magnitude. As a result, the confidence counter of an entry is reset if the associated load is retired with a data value

of 0 (zero). For address loads, a zero data value has a special meaning: a NULL pointer is being loaded. This indicates the

end of a linked data structure traversal. If a NULL pointer is encountered for an address load, it may be better not to reset the

confidence counter for the corresponding AVD, because the AVD of the load may otherwise be stable except for the intermittent

instabilities caused by NULL pointer loads. This section examines the performance impact of not updating the AVD predictor

if the value loaded by a retired address load is zero. We call this optimization the NULL-value optimization.

If the AVD of a load is stable except when a NULL pointer is loaded, resetting the confidence counter upon encountering a

NULL pointer may result in a reduction in the prediction coverage of an AVD predictor. We show why this can happen with

an example. Figure 19 shows an example binary tree that is traversed by the treeadd program. The tree is traversed with the

source code shown in Figure 3. The execution history of the load that accesses the left child of each node (Load 1 in Figure 3)

is shown in Table 5. This table also shows the predictions for Load 1 that would be made by two different AVD predictors: one

that resets the confidence counters on a NULL value and one that does not change the confidence counters on a NULL value.

Both predictors have a confidence threshold of 2. To simplify the explanation of the example, we assume that the predictor is

updated before the next dynamic instance of Load 1 is executed.12

The execution history of Load 1 shows that not updating the AVD predictor on a NULL value is a valuable optimization. If

the confidence counter for Load 1 in the AVD predictor is reset on a NULL data value, the AVD predictor generates a prediction

for only 3 instances of Load 1 out of a total of 15 dynamic instances (i.e., coverage = 20%). Only one of these predictions

is correct (i.e., accuracy = 33%). In contrast, if the AVD predictor is not updated on a NULL data value, it would generate a

prediction for 13 dynamic instances (coverage = 87%), 5 of which are correct (accuracy = 38%).13 Hence, not updating the

AVD predictor on NULL data values significantly increases the coverage without degrading the accuracy of the predictor since

the AVD for Load 1 is stable except when it loads a NULL pointer.

12Note that this may not be the case in an out-of-order processor. Our simulations faithfully model the update of the predictor based on information available
to the hardware.

13Note that, even though many of the predicted AVDs are incorrect in the latter case, the predicted values are later used as addresses by the same load
instruction. Thus, AVD prediction can provide prefetching benefits even if the predicted AVDs may not be correct.
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Figure 19. An example binary tree traversed by the treeadd program. Links traversed by Load 1 in Figure 3 are shown in bold.

Table 5. Execution history of Load 1 in the treeadd program (see Figure 3) for the binary tree shown in Figure 19.

Dynamic Effective Predicted AVD and (value) Predicted AVD and (value)
instance Address

Data Value Correct AVD AVD valid?
reset on NULL no reset on NULL

1 A A+k -k valid no prediction no prediction
2 A+k A+2k -k valid no prediction no prediction
3 A+2k A+3k -k valid -k (A+3k) -k (A+3k)
4 A+3k 0 (NULL) A+3k not valid -k (A+4k) -k (A+4k)
5 A+4k 0 (NULL) A+4k not valid no prediction -k (A+5k)
6 A+5k A+6k -k valid no prediction -k (A+6k)
7 A+6k 0 (NULL) A+6k not valid no prediction -k (A+7k)
8 A+7k 0 (NULL) A+7k not valid no prediction -k (A+8k)
9 A+8k A+9k -k valid no prediction -k (A+9k)

10 A+9k A+10k -k valid no prediction -k (A+10k)
11 A+10k 0 (NULL) A+10k not valid -k (A+11k) -k (A+11k)
12 A+11k 0 (NULL) A+11k not valid no prediction -k (A+12k)
13 A+12k A+13k -k valid no prediction -k (A+13k)
14 A+13k 0 (NULL) A+13k not valid no prediction -k (A+14k)
15 A+14k 0 (NULL) A+14k not valid no prediction -k (A+15k)

For benchmarks similar to treeadd where short regular traversals frequently terminated by NULL pointer loads are com-

mon, not updating the AVD predictor on a NULL data value would be useful. NULL-value optimization requires that a NULL

data value be detected by the predictor. Thus the update logic of the AVD predictor needs to be augmented with a simple

comparator to zero (zero checker).

Figure 20 shows the impact of using NULL-value optimization on the execution time of the evaluated benchmarks. NULL-

value optimization significantly improves the execution time of treeadd (by 41.8% versus the 17.6% improvement when

confidence is reset on NULL values) and does not significantly impact the performance of other benchmarks. On average, it

increases the execution time improvement of a 16-entry AVD predictor from 12.1% to 14.3%, mainly due to the improvement

in treeadd.
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Figure 20. AVD performance with and without NULL-value optimization.

To provide insight into the performance improvement in treeadd, Figures 21 and 22 show the coverage and accuracy

of AVD predictions for L2-miss address loads. Not updating the AVD predictor on NULL values increases the coverage of

the predictor from 50% to 95% in treeadd while also slightly increasing its accuracy. For most other benchmarks, the

AVD prediction coverage also increases with the NULL-value optimization, however the AVD prediction accuracy decreases.

Therefore, the proposed NULL-value optimization does not provide significant performance benefit in most benchmarks.14
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Figure 21. Effect of NULL-value optimization on AVD prediction coverage.

8.2. Optimizing the Source Code to Take Advantage of AVD Prediction

As evident from the code examples shown in Section 4, the existence of stable AVDs depends highly on the existence of

regular memory allocation patterns arising from the way programs are written. We demonstrate how increasing the regularity in

14In some benchmarks, encountering a NULL pointer actually coincides with the end of a stable AVD pattern. Not updating the AVD predictor on NULL
values in such cases increases coverage but reduces accuracy.
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Figure 22. Effect of NULL-value optimization on AVD prediction accuracy.

the allocation patterns of linked data structures -by modifying the application source code- increases the effectiveness of AVD

prediction on a runahead processor. To do so, we use the source code example from the parser benchmark that was explained

in Section 4.2 and Figure 4.15

In the parser benchmark, stable AVDs for Load 1 in Figure 4 occur because the distance in memory of a string and

its associated Dict node is constant for many nodes in the dictionary. As explained in Section 4.2, the distance in memory

between a string and its associated Dict node depends on the size of the string because the parser benchmark

allocates memory space for string first and Dict node next. If the allocation order for these two structures is reversed

(i.e., if space for Dict node is allocated first and string next), the distance in memory between string and Dict node

would no longer be dependent on the size of the string, but it would be dependent on the size of Dict node. Since the

size of the data structure Dict node is constant, the distance between string and Dict node would always be constant.

Such an optimization in the allocation order would therefore increase the stability of the AVDs of Load 1. Figure 23b shows the

modified source code that allocates memory space for Dict node first and string next. Note that this optimization requires

only three lines to be modified in the original source code of the parser benchmark.

Figure 24 shows the execution time of the baseline parser binary and the modified parser binary on a runahead pro-

cessor with an without AVD prediction support. The performance of the baseline and modified binaries are the same on the

runahead processor that does not implement AVD prediction, indicating that the code modifications shown in Figure 23 does

not significantly change the performance of parser on the baseline runahead processor. However, when run on a runahead

processor with AVD prediction, the modified binary outperforms the base binary by 4.4%. Hence, this very simple source code

optimization significantly increases the effectiveness of AVD prediction by taking advantage of the way AVD prediction works.

Figure 25 shows the AVD prediction coverage and accuracy for L2-miss address loads on the baseline binary and the

15Note that the purpose of this section is to provide insights into how simple code optimizations can help increase the effectiveness of AVD prediction. This
section is not meant to be an exhaustive treatment of possible code optimizations for AVD prediction. We believe program, compiler, and memory allocator
optimizations that can increase the occurrence of stable AVDs in applications is a large and exciting area for future research.
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Dict_node allocated FIRST

      dictionary (binary tree) and the strings
(a) Base source code that allocates the nodes of the

string allocated FIRST

Dict_node allocated NEXT

string allocated NEXTDict_node *read_word_file(...) {
    // ...

    while ((s = get_a_word(...)) != NULL) {

         dn−>string = s;
         // ...
    }
    return dn;
}

char *get_a_word(...) {
    // read a word from file
    s = (char *) xalloc(strlen(word) + 1);
    strcpy(s, word);

}
    return s;

struct Dict_node {
    char *string;
    Dict_node *left, *right;
    // ...
}

    char *s; Dict_node *dn;

         dn = (Dict_node *) xalloc(sizeof(Dict_node));

    // read a word from file

struct Dict_node {
    char *string;
    Dict_node *left, *right;
    // ...
}

    strcpy(s, word);

}
    return s;

Dict_node *read_word_file(...) {
    // ...
    char *s; Dict_node *dn;

         dn−>string = s;
         // ...
    }
    return dn;
}

         *dn = (Dict_node *) xalloc(sizeof(Dict_node));

    while ((s = get_a_word(..., &dn)) != NULL) {

    s = (char *) xalloc(strlen(word) + 1);

(b) Modified source code (modified lines are in bold)

char *get_a_word(..., Dict_node **dn) {

Figure 23. Source code optimization performed in parser to increase the effectiveness of AVD prediction.

modified binary. The described source code optimization increases the accuracy of AVD prediction from 58% to 83%. Since

the modified binary has more regularity in its memory allocation patterns, the resulting AVDs for Load 1 are more stable than

in the baseline binary. Hence the increase in AVD prediction accuracy and performance.
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Figure 24. Effect of source code optimization on AVD prediction
performance in parser.
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9. Interaction of AVD Prediction with Other Techniques

A runahead processor will likely incorporate other techniques that interact with AVD prediction, such as techniques for effi-

cient runahead processing and stream-based hardware data prefetching. Some of the benefits provided by these mechanisms can

be orthogonal to the benefits provided by AVD prediction, some not. We examine two such mechanisms that were previously

proposed in literature and analyze their interactions with AVD prediction in a runahead processor.

9.1. Interaction of AVD Prediction with Efficiency Techniques for Runahead Execution

Several techniques have been proposed to increase the efficiency of a runahead processor [29]. Efficiency of a runahead

processor is defined as:

Efficiency =
Percent Increase In Performance Due To Runahead

Percent Increase In Executed Instructions Due To Runahead

Previously proposed efficiency techniques improve runahead efficiency by eliminating short, overlapping, and otherwise

useless runahead periods without significantly reducing the performance improvement provided by runahead execution. In

essence, these techniques predict whether or not a runahead period is going to be useful (i.e., will generate a useful L2 cache

miss). If the runahead period is predicted to be useless, entry into runahead mode is disabled.

In contrast, AVD prediction improves the efficiency of a runahead processor by increasing the usefulness of runahead periods

(either by turning a useless runahead period into a useful one or by increasing the usefulness of an already useful runahead

period). Since AVD prediction and runahead efficiency techniques improve runahead efficiency in different ways, we would

like to combine these two approaches and achieve even further improvements in runahead efficiency.

We have evaluated the runahead efficiency techniques proposed in [29] alone and in conjunction with AVD prediction.

Table 6 lists the implemented techniques and the threshold values used in the implementation. For a thorough description of

each technique, we refer the reader to [29].

Table 6. Evaluated runahead efficiency techniques.

Short runahead period elimination Processor does not initiate runahead on an L2 miss that has been in flight for more than T=400 cycles.
Overlapping runahead period elimination Not implemented. We found overlapping periods to be very useful for performance in the benchmark set examined.

1. 64-entry, 4-way RCST to eliminate useless periods based on the usefulness history of a load instruction
2. Exit runahead mode if 75% of the load instructions executed is INV after 50 cycles in runahead modeUseless runahead period elimination
3. Sampling: If the last N=100 runahead periods caused less than T=5 L2 cache misses, do not initiate runahead

for the next M=1000 L2 cache misses

Figures 26 and 27 show respectively the normalized execution time and the normalized number of executed instructions when

AVD prediction and efficiency techniques are utilized individually and together. We assume that NULL-value optimization

is employed in the AVD predictor. In general, efficiency techniques are very effective at reducing the number of executed

instructions. However, they also result in a slight performance loss. On average, using the efficiency techniques results in a

30% reduction in executed instructions accompanied with a 2.5% increase in execution time on the baseline runahead processor.
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Figure 26. Normalized execution time when AVD prediction and runahead efficiency techniques are used individually and together.
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Figure 27. Normalized number of executed instructions when AVD prediction and runahead efficiency techniques are used individually
and together.

Compared to the efficiency techniques, AVD prediction is less effective in reducing the number of executed instructions.

However, AVD prediction increases the baseline runahead performance while also reducing the executed instructions. On

average, using a 16-entry AVD predictor results in a 15.5% reduction in executed instructions accompanied with a 14.3%

reduction in execution time.

Using AVD prediction in conjunction with the previously-proposed efficiency techniques further improves efficiency by

both reducing the number of instructions and at the same time increasing performance. When AVD prediction and efficiency

techniques are used together in the baseline runahead processor, a 35.3% reduction in executed instructions is achieved accom-

panied with a 10.1% decrease in execution time. Hence, AVD prediction and the previously-proposed efficiency techniques are

complementary to each other and they interact positively.

Figure 28 shows the normalized number of runahead periods using AVD prediction and efficiency techniques. Efficiency
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techniques are more effective in eliminating useless runahead periods than AVD prediction. Efficiency techniques alone reduce

the number of runahead periods by 53% on average. Combining AVD prediction and efficiency techniques eliminates 57% of

all runahead periods and the usefulness of already-useful runahead periods also increases.

We conclude that using both AVD prediction and efficiency techniques together provides a better efficiency-performance

trade-off than using either of the mechanisms alone. Therefore, an efficient runahead processor should probably incorporate

both AVD prediction and runahead efficiency techniques.
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Figure 28. Normalized number of useful and useless runahead periods when AVD prediction and runahead efficiency techniques are
used individually and together.

9.2. Interaction of AVD Prediction with Stream-based Prefetching

Stream-based prefetching [18] is a technique that identifies regular streaming patterns in the memory requests generated

by a program. Once a streaming pattern is identified, the stream prefetcher generates speculative memory requests for later

addresses in the identified stream. We compare the performance benefits and bandwidth requirements of an AVD predictor and

an aggressive state-of-the-art stream-based prefetcher along with a combination of both techniques. The experiments in this

section assume that the AVD predictor implements the NULL-value optimization described in Section 8.1.

The stream prefetcher we model is similar to the IBM Power 4 prefetcher described by Tendler et al. [40]. We evaluate

two configurations of the same prefetcher: an aggressive one with a prefetch distance of 32 (i.e., a prefetcher that can stay

32 cache lines ahead of the processor’s access stream) and a relatively conservative one with a prefetch distance of 8. Both

configurations have 32 stream buffers. We found that increasing the number of stream buffers beyond 32 provides negligible

benefits. A stream buffer is allocated on an L2 cache miss. The stream buffers are trained with L2 cache accesses. A generated

prefetch request first queries the L2 cache. If it misses, it generates a memory request. Prefetched cache lines are inserted into

the L2 cache.

Figure 29 shows the execution time improvement when AVD prediction and stream prefetching are employed individually

and together on the baseline runahead processor. Figures 30 and 31 respectively show the increase in the number of L2 accesses

and main memory accesses when AVD prediction and stream prefetching are employed individually and together. On average,
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the stream prefetcher with a prefetch distance of 32 improves the average execution time of the evaluated benchmarks by 16.5%

(18.1% when health is excluded) while increasing the number of L2 accesses by 33.1% and main memory accesses by 14.9%.

A prefetch distance of 8 provides an average performance improvement of 13.4% (14.8% excluding health) and results in a

25% increase in L2 accesses and a 12.2% increase in main memory accesses. In contrast, a 16-entry AVD predictor improves

the average execution time of the evaluated benchmarks by 14.3% (7.5% excluding health) while increasing the number of

L2 accesses by only 5.1% and main memory accesses by only 3.2%. Hence, AVD prediction is much less bandwidth-intensive

than stream prefetching, but it does not provide as much performance improvement.
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Figure 29. Performance comparison of AVD prediction, stream prefetching and AVD prediction combined with stream prefetching.

Using AVD prediction and stream prefetching together on a runahead processor improves the execution time by more than

either of the two techniques does alone. This shows that the two techniques are in part complementary. Using a 16-entry AVD

predictor and a stream prefetcher with distance 32 improves the average execution time by 24.9% (19.5% excluding health)

while increasing the L2 accesses by 35.3% and main memory accesses by 19.5%.

In general, AVD prediction is limited to prefetching the addresses of dependent load instructions whereas a stream prefetcher

can prefetch addresses generated by both dependent and independent load instructions. Therefore, a stream prefetcher can

capture a broader range of address patterns that are of a streaming nature. A traversal address load with a stable AVD (in

this case also a regular stride) results in a streaming memory access pattern. Hence, similarly to an AVD predictor, a stream

prefetcher can prefetch the addresses generated by a traversal address load with a constant AVD.

In contrast to an AVD predictor, a stream prefetcher can capture the addresses generated by a leaf address load with a stable

AVD and its dependent instructions only if those addresses form a streaming access pattern or are part of a streaming access

pattern. An AVD predictor is therefore more effective in predicting the addresses dependent on leaf address loads with stable

AVDs. For this very reason, AVD prediction significantly improves the performance of two benchmarks, health and mst,

for which the stream prefetcher is ineffective.
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Figure 30. Increase in L2 accesses due to AVD prediction, stream prefetching and AVD prediction combined with stream prefetching.
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Figure 31. Increase in main memory accesses due to AVD prediction, stream prefetching and AVD prediction combined with stream
prefetching.

9.3. Importance of Correctly Modeling Wrong Path on Performance Estimates for AVD Prediction

In a recent paper [27], we have shown that modeling wrong-path memory references is crucial to get an accurate estimate

of the performance improvement provided by runahead execution. We hereby examine the impact of modeling wrong-path

references on the estimates of the performance improvements provided by AVD prediction. We show that the modeling of

wrong-path (i.e., execution-driven simulation as opposed to trace-driven simulation) is necessary to get accurate performance

estimates of AVD prediction, and -perhaps more importantly- to accurately determine the effect of some AVD predictor opti-

mizations.

Figure 32 shows the normalized execution time of three processors when wrong-path execution is modeled versus not mod-

31



eled: the baseline runahead processor, baseline processor with a 16-entry AVD predictor, and the baseline processor with a

16-entry AVD predictor with the NULL-value optimization. If wrong-path execution is not modeled in the simulator, the per-

formance improvement of AVD prediction (without NULL-value optimization) is significantly underestimated as 8.1% (versus

12.1% when wrong-path execution is modeled). This is because runahead execution on the wrong path provides prefetching

benefits for the normal mode execution on the correct path, as described in [27]. Furthermore, when wrong path is not modeled,

NULL-value optimization seems to degrade performance whereas it increases performance with accurate modeling of wrong-

path execution. Hence, not modeling wrong-path execution can cause the processor designer to make a wrong choice in the

design of an AVD predictor.
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Figure 32. AVD prediction performance with and without NULL-value optimization when wrong-path is correctly modeled and not
modeled.

10. Related Work

Several previous papers focused on predicting the values/addresses generated by pointer loads for value prediction or

prefetching purposes. Most of the proposed mechanisms we are aware of require significant storage cost and hardware com-

plexity. The major contribution of our study is a simple and efficient novel mechanism that allows the prediction of the values

loaded by a subset of pointer loads by exploiting stable address-value relationships.

Section 10.1 briefly discusses the related research in value and address prediction for load instructions. Section 10.2 describes

the related work in prefetching for pointer loads. And, Section 10.3 gives a brief overview of the related work in runahead

execution.

10.1. Related Research in Load Value/Address Prediction

The most relevant work to our research is in the area of predicting the destination register values of load instructions. Load

value prediction [24, 36] was proposed to predict the destination register values of loads. Many types of load value predictors
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were examined, including last value [24], stride [14, 36], FCM (finite context method) [36], and hybrid [41] predictors. While

a value predictor recognizes stable/predictable values, an AVD predictor recognizes stable address-value deltas. As shown in

code examples in Section 4, the address-value delta for an address load instruction can be stable and predictable even though the

value of the load instruction is not predictable. Furthermore, small value predictors do not significantly improve performance,

as shown in Section 7.6.

Load address predictors [14, 3] predict the effective address of a load instruction early in the pipeline. The value at the

predicted address can be loaded to the destination register of the load before the load is ready to be executed. Memory latency

can be partially hidden for the load and its dependent instructions.

Complex (e.g., stride or context-based) value/address predictors need significant hardware storage to generate predictions

and significant hardware complexity for state recovery. Moreover, the update latency (i.e., the latency between making the

prediction and determining whether or not the prediction was correct) associated with stride and context-based value/address

predictors significantly detracts from the performance benefits of these predictors over simple last value prediction [32, 22].

Good discussions of the hardware complexity required for complex address/value prediction can be found in [3] and [32].

The pointer cache [9] was proposed to predict the values of pointer loads. A pointer cache caches the values stored in

memory locations accessed by pointer load instructions. It is accessed with a load’s effective address in parallel with the data

cache. A pointer cache hit provides the predicted value for the load instruction. To improve performance, a pointer cache

requires significant hardware storage (at least 32K entries where each entry is 36 bits [9]) because the pointer data sets of the

programs are usually large. In contrast to the pointer cache, an AVD predictor stores AVDs based on pointer load instructions.

Since the pointer load instruction working set of a program is usually much smaller than the pointer data working set, the AVD

predictor requires much less hardware cost. Also, an AVD predictor does not affect the complexity in critical portions of the

processor because it is small and does not need to be accessed in parallel with the data cache.

Zhou and Conte [47] proposed the use of value prediction only for prefetching purposes in an out-of-order processor such

that no recovery is performed in the processor on a value misprediction. They evaluated their proposal using a 4K-entry

stride value predictor, which predicts the values produced by all load instructions. Similar to their work, we employ the AVD

prediction mechanism only for prefetching purposes, which eliminates the need for processor state recovery.

10.2. Related Research in Pointer Load Prefetching

In recent years, substantial research has been performed in prefetching the addresses generated by pointer load instructions.

AVD prediction differs from pointer load prefetching in that it is not only a prefetching mechanism. As shown in [28], AVD

prediction can be used for simple prefetching. However, AVD prediction is more beneficial when it is used as a targeted

value prediction technique for pointer loads that enables the pre-execution of dependent load instructions, which may generate

prefetches.

Hardware-based pointer prefetchers [6, 17, 34, 35, 9] try to dynamically capture the prefetch addresses generated by traversal
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loads. These approaches usually require significant hardware cost to store a history of pointers. For example, hardware-based

jump pointer prefetching requires jump pointer storage that has more than 16K entries (64KB) [35]. A low-overhead content-

based hardware pointer prefetcher was recently proposed by Cooksey et al. [12]. It can be combined with AVD prediction to

further reduce the negative performance impact of dependent L2 cache misses.

Software and combined software/hardware methods have also been proposed for prefetching loads that access linked data

structures [23, 26, 35, 46, 19, 38, 7, 44, 1]. Most relevant to AVD prediction, one software-based prefetching technique, MS

Delta [1], uses the garbage collector in a run-time managed Java system to detect regular distances between objects in linked data

structures whose traversals result in significant number of cache misses. A just-in-time compiler inserts prefetch instructions

into the program using the identified regular distances in order to prefetch linked objects in such traversals. Such software-

based prefetching techniques require non-trivial support from the compiler, the programmer, or a dynamic optimization and

compilation framework. Existing binaries cannot utilize software-based techniques unless they are re-compiled or re-optimized

using a dynamic optimization framework. AVD prediction, on the contrary, is a purely hardware-based mechanism that does

not require any software support and thus it can improve the performance of existing binaries. However, as we have shown in

Section 8.2, AVD prediction can provide larger performance improvements if software is written or optimized to increase the

occurrence of stable AVDs.

Thread-based prefetching techniques [11, 10, 25, 48, 2, 42] can also be used to prefetch data that will be accessed by

pointer loads. These techniques require threads separate from the main program be executed to generate prefetches. Such

“prefetching” threads can be constructed in hardware [10] or by the compiler [11, 25]. “Prefetching” threads can be executed on

a separate thread context in a simultaneous multithreading processor [5], on specialized dedicated pre-execution hardware [2],

or on the same thread context as the main program when the main program is idle [42]. Compared to these techniques, AVD

prediction requires neither a separate thread nor a separate thread context. Furthermore, AVD prediction is orthogonal to thread-

based prefetching: it can be used to predict the values of pointer load instructions in the “prefetching” threads to increase the

effectiveness of thread-based prefetching mechanisms.

10.3. Related Research in Runahead Execution

Conventional runahead execution [13, 30] can issue prefetch requests for cache misses generated by independent load in-

structions. Thus, it can parallelize the cache misses incurred by pointer loads provided that the pointer loads are independent

of each other. However, as described in this paper, runahead execution cannot parallelize dependent cache misses, which are

quite common in linked data structure traversals. AVD prediction reduces this limitation of runahead execution with very low

additional hardware cost and complexity by exploiting patterns in the memory allocation of linked data structures.

Three recent papers proposed combining runahead execution with value prediction [8, 20, 4]. These techniques use conven-

tional value predictors to predict the values of all L2-miss load instructions during pre-execution, which requires significant

hardware support (at least 2K-entry value tables). In contrast, we propose a new predictor to predict the values of only L2-miss
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address loads, which allows the parallelization of dependent cache misses without significant hardware overhead. As men-

tioned in [20], predicting the values of all L2-miss instructions during runahead mode sometimes reduces the performance of

a runahead processor since instructions dependent on the value-predicted loads need to be executed and they slow down the

processing speed during runahead mode. Our goal in this paper is to selectively predict the values of only those load instructions

that can lead to the generation of costly dependent cache misses. We note that the AVD prediction mechanism is not specific to

runahead execution and can also be employed by conventional processors.

We [29] proposed techniques for increasing the efficiency of runahead execution. These techniques usually increase ef-

ficiency by eliminating useless runahead periods. In contrast, AVD prediction increases both efficiency and performance by

increasing the usefulness of runahead periods. As we have shown in Section 9.1, runahead efficiency techniques are orthogonal

to AVD prediction and combining them with AVD prediction yields larger improvements in runahead efficiency.

11. Summary, Contributions, and Future Work

This paper introduces the concept of stable address-value deltas (AVDs) and proposes AVD prediction, a new method of

predicting the values generated by address load instructions by exploiting the stable and regular memory allocation patterns in

programs that heavily utilize linked data structures. We provide insights into why stable AVDs exist through code examples

from pointer-intensive applications. We also describe the design and implementation of a simple AVD predictor and utilize

it to overcome an important limitation of runahead execution: its inability to parallelize dependent L2 cache misses. The

proposed AVD prediction mechanism requires neither significant hardware cost or complexity nor hardware support for state

recovery. We propose hardware and software optimizations that increase the detection and occurrence of stable AVDs, which

can significantly improve the benefits of AVD prediction. Our experimental results show that a simple AVD predictor can

significantly improve both the performance and efficiency of a runahead execution processor. Augmenting a runahead execution

processor with a small, 16-entry (102-byte) AVD predictor improves the average execution time of a set of pointer-intensive

applications by 14.3% while it also reduces the executed instructions by 15.5%. Our experiments also show that AVD prediction

interacts positively with two previously-proposed mechanisms, efficiency techniques for runahead execution and stream-based

data prefetching.

11.1. Contributions

The major contribution of our paper is a simple and efficient mechanism that allows the prediction of the values loaded by a

subset of pointer loads by exploiting stable address-value relationships. Other contributions we make in this paper are:

1. We introduce the concept of stable address-value deltas and provide an analysis of the code structures that cause them

through code examples from application programs.

2. We propose the design and implementation of a simple, low-hardware-cost predictor that exploits the stable AVDs. We
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evaluate the design options for an AVD predictor. We also propose and evaluate simple hardware and software optimiza-

tions for an implementable AVD predictor.

3. We describe an important limitation of runahead execution: its inability to parallelize dependent long-latency cache misses.

We show that this limitation can be reduced by utilizing a simple AVD predictor in a runahead execution processor.

4. We evaluate the interactions of AVD prediction with two previously-proposed mechanisms: efficiency techniques for

runahead execution and stream-based data prefetching. We show that AVD prediction interacts positively with these two

related mechanisms.

11.2. Future Research Directions

Future work in exploiting stable AVDs can proceed in multiple directions. First, the AVD predictor we presented is a simple,

last-AVD predictor. More complex AVD predictors that can detect more complex patterns in address-value deltas may be

interesting to study and they may further improve performance at the expense of higher hardware cost and complexity. Second,

the effectiveness of AVD prediction is highly dependent on the memory allocation patterns in programs. Optimizing the memory

allocator, the program structures, and the algorithms used in programs for AVD prediction can increase the occurrence of stable

AVDs. Furthermore, in garbage-collected languages, optimizing the behavior of the garbage collector in conjunction with

the memory allocator can increase the occurrence of stable AVDs. Hence, software (programmer/compiler/allocator/garbage

collector) support can improve the effectiveness of a mechanism that exploits address-value deltas. We intend to examine

software algorithms, compiler optimizations, and memory allocator (and garbage collector) optimizations that can benefit AVD

prediction in our future work.
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